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Perception-Oriented Methodology for Robust
Motion Estimation Design

Adrienne Heinrich, Member, IEEE, René J. van der Vleuten, Member, IEEE, and Gerard de Haan

Abstract—Optimizing a motion estimator (ME) for picture rate
conversion is challenging. This is because there are many types of
MEs and, within each type, many parameters, which makes sub-
jective assessment of all the alternatives impractical. To solve this
problem, we propose an automatic design methodology that pro-
vides ‘well-performing MEs’ from the multitude of options. More-
over, we prove that applying this methodology results in subjec-
tively pleasing quality of the upconverted video, even while our ob-
jective performance metrics are necessarily suboptimal. This proof
involved a user rating of 93 MEs in 3 video sequences. The 93
MEs were systematically selected from a total of 7000 ME alter-
natives. The proposed methodology may provide an inspiration for
similar tough multi-dimensional optimization tasks with unreliable
metrics.

Index Terms—Design methodology, motion estimation, percep-
tion oriented methodology, performance measure, picture rate
conversion, user study.

I. INTRODUCTION

OTION estimation (ME) is an essential part of picture

rate conversion methods that are applied to eliminate
film judder, reduce flicker and eliminate blur in high-end televi-
sions [1]. Because of the increasing spatial resolution (from SD
to HD, Full HD and Ultra HD) and picture rates (from 24 fps to
more than 200 fps) of video shown on those televisions, as well
as the increasing size and quality of the television displays, there
is continuous pressure to lower the implementation complexity
and improve the quality of ME algorithms.

Optimizing a motion estimator (ME) for picture rate conver-
sion is challenging. This is because there are many types of MEs
and, within each type, many parameters, which makes subjec-
tive assessment of alternatives impractical.

For the application of picture rate conversion, various objec-
tive metrics have been developed and employed to evaluate the
performance of a ME, e.g [1]-[7]. Unfortunately, these perfor-
mance measures represent a necessarily suboptimal approach to
reflect the perceived subjective image quality.

In this paper we propose a robust ME design methodology
that, while applying such suboptimal metrics, can still identify
good MEs automatically and identify the MEs with a consis-
tently good performance for a multitude of challenges. More-
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over, we present a user study to support this perception-ori-
ented ME-design methodology and its assumptions. Users rated
93 MEs in 3 video sequences. The 93 MEs were systematically
selected from a total of 7000 ME alternatives. The current paper
can be seen as an extension of earlier work described in [8] and
[9]. The proposed methodology may provide an inspiration for
similar tough multi-dimensional optimization tasks with unreli-
able metrics.

In Section II, we present the proposed robust ME design
methodology followed by video data analysis results on ten test
sequences supporting the robustness claims made in [8] and
[9]. Section III describes the user perception test to confirm
and improve the proposed design methodology. The results are
presented in Section IV and discussed in Section V where the
perceived quality of MEs is incorporated in an improved ME
design methodology. Conclusions are drawn in Section VI.

II. PROPOSED MOTION ESTIMATION DESIGN METHODOLOGY
AND ROBUSTNESS ANALY SIS

This section presents the proposed motion estimation
methodology and related robustness experiments.

A. Proposed Motion Estimation Design Methodology

In order to automatically identify parameter settings of
robust MEs for upconverting video sequences, we present
a methodology that can successfully deal with performance
measures that are suboptimal in the sense that they do not fully
reflect the perceived video quality. A three-step approach is
suggested where, first, the variety of conditions under which
the MEs should perform well is defined and appropriate test
data is selected. Second, a contour line or trade-off curve
illustrates the achieved compromise between the motion vector
prediction accuracy and consistency (see Fig. 3). Third, an
attractive segment is identified containing all MEs within a
defined distance from an attractive section of the contour line.
Histogram analysis provides the distribution of MEs within the
attractive segment to identify the parameter settings of the MEs
that are least sensitive to varying settings and thus most robust.

1) Test Data Selection: A ME should perform well under a
majority of considered conditions for the picture rate conver-
sion application. These conditions are included in the test data
which should address ME challenges such as repetitive struc-
tures, small objects, subtitles and ticker tapes, several layers
with different motion, de-interlaced images with typical de-in-
terlacers of average quality (e.g. [10]), large motion, and occlu-
sion areas. To ensure a satisfactory performance with less chal-
lenging test material, also fairly straightforward sequences for
ME should be included, as well as repeated still images. Out of

1932-4553 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1.

Snapshots of test sequences used for the quantitative evaluation.

a pre-selection of 20 sequences, the ten test data sets were se-
lected according to these criteria. Some of the 10 remaining test
sequences were used for verification purposes of the results. A
snapshot of each Full-HD test sequence is shown in Fig. 1. The
two sequences shown in the bottom row are reused for the re-
peated still image sequence and the de-interlaced sequence. The
test set should thus address the main challenges posed by the
application and include standard test sequences. Additionally,
each algorithm (in our case, each motion estimator type) may
introduce new problem cases that are less prominent with other
algorithms. For these new problem cases, additional test data is
included. With this in mind, a good representation of all types
of motion should be accomplished.

We expect a well-performing ME to have a good average
performance for all challenges. For individual challenges, we
acknowledge that other ME parameter settings may render a
better result, however, the objective in the ME design for re-
timing video sequences remains a good overall performance.
Therefore, the average performance over all test sequences is
compared.

2) Performance Measures: The chosen performance mea-
sures which the trade-off curve is dependent on are based on
fundamental characteristics that are recognized as the basis of
ME design: The brightness constancy assumption when the true
motion is found and the smoothness constraints to enforce con-
sistent motion fields within a moving object. The trade-off be-
tween smoothness terms and brightness constancy in the form
of luminance comparisons has already become apparent in the
early optical flow implementations [11].

Similarly, [1], [2], [S]-[7] recognize that accurate predictions
at a highest possible consistency are necessary for a satisfac-
tory viewing experience. Relevant metrics addressing the pre-
diction accuracy, temporal continuity and spatial consistency of
the motion vectors are documented in [1], [2], [S]-[7]. The pre-
diction accuracy and temporal continuity are quantitatively as-
sessed with the ‘M2SE’ [2], [7],

M2SE(n) =

and the spatial inconsistency measure ‘SI” based on [7],
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Fig. 2. PSNR-Consistency trade-off plot of 6660 RS MEs.

where n;, and n,, are the image height and width in pixels, re-
spectively, W is the set of all the pixels in the entire image,
F,(#, n) the luminance of the original image at position # and at
the temporal position 7. Fj is the motion compensated average
of frames n — 1 and n + 1 by applying the vectors estimated for
frame n, 1, the position of the block b among the set of all the
blocks W}, in the entire image, N, the number of blocks in an
image and

A ko) = da(, ) — d (n n (’;)) e
- N k
Ay(:pb:kv]/nn) :(ly(xbvn) (] <*Tb <l)7'ﬂ> 3 (4)

where d,, and d,, are the computed motion vectors.

The PSNR measure is calculated from the M2SE:
PSNR(n) = 10 - logy((2VB — 1)°/M2SE(n)), where
NB is the number of bits used for representing the video data.

The PSNR-Consistency plot as e.g. shown in Fig. 2 with
6660 hierarchical Recursive Search (RS) MEs ([8]) is intro-
duced displaying the statistics for each ME computed over
all test sequences. The PSNR-Consistency plot captures the
achieved PSNR performance in relation to the consistency of
the motion field. The inverse mean of the PSNR and the mean
inconsistency values (SI) are plotted by computing the average
performance of all parameter setting combinations with regard
to the different test sequences. The optimal ME with a high
PSNR and a low inconsistency is located in the bottom left
corner. We call a ME which is not surpassed by any other ME
in both regards (consistency and PSNR) an ‘optimal’ ME. This
set of optimal MEs lies on the ‘contour line’ (blue line in Fig. 3)
or ‘trade-off curve’ as described in [12].

3) Identification of Robust ME Settings: A subset of MEs
considered ‘well-performing” MEs are found close to the con-
tour line. The selection criteria for this group of MEs are the
following:

1) “Well performing” MEs should be located close to a

so-called attractive section of the contour line,
2) the attractive section is bounded by a minimal PSNR and
a maximal Inconsistency (dashed lines in Fig. 3),

3) the area spanned by the attractive section and the maximum
ASI and APSNR distance contains well performing MEs.
This area is called attractive segment (red arrows in Fig. 3).
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Fig. 3. The PSNR-Consistency trade-off graph of the ME design space where
the green shaded area indicates the area of possible MEs which are bounded by
the contour line (blue). The black dashed lines indicate the minimal PSNR and
maximal Inconsistency for the attractive contour line section. The range of well
performing MEs in the attractive segment are highlighted by the red arrows.
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Fig. 4. RS ME:s (black) within a limited distance from the contour line; 1745
highlighted MEs (blue) in the attractive segment. Dashed line indicates minimal
PSNR for well performing ME.

Among the MEs with a satisfactory performance (e.g., blue
ME:s in Fig. 4), the distribution of the parameter settings is ana-
lyzed and their values compared in a histogram parameter anal-
ysis. The most robust ME settings are identified by high counts
in the corresponding parameter histogram. A ME parameter set-
ting that yields more often an optimal ME is preferred as it is
assumed less sensitive to varying settings of other parameters.
Among the high counts the setting closest to the expectation
value is selected.

The attractive segment and the corresponding attractive con-
tour line section have been defined based on the authors’ ob-
servation of different ME performances on ten Full HD test
sequences.

B. Robustness Analysis of Proposed Methodology

A design space exploration of thousands of MEs (resulting
from combinations of 8 different parameters, each parameter

with 2 to 8 different possible values) has been carried out on ten
test sequences (see snapshots in Fig. 1). The proposed method-
ology has been applied to two different ME types: Hierarchical
Recursive Search block matching (RS) and Phase Plane Corre-
lation (PPC). Both are relevant motion estimators for the appli-
cation of picture rate conversion and are commercially avail-
able in products. Spatio-temporal prediction methods such as
RS, e.g. [1]-[4], [13]-[16], are applied in practice (e.g. [17],
[18]), and so are alternatives based on PPC [19], [20].

1) Recursive Search Motion Estimation: We investigated a
hierarchical ME approach using resolution down-scaling, which
we call multi-scale block-matching ME. Using down-scaling,
the coarser motion vectors are obtained from block-matching
at a lower spatial resolution and can be successively refined
at higher resolutions. We will combine the multi-scale ap-
proach with a hierarchical ME method known as multi-grid
block-matching [21]. In this method, a coarse motion vector
is first found using a large block size and this vector is suc-
cessively refined for the smaller blocks into which the larger
blocks are decomposed (using a quad-tree decomposition). By
combining the multi-scale and multi-grid approaches, we aim
at reducing the computational complexity and are flexible in
investigating the effects of using different block sizes and scale
factors.

The multi-scale and multi-grid approach are illustrated by
the scale pyramid shown in Fig. 5, where ME is performed on
higher scales at the top of the pyramid first and motion vectors
are propagated down the pyramid to the lower scales by means
of hierarchical candidates.

The block-matching method we apply is the RS ME of [7]. In
contrast to the usual RS candidate structure of [7], the temporal
candidate is closer to the current block for all the hierarchical
approaches because, for coarse scales, the temporal candidate
may come to lie outside the object in which the current block is
located. An overview of the investigated candidate structures is
given in Fig. 6.

The parameters involved in the design of hierarchical motion
estimators are explained in the following and an overview is
given in Table 1.

The relevant parameters for the scale structure are the fine
scale, the coarse scale and the scaling factors sf, and sf},. The
fine scale and the coarse scale denote the levels of the pyramid
(see Fig. 5) where ME is performed, e.g. fine = 1, coarse = 2.
fine is the finer scale (for multi-scale ME) or the one with a finer
block grid than coarse in the case that the coarse and fine scale
have the same size (multi-grid ME). If the full resolution is in-
cluded as a scale on which ME is performed, fine = 0 is chosen
(otherwise fine = 1). The scale factors sfy, and sf}, determine
the size of the scales. The scaling factors sf, and sf}, for width
and height indicate how much one scale is down-scaled in com-
parison to the next lower scale in the pyramid. In the case of a
multi-scale motion estimator (right image in Fig. 5), the image
dimensions become smaller as we ascend in the pyramid. How-
ever, when a multi-grid (left image in Fig. 5) motion estimator
is designed, two scales have the same dimension, thus the cor-
responding scaling factor component equals 1. As the spatial
resolution of two vector fields from two different scales may
not be equal, this may require scaling of the vector field as well,
which is implemented as nearest neighbor scaling.



466

Multi-grid block-matching

Top of pyramid Propagate

el result to
: )‘m'\t'\alize

next level

Bottom of pyramid

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 8, NO. 3, JUNE 2014

Multi-scale block-matching

Propagate result to Top of pyramid

initialize next level

@ Bottom of pyramid

Fig. 5. Illustration of multi-grid (left) and multi-scale (right) motion estimation approach. In both cases, ME is performed on higher scales at the top of the pyramid
first and motion vectors are propagated down the pyramid to the lower scales by means of hierarchical candidates.

The block width and block height dimensions blk,, and blky,
are arrays where the elements blky[i], i = 0,..., coarse, in-
dicate the block sizes for each scale ¢ in the pyramid.

The PSNR-Consistency plot and the contour line of the op-
timal RS MEs are given in Fig. 2 and Fig. 7. Note that the SI
measure is computed based on 8 x 8-pixel blocks. The MEs
within the attractive segment are shown in Fig. 4. Based on the
parameter histogram analysis, which is elaborately discussed in
[8], 62 multi-scale MEs have been identified out of the 1745
ME:s in the attractive segment (see Fig. 4). An overview of the
proposed parameter settings of this ME type is given in Table II
where block settings and performance are rendered. The first
row of Table IV shows the mean performance for the 62 robust
ME:s. From the expectation value of the block dimension distri-
butions of the 62 MEs we determined the proposed ME settings
given in the second row. The resulting ME happens to coincide
with Opt. ME 6 in Fig. 7 which was visually perceived as the
most pleasing ME among the seven MEs on the contour line.

2) Phase Plane Correlation Motion Estimation: PPC was de-
veloped in the *80s [19] and is employed in state-of-the-art prod-
ucts [20]. Instead of obtaining motion vector candidates from a
spatio-temporal neighborhood as in RS, PPC retrieves the mo-
tion vectors by performing phase correlation in the Fourier do-
main between spatially corresponding blocks from consecutive
images. A correlation plane of displacement peaks is returned
of which a subset is used as motion vector candidates in a con-
sequent block matching operation on smaller blocks. Among
the most dominant peaks in the obtained displacement field, the
peak yielding the minimal match error between the motion com-
pensated and the original smaller blocks is selected.

We implemented PPC-based MEs based on [19] (which may
not reflect current product implementations) with the param-
eter variations as given in Table III. In total, 1800 ME param-
eter combinations are investigated. Initially, a two-dimensional
Fourier transform is performed on the larger blocks with dimen-
sions m; X m;. The n, most dominant displacement peaks are
considered motion candidates for the smaller blocks with di-
mensions 7, X 1. Another parameter is the block step size s,
based on which the pixel locations of the next v X #; block
are selected for the next FFT operation. The values for s;, are set
in the range between the largest m setting (16) and the current
m; dimension. The displacement of the larger blocks can be de-
termined with pixel or sub-pixel accuracy. The binary variable

as indicates a sub-pixel accuracy of 0.25 pixels when ¢, = 1
and pixel accuracy when a; = 0.

The contour line (with the 8 x 8 block-based SI measure) of
the PPC MEs is given in Fig. 7.

The histogram analysis is conducted for all parameters in
Table III. Among the 54 MEs within the attractive segment, we
found that the block dimensions of both the larger and smaller
blocks converge to m; = 128 and m, = 16. This is expected
since large m; dimensions are necessary to capture larger move-
ments. Taking 16 x 16 blocks to perform block matching on the
candidate peaks is already proven in the RS study to be a suit-
able value when we are dealing with HD sequences. The robust
number of candidate peaks 7, is determined to be n, = 13.
Largely overlapping blocks are favored with a block step size
tending to s, = 32.

In the authors’ perception, the computed robust ME settings
(referred to as the PPC proposed ME and RS Opt. ME 6 in
Fig. 7) corresponded with better upconverted quality than other
ME settings (e.g., other optimal MEs in Fig. 7 or MEs in the
attractive segment). The results have also shown that a compar-
ison between two MEs from different ME types (i.e., from RS
and from PPC) is possible when MEs are sufficiently far apart
in the PSNR-Consistency trade-off graph as is the case between
PPC and RS MEs (see Fig. 7).

The proposed methodology should find robust MEs even with
suboptimal performance measures. The SI metric is evidently
suboptimal in the sense that the SI output is dependent on the
selected block dimension, thus the 8 x 8 block-based SI mea-
sure is not comparable with the 1 x 1 pixel-based SI measure.
For the case of PPC, we have added a pixel-based SI evaluation
(see Fig. 8), where a motion vector is assigned to each pixel in
the image instead of validating the SI performance on only 8 x
8-pixel motion vector blocks. The distances ASI and APSNR
to the attractive section were chosen such that approximately
the same number of MEs ended up in the attractive segment.
When comparing the 8 x 8 block based SI with the pixel-based
SI, we found that different MEs are returned in the attractive
segment. 22% of the MEs in the attractive segment of the 8 x 8
block-based SI measure are not present in the attractive segment
of the pixel-based approach. Nevertheless, the histogram anal-
ysis reveals that the same robust ME is computed in the case of
the pixel-based SI. In Fig. 8, it is apparent that the computed ro-
bust ME is located halfway between Opt. ME 3 and Opt. ME 4,
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Fig. 6. The usual 3DRS candidate structure, as well as nine different subsamplings of the spatio-temporal neighborhood of a block (candidate structures 1. ....9)

are shown. C denotes the current block for which candidate motion vectors are determined, S a spatial candidate, U a random update vector added to the spatial
candidate, T a temporal candidate, and H the hierarchical candidate resulting from the ME scan on a coarser grid or on a coarser scale. For candidate structures 4

and 8, d = 1/60.

TABLE I
PARAMETERS FOR THE HIERARCHICAL MOTION ESTIMATOR DESIGN

fine Lowest/Finest scale on which ME is performed
coarse Highest/Coarsest scale on which ME is performed
sfw, sfh Scaling factor width and height for resizing scales
blky,, blky Block width and height of each scale
cand.struc. | Selected candidate structure

scan Amount of ME scans performed per scale

whereas in Fig. 7, the same ME is located closer to Opt. ME 3,
which underlines the incongruent output of the two SI metrics.

The performance of the computed robust ME is analyzed and
compared to other MEs within the attractive segment to deter-
mine the robustness of the chosen parameter settings. A robust
ME is expected not to perform badly on any of the test se-

quences. Therefore, the PSNR and SI distance to the contour
line are displayed in Fig. 9, where the computed robust RS ME
is plotted against the best MEs (in either PSNR or SI) for each
sequence. Only one ME (highlighted in black in Fig. 9) reveals
on average smaller distances in both PSNR and SI. However, its
SI distance from the contour line for the ‘WalkingMan’ test se-
quence (sequence 7 in top image of Fig. 9) shown in the middle
snapshot of the first row in Fig. 1 is clearly larger than the SI
distance of the computed robust ME. Hence, the ME computed
with the proposed methodology is not surpassed in robustness
by any of the best MEs per test sequence.

The computed robust RS ME is a multi-scale recursive search
ME with candidate structure 2S1TC (see [8] for details), em-
ploying two scales where the first scale is a downscaled ver-
sion of the full resolution image by a factor of 2 and the second
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Fig. 7. Contour line of RS (red line) and PPC (blue line) MEs; several optimal
MEs are highlighted.

TABLE 11
BLOCK SETTINGS AND PERFORMANCE IN PSNR AND SI OF 62 ROBUST
RS MES AND THE PROPOSED RS ME. BLOCK WIDTH AND BLOCK
HEIGHT INDICATE THE EQUIVALENT BLOCK SIZES FOR THE FULL
RESOLUTION WHERE THE SELECTED SETTINGS FOR THE fine AND
course SCALES CAN BE A RANGE ([...]) OF VALUES

Block width Block height mean | mean
full res. full res. PSNR SI
62 Robust RS MEs | [8,32], [32,128] | [4,16], [16,64] | 28.46 2.18
Proposed RS ME 16, 64 8,32 28.91 2.46
TABLE III

PARAMETER SETTINGS FOR PPC MEs
my {32,64,128}

ms | {1,2,4,8,16}
np | {1,2,3,..., 20}

Sb {16,...,77’”}
as {0,1}
00431 A PPCOpt. ME1 |
’ > PPC Opt. ME 2
0.042} < PPCOpt. ME3 |
00411 * PPCOpt. ME4 ||
© PPC Proposed ME

% 004f g

7¢]

& 0.039f .
0.038} 1
0.037} 1
0.036 1
0.035 : :

012 0.14 0.16 0.18 0.2
Inconsistency

0.06 0.08 0.1 0.22

Fig. 8. Contour line of PPC MEs derived from pixel-based SI metric with high-
lighted optimal MEs.

scale a downscaled version by a factor of 4, where 2 estimation
scans are performed on each scale. The block size settings and
PSNR/SI performance are given in the first row of Table IV.
To further confirm that the proposed methodology returns
well-performing MEs which can compete with other tech-
niques, a benchmark is provided in Table IV. An overview
is given of the SI and M2SE-PSNR values of the investi-
gated recursive-search MEs as well as the benchmark results

4.5 T T T T
—Proposed ME 9
4 —Best PSNR and Sl Seq. 4 |
—Best PSNR and Sl Seq. 9
Best PSNR and Sl Seq. 8
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Fig. 9. Top: SI distances to the contour line for the best performing RS MEs
within the attractive segment in PSNR and SI per sequence. Bottom: PSNR
distances to the contour line for the best performing RS MEs within the attractive
segment in PSNR and SI per sequence. The computed robust ME is highlighted
with a thicker blue line.

TABLE IV
PERFORMANCE COMPARISON OF THE COMPUTED ROBUST RS ME AND
VARIOUS TECHNIQUES DOCUMENTED IN LITERATURE. BLOCK WIDTH AND
BLOCK HEIGHT INDICATE THE EQUIVALENT BLOCK SIZES FOR THE FULL
RESOLUTION fine AND course SCALES

Block width | Block height | mean | mean
full res. full res. PSNR SI

Robust RS ME 16, 64 8, 32 2891 2.46
3DRS [13] 8 8 28.60 2.80
HRNM [22] 8 8 29.32 1.48
FS [23] 16 16 25.78 15.00
3SS [24] 16 16 22.80 3.90
OTS [25] 16 16 2379 6.64
DS [26] 16 16 23.95 7.24
HEXBS [27] 16 16 23.90 7.28
MVFAST [28] 16 16 28.15 4.43
TCSBP [1] 16 16 28.31 4.07
EPZS [29] 16 16 28.69 3.71
MRST [30] 16,16,16,16 16,16,16,16 28.60 5.16
MPMVP [16] 32,16, 8, 4 32,16, 8, 4 28.13 3.80

from several methods described in literature implemented
by us. These include full-search (FS) and reduced-search
pattern based methods, i.e. three-step-search (TSS) [24],
one-at-a-time-search search (OTS) [25], diamond search
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Fig. 10. Snapshots of the selected video sequences.

(DS) [26] and hexagon-based-search (HEXBS) [27], as well as
algorithms based on spatio-temporal predictors, i.e. the predic-
tive (zonal) search methods MVFAST [28] and EPZS [29], the
RS methods 3DRS [13], HRNM [22] and TCSBP [1], and com-
bined hierarchical-predictive methods, i.e. the MRST-method
proposed in [30] and MPMVP from [16]. Note that the
M2SE-PSNR metric favors ‘true’ motion, i.e. MEs with a
better vector field consistency can outperform a full-search
method. Furthermore, all methods from literature were adapted
and tested with smaller block dimensions (e.g. 8 x 8), however,
no improvement in PSNR and SI was observed.

The benchmark shows that the computed hierarchical RS ME
is outperformed solely by the sophisticated HRNM ME which
employs 3-picture estimates. We suggest from these results that
the proposed methodology does yield superior performing MEs
among the thousands of ME parameter combinations.

The proposed methodology has been tested with a large set
of parameters (6660 RS MEs) and a smaller set of parameters
(1800 PPC MEs). In both cases, the methodology returned ro-
bust MEs. As long as there are sufficient permutations of pa-
rameter settings, the methodology should be able to compute
reoccurring ‘well-performing’ settings yielding robust motion
estimators.

IITI. PERCEPTION TEST FOR ASSESSING ME QUALITY

A subset of MEs is considered as ‘well performing’ when
they satisfy particular selection criteria. The properties of these
MEs are further analyzed to determine the settings of a robust
ME. We have conducted a user study on a limited set of test se-
quences to gain insight into the validity of the assumptions made
in Section II. In particular, the definition of the chosen attractive
segment and the quality influence of PSNR and Inconsistency
performance measures are investigated.

A. Video Sequence Selection

Snapshots of the three video sequences used in the user study
are shown in Fig. 10. Sequence A shows a person walking in
front of a calendar and other objects with high contrast and many
details. Departing cars are accelerating over an intersection in
sequence B. In sequence C, a motor boat passes behind an iron
grid fence, containing different motions and occlusion. The se-
quences posed different ME challenges resulting in MEs on dif-
ferent PSNR and Inconsistency quality scales (see ME clusters
in Fig. 11). The video sequences were converted from 24 fps (se-
quences A and C) or from 30 fps (sequence B) to 60 fps using
the MEs selected in Section III-B. The video clips were 1.5s-2 s
long and presented to the viewers in an uninterrupted loop.

B. ME Selection

The objective of the user study is to answer the following
research questions which help in improving and verifying the
ME design methodology.

648 Motion Estimators plotted in 1/PSNR-Inconsistency plot

0.046} ) .
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0.038

1/PSNR

0.036

0.034

0.032

Inconsistency

Fig. 11.  All MEs: sequences are indicated by the colors red (A), blue (B), and
green (C). A grid is laid over to systematically select motion estimators.

1) Is a contour line analysis of MEs sufficient such that the
attractive segment can be limited to the attractive section
of the contour line?

2) Isthe attractive segment appropriately chosen in Section 11
such that a ME inside the attractive segment scores signif-
icantly better than a ME outside the attractive segment?

3) Do the PSNR and SI measures show similar importance for
assessing the ME quality?

Therefore, three different partitions or areas were selected
corresponding to the attractive section of the contour line, the
original attractive segment and an attractive segment biased to-
wards high PSNR values.

The selection of the specific MEs within each partition was
done in a systematic way. A grid was used for selecting motion
estimators with approximately the same distances in 1/PSNR
and Inconsistency. The grid is shown in Fig. 11 as black dots,
where the colors indicate the sequence (A (red), B (blue), and C
(green)). This grid consisted of equally separated points which
figured as guiding target positions. Points were chosen system-
atically according to their PSNR and SI values (not according
to their parameter settings which can vary largely in a non-con-
sistent way), from dense points closer to the optimum to less
dense further away from the optimum. When a grid point was
selected, the closest motion estimator was chosen. From the op-
timum (in terms of 1/PSNR and SI), the first ME was selected for
each sequence. The next five MEs then were selected with a dis-
tance of two grid points between each other. The MEs farthest
away from the optimum were selected with a distance of four to
five grid points from each other. An overview of the 93 selected
motion estimators in the 1/PSNR-Inconsistency plot is given in
Fig. 12. The black rectangle indicates the area of interest shown
in Fig. 13 with the resulting ME selection. Due to performance
variations of the same ME for different sequences, different
MEs may be selected for sequence A than for sequence B. In
total, 93 ME-sequence combinations were selected.

Three partitions were selected for each sequence to draw
ME:s from (see Fig. 13). They differ in position and size in
the 1/PSNR-Inconsistency plot. The first partition is limited to
the contour line, the second partition describes the attractive
segment proposed in [9], and the third partition is biased to high
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Fig. 12. Selected MEs as black dots in the total 1/PSNR-Inconsistency plot.
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Fig. 13. Selected MEs from sequences A (red), B (blue), and C (green). Three
partitions are indicated (grey) and numbered 1, 2, 3.

PSNR scores, largely disregarding the SI score. This bias is
chosen to assess the influence of the PSNR and SI measures on
the perceived video quality. The bias towards PSNR is present
in a number of publications evaluating MEs where no incon-
sistency measure is taken into account (e.g., [3], [31], [32]).
This third partition encompasses all MEs within a distance of
SPSNR from the ME with the highest PSNR score. The range
of {PSNR varied between 0.35 < éPSNR < 0.55, selecting a
similar number of MEs for each sequence. MEs from the three
partitions were compared with MEs outside the partitions in
Fig. 13.

C. User Study Setup

The experiment was set up in an enclosed testing room
without any windows. The room was dimly lit with two iden-
tical floor lamps, each consisting of two halogen lamps. With
each lamp, the spot was directed to the wall and the main lamp
was directed diffusely to the white ceiling, giving a domestic
impression (see Fig. 14). In the back of the testing room, the
main screen displaying the video sequences was located. In
front of it a table was positioned on which a second screen

Fig. 14. User study setup: participant rating the quality. The second screen was
positioned outside the field of view of the participant and its brightness level was
set to minimum.

(the instruction and score entry screen), a computer keyboard
and a computer mouse were present. Participants were seated
on a chair behind the table. The second screen was positioned
outside the field of view of the participants and its brightness
level was set to minimum to reduce its influence as much as
possible. The reason for introducing a second screen is to give
participants the possibility to adjust the score while reviewing
the test sequences. The distance between the center of the main
screen and the forehead of the participant was approximately
twice the diagonal length of the screen minus 10 percent, in
our case, with a 46 inch screen, 82.8 inch. This ratio between
screen diagonal and viewing distance was based on the SMPTE
standard 196M-2003 ([33]).

A video streaming system was used for both presentation and
response recording. The main screen used for video presentation
was a 46 inch Sony LCD TV screen (Sony KDL-46HX920) with
a LED back light and had a 16:9 aspect ratio. The minimum
luminance was 0 ¢d/ m” (due to local dimming), the maximum
luminance was 600 cd/ m”. The instruction screen used was a
Philips LCD monitor screen (Philips Brilliance 240 B) with a 24
inch diameter and a 16:10 aspect ratio. The brightness was set
to the screen’s minimum. The other settings were left at factory
defaults.

D. Participants and Procedure

In total, 24 participants joined the perception test, among
them 12 male and 12 female subjects, ranging from 21 to 51
years old. None of the participants had any professional experi-
ence in video processing.
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Fig. 15. Top: mean quality scores for sequence A indicated in color in the
1/PSNR-Inconsistency plot. Bottom: quality means and estimation by the model
for sequence A.

The participants were seated in front of two displays on which
the instructions and video sequences were presented. Written
instructions were given on the instruction display and example
trials were presented on the main TV display. In the first phase
of the experiment, subjects got familiar with the stimuli. Every
video sequence was presented at two performance levels (i.e. a
high quality video sequence and a low quality video sequence)
that indicated the range of performances. In the second phase,
the training phase, six samples were presented to let the partic-
ipants get used to the rating slider. Participants were asked to
rate the video sequences on a quality scale from 0 to 10 points
(10 denotes highest quality). While the video sequence was pre-
sented, participants judged the quality of the video sequence by
positioning the slider with the computer mouse on the instruc-
tion screen.

In the third phase, the test phase, all conditions were pre-
sented in a randomized order, and ratings had to be given. After
pressing the confirmation button below the rating slider, the
next sequence was presented on the main display. On average,
the experiment took 25 minutes, approximately 8 minutes per
sequence.
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Fig. 16. Top: mean quality scores for sequence B indicated in color in the
1/PSNR-Inconsistency plot. Bottom: quality means and estimation by the model
for sequence B.

IV. RESULTS

In total, 93 ME-sequence combinations (stimuli) were rated
on quality by 24 participants. We conducted a one-way ANOVA
with the 93 stimuli as independent variable and the user scores
as dependent variable. An ANOVA per sequence and per par-
tition was carried out. The motion estimators and their mean
quality score are plotted in the top rows of Fig. 15, Fig. 16, and
Fig. 17, where the color of the dots indicate the mean quality
score. The mean score did not exceed the level of 8, thus the
range of the color bar is limited to 8 in the corresponding figures.

When partition 1 (contour line MEs, Fig. 13) was compared to
the other MEs in its specific sequence, no significant difference
between the partition and the rest of the MEs was found (p4 =
131, pp = .205, pc = .407). Significance is judged when the
p-value <.05. p; denotes the p-value for sequence 7 where ¢« €
{A, B, C'}. For partition 2 (attractive segment as defined in [9]),
a significantly higher mean score on quality was obtained than
for the other MEs in the sequence: p4 < .05, pp < .001, pc <
.05. The difference between partition 3 (high PSNR influence)
and the rest of the quality scores appeared to be significant too:
pa < .001, pp < .001, pc < .001.
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Fig. 17. Top: mean quality scores for sequence C indicated in color in the
1/PSNR-Inconsistency plot. Bottom: quality means and estimation by the model
for sequence C.

For the quality measures, regression analysis was performed
for the predictors Inconsistency and 1/PSNR. For the three video
sequences, specific regression models were calculated. Models
are represented in the scatter plots in the bottom rows of Fig. 15,
Fig. 16 and Fig. 17, where the background color indicates the
expected value by the model. The colored dots represent the
mean quality value of the motion estimators obtained by the user
study, plotted against Inconsistency and 1/PSNR.

For sequence A (bottom image in Fig. 15), variance in quality
can only be explained by the 1/PSNR predictor. The percentage
explained variance is 58.9% (R? = .589). This model appears
to be significant: p4 < .001. Taking into account that Inconsis-
tency would not improve the model fit, the resulting equation
for the quality € is as shown in (5).

Dscq.a = 69.138 — 1829.001 - 1/PSNR 5)
Within the sequence B, (presented in bottom image in
Fig. 16), a model based solely on 1/PSNR explains 60.2% of

the variance significantly (pp < .001). An improvement of 6%
is found with the model with both predictors Inconsistency and

1/PSNR where 66.1% of the variance is significantly explained
(ps < .001). In (6), the quality formula is derived.

Qseq. = 56.694 — 1.018 - ST — 1621.128 - 1/PSNR (6)

Similarly to sequence A, variance within the sequence C
group of MEs (see bottom image in Fig. 17) can only be
explained by 1/PSNR (pc < .001). The percentage explained
variance is 68.3%. The equation of the quality model is shown
in (7). Inconsistency as a predictor would not improve the
model fit.

Qseq.c = 38.660 — 894.966 - 1 /PSNR. @)

V. DISCUSSION

The results of the ME perception test give us insight into the
relevance of the contour line, the attractive segment as defined in
Section II and the influence of the performance measures PSNR
and SI.

A. Contour Line vs. Attractive Segment(s)

To be able to select a group of MEs within each sequence to be
the best performing, three partitions have been compared. For
all three video sequences, the data analysis of the user scores
yielded no significant difference between the MEs on the con-
tour line (with a PSNR of at least 27.8 and the SI limit set to
8) and the other MEs. This confirms the initial hypothesis and
observation of the authors that the performance measures are
suboptimal and do not necessarily yield the perceptually best
ME:s on the contour line.

However, MEs within the attractive segment as defined in
Section IT were evaluated significantly higher on quality, sup-
porting the choice of the attractive segment. Also the MEs in
the partition heavily influenced by high PSNR scores with a
large range of SI values was rated significantly higher. This sug-
gests that another attractive segment with a PSNR bias exists
returning a robust, well performing ME. To some extent this is
recognized in the proposed methodology. A larger variation in
the SI performance measure is allowed than in the PSNR metric
(see SI and PSNR limits marked with dashed lines in Fig. 3). Ac-
cordingly, when incorporating the third partition as an attractive
segment in the proposed methodology and applying the method-
ology on the ten test sequences illustrated in Fig. 1, the ME with
the same robust settings is computed as with the original attrac-
tive segment.

B. Regression Analysis

Regression models for the quality as a function of 1/PSNR
and Inconsistency SI were estimated. These models explained
59%—68% of the variance in quality. More than half of the vari-
ance in quality is explained by the PSNR measure (in sequences
A, B, C) and by the SI measure (in sequence B). For MEs
with lower PSNR (sequences A and C, red and green MEs in
Fig. 11), the PSNR measure plays the only role in assessing the
ME quality. Users may not see the difference in inconsistency
when the PSNR is too bad. For sequence B with the highest
PSNR MEs, a slight influence of the SI measure became visible
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(6% improvement compared to PSNR only). The authors have
analyzed MEs for test sequences outside the set in Fig. 10 and
can observe a marginal improvement with the PSNR-dependent
importance of SI. For large SI values (e.g., with some PPC ME
settings the SI value goes beyond 13 for PSNR values close to
the best PPC PSNR values), a clear degradation in performance
is observed. MEs with large SI values should be discarded and
therefore, the vertical cut-off line in Fig. 3 limiting the attractive
segment should be well chosen for the motion estimator types
at hand. Assumptions that the ST measure would be more mean-
ingful even in the smaller SI value ranges have not manifested
themselves. Other performance measures should be investigated
in future work to increase the percentage of explained variance
in quality.

VI. CONCLUSIONS

A computer-aided design methodology is proposed that can
deal with suboptimal performance measures. A three-step ap-
proach is employed where, first, the variety of conditions under
which the motion estimators should perform well is defined
and appropriate test data is selected. Second, a contour line or
trade-off curve illustrates the achieved compromise between the
motion vector prediction accuracy and consistency. Third, an
attractive segment of well performing MEs is identified con-
taining all motion estimators within a defined distance from an
attractive section of the contour line.

In order to validate and improve the methodology, we have
conducted a perception test to come to a perception-oriented
motion estimation design methodology which corresponds well
with the perceived video quality. In the user study, TV viewers
rated 93 different motion estimators in 3 video sequences. User
ratings indicate that well performing motion estimators should
not be limited to the contour line. The proposed attractive seg-
ment has been confirmed.

High quality ratings are also given to a partition dominated
by high PSNR scores while maintaining a large variation in con-
sistency. The higher impact of the PSNR measure compared
to the inconsistency measure is supported by the conducted re-
gression analysis. The inconsistency measure has influence on
the perceived video quality, only for the sequence with motion
estimators at high PSNR scores, and yields even there an im-
provement of only 6%. A clear degradation in performance is
observed for MEs with large SI values. These should be dis-
carded and therefore, the vertical cut-off line limiting the attrac-
tive segment should be well chosen. Other performance mea-
sures should be investigated in future work to increase the per-
centage of explained variance in quality.

The proposed methodology may provide an inspiration for
similar tough multi-dimensional optimization tasks with subop-
timal metrics.
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