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S

Bubbles on the Cuing Edge,
Direct Numerical Simulations of Gas-Liquid-Solid Three-Phase Flows

Gas-liquid-solid three-phase flows are frequently encountered in chemical, petrochemical
and bio-chemical processes. In many cases, gaseous reactants are converted into liquid
products in the presence of a solid catalyst. e main reactor configurations for these pro-
cesses are trickle bed reactors and bubble slurry columns. Although a trickle bed column
enables intimate three-phase contacting and avoids the separation of the stationary cata-
lyst, the temperature control in these reactors is difficult. Consequently, the throughput
of the gas and liquid is limited. ese disadvantages can be alleviated by using a bubble
slurry column. In these systems, however, the catalyst is dispersed as fine particles in the
product stream. Consequently, a filtration unit is needed to recover the catalyst. Besides,
the pronounced coalescence impedes the overall gas-liquid mass transfer.

To overcome these restrictions due to heat transfer and mass transfer limitations, in
this work a new reactor type is proposed: the micro-structured bubble column. In this
new reactor, the catalyst particles are replaced by catalyst-coated static meshes made of
thin wires. e wire mesh serves the purpose of cuing the coalesced bubbles into smaller
bubbles thereby increasing the specific interfacial area. e interaction with the wire mesh
will also enhance the interface dynamics resulting in a higher surface renewal rate. As a
result of this increase in the surface renewal rate, the gas liquid mass transfer will increase
exactly at the desired position, i.e. near the catalyst. Finally, there is no need for filtration
equipment, because the catalyst is immobilized.

To enhance our understanding of the complex prevailing fluid-structure interactions,
Multiphase Computational Fluid Dynamics are useful. In the larger scale models, i.e. the
Euler-Euler and Euler-Lagrangian models, closures are needed to describe the phase inter-
actions between for instance thewiremesh and the bubbles. To determine these three-phase
closures Direct Numerical Simulations (DNS) are used. emodel used in this work is based
on the combination of two powerful DNS techniques for gas-liquid and fluid-solid systems.

A Volume of Fluid (VoF) method is used to capture the gas-liquid interface dynamics.
is method is an interface capturing method, which is volume conservative. To improve
the method, three models to account for the surface tension are implemented: the common
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Continuum Surface Force (CSF) method, the height function method and the tensile force
method. Furthermore, a pressure jump correction method is implemented to decrease spu-
rious currents. Each of the surface tension models was verified and subsequently validated.
e verification tests show that the surface tension is not accurately represented when the
CSF method is used.

e VoF models are validated using a single rising bubble in the industrial relevant
regime of the Grace diagram. Generally, the height function model is the best perform-
ing model for small bubbles, i.e. for Eötvös numbers (Eo) smaller than 1, while the tensile
force method is the best performing model for large bubbles (Eo > 10). All bubbles with
1 ≤ Eo ≤ 10 are accurately represented by either of these methods. Besides the validation
with single bubbles, the VoF model is also validated for binary bubble interaction. Using a
relatively simple system of two equally sized bubbles, the rise velocity of the trailing bubble
and the bubble shapes obtained with the VoF model compare favorably well to the experi-
mental results. Nevertheless, it should be noted that all VoF simulations showed coalescence
while no coalescence occurred in the experiments. As a consequence, the VoF model can
not be used to assess whether coalescence or no coalescence prevails.

To incorporate the fluid-structure interactions at the wire mesh surface, an Immersed
Boundary (IB) method is used. In this work, two different IB methods are compared. First
of all, the Uhlmann method enforces the no-slip condition with the aid of Lagrangian force
points that are distributed over the solid surface. is model is extended to enable the cal-
culation of neutrally buoyant objects. Moreover, a second order implicit IB method is used.
In this method, the no-slip boundary condition is enforced at the level of the discretised
equations using a second order (1D) polynomial fit of the fluid velocity near the particle
surface. is method was extended for systems with a variable viscosity and locally high
volume fractions.

Both the IB models were verified and validated and it is concluded that the first order IB
method is only able to accurately calculate the drag force on particles and the velocity profile
when the Lagrangian force points are placed on a computational particle that is slightly
smaller than the real particle. Because there is no analytical solution to determine the right
computational size of objects other than spheres, the use of the second order IB method is
advised, except for freely moving particles at Reynolds numbers above 100, because these
particles acquire an unphysical rotational velocity due to approximations in the calculation
of the torque.

To enable the simulation of dispersed gas-liquid-solid three phase flows, the second or-
der IB method was combined with the Front Tracking (FT) gas-liquid DNS model. is
combined model is able to simulate dense gas-liquid-solid systems while avoiding artificial
coalescence, due to the Lagrangian representation of the interface with a surface mesh in
the FTmodel. With the combined FT-IBmethod, the effect of the void fraction and the solids
volume fraction on the drag force of the 2 mm bubbles and 1 mm particles is determined, re-
sulting in correlations for the effective drag in dispersed gas-liquid-solid three-phase flows.
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Aer the VoF and the second order IB method were validated separately, the combined
model is also validated for the case of interaction of a single bubble with the simplest form
of a wire mesh, i.e. a single wire. Despite of the slight overestimation of the bubble rise
velocity near the wire, the bubble shape, size, trajectory and rise velocity predicted by the
VOF-IB method are in very good agreement with the experimental results. Aer validation,
this model is used to systematically study the interactions of a single bubble with a single
wire. e effect of the bubble size, the physical properties, the bubble velocity and the wire
diameter are assessed. It is concluded that Eo and thewire diameter are themain parameters
influencing the bubble cuing for straight interactions.

In addition, the interaction of a single rising bubble with a square wire mesh is also
studied with the combined VoF-IB method. Two different alignments are used: i) a bubble
hiing the center of an opening in the wire mesh, and ii) a bubble hiing the intersection
of two wires in the mesh. In the first alignment, bubble cuing was not observed in the
simulations, while based on purely geometrical considerations cuing was expected with
the smallest openings. For larger bubbles (Eo > 4), the bubbles are highly deformable and
squeeze themselves through the opening of the wire mesh. For cases with small bubbles
and/or a small opening the bubble gets stuck underneath the mesh. When the bubble is
aligned with the intersection of the wire mesh, only the biggest bubbles (Eo = 15) are cut
by the mesh, while the other bubbles get stuck underneath the mesh.





S

Bellen op het scherpst van de snede,
Directe Numerieke Simulaties van Gas, Vloeistof en Vaste Stof Drie-Fase Stromingen

Drie fase stromingen van gas vloeistof en vaste stof worden vaak toegepast in chemische,
petrochemische en biochemische processen. Doorgaans worden in dit soort stromingen
gas fase reactanten omgezet in vloeibare producten met behulp van een katalysator in vaste
fase. Deze processen worden voornamelijk uitgevoerd in ”trickle bed” reactoren en slurry
bellenkolommen. Ondanks het zeer innige contact tussen de drie fasen en de makkelijke
scheiding van de katalysator en de producten in ”trickle bed” reactoren, is de toepasbaarheid
van deze reactoren gelimiteerd door de beheersing van de temperatuur in de reactor. Daar-
door is de capaciteit van dit soort reactoren beperkt. Deze nadelen kunnen deels worden
weggenomen door gebruik te maken van een slurry bellenkolom. Echter, in deze reactoren
is de katalysator in de vorm van fijne deeltjes verdeeld in de productstroom. Daarom is er
een extra filtratie module nodig om de katalysator terug te winnen. Daarnaast belemmert
de coalescentie van bellen (het samentrekken van bellen) het globale massatransport van
de gas fase naar de vloeistof fase en vice versa.

Om de beperkingen vanwege de limitaties in warmte- en massatransport te ondervan-
gen, wordt in dit werk een nieuw type reactor voorgesteld: een micro-gestructureerde
bellenkolom. In deze reactor worden de katalysator deeltjes vervangen door een statisch
gaasstructuur dat bestaat uit met katalysator gecoate dunne draden. Het gaas zorgt ervoor
dat de grote bellen worden opgeknipt in kleinere bellen, waardoor het specifieke contact-
oppervlak tussen de gas en vloeistof fasen worden vergroot. Daarnaast zorgt de interactie
van de bellen met het gaas voor een verhoging van de dynamica van het grensvlak, wat
zal resulteren in een hogere verversingssnelheid van het oppervlak. Doordat de verver-
singssneldheid wordt verhoogt, zal ook de massaoverdracht tussen de gas en vloeistof fasen
worden vergroot, en wel op de gewenste positie, namelijk in de buurt van de katalysator.

Om onze kennis over de complexe heersende fluïdum-structuur interacties te vergroten
kan gebruik worden gemaakt van Meerfasen ”Computational Fluid Dynamics”. In de Euler-
Euler en Euler-Lagrange modellen, die een (industiriële) kolom kunnen beschrijven, zijn
sluitingscorrelaties nodig voor het beschrijven van de interacties tussen de verschillende
fasen, zoals de interacties tussen het gaas en de bellen. Deze sluitingscorrelaties kunnen
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worden verkregen met behulp van Directe Numerieke Simulaties (DNS). Het DNS model
dat wordt gebruikt in dit werk is gebaseerd op een combinatie van twee effectieve DNS
methodes voor gas-vloeistof en vaste stof-fluïdum systemen.

Om de dynamica van het gas-vloeistof grensvlak te beschrijven wordt gebruik gemaakt
van een ”Volume of Fluid” (VoF)methode. Dezemethode volgt het grensvlakmet behulp van
een indicator functie en is inherent volume conservatief. Om de methode te verbeteren zijn
er drie modellen voor de oppervlaktespanning toegevoegd aan het model: het gebruike-
lijke ”Continuum Surface Force” (CSF) model, de ”height function” methode en de ”ten-
sile force” methode. Tevens is er een druksprong correctie methode toegevoegd om de
pseudo-stromingen te verminderen. Alle oppervlaktespanningsmodellen zijn geverifieerd
en gevalideerd. Uit de verificatie tests blijkt dat de oppervlaktespanning niet goed wordt
gerepresenteerd door het CSF model.

De verschillende VoF modellen zijn gevalideerd met het stijgen van enkele bellen in het
industrieel relevante gebied van het Grace diagram. Doorgaans is het ”height function”
model het beste oppervlaktespanningsmodel voor kleine bellen, dat wil zeggen voor bellen
met een Eötvös nummer (Eo) kleiner dan 1, terwijl het ”tensile force” model het beste model
is voor grotere bellen (Eo>10). Voor alle bellen met 1 ≤ Eo ≤ 10 worden door zowel door
het ”height function” model als door het ”tensile force” model goed gerepresenteerd. Naast
de validatie met enkele bellen, is het VoF model ook gevalideerd voor de interactie tussen
twee bellen. Voor een relatief simpel systeem van twee even grote bellen, komen de stijg-
snelheden en de vorm van de bellen in het VoF model goed overeen met de experimenten.
Desondanks, was in alle VoF simulaties spraken van coalescentie van de bellen terwijl de
bellen in de experimenten niet samenvoegen. Daarom kan het VoF model niet worden
gebruikt om te bepalen of bellen samenvoegen of niet.

De interactie tussen het fluïdum en de vaste structuren worden beschreven met een
”Immersed Boundary” (IB) model. In dit werk worden twee verschillende IB methodes
vergeleken. Ten eerste legt de IB methode van Ulhmann de no slip-randvoorwaarde op met
behulp van Lagrangian marker punten die over het oppervlak van het object zijn verspreid.
De methode is uitgebreid om ervoor te zorgen dat ook deeltjes met een neutraal drijfver-
mogen ook kunnen worden gesimuleerd. Daarnaast wordt er een tweede orde impliciete
IB methode gebruikt. In deze methode wordt de no slip-randvoorwaarde opgelegd op het
niveau van de gediscretiseerde Navier Stokes vergelijkingenmet behulp van en tweede orde
(1D) polynoom die wordt aangenomen in het fluïdum nabij het oppervlak. Deze methode is
aangepast voor het gebruik van systemen met een veranderlijke viscositeit en lokaal hoge
volume fracties.

Uit de validatie en verificatie tests voor beide IB modellen, is gebleken dat de eerste
orde IB methode alleen de wrijvingskracht en het snelheidsprofiel nauwkeurig kan bepalen
als de Lagrangian marker punten op een numeriek deeltje worden geplaatst dat kleiner
is dan het werkelijke deeltje. Omdat er geen analytische oplossing is om deze numerieke
grooe te bepalen voor niet-sferische objecten, is het advies om de tweede orde IB method
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te gebruiken behalve bij vrij bewegende deeltje met een Reynolds getal groter dan 100,
want dan verkrijgen de deeltjes een niet fysische rotatie snelheid door de aannames die zijn
gedaan in de berekening van de torsie.

Om dichte zwermen van bellen en deeltjes te simuleren, is de tweede orde IB me-
thode gecombineerd met het ”Front Tracking” (FT) gas-vloeistof DNS model. Dit gecombi-
neerde model kan dichte gecombineerde deeltjes- en bellenzwermen simuleren zonder arti-
ficiële coalescentie van de bellen door de Lagrangiaanse representatie van het gas-vloeistof
grensvalk in het FT model. Met behulp van deze gecombineerde FT-IB methode is het ef-
fect van de gasfractie en de volume fractie van de deeltjes op de wrijvingskracht van de
2 mm bellen en de 1 mm deeltjes bepaald. Dit resulteerde in een correlatie voor de effec-
tieve wrijvingskracht op de bellen en de deeltjes in drie fase stromingen.

Afgezien van de aparte validatie van het VoFmodel en de tweede orde IB methode, is het
gecombineerde VoF-IB model ook gevalideerd voor de interactie van een enkele bel met de
simpelste vorm van een gaas structuur, dat wil zeggen een enkele draad. Hoewel de stijg-
snelheid van de bel in de buurt van de draad lichtelijk wordt overschat, komen de vorm,
de grooe, het pad en de stijgsnelheid van de bel(len) in de VoF-IB method goed overeen
met de experimentele resultaten. Vervolgens is het gecombineerde model gebruikt om sys-
tematisch de interacties tussen een enkele bel en een enkele draad te bestuderen. Daarbij
zijn de effecten van de belgrooe, de fysische eigenschappen, de stijgsnelheid van de bel en
de diameter van de draad onderzocht. Uit de studie is geconcludeerd dat de belangrijkste
parameters voor het snijden van de bellen de grooe van de bel en de diameter van de draad
zijn.

Aansluitend is de interactie tussen een enkele bel en een vierkante gaasstructuur on-
derzocht met de gecombineerde VoF-IB methode. Er is gebruik gemaakt van twee verschil-
lende horizontale uitlijningen van de bel met respect tot het gaas: i) de bel is recht onder
een opening in het gaas geplaatst, en ii) een bel is recht onder een kruising van twee draden
geplaatst. In de eerste situatie is er in geen van de interacties sprake van splitsing van
bellen, terwijl dit op basis van uitsluitend geometrische overweging wel was verwacht bij
de kleinste gaasopeningen. De grote bellen (Eo > 4) zijn erg vervormbaar, waardoor ze
zich door de opening van het gaas heen wringen. Voor interacties met kleine bellen en/of
een kleine opening komt de bel vast te zien onder de gaas structuur. Alleen de grootste
bellen (Eo=15) die recht onder de kruising van het gaas beginnen worden opgebroken door
de interactie met de gaasstructuur. Alle andere bellen blijven steken onder het gaas.
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Variables

a coefficient
ã modified coefficient
A surface area, [m2]
b explicit part of the Navier-Stokes equations or impact parameter
b̃ modified explicit part of the Navier-Stokes equations
C coefficient
d diameter or distance, [m]
E bubble aspect ratio (height vs. width)
f force density at the Eulerian grid, [N/m3]
F phase fraction or Level-Set function
F force or force density, [N] or [N/m3]
g gravitational constant, [m/s2]
h height, [m]
h,∆x,∆y,∆z mesh size, [m]
I moment of inertia, [kg/m2]
n normal
nx, ny, nz number of cells in x, y, z direction
p pressure, [Pa]
∆p pressure jump, [Pa]
r position, [m]
R radius, [m]
R position of the force point, [m]
s mesh opening, [m]
S surface area, [m2]
t time, [s]
∆t time step, [s]
t tangent, [m]
T torque, [Nm]
u fluid velocity, [m/s]
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U fluid velocity at a force point, [m/s]
v∞ uniform stream velocity, [m/s]
v bubble or particle velocity, [m/s]
V volume, [m3]
∆Vm force point volume, [m3]
w translational particle velocity, [m/s]

Greek leers

α void fraction
Γ surface area
δ weighing function
ϵ error
ζ dimensionless distance
κ curvature, [1/m]
µ viscosity, [Pa · s]
ρ density, [kg/m3]
σ surface tension coefficient, [N/m]
τ stress tensor, [Pa]
ϕ solids volume fraction
ψ velocity component, [m/s]
ω rotational particle velocity, [rotations/s]
Ω volume

Subscripts and superscripts

b bubble
c central
D drag
g gas phase
G gravity
IB Immersed Boundary
l liquid phase
m marker, interface element or particle number
max maximal
nb neighboring
p particle
∆p pressure jump
P hydrostatic pressure
s solid phase
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s, s0, s2 surface of the particle
w wire
σ surface tension
∞ single rising bubble or single falling particle in an infinite liquid

Abbreviations

ALE Arbitrary Lagrangian-Eulerian
CFD Computational Fluid Dynamics
CLSVoF Coupled Level-Set and Volume of Fluid
CSS Continuous Surface Stress
CSF Continuum Surface Force
DNS Direct Numerical Simulations
(E)LVIRA (Efficient) Least squares Volume of Fluid Interface Reconstruction Al-

gorithm
FT Front Tracking
g gas phase
G Grace diagram
HF Height Function
IB Immersed Boundary
ICCG Incomplete Cholesky Conjugate Gradient
l liquid phase
LS Level-Set
PLIC Piecewise Linear Interface Calculation
PROST Parabolic Reconstruction of Surface Tension
s solid phase
T Tomiyama
TF Tensile Force
VoF Volume of Fluid

Dimensionless numbers

Ca Capillary number, µlvmax,l/σ
Eo Eötvös number, gzd2bρl/σ
Mo Morton number, gzµ4

l∆ρ/
(
ρ2l σ

3
)

Oh Ohnesorge number, µg
√
ρgσdb

Re Reynolds number, ρ∥v∥db/µl
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1.1 Background and motivation
Chemical, petrochemical and bio-chemical processes oen involve the contacting of gas-
liquid-solid flows. In these processes, the solid phase generally acts as a catalyst, while the
gas phase carries the reactants and the liquid the products (Höller et al., 2001; Jain et al.,
2013; Segers, 2015).

e two main reactor configurations for these three-phase processes are trickle bed
reactors and bubble slurry columns. In a trickle bed reactor, the liquid trickles over a packing
(randomor structured) in the presence of a co-current gas flow. e advantage of this type of
three-phase reactor is the intimate contacting between the three phases and the avoidance
of separation of the stationary catalyst. In spite of these advantages, the temperature control
in trickle bed reactors is difficult, especially when the particles are partly deweed because
of the relatively unfavorable thermophysical properties of the (continuous) gas phase. In
addition, the relative throughput of the gas and liquid is limited in comparison to other
reactor configurations (Höller et al., 2001; Segers, 2015).

In a bubble slurry column, the (fine) particles are dispersed in the liquid. Although this
reactor can handle high throughputs and offers excellent temperature control, pronounced
bubble coalescence impedes the overall gas-liquid mass transfer. Besides, the fine catalyst
particles remain in the liquid phase requiring a filtration unit to recover the catalyst (Höller
et al., 2001; Segers et al., 2013; Segers, 2015).

To overcome the restrictions due to limited heat removal or low mass transfer coeffi-
cients, a new reactor type is proposed: a micro-structured bubble column. In this column,

1
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the catalyst particles are replaced by static meshes of thin wires that are coated with the
catalyst. e wires are meant to cut the coalesced bubbles into smaller bubbles, which in-
creases the specific interfacial area. Furthermore, the interaction between the wire mesh
and the bubbles will enhance the interface dynamics and therefore the surface renewal rate.
Because of the higher surface renewal rate, the mass transport between the gas and liquid
phase is enhanced exactly at the desired position near the catalyst. Finally, by coating the
wire mesh with the catalyst, there is no need for external filtration equipment to separate
the liquid product and the catalyst phase (Höller et al., 2001; Prasser et al., 2001; Ito et al.,
2011; Jain et al., 2013; Segers et al., 2013; Segers, 2015). Höller et al. (2001) showed that a
similar approach leads to a 10 times higher gas-liquid mass transfer coefficient compared
to a bubble column without any internals.

To optimize the performance of such a micro-structured bubble column, a proper un-
derstanding of the multiphase flow phenomena is required. In view of the inherent exper-
imental limitations to the optical access required for application of optical techniques and
the intrusiveness of (optical) probes and wire mesh sensors, a Computational Fluid Dynam-
ics (CFD) approach is followed in this study (Prasser et al., 2001; Ito et al., 2011; Roghair,
2012).

1.2 Multi-scale modeling approach
Industrial size bubble (slurry) columns are typically tens of meters tall, while the small-
est bubble size is in the range of several millimeters. Due to these large differences in the
length scales and the associated time scales, CFD is not able to fully resolve all relevant
details for industrial size columns in spite of the recent advances in computational power.
To overcome this problem, a multi-scale modeling approach is adapted, as shown in figure
1.1. In this approach, the smaller scale models provide closures for the larger scale models,
ensuring accurate representation of the small scale phenomena while using relatively mod-
est computational power (van Sint Annaland et al., 2003; Deen et al., 2004; Yang et al., 2007;
Raessi et al., 2010; Roghair et al., 2011).

In the multi-scale modeling approach the largest scales are described by Euler-Euler
models, as shown in figure 1.1.c. In these models, all phases are considered as continuous
interpenetrating fluids. Although this model in principle is able to simulate large (slurry)
bubble columns, closure relations are needed to capture the bubble-bubble, bubble-liquid,
bubble-solid, liquid-solid and solid-solid interactions (Yang et al., 2007; Roghair et al., 2011).

ese closure relations can partly be provided by the Euler-Lagrangian models, which
are models at the intermediate scale. ese models solve the volume-averaged Navier-
Stokes equations for the continuous phase, while the bubbles and the solid objects are
tracked individually in a Lagrangian framework, as shown in figure 1.1.b. eEuler-Lagrange
models are suitable for studying large scale swarm effects and the effects of coalescence and
break-up. Because the model only solves the volume-averaged Navier-Stokes equations and
does not resolve the bubble dynamics, the bubble-liquid and solid-liquid interactions have
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Figure 1.1: e multi-scale modeling approach for gas-liquid flow (Roghair et al., 2011).
Figure A shows a simulation using Direct Numerical Simulations, figure B a simulation
with an Euler-Lagrangian model and figure C a simulation with an Euler-Euler model.

to be included via closure correlations, e.g. the drag and li correlations (Deen et al., 2004;
Yang et al., 2007; Roghair et al., 2011).

At the smallest scale Direct Numerical Simulations (DNS) can be used to generate these
closures. In DNS, all details of the flow field are fully resolved, i.e. the governing equations
are solved without any rigorous a priori assumptions or simplifications. Although this leads
to a very accurate description of the flow field, the simulation size is limited to O(102)

bubbles due to the high computational costs (Deen et al., 2004; Yang et al., 2007; Roghair
et al., 2011).

In this work, the understanding of three-phase flows will be expanded using DNS. Sev-
eral authors developed three-phase DNS methods starting from the widely available two-
phase DNS methods. Li et al. (2001) used a combined Euler-Lagrangian and DNS approach
to capture the three-phase flows. However, this model still requires closures for the solid-
liquid interactions, because the particles are taken into account as Lagrangian point par-
ticles. Ge and Fan (2006) and Jain et al. (2012) used a combination of a front capturing
technique, which reconstructs the gas-liquid interface instead of directly tracking the inter-
face, with an Immersed Boundary method to obtain a DNS method for three-phase flows.
e advantage in these methods is the inherent ability of simulating the coalescence and
break-up of the bubbles, but this might also lead to non-physical coalescence of the bub-
bles (bubbles merge as soon as their interfaces enter the same computational grid cell). To
overcome these problems, Deen et al. (2009) combined a front tracking technique with an
Immersed Boundary method. e disadvantage of this method however is that the coales-
cence and break-up of bubbles has to be included via a sub-grid model.

In this work, closures will be developed to subsequently improve the higher order mod-
els, like the Euler-Lagrange models, using a three-phase DNS model. Previously obtained
closures focused on two phase flows, which will now be expanded through interactions due
to the presence of a third phase (Roghair et al., 2011, 2013a; Tang et al., 2014, 2015). e
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main focus is to determine how the micro-structuring influences the hydrodynamics and
bubble size in bubble columns. Jain et al. (2013) proposed a basic geometrical closure to
determine the size of bubbles aer being cut by a wire mesh. In this work, this first closure
will be improved using detailed information obtained from DNS. Moreover, the three-phase
simulations will be used to determine the effect of particles on the drag force on bubbles
and vice versa in three phase flows.

1.3 Thesis outline
To study the effect of the wire mesh on the hydrodynamics in a bubble column, a three-
phase DNS method is developed. is method is created by combining a gas-liquid DNS
model and a fluid-solid DNS model. To determine the most appropriate numerical models,
different gas-liquid and fluid-solid models are respectively compared in chapters 2 and 3. In
these chapters, all models are also verified and validated.

Although the gas-liquid models are already validated for the rise of single bubbles in
a quiescent liquid in chapter 2, the models should also be able to accurately capture the
interaction between the bubbles. erefore, the gas-liquid model is validated for these in-
teractions in chapter 4.

In chapter 5, a three-phase DNS model is used to model the interactions of bubbles and
particles in a three-phase swarm. In this chapter, correlations are obtained for the effective
drag force acting on both the bubbles and the particles.

Chapters 6 and 7 describe the bubble cuing due to wire meshes. In chapter 6, the inter-
actions with the simplest form of a wire mesh, a single wire, are validated. Subsequently,
the effects of different physical parameters, e.g. the bubble size and the wire diameter, on
the bubble cuing using a single wire are determined. Finally, in chapter 7 the effect of
square wire meshes on the cuing of the bubbles will be determined.

e last chapter, chapter 8, provides preliminary results on bubble cuing with wire
meshes, along with recommendations for future work.
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2.1 Introduction
e flow of two immiscible fluids can be resolved with several different Direct Numerical
Simulation (DNS) models. ese models can be divided into two classes: moving grid meth-
ods and fixed grid methods. In the first class, the grid is aached to the interface, which
enables a good calculation of the surface properties. Although the description of the surface
properties is challenging in the fixed grid methods, the use of a stationary (Eulerian) fixed
grid enables the handling of strong topological changes (Scardovelli and Zaleski, 1999; van
Sint Annaland et al., 2005; Roghair et al., 2011). Because highly deformed interfaces occur
frequently, fixed grid methods are used in this study.

e main fixed grid methods are the Front Tracking (FT) method, the Volume of Fluid
(VoF) method and the Level-Set (LS) method (Son, 2003; Albadawi et al., 2013). e essen-
tial difference between these models is the interface treatment. Only the Front Tracking
method tracks the interface between the two phases explicitly by using a Lagrangian grid
that represents the gas-liquid interface. Using this Lagrangian grid, the shape and the po-
sition of the interface is exactly known. erefore, the calculation of the surface properties
is accurate and relatively easy without the need of a highly refined grid. Besides, the use
of a Lagrangian grid prevents numerical diffusion of the interface. However, there are
three major disadvantages of the Front Tracking method. First of all, the interface tracking
is complex, especially when bubble break-up or coalescence is considered. Furthermore,
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topological changes of the interface will result in the need for restructuring of the interface
markers to ensure an accurate description of the interface. Doing this in a volume conserv-
ing manner is cumbersome. ird, the mapping from the Eulerian grid to the Lagrangian
grid and vice versa will lead to mass conservation problems (Chang et al., 1996; Shin and
Juric, 2002; van Sint Annaland et al., 2005; Kwakkel et al., 2012).

In both the VoFmethod and the LSmethod, the interface is captured rather than tracked.
In the LS method, the interface is captured using a Level-Set function, F , that describes the
distance from the interface that is positive in one fluid and negative in the other fluid. e
interface is advected with the local velocity using equation 2.1.

DF

Dt
=
∂F

∂t
+ u ·∇F = 0 (2.1)

e advantage of using a smooth function to capture the interface is the accurate descrip-
tion of the interface and thus the surface properties, like the interface normal, the curvature
and the surface tension. However, due to the advection with the locally mapped velocity
according to equation 2.1, the Level-Set function will no longer act as a distance function
aer advection, which will lead to problems in the mass conservation for highly deformed
surfaces. Furthermore, because all bubbles automatically merge when they are close, the
obtained bubble coalescence might be unphysical (Gerlach et al., 2006; Popinet, 2009; Al-
badawi et al., 2013).

In the VoF method, a color function is used for tracking the bubble volumes. e color
function indicates the amount of liquid present in a certain cell. e interface between
the two liquids can be reconstructed from this color function. Using the reconstructed
interface, the phase fraction can be advectedwith equation 2.1, while conserving the volume
of the liquid (and hence also the volume of the gas). However, due to the reconstruction
of the interface, a non-smooth interface is obtained, which may lead to difficulties in the
calculation of the surface properties. Furthermore, when two bubbles are within a distance
less than one computational cell from each other, the bubbles will automatically coalesce
(Lafaurie et al., 1994; van Sint Annaland et al., 2005; Jafari et al., 2007).

Due to the complementary advantages of the different DNS models, both the FT model
and the VoF model are used to study the bubble behavior. is chapter describes the main
characteristics of both the models. In the next sections, the surface tension calculation
and the interface tracking of the FT model and the VoF model are explained separately.
Subsequently, the model implementation is verified using standard verification tests for
gas-liquid models. Finally, the model is also validated against experimental data.

2.2 Governing equations
Because the only difference between the FT model and the VoF model is the interface treat-
ment, the governing equations of the two models are the same. In this section, the main
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characteristics will be discussed. e models are based on the FT model of Roghair et al.
(2013a) and the VoF model of van Sint Annaland et al. (2005).

In both the FT and the VoFmodel, the continuity equation (equation 2.2) and the Navier-
Stokes equations (equation 2.3) are solved assuming incompressible flow.

∇ ·u = 0 (2.2)

ρ
∂u
∂t

= −∇p− ρ∇ · (uu)−∇ · τ + ρg+ Fσ (2.3)

Because the velocity is continuous even across the interface, a one-field approximation
can be used to solve the velocity in the entire domain. To take into account the surface
tension at the interface, an extra force density, Fσ , appears in equation 2.3. e calculation
of this force density depends on the used model and will be discussed in the next sections.

In both models, a mismatch may arise in the discretisation of the surface tension and
the pressure field, which can be decreased if the calculation of the surface tension and the
pressure field are coupled. is can either be done by introducing the surface tension in the
continuity equation (Renardy and Renardy, 2002; Francois et al., 2006) or by introducing
an extra pressure force density at the interface in the Navier-Stokes equations (Dijkhuizen
et al., 2010b). Because the surface tension model is implemented as a force density, we
choose the second approach.

F∆p,m = Am

∑
i Fσ,i ·ni∑
iAi

(2.4)

e pressure jump correction is calculated with equation 2.4 separately for each bubble.
e summation in equation 2.4 is performed over all the markers of a single bubble in the FT
model, while in the VoF model the summation is over all reconstructed interface elements
of a single bubble, including the interface elements which are created by the smoothing
operation. e overall pressure jump is distributed to the interface elements weighted by
the area of the interface element, Am, as depicted in equation 2.4. e extra force density
(F∆p,m) is subtracted from the force density representing the surface tension.

e velocity, which is calculated in a staggered-grid configuration, is solved using a
projection-correction method. In this method, an approximation of the new velocity field
is calculated with equation 2.3. All terms in this equation are solved explicitly except for
the diffusion term, which is treated semi-implicitly. e implicit part of the diffusion term
is chosen such that it only depends on the velocity component that is solved, whereas the
remaining explicit terms are relatively small. e convective term is discretised using a
second order flux-delimited Barton scheme, while the discretisation of the diffusion term
is done with the second order central difference scheme. e estimation of the velocity
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Figure 2.1: Lagrangian representation of a bubble. e figure on the right shows an enlarge-
ment of the surface mesh.

is corrected to meet the continuity equation (equation 2.2). Both the implicit part of the
projection step and the correction step are solved using a block ICCG matrix solver. e
solver has been parallelised using OpenMP.

Aer the calculation of the velocity field, the new phase fraction in each cell can be de-
termined. Because this advection is different for the FT and VoF model, this part of the code
will be discussed separately in the following sections. From the obtained phase fractions,
the new density and viscosity can be determined according to equation 2.5 and 2.6 by linear
and harmonic averaging respectively.

ρ = Fρ1 + (1− F )ρ2 (2.5)

ρ

µ
= F

ρ1
µ1

+ (1− F )
ρ2
µ2

(2.6)

2.3 Front Tracking model
2.3.1 Surface tension modeling

As discussed previously, the Front Tracking method explicitly tracks the interface of the
bubbles with a Lagrangian mesh, which is shown in figure 2.1. e triangular markers are
directly used for the calculation of the force density representing the surface tension. If we
consider a single marker m, then each of the neighboring markers i exert a tensile force
that can be calculated using equation 2.7.

Fσ,(i,m) = σ
(
ti,m × nedge

)
(2.7)
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In this equation, ti,m is the shared tangent of marker i andm and nedge the normal of the
tangent between markers i andm.

nedge =
1

2
(ni + nm) (2.8)

Summing over all three edges of marker m the surface tension on a marker can be
determined, as shown in equation 2.9. Because the net tensile force over an enclosed surface
is zero, the calculation of the surface tension only contains the normals on the neighboring
marker i. e calculated force is distributed to the Eulerian grid from the center of the
marker using mass-weighting (Deen et al., 2004).

Fσ,m =
1

2
σ

3∑
i=1

(ti,m × ni + ti,m × nm) =
1

2
σ

3∑
i=1

(ti,m × ni) (2.9)

2.3.2 Bubble advection
To advect the bubble, the Lagrangian mesh has to be advected with the local velocity. e
local velocity at each marker point of the Lagrangian mesh can be determined using a piece-
wise cubic spline interpolation of the velocity field determined on the Eulerian grid. When
the local velocity at the marker points is known, the marker points are individually moved
using fourth order Runga-Kua time stepping.

Due to the advection of the individual marker points, the bubble changes both its posi-
tion and shape. However, the separate advection of the marker points causes the distance
between the marker points to change, which can lead to a decrease in the quality of the in-
terface mesh. To improve the quality of the mesh aer advection, a remeshing procedure is
introduced. is procedure includes four different elementary remeshing operations. First
of all, if the distance between two connected markers is too large, edge spliing is applied,
which is the introduction of a new marker point. Secondly, when two marker points are
too close, the two points are merged to a single point, which is called edge collapsing. Fur-
thermore, swapping the central edge of two markers can also improve the quality of the
mesh. Finally, the entire Lagrangian mesh is smoothed. A detailed description of each of
these operations is given by Roghair (2012).

e separate movement of all the marker points and the remeshing operations cause
small volume changes per time step, which lead to a significant volume loss over the course
of a simulation, due to the large number of time steps in a simulation. To overcome these
numerical volume losses, the method of Kuprat et al. (2001) has been implemented in the
smoothing procedure, which locally restores volume losses. However, volume losses due to
the advection of the marker points are not corrected yet. erefore, the overall volume loss
will be compensated by adding the lost volume over the entire interface. is procedure
might cause unphysical overlap between the bubbles. erefore, marker points that are
close to another bubble or wall are excluded from this operation.
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Figure 2.2: A schematic representation of the compass method. e red cell is the cell that
resides in the bubble. When the compass method is applied all the green cells are also
selected to reside within the bubble, while the blue cell is excluded.

2.3.3 Calculation of the phase fraction

Because the gas-liquid interface is directly tracked, the phase fraction should be calculated
separately. Oen, the phase fraction is determined by solving a Poisson equation (Unverdi
and Tryggvason, 1992). However, this will lead to smearing of the phase fraction, numerical
overshoots and undershoots and will increase the computational time. erefore, a less
demanding divergence theorem algorithm is used to calculate the local phase fractions from
the position of the markers. is algorithm is only efficient when a marker triangle resides
in a single cell. Consequently, all triangles that reside in multiple cells are split into multiple
triangles that all reside in a single cell. Details of this algorithm can be found in the work
of Dijkhuizen et al. (2010b) and Roghair (2012).

2.4 Volume of Fluid model
As discussed before, the Volume of Fluid (VoF) method does not directly track the bubble
interface, but rather the bubble (or liquid) volume. Consequently the bubble tracking, the
calculation of surface tension and the bubble advection in this model are all different from
the calculations in the FT. In this section, these elements are discussed.

2.4.1 Bubble tracking

To accurately apply the pressure jump correction, the pressure jump of each bubble should
be determined separately. Because the VoFmethod only tracks the color function, a separate
bubble tracking method has to be implemented to track the bubbles. Suppose we know a
single point within the bubble, indicated by the red cell in figure 2.2, we can determine if
the surrounding cells contain any gas. If they contain gas, the green cells in figure 2.2, the
cells are considered to be part of the bubble. While the blue cell, which does not contain
any gas, is not considered to be part of the bubble. is check is repeated for all green cells,
until the number of cells within the bubble does not change anymore.
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e selected starting point for this procedure is the center of mass of the bubble, because
this point is almost always inside the bubble. However, for wobbling, spherical cap, skirted
and dimpled ellipsoidal bubbles, the center of mass of the bubble does not necessarily have
to be inside the bubble. e starting point of the calculation is then moved in the opposite
direction of the outward pointing normal, starting from the last known interface at the
bubble center of mass.

Besides the selection of the starting point, three extra cases should be considered. First
of all, consider two bubbles that have their interface in two adjoining cells. ese bubbles
will automatically merge due to the bubble tracking operation, which is clearly not desired.
To decrease the chance of numerical merging of bubbles, the bubbles can only move when
the angle between the surfaces is less than 90 degrees. Secondly, a cell cannot be part of
multiple bubbles. When a cell is already part of another bubble, the bubbles automatically
merge. Finally, when a bubble breaks up, the center of mass will only be in one of the
daughter bubbles. erefore only one of the bubbles will be tracked. To ensure that all the
bubbles in the domain are tracked, the bounding box of the bubble will be searched for new
bubbles in cases that the bubble size decreases more than 0.001%.

2.4.2 Surface tension modeling
Because the VoF model does not directly track the interface, the calculation of surface prop-
erties, like the surface tension, is difficult and a lot of research has been devoted to these
properties. e surface tension can be introduced into the model via two approaches: as
a divergence of the stress tensor or as a force density (Lafaurie et al., 1994; Jafari et al.,
2007). When the surface tension is introduced as a stress tensor, this is called the Con-
tinuous Surface Stress (CSS) model. In this model, the effects of the interface appear as
an extra capillary pressure tensor (Lafaurie et al., 1994; Renardy and Renardy, 2002; Jafari
et al., 2007). However, the implementation of the surface tension via the stress tensor is less
accurate then the implementation via a force density (Meier et al., 2002; Albert et al., 2012).

Hence, the most common surface tension model in the VoF model implements the sur-
face tension as a force density. is Continuum Surface Force (CSF) method of Brackbill
et al. (1992) calculates the force density, Fσ , using equation 2.10:

Fσ = σκn (2.10)

In this equation, σ is the surface tension coefficient, κ is the curvature of the interface and n
is the normal at the interface. e normal and the curvature are calculated by respectively
calculating the first order and second order spatial derivative of the color function (equation
2.11 and 2.12).

n =
∇F
|∇F |

(2.11)
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κ = −(∇ ·n) (2.12)

To ensure that the surface tension only depends on the gradient in the color function
and not on the value of the surface tension, equation 2.10 is multiplied with a function
g = F̃/ < F >, in which F̃ is the value of the color function in the interface cell and
< F > the value of the color function at the interface. When the phase fraction is used as
the color function, the function is equal to g = 2F . Using this definition the implemented
surface tension is calculated with equation 2.13.

Fσ = 2Fσκn (2.13)

However, the phase fraction acts as a step function across the interface. erefore, stan-
dard discretisation schemes cannot calculate the normal and the curvature accurately. is
problem is overcome by smoothing the phase fraction around the interface with the polyno-
mial expression of Deen et al. (2004). When a smoothing width of two grid cells is applied,
the interface is effectively enlarged to a three grid cell thick interface, leading to numerical
diffusion of the interface (Renardy and Renardy, 2002; Gerlach et al., 2006).

Although the introduction of smoothing solves the numerical problems of the CSFmodel,
the curvature calculation, which is the main problem of the CSF, is not improved (Ahami
and Bussmann, 2009). e calculation of the curvature can be improved by a more accu-
rate representation of the interface. is can be done using a least square method to fit
the interface with a linear or a parabolic interface, as is done by the PROST-algorithm of
Renardy and Renardy (2002) and the (E)LVIRA method of Pilliod Jr. and Pucke (2004)
respectively. Rider and Kothe (1998) reconstruct the interface geometrically, using compli-
cated surface integrals and an iterative procedure. Although these methods ensure a more
accurate estimation of the curvature, the procedure to reconstruct the interface reduces the
computational speed considerably (Son, 2003; Gerlach et al., 2006).

e curvature estimation can also be improved by combining the VoF model with the
Level-Set method (CLSVoF). In this method, the phase fraction is calculated with the VoF
method to ensuremass conservation, while the smooth LS function is used to accurately cal-
culate the surface properties (Son, 2003; Gerlach et al., 2006; Albadawi et al., 2013). However,
the implementation of the interface reconstruction in the CLSVoF model is still a problem,
because the interface reconstruction has to be accurate for both the advection of the color
function and the re-initialization of the LS function (Son, 2003).

Finally, the curvature approximation can also be improved using the height function
model of Gerrits (2001). is model only changes the curvature calculation as compared to
the CSF model of Brackbill et al. (1992), which means that the surface force and the normal
are still calculated with equation 2.10 and 2.11, respectively. e only difference with the
CSF calculation is that instead of the smoothed phase fraction the actual (non-smoothed)
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phase fraction is used in the calculation of the normal (Gerrits, 2001; Cummins et al., 2005;
Francois et al., 2006).

e curvature is calculated by the determination of the surface height, h. e height is
obtained by the summation of the phase fraction in the direction of the largest component
of the surface normal vector, which is performed on a 7x3x3 stencil around each interface
cell. For instance, the normal component in a cell is largest in the z-direction. In this case,
the height in each cell can be calculated with equation 2.14.

h(i, j, k) =
k+3∑
k−3

F (i, j, k)∆z (2.14)

From the local variations of the height, the curvature of the interface cell can be calculated
with equation 2.15 (Gerrits, 2001; Cummins et al., 2005; Francois et al., 2006).

κ =
∂

∂x

 ∂h
∂x√

1 + (∂h∂x )
2 + (∂h∂y )

2

+
∂

∂y

 ∂h
∂y√

1 + (∂h∂x )
2 + (∂h∂y )

2

 (2.15)

When equation 2.10 is used to calculate the surface tension, a force per unit surface area is
calculated, while a force density is needed in the calculation of the Navier-Stokes equations.
erefore, the calculated force is multiplied by the area of the interface and divided by the
volume of the cell.

e advantage of the implementation of the height function is the elimination of the
smoothing of the color function. Moreover, the spurious currents in the model are reduced
compared to the CSF model and the accuracy of the surface tension model is increased to
O(h2) (Gerrits, 2001; Cummins et al., 2005; Francois et al., 2006; Popinet, 2009). e imple-
mentation of the height function is based on a large stencil. is leads to a rapid decrease
of the accuracy of the model when the distance between two interface cells is less than
four grid cells in the direction of the largest normal. is situation can occur in the case of
wobbling, spherical cap, skirted and dimpled bubbles.

Even though the improvement of the curvature calculation increases the accuracy of
the VoF model, the use of a different kind of surface tension model might be even more
effective. Currently, in the FT model a totally different model is used: the tensile force
method of Tryggvason et al. (2001). is method was explained in detail in section 2.3.
Summarizing, in this model the surface tension is calculated by summing all the tensile
forces that the neighboring markers exert on the marker of interest. e calculation of this
force is straightforward in the FT model because each of the edges of the interface marker is
connected to a neighboringmarker (Tryggvason et al., 2001; Shin and Juric, 2002; Dijkhuizen
et al., 2010b).
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Although the interface is not as well defined in the VoF model, the tensile force method
can also be applied using the reconstructed PLIC (Piecewise Linear Interface Calculation)
interfaces, that are used in calculating the advection of the color function. Due to the use of
the reconstructed surface, there are a few differences in the implementation of the tensile
force method for the VoF model as compared to the FT model. First of all, the reconstructed
interface is described on basis of five different general shapes of the interfaces, which have
three to six edges (see figure 2.3.a). erefore, the summation of all edges should depend
on the PLIC case of this interface cell, which changes equation 2.9 to:

Fσ,m =
1

2
σ

n∑
i=1

(ti,m × ni) (2.16)

In this equation m is the interface element of choice, i the neighboring interface elements
and n the number of edges that depends on the PLIC reconstruction case of interface ele-
mentm. Furthermore, there is no inherent connectivity between the different neighboring
interface elements in the interface reconstruction. As a consequence, a certain neighboring
cell i of cell m might not contain any gas, while the interface of cell m has an edge in the
cell face connecting cell i andm. is will lead to no tensile force at this edge, because the
normal in cell i is not defined. To the best of our knowledge, the use of the tensile force
model in VoF has not been reported before.

In the used VoF model, three different surface tension models have been implemented:
the CSF model, the height function model and the tensile force model. e CSF model is
chosen because it is the most oen used surface tension model. e height function model
is the most oen used improvement of the CSF model and therefore a good comparison for
the new tensile force method.

2.4.3 Bubble advection
e bubble advection in the VoF model is slightly different from the FT method, because
the exact location of the interface is not known. To enable an accurate advection of the
bubble, the Piecewise Linear Interface Calculation (PLIC) algorithm is implemented in the
code. In the PLIC algorithm, the interface of the bubble is represented as a flat plane using
the normal and the phase fraction in the cell. For a 3D-simulation, 64 different cases are
necessary to represent all different planes. By interchanging co-ordinate directions, chang-
ing of direction, and interchanging the phases, the 64 cases can be reduced to five cases,
which are shown in figure 2.3.a. All these cases satisfy the following inequality:

n1 < n2 < n3 (2.17)

where ni is the normal component in the three transformed co-ordinate directions. Using
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Figure 2.3: e five generic interface cases of the Piecewise Linear Interface Calculation in
figure a. In figure b, a bubble is reconstructed using these 5 generic cases.

the five generic cases, all bubbles can be visualized as shown in figure 2.3.b. All bubbles
depicted in this thesis are visualized in this way. e linear planes can be used to determine
the fractional amount of liquid that is advected trough the cell phase using equation 2.1.
is geometrical advection method is similar to the method of Youngs (1982), which has
been adopted for the use of 3D domain.

2.5 Verification results
e implementation of the models was verified using three different tests. e implemen-
tations of the surface tension model, the advection scheme and the interaction between the
momentum equations and the surface tension model are tested. Each test was performed
for both the VoF model and FT model, using all available surface tension models.

2.5.1 Stationary bubble test
e implementation of the surface tension model was verified using a stationary bubble
test. In this test, a spherical bubble is placed in a zero-gravity field. When the force balance
on the bubble is solved analytically, the Laplace pressure is obtained:

∆p =
4σ

d
(2.18)

e pressure jump across the interface, ∆p, depends on the surface tension, σ, and the
diameter of the bubble, d.

e test is performed for a box of five times the bubble diameter in all co-ordinate di-
rections. e bubble is placed in the middle of the domain. e test is performed with air
bubbles in two different fluids (σ equal to 0.073 N/m and 0.1 N/m). All the simulations are
performed with 20 grid cells across the bubble diameter. Table 2.1 shows the deviation of
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the pressure jump from the analytical solution. Furthermore, the intensity of the spurious
currents in the simulation is characterized by the Capillary number, equation 2.19.

Ca =
µlvmax,l

σ
(2.19)

e error in the pressure jump is smallest for the FT model, as expected. For the VoF
model, the CSF surface tension model shows the smallest difference for the cases with a
relatively high surface tension coefficient and large diameters (cases 3-5). However, when
the surface tension coefficient increases or the bubble diameter decreases, the tensile force
method determines the pressure jump over the interface more accurately than the other
models. e obtained pressure jump is closer to the analytical value than the results ob-
tained by the 3D CSF VoF methods (Brackbill et al., 1992; Meier et al., 2002; van Sint Anna-
land et al., 2005; Albadawi et al., 2013), while the results for the tensile force method and the
height function model are comparable to the results obtained using 3D CLSVoF (Albadawi
et al., 2013), 3D height function VoF (Lin et al., 2012), 3D FT (Dijkhuizen et al., 2010b) and
the 2D CSF methods of Gerlach et al. (2006). Only the 2D PROST resulted in a pressure
jump that is much closer to the analytical pressure jump, but there are no results available
for the 3D PROST model (Gerlach et al., 2006).

Besides the error in the Laplace pressure and the capillary number, the table also shows
the Ohnesorge number, equation 2.20.

Oh =
µg√
ρgσdb

(2.20)

Both the Ohnesorge number and the capillary number show no correlation with the devi-
ation with respect to the Laplace pressure, which might be caused by the non-stationary
nature of the pressure. However, the capillary number shows that the spurious currents in
the VoF model are largest when the CSF model is used. Although the spurious currents are
reduced the most using the height function model (O(102−103) compared toO(101−102)

for the tensile force method), the calculated pressure is constantly increasing with time.
While in the tensile force method the calculated pressure has a sinusoidal shape around the
Laplace pressure.

2.5.2 Standard advection test
In the standard advection test, the implementation of the advection scheme in the model is
verified. In this test, a spherical bubble is placed in a rotational velocity field according to
equation 2.21.

u (x, y, z) =

(
0,− 2

ny∆y
sin2 (πy) sin (πz) cos (πz) , 2

nz∆z
sin2 (πz) sin (πy) cos (πy)

)
(2.21)
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Table 2.2: e simulation seings for the standard advection test.

Property Value Unit
Domain size (nx,ny,nz) (120, 120, 120) grid cells
Grid size (∆x, ∆y & ∆z) 0.005...0.015 m
Time step 1 · 10−3 s
Courant criterion 0.33...0.04 -

e bubble, with a diameter of 1
4 of the domain, is placed at ( 12 ,

1
2 ,

3
4 ) of the domain. When

the front of the bubble has completed a single rotation, the direction of the velocity field
is reversed. If the advection method is working properly, the bubble should return to its
original position and shape. e difference between the original and the final state of the
bubble is quantified by two errors: the mass error (equation 2.22) and the geometrical error
(equation 2.23).

Em =

∑
i,j,k(1− F i,j,k)end −

∑
i,j,k(1− F i,j,k)initial∑

i,j,k(1− F i,j,k)initial
(2.22)

Eg =

∑
i,j,k |(1− F i,j,k)end − (1− F i,j,k)initial|∑

i,j,k(1− F i,j,k)initial
(2.23)

e simulation seings for this test are shown in Table 2.2.
As expected, all surface tension models for the VoF method give the same results for

the standard advection test, because the advection scheme is not changed when a different
surface tension model is used. e mass error in all the VoF models and the FT model is
respectively ∼ 10−9 and ∼ 10−13, which is negligible. e geometrical errors (see figure
2.4) obtained in these simulations are similar to the results obtain by the FT model of van
Sint Annaland et al. (2006) and other VoF models (Rider and Kothe, 1998; Aulisa et al., 2003;
van Sint Annaland et al., 2005). Although the geometrical error can be further reduced by
refining the grid, we only present the results for a bubble with 30 grid cells per diameter,
because this is the smallest grid used for simulations of moving bubbles.

2.5.3 Oscillating bubble test
Besides the implementation of the surface tension and the bubble advection, the interchange
between the surface tension and the momentum equations is checked with the oscillating
bubble test. In this test, a non-spherical bubble is placed in a zero-gravity field. e bubble
has the same diameter in the x- and y-direction, while it is slightly elongated in the z-
direction. At the beginning of the simulation the bubble is released and starts to oscillate
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Figure 2.4: Geometrical error of the standard advection test for all models with respect to the
Courant-Friedrichs-Lewy (CFL) number. e geometrical error is calculated with equation
2.23.

Table 2.3: e simulation seings for the oscillating bubble test.

Property Value Unit
Domain size (nx,ny,nz) (120, 120, 120) grid cells
Grid size (∆x, ∆y & ∆z) 6.67 · 10−4 m
Bubble diameter (0.04, 0.04, 0.02) m
Bubble placement ( 12 ,

1
2 ,

1
2 )

Time step 1 · 10−4 s
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Figure 2.5: e results for the oscillating bubble test. e bubble diameter in the vertical
direction is shown for the FT model and the VoF model with the CSF model, the height
function model and the tensile force method.
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until it reaches its equilibrium spherical shape. For small deformations, this problem can
be solved analytically (Lamb, 1932). e FT model shows a very good agreement with the
analytical solution of Lamb (1932) for small deformations (Roghair et al., 2011). However,
these small deformations are not well captured in the VoF model, due to use of the generic
5 interfaces in the interface reconstruction. Consequently a larger deformation is used to
verify the VoF models using the same seings as van Sint Annaland et al. (2006), which are
given in table 2.3.

e results of this test are shown in Figure 2.5. e CSF model performs worst of the
surface tension models, while the height function model is the best performing model. e
tensile force model only improves the results slightly compared to the CSF model. ere
are no reports of the oscillating bubble test for VoF models in literature. Furthermore, all
the VoF models show minor oscillations in the main trend, that are caused by the diameter
calculation, which depends on the interface reconstruction.

2.6 Validation results
Besides verifying the code, the code is also validated with experimental results for single
rising bubbles. Grace determined the size and terminal rise velocity for single freely rising
bubbles. e results of these experiments are combined in the well known ”Grace diagram”,
figure 2.6 (Grace, 1973; Grace et al., 1976; Cli et al., 1978). Because the graphical Grace dia-
gram is only partly reported as correlations (Grace et al., 1976), Tomiyama (1998) developed
correlations for pure liquids matching the Grace diagram in the wobbling, ellipsoidal, spher-
ical cap and skirted bubble regimes. However, the correlations of Tomiyama (1998) differ
largely from the Grace diagram for spherical and dimpled ellipsoidal-cap bubbles.

e Grace diagram is oen used for the validation of gas-liquid DNS models, as shown
in figure 2.6. All the authors observe a good comparison between the Grace diagram and
the experimental results. Although the combined results span the industrial relevant area
of the Grace diagram, there are only a few models that have been used to simulate the
entire industrial relevant area. In this work, the code is validated with 33 single bubble
simulations, which are depicted by the numbered dots in figure 2.7. Because the FT code
has been validated by Dijkhuizen et al. (2010a) before, the validation was only performed
for all the surface tension models included in the VoF model. All simulations are performed
starting with a single stationary spherical bubble. e simulation seings are given in table
2.4. Furthermore, on all domain boundaries free-slip boundary conditions are applied and
the window shiing principle is applied to keep the bubble at its initial position (at (12 ,

1
2 ,

2
3 )

of the domain) (Deen et al., 2004).
Figure 2.7 shows, besides the used seings for the single bubble simulations and the

expected dimensionless terminal rise velocity, the obtained and expected shape of the bub-
bles. e obtained bubble shape is visualized using the interface segments created with the
PLIC-advection algorithm. First of all, the obtained bubble shapes are compared. All the
models are able to predict the shape of ellipsoidal and dimpled bubbles accurately.



2.6. V  21

Figure 2.6: e Grace diagram showing the terminal rise velocity and bubble shape of single
rising bubbles in a initial quiescent liquid as a function of the Eötvös and Morton number.
3D single bubble simulation already performed for the FT •(blue: Hua and Lou (2006), red:
van Sint Annaland et al. (2006) and green: Roghair et al. (2013b)), Level-Set� (red: Nagrath
et al. (2005) and blue: Yu and Fan (2008)), Laice Boltzmann− (Kurtoglu and Lin, 2006) and
VoF ⋆ (van Sint Annaland et al., 2005; Lin et al., 2012). All authors show good comparison
with the Grace diagram of Grace et al. (1976).
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Figure 2.7: e single bubble simulations performed for validating the VoFmodel. e figure
also shows the shape of the bubbles at terminal rise velocity for cases 6, 16, 21, 25, 28, 30
and 33. e red striped area depicts the region in which the height function model performs
best. In the green area the tensile force model is the best performing model.
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Table 2.4: e simulation seings for the single bubble simulations depicted by the numbers
in Figure 2.7.

Property Value Unit
Bubble diameter 1.0...5.5 mm
Bubble diameter 30 grid cells
Initial bubble shape spherical
Domain size (150, 150, 150) grid cells
Initial bubble position (75, 75, 100) grid cells
Grid size ∆x, ∆y & ∆z 0.033...0.18 m
Time step 1 · 10−7 … 1 · 10−5 s
Eo 0.1...40 -
log Mo −11...1 -

Comparing the cases of spherical bubbles (case 6 and 21), both the CSF model and the
height function model show a good approximation of the bubble shape both for low and
high Eötvös numbers (Eo). However, the tensile force method shows a large difference in
the representation of the bubble surface; connectivity between the interface segments is
lost for case 21. is behavior was observed for all bubbles with Eo < 1. e reason can be
found looking at the stationary bubble test of simulations with Eo < 1 and Eo > 1 (case 26
and 31). Although Eo is different for these cases, the Reynolds numbers of these cases are
similar. e stationary bubble test of case 26 has 10 times higher error in the pressure jump.
Furthermore, the spurious currents are larger in case 26 with respect to case 31, respectively
10−4 m/s and 10−12 m/s. ese increased spurious currents will lead to a deterioration of
the connectivity and thus a less accurate calculation of the surface tension in the cases in
which Eo < 1.

For the case of a wobbling bubble (case 16), three (uncorrelated) screen shots are shown
in figure 2.7. Comparing the three surface tension models with each other, there is a large
difference between the predicted shape of the bubbles, which is possible for a wobbling
bubble. Nevertheless, the CSF and height function model show almost no change in shape
over time. Only the tensile force method shows clear (realistic) shape changes during the
simulation. e tensile force method thus predicts the shape deformation of the bubble
most accurately for wobbling bubbles.

Finally, there are also some differences in the representation of the spherical cap bubbles
(case 25). Both the CSF model and the height function model show a very thin skirt, which
is shedding in the simulation. e bubble size will thus decrease during the simulation,
which reduces Eo. Only the tensile force method shows the spherical cap bubble shape as
reported (Grace, 1973; Grace et al., 1976). e skirt of the tensile force methods are about 1
grid cell wide. Consequently the representation of the bubble shape will increase when the
resolution is increased. However, the bubble rise velocity is not expected to change with
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this increase in resolution.
Besides the shape, the terminal rise velocity of the bubbles was also determined and the

results for all bubbles are listed in table 2.5. e results for the different surface tension
models are compared to the experimental results of Grace et al. (1976) and the correlation
for pure liquids of Tomiyama (1998), equation 2.24.

CD =
4db(ρl − ρg)g

3ρlv2b,z
= max

⟨
min

[
16

Re
(
1 + 0.15Re0.687

)
,
48

Re

]
,
8

3

Eo
Eo+ 4

⟩
(2.24)

e obtained Reynolds numbers are calculated on basis of the time averaged rise velocity.
e simulations were stopped when the moving average of the bubble velocity is within
0.5 % of the final value for at least 0.2 s. To eliminate start-up effects the first 0.1 to 0.2 s are
not included in the average.

e results for simulations with the tensile forcemethod for Eo < 1 are not shown in the
table, because the model has problems with the connectivity of the interface elements. is
results in a zero bubble rise velocity. e table also shows that either the height function
model or the tensile force method are performing beer or similar compared to the CSF
model of Brackbill et al. (1992). From the table and the shown bubble shapes, the best
performing model for each case can be determine, which are represented in figure 2.7. In
figure 2.7, three regions are observed. In the region Eo < 1 the best performing model is the
height functionmodel, because the tensile forcemethod has a problemwith the connectivity
between the interface segments in this region. While in the region with Eo > 10 the tensile
force method is the best performing model, which can be explained by the relatively large
stencil needed in calculation of the height. erefore, the height function model will have
a decreased accuracy when two interfaces of the same bubble are within 4 grid cells, which
occurs especially for dimpled and spherical cap bubbles. In the region 1 ≤ Eo ≤ 10, the
height function model and the tensile force method perform similarly.

Although the Eötvös number has a large effect on the accuracy of the surface tension
models, the effect of the Morton number, Mo, is much smaller. Figure 2.7 shows that there
are deviations from the main trends in the accuracy only at very high Mo (logMo ≥ 1) and
low Mo (logMo < −7). At high Mo, the height function model is also able to accurately
simulate bubbles with Eo > 10. While at low Mo, the accuracy of both models is decreased.
erefore, the height function model can only be used when Eo ≤ 2 and the tensile force
method when Eo ≥ 2.

2.7 Conclusions
In this chapter, the main characteristics of the FT and VoF model were discussed. e ex-
isting VoF model was extended with two new surface tension models: the height function
method and the tensile force model. Furthermore, a pressure jump correction model was
implemented to eliminate the errors which arise due to mismatches in discretisation of the
surface tension and the pressure.
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Table 2.5: All the simulated Reynolds numbers using the CSF model, the height function
model (HF) and the tensile force method (TF) compared to the experimental results as ob-
tained from the Grace diagram (Grace et al., 1976) (G) and the correlation of Tomiyama
(1998) (T).

case Eo log(Mo) G T CSF HF TF
1 1 −11 9.3 · 102 8.8 · 102 9.7 · 102 9.7 · 102 7.1 · 102
2 1 −9 3.2 · 102 2.8 · 102 3.5 · 102 3.2 · 102 3.4 · 102
3 1 −7 8.0 · 101 8.9 · 101 8.1 · 101 7.9 · 101 8.0 · 101
4 1 −5 1.3 · 101 2.8 · 101 1.5 · 101 1.4 · 101 1.5 · 101
5 1 −3 1.8 8.9 2.0 2.0 2.0
6 1 −1 1.8 · 10−1 2.8 2.2 · 10−1 2.1 · 10−1 1.9 · 10−1

7 10 −11 2.8 · 103 2.6 · 103 2.2 · 103 - 2.3 · 103
8 10 −9 9.0 · 102 8.3 · 102 - 7.3 · 102 7.4 · 102
9 10 −7 2.9 · 102 2.6 · 102 - 2.3 · 102 2.3 · 102
10 10 −5 9.0 · 101 8.3 · 101 8.0 · 101 7.8 · 101 8.1 · 101
11 10 −3 2.4 · 101 2.6 · 101 2.3 · 101 2.3 · 101 2.2 · 101
12 10 −1 5.0 8.3 4.8 4.9 4.9
13 10 1 6.0 · 10−1 2.6 6.6 · 10−1 6.6 · 10−1 6.6 · 10−1

14 0.1 −11 1.4 · 102 4.5 · 102 2.6 · 102 2.5 · 102 −
15 0.2 −11 3.8 · 102 5.4 · 102 4.3 · 102 4.4 · 102 −
16 2 −11 1.2 · 103 1.2 · 103 1.1 · 103 1.3 · 103 1.3 · 103
17 4 −11 1.7 · 103 1.6 · 103 1.6 · 103 - 1.7 · 103
18 20 −11 4.1 · 103 4.1 · 103 3.8 · 103 3.7 · 103 3.7 · 103
19 40 −11 7.0 · 103 6.6 · 103 5.8 · 103 5.9 · 103 5.8 · 103
20 0.1 −7 4.6 4.5 · 101 5.8 5.5 −
21 0.2 −7 1.4 · 101 5.4 · 101 1.4 · 101 1.4 · 101 −
22 2 −7 1.4 · 102 1.2 · 102 1.3 · 102 1.3 · 102 1.3 · 102
23 4 −7 2.1 · 102 1.6 · 102 - 1.9 · 102 1.9 · 102
24 20 −7 4.0 · 102 4.1 · 102 3.8 · 102 3.7 · 102 3.8 · 102
25 40 −7 7.2 · 102 6.6 · 102 5.9 · 102 5.9 · 102 5.7 · 102
26 0.2 −3 1.6 · 10−1 5.4 2.0 · 10−1 1.9 · 10−1 −
27 2 −3 4.9 1.2 · 101 5.0 4.9 5.1
28 4 −3 1.1 · 101 1.6 · 101 1.1 · 101 1.1 · 101 1.1 · 101
29 20 −3 3.9 · 101 4.1 · 101 3.5 · 101 3.5 · 101 3.6 · 101
30 40 −3 6.5 · 101 6.6 · 101 6.0 · 101 5.9 · 101 6.0 · 101
31 4 1 1.4 · 10−1 1.6 1.7 · 10−1 1.7 · 10−1 1.7 · 10−1

32 20 1 1.6 4.1 10.2 1.6 1.6
33 40 1 3.0 6.6 3.7 3.7 3.8
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e implemented surface tension models for the VoF model were verified and compared
with the FTmodel. e verification results show that the CSFmodel of Brackbill et al. (1992)
is not able to calculate the surface tension accurately. e height function model and the
tensile force method perform similar as the FT model.

e VoF model was also validated using 33 different cases in the industrially relevant
region of the Grace diagram (Grace, 1973; Grace et al., 1976). Generally, the height function
model is the best performing model in the region with Eo < 1 and the tensile force method
is the best performing model in the region with Eo > 10. In the region 1 ≤ Eo ≤ 10, the
height function and the tensile force method perform equally well.
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3.1 Introduction
To describe the interaction between bodies immersed in a fluid, several powerful Direct Nu-
merical Simulation (DNS) models have become available in the last decade. Similar to the
gas-liquid DNS models, fluid-solid models can be divided in body conforming grid models
and fixed grid models (Deen and Kuipers, 2014). In the first class of models, the grid con-
forms with the shape of the solid object, which enables a straightforward application of the
no-slip boundary condition at the surface of the solid body. To enable the calculation of
the flow in the domain all the governing equations need to be transformed to incorporate
the grid geometry in the discrete representation of the equations. An example of a body
conforming gridmethod is the Arbitrary Lagrangian-Eulerian (ALE) technique. In this tech-
nique, a moving unstructured finite element mesh is employed, which is refined around the
particles (Hu et al., 1992; Hu, 1996; Deen et al., 2012). e advantage of this method is the
easy implementation of the no-slip boundary condition at the particle surface. However,
the creation of a body conforming grid is a complicated procedure particularly for non-
spherical particles and dense arrays of particles. Moreover, if the particle moves, the grid
needs to be remeshed every time step (Mial and Iaccarino, 2005; Uhlmann, 2005).

Chesshire and Henshaw (1990) and Henshaw and Schwendeman (2003) improved these
type of methods by combining the body conforming grids for every particle and a fixed
Eulerian grid in the overset grid method. e information between the grids is exchanged

27
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by interpolation. e combination of the two grids enables an accurate calculation of the
flow around the objects, while a coarse Eulerian grid can be used for the background flow.
As a consequence significant savings in computational time can be achieved. However, the
implementation of the interpolation between the grids is complex. Furthermore, when the
particles come close to each other, the interpolation procedures become complicated. (Deen
et al., 2012). Because moving particles are used in this work, a fixed grid method is chosen
to model the fluid-solid interactions.

A popular fixed gridmethod is the Immersed Boundary (IB) method, because themethod
combines a flexible implementation for either static or moving particles with a simple and
efficient fixed grid solver (Peskin, 2002; Mial and Iaccarino, 2005; Deen and Kuipers, 2013,
2014; Deen et al., 2014). ere are two main classes of IB methods: the continuous force
method and the direct force method. e continuous force method was developed by Pe-
skin (1977). In this method, two sets of Lagrangian markers are used to track the motion of
the solid body and to the fluid motion in the direct vicinity of the solid body. e difference
in the positions of the markerpoints is used to evaluate the interaction force. is interac-
tion force is distributed to the Eulerian grid using a Dirac function and is implemented as
an explicit source term in the Navier-Stokes equations. Because of the explicit nature of the
source term, the method has constraints regarding stability (Peskin, 2002; Mial and Iac-
carino, 2005; Uhlmann, 2005; Deen et al., 2012; Kempe and Fröhlich, 2012; Deen and Kuipers,
2013; Deen et al., 2014).

In the direct forcing methods, the no-slip boundary condition is implemented at the La-
grangian force points at the particle surface. is enables a sharp representation of the solid
boundaries and prevents stability issues. However, the implementation of the movement of
the solid body is slightly more complex and the interpolation between the Eulerian and the
Lagrangian grid can lead to force oscillations (Mial and Iaccarino, 2005; Deen et al., 2012;
Kempe and Fröhlich, 2012; Deen and Kuipers, 2013; Deen et al., 2014). More information on
the different kinds of direct forcing IB methods can be found in Mial and Iaccarino (2005).

A new direct forcing method is the second order implicit IB method of Deen et al. (2012).
e advantage of this method in comparison with the other direct forcing methods is that
this method uses a second order fit to incorporate the no-slip boundary condition at the
fluid-solid interface. In other methods either lower order linear fits or higher order mul-
tidimensional fits are used, which lead respectively to a lower accuracy or a larger stencil
(Deen et al., 2014).

Uhlmann (2005) combined the advantages of both the continuous force and the direct
force IB methods, by using the interchange of information between the grids from the for-
mer and the local calculation of the fluid-solid interaction force from the laer. In the
Uhlmann method, the presence of the solid boundary is represented as a source term in
the Navier-Stokes equations. To calculate the source term, force points are placed on the
surface of the object. e source term is calculated for all these force points and distributed
to the Eulerian mesh using a delta function (Deen et al., 2012; Kempe and Fröhlich, 2012).
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Although the fluid inside the particle is freely moving, Uhlmann (2005) enforces a rigid
body motion inside the particle to advect the particles to their new positions. Due to the
rigid bodymotion assumption inside the particle, the method of Uhlmann (2005) only works
properly for cases where the density of the body is larger than that of the surrounding fluid.
Stability issues arise when the ratio between the density of the object and the density of the
fluid is smaller than 1.2 (Kempe and Fröhlich, 2012). erefore, Kempe and Fröhlich (2012)
removed the rigid bodymotion assumption for the calculation of the motion of the particles.

Several alternative DNS methods for the simulation of immersed objects have been de-
veloped that are different from the body conforming methods and the described IB method.
Kajishima and Takiguchi (2002) used a very simple method to simulate an immersed body.
For all cells inside the solid body, the rigid body motion is enforced. e fluid and object
velocity are nicely connected by the use of a combined velocity that is weighted according
to the solids fraction inside a cell. e method is efficient, but strongly grid dependent.
Moreover, the velocity is not divergence free around the solid object (Uhlmann, 2005).

e method of Zhang and Prosperei (2005) is a semi-analytical method, which applies
the Stokes flow approximation in the vicinity of the particle. e analytical solution is
coupled to the solution of the full Navier-Stokes equations using an iterative procedure.
e method aains a relative high accuracy at low resolutions. However, the analytical
solutions based on spherical harmonics, which is used to represent the Stokes flow near the
particle, can only be used for relatively simple geometrical shapes (Uhlmann, 2005; Deen
et al., 2012, 2014).

e Distributed Lagrangian Multiplier/Fictitious Domain method, which was developed
by Glowinski et al. (2001), introduces the solid body motion of the immersed objects via
Lagrangian multipliers in the combined momentum equations. e coupling between the
phases is fully implicit and is therefore solved in an iterative manner (Uhlmann, 2005; Deen
et al., 2012, 2014).

Finally, the Laice Boltzmann method can be used to solve the interactions between im-
mersed objects and the fluid. As opposed to the previously discussed methods, the method
solves the approximate Boltzmann equations on a laice, enforcing the no-slip condition
via the so-called ”bounce-back” rule. is method is especially aractive for simulating
many immersed objects, because there is no remeshing required. However, the introduc-
tion of the ”bounce-back” rule results in a step-wise representation of the interface of the
object. Besides, when the object is moving, its representation changes over time (Feng and
Michaelides, 2005; Deen et al., 2012, 2014). To improve the interface representation, Feng
and Michaelides (2005) combined the Laice Boltzmann method with the direct forcing IB
method.

In this thesis, two different fluid-solid Direct Numerical Simulation models are com-
pared: the modified Uhlmann method of Kempe and Fröhlich (2012), which will be called
the first order explicit IB method, and the second order implicit IB method of Deen et al.
(2012). is chapter will start with the governing equations of the models. Subsequently,
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the fluid-solid coupling and the advection of the objects for both methods is described. e
verification and validation of both methods is presented in the following sections.

3.2 Governing equations
Although there are differences between the implementation of the fluid-solid coupling and
the calculation of the particle advection for the first order explicit IB method and the second
order implicit IB method, the governing equations of the two models are the same. Accord-
ingly, this section will discuss the main characteristics of both models. e first order IB
method is based on the implementation of Kempe and Fröhlich (2012), while the second
order IB method is based on the implementation of Deen et al. (2012).

In both IB methods, the continuity equation, equation 3.1, and the Navier-Stokes equa-
tions, equation 3.2, are solved for incompressible flow with non-constant viscosity.

∇ ·u = 0 (3.1)

ρ
∂u
∂t

= −∇p− ρ∇ · (uu)−∇ · τ + ρg (3.2)

e no-slip boundary condition at the solid surface is introduced in these equations via the
fluid-solid interactions, which differs for both models and will therefore be discussed in the
following sections.

e velocity field is calculated using a projection-correction method. In the projec-
tion step, a prediction of the velocity field is calculated from the Navier-Stokes equations.
Except for the diffusion term, all terms in the Navier-Stokes equations are calculated ex-
plicitly. e diffusion term is treated semi-implicitly, choosing the implicit part such that
all velocity components can be calculated separately whereas the remaining finite parts are
treated explicitly. e diffusion term is discretised using a second order central difference
scheme, while the discretisation of the convective terms is performed with a second order
flux-delimited Barton scheme. Subsequently, the approximated velocity field is corrected
to satisfy the continuity equation. e implicit part of the Navier-Stokes equations and the
correction step are calculated with a ICCG block matrix solver, which has been parallelised
with OpenMP.

When the new velocity field is known, the velocity of the object is updated using New-
ton’s equation of motion. e velocity of objectm consists of a translational velocity, wm,
and a rotational velocity, ωm, as shown in equation 3.3.

vm = wm + ωm × (rm − ri,j,k) (3.3)

In this equation, (rm − ri,j,k) is the distance between a certain point in the object ri,j,k
and the center of mass of the object rm. Aer the new velocities of all objects have been
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Figure 3.1: Lagrangian representation of a particle in the first order explicit Immersed
Boundary method. e red dots on the surface of the particle represent the force points
on the particle.

obtained, they are moved to their new positions using an explicit Euler scheme. e inter-
particle and the particle-wall interactions, that occur during the movement, are handled
with a hard sphere model of Hoomans et al. (1996). Because the only freely moving particles
in this work will be spherical particles, the discussions on the particle advection in the next
sections will focus on spherical particles.

3.3 First order explicit Immersed Boundary method
In this section, the implementation of the fluid-solid interaction and the advection of parti-
cles is discussed for the first order explicit IB method.

3.3.1 The fluid-solid interaction

In the first order explicit IB method, the fluid-solid interaction is taken into account via a
source term in the Navier-Stokes equations. To determine the force density needed in the
Navier-Stokes equations, discrete force points are placed on the surface of the immersed
object, as illustrated for a spherical particle in figure 3.1.

e force density at each force point is determined with an iterative procedure. First of
all, the velocity field is approximated by solving the Navier-Stokes equations without any
source term. e velocity at the force point, Un, can be determined by interpolation from
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the Eulerian velocity field:

Un =
∑
i

∑
j

∑
k

δ

(
ri − Ri
h

)
δ

(
rj − Rj

h

)
δ

(
rk − Rk

h

)
ui,j,k (3.4)

where, δ is the weighting function of Deen et al. (2004) and h the average grid size. e
capital leers in the function represent the values at the force points while the lower case
symbols represent the values at the Eulerian grid points. Using the difference between the
interpolated velocity Un and the velocity of the force point vm calculated with equation
3.3, a first estimate of the force density at the force point is computed from:

FIB,n = FIB,n +
ρf
∆t

(vm − Un) (3.5)

Subsequently, the local force density, FIB,n, is mapped to the Eulerian grid by:

fIB,(i,j,k) =
∑
m

δ
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ri − Ri
h

)
δ

(
rj − Rj

h

)
δ

(
rk − Rk

h

)
FIB,n

∆Vm
h3

(3.6)

is equation also uses the weighting function of Deen et al. (2004). e calculated force
density is corrected for the volume associated with the force point, equation 3.7.

∆Vm =
π

3
h3(3(

d

h
)2 + 1) (3.7)

is estimate of the IB source term is used to calculate a new velocity field at the Eulerian
grid. is procedure is repeated until the average difference of the interpolated velocity and
the velocity according to equation 3.3 is within a preset margin or when amaximumnumber
of iterations is reached.

Because of the finite size of the mapping function stencil used to map the force den-
sity to the surrounding Eulerian grid cells, the object appears to be slightly larger to the
fluid than the specified diameter on which the force points are placed. Especially at high
volume fraction of the particles this leads to a substantial overestimation of the drag force,
because in these cases the drag force has a strong non-linear dependence on the particle
size. To resolve the slight increase in the particle diameter, the force points are placed on a
computational particle that has a slightly smaller size than the real particle. e difference
between the diameters of the real particle and the computational particle is tuned using the
method of Ladd (1994), which ensures that the drag force matches analytical results that are
available for low-Reynolds number cases. Because there are no analytical results at higher
Reynolds numbers, high particle fractions nor for objects other than spherical particles, the
application of this method for the laer cases is questionable. For these cases, the effective
particle diameter is set equal to the real diameter (Tang et al., 2014).
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3.3.2 Particle advection
When the velocity field of the fluid is known, the new velocity of the objects can be de-
termined using Newtonian equations of motion. For spherical particlem the conservation
laws for linear and angular momentum are respectively given by:

Vmρm
dwm
dt

= ρf

∮
Γm

(τ ·n)dS + Vm(ρm − ρf )g (3.8)

Im
dωm
dt

= ρf

∮
Γm

(ri,j,k − rm)× (τ ·n)dS (3.9)

where Γm is the surface of particlem, ρf is the density of the surrounding fluid, and rm is
the center of mass of the particle. e first terms on the right hand side of both equations
represent respectively the forces and torque acting on the particle. e second term on the
right hand side of the linear momentum equation is the buoyancy force. e moment of
inertia of the particle, Im, is given by:

Im =
1

10
Vmρid

2
m (3.10)

Because the numerical evaluation of the surface integral in equations 3.8 and 3.9 is nu-
merically difficult, Uhlmann (2005) applied Cauchy’s stress principle to rewrite the equa-
tions. In this approach, the new particle velocity can be calculated with the applied im-
mersed boundary force density, which includes the gravitational force acting on the parti-
cle. Nonetheless, the gravitational force acting on the particle should be corrected for the
gravitational force on the internal fluid, which was included in the calculation of the flow
field.

Vmρm
dwm
dt

=
d

dt

∫
Ωm

ρfudV − ρf

∫
Ωm

fIBdV + Vm(ρm − ρif )g (3.11)

Im
dωm
dt

=
d

dt

∫
Ωm

ρf (ri,j,k − rm)× udV − ρf

∫
Ωm

(ri,j,k − rm)× fIBdV (3.12)

Uhlmann (2005) assumed a solid body force inside the particle to remove the time deriva-
tive from the equation. However, this assumption leads to numerical instabilities when the
density ratio of the particle and the fluid is less than 1.2. To overcome these problems,
Kempe and Fröhlich (2012) numerically evaluated the same time derivative using second
order midpoint quadrature rules as given by equations 3.13 and 3.14.

∫
Ωm

ρfudV =
∑
i

∑
j

∑
k

uVi,j,kϕi,j,k (3.13)
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∫
Ωm

ρf (ri,j,k − rm)× udV =
∑
i

∑
j

∑
k

(ri,j,k − rm)× uVi,j,kϕi,j,k (3.14)

In these equations, ϕi,j,k is the solids volume fraction in a cell, which is calculated by em-
ploying a signed distance level-set function (Kempe and Fröhlich, 2012). e time derivative
is calculated using a simple forward Euler scheme.

3.4 Second order implicit Immersed Boundary method
3.4.1 The fluid-solid interaction
Because the second order implicit IB method is a direct forcing method, the implementation
of the no-slip boundary condition is implicitly introduced in the Navier-Stokes equations.
Aer discretisation, the Navier-Stokes equations can be wrien in the following compact
form, which is the same for each velocity component ψ.

acψc +
∑
nb

anbψnb = bc (3.15)

is equation expresses the velocity component of a node inside the fluid, ψc, as a function
of the same velocity component of the neighboring nodes, ψnb, and the explicit terms, b.
Because the equation is only valid for nodes outside the solid objects, it should be checked
for each node whether it resides inside a particle. is should be done in such a way that
the staggered configuration of the nodes for each velocity component is taken into account.

Considering a node in the fluid that has a neighboring node inside a particle, as shown in
the top of figure 3.2, the no-slip boundary should be applied in the neighboring cell. To apply
the no-slip boundary, a second order (1D) fit of the velocity component is considered. Using
this fit, the velocity inside the particle, ψ0, can be expressed as a function of the velocity at
the objects surface, ψs, the velocity of the central cell, ψ1, and the velocity component in
the next cell, ψ2:

ψ0 = − 2ζs
(1− ζs)

ψ1 +
ζs

(2− ζs)
ψ2 +

2

(1− ζs)(2− ζs)
ψs (3.16)

In this equation, ζs is the dimensionless distance between the grid point of the velocity
component and the intersection of the grid line and the particle surface (see figure 3.2).
For simple immersed objects (particles, cylinders and thin sheets), the determination of the
intersection between the grid line and the particle surface can be determined analytically.
Using equation 3.16, the coefficients of the central and neighboring cells are modified ac-
cording to equations 3.17 to 3.20.

ã0 = 0 (3.17)
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Figure 3.2: e incorporation of the no-slip boundary in the second order implicit Immersed
Boundary method. e incorporation of each velocity component, ψ, is different, because
of the staggered grid. e top implementation is for a single particle, while the boom
accounts for two close particles.

ã1 = ãc = a1 −
2ζs

(1− ζs)
a0 (3.18)

ã2 = a2 +
ζs

(2− ζs)
a0 (3.19)

b̃1 = b̃c = b1 −
2ψs

(1− ζs)(2− ζs)
a0 (3.20)

e second order fit becomes singular as (1 − ζs) approaches 0. For cases where the
dimensionless distance to the surface ζs is larger than 0.9999, a first order fit is used, which
is given by:

ψ0 = − ζs
(2− ζs)

ψ2 +
2

(2− ζs)
ψs (3.21)

To ensure a complete implementation of the no-slip boundary condition, the above men-
tioned procedure should be performed for all the nodes surrounding an immersed object,
for all velocity components.

A special treatment is followed for a central cell that is surrounded by two neighbors in
the same direction that are inside an immersed object, as shown in the boom of figure 3.2.
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If the procedure described is followed, the first treated neighboring cell will end up with a
non-zero coefficient in the matrix. To prevent this from happening, another second order
fit was derived taking into account the velocity of both particles, which is given by equation
3.22.

ψ0 =− ζ2s0ζs2 − ζs0ζ
2
s2

ζs0(1− ζs0[1− ζs2])− ζs2(1− ζs2[1− ζs0])
ψ1

+
ζ2s2 − ζs2

ζs0(1− ζs0[1− ζs2])− ζs2(1− ζs2[1− ζs0])
ψs0

+
ζ2s0 − ζs0

ζs0(1− ζs0[1− ζs2])− ζs2(1− ζs2[1− ζs0])
ψs2

(3.22)

is equation becomes singular when one of the two surfaces coincide with the central grid
point. To remove the singularity, a first order approximation of the velocity is performed
when one of the surfaces is closer than 0.0001∆x from the central point. e first order
approximation of the velocity is given by:

ψ0 =
ζs2

(ζs2 − ζs0)
ψs0 −

ζs0
(ζs2 − ζs0)

ψs2 (3.23)

3.4.2 Particle advection
To enable the movement of particles, Newton’s second law is also implemented for the
second order implicit IB method. Because the immersed boundary force density is unknown
for this method, the simplification of Uhlmann (2005) cannot be used in this method. For
this method the second law of Newton is reformulated only slightly to equation 3.24 and
3.25

Vmρm
dwm
dt

= ρf

∮
Γm

(τ ·n+ pn)dS (3.24)

Im
dωm
dt

= ρf

∮
Γm

(ri,j,k − rm)× (τ ·n)dS (3.25)

Subsequently, the evaluation of the drag and the torque acting on a particle will be eval-
uated. e viscous drag in the x-direction can (as an example) be obtained from equation
3.26.

−Fd,µ,x =
∑
s

2µ
∂ux
∂x

nxA+ µ

(
∂ux
∂y

+
∂uy
∂x

)
nyA+ µ

(
∂ux
∂z

+
∂uz
∂x

)
nzA (3.26)
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e expressions for the force components in the y and z-directions are analogous. e local
partial derivatives at the surface of the particle can be calculated using the second order fits,
which are used to enforce the no-slip boundary condition. e spatial derivative of a certain
velocity component ∂ψ∂ζ , is calculated with equation 3.27, for those cases where there is no
other particle in the same direction, ζ .

∂ψ

∂ζ

∣∣∣
ζ=ζs

=
2− ζs
(1− ζs)

ψ1 −
1− ζs
(2− ζs)

ψ2 −
3− 2ζs

(1− ζs)(2− ζs)
ψs (3.27)

Because the equation is singular when ζs = 1, the first order fit is also used in the determi-
nation of the local velocity derivatives:

∂ψ

∂ζ

∣∣∣
ζ=ζs

=
1

(2− ζs)
ψ2 −

1

(2− ζs)
ψs (3.28)

Both the second order and first order fit change when a central cell has two neighbors
in the same direction that are inside an immersed object. In such a case, the calculation of
the derivatives changes to respectively equations 3.29 and 3.30.

∂ψ

∂ζ

∣∣∣
ζ=ζs

=
(ζs) − ζs2)

2

ζs0(1− ζs0[1− ζs2])− ζs2(1− ζs2[1− ζs0])
ψ1

− 1− 2ζs0 + 2ζs0ζs2 − ζ2s2)

ζs0(1− ζs0[1− ζs2])− ζs2(1− ζs2[1− ζs0])
ψs0

− 1 + 2ζs0 − 3ζ2s0
ζs0(1− ζs0[1− ζs2])− ζs2(1− ζs2[1− ζs0])

ψs2

(3.29)

∂ψ

∂ζ

∣∣∣
ζ=ζs

= − 1

(ζs2 − ζs0)
ψs0 +

1

(ζs2 − ζs0)
ψs2 (3.30)

e only unknown in equation 3.26 is the surface area. Because the evaluation of the
actual surface area is involved, the projected surface, niA, is used. For all derivatives in
the same direction as the projected surface, i.e. the first, second and fourth derivative in
equation 3.26, the projected surface is estimated to be equal to the projected area of the grid
cell. For instance: the projected area used for the first derivative is ∆y∆z. For the other
derivatives, the projected area is estimated using a tangent plane at the surface, as illustrated
in figure 3.3. When a constant normal is assumed over the total area, the projected surface
can be calculated from the projected surface in the direction of the normal according to
equation 3.31.

Ay = Ax
ny
nx

(3.31)
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Figure 3.3: e calculation of the projected surface for all transpose terms in the viscous
drag calculation. e area is estimated from the tangent plane as shown by the blue lines
in the figure.

Due to the use of the projected area, there can be over- and underestimations of the projected
area depending on the positioning of the particle with respect to the grid. In addition, the
projected area of the transpose components of the drag force is less accurate due to the
assumed constant normal for the plane.

In addition to the viscous drag, the form drag is required in the equation of motion of the
particles. e laer can be computed in two differentways: the form drag can be determined
via a surface integral or as a volume integral over particlem, as given in equation 3.32.

Fd,form = −
∮
Γm

pndS = −
y
Ωm

∇pdV (3.32)

To calculate the surface integral, the pressure at the surface of the particle is determined
via linear extrapolation of the pressure at the fluid nodes near the surface. For the volume
integral, the pressure gradient for all nodes inside the particle are calculated using a standard
second order central differencing scheme.

Although these integrals both yield the form drag, the actual calculated values may
differ. ese differences are caused by the linear extrapolation of the pressure. Besides,
the methods will only coincide when a closed surface is considered. Due to the applied
discretisation in the drag calculation, numerically the surface is not always closed. Due to
possible differences between the methods, both methods will be considered in this chapter.

3.5 Verification results
To verify the implementation of both IB methods, two different tests have been performed.
e tests are designed to check the implementation of the no-slip boundary condition and
the implementation of the drag force. Both tests are performed at creeping flow conditions
for which exact analytical results are available.
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3.5.1 Stokes flow test

To test the implementation of the drag force, a static single sphere is placed in an infinite
domain subject to cross flow. e uniform free stream velocity, v∞, is chosen such that
Stokes flow is ensured (Re ≤ 0.1). For this test case, the velocity profile, the pressure field
and the drag force can be derived analytically in spherical coordinates (r,θ,ϕ) (Bird et al.,
2007):

vr = v∞

[
1− 3

2

dp
2r

+
1

2

(
dp
2r

)3
]
cos(θ) (3.33)

vθ = v∞

[
−1 +

3

4

dp
2r

+
1

4

(
dp
2r

)3
]
sin(θ) (3.34)

vϕ = 0 (3.35)

p =
3

2

2µv∞
dp

(
dp
2r

)2

cos(θ) (3.36)

Fd,z = 3πµdpv∞ (3.37)

For this test, the velocity profile and pressure field are initiated and kept at their an-
alytical values using an uniform velocity of 1.0 · 10−4 m/s. e resulting drag on the 1
mm particles is compared to the analytical drag of equation 3.37. Because the velocity field
is imposed, this test can only be performed for the second order implicit IB method. e
absolute error in the numerical result for different grid resolutions is shown in figure 3.4.

e figure shows that even with a relatively low number of grid cells in the radial di-
rection of a particle, i.e. Rp/∆x < 6, the drag force is calculated within 1.0 % accuracy. In
addition, the error in the simulated drag force not only depends on the number of grid cells
within the particle but also on the placement of the particle boundaries with respect to the
grid, which explains the scaer in the data. Finally, it can be concluded that the drag force
calculated using the surface integral for the form drag is in general more accurate than the
calculation with the volume integral. Nevertheless, the difference between the simulated
results using both methods becomes smaller with an increase in the number of grid cells in
a diameter.
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Figure 3.4: Stokes flow around a sphere in an infinite liquid. e figure shows the absolute
error between the analytical solution, equation 3.37, and the numerically calculated drag.
e results are obtained for the second order IB methods.

Table 3.1: e simulation seings for a diluted array of spheres subjected to fluid flow in
the Stokes regime. e computational grid is a cubic domain.

Property Value Unit
Solid fractions 0.01...0.002
Computational grid 74...128
Grid size 5.0 · 10−5 m
Time step 6.6 · 10−4 s
Effective particle diameter 1.0 · 10−3 m
Computational particle diameter 9.7 · 10−4 m
Gas density 1.0 kg/m3

Gas viscosity 1.0 · 10−5 Pas
Inlet velocity 1.0 · 10−3 m/s

Subsequently we compare our simulation results with data of Hasimoto (1959), who
derived an analytical solution for a particle in a static simple cubic array of spheres subject
to Stokes flow. e dimensionless drag force is given by:

Fd
3πµdpv∞

=
1

1− 1.7601ϕ
1
3 + ϕ− 1.5593ϕ2

(3.38)

To study this system, simulations were performed for a periodic domain containing
exactly one particle. e seings of the simulations are shown in table 3.1. Keeping the
particle diameter fixed, the solids volume fraction is changed by varying the size of the
periodic domain. To simulate the simple cubic array of spheres, the boundary conditions at
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Figure 3.5: Stokes flow around a sphere in a simple cubic particle array. e figure shows
the calculated drag normalized by the analytical Stokes drag, equation 3.37. e line in the
figure corresponds to the analytical results of Hasimoto (1959), equation 3.38.

the side walls are set to free slip boundary conditions. e results of this test are shown in
figure 3.5. e figure shows that the trend in the results is similar to the trend given by the
correlation of Hasimoto (1959). e small differences (4%) between the results of Hasimoto
(1959) and our numerical results can be explained by the fact that in the simulations only
periodicity in the lateral directions perpendicular to the main flow direction was assumed.

Figure 3.5 shows that the results for the first order explicit IB method and the second
order implicit IB methods are similar, except for the case with a solids volume fraction of
0.006. e second order IB method performs beer for this case because of the relative
positioning of the particle with respect to the grid. Furthermore, it should be noted that an
effective particle diameter is used in the first order IB method.

3.5.2 Flow around a rotating sphere
Besides the implementation of the drag force, the implementation of the torque should be
verified, which is done by placing a rotating particle in an infinite medium. e rotational
velocity of the particle is set sufficiently low to achieve Stokes flow conditions (1.0 · 10−5

rotations/s). e velocity field and the exerted torque on the 1 mm particle can be derived
analytically in spherical coordinates and are given respectively by (Bird et al., 2007):

vϕ = ω
dp
2

(
dp
2r

)2

sin θ (3.39)

Td,z = πµωd3p (3.40)

Similar to the test for a single static particle in Stokes flow, both the velocity field and
the rotational velocity of the particle are implemented in the model. e torque computed
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Figure 3.6: Flow around a rotating sphere in an infinite liquid. e figure shows the absolute
error between the analytical solution, equation 3.40, and the numerically calculated torque.
e results are calculated for the second order IB method.

numerically is compared to the torque obtained from the analytical expression in equation
3.40. e absolute error between the analytical solution and the numerical result is shown in
figure 3.6. e results are only shown for the second order IB methods, because the torque
cannot be calculated when both the rotational velocity and the velocity field are specified
in the first order IB method. Note that in this case the calculated torque is not influenced
by the chosen method for the form drag.

e figure clearly shows that the error in the calculated torque is up to 10%. e error
only decreases below 1% when dp/∆x > 80, which is unfeasible for most simulations. e
error is probably caused by the errors in the approximation of the area in equation 3.26. e
largest error is made in the transpose terms of the calculation, in which the area is estimated
using a tangent plane. When the calculation is performed with the expression for constant
viscosity all transpose terms can be neglected. is will probably reduce the errors in the
calculation of the torque.

3.6 Validation results
Besides the verification of the method, all models are also validated using experimental re-
sults from literature. e tests are performed at much higher flow rates, for denser systems,
and for non-static systems as well as cylindrical particles.

3.6.1 Static particle test

First of all, the implementation of the drag force at higher Reynolds numbers is tested. In
this test, a static particle in an infinite medium is subjected to a flow at Re = 100. e
simulation seings are shown in table 3.2.
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Table 3.2: e simulation seings for a sphere in flowing medium with Re = 100.

Property Value Unit
Computational grid (nx,ny,nz) (160, 160, 180) grid cells
Particle positions (80, 80, 40) grid cells
Grid size 5.0 · 10−5 m
Time step 1.0 · 10−5 s
Particle diameter 1.0 · 10−3 m
Fluid density 1.0 · 102 kg/m3

Fluid viscosity 1.0 · 10−5 Pa s
Inlet velocity 0.01 m/s

e computed drag force is used to determine the drag coefficient according to equation
3.41.

Cd =
Fd

1
2ρv

2
∞A

=
Fd

1
2ρv

2
∞

1
4πd

2
p

(3.41)

e drag coefficients obtained using the different methods are listed in table 3.3 together
with reported literature results. e first order IB method shows a good comparison with
the results reported by Beetstra et al. (2007) and Deen et al. (2009), which are using a Laice
Boltzmannmethod and the method of Uhlmann (2005), respectively. However, the resulting
drag is an overestimation of the experimentally obtained drag coefficient (Cli et al., 1978;
White, 1974).

Both versions of the second order IB method are in good agreement with the exper-
imental results and the recent numerical results using the Uhlmann method (Cli et al.,
1978; White, 1974; Tang et al., 2014). e second order IB method using the surface integral
is performing slightly beer as expected from the results in the previous section.

3.6.2 Static particle array
For many practical applications involving fluid-solid interactions, like fluidized beds and
bubble slurry columns, the solids volume fraction is much higher than in the dilute limit,
as used in the previous tests. Zick and Homsy (1982) determined the drag force acting on a
sphere in a dense simple cubic array. e drag force obtained using the Boundary Integral
method is fied to obtain a correlation for the drag in densely packed simple cubic arrays
at low Reynolds numbers (Deen et al., 2009).

e seings for the simulation are shown in table 3.4. For these simulations, the drag
force acting on the central sphere in the array is determined, the results of which are listed
in table 3.5. e results of both the first order and the second order IB methods show a
beer comparison with the Boundary integral method than the Uhlmann method of Deen
et al. (2009), which is still within the error margin of the fit. e deviation of the second
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Table 3.3: e results of the simulation of a stationary particle at Re = 100.

Drag coefficient
Cli et al. (1978) 1.191
White (1974) 1.185
Zhang and Prosperei (2005) 1.09
Beetstra et al. (2007) 1.267
Deen et al. (2009) 1.271
Tang et al. (2014) 1.178
O(1) Immersed Boundary method 1.264
O(2) Immersed Boundary method with surface integral 1.175
O(2) Immersed Boundary method with volume integral 1.186

Table 3.4: e simulation seings for a densely packed array of static spheres.

Property Value Unit
Computational grid (nx,ny,nz) (160, 160, 160) grid cells
Total number of spheres 125
Solid volume fraction (ϕ) 0.382
Grid size 1.0 · 10−3 m
Time step 1.0 · 10−5 s
Particle diameter 2.88 · 10−2 m
Effective diameter 2.83 · 10−2 m
Fluid density 1.0 · 102 kg/m3

Fluid viscosity 5.0 · 10−2 Pa s
Inlet velocity 5.0 · 10−3 m/s

order IB method using the surface integral is slightly larger than both the other methods,
which is probably because of the linear extrapolation of the pressure to the particle surface.

3.6.3 Falling particle test

To determine if the update of the particle velocity and the particle position is implemented
correctly, four different simulations of a seling particle have been performed with the dif-
ferent IB methods. In the first three simulations the terminal seling velocity is determined.
e terminal velocities are compared with the experimental results of Mordant and Pinton
(2000). e simulation seings of these simulations and the results are summarized in table
3.6. In addition, on all domain boundaries free-slip boundary conditions are applied and the
window shiing principle is applied to keep the particle at its initial position (Deen et al.,
2004).

Although the obtained terminal velocities are slightly lower at high Reynolds numbers
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Table 3.5: e results for the dimensionless drag for the central particle in an array. e
drag of the central particle is divided by the Stokes drag.

Dimensionless drag
Boundary integral method of Zick and Homsy (1982) 19.16
e Ulhmann method of Deen et al. (2009) 19.9
O(1) Immersed Boundary method 19.41
O(2) Immersed Boundary method with surface integral 19.51
O(2) Immersed Boundary method with volume integral 19.02

(table 3.6), the results of the first order IB method are in good comparison with the experi-
mental results and the correlations of Cli et al., Schiller and Nauman and Lapple (Mordant
and Pinton, 2000; Cli et al., 1978). e lower velocity is probably caused by the confine-
ment of the wake in the simulation domain, which prevents a full development of the wake
and thus influences the resulting velocity profile.

e second order IB method is able to predict the terminal velocity at low Reynolds
numbers accurately. However, at high Reynolds numbers the terminal velocities differ, es-
pecially when the volume integral is used to calculate the form drag. e low values of the
terminal seling velocity are due to horizontal movement of the particle. e horizontal
movement originates from the Magnus li forces (Rubinow and Keller, 1961) that arise as a
consequence of the development of a rotational velocity of the particle. e (unexpected)
rotational velocity is a result of numerical errors in the evaluated torque (see previous sec-
tion).

To enable a comparison between the experimental results and the simulations, table
3.6 also shows the results before the onset of rotation. Comparing these results with the
experimental results, the simulation results are within the error margin of the experimental
data. erefore, it can be concluded that the second order method is able to accurately
predict the terminal velocity of particles with a Reynolds number above 100 when the time
of free flight is less then 0.1 s.

Besides the terminal rise velocity, the velocity profile and the particle position can be
compared. ten Cate et al. (2002) reported a good agreement between experimental results
and Laice Boltzmann simulation results. In this case, the IB methods are used to simulate
one of the cases of ten Cate et al. (2002). e simulation seings are shown in table 3.7.

e results of the simulations are compared with the experimental results in figure 3.7.
e first order IB method underestimates the velocity of the particle slightly. is is prob-
ably caused by the large effective particle diameter related to the forcing in this method.
However, the results are comparable to the results obtained using the modified Uhlmann
method (Kempe and Fröhlich, 2012) and the combined Laice Boltzmann IB method of Feng
and Michaelides (2005). Although the results of both the second order IB method slightly
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Table 3.7: e simulation of a seling sphere of ten Cate et al. (2002).

Property Value Unit
Computational grid (nx,ny,nz) (214, 214, 214) grid cells
Particle positions (107, 107, 170) grid cells
Grid size 7.5 · 10−4 m
Time step 1.0 · 10−4 s
Particle diameter 1.5 · 10−2 m
g (0, 0,−9.81) m/s2
Fluid density 9.6 · 102 kg/m3

Fluid viscosity 5.8 · 10−2 Pa s
Particle density 1.12 · 103 kg/m3
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Figure 3.7: e seling of a particle of ten Cate et al. (2002). Figure a shows the position of
the boom of the particle divided by the particle diameter, while figure b shows the velocity
profile.

overestimate the particle velocity, they are a closer match to the experimental work than the
first order IB method. Nevertheless, the Laice Boltzmann method of ten Cate et al. (2002)
has an even closer match with the experimental results. It should however be noted that
ten Cate et al. (2002) uses an effective diameter for the particles, which has been calculated
using the analytical solution of Hasimoto (1959).

3.6.4 Flow around a semi-infinite cylinder

To enable the simulation of a wire mesh, the methods should be able to accurately simulate
cylinders. e implementation of the cylinders is checked using the experimental data of
Nishioka and Sato (1974). In the experiments, the drag exerted on a static semi-infinite
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Figure 3.8: Simulation data compared to the experimental data of Nishioka and Sato (1974).

cylinder was determined at several Reynolds numbers. To simulate these experiments, a
infinite cylinder was created by using periodic boundary conditions in the axial direction
of the cylinder. For the lateral domain boundaries, a free slip boundary was used. e
remaining simulation seings are given in table 3.8.

e results of these simulations are shown in figure 3.8. e figure shows a good agree-
ment of the drag coefficient with the experimental results of Nishioka and Sato (1974) and
Trion (1959) and the numerical results of Takami and Keller (1969), Kawaguti (1953) and
Apelt (1958). e first order IB method is not as accurate at lower Reynolds numbers
(Re ≤ 40). Furthermore, all models show deviations at Re = 10, which is probably caused
by a too small distance between the inlet and the position of the cylinder. At low Reynolds
numbers, the fluid flow is distorted by the introduction of the cylinder even before the flow
reaches the cylinder (Cli et al., 1978).

3.7 Conclusions
In this chapter, the main characteristics of the first order explicit IB method and the second
order implicit IB method were presented. e existing Uhlmann method was extended to
enable the calculation of neutrally buoyant particles using the method of Kempe and Fröh-
lich (2012). Moreover, the second order implicit IB method has been extended for systems
with a variable viscosity and for systems with high solids volume fractions.

e implemented models have been verified and validated. e verification tests show
that both the first order IB method and the second order IB method are able to calculate the
drag force accurately. However, the verification of the torque showed that an error of 1-10%
is obtained when less than 80 grid cells in the diameter of the particle are used. e problem
can probably be resolved by a more accurate calculation of the area used in equation 3.26.

e validation results showed that the first order IB method is able to accurately cal-
culate the drag on dense particle arrays. However, this method overestimates the drag
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force on particles with Re ≥ 100. At low Reynolds numbers, the overestimation can be
compensated by the use of an effective diameter that is smaller than the real particle size.
However, at high solids volume fractions, for cases other than Stokes flow and in cases of
non-spherical objects, the application of an effective diameter is questionable, because there
are no analytical results to determine the effective diameter in these cases.

Furthermore, the validation cases also show that in principle the determination of the
form drag using the surface integral is more accurate than using the volume integral. How-
ever, when the solids volume fraction is high, the form drag is overestimated using the
surface integral. is is probably caused by the linear extrapolation of the drag near the
surface in this method, which performs worse in case the distance between the particle
surfaces becomes small.

Both second order IB methods introduce a rotational velocity for the falling particle
tests at high Reynolds numbers (Re ≥ 100). is rotational velocity is acquired due to
accumulation of the error in the torque calculation. e results show that the rotation of
the particle leads to an unexpected horizontal velocity, related to a Magnus li force.

Concluding, the first order IB method is only able to accurately calculate the drag force
on particles and the velocity profile when the Lagrangian force points are placed on a com-
putational particle diameter, which is slightly smaller than the real particle diameter. For
objects other than spheres, there is no analytical solution to enable the determination of
the computational size of the objects. erefore, the use of the second order IB method
is advised, except for freely moving particles at Reynolds numbers above 100, because the
particles acquire an unphysical rotational velocity because of errors in the calculation of
the torque. e second order IB method can be improved by improving the calculation of
the torque and the drag force by improving the area determination.
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4.1 Introduction
e gas-liquid interfacial area in a bubble column can be increased by introducing micro-
structuring in the form of a wire mesh. Such a wire mesh serves the purpose of cuing large
bubbles into smaller pieces. Aer a bubble is cut, the resulting bubbles may interact, which
could lead to coalescence just aer they have le the mesh. is will reduce the efficiency
of the bubble cuing. e efficacy of the wire mesh can be studied numerically using direct
numerical simulations (DNS). If we were to predict the bubble cuing efficiency, a reliable
prediction of bubble-bubble interaction is essential. Although the Volume of Fluid (VoF)
model was validated for a single rising bubble in chapter 2, the bubble-bubble interactions
have not been validated for this model. Since the simplest form of bubble-bubble interac-
tions is that for two equally sized bubbles, this is chosen as a test case to validate the VoF
model in this chapter.

e last decades, the interaction of two equally sized bubbles has been extensively stud-
ied. Both experimentally and numerically, it was shown that the leading bubble is almost
unaffected by the trailing bubble, while the velocity of the trailing bubble increases as it
approaches the leading bubble. is acceleration of the trailing bubble is probably caused
by the wake generated by the leading bubble (Yuan and Prosperei, 1994; Ruzicka, 2000;
Ramírez-Muñoz et al., 2011; Yu et al., 2011). Nevertheless, when the bubbles have a very
small separation distance, the velocity of the leading bubble is also increased. is velocity
increase is lower than the differences obtained for the trailing bubble (Yu et al., 2011).

Besides the velocity of the bubbles, the trajectories of the bubbles were also studied.

51
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Figure 4.1: A schematic overview of the set-up. e images are taken in the direction of the
view.

Harper (1997), Yuan and Prosperei (1994) and Yu et al. (2011) reported that there exists a
certain equilibrium distance between the bubbles, where the distance between the bubbles
remains constant. is distance depends on the bubble Reynolds number and the Morton
number. e equilibrium occurs due to the competitive effects of the low pressure between
the bubbles and the vorticity generated by the leading bubble. However, Yu et al. (2011)
also showed that there always was araction between the bubbles at moderate Reynolds
numbers (Re ≥ 49.6). Furthermore, the bubbles, which are initially in an oblique configu-
ration, are moving into the wake of the leading bubble, resulting in a vertical alignment of
the bubble (Yu et al., 2011).

is chapter describes the validation of the VoF-model for the bubble-bubble interac-
tions. e details of the bubble coalescence/separation will not be addressed here, because
the VoF model will automatically lead to merging bubbles, once the bubbles are less then
one computational cell apart from each other. erefore, the resulting coalescence does not
necessarily have to be physical. Hence, with the VoFmodel we can only validate the bubble-
bubble interaction up to the point of coalescence of the bubbles. is chapter starts with
the explanation of the experimental set-up and the simulation approach. Subsequently, the
experimental and simulation results will be presented and discussed.

4.2 Experimental set-up
To study the interaction between two bubbles, experiments are performed in a square glass
column of 0.2m diameter and 1.2m height. Cli et al. (1978) showed that bubbles aremoving
freely, without influences from the confining walls, provided that the ratio of the bubble
diameter to the column diameter is less than 0.1. In this work, we satisfy this condition,
because the bubbles have a equivalent diameter of 7.25 mm, leading to a diameter ratio
of 0.04. At the boom of the column, two spoon-shaped caps are installed. e caps are
cylinders with a diameter of 10 mm and are moveable in the horizontal direction (figure
4.1).
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Table 4.1: e average liquid properties of the water-glycerol mixture used in the experi-
ments.

Property Value Unit
ρl 1.187 · 103 kg/m3

µl 4.980 · 10−2 Pa · s
σ 6.680 · 10−2 N/m

e column is filledwith amixture of deminiralisedwater and glycerol. emixturewas
stirred using continuous air flow for three weeks. e average properties of the liquid are
shown in table 4.1. e properties are averaged over 10 separate measurements during the
course of the experiments. e viscosity was measured with a Brookfield DV-E viscometer
at room temperature and the surface tension was measured at room temperature using K20
EasyDyne digital of Krüsse with the Wilhelmy plate method.

To create 7.25 mm bubbles, a volume of 0.2 mL was injected into the column, using a 0.5
mL syringe. Because injection of this volume of gas usually leads to several bubbles, that
are caught in the cap, a seling time of half an hour is taken to ensure that they coalesced
to a single bubble.

To create oblique bubble interaction, the caps are placed next to each other. Next, the
caps are slowly turned to release the gas volume keeping its initial velocity close to zero. For
the cases of vertically in-line bubble-bubble interaction, the second cap is moved beneath
the leading bubble, as soon as the first bubble has le. We note that this is done slowly, not
to disturb the velocity field appreciably.

e velocity and the trajectory of the bubbles were determinedwith a high speed camera
(Imager Pro HS CMOS camera with a resolution of 1280 × 1024 pixels). e images are
recorded at a frequency of 350 Hz using back lighting, which is only switched on during
the imaging to reduce any heating of the liquid while illuminating the column. e back of
the column is covered with white plastic to diffuse the light. In total 32 experiments were
performed for both oblique and in-line interactions.

4.3 Simulation set-up
Direct Numerical Simulations (DNS) are performed using the Volume of Fluid (VoF) method
detailed in chapter 2. Here, only the main features of this method will be given. e conti-
nuity equation, equation 4.1, and the Navier-Stokes equation, equation 4.2, are solved on a
fixed (Eulerian) grid assuming incompressible flow.

∇ ·u = 0 (4.1)
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ρ
∂u
∂t

= −∇p− ρ∇ · (uu)−∇ · τ + ρg+ Fσ (4.2)

ese equations provide a one-field approximation, assuming that the velocity field is con-
tinuous over the gas-liquid interface. Surface tension is taken into account in the form of a
force density that acts in the vicinity of the gas-liquid interface. is force density is calcu-
lated using the Continuum Surface Force (CSF) method of Brackbill et al. (1992), represented
by equation 4.3.

Fσ = σκn (4.3)

e interface normal n and the curvature, κ, are respectively calculated from the first and
second derivative of the phase fraction. Because the color function is a step function across
the interface, these derivatives cannot directly be calculated with the standard discretisa-
tion schemes. e phase fractions are first smoothed using the method described in van
Sint Annaland et al. (2005). In this chapter, no pressure jump correction was applied.

e velocity field is calculated on a staggered grid using a projection-correction method.
In this method, the new velocity field is first estimated by solving the Navier-Stokes equa-
tions, equation 2.3, explicitly, except for the diffusion term, which is evaluated semi-implicitly.
e implicit term of the diffusion term is chosen such that all components of the velocity
field can be calculated separately whereas the remaining part is treated explicitly. e dif-
fusion term is discretised with the second order central difference scheme, while the con-
vective term is discretised with a second order flux-delimited Barton scheme. Aer the
tentative velocity is obtained, it is corrected by solving a Poisson pressure equation, which
enforces the continuity. Both the tentative velocity field and the pressure field are obtained
by solving the associated matrix equations using the ICCG method.

When the velocity field is known, the new phase fraction can be determined using the
Piecewise Linear Interface Calculation (PLIC) scheme of Youngs (1982). In this advection
scheme, the interface is represented by one of the five generic cases. e color function
is governed by equation 4.4 and is solved with a pseudo Lagrangian geometrical advection
scheme to maintain sharp interfaces.

DF

Dt
=
∂F

∂t
+ u ·∇F = 0 (4.4)

When the new phase fraction is known in each cell, the new density and viscosity can be
determined by linear averaging and harmonic averaging, respectively, using the value of
the color function as a weighting factor.
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Figure 4.2: Positioning of the bubbles in the computational domain. e numbers indicate
the distances between the bubble center of mass and the domain boundaries, normalized by
the equivalent bubble diameter.

Table 4.2: Simulation seings and physical properties.

Property Value Unit
Domain size (nx,ny,nz) (150...240, 150, 225...375) grid cells
Grid size (∆x, ∆y & ∆z) 2.42 · 10−4 m
Time step 1 · 10−5 s
db 7.250 · 10−3 m
ρl 1.187 · 103 kg/m3

µl 4.980 · 10−2 Pa · s
ρg 1.25 kg/m3

µg 1.8 · 10−5 Pa · s
σ 6.680 · 10−2 N/m

In total 11 different VoF simulations were performed. To enable a detailed comparison
with the experimental data, the liquid properties and the bubble size were set equal to their
experimental counterparts. At all domain boundaries free slip boundary conditions are ap-
plied. To ensure that the bubble rise is not affected by the size of the computational domain,
the bubbles are positioned at a appreciable distance from the domain boundaries, as illus-
trated in figure 4.2. e distance between the bubbles ranged from 0 to 3 bubble diameters
in the horizontal direction and 0 to 7 bubble diameters in the vertical direction. To ensure
that the bubbles do not move out of the domain, window shiing is applied with respect to
the leading bubble. As a result the position of the leading bubble remains unchanged with
respect to the domain boundaries during the course of the simulation (Deen et al., 2004).
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4.4 Effect of the bubble-bubble interaction on the
velocity

First of all, the effects of the bubble-bubble interaction on the bubble velocity was studied.
Similar to results reported in literature, the trailing bubble has no effect on the velocity of the
leading bubble except when the bubbles get very close. is was found both experimentally
and numerically (Yu et al., 2011). In contrast, the velocity of the trailing bubble increases
considerably compared to the velocity of an isolated bubble in both the experiments and the
simulations. is increase is caused by shielding of the trailing bubble by the wake of the
leading bubble, which decreases the drag force (Yuan and Prosperei, 1994; Ramírez-Muñoz
et al., 2011; Yu et al., 2011). e increase of the velocity is larger as the bubbles are closer
to each other, which is similar to the results of Ramírez-Muñoz et al. (2011) and Yu et al.
(2011).

e experimental and simulation results are shown in figure 4.3.a and 4.3.b, respectively.
e black dots in the figure show the trajectory of the bubbles. e trajectories in figure
4.3.a show that all the trailing bubbles move into the wake of the leading bubbles. Identi-
cal behavior is obtained in the simulations as shown in figure 4.3.b. Furthermore, both the
experimental and the simulation results show that the vertical interaction is stronger than
the horizontal interaction; the bubble-bubble interaction extends for at least seven equiva-
lent bubble diameters in the vertical direction, while the leading bubble only influences the
trailing bubble 1.5 equivalent bubble diameters in the horizontal direction. is is similar
to the observations reported by Kitagawa et al. (2004).

To quantitatively study the effect of the bubble-bubble interaction on the rise velocity,
the relative velocity difference between the leading and the trailing bubble is determined
using equation 4.5.

vz,rel =
vz,trailing − vz,leading

vz,leading
(4.5)

e relative velocity difference between the leading and the trailing bubble is used, because
the single bubble Reynolds number obtained experimentally and numerically differ only
slightly, i.e. Re = 32.9 and Re = 31.0 respectively. is difference is similar to the de-
viations reported in chapter 2. ese differences are probably caused by the presence of
contaminants in the experiments, which is not represented in the VoF model.

e colors in the le parts of figure 4.3 show the average relative velocity difference,
while the right parts show the standard deviation. When the experimental results are com-
pared with the simulation results, it can be seen that larger standard deviations prevail in
the experiments. e large standard deviation can be caused by experimental errors. First
of all, there is an uncertainty of 0.005 mL in the injected gas volume, which can lead to
somewhat different bubble sizes and hence different rise velocities. Furthermore, the qui-
escent liquid state may be disturbed too much if the caps are turned too fast. Finally, the
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(b) Simulation results

Figure 4.3: e relative difference between the rise velocity of the leading and the trailing
bubble, vz,rel. e colors in the le figures indicate the average value, while the colors in
the right figures show the standard deviation. e black points indicate the trajectories of
the bubbles.
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(a) In-line bubble interaction

(b) Oblique bubble interaction

(c) Oblique bubble interaction

Figure 4.4: e velocity profile evaluation of one in-line and two oblique interactions. e
coloring of the image indicates the magnitude of the velocity ranging from 0 to 0.5 m/s in
all images. e black line indicate the contour of the bubble in this slice of the domain.
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image recognition of the bubbles is difficult, especially when the bubbles are close to each
other.

With respect to the relative bubble velocity difference, it can be seen that the experi-
mental results are consistently lower than the simulation results. However, the difference
between the experiments and the simulations is within the standard deviation. erefore,
it is concluded that the VoF model is able to capture the effect of bubble-bubble interactions
on the bubble velocity. Furthermore, the trajectory of the trailing bubble with respect to
the leading bubble is accurately captured by the VoF model.

One of the advantages of using DNS to determine the bubble-bubble interaction is that
the stream lines in both the liquid and gas phase can be obtained accurately. In figure
4.4, the flow streamlines for an in-line interaction and two oblique interactions are shown.
For a single rising bubble, symmetric streamlines are obtained around the vertical axis.
Two vortexes are present inside the bubble and one vortex behind the bubble (Cli et al.,
1978). When bubble interaction is vertical, the velocity profiles around both bubbles are
influenced. e vortexes behind the leading bubble decrease as the second bubble gets
closer. Eventually, the velocity profile around the trailing bubble effects the shape of the
leading bubble, while squeezing out the liquid layer in between the bubbles.

For all oblique interactions shown in figure 4.3, the trailing bubblemoves in the direction
of the middle of the wake. is same behavior is also visible in the oblique interactions
in figure 4.4. In contrast to the in-line interaction, the oblique interaction between the
bubbles also changes the symmetry of the vortexes inside the bubble; the vortexes are shied
toward the other bubble. Furthermore, the streamlines around the bubbles indicate that the
trailing bubble moves toward the center of the wake of the leading bubble, because the
vortex trailing the first bubble induces a horizontal velocity on the bubble.

In the first two snapshots of figure 4.4.c, the trailing bubble is moving slower than the
leading bubble. e streamlines show that the trailing bubble is affected by the downward
moving liquid around the leading bubble. However, the trailing bubble is still moving to-
ward the center of thewake. In the third and fourth snapshot, the trailing bubble has entered
the wake of the bubble and therefore starts moving toward the first bubble. e rest of the
trajectory is similar to the trajectory of the bubble in figure 4.4.b and is not shown here.

4.5 Effect of the bubble-bubble interaction on the
bubble shape

Besides the trajectory of the bubbles and the bubble velocity, the shape of the bubbles can
also be determined in both the experiments and the simulations. e shape of the bubbles
can be quantified by the aspect ratio, E. is parameter quantifies the deviation from the
spherical shape (E = 1), and is defined as:

E =
dmax,z√

dmax,xdmax,y
(4.6)
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In the experiments, only one of the horizontal components of the diameter is known. For
the other horizontal direction, the diameter is assumed equal to the known horizontal com-
ponent. In the simulations, the diameters are determined using the PLIC interface recon-
struction of each bubble. Once the aspect ratio of both the leading and the trailing bubble
is known, the relative difference in aspect ratio was calculated with equation 4.7.

Erel =
Etrailing − Eleading

Eleading
(4.7)

e relative difference in aspect ratio is calculated to compare results obtained with slightly
different liquid and gas properties, due to small differences in the experimental conditions.
Furthermore, a small amount of contaminants is present in the experiments, which might
lead to additional differences with the simulations.

e experimental results are shown in figure 4.5.a. e le figure shows that the as-
pect ratio of the trailing bubble is much larger than the aspect ratio of the leading bubble,
when the trailing bubble enters the wake of the leading bubble. e trailing bubble is thus
elongated in the vertical direction when it enters the wake of the leading bubble. How-
ever, the right figure shows that the standard deviation of the difference in aspect ratio is
considerable for the experimental results. is is caused by problems in the bubble recog-
nition, because the determination of the exact position of the gas-liquid interface is difficult
in these experiments.

e simulation results presented in figure 4.5.b also show an increase of the aspect ratio
of the trailing bubble in the wake of the leading bubble. However, the standard deviations of
the data are much smaller in these cases as shown in the right figure. Only when the bubbles
are close to each other the standard deviation is substantially larger. is is probably caused
by a very fast change in bubble shape when the bubbles are in close proximity.

Although the numerically determined aspect ratio considerably exceeds the experimen-
tally obtained aspect ratio, the simulation results are within the standard deviation of the
experimental results. Because the aspect ratio only takes into account the maximum diam-
eter in each direction and given the large standard deviations of the experimental data, we
also compared the changes in bubble shape qualitatively. Figure 4.6 shows three snapshots
of the experimental and the corresponding simulation results. Comparing the top row with
the boom row reveals that the bubble shapes in the simulations are similar to the experi-
mental results. Any of the remaining small differences might be caused by small differences
in the physical properties, a small amount of contaminants in the experiments and a small
difference in the relative position of the two bubbles. As a consequence, it is concluded
that the VoF model accurately determines the effect on the bubble-bubble interaction with
respect to the bubble shape.
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(a) Experimental results
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(b) Simulation results

Figure 4.5: e relative difference between aspect ratio of the leading and the trailing bubble.
e colors in the le figures indicate the average value, while the colors in the right figure
show the standard deviation. e black points indicate the trajectories of the bubbles. e
three triangles correspond to the three snapshots in figure 4.6.
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(a) ▽ (b) � (c) △

(d) ▽ (e) � () △

Figure 4.6: e shape of the bubbles at three different relative positions. e triangles cor-
respond to the positions in figure 4.5. e top row are experimental results and the boom
row are the simulation results at almost the same position.

4.6 Conclusions
In this chapter, bubble-bubble interaction simulated with the VoF model was shown to fa-
vorably compare to the experimentally observed bubble-bubble interaction. e bubble-
bubble interactions were studied using a relative simple system of two equally sized bub-
bles. e simulated relative velocity difference between the leading and trailing bubble
for the VoF model compares well to the relative velocity difference observed in the experi-
ments. Furthermore, the bubble shape obtained from the VoF simulations agrees well with
the experimental results. erefore, it is concluded that the VoF model is able to accurately
capture the process of bubble-bubble interaction. Nevertheless, it should be noted that all
VoF simulations showed coalescence while no coalescence was obtained in the experiments.
As a consequence, the coalescence of bubbles cannot be studied with the current model.

e experimental and simulation results contain small differences, which can be de-
creased by both improving the experiments and the simulations. e current experimental
results can be improved by decreasing the amount of contamination in the glycerol-water
mixture. In this way, more ”clean” experiments can be performed that reduce the influence
of contaminants on the rigidity of the bubble surface and hence will increase the ability of
bubbles to coalesce. e contaminants in the fluid arise due to the high solubility of hy-
drophilic contaminants in the glycerol-water mixture and the hygroscopic nature of glyc-
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erol. Because a mixing time of three weeks is used, the amount of contaminants will be
substantial, it is therefore advised to decrease the mixing time of the glycerol-water mix-
ture. Furthermore, automation of the bubble injection or the use of a more accurate syringe
will decrease the error in the bubble size. Finally, the experimental results can be improved
when the bubble recognition is performed more accurate.

Although the current VoF model uses the CSF model of Brackbill et al. (1992) to model
the surface tension at the gas-liquid interface, the verification results in chapter 2 show
that the CSF model is not able to calculate the surface tension accurately. e single bubble
simulations in chapter 2 demonstrated that the use of both the height function model and
the tensile force method can more accurately predict the bubble shape and the bubble rise
velocity. Hence, it is expected that the simulation results in the current chapter can also be
improved by using either of these models.

Finally, the VoF model is not able to accurately capture the bouncing of bubbles, because
the bubbles will automatically merge when two bubbles are less than one grid cell apart.
To introduce bouncing in the simulations a different model should be used, which is inher-
ently mass conservative and tracks the gas-liquid interface directly. is can be achieved
by combining the VoF model with the Front Tracking model (Torres and Brackbill, 2000;
Walker et al., 2013).
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5.1 Introduction
Due to the increase in the oil prices, the interest in Fischer-Tropsch process for synthetic
fuels and methanol synthesis has increased in recent years. e Fischer-Tropsch process is
mostly performed in slurry bubble columns. To improve the design and scale-up of gas-to-
liquid processes, beer understanding of the hydrodynamics and the complex three-phase
interactions is required (Kantarci et al., 2005; Wang et al., 2007; Yang et al., 2007).

e introduction of particles in a bubble column is known to decrease bubble sizes in
the column and to reduce the void fraction. Furthermore, the rise velocity of bubbles is de-
creased when the solids volume fraction is increased (Kantarci et al., 2005; Wang et al., 2007;
Hooshyar et al., 2013). Hooshyar et al. (2013) determined that for neutrally buoyant parti-
cles the mechanism of this decrease depends on the Stokes relaxation time of the particles.
When the relaxation time is relatively small, the particles only influence the velocity via
an increase of the apparent viscosity. Although larger particles also influence the apparent
viscosity of the fluid, the decrease in the bubble velocity is mainly caused by the collisions
of the particles with the bubbles.

In this chapter, Direct Numerical Simulations (DNS)will be used to study the effect of the
particles on gas-liquid-solid hydrodynamics. e effect of the particles will be condensed
in the form of drag correlations for both the particles and the bubbles. To enable the study
of dense bubbly swarms, the Front Tracking (FT) method is used, because it does not suffer
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from artificial coalescence. is prevents unphysical merging of the bubbles and ensures
a constant bubble size, which is beneficial for the derivation of the drag coefficient of the
bubbles. e particles are simulated with the second order implicit Immersed Boundary
(IB) method of Deen et al. (2012). is method was chosen, because the method does not
require an effective particle diameter. Although the method showed some problems with
the freely moving particles at high Reynolds numbers, it is expected that the disturbance
of the bubbles and the frequent collisions with both particles and bubbles will diminish the
effect of any unphysical rotation.

is chapter starts with an explanation of the applied numerical method. Subsequently,
the simulation seings will be discussed whereaer the effect of the void fraction and the
solids volume fraction on the drag coefficient of the bubbles and the particles will be pre-
sented and discussed.

5.2 Numerical method
e numerical method is a based on the FT method of Roghair et al. (2013a) and the second
order IB method of Deen et al. (2012), detailed in chapter 2 and 3, respectively. In this
chapter, only a brief discussion of the models will be given, particularly focusing on the
combination of both methods. e combined FT-IB model solves the continuity equation,
equation 5.1, and the Navier-Stokes equations, equation 5.2, assuming incompressible flow.

∇ ·u = 0 (5.1)

ρ
∂u
∂t

= −∇p− ρ∇ · (uu)−∇ · τ + ρg+ Fσ (5.2)

e Navier-Stokes equations are solved using a one-field approximation, because the
velocity field is continuous across the gas-liquid interface. To take into account the surface
tension at the gas-liquid interface, an extra force density, Fσ , is introduced near the inter-
face. is force density is calculated using triangular markers, that represent the gas-liquid
interface. e tensile force of each marker,m, is calculated with equation 5.3, in which tmi
is the shared tangent of marker m and neighboring marker i, whereas n is the normal of
the marker.

Fσ,m =
1

2
σ

3∑
i=1

(ti,m × ni) (5.3)

e tensile force of a marker is mapped to the surrounding Eulerian cells using a mass-
weighting function. Because there is a possibility of a mismatch between the discretisation
of the surface tension and the pressure field, the calculation of the pressure field and the
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surface tension are coupled, by adding an extra pressure force density at the gas-liquid in-
terface in the Navier-Stokes equations (see chapter 2) (Renardy and Renardy, 2002; Francois
et al., 2006; Dijkhuizen et al., 2010b).

e no-slip boundary condition at the particle surface is accounted for at the level of
the discretised Navier-Stokes equations, where each velocity component at a certain node
in the fluid, ψc, can be described as a function of the velocity components of the neighboring
nodes, ψnb, with equation 5.4.

acψc +
∑
nb

anbψnb = bc (5.4)

where the coefficients anb indicate the dependence of the velocity at node c with respect to
the velocities of the neighboring nodes, nb. When one of the neighboring nodes is located
inside a particle, the no-slip boundary condition is applied by fiing a second order (1D)
polynomial. e fit expresses the local velocity profile in terms of the velocity at the particle
surface and the two velocity values just outside the particle. Subsequently, the node inside
the particle is eliminated from equation 5.4 and the coefficients of the two velocity values
involved in the polynomial fit are adapted.

Using the same approach, a similar function is obtained for nodes that are neighbored
by nodes inside two particles in close proximity. Because both equations are singular when
the particle surface is close to the central cell, a linear fit is used when the distance between
the surface and the central point is less than 0.0001 times the grid size.

e velocity field given by equation 5.2 is solved on a staggered grid using a projection-
correction method. In the projection step, all terms in this equation are treated explicitly
except for the diffusion term, which is treated semi-implicitly. e implicit part of the dif-
fusion term is chosen such that it only depends on the velocity component that is solved,
whereas the remaining (small) terms are treated explicitly. e diffusion terms are discre-
tised using a second order central difference scheme, while a second order flux-delimited
Barton scheme is used for the convective terms. e projected velocity field is corrected to
satisfy the continuity equation (equation 5.1). e equations in both the projection step and
the correction step are solved using a block ICCG matrix solver, which is parallelised with
OpenMP.

Aer the calculation of the velocity field, the positions of the particles, m, are updated
by solving the Newtonian equations of motion:

Vmρm
dwm
dt

= ρf (

∮
Γm

−(τ ·n)dS +
y
Ωm

−∇pdV ) (5.5)

Im
dωm
dt

= ρf

∮
Γm

(ri,j,k − rm)×−(τ ·n)dS (5.6)

Im =
1

10
Vmρid

2
m (5.7)
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e velocity derivatives required in the evaluation of the stress tensor and the pressure
gradient can be obtained directly from the second order fit used to apply the no-slip bound-
ary condition. e used viscosity in the equation is the macroscopic viscosity of the grid
cell in which the surface segment of the particle is situated. When the derivative of the
velocity is calculated at the edge of a grid cell, e.g. the derivative of the x-component of the
velocity in the y-direction, the average macroscopic viscosity of both neighboring cells is
used. Although the verification and validation tests in chapter 3 show that the differences
between the volume integral method and the surface integral method are small, the surface
integral is not able to accurately calculate the drag of a particle in dense particle arrays.
erefore, the volume integral method has been applied in this chapter.

When the new position of the particles is known, the position of the bubbles can be
updated. Because of the one-field approximation, the velocity of the marker points is inter-
polated from the surrounding Eulerian grid cells using a piecewise cubic spline. Each of the
marker points is displaced separately with fourth order Runga-Kua time stepping. Due to
the separate advection of each marker point, the bubble not only changes its position, but
also its shape. Nevertheless, the separate advection also changes the distance between the
marker points, which leads to a decrease in quality of the surface mesh. e quality is im-
proved by a remeshing procedure consisting of four elementary operations: edge spliing,
edge collapsing, edge swapping and smoothing (Roghair, 2012).

Moreover, the separate advection of the marker points and the remeshing procedure
cause small volume changes of the bubble. Due to the large number of time steps involved
in a single simulation, a small volume change per time step can become significant over the
total simulation time. erefore, a smoothing procedure described by Kuprat et al. (2001)
is implemented, which locally restores small volume losses. However, volume losses due
to the separate advection of the marker points are not corrected yet. is is compensated
by distributing the lost volume over all the interface cells. is procedure might cause
unphysical overlap between the bubbles and particles. erefore, marker points that are
close to another bubble, particle or wall are excluded from this operation.

5.3 Simulation set-up
As an initial condition, spherical bubbles and particles are placed randomly in a periodic cu-
bic domain. e randomization is performed using a Monte-Carlo method. In this method,
the bubbles and particles are first placed in a structured manner in the domain. Subse-
quently, each of the dispersed elements (bubbles/particles) is slightly moved 200 times. e
procedure is repeated until no overlap between the elements is found. e result is the
initial condition of the simulation; examples are shown for three different cases in figure
5.1.

Because periodic boundary conditions are used, it is important to determine the min-
imum number of bubbles and particles that do not generate artifacts due to the finite box
size. When the number of bubbles or particles are too low, the interactions between par-
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(a) (b) (c)

Figure 5.1: e initial randomized position for three different systems. Figure a shows
a simulation with a void fraction of 15% and a solids fraction of 5% , figure b shows the
simulation with void fraction of 25% and a solids fraction of 5% and figure c shows the
simulation with a void fraction of 15% and a solids fraction of 10%.

Table 5.1: e simulation seings for the base case of the bubble slurry swarms.

Property Value Unit
Void fraction, α 0.30
Solid volume fraction, ϕ 0.05
Computational grid 171
Grid size 1.0 · 10−4 m
Time step 1.0 · 10−5 s
Bubble diameter 2.0 · 10−3 m
Particle diameter 1.0 · 10−3 m
Liquid density 1.0 · 103 kg/m3

Liquid viscosity 1.0 · 10−3 Pas
Gas density 100.0 kg/m3

Gas viscosity 1.8 · 10−5 Pas
Solids density 2.0 · 103 kg/m3

Surface tension 0.073 N/m
Normal restitution coefficient 1.00
Tangential restitution coefficient 1.00
Friction coefficient coefficient 0.00
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Figure 5.2: Time-averaged relative velocities of the bubbles and the particles as a function
of the simulation box size expressed as the number of particles in the simulation box (a)
and as a function of the simulation resolution expressed in number of grid cells across the
particle diameter (b). All simulations are performed with a void fraction of 30% and a solids
volume fraction of 5%. e simulations in figure a use 20 grid cells in a particle diameter,
while the simulations in figure b use 60 particles in the simulation. e bars indicate the
standard deviations in the velocities.

ticles, bubbles and bubbles and particles are not accurately captured. Roghair et al. (2011)
and Bunner and Tryggvason (2002) determined that the minimum amount of bubbles in a
bubble swarm is 12. To determine the minimal number of particles in a simulation, a base
case simulation was started with 20-100 particles in the simulation (see table 5.1). Figure
5.2.a shows that there is no effect of the number of particles on the slip velocity of both the
particles and the bubbles when the number of particles is larger than 40. To ensure that all
the interactions are captured accurately, the minimum number of bubbles and particles is
respectively set to 16 and 60.

Besides the number of bubbles and particles in a simulation, also the grid resolution
should be chosen in such a way that grid independent results are obtained. Dijkhuizen
et al. (2010a) determined that the minimum number of grid cells across a bubble diameter
is 20. For the particles, the minimum number of grid cells in the diameter is unknown.
erefore, the number of grid cells in a particle diameter was varied between 10 and 20 for
the base case of table 5.1. e results in figure 5.2.b show that there is almost no effect of
the grid resolution. erefore, the minimum number of grid cells in a particle is set to 10.

To determine the effect of the void fraction and the solids volume fraction on the bubble
drag force 27 different simulations were carried out. e simulations are grouped in four
different cases, which are listed in table 5.2. All simulations are started with a time step of
1.0 · 10−5 s for 1 s. To remove any start-up effects, the first 0.2 s is not taken into account
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Table 5.2: e simulation seings for the four different cases studied to determine the effect
of solids volume fraction and the void fraction.

Case α ϕ − log(Mo) Eo tavg
1 0.20 0.02...0.14 10.6 0.48 0.8
2 0.40 0.02...0.14 10.6 0.48 0.25...0.8
3 0.15...0.45 0.05 10.6 0.48 0.55...0.8
4 0.15...0.45 0.10 10.6 0.48 0.8

for the results.

5.4 The drag coefficient of the bubbles
e effect of the particles on the bubble drag force, is quantified by varying the solids vol-
ume fraction and the void fraction. Subsequently, the drag coefficient of the bubbles was
determined. To calculate the drag coefficient, a macroscopic force balance on the bubbles
is considered. At a pseudo steady state, the time-averaged drag will exactly balance the
gravitational force and the hydrostatic pressure, as shown in equation 5.8.

− < FD >=< FG > + < FP > (5.8)

Using the same definitions for the drag force, the gravitational force and the hydrostatic
pressure as done in many Euler-Lagrangian models, the drag coefficient can be determined.

1

8
CDρlπd

2
b |vb − u|(v− u) = Vbρgg+∇pVb (5.9)

1

8
CDρlπd

2
b |vb − u|(vb − u) = Vbg(ρg − (αρg + ϕρs + (1− α− ϕ)ρl)) (5.10)

To obtain a relative drag coefficient which is in direct correspondence to the terminal rise
velocity of a single bubble with the same size and the average velocity of the bubbles in the
simulation, the drag coefficient obtained from the simulations is normalized by dividing it
by the drag coefficient of a single bubble rising in an infinite liquid obtained by Tomiyama
(1998), equation 5.11.

CD,∞ =
4db(ρl − ρg)gz

3ρlv2z,b
= max

⟨
min

[
16

Re
(
1 + 0.15Re0.687

)
,
48

Re

]
,
8

3

Eo
Eo+ 4

⟩
(5.11)
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Figure 5.3: e effect of the solids volume fraction, figure a, and the effect of the void frac-
tion, figure b, on the normalized drag coefficient of the bubbles. e drag is normalized
using equation 5.12. e lines in the figures represent the fit of equation 5.14.

Because the hydrostatic pressure is different in the case of a single rising bubble, the calcu-
lated bubble rise velocity has to be corrected with the void fraction and the solids volume
fraction, equation 5.12:

CD,rel =
CD

CD,∞

(
1− α− ϕ ρl−ρsρl−ρg

) =
< vb,∞ >2

(< vb > − < u >)2
(5.12)

Note that in the absence of particles (ϕ = 0) or in case of neutrally buoyant particles (ρl −
ρs = 0) equation 5.12 reduces to an equation of the same form as derived by Roghair et al.
(2011).

e relative drag coefficients resulting from the simulations are shown in figure 5.3. e
bars in the figures show the standard deviation of the drag coefficient of the bubbles. Both
figures show that there is a combined dependency of the void fraction and the solids vol-
ume fraction. Furthermore, the results in case 2 show the effect of different initial seings.
e simulations with a particle fraction of 8% both have a long averaging time, but the re-
sulting relative drag coefficient differ approximately 12%, which is well within the largely
overlapping standard deviations. e standard deviations of the drag coefficient found in
this work are larger than those obtained for gas-liquid bubble swarms, which is due to the
interactions with the particles.

e data presented in figure 5.3 were used to derive a correlation for the bubble drag
coefficient. e form of the correlation was chosen such that it gives the right behavior in
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Figure 5.4: A parity plot containing the drag coefficient of the particles obtained from the
simulations and the correlation given by equation 5.14. e dashed lines indicate an error
of 10%.

the limit that there are no particles. is limit was already described by Roghair et al. (2011),
who derived the following drag relation for bubble swarms without particles:

CD,rel = 1 +
18

Eo
α (5.13)

Furthermore, it is expected that the drag coefficient of a single bubble (α = 0) is higher in
a liquid containing particles. Using these constraints and the simulated results, a fit for the
relative drag coefficient was obtained:

CD,rel = 1 +
18

Eo
α+ 1.8 · 105α5ϕ1.1 + 2.7 · 103ϕ2 (5.14)

e correlation accurately captures the trends in the drag coefficient with respect to the
void fraction and the solids volume fraction, as shown by the lines in figure 5.3. e results
of the simulation and the correlation are also compared in the parity plot in figure 5.4. e
parity plot shows that most of the correlation results are within 10% of the fit. On average,
the differences between the correlation and the simulation results is 7.6%, which is less than
the spread in results obtained by using different initial conditions. e maximal difference
between the correlation and the simulation is 20%. e largest errors are found for low
solids volume fractions and low void fractions.

5.5 The drag coefficient of the particles
To determine the effect of the void fraction and the solids volume fraction on the termi-
nal velocity of the particles, the drag coefficient on the particles is determined in a similar
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Figure 5.5: e effect of the solids volume fraction (a), and the effect of the void fraction (b)
on the normalized drag coefficient of the particles. e drag is normalized using equation
5.16. e lines in the figures represent the fit of equation 5.17.

manner as for the bubbles. Note that in this case however, the particle drag coefficient is
normalized with the drag coefficient of a single falling particle in an infinite fluid, given by
Schiller and Nauman (Cli et al., 1978):

CD,∞,p =
4dp(ρl − ρp)gz

3ρlv2z,p
=

24

Rep

(
1 + 0.15Re0.687p

)
(5.15)

e resulting relative drag coefficient is given by:

CD,rel,p =
CD

CD,∞,p

(
1− ϕ− α

ρg−ρl
ρs−ρl

) =
< vp,∞ >2

(< vp > − < u >)2
(5.16)

Figure 5.5 shows the obtained relative drag coefficients of the particles. Both figures
also show the standard deviation in the drag force. e figure clearly shows that the drag
force on the particles occasionally changes direction. is is because the combination of
one bubble and one particle is buoyant with respect to the liquid, which occasionally leads
to mutual rise of a bubble and a particle. e difference between different initial seings is
slightly less (8%) than the difference obtained for the drag force of the bubbles.

Using the obtained drag coefficients, a correlation is fied to determine the effect of the
void fraction and the solids volume fraction on the drag coefficient. e fit should meet two
criteria. First of all, when the void fraction and the volume solids fraction approach zero,
the relative drag coefficient of the particle should be equal to 1. Furthermore, it is expected
that the drag coefficient of a single particle in a bubble swarm or in a particle swarm have a
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Figure 5.6: A parity plot containing the drag coefficient of the particles obtained from the
simulations and the correlation given by equation 5.17. e dashed lines indicate an error
of 10%.

relatively higher drag than a single particle in an infinite liquid. e obtained fit is shown
in equation 5.17.

CD,rel,p = 1 + 10α2.5 + 200ϕ2 + 1.41 · 107ϕ4.5α5 (5.17)

e lines in figure 5.5 show that the fit captures the trends in the drag coefficient ac-
curately. To examine the performance of the fit, a parity plot is given in figure 5.6. e
average absolute difference between the simulation and the correlation results is 7.1% with
a maximum of 22.5%.

5.6 Bubble clustering
Both correlations, equation 5.14 and 5.17, indicate an increase of the drag coefficient with
increasing solids volume fraction and void fraction. Figure 5.7 shows two uncorrelated snap
shots of a simulation with a void fraction of 25% and a solids volume fraction of 5%. In the
boom right of figure 5.7.a, some particles are clustering on top of the bubbles effectively
hindering the rise of the bubbles. At the same time the velocity of the particles is decreased
or even reversed in direction. Due to buoyancy forces and the surface tension of the bubbles,
the particles will eventually roll down the side of the bubble.

Although the snapshot in figure 5.7.a shows almost no clustering of the particles and
the bubbles, the snapshot in figure 5.7.d shows a clear horizontal clustering of the bubbles.
Some of the bubbles are moving out of the structure, which ensures a dynamic system. e
obtained clustering of the bubbles is similar to the clustering effect observed in the bubble
swarms simulated by Roghair et al. (2013b). Although the clustering of the bubbles obstructs
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(d) (e) ()

Figure 5.7: e two snap shots of a simulation with a void fraction of 25% and a solids
volume fraction of fraction 5%. Figure a and d show both the particles and the bubbles,
while the middle and the right figures only show the bubble configuration and the particle
configuration.
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the movement of the particles, the particles are also falling between the horizontal clusters
without any hindrance of the bubbles.

Both snapshots show that particles have two different modes of movement: particle
movement obstructed by the bubbles and (almost) free movement. e appearance of these
two different modes also explains the large standard deviation in the obtained drag coeffi-
cient of the particles. To obtain a more accurate formulation of the drag coefficient of the
particles, the drag coefficient should be determined separately for both modes of movement.

5.7 Conclusions
In this chapter, the combined FT second order implicit IB method was used to simulate a
dense bubble/particle swarm. Using a particle diameter of 1 mm and a bubble diameter of 2
mm, the effect of the void fraction and the solids volume fraction on the drag coefficient of
the bubbles and the particles was determined.

To mimic a sufficiently large bubble/particle swarm, the minimum required number of
bubbles and particles was found to be 16 and 60, respectively. Furthermore, grid indepen-
dence of the drag coefficient was obtained if the minimum number of grid cells inside a
bubble diameter and a particle diameter are set to respectively 20 and 10. Using these set-
tings four different cases were simulated.

For both the particles and bubbles, a combined effect of the void fraction and the solids
volume fraction was found on the drag coefficient. Using the simulation results, a drag
correlation for both the bubbles and the particles was developed, which provides an accurate
description for a void fraction between 15% and 50% and a solids volume fraction between
2% and 14%.

e currently used combined FT-IB method has problems with the calculation of the
torque on the particles, as shown in chapter 3. Due to the error in the calculation of the
torque, the particles acquire an unphysical rotation, which results in a higher surface veloc-
ity of the particle. e implementation of the torque in the second order implicit IB method
should be improved, to ensure the accuracy of the method.

To broaden the range of applicability of the obtained correlations, the simulation range
should be extended. In the current data set, a constant particle diameter and bubble diam-
eter have been used. It is expected that the size of the particles and the bubbles and the
ratio of the two will influence the drag coefficient. We note that the FT-IB method has dif-
ficulties with simulating a combination of bubbles with a relatively low surface tension and
particles with a high inertia. It is expected that in such cases a particle will fall through a
bubble, leading to the formation of a doughnut shaped bubble or even the break-up of the
bubble. For these cases a break-up model would need to be incorporated. Another option
is to combine the currently used FT model with the Volume of Fluid model, which prevents
unphysical merging of the bubbles while break-up is incorporated in the model (Torres and
Brackbill, 2000; Walker et al., 2013).
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6.1 Introduction
In dense bubbly flows, encountered in bubble column reactors, pronounced coalescence of
bubbles prevails resulting in a decrease of the specific gas-liquid (g-l) interfacial area. By
introducing micro-structuring in the column in the form of a wire mesh, the coalesced bub-
bles will be cut into smaller bubbles leading to an increased specific g-l interfacial area. e
wire mesh will not only cut the bubbles, but also enhance the interface dynamics thereby
enhancing the local mass transfer rate exactly at the desired position, i.e. near the catalytic
surface of the wire mesh (Höller et al., 2001; Prasser et al., 2001; Ito et al., 2011).

In principle Computational Fluid Dynamics can be used to quantitatively describe the
complex fluid-structure interaction in wire mesh bubble column contactors in terms of clo-
sures.

In this chapter, the interaction between a single bubble and the simplest form of a wire
mesh will be studied. Because of the anticipated complex topological changes in the inter-
face, i.e. bubble cuing, the Volume of Fluid (VoF) method is used. VoF can handle break-up
of bubbles, and moreover, the method inherently conserves the bubble volume. e VoF
method is coupled with the second order Immersed Boundary (IB) method of Deen et al.
(2012) to describe the fluid-wire interaction. We choose this method, because it does not re-
quire calibration through the specification of an effective wire diameter and in comparison
with other IB methods accurate results can be obtained at relatively low resolution.

Previous studies on bubble spliing mainly focused on the break-up of bubbles due to
interplay with turbulence Liao and Lucas (2009). Only very few studies were carried out to
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study the interaction of bubbles with stationary wires. Segers (2015) experimentally found
that the wire diameter does not influence the bubble cuing, while the bubble cuing is
enhanced with increasing bubble sizes and decreasing viscosity.

Although both the VoF method and the IB method have already been validated for two
phase flows in chapter 2, 3 and 4, the combined VoF-IB model has to be validated using a
number of well-defined experiments. Furthermore, the effect of the Eötvös number (Eo),
the Morton number (Mo), the bubble rise velocity and the diameter of the wire will be
determined. e chapter will start with an explanation of the used numerical method. Sub-
sequently the combined VoF-IB method will be validated and the validated model will be
used to determine the effect of the above mentioned parameters.

6.2 Numerical method
e simulations are performed using a combination of the VoFmethod of van Sint Annaland
et al. (2005) and the second order implicit IB method of Deen et al. (2012), detailed in chapter
2 and 3 respectively. is chapter contains only a brief discussion of both models, focus-
ing on the combination of the methods. In the combined VoF-IB method, the continuity
equation, equation 6.1, and the Navier-Stokes equations, equation 6.2 are solved assuming
incompressible flow.

∇ ·u = 0 (6.1)

ρ
∂u
∂t

= −∇p− ρ∇ · (uu)−∇ · τ + ρg+ Fσ (6.2)

Because the velocity across the gas-liquid interface is continuous, the Navier-Stokes
equations are solved using a one-field approximation. e surface tension due to the gas-
liquid interface is introduced through an extra force density, Fσ , that only acts in the vicinity
of the interface. is force density is calculated with either the height function method or
the tensile force method.

For simulations with Eo < 10, the force density is calculated with the height function
method. is method is based on the Continuum Surface Force (CSF) method of Brackbill
et al. (1992), which uses equation 6.3 to calculate the force density.

Fσ = σκn (6.3)

e difference with the CSF method is in the calculation of the curvature, κ. e curvature
is calculated from the spatial change of the surface height, h. e surface height is obtained
from the summation of the phase fraction in the direction of the largest component of the
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surface normal vector, which is evaluated using a 7x3x3 stencil around each interface cell.
From the local change of the height, the curvature of the interface cell can be calculated
with equation 6.4 (Gerrits, 2001; Cummins et al., 2005; Francois et al., 2006).

κ =
∂

∂x

 ∂h
∂x√

1 + (∂h∂x )
2 + (∂h∂y )

2

+
∂

∂y

 ∂h
∂y√

1 + (∂h∂x )
2 + (∂h∂y )

2

 (6.4)

Because a force density is needed in the calculation of the Navier-Stokes equation, the cal-
culated force per unit surface area is multiplied by the area of the interface and divided by
the volume of the cell.

According to the results presented in chapter 2, the tensile force method should be used
for cases where Eo ≥ 1. In this method, the force density, Fσ , is calculated by summing the
tensile forces, that all neighboring interface segments exert on a certain central interface
segment, using the reconstructed PLIC (Piecewise Linear Interface Calculation) description
of the interface segments.

Fσ,m =
1

2
σ

n∑
i=1

(ti,m × ni) (6.5)

Where m is the central interface segment, i is the index of the neighboring interface ele-
ments and n is the number of edges that depends on the PLIC reconstruction case of inter-
face elementm. Because there is no inherent connectivity between the interface segments
in the VoF model, a neighboring cell may not contain any gas while one of the edges of
element m might be located in the cell face between these two cells. In those cases, the
tensile force exerted by such a neighboring cell is set to zero.

In the VoF model, the evaluation of the pressure gradient and the force density typically
introduces an unbalance, which can be alleviated by the introduction of the so called pres-
sure jump correction (Renardy and Renardy, 2002; Francois et al., 2006; Dijkhuizen et al.,
2010b), which is given by:

[p] =

∑
i Fσ,i ·ni∑
iAi

(6.6)

e implementation of the no-slip boundary condition on the surface of the wire is per-
formed at the level of the discretised Navier-Stokes equations, where each velocity compo-
nent, ψc, can be related to its neighboring velocity components, ψnb, according to equation
6.7.

acψc +
∑
nb

anbψnb = bc (6.7)
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When a neighboring cell is located inside the wire, the coefficients of the associated ve-
locity component are adjusted using a second order polynomial fit. By combining this fit
with equation 6.7, the velocity component inside the wire can be eliminated whereas the
coefficients of the two adjoining cells are adjusted using the wire velocity and the dimen-
sionless distance to the surface. Because singularities are encountered when the surface of
the wire is very close to the central cell, the method switches to a first order 1D fit when
the dimensionless distance from the central grid cell is less than 0.0001.

e Navier-Stokes equations (equation 6.2) and the continuity equation (equation 6.1)
are solved on a staggered grid using the (two-step) projection-correction method. In this
method, first a tentative velocity field is computed from the Navier-Stokes equations exclud-
ing the pressure term. In the first step, all terms in the Navier-Stokes equations are treated
explicitly, except for the diffusion term, which is treated implicitly with the exception of
the mixed derivatives which are treated explicitly. e diffusion term is discretised using
a second order central difference scheme, while the convective term is discretised using a
flux-delimited Barton scheme. e resulting velocity field is corrected to satisfy the conti-
nuity equation. Both the implicit part of the diffusion equation and the pressure Poisson
equation are solved using a block ICCG solver, which is parallelised using OpenMP.

e obtained velocity field is used to advect the phase fractions. Because in the VoF
model only the phase fraction is known, the gas-liquid interface is reconstructed using
the PLIC algorithm to enable an accurate surface representation of the bubble. e re-
constructed interfaces are advected using the 3D geometrical advection of Youngs (1982),
solving equation 6.8.

DF

Dt
=
∂F

∂t
+ u ·∇F = 0 (6.8)

When the new phase fractions in all cells are known, the new macroscopic density and vis-
cosity are calculated, using normal and harmonic averaging, respectively, where the phase
fraction in the grid cell is used as a weighting factor.

6.3 Validation of the model
6.3.1 Experimental set-up

To validate the VoF-IBmodel, the interaction between awire and a single bubble was studied
experimentally in a square glass column of 0.2 m diameter and 1.2 m height. e studied
bubble size is 7.26 mm, giving a ratio of the bubble diameter to the column diameter of 0.04.
For these small ratios, confinement effects can be neglected (Cli et al., 1978). At a height
of 14 cm, a single wire with a diameter of 3 mm is positioned horizontally in the column.

To control the bubble size, the bubbles are created in a spoon-shaped cap at the boom
of the column. e cap is a cylinder with a diameter of 10 mm that is moveable in the
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Table 6.1: e average liquid properties of the water-glycerol mixture used in the experi-
ments.

Property Value Unit
ρl 1.25 · 103 kg/m3

µl 1.13 Pa · s
σ 6.50 · 10−2 N/m

Figure 6.1: A schematic overview of the set-up. e images are taken in the direction of the
view.

horizontal direction (figure 6.1). e bubbles are created by injection of 0.2 mL of air, using
a 0.5 mL syringe. To ensure the generation and rise of a single bubble in a quiescent liquid, a
seling time of at least half an hour was taken into account before an individual experiment
was performed.

e column is filled with a mixture of deminiralised water and glycerol, which was
stirred using a continuous air flow for three days. To determine average properties of the
resulting liquid at room temperature, six separate measurements were performed during
the experiments, using a Brookfield DV-E viscometer for measuring the viscosity and K20
EasyDyne digital of Krüsse with the Wilhelmy plate method for measuring the surface ten-
sion. e average properties of the liquid mixture are given in table 6.1.

During the experiments, the bubble velocity, the bubble trajectory and the bubble vol-
ume are tracked using a high speed camera (Imager Pro HS CMOS camera with a resolution
of 1280× 1024 pixels). e recordings are performed with a frequency of 100 Hz and back
lighting, which is only switched on during the imaging to reduce any heating of the liquid
while illuminating the column. To diffuse the light, the back of the column is covered with
a white plastic sheet. In total 18 experiments were performed to determine the bubble wire
interactions.
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Figure 6.2: Initial positions of the bubble and the wire in the computational domain. e
numbers indicate the distances between the bubble center of mass and the domain bound-
aries, normalized by the equivalent bubble diameter.

6.3.2 Numerical set-up

To enable a detailed comparison of the VoF-IB simulations and the experiments, 23 simula-
tions were performed using the same liquid and gas properties and bubble and wire diame-
ters, the details of which are listed in table 6.2. Because of the relatively high Eo, the tensile
force method was used. e number of grid cells inside a bubble is 36, which ensures grid
independent results for the bubbles as shown in chapter 2. Similarly, the results in chapter
3 show that 12 grid cells is sufficient to accurately determine the wire drag force and thus to
enforce the no-slip condition. erefore, the grid dependency studies where not repeated.

e boundary conditions for all the domain boundaries are set to free slip. Furthermore,
window shiing is applied on the total phase fraction, to prevent bubbles to move out of the
domain. As a result of that, the center of mass of the total phase fraction will remain very
close to its original position in the domain, whereas the wire appears to be moving through
the simulation domain (Deen et al., 2004). To ensure that the bubble rise is not affected by the
size of the computational domain, the bubbles are positioned at least 2.5 bubble diameters
from the domain boundaries, as illustrated in figure 6.2. e vertical distance between the
bubble and thewire, dz , is set to at least 3.5 bubble diameters to ensure the bubbles will reach
their terminal rise velocity before interacting with the wire. For the different simulations,
the horizontal difference between the center of mass of the bubble and the wire, dx, was
changed from 0 to 2 cm.
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Table 6.2: Simulation seings and physical properties.

Property Value Unit
Domain size (nx,ny,nz) (180, 180...190, 235) grid cells
Grid size (∆x, ∆y & ∆z) 2.00 · 10−4 m
Time step 1.0 · 10−5 s
Rb 3.63 · 10−3 m
Rw 1.50 · 10−3 m
ρl 1.25 · 103 kg/m3

µl 1.13 Pa · s
ρg 1.20 kg/m3

µg 1.0 · 10−5 Pa · s
σ 6.5 · 10−2 N/m
ρs 2.0 · 103 kg/m3

6.3.3 Bubble cuing and shape

e objective of this section is to validate whether the details of the cuing of bubbles is
faithfully captured by the computational model. In both the experiments and the simu-
lations, the effect of the obliqueness of the bubble wire interaction on the bubble cuing
was studied. Bubble cuing was only found for bubbles that experience a straight impact.
When the bubble starts slightly off center, the high liquid viscosity will ensure that the
bubble passes the wire without being cut.

Figure 6.3 shows several snapshots of a straight bubble-wire interaction. e defor-
mation of the bubble in the experiments and numerical simulations is very similar. For
a straight impact, it was expected that the daughter bubbles would obtain approximately
the same volume. However, both the experiments and the numerical simulations reveal an
asymmetrical cuing. is asymmetry is introduced by a small asymmetry in the flow field
when the bubble is close to the wire mesh. is results in a slightly smaller part of the bub-
ble on one side of the wire, as shown in figure 6.3.c for the experiments and in figure 6.3.i for
the simulations. e smaller part of the bubble will have a slightly higher pressure than the
larger part of the bubble. Consequently, a partial depletion of the smaller bubble will occur,
which increases with an increasing volume difference as shown for both the experiments
and the simulation in figure 6.3.c to 6.3.e and figure 6.3.i to 6.3.k, respectively. e relatively
high liquid viscosity leads to a relatively long contact time, and as a consequence there is
a substantial difference between the bubble volumes on either side of the wire. Comparing
the relative size of the bigger daughter bubble with respect to the mother bubble, the simu-
lations give d1/d0 = 0.903, which matches well with the experimentally obtained results,
where d1/d0 = 0.944, considering the experimental error of 2%.

To characterize the obliqueness of the bubble wire interaction, an impact parameter is
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(a) (b) (c) (d) (e) ()

(g) (h) (i) (j) (k) (l)

Figure 6.3: Snapshots of the straight impact of a bubble with a single wire. e upper row
shows the experimental results while the lower row shows the simulation results. e time
intervals between the snapshots is the same for the experimental results and the simulation
results.

used, similar to what is customary for droplet-droplet interactions. It is defined as the ratio
of the horizontal difference between the bubble and the wire, and the sum of the bubble and
wire radii:

b =
dx

Rb +Rw
(6.9)

Figure 6.4 shows the bubble and wire interaction for a slightly oblique interaction, b =

0.0146. is figure shows that both in the experiments and the simulations no cuing was
found. When the bubble interacts with the wire, it is curling around the wire similar to the
result for a straight bubble-wire interaction. Because in this case the smaller part of the
bubble, on the le side of the wire, is much smaller than the bigger part, the pressure in the
smaller part will be higher. is results in a quick depletion of the smaller bubble, which
leads to the passage of the entire bubble on the right side of the wire.

For both the straight and oblique impacts, satellite bubbles are formed. In the experi-
ments, these bubbles can only be observed on the right side of the wire, which is due to the
small angle of the camera. However, it is expected that these bubbles are actually formed
on either side of the wire. Both the experimental results and the simulation results do not
resolve those bubbles and the details of the associated deformation. e details of these
satellite bubbles could be resolved in the simulations when adaptive mesh refinement is
used.
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(a) (b) (c) (d) (e) ()

(g) (h) (i) (j) (k) (l)

Figure 6.4: Snapshots of the oblique impact of a bubble with a single wire, b = 0.0146.
e upper row shows the experimental results while the lower row shows the simulation
results. e time intervals between the snapshots is the same for the experimental results
and the simulation results.

6.3.4 Bubble trajectory

Apart from the bubble shape and size, the trajectory of the bubbles can also be evaluated as
shown in figure 6.5. e figure shows that the numerical results, the lines, match well with
the experimental results, the symbols, for both straight and oblique interactions.

Figure 6.5.a shows that for a straight impact the bubble does not change its trajectory
until the center of mass is very close to the wire, at about 4mmdistance. Furthermore, in the
simulations the bubble is cut when the center of mass of the mother bubble passed the top of
the wire, whereas in the experiments the cuing takes place slightly earlier. is difference
might be caused by the difficulties in experimentally recognizing the details around the
wire, because a part of the wire is out of focus. Furthermore, the small angle in the pictures
might also lead to difficulties in the determination of the exact moment of cuing.

When the approach of the bubble towards the wire is oblique, the bubble is deflected
earlier, as shown in figure 6.5.b, 6.5.c and 6.5.d. Because these bubbles are deflected earlier,
the bubbles will also move in a wider circle around the wire. is will result in an increase
of the horizontal distance between the wire and the bubble aer the wire interaction, which
is also observed in both experiments and simulations.

6.3.5 Bubble rise velocity

Besides the bubble size, shape and trajectory, the effect of the bubble wire interaction on
the bubble rise velocity can be determined. Figure 6.6 shows the bubble rise velocity of the
bubble, normalized by the steady rise velocity. e normalization was done, because there is
an expected small difference between the single bubble rise velocity as found in chapter 2.
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Figure 6.5: Comparison of the bubble trajectories for a straight impact and three different
oblique impacts. e symbols in the figures are the experimental results, while the sim-
ulations are represented by the colored lines. e blue, red and green lines and symbols
respectively represent the mother bubble, the large daughter bubble and the small daughter
bubble. e black line represents the center of mass of the wire and the doed black lines
represent the boom and the top of the wire.
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Figure 6.6: Bubble rise velocity for a straight impact and three different oblique impacts. e
symbols in the figures are the experimental results, while the simulations are represented
by the colored lines. e blue, red and green coloring of the lines and symbols represent
the mother bubble, the large daughter bubble and the small daughter bubble. e black
line represents the center of mass of the wire and the doed black lines represent the wire
radius.
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e relative velocity is calculated by using the average steady rise velocity of the bubble
before it starts interacting with the wire.

Figure 6.6.a shows that the combined VoF-IB method is able to accurately capture the
velocity of themother bubble and the large daughter bubble. e velocity of the smaller bub-
ble is slightly overestimated by the model. It is noted that the spatial resolution is relatively
low for the small bubble, i.e. only 23 numerical grid cells. Furthermore, in the experiments
bubble recognition is difficult near the wire, and the image resolution for the small bubble
is relatively low.

Figure 6.6.b-d shows the effect on the relative velocity for three different oblique inter-
actions. e figures show a fairly good comparison between experimental and numerical
results. Although the combined VoF-IB method overestimates the bubble rise velocity when
the bubble is passing the wire, the velocity decrease prior to the impact is captured very ac-
curately. Furthermore, the bubble rise velocity obtained numerically is following the same
trend as the trends obtained in the experiments. e differences might be caused by ignor-
ing weability in the simulations.

In both experiments and simulations, the deceleration before the wire is decreasing with
an increasing impact parameter. As a result of that, the acceleration of the bubble when the
bubble is passing the wire is also decreased. Moreover, it can be seen that all passing bubbles
recover their steady rise velocity.

6.4 Parameter study
6.4.1 Numerical Set-up

To determine the effect of the different physical parameters of the interaction of a single
bubble with a single wire, similar seings are used as in the validation simulations that were
presented in the previous section. e physical properties used in the parameter study are
shown in table 6.3. e table shows two groups of simulation seings one at log(Mo) = 1

and one at log(Mo) = −3. In total, 60 extra simulations are performed.
e simulations use at least 15 grid cells in the diameter of the wire and 30 grid cells in

the diameter of the bubble. ese are both sufficient to ensure there is no grid dependency
according to the results in chapter 2 and 3. e exact number of grid cells changes slightly
among the different simulations.

6.4.2 Bubble cuing and shape

When the bubble approaches the wire in a straight manner, there are two possible outcomes
of the bubble-wire interaction: the bubble is cut by the wire or the bubble gets stuck un-
derneath the wire. In the current simulations, the viscosity of the liquid is much smaller
than in the validation simulations. As a result, all the bubbles that get cut break up into two
equally sized bubbles. Furthermore, tiny satellite bubbles are created at the boom of the
wire.
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Figure 6.7: e effect of the Eo, Mo and Re numbers on the bubble cuing due to the inter-
action with a single wire. e green squares represent bubbles that are cut while the red
triangles represent bubbles that get stuck underneath the wire.

When the bubble gets stuck underneath the wire, the bubble moves towards the wire in
the same way as when it gets cut. However, it does not deform sufficiently to actually get
cut. e bubble then stabilizes into an ellipsoidal shape underneath the wire. Aer some
time, the bubble obtains a small horizontal velocity, probably because of spurious currents.
is will eventually push the bubble to one side such that it passes the wire. During its
passage, the bubble is really close to the wire, which leads to the formation of some very
small satellite bubbles.

Firstly, the effect of Eo was determined. Figure 6.7 shows that bubbles are only cut when
Eo>4. Furthermore, the figure shows that Re andMo do not influence the bubble cuing. All
these simulations are performed with a bubble diameter that is 2.4 times the wire diameter.

To ensure that the bubble rise velocity does not influence the results, the bubble rise
velocity upon impact was varied by decreasing the initial distance to the wire, dz . In this
way, the bubble rise velocity was varied between 0.70 − 1.0Re∞. is did not change
the cuing behavior of the bubbles, which can be caused by the small range in which the
velocity was changed.
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Finally, the relative size of thewire diameterwas changed between 1.0−2.6db. Although
it is expected that the wire diameter will change the cuing behavior of the bubble, no
effects are found for the simulated cases. It is expected that the bubble cuing is influenced
for thinner wires (db ≫ 2.6dw) or thicker wires (db < dw). To enable a more accurate
analysis, the effect of Eo and the diameter of the wire on the bubble rise velocity will be
determined in the next section.

6.4.3 Bubble rise velocity

Figure 6.8.a and b show the effect of Eo on the bubble rise velocity as it approaches the wire.
Figure 6.8.a shows that the minimal rise velocity is obtained at the same distance from the
wire. Furthermore, figure 6.8.b shows that the bubbles that are not cut (Eo ≤ 4) reach a zero
velocity below the wire. erefore, a correlation can probably be obtained for the bubble
cuing based on the velocity of the bubbles, i.e. by adding an extra force to Newton’s second
law in the Euler-Lagrange models.

e effect of the wire diameter on the bubble rise velocity is shown in figure 6.8.c and
d. e data reveal that the position where the bubble reaches the minimum rise velocity
depends on the diameter of the wire. In addition, the obtained resistance of the wire de-
pends on the diameter of the wire. erefore, the diameter will eventually also influence
the wire cuing. However, the range in which the wire diameter is varied in this work is
not sufficient to draw definite conclusions.

6.5 Conclusion
In this chapter, our combined VoF-IB model was validated for the case of interaction of a
single rising bubble with the simplest form of awiremesh, i.e. a single static horizontal wire.
Although the bubble rise velocity is slightly overestimated near the wire by our model, the
bubble size, the bubble shape, the trajectory and the bubble rise velocity agree very well
with the experimental observations.

Besides the validation of the VoF-IB model, the effect of the bubble size, the physical
properties, the bubble velocity and the wire diameter was also studied. From the results,
it can be concluded that the main influences on the bubble cuing can be captured with
Eo and the relative wire diameter.

Nonetheless, there are several small differences between the experimental and numeri-
cal results, which can be decreased by improving both the experimental and the numerical
methods. First of all, a glycerol-water mixture is used to create a liquid phase with a rela-
tively high Morton number. However, the mixture has a high solubility for contaminants,
which will lead to a more rigid bubble surface. is rigidity will influence the possibility to
cut and may influence the dynamics of the liquid film between the bubble and the wire. To
minimize the effect of contaminants experiments were performed in a short time frame. As
a result only a limited number of experiments could be performed.
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Figure 6.8: Velocity profiles of a bubble interacting with a single wire at different normalized
distances between the bubble and the wire, dz/db. Figure a and b show the effect of Eo for
a constant value of the relative diameter of wire, db/dw = 2.4, at respectively log(Mo) = 1
and log(Mo) = −3. Figure c and d show the effect of the relative thickness of the wire, for
a bubble of Eo = 10 at log(Mo) = 1 and Eo = 4 at log(Mo) = −3, respectively.
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Furthermore, the alignment of the camera with respect to the wire was not exactly
straight. In this chapter, a correction was made to remove this error. However, the small
imperfection will also partly block the view around the wire, resulting in uncertainties with
respect to the measured bubble size and velocity near the wire. Moreover, the automation
of the gas injection or a more accurate syringe will decrease the error in the injected gas
volume. Finally, the accuracy of the experimental results could be raised by improving the
bubble recognition, focusing on the coupling between the separate images and the recog-
nition of the bubbles.

Because the experiments reveal that there is a small liquid layer around the wire, the
computations do not include the weability of the single wire. However, the simulations
show some three-phase contacts when the bubbles are passing the wire. For this reason, the
inclusion of the weability might influence the bubble cuing and the subsequent bubble
rise velocity aer departure from the wire. e weability can be included using a model
for the contact angle and contact line propagation at the wire surface.

Although the simulations initially possess a very good resolution, the unequal cuing
of the bubbles and the formation of satellite bubbles leads to a relatively low resolution for
resolving the details of the smaller bubbles properly. To overcome this resolution problem,
adaptivemesh refinement could be implemented, which ensures that all details of all bubbles
are calculated accurately without a sharp increase in the computational time.

While some conclusions can already be drawn from the currently performed parameter
study, the ranges in Eo, Mo and relative wire diameters are to small to derive quantitative
closures for the Euler-Lagrangian models. Furthermore, the current ranges are not within
the industrial relevant portion of the Grace diagram. In addition, the results obtained by
Segers (2015) and the validation results showed that the relative horizontal position with
respect to the wire influences the bubble cuing too. All these aspects should be taken into
account in future work.
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7.1 Introduction
Along the height of bubble columns, the specific gas-liquid interfacial area is typically re-
duced due to coalescence. To increase the specific interfacial area, a wire mesh can be
introduced in the column to cut the large bubbles. Besides cuing the bubbles, the inter-
action between the wire mesh and the bubbles will also enhance the interface dynamics
resulting in a higher surface renewal rate and consequently to higher mass transfer coeffi-
cients. e enhancement of surface renewal rate occurs at the desired position in case the
wire mesh is coated with a catalyst (Höller et al., 2001; Prasser et al., 2001; Ito et al., 2011).
Höller et al. (2001) showed that by implementing a similar approach a 10 times higher gas-
liquid mass transfer coefficient was obtained in comparison to a bubble column without
internals. However, the exact mechanism of break-up and the hydrodynamic interaction
with the wire mesh is still unknown.

To design an optimal micro-structured bubble column, Computational Fluid Dynam-
ics can be used. In the Euler-Euler and Euler-Lagrangian models, closures are needed to
determine the interactions between the wire mesh and the bubbles (Jain et al., 2013). e
closure proposed by Jain et al. (2013) is a basic geometrical closure for the bubble cuing. In
this work, Direct Numerical Simulation (DNS) will be used to study the bubble wire mesh
interaction.

In chapter 6, the combined Volume of Fluid Immersed Boundary (VoF-IB) method was
validated by studying the interaction of a bubble with the simplest wire mesh, a single wire.
Also the effects of the Eötvös number (Eo), the Morton number (Mo), the bubble velocity
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and the diameter of the wire on the bubble cuing was determined. It was concluded that
bubbles were only cut when Eo > 4.

In this chapter the interactions with a square wire mesh will be studied using the same
VoF-IBmethod. In this chapter first the applied numerical method and the simulation set-up
will be discussed. Subsequently, the interactions between a single bubble and a wire mesh
will be studied for two limiting cases: i) a bubble hiing the center of an opening in the
wire mesh, and ii) a bubble hiing the intersection of two wires in the mesh.

7.2 Numerical method
To study the interactions with a square wire mesh, a DNS model has been developed com-
bining the VoF model of van Sint Annaland et al. (2005) and the IB method of Deen et al.
(2012). In this chapter, only the main characteristics of the model are explained, detailed
descriptions can be found respectively in chapters 2 and 3.

In the combined VoF-IB method the continuity equation, 7.1, and the Navier-Stokes
equations, 7.2 are solved using a finite difference method assuming a one-field approach:

∇ ·u = 0 (7.1)

ρ
∂u
∂t

= −∇p− ρ∇ · (uu)−∇ · τ + ρg+ Fσ (7.2)

Surface tension is accounted for through the force density Fσ included in the Navier-Stokes
equations.

In the VoF model, different surface tension models can be used. According to chapter
2, the tensile force method is preferred for simulating bubbles with a relative high Eo and
Mo, which will be used in this chapter. In the tensile force model, a force density is calcu-
lated for each cell containing an interface segment by summing the tensile forces, that are
exerted by the neighboring interface segments on the reference element. e tensile forces
are calculated using the edges of the interface segment resulting from the PLIC (Piecewise
Linear Interface Calculation) interface representation:

Fσ,m =
1

2
σ

n∑
i=1

(ti,m × ni) (7.3)

In this equation, m is the reference interface segment, i is the index of the neighboring
interface elements and n is the number of edges that depends on the PLIC reconstruction
case of interface elementm. Because there is no inherent connectivity in the VoF model, a
neighboring interface element might not contain an interface segment. For those cells, the
exerted tensile stress is assumed to be zero.
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Due to the mismatch in the discrete representation of the pressure gradient and the
force density Fσ , spurious currents will arise. To decrease this mismatch, the calculation of
the surface tension and the pressure are coupled via an extra force density, or also called
the ”pressure jump correction”, which is given in equation 7.4 (Renardy and Renardy, 2002;
Francois et al., 2006; Dijkhuizen et al., 2010b).

F∆p,m = Am

∑
i Fσ,i ·ni∑
iAi

(7.4)

e implementation of the no-slip boundary condition at the wire mesh is applied at the
level of the discretised Navier-Stokes equations. At this level, a certain velocity component,
ψc, can be expressed as a function of the velocity components in the neighboring cells, ψnb,
according to equation 7.5.

acψc +
∑
nb

anbψnb = bc (7.5)

When one of the neighboring cells is located inside the wire mesh, a second order accurate
(1D) polynomial is fied to represent the local velocity profile in terms of the velocity of the
particle surface and the two velocities just outside the wire mesh. Using this polynomial fit,
the velocity of the cell inside the wire mesh is eliminated from equation 7.5. Moreover, the
coefficients of the other cells involved in the polynomial fit are changed according to the
fit.

To solve equations 7.1 and 7.2, a projection-correction scheme is used. In this scheme,
first a tentative velocity field is calculated. All terms in the momentum equations are solved
explicitly except for the diffusion term, which is evaluated semi-implicitly. e implicit part
of the diffusion term is chosen such that the velocity components can be solved separately
whereas the mixed derivatives are evaluated explicitly. e diffusion term is discretised
using a second order central difference scheme, while a flux-delimited Barton scheme is used
for the convective term. Subsequently, the resulting velocity field is corrected to meet the
continuity equation. Both the tentative velocity field and the pressure correction equation
are solved using a block ICCG solver, which has been parallelised using OpenMP.

Aer the calculation of the velocity field, the new phase fraction in each cell can be
determined. e gas-liquid interface is reconstructed using the PLIC algorithm and subse-
quently used to advect the liquid fraction according to the 3D geometrical advection scheme
of Youngs (1982) using equation 7.6:

DF

Dt
=
∂F

∂t
+ u ·∇F = 0 (7.6)

When the new phase fraction is known, the new macroscopic density and viscosity can
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Table 7.1: Simulation seings and physical properties.

Property Value Unit
Domain size (nx,ny,nz) (168...182, 168...182, 200) grid cells
Grid size (∆x, ∆y & ∆z) 1.75 · 10−4 m
Time step 1.0 · 10−5 s
db 5.50 · 10−3 m
dw 1.75 · 10−3 m
db/s 0.9− 2.2
ρl 1.00 · 103 kg/m3

µl 4.07 · 10−1 Pa · s
ρg 1.00 kg/m3

µg 2.00 · 10−5 Pa · s
σ 3.02 · 10−2 N/m
ρs 2.00 · 103 kg/m3

be calculated respectively using normal and harmonic averaging according to the phase
fraction.

7.3 Simulation set-up
In this chapter, the interaction between a single rising bubble and a wire mesh is studied.
e wire mesh was created by a combination of single wires with an axial orientation both
in the x and y-direction. At the crossings the single wires overlap. A minimum domain
size is required to prevent effects of the domain boundaries for the bubble rise. For a single
bubble rising in an infinite liquid the domain width should at least be five times the bubble
diameter. Besides, the domain boundary should either be at the middle of the wire or at the
middle of the opening due to geometrical reasons. Taking both these criteria into account
the total size of the simulation domain was determined.

Initially, a spherical bubble is placed at least 3.5 bubble diameters from the boom of the
domain, while the bubble was centered in the x- and y-direction, as shown in figure 7.1. e
wire mesh is placed 0.6 bubble diameters from the top. In the first half of the simulations,
the opening of the wire mesh was placed exactly above the bubble, while in the other half
the center of the bubble was aligned with the crossing of the wire mesh.

All simulations are performed using free-slip boundary conditions enforced on all bound-
aries. Finally, the window shiing concept is applied, which will ensure that the average
center of mass of the gas phase remains in its original position, while the wire mesh appears
to be moving down through the domain (Deen et al., 2004).

Ten grid cells were used across the diameter of the wires, because the verification sim-
ulations in chapter 3 showed that this is sufficient to accurately model the drag force of a
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(a) (b)

Figure 7.1: Initial positions of the bubble and the wires in the computational domain: a
side view and a top view. e numbers indicate the distances between the bubble center of
mass and the domain boundaries, normalized by the equivalent bubble diameter. Figure a
shows the alignment of a bubble with the opening of the wire mesh, while figure b shows
the alignment with the crossing of the wire mesh.

particle and thus the no-slip boundary condition. On the other hand, a minimum resolu-
tion is required for resolving the dynamics of the bubble. Previously, it was found that a
minimum resolution of 20 grid cells across the bubble diameter is required. As we expect
bubbles to be cut into smaller pieces the resolution of the initial bubble was increased to 31
grid cells across the bubble diameter.

In total 36 simulations are performed to determine the effect of Eo and the opening of
the wire mesh, s. e physical properties and the other simulation seings are given in
table 7.1. All simulations were conducted with a time step of 1.0 · 10−5 s for a simulation
time of 1s.

7.4 Interaction of a bubble with the center of a wire
mesh opening

First of all, the interaction of a single bubble with the opening of a wire mesh was deter-
mined. According to the first approximation of Jain et al. (2013), the simulations with the
three smallest openings (db/s ≥ 1.6) should result in the cuing of the bubble into smaller
bubbles. e bubbles in the other simulations, db/s < 1.6, would not be cut.

Figure 7.2 shows the different outcomes of the bubble wire mesh interactions obtained
from these simulations. e figure shows that there is no cuing of the bubbles when the
bubble is aligned with the opening. Large bubbles are just wobbling through the wire mesh.
Due to their relatively high Eo, these bubbles are able to adequately deform and squeeze
themselves through the wire mesh. is implies that a phenomenological model for bubble
cuing on basis of solely geometrical considerations is not correct.
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Figure 7.2: e effect of Eo and the opening in the wire mesh on the bubble wire interaction,
when the bubble is aligned with the mesh opening in the horizontal direction.

Figure 7.3 shows the snapshots of a large bubble wobbling through the opening. When
the ellipsoidal bubble is close to the wire mesh, the central portion of the bubble will move
into the opening of the wire mesh as shown in figure 7.3.a and b. Because of the relatively
high pressure at the part of the bubble underneath the wire mesh, these parts will be de-
pleted. To pass the wire mesh, the bubble is strongly deformed as shown in figure 7.3.c.
When the bubble leaves the wire mesh, figure 7.3.d and 7.3.e, the bubble is highly deformed,
e.g. the bubble is elongated in the vertical direction while the horizontal size is similar to
the pitch of the wire mesh. e effect of the bubble mesh on the bubble shape, is still vis-
ible when the bubble is well above the wire mesh, as shown in figure 7.3.f. Similar to the
interaction with a single wire, which was shown in chapter 6, the interaction with the wire
mesh will produce some satellite bubbles, as shown in figure 7.3.d-f. Because of the limited
resolution the dynamics and size of these satellite bubbles cannot be properly resolved.

Unlike the large bubbles, the small bubbles (Eo ≤ 4) get stuck underneath thewiremesh.
ese smaller bubbles have a lower capability to deform. e mechanism of this formation
of gas pockets below the mesh is shown in figure 7.4. e initial stage of the interaction of
the wire mesh is identical to the one for the bubble with higher Eo (figure 7.4.a-d). However
when the bubble starts moving through the mesh, the bubble cannot sufficiently deform to
move through the mesh. e bubble starts to slow down and finally stops underneath the
mesh, as shown in figure 7.4.e and f.

Besides the changes in shape and the interaction with the wire mesh, there are also
effects of Eo and the mesh opening on the rise velocity of the bubbles, which are shown
in figure 7.5. In all cases the velocity first drops as the bubble approaches the wire mesh,
subsequently the bubble is accelerated as it squeezes through themesh and finally retains its
original steady rise velocity. Figure 7.5.a shows that, as expected, the bubble rise velocity
is larger for larger values of Eo. Furthermore, all the bubbles have a minimal velocity at
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(a) (b) (c)

(d) (e) ()

Figure 7.3: Snapshots of a bubble squeezing through a wire mesh aer an inline approach
to the center of the mesh opening (Eo = 10, db/s = 2.0).

(a) (b) (c)

(d) (e) ()

Figure 7.4: Snapshots of a bubble geing stuck underneath a wire mesh aer an inline
approach to the center of the mesh opening (Eo = 4, db/s = 2.0).
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Figure 7.5: Velocity profiles of a bubble interacting with a wire mesh at different normalized
distances between the bubble and the wire, dz/db. (a): effect of Eo for a constant value of
themesh opening, db/s = 2. (b): effect of themesh opening for a constant value of Eo = 10.

about 0.4 bubble diameters before the wire, which is similar to the results for a single wire
as shown in chapter 6. When the bubble rise velocity is decreased to zero it simply gets
stuck underneath the mesh. It can also be observed that the relative decrease in the bubble
rise velocity depends on the bubble size.

Figure 7.5.b shows the effect of the wire mesh opening on the bubble rise velocity. As
expected, with a larger opening the decrease in bubble rise velocity is less, i.e. the bub-
bles squeeze through more easily. e figure suggests that for mesh openings smaller than
0.45db the bubble will get stuck, even at high values of Eo = 10.

7.5 Straight interaction with a crossing of the wire
mesh

Because the bubbles are not cut when they are aligned with the opening of the wire mesh,
18 simulations were done where the bubble is aligned with the crossing of two wires in the
mesh. Figure 7.6 shows the effect of Eo and the opening of the wire mesh on the cuing of
the bubbles. e figure shows that only large bubbles (Eo = 15) are cut by the wire mesh.
All smaller bubbles are trapped underneath the wire mesh. In single wire simulations, a
similar behavior was observed, as shown in chapter 6. However, the bubble size at which
the bubbles get stuck is much smaller as was the case for single wires (Eo ≤ 4 instead of
Eo ≤ 10). is can probably be explained by the larger drag exerted on the bubble by the
wire mesh compared to the drag exerted by a single wire. Furthermore, the open area for
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Figure 7.6: e effect of Eo and the mesh opening on the bubble mesh interaction, for the
case that the bubble is aligned with the crossing of two wires.

the bubble to move through is finite for a wire mesh, whereas it is semi-infinite for a wire.
Comparing the results in figure 7.2 and 7.6, it is concluded that the behavior of the

bubbles changes drastically when changing the alignment of the interaction. Hence, the
interactions are not only influenced by the properties of the bubbles and the wire mesh, as
stated before, but also on the positioning of the bubble with respect to the wire mesh.

e mechanism for a large bubble that gets stuck underneath the mesh is shown in
figure 7.7. e bubble behavior is similar to the case where the bubble is aligned with the
wire mesh opening. e bubble tries to move through the openings of the wire mesh, but is
unable to reach the required curvature to facilitate bubble cuing due to the action of surface
tension. erefore, the bubble slows down and gets stuck underneath the wire mesh.

Figure 7.8 shows the cuing of bubble by the wire mesh. e bubble is cut because the
rise velocity of the bubble is larger than zero when the bubble is very close to the wire mesh.
Furthermore, the high value of Eo leads to a highly deformable gas-liquid interface enabling
the bubble to curl around the wire mesh. e combination of these properties leads to the
formation of four bubbles on all the sides of the wire crossing as shown in figure 7.8.d-f.

7.6 Conclusions
In this chapter, the combined VoF-IB method was successfully applied to simulate the inter-
actions between bubbles and wire meshes. When the bubbles are aligned with the opening
of thewiremesh, cuing of the bubbles is not observed in our simulations, while cuingwas
expected for the interactions with the meshes with the smallest openings. When Eo > 4,
the bubbles are highly deformable and squeeze themselves through the opening of the wire
mesh. When the bubble is smaller and/or the opening in the wire mesh is small the bubble
gets stuck underneath the mesh. When the bubble is aligned with the crossing in a wire
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(a) (b) (c)

(d) (e) ()

Figure 7.7: Snapshots of a bubble geing stuck underneath a wire mesh aer an inline
approach to the crossing of two wires (Eo = 10, db/s = 1.3).

(a) (b) (c)

(d) (e) ()

Figure 7.8: Snapshots of a bubble geing cut aer an inline approach to the crossing of two
wires (Eo = 10, db/s = 1.3).
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mesh, almost all bubbles get stuck underneath the mesh except for the bubble with Eo = 15

which gets cut by the mesh.
Although the simulations confirm all the experimentally observed mechanisms for the

interaction between a bubble and a wire mesh, the set of simulations does not yet allow for
the derivation of an improved closure for the bubble cuing. To improve the preliminary
geometrical bubble cuing closure of Jain et al. (2013), the effect of the relative position
of the bubble with respect to the wire mesh and different Morton number should be de-
termined. Furthermore, the diameter of the wires will also influence the efficiency of the
bubble cuing. erefore, the currently obtained data set should be extended to quantify the
combined effects of these parameters. Finally, the set of mesh openings could be extended
to even smaller openings to prove that larger bubbles will no longer squeeze themselves
through at very small mesh openings.

Besides, the simulations are performed with only 31 grid cells across the bubble diam-
eter. When a bubble is split into four bubbles, the resolution of the resulting bubbles is
about 20 grid cells, which will lead to inaccuracies due to the low resolution. In addition,
satellite bubbles are obtained in several simulations. To overcome these problems, adaptive
mesh refinement should be implemented, which ensures that all details of all bubbles are
calculated accurately preventing a sharp increase in the computational time.

Furthermore, all simulations show partially deweing of the surface of the wire mesh.
e simulations do not include this three-phase contact around the wire mesh. is three
phase contact can be represented using a model for the contact angle propagation of the
three-phase contact line.

Although the simulations show the experimentally observed mechanism and the simu-
lation method has been validated for the interaction with a single wire (chapter 6), a direct
comparison between the experimental system with more complex wires and the simulation
method is still missing. To ensure the simulations have predictive capabilities, the interac-
tions between bubbles and (more complex) meshes should also be validated.
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In the previous chapters, Direct Numerical Simulations (DNS) were used to study three-
phase gas-liquid-solid flows. In chapter 5, the swarm effects in dispersed gas-liquid-solid
flows was quantified in terms of the solids and bubble volume fractions. e results of this
study were condensed in a correlation for the effective drag acting on the bubbles and the
particles.

Chapter 6 and 7 describe the effect of a wire mesh on the bubble cuing. First of all,
the three-phase interaction with the wire mesh was validated. ree different types of
interaction were observed: i) a bubble can be cut by the wire mesh, ii) a bubble can get
stuck underneath the wire mesh and iii) a bubble can squeeze through the opening of the
wire mesh. e type of interaction depends on the Eötvös number (Eo), the wire diameter
and the opening in the wire mesh. is implies that a simple phenomenological model for
bubble cuing solely on basis of geometrical considerations will not be able to accurately
capture the bubble-wire mesh interactions.

In this chapter some preliminary results and recommendations for future work are pre-
sented. First some recommendations aremade for the DNS. Subsequently, some preliminary
results will be discussed with respect to bubble cuing in a micro-structured bubble column,
along with recommendations for future work.

8.1 Direct Numerical Simulation
Although the DNS results show a good comparison with experimental results in chapter 2,
3, 4 and 6, both the two-phase and three-phase DNS models can be further improved. First
of all, when the Volume of Fluid (VoF) model is used, bubbles will automatically merge when
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the interfaces of two bubbles are within a grid cell. erefore, the VoF model in its current
form is not suited to assess whether coalescence occurs or not. In addition, the used Front
Tracking (FT) model cannot be used to study the coalescence or break-up of bubbles either
unless it is extended with a subgrid model. ese features can be solved by combining the
VoF and FT model to obtain a model that prevents unphysical merging of the bubbles while
break-up is incorporated, like is done in the work of Torres and Brackbill (2000) andWalker
et al. (2013).

In addition, the spatial resolution in bubble-wire mesh interactions is not always suf-
ficient to resolve all details of the bubbles in the combined VoF Immersed Boundary (IB)
method. In spite of the high resolution at the beginning of the simulations, the formation
of satellite bubbles and the unequal cuing of bubbles leads to a relatively low resolution
available for describing these small bubbles. To solve this resolution problem, adaptive
mesh refinement could be implemented to ensure that all details around small bubbles are
resolved accurately without a prohibitive increase in computational time.

Even though the use of the second order implicit IB method is advised over the mod-
ified Uhlmann method, the method is not able to simulate freely moving particles at high
particle Reynolds number (Re > 100), due to the appearance of unphysical rotation related
to approximations in the calculation of the torque. is problem is caused by a small but
critical error in the calculation of the surface area of the particles. Currently the surface
area is calculated using the tangent plane. Although there is no analytical solution for the
surface area of a sphere, an improvement in the numerical approximation of the surface
area will already reduce this error drastically. is can for instance be done by subdividing
cells containing an interface into many subcells and calculating the area using a separate
tangent plane for each of the subcells.

Finally, all three-phase simulations in this work are performed without a subgrid model
to account for the weability of the solid objects, despite the fact that three-phase contacts
were observed in all three-phase simulations. To improve the VoF-IB and FT-IB methods, a
model for the contact angle and contact line propagation should be included.

8.2 The hydrodynamics of dispersed gas-liquid-solid
flows

In chapter 5, only the effect of the void fraction and the solids volume fraction on the drag
force were quantified. Preliminary results show that the bubble diameter also influences
the drag coefficient of both the bubbles and the particles. e results for three-phase flow
containing 3 mm bubbles and 1 mm particles show the same trends in the drag coefficient
with respect to the void fraction as the results presented in chapter 5.

In addition, the preliminary results show that larger bubbles lead to lower drag coeffi-
cients for both the bubbles and the particles. Because only a small range of bubble diameters
was simulated, this effect could not be introduced in the drag closures. In future work, the
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combined effect of the void fraction, the solids volume fraction and the bubble diameter
should be addressed.

In a bubble slurry column, the catalyst is dispersed as very fine particles (db/dp ≈ 10−
100), while in the simulations relatively large particles were used (db/dp = 2). To capture
the effect of the catalyst particles in a real bubble slurry column, the diameter of the particles
should be substantially decreased. e relative diameter of the particle will most likely
influence the drag force acting on both the particles and the bubbles. Clearly, this puts
challenges on the allowable number of computational grid cells, which can probably only
be solved by applying adaptive grid refinement around the particles. Finally, the effect of
different physical properties should be assessed.

8.3 Micro-structured bubble column
In chapter 6, the interaction of a bubble with the simplest form of a wire mesh, a single wire,
was validated. To ensure that the VoF-IBmodel is able to accurately describe the interactions
with more complex meshes, these interactions with more complex meshes should also be
validated. Figure 8.1 shows some preliminary experimental results that can be used to carry
out this validation. e experimental results are similar to the case shown in figure 8.2,
except that the Morton number, Mo, is slightly lower in the experiment. Similar to the
simulation, the bubble squeezes through the opening of the wire mesh. Furthermore, it
can be observed that the deformation of the bubble is similar. is is a clear indication
that the VoF-IB method is, at least in a qualitative sense, able to accurately describe the
interaction. Nonetheless, to enable a quantitative validation of the model, the simulations
need to be performed with the same experimental seings. Moreover, different horizontal
orientations with respect to the wire mesh should be used for the validation.

In chapter 6 and 7 it was shown that the bubble cuing is mainly influenced by Eo, the
wire diameter and the opening in the wire mesh. However, there was insufficient data to
derive a fully predictive correlation for the bubble cuing over a wide range of conditions.
e velocity graphs in both chapters show that bubble cuing only occurs upon straight
impact as long as the bubble is not decelerated to zero velocity. erefore, it is expected
that the bubble cuing can be described on basis of the bubble rise velocity. Preliminary
results show that the wire mesh exerts a force on the bubble that depends on the distance
to the wire mesh, the bubble diameter, the approach velocity, the diameter of wires and the
opening of the wire mesh. e exerted force has a maximum for all the simulations at a
distance of (0.5dw +0.2db). In addition, this force increases with increasing wire diameter
and decreasing opening in the wire mesh. In order to derive a correlation, the simulated
range should be extended by varying the wire diameter, Eo, Mo and the position of the
bubble with respect to the wire mesh.

When the bubble-wire mesh interaction is validated and a correlation is obtained for
single bubbles, the current study should be extended to cases with multiple bubbles. It is
expected that the interaction with other bubbles will lead to preferred paths through the
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(a) (b) (c)

(d) (e) ()

Figure 8.1: Preliminary results on a bubble squeezing through a wire mesh aer an inline
approach to the center of the mesh opening (Eo = 10, log(Mo) = 0.44, db/s = 1.8,
db/dw = 2.5). Note that the wire mesh is blurred in the images, because large parts of it
are out of focus.

(a) (b) (c)

(d) (e) ()

Figure 8.2: Snapshots of a bubble squeezing through a wire mesh aer an inline approach
to the center of the mesh opening (Eo = 10, log(Mo) = 1.0, db/s = 2.0, db/dw = 2.4).
is figure was reproduced from figure 7.3.
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mesh, which will decrease the efficiency of the bubble cuing if the path is moving through
the opening of the wire mesh. However, the bubble interactions will also lead to an increase
in the approach velocity of the bubbles and therefore beer cuing. In addition, the bubbles
that get stuck beneath the wire mesh might pass the wire mesh due to interactions with
other bubbles.





R

Ahami, S., Bussmann, M., 2009. Height functions for applying contact angles to 3D VoF
simulations. International Journal for Numerical Methods in Fluids 61 (8), 827–847.

Albadawi, A., Donoghue, D. B., Robinson, A. J., Murray, D. B., Delauré, Y. M. C., 2013. On
the analysis of bubble growth and detachment at low Capillary and Bond numbers using
Volume of Fluid and Level Set methods. Chemical Engineering Science 90, 77–91.

Albert, C., Raach, H., Bothe, D., 2012. Influence of surface tension models on the hydrody-
namics of wavy laminar falling films in Volume of Fluid-simulations. International Jour-
nal of Multiphase Flow 43, 66–71.

Apelt, C. J., 1958. e steady flow of a viscous fluid past a circular cylinder at Reynolds
numbers 40 and 44. Aeronautical Research Council Reports & Memoranda.

Aulisa, E., Manservisi, S., Scardovelli, R., Zaleski, S., 2003. A geometrical area-preserving
Volume-of-Fluid advection method. Journal of Computational Physics 192 (1), 355–364.

Beetstra, R., van der Hoef, M. A., Kuipers, J. A. M., 2007. Drag force of intermediate Reynolds
number flow past mono- and bidisperse arrays of spheres. AIChE Journal 53 (2), 489–501.

Bird, R. B., Stewart, W. E., Lightfoot, E. N., 2007. Transport Phenomena, 2nd Edition. John
Wiley & Sons, Inc.

Brackbill, J. U., Kothe, D. B., Zemach, C., 1992. A continuum method for modeling surface
tension. Journal of Computational Physics 100 (2), 335–354.

Bunner, B., Tryggvason, G., 2002. Dynamics of homogeneous bubbly flows part 1. rise ve-
locity and microstructure of the bubbles. Journal of Fluid Mechanics 466, 17–52.

Chang, Y. C., Hou, T. Y., Merriman, B., Osher, S., 1996. A Level Set formulation of eule-
rian interface capturingmethods for incompressible fluid flows. Journal of Computational
Physics 124 (2), 449–464.

Chesshire, G., Henshaw, W. D., 1990. Composite overlapping meshes for the solution of
partial differential equations. Journal of Computational Physics 90 (1), 1–64.

115



116 R

Cli, R., Grace, J. R., Weber, M. E., 1978. Bubbles, drops and particles. Academic Press, New
York.

Cummins, S. J., Francois, M. M., Kothe, D. B., 2005. Estimating curvature from volume frac-
tions. Computers & Structures 83 (6-7), 425–434.

Deen, N. G., Kriebitzsch, S. H. L., van der Hoef, M. A., Kuipers, J. A. M., 2012. Direct Nu-
merical Simulation of flow and heat transfer in dense fluid-particle systems. Chemical
Engineering Science 81, 329–344.

Deen, N. G., Kuipers, J. A. M., 2013. Direct Numerical Simulation of fluid flow and mass
transfer in dense fluid-particle systems. Industrial and Engineering Chemistry Research
52 (33), 11266–11274.

Deen, N. G., Kuipers, J. A. M., 2014. Direct Numerical Simulation (DNS) of mass, momentum
and heat transfer in dense fluid-particle systems. Current Opinion in Chemical Engineer-
ing 5, 84–89.

Deen, N. G., Peters, E. A. J. F., Padding, J. T., Kuipers, J. A. M., 2014. Review of Direct Nu-
merical Simulation of fluid-particle mass, momentum and heat transfer in dense gas-solid
flows. Chemical Engineering Science 116, 710–724.

Deen, N. G., van Sint Annaland, M., Kuipers, J. A.M., 2004.Multi-scalemodeling of dispersed
gas-liquid two-phase flow. Chemical Engineering Science 59 (8-9), 1853–1861.

Deen, N. G., van Sint Annaland, M., Kuipers, J. A. M., 2009. Direct Numerical Simulation
of complex multi-fluid flows using a combined Front Tracking and Immersed Boundary
method. Chemical Engineering Science 64 (9), 2186–2201.

Dijkhuizen, W., Roghair, I., van Sint Annaland, M., Kuipers, J. A. M., 2010a. DNS of gas bub-
bles behaviour using an improved 3D Front Tracking model–drag force on isolated bub-
bles and comparison with experiments. Chemical Engineering Science 65 (4), 1415–1426.

Dijkhuizen, W., Roghair, I., van Sint Annaland, M., Kuipers, J. A. M., 2010b. DNS of gas bub-
bles behaviour using an improved 3D Front Tracking model–model development. Chem-
ical Engineering Science 65 (4), 1427–1437.

Feng, Z.-G., Michaelides, E. E., 2005. Proteus: A direct forcing method in the simulations of
particulate flows. Journal of Computational Physics 202 (1), 20–51.

Francois, M. M., Cummins, S. J., Dendy, E. D., Kothe, D. B., Sicilian, J. M., Williams, M. W.,
2006. A balanced-force algorithm for continuous and sharp interfacial surface tension
models within a volume tracking framework. Journal of Computational Physics 213 (1),
141–173.



117

Ge, Y., Fan, L.-S., 2006. 3-D Direct Numerical Simulation of gas-liquid and gas-liquid-solid
flow systems using the Level-Set and Immersed-Boundary methods. Advances in Chem-
ical Engineering 31, 1–63.

Gerlach, D., Tomar, G., Biswas, G., Durst, F., 2006. Comparison of Volume-of-Fluid methods
for surface tension-dominant two-phase flows. International Journal of Heat and Mass
Transfer 49 (3-4), 740–754.

Gerrits, J., 2001. Dynamics of liquid-filled spacecra. Ph.D. thesis, University of Groningen.

Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D., Périaux, J., 2001. A fictitious domain
approach to the Direct Numerical Simulation of incompressible viscous flow past moving
rigid bodies: Application to particulate flow. Journal of Computational Physics 169 (2),
363–426.

Grace, J. R., 1973. Shapes and velocities of bubbles rising in infinite liquids. Transactions of
the Institution of Chemical Engineers 51, 116–120.

Grace, J. R., Wairegi, T., Nguyen, T. H., 1976. Shapes and velocities of single drops and bub-
blesmoving freely through immiscible liquids. Transactions of the Institution of Chemical
Engineers 54, 167–173.

Harper, J. F., 1997. Bubbles rising in line: Why is the first approximation so bad? Journal of
Fluid Mechanics 351, 289–300.

Hasimoto, H., 1959. On the periodic fundamental solutions of the Stokes equations and their
application to viscous flow past a cubic array of spheres. Journal of Fluid Mechanics 5 (2),
317–328.

Henshaw, W. D., Schwendeman, D. W., 2003. An adaptive numerical scheme for high-speed
reactive flow on overlapping grids. Journal of Computational Physics 191 (2), 420–447.

Höller, V., Radevik, K. S., Kiwi-Minsker, L., Renken, A., 2001. Bubble columns staged with
structured fibrous catalytic layers: Residence time distribution and mass transfer. Indus-
trial and Engineering Chemistry Research 40 (6), 1575–1579.

Hoomans, B. P. B., Kuipers, J. A. M., Briels, W. J., van Swaaij, W. P. M., 1996. Discrete Particle
simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-
sphere approach. Chemical Engineering Science 51 (1), 99–118.

Hooshyar, N., van Ommen, J. R., Hamersma, P. J., Sundaresan, S., Mudde, R. F., 2013. Dy-
namics of single rising bubbles in neutrally buoyant liquid-solid suspensions. Physical
Review Leers 110 (24), 244501.

Hu, H. H., 1996. Direct simulation of flows of solid-liquid mixtures. International Journal of
Multiphase Flow 22 (2), 335–352.



118 R

Hu, H. H., Joseph, D. D., Crochet, M. J., 1992. Direct simulation of fluid particle motions.
eoretical and Computational Fluid Dynamics 3 (5), 285–306.

Hua, J., Lou, J., 2006. Simulation of single bubble rising in liquid using Front Tracking
method. WIT Transactions on Engineering Sciences 52, 79–88.

Ito, D., Prasser, H.-M., Kikura, H., Aritomi, M., 2011. Uncertainty and intrusiveness of three-
layer wire-mesh sensor. Flow Measurement and Instrumentation 22 (4), 249–256.

Jafari, A., Shirani, E., Ashgriz, N., 2007. An improved three-dimensional model for interface
pressure calculations in free-surface flows. International Journal of Computational Fluid
Dynamics 21 (2), 87–97.

Jain, D., Deen, N. G., Kuipers, J. A. M., Antonyuk, S., Heinrich, S., 2012. Direct Numerical
Simulation of particle impact on thin liquid films using a combined Volume of Fluid and
Immersed Boundary method. Chemical Engineering Science 69 (1), 530–540.

Jain, D., Lau, Y. M., Kuipers, J. A. M., Deen, N. G., 2013. Discrete Bubble Modeling for a
micro-structured bubble column. Chemical Engineering Science 100, 496–505.

Kajishima, T., Takiguchi, S., 2002. Interaction between particle clusters and particle-induced
turbulence. International Journal of Heat and Fluid Flow 23 (5), 639–646.

Kantarci, N., Borak, F., Ulgen, K. O., 2005. Bubble column reactors. Process Biochemistry
40 (7), 2263–2283.

Kawaguti, M., 1953. Numerical solution of the Navier-Stokes equations for the flow around
a circular cylinder at Reynolds number 40. Journal of the Physical Society of Japan 8 (6),
747–757.

Kempe, T., Fröhlich, J., 2012. An improved Immersed Boundary method with Direct Forc-
ing for the simulation of particle laden flows. Journal of Computational Physics 231 (9),
3663–3684.

Kitagawa, A., Sugiyama, K., Murai, Y., 2004. Experimental detection of bubble-bubble inter-
actions in a wall-sliding bubble swarm. International Journal of Multiphase Flow 30 (10),
1213–1234.

Kuprat, A., Khamayseh, A., George, D., Larkey, L., 2001. Volume conserving smoothing for
piecewise linear curves, surfaces, and triple lines. Journal of Computational Physics 172,
99–118.

Kurtoglu, I. O., Lin, C.-L., 2006. Laice Boltzmann study of bubble dynamics. Numerical
Heat Transfer, Part B: Fundamentals 50 (4), 333–351.

Kwakkel, M., Breugem, W.-P., Boersma, B. J., 2012. An efficient multiple marker front-
capturing method for two-phase flows. Computers & Fluids 63, 47–56.



119

Ladd, A. J. C., 7 1994. Numerical simulations of particulate suspensions via a discretized
Boltzmann equation. part 2. numerical results. Journal of Fluid Mechanics 271, 311–339.

Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., Zanei, G., 1994. Modelling merging
and fragmentation in multiphase flows with SURFER. Journal of Computational Physics
113 (1), 134–147.

Lamb, H., 1932. Hydrodynamics, sixth Edition. Cambridge University Press, London.

Li, Y., Yang, G. Q., Zhang, J. P., Fan, L.-S., 2001. Numerical studies of bubble formation
dynamics in gas-liquid-solid fluidization at high pressures. Powder Technology 116 (2-3),
246–260.

Liao, Y., Lucas, D., 2009. A literature review of theoretical models for drop and bubble
breakup in turbulent dispersions. Chemical Engineering Science 64, 3389–3406.

Lin, S.-Y., Chin, Y.-H., Wu, C.-M., Li, J.-F., Chen, Y.-C., 2012. A pressure correction-Volume
of Fluid method for simulation of two-phase flows. International Journal for Numerical
Methods in Fluids 68 (2), 181–195.

Meier, M., Yadigaroglu, G., Smith, B. L., 2002. A novel technique for including surface tension
in PLIC-VOF methods. European Journal of Mechanics - B/Fluids 21 (1), 61–73.

Mial, R., Iaccarino, G., 2005. Immersed Boundary methods. Annual Review of Fluid Me-
chanics 37, 239–261.

Mordant, N., Pinton, J.-F., 2000. Velocity measurement of a seling sphere. European Phys-
ical Journal B 18 (2), 343–352.

Nagrath, S., Jansen, K. E., Lahey Jr., R. T., 2005. Computation of incompressible bubble dy-
namics with a stabilized finite element Level Set method. Computer Methods in Applied
Mechanics and Engineering 194 (42-44), 4565–4587.

Nishioka, M., Sato, H., 1974. Measurements of velocity distributions in the wake of a circular
cylinder at low Reynolds numbers. Journal of Fluid Mechanics 65 (1), 97–112.

Peskin, C. S., 1977. Numerical analysis of blood flow in the heart. Journal of Computational
Physics 25 (3), 220–252.

Peskin, C. S., 2002. e Immersed Boundary method. Acta Numerica 11, 479–517.

Pilliod Jr., J. E., Pucke, E. G., 2004. Second-order accurate Volume-of-Fluid algorithms for
tracking material interfaces. Journal of Computational Physics 199 (2), 465–502.

Popinet, S., 2009. An accurate adaptive solver for surface-tension-driven interfacial flows.
Journal of Computational Physics 228 (16), 5838–5866.



120 R

Prasser, H.-M., Scholz, D., Zippe, C., 2001. Bubble size measurement using wire-mesh sen-
sors. Flow Measurement and Instrumentation 12 (4), 299–312.

Raessi, M., Mostaghimi, J., Bussmann, M., 2010. A Volume-of-Fluid interfacial flow solver
with advected normals. Computers & Fluids 39 (8), 1401–1410.

Ramírez-Muñoz, J., Salinas-Rodríguez, E., Soria, A., Gama-Goicochea, A., 2011. Hydrody-
namic interaction on large-Reynolds-number aligned bubbles: Drag effects. Nuclear En-
gineering and Design 241 (7), 2371–2377.

Renardy, Y., Renardy, M., 2002. PROST: A parabolic reconstruction of surface tension for
the Volume-of-Fluid method. Journal of Computational Physics 183 (2), 400–421.

Rider, W. J., Kothe, D. B., 1998. Reconstructing volume tracking. Journal of Computational
Physics 141, 112.

Roghair, I., 2012. Direct Numerical Simulations of hydrodynamics andmass transfer in dense
bubbly flows. Ph.D. thesis, Eindhoven, University of Technology.

Roghair, I., Baltussen, M. W., van Sint Annaland, M., Kuipers, J. A. M., 2013a. Direct Nu-
merical Simulations of the drag force of bi-disperse bubble swarms. Chemical Engineering
Science 95, 48–53.

Roghair, I., Lau, Y. M., Deen, N. G., Slagter, H. M., Baltussen, M. W., van Sint Annaland, M.,
Kuipers, J. A. M., 2011. On the drag force of bubbles in bubble swarms at intermediate
and high reynolds numbers. Chemical Engineering Science 66, 3204–3211.

Roghair, I., van Sint Annaland, M., Kuipers, J. A. M., 2013b. Drag force and clustering in
bubble swarms. AIChE Journal 59 (5), 1791–1800.

Rubinow, S. I., Keller, J. B., 11 1961. e transverse force on a spinning sphere moving in a
viscous fluid. Journal of Fluid Mechanics 11, 447–459.

Ruzicka, M. C., 2000. On bubbles rising in line. International Journal of Multiphase Flow
26 (7), 1141–1181.

Scardovelli, R., Zaleski, S., 1999. Direct Numerical Simulation of free-surface and interfacial
flow. Annual Review of Fluid Mechanics 31, 567.

Segers, Q. I. E., 2015. Cuing bubbles using wire mesh structures, Direct Numerical Simu-
lations. Ph.D. thesis, Eindhoven, University of Technology.

Segers, Q. I. E., Kuipers, J. A. M., Deen, N. G., 2013. Immersed Boundary method applied to
single phase flow past crossing cylinders. Chemical Engineering Science 100, 33–38.



121

Shin, S., Juric, D., 2002. Modeling three-dimensional multiphase flow using a level contour
reconstruction method for Front Tracking without connectivity. Journal of Computa-
tional Physics 180, 427–470.

Son, G., 2003. Efficient implementation of a coupled Level-Set and Volume-of-Fluid method
for three-dimensional incompressible two-phase flows. Numerical Heat Transfer, Part B:
Fundamentals 43 (6), 549–565.

Takami, H., Keller, H. B., 1969. A methodology for highly accurate results of Direct Numer-
ical Simulations: Drag force in dense gas-solid flows at intermediate Reynolds number.
Physics of Fluids Supplement II 12, 51–56.

Tang, Y., Kriebitzsch, S. H. L., Peters, E. A. J. F., van der Hoef, M. A., Kuipers, J. A. M.,
2014. A methodology for highly accurate results of Direct Numerical Simulations: Drag
force in dense gas-solid flows at intermediate Reynolds number. International Journal of
Multiphase Flow 62, 73–86.

Tang, Y., Peters, E. A. J. F., Kuipers, J. A. M., Kriebitzsch, S. H. L., van der Hoef, M. A., 2015.
A new drag correlation from fully resolved simulations of flow past monodisperse static
arrays of spheres. AIChE Journal 61 (2), 688–698.

ten Cate, A., Nieuwstad, C. H., Derksen, J. J., van den Akker, H. E. A., 2002. Particle imaging
velocimetry experiments and Laice-Botlzmann simulations on a single sphere seling
under gravity. Physics of Fluids 14 (11), 4012–4025.

Tomiyama, A., 1998. Struggle with computational bubble dynamics. In: ird International
Conference on Multiphase Flow. pp. 369–405.

Torres, D. J., Brackbill, J. U., 2000. e Point-Set method: Front-Tracking without connec-
tivity. Journal of Computational Physics 165 (2), 620–644.

Trion, D. J., 1959. Experiments on the flow past a circular cylinder at low Reynolds num-
bers. Journal of Fluid Mechanics 6, 547–567.

Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas,
S., Jan, Y. J., 2001. A Front-Tracking method for the computations of multiphase flow.
Journal of Computational Physics 169 (2), 708–759.

Uhlmann, M., 2005. An Immersed Boundary method with Direct Forcing for the simulation
of particulate flows. Journal of Computational Physics 209, 448–476.

Unverdi, S. O., Tryggvason, G., 1992. A Front-Tracking method for viscous, incompressible,
multi-fluid flows. Journal of Computational Physics 100 (1), 25–37.

van Sint Annaland, M., Deen, N. G., Kuipers, J. A. M., 2003. Multi-level modeling of dis-
persed gas-liquid two-phase flows. Heat and mass transfer. Springer, Berlin (edited by M.
Sommerfeld and D. Mewes).



122 R

van Sint Annaland, M., Deen, N. G., Kuipers, J. A. M., 2005. Numerical simulation of gas bub-
bles behaviour using a three-dimensional Volume of Fluid method. Chemical Engineering
Science 60 (11), 2999–3011.

van Sint Annaland, M., Dijkhuizen, W., Deen, N. G., Kuipers, J. A. M., 2006. Numerical
simulation of behavior of gas bubbles using a 3-D Front-Tracking method. AIChE Journal
52, 99–110.

Walker, E., Nikitopoulos, D., Tromeur-Dervout, D., 2013. Parallel solution methods for
poisson-like equations in two-phase flows. Computers & Fluid 80, 152–157.

Wang, T., Wang, J., Jin, Y., 2007. Slurry reactors for gas-to-liquid processes: A review. In-
dustrial and Engineering Chemistry Research 46 (18), 5824–5847.

White, F. M., 1974. Viscous Fluid Flow. McGraw-Hill, Inc.

Yang, G. Q., Du, B., Fan, L.-S., 2007. Bubble formation and dynamics in gas-liquid-solid
fluidization. a review. Chemical Engineering Science 62 (1-2), 2–27.

Youngs, D. L., 1982. Numerical Methods for Fluid Dynamics. Academic Press, New York
(edited by K.W. Morton and M.J. Bianes), Ch. Time-dependent multi-material flow with
large fluid distortion, pp. 273–285.

Yu, Z., Fan, L.-S., 2008. Direct simulation of the buoyant rise of bubbles in infinite liquid
using Level Set method. Canadian Journal of Chemical Engineering 86 (3), 267–275.

Yu, Z., Yang, H., Fan, L.-S., 2011. Numerical simulation of bubble interactions using an adap-
tive Laice Boltzmann method. Chemical Engineering Science 66 (14), 3441–3451.

Yuan, H., Prosperei, A., 1994. On the in-line motion of two spherical bubbles in a viscous
fluid. Journal of Fluid Mechanics 278, 325–349.

Zhang, Z., Prosperei, A., 2005. A second-order method for three-dimensional particle sim-
ulation. Journal of Computational Physics 210 (1), 292–324.

Zick, A. A., Homsy, G. M., 1982. Stokes flow through periodic arrays of spheres. Journal of
Fluid Mechanics 115, 13–26.



L  

Journal papers
I. Roghair, Y. M. Lau, N. G. Deen, H. M. Slagter, M. W. Baltussen, M. Van Sint Annaland,

and J. A. M. Kuipers. On the drag force of bubbles in bubble swarms at intermedi-
ate and high reynolds numbers. Chemical Engineering Science, 66(14):3204–3211, 2011.
doi:10.1016/j.ces.2011.02.030.

I. Roghair, M. W. Baltussen, M. Van Sint Annaland, and J. A. M. Kuipers. Direct numerical
simulations of the drag force of bi-disperse bubble swarms. Chemical Engineering Science,
95:48–53, 2013. doi:10.1016/j.ces.2013.03.027.

M. W. Baltussen, L. J. H. Seelen, J. A. M. Kuipers, and N. G. Deen. Direct numerical simu-
lations of gas-liquid-solid three phase flows. Chemical Engineering Science, 100:293–299,
2013. doi:10.1016/j.ces.2013.02.052.

M. W. Baltussen, J. A. M. Kuipers, and N. G. Deen. A critical comparison of surface tension
models for the volume of fluid method. Chemical Engineering Science, 109:65–74, 2014.
doi:10.1016/j.ces.2013.12.045.

M. W. Baltussen, Q. I. E. Segers, J. A. M. Kuipers, and N. G. Deen. Cuing bubbles with a
single wire. Chemical Engineering Science (submied for review), 2015a.

M. W. Baltussen, J. A. M. Kuipers, and N. G. Deen. Cuing bubbles with a wire mesh.
Chemical Engineering Science (submied for review), 2015b.

M. W. Baltussen, J. A. M. Kuipers, and N. G. Deen. A critical comparison between immersed
boundary methods. (In preparation), 2015c.

M. W. Baltussen, J. A. M. Kuipers, and N. G. Deen. Direct numerical simulations of the drag
force in gas-liquid-solid three phase flows. (In preparation), 2015d.

123

http://dx.doi.org/10.1016/j.ces.2011.02.030
http://dx.doi.org/10.1016/j.ces.2013.03.027
http://dx.doi.org/10.1016/j.ces.2013.02.052
http://dx.doi.org/10.1016/j.ces.2013.12.045


124 L  

Conference Proceedings
M. W. Baltussen, J. A. M. Kuipers, and N. G. Deen. Direct numerical simulation of the

coalescence of bubbles. In Proceedings of the 22ⁿ International Symposium on Chemical
Reaction and Engineering, Maastricht, e Netherlands, 2012.

M. W. Baltussen, L.J.H. Seelen, J. A. M. Kuipers, and N. G. Deen. Direct numerical simula-
tion of bubble slurry columns. In Proceedings of the 9ʰ European Conference of Chemical
Engineering, e Hague, e Netherlands, 2013a.

M.W. Baltussen, L.J.H. Seelen, J. A. M. Kuipers, and N. G. Deen. Direct numerical simulation
of gas-liquid-solid three phase flows. In Proceedings of the 11ʰ International Conference
on Gas-Liquid & Gas-Liquid-Solid Reactor Engineering, Seoul, South Korea, 2013b.

M. W. Baltussen, J. A. M. Kuipers, and N. G. Deen. A critical comparison of surface tension
models for volume of fluid method. In Proceedings of the 10ʰ International Conference
on Computational Fluid Dynamics in the Oil & Gas, Metallutgical and Process Industries,
Trondheim, Norway, 2014.

M. W. Baltussen, J. A. M. Kuipers, and N. G. Deen. Cuing bubbles using direct numerical
simulation. In Proceedings of the 12ʰ International Conference on Gas-Liquid & Gas-Liquid-
Solid Reactor Engineering, New York, United States of America, 2015.



D

Na vier jaar en een boekje vol met resultaten, ben ik nu misschien wel bij het moeilijkste
stuk van mijn promotie aangekomen. Ondanks dat alleen mijn naam op de voorkant van dit
proefschri staat, zijn er veel meer mensen die mij hebben geholpen om dit mooie resultaat
neer te zeen. Daarom wil ik nu nog een paar pagina’s besteden om al deze mensen te
bedanken.

Als eerste wil ik Hans en Niels heel erg bedanken. Hans, dankzij onze lange discussies
over de implementatie van de verschillende onderdelen van de methodes, die ontstonden
door mijn eigenwijsheid, heb je mij ontzeend geholpen. Daarnaast zijn jouw vakkennis en
je kennis over de verschillende methoden een bron van inspiratie voor mij geweest. Niels,
als ik weer eens vast zat met coderen of als ik even niet meer wist hoe ik verder moest, dan
kon ik altijd een afspraak met je maken om het probleem samen op te lossen. Al was het
maken van de afspraak soms al het begin van de oplossing.

Maar ik denk dat ik van jullie beiden misschien nog wel het meeste heb geleerd over
mijzelf. Natuurlijk wist ik al wel dat ik perfectionistisch ben, maar nu kan ik soms ook wat
pragmatischer naar mijn werk kijken. Ik ben jullie echt dankbaar dat ik met en misschien
zelfs door jullie heb mogen leren om nee te zeggen. Al blijf ik nog steeds wel een beetje te
vaak ja zeggen.

Vanwege de discussies met Hans en Niels, hadden we soms wat hulp nodig om uitein-
delijk een oordeel te vellen over wie er gelijk had. Johan, ik wil je bedanken voor de vele
afleidingen die je met me hebt gedaan voor de tweede orde Immersed Boundary methode,
want ik vraag me af of ik anders ooit had geloo dat de versimpelingen in de methode voor
constante viscositeit gerechtvaardigd waren. Frank bedankt dat je deur altijd openstond als
mijn deeltjes weer rare gedragingen vertoonden.

Ivo, naast dat ik bij jou altijd terecht kon om even over mijn belletjes problemen te
kletsen, mocht ik ook gewoon altijd even mijn verhaal houden. Dank je wel voor alle hulp
de afgelopen jaren. Martin ten eerste natuurlijk bedankt voor de tijd die je hebt vrijgemaakt
om mij in meer detail het oppervalktespanningsmodel van het Front Tracking model uit te
leggen. Ook heb ik altijd met veel plezier met jou en Mariët of Ramon Fysisch Transport
Verschijnselen gegeven.

Tijdens mijn project heb ik meerdere studenten begeleidt. Remy, Luuk, Kaoutar, Derek
en Martin: allemaal heel erg bedankt voor jullie bijdragen die jullie hebben geleverd aan

125



126 D

mijn werk.
Luuk en Kay heel erg bedankt dat jullie mijn paranimfen willen zijn. Luuk, ik denk

dat ik je niet genoeg kan bedanken voor alle discussies die we tijdens en na je afstuderen
hebben gehad. Ook wil ik je bedanken voor alle keren dat je me geduldig hebt geholpen
met de codes en het parallelliseren. Kay, super bedankt dat je iedere keer wilde luisteren
naar mijn problemen in de code, waarop jij meestal de simpelste oplossingen had.

I would like to thank all (previous) SMR members for all the serious discussions and the
fun. Because of all the conferences, borrels, SMR outings, the Germany trip and dinners,
I felt at ease in the SMR group. ank you all for the nice working atmosphere. Deepak,
Krusnha and int, I really enjoyed our discussions on modelling and bubble cuing as
project partners. I will never forget our trips to GLS. A special thanks to Ildefonso, Jelle,
Kai, Langhui, Lizzy, Marian, Mariët, Martin, Mohammed, Partick, Paul, Ramon, Sebastian,
Tom, Vincenzo, Yali and Yuk Man for your technical and less technical discussions.

Although there are not that many experimental results in this thesis, I think I bothered
all the technicians with small changes on my set-up. Joost, Joris, Lee and ijs thanks for
all your technical support and muscular strength to li the set-up. Daarnaast wil ik Ada,
Judith en José bedanken voor alle administratieve zaken die jullie altijd voor mij hebben
geregeld. Ook wil ik jullie bedanken dat ik eigenlijk altijd even kon binnenlopen om mijn
verhaal kwijt te kunnen, of het nu over werk ging of niet.

Ten sloe wil ik graag alle mensen buiten SMR nog even bedanken voor al hun morele
steun. Giske, Henk en Martijn, ik kan me zo indenken dat jullie mijn geklets over belletjes
na mijn afstuderen vast al zat waren. Daarom misschien nog wel meer bedankt voor alle
gezellige etentjes om even mijn zinnen te verzeen en alle berichtjes als het even tegen zat.

Dames 4 van Hajraa super bedankt voor de gezellige jaren die soms wat minder suc-
cesvol waren. Daisy, Marleen, Rianne en Tom, ik wil jullie speciaal bedanken voor al jullie
steun het afgelopen jaar. Vivian, jou wil ik even in het bijzonder bedanken. Niet alleen was
je er voor mij het afgelopen jaar, maar je hebt ook je best gedaan op mijn voorkant. Super
bedankt!

Koos en Mark, ik denk dat jullie degenen zijn die mijn entree binnen de Eindhovense
Reddingsbrigade zo gemakkelijk hebben gemaakt. Ik hoop dat we nog jaren samen naar
Rosmalen kunnen gaan om samen met de jeugdleden deel te nemen aan de EHAD wed-
strijden. Mark bedankt dat je er voor mij was als ik even mijn verhaal kwijt moest voordat
we beiden les gingen geven. Koos bedankt voor alle keren dat we samen hebben gezeten
voor onze opleiding tot instructeur. Daarnaast wil ik alle jeugdleden en kaderleden van de
Eindhovense Reddingsbrigade bedanken voor de leuke tijd.

Ellen en Pieter, ik wil jullie bedanken voor al jullie steun en jullie luisterende oor. Ik
hoop dat ik de wandelingen niet te saai heb gemaakt met mijn geklets over studenten en
belletjes.

Als laatste wil ik mijn familie bedanken voor al hun steun. Sasja, ik denk dat er nie-
mand zoveel hee toegevoegd in mijn proefschri terwijl er zo weinig van is overgebleven.



127

Lisanne, Erik, papa en mama, super bedankt dat ik altijd bij jullie terecht kan voor wijze
(zusjes) raad en dat jullie iedere keer weer luisteren naar mijn verhalen over belletjes en
deeltjes. Opa en oma, ik denk dat het voor jullie het moeilijkste is om te begrijpen wat ik
heb gedaan, maar ik weet ook zeker dat jullie toch jullie best doen om het te begrijpen. Opa,
ik wil je bedanken voor alle uren die we samen hebben geknutseld, gesoldeerd en alle wijze
raad. Ik denk dat deze uurtjes met z’n tweeën uiteindelijk wel hebben geleid tot dit mooie
proefschri.

Ik heb het gevoel dat ik nog heel veel mensen ben vergeten. Via deze laatste woorden
wil ik graag iedereen nogmaals heel erg bedanken voor alle hulp en alle steun.

Bedankt allemaal!

Maike Baltussen
Eindhoven, 2015.





C V

Maike Baltussen werd geboren op 7 september 1987 te ’s-Hertogenbosch. Ze groeide op in
Rosmalen en Monster, waar ze respectivelijk de bassisscholen den Krommenhoek en Sint
Aloysius bezocht. Vervolgens behaalde ze haar VWO diploma aan de Dalton te Den Haag.

Maike stare in 2005 met de bachelor opleiding Chemische Technologie aan de Uni-
versiteit Twente. Waarna ze haar opleiding voorzee aan dezelfde universiteit met twee
masters in Chemical Engineering en Nanotechnology. In het kader van deze masters hee
ze een stage opdracht voltooid aan de Kyoto Universiteit.

In 2010 studeerde ze af voor demaster Chemical Engineering by de vakgroep Fundamen-
tals of Chemical Reaction Engineering aan de Universiteit Twente op een numerieke studie
van monodisperse en bidisperse bellenzwermen. Waarna in 2011 ook de opleiding Nano-
technologie werd afgerond met numeriek afstudeeronderzoek naar de colloïdale stabiliteit
van oxidatieve nanofilms bij de vakgroep Inorganic Material Science aan de Universiteit
Twente.

Na haar opleiding is ze gestart als promovendus bij de vakgroep Multi-Scale Modelling
of Multiphase Flows aan de Technische Universiteit Eindhoven. Onder de supervisie van
prof.dr.ir. J.A.M. Kuipers and dr.ir N.G. Deen hee ze onderzoek gedaan naar de opbreking
en samenvoeging van bellen door de interactie van bellen met gaasstructuren, waarvan de
resultaten zijn beschreven in dit proefschri.

129




	Summary
	Samenvatting
	Nomenclature
	Introduction
	Background and motivation
	Multi-scale modeling approach
	Thesis outline

	Gas-Liquid Direct Numerical Simulation Models
	Introduction
	Governing equations
	Front Tracking model 
	Volume of Fluid model
	Verification results
	Validation results
	Conclusions

	Fluid-Solid Direct Numerical Simulation Models
	Introduction
	Governing equations
	First order explicit Immersed Boundary method
	Second order implicit Immersed Boundary method
	Verification results
	Validation results
	Conclusions

	Validation of bubble-bubble interactions
	Introduction
	Experimental set-up
	Simulation set-up
	Effect of the bubble-bubble interaction on the velocity
	Effect of the bubble-bubble interaction on the bubble shape
	Conclusions

	The effect of particles on the hydrodynamics of a bubbly flow
	Introduction
	Numerical method
	Simulation set-up
	The drag coefficient of the bubbles
	The drag coefficient of the particles
	Bubble clustering
	Conclusions

	Cutting bubbles with a single wire
	Introduction
	Numerical method
	Validation of the model
	Parameter study
	Conclusion

	Cutting bubbles with a wire mesh
	Introduction
	Numerical method
	Simulation set-up
	Interaction of a bubble with the center of a wire mesh opening
	Straight interaction with a crossing of the wire mesh
	Conclusions

	Epilogue
	Direct Numerical Simulation
	The hydrodynamics of dispersed gas-liquid-solid flows
	Micro-structured bubble column

	References
	List of publications
	Dankwoord
	Curriculum Vitae

