EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

CPN Tools 4 : a process modeling tool combining declarative
and imperative paradigms

Citation for published version (APA):

Westergaard, M., & Slaats, T. (2013). CPN Tools 4 : a process modeling tool combining declarative and
imperative paradigms. In M. C. Fauvet, & B. F. Dongen, van (Eds.), BPM Demo Sessions 2013 (Co-located with
11th International Conference on Business Process Management, BPM2013, Beijing, China, August 26-30,
2013) (pp. 1-5). (CEUR Workshop Proceedings; Vol. 1021). CEUR-WS.org.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/08dd9241-746f-4e5e-8076-8d19c01ff8b7

CPN Tools 4: A Process Modeling Tool
Combining Declarative and Imperative Paradigms

Michael Westergaard!2* and Tijs Slaats®4**

! Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands
2 National Research University Higher School of Economics,
Moscow, 101000, Russia
3 IT University of Copenhagen
Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
4 Exformatics A /S, Lautrupsgade 13, 2100 Copenhagen, Denmark
m.westergaard@tue.nl, tslaats@itu.dk

Abstract. CPN Tools is a tool for modeling, simulating, and analyzing
colored Petri nets. The latest iteration of the tool, CPN Tools 4, extends
this with constraints known from declarative languages such as Declare
and DCR Graphs. Furthermore, this version introduces an explicit pro-
cess perspective, powerful extensibility allowing third parties to extend
the tools capabilities, and a visualization perspective making it possible
to make high-level visualizations of executions directly in the tool.

In our demonstration, we show how it is possible to create models in-
corporating declarative and imperative constructs and how to use these
models to generate simulation logs that can be directly imported into
ProM. We show off the new process perspective on top of colored Petri
nets, exemplify the use of the perspective to generate readable Java code
directly from models, and show how the visualization perspective makes
it possible to show the formal underlying model alongside an easier-to-
grasp for non-experts high-level visualization.

Our intended audience comprise current users of CPN Tools interested
in recent developments and practitioners interested in colored Petri nets
and hybrid models. We expect to tailor each demonstration to the wishes
of the audience.

Standard imperative languages are suitable for the description of well-structured
and well-understood processes. On the other hand, processes that are less well-
understood or less well-structured, are often easier modeled using a declarative
approach, where instead of specifying the next task to execute, constraints be-
tween tasks are described. Popular languages for imperative specifications in-
clude BPMN and (colored) Petri nets. Declarative modeling is a more recent

* Support from the Basic Research Program of the National Research University
Higher School of Economics is gratefully acknowledged.
** This research is supported by the Danish Agency for Science, Technology and Inno-
vation through an industrial PhD Grant.

and less matured approach which has so far not found widespread application
in industry yet, however the two declarative languages Declare [6] and DCR
Graphs [2, 3] have been studied extensively in academia over the last decade.
Declarative languages do not explicitly specify flow of control, but instead spec-
ifies constraints between actions; examples of such constraints are init(A), mean-
ing that any execution has to start by executing A, and response(A, B), meaning
that after executing A, B has to be executed at some point. Other constraints
deal with choices and variations of the response constraint.

Hybrid modeling. Recently interest has emerged in hybrid approaches, where
some aspects of a process are specified directly using imperative constructs and
other aspects declaratively. This is useful if part of the process is well-structured
and part is more free, or for going from an abstract, little-understood process,
often modeled more naturally using declarative constraints, to a more concrete
implementation which by nature is often more imperative. One such hybrid
approach is implemented in CPN Tools 4 [5,7]. This approach combines the
places and transitions of colored Petri nets with the constraints of the Declare
and DCR Graphs languages. Fig. 1 shows an example of a mixed declarative and
imperative model. In the upper half of the screen we describe the registration of a
patient using an electronic patient record, which is basically form-filling and well-
suited for an imperative approach. In the bottom half we describe the treatment
of the patient which is strongly knowledge-based, therefore more flexible and
hence modeled using a Declarative approach. While these two aspects could have
been modelled as separate processes (one imperative and the other declarative),
using the hybrid approach allows us to join the two and show how they interact.
Initially, only Receive Patient is required due to the declarative constraint init.
After executing Disinfect Wound, Stitch Wound has to be executed because of a
response between them. Registration and treatment can happen in parallel, but
prescription of antibiotics is dependent on the patient data.

The model can be extended with time information and exercises to obtain
simulation-based performance information. It is also possible to obtain a sim-
ulation log from CPN Tools, which can be imported directly into ProM 6.3
for analysis using a known process. CPN Tools also offers state-space analysis
for ensuring the absence of errors such as dead-locks in the process. For more
information about hybrid modeling, we refer the interested reader to [7].

Domain-specific visualization. While colored Petri net models are graphical,
they are also complex to understand for non-experts. Previously, CPN Tools
supported visualizations of such models by means of an external tool, but with
version 4 such visualizations are internalized, making it possible to show model
and visualization side-by-side without requiring external tools. In Fig. 2, we see
two simple visualizations of the model from Fig. 1. The sequence diagram (left)
shows a single patient interaction and is updated when simulation is conducted.
The visualization is driven purely by the model, and as CPN Tools allows users
full control over the simulation, can be used to demonstrate complex scenarios

in a simple way. The bar chart (Fig. 2 (right)) shows aggregated statistics over
multiple simulations.

[ann SP™N €PN Tools (Version 3.9.0, May 2013) }
¥Tool box

Create init

Daclars Receive 5 pigy| Existing | _(name; allergy)

Hierarchy Patient - Patiant

«m

Monitoring
Net

name

Simulation
State space
Style
View
Development
»Help
» Options
¥ wound-treatment.cpn
Step: 0

Mon

Data
Call

Mark
Size

o M| pp|ms

Break
paint

User
def

Write

in file |

Time: 0
» Options

LL
pc

Coun
Tran

Tran
Enab

Place
Cont

» History
¥Declarations
» Standard priorities
»Standard declarations
¥ colset NAME =
with Alice | Bob;
¥var name : NAME;
¥ colset ALLERGIES =
with nothing | antibiotics;
¥colset NxA =
product NAME * ALLERGIE!-
wvar allergy: ALLERGIES;
» Monitors
New Page

-

N

one | |\~
S

T

Decla

S

(name, allergy)
117 (Alice,antibiotics)

NAME

Stitch
Wound

ntibioticd antibiotics]

FArAr e
Varari

BIBIP

Fig. 1: Overview of CPN Tools with an example hybrid model for a hospital loaded.

Process-partitioned colored Petri nets.

Colored Petri nets allow modelers

a lot of freedom. Most importantly, it is very hard to separate the flow of data

(@00 " CpN Tools (Version 3.9.0, May 2013)
:LZ?; bex Treatment Binder 2
» Options
¥ wound-treatment.cpn) S
Step: 6 Front Dask Dactar's Office| | Treatment Ragm P
Time: 0
» Options Receive
» History
¥ Dedarations
»Standard priorities Ask Name (Bob)
»Standard declarations
»colset NAME Transfer
»var name
¥ colset ALLERGIES
¥ colset NxA Disinfect
»var allergy
MSC .
¥ val msc = MSC createMsC(! lew DagBab, nothing)
v val blue = MSC.craatastyle
vvalrad - MSC.craatastyle() Transfer
v val front = "Front Dask”;
val _ = MSC.addProcesssty
¥ val office = "Doctor’s Office stitch
val 5C
New Page Transfar
Prescribe
init
Receive
Patient =) =

None

O

Disinfect

Stitch Antibiotics Tetanus

1 5. 1 (Allce, antibiotics)++
Aok | name | Goaivoh <1 (Bob,nothing)
Name patient, 373

None

S ——

Fig. 2: Two visualizations of the simple model from Fig. 1. The model itself is just
visible below the visualizations.

from the flow of control, which makes models hard to understand and analyze.
Workflow Nets solved this problem for standard Petri nets, but some of the re-
strictions are too severe for efficient use of the higher-level formalism. Colored
Workflow Nets [1] generalize Workflow Nets to colored Petri nets, but impose
some restrictions that make models unnatural. Instead, CPN Tools implements
Process-partitioned colored Petri nets (PP-CPNs) [4], which allow more flexibil-
ity and more natural models. PP-CPNs explicitly separate the flow of control and
data, separating places into process places, local and shared places (for data),
resource places, and communication (buffer) places.

PP-CPNs allow multiple instances of multiple process types to communi-
cate, and hence supports an artifact-centric modeling style. Of course, classical
Workflow Nets are recognized as PP-CPNs as one would expect. An example
PP-CPN model of a simple producer/consumer system can be seen in Fig. 3
(top). Here, we have two kinds of processes communicating over a buffer place;

[a0 PN €PN Tools (Version 3.9.0, May 2013) }
b Tool box
SEED PCSystem | et | Binder {
A N [>,
» Options _ 5. 0 E* Y
¥ producer-con: \Mliex/‘ B | %
Step: 0
Time: 0 MUTEX % q‘h By |oave
¥ Options
OReal Time
oBinding E 0 @ m
OGlobal BE Waiting Idle
Output di | - .
» Performal P PRODUCEIL (P(1))3+ CcoNsUMERd 1. %E
» Extensior E —=m— 2 1 (REREHeEr
»Daclars Produce P Recaive
YPP-CPN Data Data Data
wDiscove d (cd
»Histary PRODUCERXDATA CONSUMERxD:"lT."cu)++ e
» Declaration . P . e Consume
@l o Q|1 Ci2lr Even
»Monitors 1°P(2) 1 c(3)
PCSystam Producer Cansumer
W Waiting
PRODUCER CONSUMER=DATA CONSUMER
None | Consumer | Producar | Group 1 |
% Producer.java (~/Dropbox/Documents/...cts /People/Tijs/cpntools-4-bpm) - VIM1
' e dis
[S B 1

new Thread(new Consumer(buffer_input.get("C(3)"),
@), /7 int receivedData
"Consumer, C(3)").start(};
new Thread(new Producer(buffer_output, // CONSUME
nextConsumer, // CONSUMERx nextConsumer |
1), /7 int producedData
"Producer, P(1)").start();
GeneratedCode. java
public static class Channels {
Map<String, ObjectOutputStream> buffer;

Channels channals;
int pridducedData;

public static class Locks {
Semaphore mutex = new Semaphore(l, true);

static Locks locks = new Locks();
Producer. java

public Consumer(ObjectInputStream channelbuffer,
int localreceivedData) {
channels = new Channels();
channels.buffer = channelbuffer;
this.receivedData = localreceivedData;

3

public void run() {
int dj

d = ((int) channels.buffer.readObject());
this.receivedData = (d);
if ([odd d1) {
this.receivedData = (@);
} else {
this.receivedData = (@);

}
} while (true);

25% Consumer. java

Fig. 3: A colored Petri net model with an explicit process perspective (top) and (some
of the) generated Java code from the model (bottom).

producers produce items (integers), store them locally, and transmit them. They
use a mutex (a single resource) to prevent race conditions. Initially there are two
producers. Consumers receive data from producers, store it locally and dispatch
depending on the data.

An advantage of PP-CPNs is that it is possible to generate them automati-
cally from code and to generate running Java code from such models; an example
of code generated from the model in Fig. 3 (top) is shown in Fig. 3 (bottom).

Maturity, availability, screencast. CPN Tools is a very mature tool and
has been in active use for over 10 years. It enjoyed approximately 5500 down-
loads in the period May 1, 2012-May 1, 2013. It is used in teaching in sev-
eral universities, used by companies, and a large number of case studies in
several fields are available from http://cs.au.dk/cpnets/industrial-use/
and on our own homepage we showcase models from industrial case studies at
http://cpntools.org/documentation/examples/. We are currently conduct-
ing case studies using the new declarative constraints, but these are on-going
and not yet ready for publication. The implementation of the Declare language
is an optimized version of the Declare tool [6].

CPN Tools is open source and available for free for everybody at
http://cpntools.org/. On this page, we also have a comprehensive getting
started guide including screencasts for beginners. In the future, we plan to ex-
tend CPN Tools with timed and process-aware versions of Declare.

References

1. van der Aalst, W.M.P., Jgrgensen, J.B., Lassen, K.B.: Let’s Go All the Way: From
Requirements Via Colored Workflow Nets to a BPEL Implementation of a New Bank
System. In: Proc. of OTM Conferences (1). LNCS, vol. 3760, pp. 22-39. Springer
(2005)

2. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as distributed
dynamic condition response graphs. In: Post-proc.of PLACES 2010 (2010)

3. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response
graphs. In: Proc. of Fundamentals of Software Engineering (FSEN) (April 2011)

4. Kristensen, L.M., Westergaard, M.: Automatic Structure-Based Code Generation
from Coloured Petri Nets: A Proof of Concept. In: Proc. of FMICS. pp. 215-230.
LNCS, Springer (2010)

5. Westergaard, M.: CPN Tools 4: Multi-formalism and Extensibility. In: Proc. of
ATPN. LNCS, vol. 7927, pp. 400-409. Springer (2013)

6. Westergaard, M., Maggi, F.M.: Declare: A Tool Suite for Declarative Workflow
Modeling and Enactment. In: Business Process Management Demonstration Track
(BPMDemos 2011). CEUR Workshop Proceedings, vol. 820. CEUR-WS.org (2011)

7. Westergaard, M., Slaats, T.: Mixing Paradigms for More Comprehensible Models.
In: Proc. of BPM. LNCS, vol. 8094. Springer (2013)

