

The (weighted) metric dimension of graphs : hard and easy
cases
Citation for published version (APA):
Epstein, L., Levin, A., & Woeginger, G. J. (2015). The (weighted) metric dimension of graphs : hard and easy
cases. Algorithmica, 72(4), 1130-1171. https://doi.org/10.1007/s00453-014-9896-2

DOI:
10.1007/s00453-014-9896-2

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1007/s00453-014-9896-2
https://doi.org/10.1007/s00453-014-9896-2
https://research.tue.nl/en/publications/f86db641-15c6-46a0-a1fc-6a69fd710049

Algorithmica (2015) 72:1130–1171
DOI 10.1007/s00453-014-9896-2

The (Weighted) Metric Dimension of Graphs: Hard
and Easy Cases

Leah Epstein · Asaf Levin · Gerhard J. Woeginger

Received: 6 February 2013 / Accepted: 20 May 2014 / Published online: 30 May 2014
© Springer Science+Business Media New York 2014

Abstract Given an input undirected graph G = (V, E), we say that a vertex � sep-
arates u from v (where u, v ∈ V) if the distance between u and � differs from the
distance from v to �. A set of vertices L ⊆ V is a feasible solution if for every pair
of vertices, u, v ∈ V (u �= v), there is a vertex � ∈ L that separates u from v. Such a
feasible solution is called a landmark set, and the metric dimension of a graph is the
minimum cardinality of a landmark set. Here, we extend this well-studied problem to
the case where each vertex v has a non-negative cost, and the goal is to find a feasi-
ble solution with a minimum total cost. This weighted version is NP-hard since the
unweighted variant is known to be NP-hard. We show polynomial time algorithms for
the cases where G is a path, a tree, a cycle, a cograph, a k-edge-augmented tree (that
is, a tree with additional k edges) for a constant value of k, and a (not necessarily com-
plete) wheel. The results for paths, trees, cycles, and complete wheels extend known
polynomial time algorithms for the unweighted version, whereas the other results are
the first known polynomial time algorithms for these classes of graphs even for the
unweighted version. Next, we extend the set of graph classes for which computing the

An extended abstract of this paper appears in Proc. WG2012, pages 114–125.

L. Epstein (B)
Department of Mathematics, University of Haifa, 31905 Haifa, Israel
e-mail: lea@math.haifa.ac.il

A. Levin
Faculty of Industrial Engineering and Management, The Technion, 32000 Haifa, Israel
e-mail: levinas@ie.technion.ac.il

G. J. Woeginger
Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands
e-mail: gwoegi@win.tue.nl

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-014-9896-2&domain=pdf

Algorithmica (2015) 72:1130–1171 1131

unweighted metric dimension of a graph is known to be NP-hard. We show that for
split graphs, bipartite graphs, co-bipartite graphs, and line graphs of bipartite graphs,
the problem of computing the unweighted metric dimension of the graph is NP-hard.

Keywords Graph algorithms · Metric dimension · Graph classes

1 Introduction

LetG = (V, E) be a simple, loopless, undirected graph. Denote the number of vertices
in G by n = |V | and the number of its edges by m = |E |. A vertex � ∈ V is called a
separating landmark for two vertices u, v ∈ V with u �= v, if the length of a shortest
path from u to � differs from the length of a shortest path from v to �; sometimes we
will then also say that vertex � separates or distinguishes u from v. A subset L ⊆ V
is a landmark set (or a feasible landmark set) for the graph G, if for any two vertices
u, v ∈ V with u �= v there exists a separating landmark � ∈ L that distinguishes
u from v. We also refer to such a set as a solution. The metric dimension md(G) of
the graph G is the smallest cardinality of any landmark set in G. Note that md(G) is
well-defined, as L = V trivially forms a landmark set forG. Additionally, md(G) = 0
holds if and only if |V | = 1. In this paper, we consider the problem of computing the
metric dimension of an input graphG. Applications of this optimization problem arise
in diverse areas. See [2] for an application of this problem in network verification, [6]
for an application in strategies for the Mastermind game, [9] for an application in
metric geometry, [15] for an application in digital geometry, namely in digitizing of
images, [14] for an application in robot navigation, and [4] for an application in drug
discovery. Many of these applications are relevant for weighted graphs.

This metric dimension problem was introduced by Harary and Melter [9] and by
Slater [18], and studied widely in the combinatorics literature. In this line of research,
the exact values of the metric dimension or bounds on it for specific graph classes are
obtained. We refer to [1,3,4] for results additional to those mentioned here (see also
the survey [5]). Khuller et al. [14] showed that md(G) = 1 if and only if G is a path.
Tree input graphs that are not paths were considered in [4,9,14,18]. It turns out that
it is possible to characterize the feasibility of a landmark set for a tree using a notion
of legs, which are paths of vertices of degree at most 2 connected to a vertex of a
higher degree. For the case that the input graph is a cycle, it holds that md(G) = 2 [9].
Complete wheel graphs were mentioned in [9], and further studied in [17]. Melter and
Tomescu [15] considered the problem for grid-graphs induced by lattice points in the
planewhen the distances aremeasured in the L1 norm or in the L∞ norm.Khuller et al.
[14] generalized one result of [15] to lattice points contained inside a d-dimensional
rectangle, where the distance is according to the L1 norm (that is, the grid-graph
over points in a d-dimensional rectangle). The grid-graph with Euclidean metrics was
studied in the paper [16], where the authors relate the problem to a combinatorial coin
weighing problem.

As for the complexity of the problem, Khuller et al. [14] proved that the problem
is NP-hard for general graphs, and showed that one can obtain a landmark set for
a given instance by applying the greedy algorithm to a certain set cover instance

123

1132 Algorithmica (2015) 72:1130–1171

(where we would like to cover the pairs of vertices in a graph using sets which are
defined using a single landmark). Thus, there is an (2 ln n + O(1))-approximation
algorithm for general graphs. Beerliova et al. [2] showed that if P �=NP then there is
no o(log n)-approximation algorithm for the problem. In [11], Hauptmann, Schmied,
and Viehmann strengthened these results and showed that if NP� DTIME(nlog log n),
then there is no ((1 − ε) ln n)-approximation algorithm for any ε > 0. They give an
improved (1 + (1 + o(1)) ln n)-approximation algorithm. Diaz et al. [8] showed that
the problem is NP-hard even when restricted to planar input graphs (but solvable in
polynomial time for outerplanar graphs), and inspired by the last result, Hoffmann and
Wanke announced a reduction showing that it is NP-hard even for Gabriel unit disk
graphs [12]. Very recently, Hartung and Nichterlein [10] proved even stronger results
as follows. They showed that the problem is W[2]-hard with respect to the parameter
md(G). It implies that the problem of computing the metric dimension of a graph
cannot be solved in no(md(G)) time, unless FPT = W[1], and under the assumption
FPT �= W[1], the trivial nO(md(G))-time algorithm that tests all possible subsets of
the vertices sorted by non-decreasing cardinality is asymptotically optimal. They also
show that md(G) on maximum degree three graphs is inapproximable by a factor of
o(log n), unless P = NP.

Here we generalize the problem of computing md(G) to a weighted variant. More
precisely, given a non-negative cost function c : V → R+, the goal is to compute
a landmark set L such that

∑
�∈L c(�) is minimized. This function is given as input

together with the graph G. We let wmd(G) denote this minimum cost and we say
that wmd(G) is the weighted metric dimension of G. The wmd problem is to compute
a landmark set L of minimum total cost, and to find wmd(G). Our polynomial time
algorithms for special classes of graphs will be for solvingwmdwhile our NP-hardness
proofs will hold even for the unweighted version of computing md(G) and thus the
same holds for the weighted variant as well. We are not aware of any previous work
on the weighted version. We say that a landmark set is minimal if it is minimal with
respect to inclusion. Note that there is always an optimal solution (a minimum cost
landmark set) that is also minimal (since the cost function is non-negative), and thus
we sometimes characterize the set of minimal solutions.

We note that the problem is clearly in NP because given a subset of vertices,we
can verify its feasibility as a landmark set in polynomial time. To do this, we find the
vectors of the distances of each vertex in V from each of the landmarks. Afterwards, we
check that there is no pair of identical vectors. In some of our algorithmswe perform an
exhaustive enumeration of landmark sets (among a restricted family of vertex subsets),
and we can always find a cheapest landmark set among such a restricted family of
subsets (we first ensure that it contains at least one optimal solution).

1.1 Our Results

We generalize the known polynomial time algorithms for md (the problem of finding a
landmark set of minimum cardinality) to wmd for the cases where G is a path, a tree, a
cycle, or a complete wheel. We develop polynomial time algorithms for the weighted
problem when G is a cograph, a k-edge-augmented tree (that is, a tree with additional

123

Algorithmica (2015) 72:1130–1171 1133

k edges) for a constant value of k, and a (not necessarily complete) wheel. These
results are the first polynomial time algorithms even for the unweighted version when
G belongs to these classes of graphs. One of our approaches for designing polynomial
time algorithms is as follows. For a given graph class we identify the structure of
minimal (with respect to inclusion) landmark sets. This leads, in several considered
graph families, to an exploration of a polynomial number of candidate solutions or to
a dynamic programming approach. Thus the algorithm seeks for a minimum cost set
among the minimal landmarks sets. Other methods include defining (and solving) a
related auxiliary problem, and preprocessing. Next, we extend the set of graph classes
for which md is known to be NP-hard. Specifically, we show that md(G) is NP-hard
when the input graph G is a split graph, bipartite graph, co-bipartite graph, or a line
graph of a bipartite graph.

1.2 Definitions and Notation

Given a graph G = (V, E), we say that a vertex v ∈ V is a leaf if its degree is 1, it
is an isolated vertex if its degree is 0, if its degree is 2 it is a path vertex, and higher
degree vertices are called core vertices. For a pair of vertices u, v we denote by du,v

the length of a shortest path (i.e., the number of edges in the path) in G from u to v.
Recall that n = |V | and m = |E |, we use these definitions throughout the paper.

2 Extending Known Polynomial Cases to the Weighted Variant

In this section we generalize some polynomially solvable cases of md(G) to the
weighted case. These simple cases emphasize some differences between the weighted
and the unweighted cases.

2.1 Paths

First, consider the case where G is a path. Khuller et al. [14] showed that a landmark
set consisting of one vertex, positioned at one of the end-vertices of the path, is a
landmark set. Our algorithm for computing wmd(G) (and a corresponding landmark
set) for a path G is defined as follows. The algorithm finds two alternative solutions
(landmark sets) and outputs a solution of minimum cost. The first candidate solution
of the algorithm has a single vertex as a landmark: a minimum cost end-vertex v of the
path (breaking ties arbitrarily). The second solution picks the cheapest pair of distinct
vertices v and v′ of the path (none of which is an end-vertex of the path).

Proposition 2.1 Given a path G = (V, E), the above algorithm solves wmd in linear
time O(n).

Proof If the returned set has one vertex, then feasibility of L was established by [14].
Otherwise, the feasibility follows from the property that out of two vertices �1, �2 on
the path, a pair u, v of vertices on the path can have equal distances to at most one of
�1 and �2. �	

123

1134 Algorithmica (2015) 72:1130–1171

Fig. 1 An example of a tree and
all legs, where the vertices of
each leg are circled

2.2 Trees

Next, we assume that the input graph G is a tree, but not a path, (and so it has at
least one core vertex). A leg is a (non-empty) path in the tree between a leaf v and a
core vertex u of the graph that is closest to this leaf (the leg does not contain the core
vertex u but it contains the leaf v). We say that this leg is a leg of u. Note that a leg
contains one leaf, and possibly some path vertices (see Fig. 1). For a vertex u, denote
the number of legs of u by legu .

Consider the following algorithm. Compute legu for every core vertex u. Each core
vertex u with legu ≥ 2 is allocated legu − 1 landmarks. To place these landmarks, we
find a minimum cost set of legu − 1 vertices in the legs of u (none of which will be
u, as u does not belong to its legs), such that each leg has at most one selected vertex.
It was shown [14] that in every landmark set there is a landmark located at each of
the legs of u except for at most one such leg. In fact, summing up the values legu − 1
over all core vertices u with at least two legs, gives a tight bound on md(G). Here, we
generalize their approach.

Note that the running time of the algorithm is O(n) since we can compute the set of
legs of each core vertex in O(n) time by running DFS from a core vertex, and for each
core vertex u, choose the cheapest set of legu − 1landmarks such that each leg has at
most one selected vertex. Moreover, by the lower bound proof of [14], any feasible
solution (a valid landmark set) must place landmarks in at least legu − 1 legs of u, it
is clear that the cost of the landmark set which the algorithm returns is minimal. The
algorithm of [14] places the landmarks at the leaves, whereas our algorithmmay place
them at internal vertices (path vertices) of legs. It remains to argue that the resulting
set is feasible. Denote the landmark set returned by our algorithm by L . The proof of
the following lemma resembles the proof of Lemma 2.3 of [14].

Lemma 2.2 Given L ⊆ V as defined above, if v �= v′ is a pair of vertices of V , then
there is a landmark � ∈ L which distinguishes v from v′.

Proof Root the tree at an arbitrary landmark vertex r . We will use the following two
properties. Consider a core vertex w, then in the rooted subtree of w there is a core
vertex (perhaps w) with at least two legs, and hence this subtree contains a landmark.
The second property is that if a vertex w is not on a leg, then either it is a core vertex

123

Algorithmica (2015) 72:1130–1171 1135

or there is a core vertex in its rooted subtree. In both cases, the rooted subtree contains
a landmark.

If v and v′ are at different distances from r , then r distinguishes v from v′ and we
are done. Thus, assume that v and v′ are at the same depth. If at least one of them has
a landmark inside its rooted subtree, then this landmark separates v from v′ (since, for
example, the path from v′ to any vertex in the rooted subtree of v traverses v), and we
are done. Thus, in the remainder of the proof we assume that v and v′ belong to legs.
Denote by w the lowest common ancestor of v and v′. If w is the unique vertex of
degree at least 3 along the path from v to v′ (in which case v, v′ belong to legs of w),
then among the vertices of the two legs that contain v and v′ there must be a landmark
(and this landmark cannot be positioned at w, because w is not part of these legs). If
this last landmark is on the path from v to v′, then it distinguishes v from v′, since
the vertex in the middle of this path is w. If this vertex is not on this last path, then
the path from one of the two vertices v, v′ to the landmark traverses the other one,
and therefore the landmark distinguishes v from v′ in this case as well. Otherwise,
if there is another core vertex w̃ �= w on the path from v to v′, then assume without
loss of generality that w̃ is on the path from v to w. By the second property, in the
subtree rooted at w̃ there is a landmark at a vertex �. Since dv,w̃ < dv′,w̃ (as w has the
same distance from v and v′ while w̃ is on the path from w to v), we conclude that
dv,� ≤ dv,w̃ + dw̃,� < dv′,w̃ + dw̃,� = dv′,� where the last equality holds because the
shortest path from v′ to � must traverse w̃. Therefore, � separates v from v′.

Thus, we have established the following result.

Proposition 2.3 Given a tree G = (V, E), there exists an algorithm that solves wmd
in linear time O(n).

2.3 Cycles

We assume that the input graph G is a cycle (and thus n ≥ 3). We next characterize
a minimal (with respect to inclusion) feasible landmark set L . We say that a pair of
distinct vertices u, v are opposite if their distance is exactly n

2 , and otherwise they are
non-opposite (in which case the shortest path from u to v is unique). Note that if G is
an odd-length cycle, then there are no pairs of opposite vertices.

Lemma 2.4 Let L be a minimal feasible landmark set of a cycle G. Then L consists
of a pair of non-opposite vertices v, v′ (v �= v′) of G.

Proof Every feasible landmark set consists of at least two vertices (if a cycle has a
single landmark, then the two vertices of distance 1 from it cannot be distinguished).
Moreover, a pair of opposite vertices v,v′ is not a feasible landmark set, as the two
neighbors of v cannot be distinguished.

We now show that any pair of non-opposite vertices L = {v, v′} (v �= v′) is a
feasible landmark set. Obviously L separates any vertex of L from any vertex. Let
u �= u′ be a pair of vertices such that u, u′ �= v, v′. If u and u′ have equal distances
to both v and v′, then the shortest paths of u and u′ to any vertex of L do not have
common edges. We find that dv,v′ = n

2 , so v and v′ are opposite, a contradiction.

123

1136 Algorithmica (2015) 72:1130–1171

Every landmark set with at least three distinct vertices contains a pair of non-
opposite vertices, and thus it cannot be minimal. Thus, the only type of a minimal
landmark set is a pair of non-opposite vertices. �	

Our algorithm for solving wmd for a cycle G simply finds the cheapest pair of
(distinct) non-opposite vertices in the cycle. By the above lemma, it finds an optimal
solution. Note that the running time of the algorithm is O(n) by first identifying the
cheapest set of any three vertices (breaking ties arbitrarily) as afirst step, andfinding the
cheapest pair of distinct non-opposite vertices among them as a second step (breaking
ties arbitrarily).

Proposition 2.5 Given a cycle G = (V, E), there exists an algorithm that solves wmd
in linear time O(n).

Proof First, note that the algorithm outputs two vertices that are a landmark set. This
holds sincen ≥ 3, so any set of three verticesmust contain at twoor three (non-disjoint)
subsets of two vertices that are not opposite, and by Lemma 2.4, every such set is a
landmark set. Let {v1, v2} such that c(v1) ≤ c(v2) be the output of the algorithm.
Obviously, v1 and v2 are among the three vertices selected by the algorithm in the first
step.

Consider a minimum cost landmark set. By Lemma 2.4, this set consists of a pair
{u1, u2} of non-opposite vertices such that c(u1) ≤ c(u2). If both c(v1) ≤ c(u1)
and c(v2) ≤ c(u2) hold, then we are done. Assume by contradiction that this is
not the case. If c(u2) < c(v2), then u2 must be one of the three vertices selected
by the algorithm in the first step, as it selected a vertex (v2) of larger cost in this
step. Since c(u1) ≤ c(u2) < c(v2), it also selected u1 in the first step. As u1 and
u2 are non-opposite, the algorithm must have c(v1) + c(v2) ≤ c(u1) + c(u2). The
remaining case is c(u1) < c(v1) and c(u2) ≥ c(v2) (and in particular v1 �= u1).
The algorithm selected both u1 and v1 in the first step. If they are non-opposite,
then c(v1) + c(v2) ≤ c(u1) + c(v1) ≤ c(u1) + c(v2) ≤ c(u1) + c(u2). Otherwise,
u1, v1 are opposite, v2 �= u1, and the three vertices selected by the algorithm in
the first step are v1, v2, u1. However, in this case, u1 and v2 are non-opposite, and
c(u1) + c(v2) < c(v1) + c(v2), contradicting the action of the algorithm. �	

3 Dealing with Disconnected Input Graphs

Consider a disconnected graph G = (V, E). A connected component of G is called a
non-trivial connected component if it contains at least two vertices, and otherwise it
is an isolated vertex. Let (V1, E1), . . . , (Vp, Ep) be the non-trivial connected compo-
nents of G (for p ≥ 0), and let v1, . . . , vt be its isolated vertices (for t ≥ 0), where if
p = 0 or t = 0 then there is no non-trivial connected component or an isolated vertex,
respectively. Without loss of generality, we assume that c(vt) = maxi :1≤i≤t c(vi). In
this section we show that it is sufficient to solve the weighted metric dimension prob-
lem for each non-trivial connected component of G. The time complexity of solving
wmd is O(n+m) plus the total running times of solving wmd for each of the non-trivial
connected components of G.

123

Algorithmica (2015) 72:1130–1171 1137

Proposition 3.1 An optimal solution (a minimum cost landmark set) L for wmd of a
graph G is achieved by the union of an optimal solution Li forwmd for each non-trivial
connected component (Vi , Ei) of G and the (isolated) vertices {v1, v2, . . . , vt−1} of
G (the most expensive isolated vertex vt is not a landmark).

Proof We first argue that the totalcost of L is at least
∑

v∈L1∪L2∪···∪L p
c(v) +

∑t−1
i=1 c(vi). To see this claim, first note that if there exists a pair of isolated ver-

tices v, v′ /∈ L (v �= v′), then L does not separate v from v′ (as their distance from any
vertex in L is ∞). Thus, L must contain at least t − 1 isolated vertices of cost at least∑t−1

i=1 c(vi). Next, consider a non-trivial connected component (Vi , Ei). It suffices to
show that L ∩ Vi must be a feasible landmark set for the induced subgraph (Vi , Ei)

(and in particular it cannot be empty). Assume for contradiction that there is a pair of
vertices v, v′ ∈ Vi such that L ∩ Vi does not separate v from v′. Since the distances
satisfy dv,� = dv′,� = ∞ for all � ∈ L \ Vi , we conclude that L does not separate v

from v′ (in G), and this contradicts the assumption that L is a feasible landmark set.
It remains to show that the solution obtained by concatenating the solutions for every

non-trivial connected component with{v1, v2, . . . , vt−1} gives a feasible landmark set
L ′ for G. To see this claim consider a pair of vertices v, v′ /∈ L ′. Every connected
component, except for at most one component that is an isolated vertex, has at least
one landmark. This holds since any non-trivial connected graph must have at least
one landmark, and all isolated vertices but one are defined to be landmarks. On one
hand, if v and v′ belong to distinct connected components of G, then in at least one
of these connected components there is a landmark � ∈ L ′, and � separates v from
v′ (as it has a finite distance from one of them and infinite distance from the other).
On the other hand, if v and v′ belong to the same connected component, then it is a
non-trivial connected component, and we know that there is a landmark � ∈ L ′ which
separates v from v′. �	

Wewill use these properties in the next section, but it should be noted that Proposi-
tion 3.1 can be applied to any disconnected graph, and in particular implies that there
exists a polynomial time algorithm for solving wmd on forests, collections of vertex
disjoint cycles, etc.

4 Cographs

For two graphs G1 = (V1, E1) and G2 = (V2, E2) with V1 ∩ V2 = ∅, the disjoint
union G1 ∪ G2 is the graph (V1 ∪ V2, E1 ∪ E2). The product G1 × G2 of these two
graphs is obtained by first taking the disjoint union of G1 and G2 and then adding all
the edges {v1, v2} with v1 ∈ V1 and v2 ∈ V2. A graph G is a cograph, if (i) G consists
of a single vertex or (ii)G is the disjoint union of two cographs, or (iii)G is the product
of two cographs. An equivalent characterization states that G is a cograph if and only
if it does not contain the path P4 on four vertices as an induced subgraph. This implies,
in particular, that the distances between pairs of distinct vertices in the graph are in
{1, 2,∞}. Note that the complement graph G ′ = (V, {{u, v}|u, v ∈ V, {u, v} /∈ E})
of a cograph G = (V, E) is a cograph as well.

123

1138 Algorithmica (2015) 72:1130–1171

The cotree of a cograph G is a rooted binary tree whose leaves correspond to
single-vertex graphs and whose inner nodes correspond to subgraphs of G. Every
inner node of the cotree is labelled either by ∪ (union) or by × (product) and has
exactly two children: if it is labelled by ∪ then it corresponds to the disjoint union of
the two cographs that correspond to its two children, and if it is labelled by × then it
corresponds to the product of the two cographs that correspond to its children. Corneil
et al. [7] showed how to compute a cotree for a given cograph in linear time O(m+n).
Note that the number of inner nodes of the cotree is n − 1.

By Proposition 3.1, we conclude that we may restrict ourselves to connected
cographs. Since a connected cograph with at least two vertices must be a product
of two non-empty cographs, the distance between a pair of vertices v, v′ (v �= v′)
of a connected cograph G is either 1 or 2. We define a binary landmark set L of an
arbitrary cograph G (not necessarily a connected one) to be a set of vertices such that
for every pair of distinct vertices v, v′ ∈ V \ L there is a landmark � ∈ L such that
either both {v, �} ∈ E and {v′, �} /∈ E or both {v, �} /∈ E and {v′, �} ∈ E . In this case
we say that � separates v from v′.
Claim 4.1 Given a connected cograph, a set of vertices is a landmark set if and only
if it is a binary landmark set.

Proof We first prove that for any graph G ′ = (V ′, E ′), a given binary landmark set L
of G ′ is also a feasible landmark set of G ′. Let v, v′ ∈ V ′. If v ∈ L (or v′ ∈ L), then
this vertex separates v from v′. Otherwise, since L is a binary landmark set, there is
� ∈ L such that either both dv,� = 1 and dv′,� ≥ 2 or both dv,� ≥ 2 and dv′,� = 1. In
both cases � separates v from v′.

Assume that L is a landmark set of a connected cograph G = (V, E). Let v, v′ ∈
V \ L , then there is a landmark � ∈ L such that dv,� �= dv′,�. Note that these two
distinct distances are not zero (as v, v′ /∈ L) so they are either 1 or 2. Thus, one of
these vertices is adjacent to � and the other is not adjacent. Therefore, L is a binary
landmark set. �	

In the remainder of this section we will present a linear time algorithm for com-
puting a binary landmark set of a minimum total cost. The next observation (which
holds by definition) considers the relation between binary landmark sets of G and its
complement G ′.
Observation 4.2 Let G = (V, E) be a cograph on n ≥ 2 vertices, and let G ′ be its
complement graph. Then a set L ⊆ V is a binary landmark set for G if and only if L
is a binary landmark set for G ′.
Proof It suffices to show that if L is a feasible binary landmark set for G, then it
is also a feasible landmark set for G ′. Denote by E ′ the edge set of G ′. Assume by
contradiction that there exists a pair of vertices u, v ∈ V \ L such that for every
� ∈ L either both {u, �}, {v, �} ∈ E ′ or both {u, �}, {v, �} /∈ E ′. In the first case both
{u, �}, {v, �} /∈ E , and in the second case both {u, �}, {v, �} ∈ E . This contradicts the
assumption that L is a feasible binary landmark set of G. �	

We next adapt our decomposition of the problem for disconnected graphs to the
problem of computing a binary landmark set. We consider the case G = G1 ∪ G2,
and show the following.

123

Algorithmica (2015) 72:1130–1171 1139

Lemma 4.3 Assume that G is a disjoint union of G1 and G2 where Gi = (Vi , Ei).

(i) If L is a feasible binary landmark set for G, then Li = L ∩ Vi is a feasible binary
landmark set for Gi , for i = 1, 2.

(ii) Assume that L1 and L2 are feasible binary landmark sets for G1 and G2, respec-
tively. Then, L = L1 ∪ L2 is a feasible binary landmark set for G if and only if
there exists i ∈ {1, 2} such that in Gi every vertex v ∈ Vi \ Li is adjacent to a
vertex of Li .

Proof Consider claim (i). For i = 1, 2, consider a pair of vertices u, v ∈ Vi \ Li =
Vi \ L . Note that for every � ∈ L3−i there is no edge connecting � to u or to v. Hence,
since L is a feasible binary landmark set, we conclude that there is a landmark � ∈ Li

that separates u from v, that is, it is adjacent to exactly one of these vertices. Thus, Li

is a feasible binary landmark set for Gi .
Next, consider claim (ii). Assume that L1 ∪ L2 is a feasible binary landmark set

for G. Assume by contradiction that for i = 1, 2, Gi contains a vertex ui that is not
adjacent to Li . Clearly, ui is not adjacent to L3−i as well and hence L does not separate
u1 from u2, contradicting the assumption that L is a feasible binary landmark set for
G.

On the other hand, assume without loss of generality that for every vertex w ∈
V1\L1 there is a landmark in L1 adjacent tow. Consider a pair of vertices u, v ∈ V \L .
If u, v ∈ Vi (for i = 1, 2), then since Li is a feasible binary landmark set for Gi , we
conclude that there is � ∈ Li (and thus � ∈ L) such that � is adjacent to exactly one
of the vertices u or v, and we are done. Next, assume without loss of generality that
u ∈ V1 and v ∈ V2. By the assumption, u is adjacent to a landmark � ∈ L . Then since
� ∈ V1 we conclude that {v, �} /∈ E , and we are done in this case as well. �	

In a nutshell, our algorithm for solving wmd of a cograph uses the cotree structure.
We use the term point to refer to a vertex that is not a landmark. If a subgraph is a
disjoint union of two subgraphs, then we treat recursively each of the two subgraphs
but we keep track of the existence of a point that is not adjacent to any landmark in
its subgraph. If a subgraph is the product of two subgraphs, then we first transform
our problem to the complement of the subgraph, and then apply the first case. Since
by moving from a graph to its complement, the role of a point that is not adjacent
to any landmark switches with the role of a point that is adjacent to all landmarks,
we will keep track of the number of points (zero or one) of each of these types. Note
that there cannot be two points that are adjacent to all landmarks, as these two points
cannot be distinguished by the binary landmark set, and similarly, there cannot be two
points that are not adjacent to any landmark. Thus, every subgraph in the cotree will
correspond to four optimization problems.

Theorem 4.4 Given a cograph G = (V, E),wmd can be solved in linear time O(m+
n).

Proof By Proposition 3.1, it suffices to consider a connected cograph G. By Claim
4.1, it is sufficient to compute a minimum cost binary landmark set for G, and give
it as an output, since for connected graph the two concepts (of a landmark set and of
a binary landmark set) are equivalent. Our algorithm computes the cotree of G, and

123

1140 Algorithmica (2015) 72:1130–1171

computes a minimum cost binary landmark set for every internal node of the cotree,
using dynamic programming on a tree. We now define the dynamic programming
formulation. Consider a cograph G̃ containing at least two vertices that corresponds
to an internal node of the cotree. Let a, b ∈ {0, 1}, and let Fa,b(G̃) be a minimum cost
feasible binary landmark set L of a cograph G̃ such that exactly a of its points are
adjacent to all vertices of L , and exactly b of its points are not adjacent to any vertex
of L . Our algorithm computes Fa,b(G̃) for every G̃ consisting of at least two vertices
in the cotree (i.e., for every internal node of the cotree) and for every a, b ∈ {0, 1}.
The number of such problems is O(n), and thus it suffices to show how to compute
each of these values in O(1) using the solutions for the two subgraphs G̃1 = (Ṽ1, Ẽ1)

and G̃2 = (Ṽ2, Ẽ2) corresponding to the children in the cotree of G̃ (if such solutions
are defined, that is, the corresponding graphs contain at least two vertices). Recall
that Fa,b cannot be defined for a > 1 or for b > 1 since this would imply that the
binary landmark set is infeasible. Note that while G is connected, some of the graphs
corresponding to nodes of the cotree of G may be disconnected.

Let G̃ ′ be the complement of G̃. Similar to Lemma 4.2 we can find the relation
between the functions F for G̃ and G̃ ′. Here, we have Fa,b(G̃ ′) = Fb,a(G̃), as if we
move from a graph to its complement then a point which was adjacent to all landmarks
becomes non-adjacent to all landmarks and vice versa. Therefore, it suffices to consider
an inner node of the cotree that is a union of two disjoint subgraphs (that is, G̃ =
G̃1 ∪ G̃2). Throughout the computation we encode infeasible problems by allocating
them infinite cost. It remains to define the values Fa,b for the disconnected graph
G̃ whose children in the cotree are G̃1 and G̃2, either directly or using recurrences,
depending on the case.

We now define the base cases for the dynamic programming. First, assume that each
of G̃1 and G̃2 consists of a single isolated vertex denoted as v1 and v2 respectively.
Fa,b(G̃) is defined as follows. If a = 1, then the instance is infeasible, because for any
instance with |V | ≥ 2 we must place at least one landmark, and in this case the graph
does not contain a point adjacent to all vertices in L . Therefore, F1,0(G̃) = F1,1(G̃) =
∞. If a = b = 0, placing just one landmark we would get that the other vertex is not
adjacent to any of the landmarks, sowemust place a landmark at each vertex, and hence
F0,0(G̃) = c(v1)+ c(v2). Finally, if b = 1, then we must place exactly one landmark,
while the other vertex will be the one that is not adjacent to any landmark, and any
such solution is a feasible binary landmark set. Hence, F0,1(G̃) = min{c(v1), c(v2)}.

In the remaining cases we define the recurrence relations. Next, assume that G̃1 has
more than one vertex, and hence any feasible binary landmark set for G̃1 has at least one
vertex, and assume that G̃2 consists of a single vertex v. If a = 1, then it is impossible
to place a landmark at v (because there is no point of Ṽ1 that is adjacent to v) and v will
not be adjacent to any of the landmarks, so in the remaining instance (i.e., in G̃1), there
cannot be an additional point of distance at least 2 from every landmark (and we must
have a point of Ṽ1 that is adjacent to all landmarks). Therefore, F1,1(G̃) = F1,0(G̃1),
and F1,0(G̃) = ∞. In the remaining cases a = 0. If we do not place a landmark at
v, then v is not adjacent to any landmark, and b = 1. If there is a landmark at v,
then there cannot be a point adjacent to all landmarks, even if there is such a point
for G̃1. Thus,we have the following F0,0(G̃) = c(v)+min{F0,0(G̃1), F1,0(G̃1)}, and
F0,1(G̃) = min{F0,1(G̃1) + c(v), F1,1(G̃1) + c(v), F0,0(G̃1)}.

123

Algorithmica (2015) 72:1130–1171 1141

In the remaining case each of G̃1 and G̃2has more than one vertex, and has at least
one landmark in any feasible binary landmark set. Hence, no point in G̃ can be adjacent
to all landmarks. Thus, if a = 1, the problem is infeasible and we have F1,0(G̃) =
F1,1(G̃) = ∞. If a = 0, then there can be at most one point in either G1 or G2 that is
not adjacent to a landmark. Therefore,we have F0,0(G̃) = min{F0,0(G̃1), F1,0(G̃1)}+
min{F0,0(G̃2), F1,0(G̃2)}, and finally

F0,1(G̃) = min
{
min{F0,1(G̃1), F1,1(G̃1)} + min{F0,0(G̃2), F1,0(G̃2)},

min{F0,0(G̃1), F1,0(G̃1)} + min{F0,1(G̃2), F1,1(G̃2)}
}

.

�	
5 k-Edge-Augmented Trees

In this section we consider the class of connected graphs for which a removal of at
most k edges results in a spanning tree. We call this class of graphs k-edge-augmented
trees.We note that this class of graphs is related to the almost-k-trees discussed in [13],
however some of the literature on almost-k-trees used an alternative definition inwhich
every edge biconnected component has at most k edges whose removal results in a tree
over the vertices of this biconnected component. Thus, we will use the terminology of
k-edge-augmented trees to refer to this class of graphs that we study. Our polynomial
time algorithm for computing wmd first applies a preprocessing step that handles the
tree-like part, and then uses an exhaustive enumeration approach for selecting an
optimal landmark set in a reduced problem. Thus, the methods used in this section
are recursion and preprocessing, and for the graphs resulting from preprocessing,
once again we find properties of minimal landmark sets that allow us to enumerate a
sufficiently small number of subsets as candidate landmark sets. Clearly our algorithm
is polynomial only if k is a constant and it is unlikely that there is an algorithm which
is polynomial in n and k for solving this problem. The reason for this statement is that
any connected graph is also a k-edge-augmented tree for a sufficiently large value of
k, and already the problem md is NP-hard for general graphs.

5.1 Preprocessing Step

Our preprocessing step uses the following procedure that can be applied on a core
vertex u with p legs. Recall that a leg is a path consisting of at least one vertex,
starting at a leaf and ending just before a core vertex (at a neighbor of a core vertex),
that is, a path from a leaf to a core vertex where all vertices except for the leaf are path
vertices, for p ≥ 2. Similarly to trees, consider subsets of p − 1 vertices belonging
to the legs of u, at most one vertex per leg. We choose Lu to be a set of minimum
cost among the sets that satisfy these constraints. We will place landmarks at Lu and
remove from the graph every vertex belonging to a leg of u that contains a vertex of Lu

(that is, the leg that does not contain a vertex of Lu is not removed). In the remaining
graph we change the cost of u to zero (i.e., we define a new cost function), and thus
allow the solution to place a landmark at u without increasing its cost. Sincewe already

123

1142 Algorithmica (2015) 72:1130–1171

Fig. 2 An example of two
graphs, where ellipse shaped
vertices are candidate
landmarks. For the graph on the
left hand side, if both legs of
vertex 9 are removed, the
landmark set that was obtained
for the cycle together with one
landmark that was selected for
one leg are not a landmark set,
as d8,� = d20,� for each one of
the three landmarks. For the
graph on the right hand side,
there is no need to augment a
solution obtained in a similar
way by any landmarks, as it is
already a landmark set

dealt with trees in Sect. 2.2, we assume that the input graph is not a tree. As we saw
in the case of trees, the remaining leg does not always require a landmark, however,
since we will consider different graph structures, in some cases removing this leg and
finding a landmark set for the remaining graph results in a set of vertices that is not a
landmark set. This is the reason for not removing the remaining leg, and our algorithm
will continue to search fora landmark set for the remaining graph including this leg
(see Fig. 2 for examples). Note that one core vertex may be considered multiple times
(see Fig. 3).

The following lemma holds in fact also for trees that are not paths (but in order
to prove it for trees as well, the special case of a spider graph, which is a graph with
exactly one core vertex, should be treated separately, and since we already discussed
trees, we will not discuss them in this section).

Lemma 5.1 Denote by G = (V, E) the input graph that is not a tree, and by G ′ =
(V ′, E ′) (where V ′ � V) the graph obtained after applying the procedure above on a
core vertexu (that is, V ′ is the set of vertices after removing all the legs of u but one).
Let Lu denote the set of landmarks that we placed on the removed legs of u, and let
L ′ denote the set of landmarks in an optimal solution of the remaining graph. Then,
L = Lu ∪ L ′ \ {u} is an optimal landmark set in G.

Proof We first show that L is a feasible landmark set. L ′ \ {u} �= ∅ because G ′ is
not a path (and hence |L ′| ≥ 2). Moreover, Lu �= ∅ since u has at least two legs. Let
v, v′ ∈ V . We will show that L contains a landmark which separates v from v′. First,
consider the case where v, v′ ∈ V ′. Note that v or v′ (or both of them) may belong
to the remaining leg of u. For every landmark � ∈ L ′, the shortest paths in G from �

to either v or v′ are exactly the shortest paths in G ′ from � to v and v′, respectively.
Since L ′ is a feasible landmark set in G ′, we conclude that either there exists �′ ∈ L ′
(�′ �= u) that separates v from v′ (and in this case �′ ∈ L), or u ∈ L ′ and u separates v

from v′. In the last case, let � ∈ Lu be an arbitrary landmark of Lu . Then, � separates
v from v′ because d�,v = d�,u + du,v �= d�,u + du,v′ = d�,v′ .

123

Algorithmica (2015) 72:1130–1171 1143

Fig. 3 The preprocessing step applied to the graph on the left hand side. Ellipse shaped vertices are
landmarks selected in the current iteration. White vertices are those whose weights was set to zero in
previous iterations, while black ones still have their original weights. The preprocessing is applied as
follows. First, the legs of vertex 10 are considered, and vertices 12 and 14 are chosen as landmarks, their
legs are removed, and the weight of vertex 10 is set to zero. In the graph in the middle (top) the legs of
vertex 4 are considered, a landmark is placed at vertex 6 and the leg is removed. The weight of vertex 4
is set to zero. In the graph on the right hand side (top), the legs of vertex 7 are considered, and landmarks
are placed at vertices 8 and 10 (but the landmark at 10 will be removed when the process returns from the
recursive call that started after the legs of 10 were removed). Two legs of 7 are removed and the weight of
vertex 7 is set to zero. In the next graph (bottom middle graph) the only core vertex is 4, and we place a
landmark at vertex 7 (so vertex 4 was considered again now). In the last graph, just one core vertex with
one leg remains (vertex 4). After finding a landmark set for it, the recursive calls end one by one, and the
landmark set is {1,2,6,8,12,14}

Next consider the case where v, v′ ∈ V \ V ′. Note that Lu is a feasible landmark
set for the spider graph consisting of u and its legs (even including the remaining leg
of u, which is part of V ′) since it is a tree (see Sect. 2.2). Thus, there exists a landmark
� ∈ Lu that separates v from v′.

Finally, consider the case where v′ ∈ V ′ whereas v ∈ V \V ′. Assume by contradic-
tion that v and v′ are not separated by the landmarks in Lu ∪L ′ \ {u}. First note that the
leg ofv contains a landmark � �= u. Since �does not separatev fromv′,d�,v = d�,v′ .We
show that v is closer to the leaf of its leg than �, that is, the path from u to � does not tra-
verse v. If this is not the case, thenweget d�,v′ = d�,v+dv,u+du,v′ > d�,v , since v �= u,
contradicting the assumption that d�,v = d�,v′ . Therefore, since u �= �, d�,v < du,v ,
and since the path from v′ to � is via u, d�,v′ > du,v′ . Letw ∈ L ′ \{u}. Thenw separates
v from v′ because (using the triangle inequality and the derived inequalities for the
distances) dw,v′ ≤ dw,u + du,v′ < dw,u + d�,v′ = dw,u + d�,v < dw,u + du,v = dw,v .
Thus L is indeed a feasible landmark set.

123

1144 Algorithmica (2015) 72:1130–1171

To show that L is optimal, first note that we must place landmarks of total cost at
least

∑
�∈Lu

c(�) in the legs of u, because placing a landmark at a vertex that is not
in a leg of u cannot separate a pair of vertices from legs of u that are neighbors of u.
Thus, any feasible solution must contain at least one landmark in at least p − 1 of the
legs of u, and we chose the cheapest such set.

First consider the case where the optimal solution for G places a landmark in each
one of the legs that we removed. Assume that by paying a total cost of

∑
�∈Lu

c(�) we
could place a landmark at each of the vertices of V \V ′ as well as placing a landmark at
u. This is clearly a super-optimal scenario, and in order to show the optimality of L it
suffices to show that we must place landmarks of additional total cost

∑
�∈L ′\{u} c(�).

Note that if a pair of vertices v, v′ ∈ V ′ cannot be separated by u, then they cannot
be separated by any of the vertices in the removed legs. Therefore, by the optimality
of L ′ in G ′, and since L ′ is computed under the assumption c(u) = 0, we must pay at
least

∑
�∈L ′\{u} c(�) for the additional landmarks.

Next, consider the case where there is a removed leg in which the optimal solution
for G (denoted by OPT) does not place a landmark. Let x denote the neighbor of u
along this leg. We create a new solution SOL from OPT by removing a landmark �

from the leg that we did not remove and placing a landmark at the member of Lu along
the leg in which OPT does not place any landmarks. By the choice of the algorithm
of landmarks on the legs of u, the cost of SOL is at most the cost of OPT . Therefore,
using the first case, it suffices to show that SOL is a feasible landmark set. Using the
first part of the claim, it suffices to show that SOL′ = SOL ∩ V ′ ∪ {u} is a feasible
landmark set for G ′. Assume by contradiction that SOL′ does not separate v from v′
(where v, v′ ∈ V ′). If both v and v′ are on the (unique) leg of u in G ′, then they are
separated by u. If both v and v′ are not on the leg of u, then since u does not separate
v from v′, any landmark placed on a leg of u does not separate v from v′, and by the
feasibility of OPT , we conclude that OPT ∩ SOL′ contains a landmark that separates
v from v′. Thus, without loss of generality, we assume that v is on the leg of u and v′ is
not on the leg of u. For every landmark � ∈ OPT that is not on the leg of u that contains
v, we have dv,� = dv,u + du,�, and dv′,� ≤ dv′,u + du,�. Since no such inequality for
a landmark � ∈ OPT ∩ SOL′ can be a strict inequality, we conclude that for every
landmark � not on the leg of u, there is a shortest path from � to v′ that traverses u
(clearly this holds also for a landmark on a leg of u). Denote by x ′ the neighbor of
u along a shortest path from u to v′. We conclude that for every � ∈ OPT , we have
dx ′,� = du,� + 1 and since x is along a leg in which OPT does not have a landmark,
dx,� = du,� + 1. Therefore, OPT does not separate x from x ′ and this contradicts the
feasibility of OPT . �	

We apply this preprocessing on one vertex at a time until there is no vertex which
has at least two legs, and in the remaining graph every vertex has at most one leg.

5.2 The Case k = 1

The unweighted version of computing md(G) for the case of 1-edge-augmented tree
is discussed in [4] (where such graphs are called unicycles). Here we consider the
weighted case. If k = 1, then at the end of the preprocessing phase we are left with

123

Algorithmica (2015) 72:1130–1171 1145

a cycle C where some of its vertices have legs (at most one leg for each vertex of
C). We call such graphs extended hairy cycles.1 Recall that some of the vertices of G
may have zero cost resulting from the preprocessing step, and if we choose to place
a landmark at such a vertex u, then the solution returned by the algorithm skips it
(but has at least one landmark in the tree-like part connected to u that was removed
in the preprocessing step). In what follows we only consider the graph G resulting
from the preprocessing. We next characterize a minimal landmark set for extended
hairy cycles. This characterization will show that every minimal landmark set for the
resulting graph has at most three vertices. Thus by enumerating all subsets consisting
of two or three vertices we can choose the cheapest feasible landmark set and solve
wmd in polynomial time (as mentioned earlier, at least two landmarks are required for
any graph that is not a path).

We denote by nC the number of vertices in C . For a vertex v, we let v′ be its cycle-
vertex, defined as follows. v′ is the closest vertex inC to v, that is if v ∈ C then v′ = v

and otherwisev belongs to some leg of a vertex in C , and we let v′ denote this vertex
of C that is connected to the leg. Consider a path P from u to v, then its C-length is
defined as the number of edges of C which belong to P . We say that a path P from
u to v is a clockwise path if it traverses the edges in P ∩ C in a clockwise order, and
otherwise it is a counterclockwise path. We say that two vertices are non-opposite in
G if their cycle-vertices are distinct, and the C-length of the shortest path from u to v

is not equal to nC
2 .

Lemma 5.2 Let L ⊆ V be a feasible minimal landmark set. There is no cycle-vertex
u such that L contains a pair of vertices v1, v2 whose cycle-vertex is u.

Proof Assume by contradiction that there is a minimal landmark set L which contains
a pair of vertices v1 and v2 with a common cycle-vertex u. Without loss of generality
we assume that du,v1 < du,v2 . We first argue that L contains another vertex w whose
cycle-vertex w′ is not u. If this is not the case (that is, all vertices of L have the same
cycle-vertex, u), then the two neighbors of u on the cycle cannot be separated by a
vertex in L .

We show that L ′ = L \ {v1} is a feasible landmark set. Let x1, x2 ∈ V . Assume by
contradiction that x1 and x2 are not separated by L ′. Since L is a feasible landmark
set, we conclude that dv1,x1 �= dv1,x2 . Denote by x ′

i the cycle-vertex of xi for i = 1, 2.
If x ′

1, x
′
2 �= u, then dxi ,v2 = dxi ,v1 + dv1,v2 for i = 1, 2, and this is a contradiction.

Next, assume that x ′
1 = x ′

2 = u. Then, dx1,u �= dx2,u , and dw,xi = dw,u + du,xi , for
i = 1, 2, a contradiction as well. Finally, assume that x ′

1 = u whereas x ′
2 �= u. Since

dv2,x1 = dv2,x2 , the path from x1 to u traverses v2 (as otherwise dx2,v2 = dx2,x1+dx1,v2 ,
contradicting dv2,x1 = dv2,x2 as x1 �= x2). Then, dw,x2 ≤ dw,u + du,x2 < dw,v2 +
dv2,x2 = dw,v2 + dv2,x1 = dw,x1 where the first inequality is the triangle inequality,
the second inequality holds because v2 �= u, the first equality holds because v2 does
not separate x1 from x2, and the second equality holds because the shortest path from
x1 to w traverses v2. Again, we get a contradiction, thus the claim follows. �	

1 In [19], a hairy cycle is defined to be a cycle such that each of its vertices has a leg of one vertex. Here
we allow an arbitrary number of vertices in each leg (for each cycle vertex) including the option of zero
vertices (in such a case, the considered cycle vertex does not have a leg).

123

1146 Algorithmica (2015) 72:1130–1171

In what follows, we focus on a minimal landmark set, and thus assume that it does
not contain two vertices with a common cycle-vertex.

Lemma 5.3 If L ⊆ V contains a pair of non-opposite vertices u1, u2, then for every
pair of vertices x1, x2 ∈ C, there exists w ∈ {u1, u2} that separates x1 from x2.

Proof Let the vertices u′
1, u

′
2 ∈ C be the cycle-vertices of u1, u2, respectively. Since

u1 and u2 are non-opposite vertices, so are u′
1 and u′

2. Then, dui ,x j = dui ,u′
i
+ du′

i ,x j
for i, j ∈ {1, 2} (this equality holds even if x j = u′

i). Therefore, it suffices to show
that either u′

1 or u′
2 separates x1 from x2. This claim holds since the shortest paths

from u′
i to x j traverse only edges ofC (for i, j ∈ {1, 2}), and therefore the claim holds

by Lemma 2.4 (applied to C). �	
Corollary 5.4 If L ⊆ V consists of at least three vertices, no pair of which have
the same cycle-vertex, then for every pair of vertices x, y ∈ C there is � ∈ L that
separates x from y.

We next define a covering of the legs by landmarks. We say that a landmark �

clockwise-covers (counterclockwise-covers) the leg of a vertex u if one of the follow-
ing conditions hold: Either � is one of the vertices of the leg of u, or the clockwise path
(counterclockwise path) from u to � hasC-length of at least 1 and at most nC+1

2 (recall
that u is not considered to be a part of its leg and indeed it cannot cover its own leg).
We say that a leg is covered by L ⊆ V if there is a landmark in L that clockwise-covers
the leg and (perhaps another) landmark in L which counterclockwise-covers the leg.

Lemma 5.5 Let L be a set of vertices, such that |L| ≥ 3 and no two of which have
the same cycle-vertex. L is a feasible landmark set if and only if every leg is covered
by L.

Proof First assume that there is an uncovered leg. Without loss of generality assume
that the leg of a vertex u of C is not clockwise-covered. That is, the C-length of any
clockwise path from u to any landmark in L is either zero or at least nC

2 + 1, and
there is no landmark at any vertex of the leg of u. Consider a pair of vertices x, y
where x is the neighbor of u along its leg, and y is the neighbor of u along C such
that the path consisting of a single edge from u to y is a clockwise path. Then, for
every � ∈ L we have dx,� = 1+ du,� (since the leg of u does not contain a landmark)
and dy,� = 1 + du,� (since the clockwise path from y to � is at least as long as the
counterclockwise path, andthat last path uses the edge from y to u). Therefore, there
is no � ∈ L that separates x from y, that is L is infeasible landmark set.

For the other direction, assume that all legs are covered by L . Let x, y ∈ V . First,
consider the case that x and y have a common cycle-vertex u. Let v ∈ L be such that
the cycle-vertex of v is not u. Then, dv,x = dv,u + du,x and dv,y = dv,u + du,y . Since
x �= y, du,x �= du,y , and therefore v separates x from y. In the remaining cases we
assume that x and y have distinct cycle-vertices. If x, y ∈ C , then by Corollary 5.4,
there exists a landmark � ∈ L that separates x from y.

Next consider the case where x /∈ C . Let z be the cycle-vertex of x . In the case
that x belongs to a leg that has a landmark �, if � does not separate x from y, then the

123

Algorithmica (2015) 72:1130–1171 1147

path from x to the cycle traverses �. Then, any other landmark �′ which has a different
cycle-vertex from those of x and y, separates x from y because d�′,x = d�′,� + d�,x =
d�′,� + d�,y > d�′,z + dz,y ≥ d�′,y , where the second equality holds because � does
not separate x from y.

Without loss of generality (by possibly swapping the roles of x and y) we are left
with the case that if y /∈ C , then the legs of x and y do not contain a landmark, and if
y ∈ C , then the leg of x does not contain a landmark. In the first case � ∈ L separates
x from y if and only if � separates the parent x ′ of x from the parent y′ of y (where
the parent of a vertex of a leg is its neighbor that is closer to C or on C). Applying this
transformation sufficiently many times, we are left (after renaming x and y) with one
remaining case in which x /∈ C and y ∈ C , the leg of x does not contain a landmark
(since the case that x, y ∈ C was already treated), and z �= y, that is, y is not the
cycle-vertex of x .

The leg of z is covered, and hence there is a landmark � that clockwise-covers the
leg of z and a landmark �′ that counterclockwise-covers this leg. Since the leg of x
does not contain a landmark, �, �′ are not on the leg of z. We assume that the cycle-
vertex of � is the cycle-vertex of a landmark such that the C-length of the clockwise
path from z to a landmark is minimized, and similarly for �′ (with respect to the
counterclockwise paths). Note that by this assumption, the clockwise path from z to
� and the counterclockwise path from z to �′ do not share any edge, and � �= �′ (since
|L| ≥ 3).

Let �′′ ∈ L \ {�, �′}. Assume by contradiction that the three landmarks �, �′, �′′ do
not separate x from y. Let q, q ′, q ′′ be the cycle-vertices of �, �′, �′′, respectively. By
assumption, q, q ′, q ′′ are three distinct vertices. First assume that y belongs to either
the clockwise path from z to q or to the clockwise path from q ′ to z (possibly y = q or
y = q ′, but y �= z). Note that the clockwise path from z to q is either the shortest path
from z to q or the C-length of this clockwise path is exactly nC+1

2 . Thus, considering
the subpath of this path starting from the vertex after z, we get a shortest path, and
all its subpaths are shortest paths as well. Without loss of generality, we can assume
that y belongs to the clockwise path from z to q. In this case d�,y = d�,q + dq,y ≤
d�,q + dq,z = d�,z < d�,z + 1 ≤ d�,x where the first inequality holds because the
shortest path from y to q is the clockwise path from y to q (or it is empty) and since
z �= y, dq,y ≤ dq,z even if the clockwise path from z to q is not the shortest path (in the
only case where it is not the shortest path its length is exactly nC+1

2 and dq,z = nC−1
2

while dq,y ≤ nC−1
2), and the second equality holds since if q �= �, then any path of �

to the cycle traverses q. Therefore � separates x from y.
Thus, in the remainder of the proof y belongs to the path from � to �′ that does not

traverse z. First consider the case where �′′ = z (this is the unique remaining option
in the case q ′′ = z). Without loss of generality the shortest path from y to z traverses
q. Then dq,x > dz,x = dz,y > dq,y and this is a contradiction. Therefore, q ′′ �= q, q ′
is on the clockwise path from q to q ′ since q ′′ �= z and by our choice of � and �′ as the
closest landmarks to z in the clockwise and counterclockwise directions, respectively
(when considering the C-length of a path).

Without loss of generality assume that one of the paths from y to z traverses both
q and q ′′ (note that y �= q ′′ as otherwise d�′′,y = d�′′,q ′′ < d�′′,x), and the other path

123

1148 Algorithmica (2015) 72:1130–1171

from y to z traverses q ′. First we argue that the shortest paths from x to q, q ′, q ′′ do
not traverse y as otherwise y is closer to the corresponding landmark than x . Since
the shortest path from x to q ′′ does not traverse y, we conclude that dx,q < dx,q ′′ .
Therefore, the shortest path from y to q does not traverse q ′′ (as otherwise dy,q ′′ < dy,q
contradicting the assumption that �, �′′ do not separate x from y) and hence traverses
z. The clockwise path from y to q is the shortest path, and therefore every subpath of
it is a shortest path. We find that dy,q ′ < dy,z = dx,z < dx,q ′ , where dy,z = dx,z as
dy,� = dy,z + dz,q + dq,� and dx,� = dx,z + dz,q + dq,�. This is a contradiction to the
assumption that �′ does not separate x from y. �	
Lemma 5.6 Let L be aminimal landmark set of an extendedhairy cycle. Then |L| ≤ 3.

Proof Assume by contradiction that L is a minimal landmark set and that L has at
least four landmarks denoted as u1, u2, u3, u4. We denote the cycle-vertex of ui by
u′
i , for i = 1, 2, 3, 4 (by Lemma 5.2, all these vertices are distinct). Without loss of

generality we assume that u′
1, u

′
2, u

′
3, u

′
4 appear in this order along the cycle clockwise.

Then without loss of generality the length of the clockwise path from u′
1 to u′

3 has
C-length of at most nC

2 (i.e., it is a shortest path and contains u′
2). Therefore, every

subpath of the clockwise path from u′
1 to u

′
3 has at most nC

2 edges.
We next claim that L ′ = L \ {u2} is a feasible landmark set. By Lemma 5.5, we

conclude that it suffices to show that every leg that was covered by L is covered
by L ′. Assume that a vertex x ∈ C has a leg. First assume that x = u′

2. Then, u1
clockwise-covers the leg of x and u3 counterclockwise-covers the leg of x . Next,
assume that x �= u′

2, and assume that x is clockwise-covered by u2 in L (the case of
counterclockwise-covered is analogous). First assume that x is on the clockwise path
from u′

1 to u′
2 (possibly x = u′

1). Then, u3 clockwise-covers the leg of x . Otherwise,
the clockwise path from x to u′

1 is a subpath of the clockwise path from x to u′
2, and

therefore u1 clockwise-covers the leg of x . �	
To summarize, our algorithm for computing wmd(G) where G is a 1-edge-

augmented tree is to apply the preprocessing step, and afterwards try all possibilities
of sets L such that |L| ≤ 3, and for each of them test its feasibility in linear time
by creating lists of legs that are covered by each member of L . We pick a cheapest
solution (with the smallest possible number of vertices) among the feasible solutions
that were found. Clearly, the algorithm runs in polynomial time (O(n4)) and computes
a cheapest minimal feasible landmark set. As for the preprocessing step, it is easy to
implement it using the same running time; at each time we can run DFS and detect
a core vertex of maximum depth. The legs of this vertex are dealt with (i.e., a set of
landmarks is computed for them as it is done for trees), and the legs at which land-
marks were placed are removed. Obviously, if the graph is an extendedhairy cycle to
begin with, then the same algorithm is applied for it, and its running time is O(n4).
Therefore, we have established the following.

Proposition 5.7 Given an extended hairly cycle G = (V, E),there exists an algorithm
that solves wmd in time O(n4).

Proposition 5.8 Given an 1-edge-augmented tree G = (V, E),there exists an algo-
rithm that solves wmd in time O(n4).

123

Algorithmica (2015) 72:1130–1171 1149

5.3 The General Case

Assume that G = (V, E) is the graph resulting from applying the preprocessing step.
That is, in G every core vertex has at most one leg. The case of k = 1 is already
solved, and here we assume that k ≥ 2 is a fixed constant. We next define a subgraph
of G called the base graph Gb = (Vb, Eb) resulting from G by removing the vertices
of all legs. We next characterize the structure of this base graph. That is, we will show
that it consists of O(k) edge disjoint paths connecting core vertices where all internal
vertices are path vertices.

5.3.1 The Structure of the Base Graph

For a vertex u ∈ Vb, we denote by degb(u) its degree in Gb. Note that Gb contains
no leaves, and thus the degree of every vertex is at least 2. Moreover, since Gb is a
connected subgraph of G and every cycle of G belongs to Gb as well. Gb results from
a tree T by adding exactly k edges. Thus the following claim follows.

Claim 5.9
∑

u∈Vb (degb(u) − 2) = 2k − 2.

Proof First note that the tree T has |Vb|−1 edges, and thus the number of edges inGb

is |Vb|+ k − 1. Therefore,
∑

u∈Vb degb(u) = 2|Vb|+ 2k − 2 and the claim follows. �	
Given a connected graph with no leaves, we can decompose it into a set of edge

disjoint paths where every internal vertex of such a path has degree 2 (in the graph)
and every end-vertex of a path is a core vertex (in the graph). The decomposition
is done by splitting every core vertex u into degb(u) copies, one for each one of its
edges. Since for a vertex u such that degb(u) ≥ 3 we have degb(u) ≤ 3(degb(u)−2),
we find

∑
u∈Vb:degb(u)≥3 degb(u) ≤ 6k − 6. Therefore, the number of paths that Gb

is decomposed into is 1
2

∑
u∈Vb:degb(u)≥3 degb(u) ≤ 3k − 3 (where a cycle is also

considered to be a path), and we conclude the following.

Lemma 5.10 The base graph Gb is decomposed into q ≤ 3k − 3 edge disjoint paths,
where every internal vertex of a path has degree 2 in Gb, and the end-vertices of such
a path are core vertices in Gb.

Given a vertex v ∈ V , we define its base vertex as the vertex v′ ∈ Vb that is the
closest to v. Given the path decomposition defined above, we associate each vertex
v in V with one of the paths in the following way. If the base vertex of v belongs to
exactly one of the paths, then we associate v with this path. Otherwise, the base vertex
v′ of v is a core vertex in Gb, and we associate every vertex of G whose base vertex
is v′ with an arbitrary path that is incident to v′. Later, we will show that a minimal
landmark set has at most one landmark that is associated with each base vertex.

5.3.2 Bounding the Number of Landmarks Associated with One Path

Next, we consider a minimal feasible landmark set L , and one specific path P in the
path decomposition of Gb. Our goal is to bound the number of landmarks in L which

123

1150 Algorithmica (2015) 72:1130–1171

are associated with P . The following lemma generalizes Lemma 5.2 to the case of
k ≥ 2.

Lemma 5.11 A minimal landmark set L does not have a pair of vertices v, v′ with a
common base vertex u.

Proof First we show that L must contain a landmark whose base vertex is not u. Since
Gb has no leaves, if L only contains vertices whose base vertex is u, then the (at least
two) neighbors of u inGb cannot be separated by a landmark in L . Let � be a landmark
whose base vertex is different from u.

Assumewithout loss of generality that dv′,u > dv,u . Let L ′ = L \{v}. We argue that
L ′ is a feasible landmark set. Assume by contradiction that there is a pair of vertices
x1, x2 which are separated by L but not by L ′. Then, v separates x1 from x2, but v′
and � do not. If none of x1, x2 belongs to the leg of u then dxi ,v′ = dxi ,v + dv,v′ , and
this is a contradiction. If x1 belongs to the leg of u and x2 does not belong to this leg,
then since dx1,v′ = dx2,v′ , we conclude that the shortest path from x2 to v′ does not
traverse x1. Then, dx1,u > dx1,v′ = dx2,v′ > dx2,u because v′ �= u. We conclude that
d�,x2 ≤ d�,u + du,x2 and d�,x1 = d�,u + du,x1 and therefore d�,x1 = d�,u + du,x1 >

d�,u + du,x2 ≥ d�,x2 contradicting the assumption that � does not separate x1 from
x2. In the last case x1 and x2 belong to the leg of u. In this case du,x1 �= du,x2 and �

separates x1 from x2 because for i = 1, 2, we have d�,xi = d�,u + du,xi . �	
Lemma 5.12 Let L be a minimal feasible landmark set, and let P be a path in the
path decomposition of Gb. Then, the number of vertices in L which are associated
with P is at most six.

Proof Denote by s and t the two end-vertices of P . For a subpath P ′ of P we say that
a vertex x is associated with P ′ (in addition to being associated with P) if the base
vertex of x is in P ′, and we denote the length of P ′ by d(P ′).

Assumeby contradiction that L has at least seven vertices associatedwith P denoted
by wi (for 1 ≤ i ≤ 7), and we denote by w′

i the base vertex of wi . By the previous
lemma, w′

i �= w′
j for i �= j . Without loss of generality, assume that w′

1, w
′
2, . . . , w

′
7

appear in this order when we traverse P from s to t . If the length of the subpath of P
connecting w′

2 to w′
4 is smaller than d(P)

2 , then we let ui = wi for i = 1, 2, 3, 4 and
u5 = w7. Otherwise, we must have that the length of the subpath of P connecting
w′
4 to w′

6 is smaller than d(P)
2 , and in this case we let u1 = w1 and for i = 2, 3, 4, 5,

we let ui = wi+2. Let u′
i be the base vertex of ui for i = 1, 2, 3, 4, 5. Let P ′ be the

subpath of P starting at u′
2 and ending at u′

4. Therefore, the end-vertices of P ′ are
not s or t , and d(P ′) <

d(P)
2 . Let L ′ = L \ {u3}, and we argue that L ′ is a feasible

landmark set. Assume by contradiction that there is a pair of vertices x, y such that L ′
does not separate x from y, whereas L does. Thus dx,u3 �= dy,u3 but for i = 1, 2, 4, 5
we have dx,ui = dy,ui . Denote by x ′ and y′ the base vertices of x and y, respectively.
If x ′ = y′, then dx,x ′ �= dy,y′ . Moreover, there exists a value i ∈ {1, 5} such that
u′
i �= x ′, and therefore dx,ui = dx,x ′ + dx ′,ui and dy,ui = dy,y′ + dy′,ui , contradicting

the assumption that dx,ui = dy,ui . In what follows we assume that x ′ �= y′.
We first assume that neither x nor y is associated with P ′. For i = 1, 2, 4, 5, since

dx,ui = dy,ui and x and y are not associated with P ′, we have dx,u′
i

= dy,u′
i
for

123

Algorithmica (2015) 72:1130–1171 1151

i = 2, 4. Assume without loss of generality that a shortest path from x to u3 traverses
u′
2 (it must traverse either u′

2 or u
′
4). If the shortest path from y to u3 traverses u′

2 as
well, then we have dy,u3 = dy,u′

2
+ du′

2,u3
= dx,u′

2
+ du′

2,u3
= dx,u3 contradicting the

assumption that u3 separates x from y. Therefore, the shortest path from y to u3 must
traverse u′

4. However, since the shortest path from y to u3 traverses u′
4, we conclude

that dy,u3 = dy,u′
4
+ du′

4,u3
= dx,u′

4
+ du′

4,u3
≥ dx,u3 . Since the shortest path from x

to u3 traverses u′
2, we find dx,u3 = dx,u′

2
+ du′

2,u3
= dy,u′

2
+ du′

2,u3
≥ dy,u3 and we

get a contradiction to dy,u3 �= dx,u3 .
Next, assume that x and y are both associated with P ′. We let x1 = x , x2 = y,

x ′
1 = x ′, and x ′

2 = y′. Recall that d(P ′) <
d(P)
2 and hence the shortest path between

a pair of vertices that are associated with P ′ does not traverse any other vertices of
P (which are not on P ′). Assume without loss of generality that x ′

1 is closer to u′
2

(along P ′) than x ′
2 (note that it is possible that x

′
1 = u′

2 or x
′
2 = u′

4 or both). Therefore,
dx1,u4 = dx1,x ′

2
+ dx ′

2,u4
, dx2,u4 ≤ dx2,x ′

2
+ dx ′

2,u4
(this is implied by the triangle

inequality and it is not necessarily an equality, as it may be the case that u′
4 = x ′

2)
and since u4 does not separate x1 from x2 (i.e., dx1,u4 = dx2,u4), we conclude that
dx1,x ′

2
≤ dx2,x ′

2
. Similarly, dx1,u2 ≤ dx1,x ′

1
+ dx ′

1,u2
, dx2,u2 = dx2,x ′

1
+ dx ′

1,u2
and

sinceu2 does not separate x1 from x2, we conclude that dx2,x ′
1

≤ dx1,x ′
1
. However,

dx1,x ′
1

< dx1,x ′
2

≤ dx2,x ′
2

< dx2,x ′
1

≤ dx1,x ′
1
where the strict inequalities hold because

x ′
1 �= x ′

2. Thus in this case x and y must be separated.
Finally, assume that x is not associated with P ′ and y is associated with P ′. If the

base vertex of y is u′
2 (the case y′ = u′

4 is similar), then since u2 does not separate x
from y, we conclude that the path from x to u2 does not traverse y and also y �= u′

2.
Moreover, dx,u′

2
≤ dx,u2 and dy,u′

2
≥ dy,u2 , and thus dy,u′

2
≥ dx,u′

2
and equality holds

only if u2 = u′
2. However, since any path from y to u1 traverses u′

2, the following holds
by the triangle inequality dy,u1 = dx,u1 ≤ dx,u′

2
+ du′

2,u1
≤ dy,u′

2
+ du′

2,u1
= dy,u1

where the last inequality holds as an equality only when u′
2 = u2. Thus,u′

2 = u2.
Since u3 separates x from y and dy,u3 = dy,u2 + du2,u3 = dx,u2 + du2,u3 ≥ dx,u3 ,
we conclude that the shortest path from x to u3 is strictly shorter than dx,u2 + du2,u3 .
We conclude that the shortest path from x to u3 traverses u′

4, and therefore dx,u′
4

=
dx,u3 −du3,u′

4
< dx,u2 +du2,u3 −du3,u′

4
= dy,u2 +du2,u3 −du3,u′

4
≤ dy,u′

4
contradicting

the assumption that u4 does not separate x from y. Thus, it remains to consider the
case where the base vertex of y is not u′

2 and not u′
4.

Without loss of generality, assume that the shortest path from x to u3 traverses u′
2.

y′ �= u′
2, u

′
4 and y

′ is on the subpath P ′. Since the unique shortest path from y′ to u′
4 is a

subpath of P ′, it does not traverse u′
2, dx,u′

4
= dy,u′

4
< dy,u′

2
+du′

2,u
′
4

= dx,u′
2
+du′

2,u
′
4
.

Therefore, every shortest path from x to u′
4 does not traverse u

′
2. If the shortest path

from y to u′
1 traverses u

′
2, then dy,u′

1
= dy,u′

2
+ du′

2,u
′
1

= dx,u′
2
+ du′

2,u
′
1
. However, we

argue next that no shortest path from x to u′
1 traverses u′

2. Assume by contradiction
that a shortest path from x to u′

1 traverses u
′
2. Then, since x

′ is not on P ′, we conclude
that this shortest path from x ′ to u′

1 traverses u
′
4 and u

′
3 before it traverses u

′
2 (recall that

no shortest path from x to u′
4 traverses u

′
2). This is a contradiction to the assumption

that the shortest path from x to u′
3 traverses u′

2. Therefore, dx,u′
1

< dx,u′
2

+ du′
2,u

′
1

contradicting the assumption that u1 does not separate x from y. Therefore, it remains
to consider the case where the path from y to u′

1 does not traverse u
′
2, but it traverses

123

1152 Algorithmica (2015) 72:1130–1171

u′
4 and u′

5 along the way, and so dy,u′
1

= dy,u′
4
+ du′

4,u
′
5
+ du′

5,u
′
1
. Since u4, u5, u1 do

not separate x from y, we conclude that dx,u′
1

= dx,u′
4
+ du′

4,u
′
5
+ du′

5,u
′
1
and thus there

exists a shortest path from x to u′
1 that traverses u

′
4 and u

′
5 along its way (in this order)

and thus also u′
2 (before arriving at u

′
4), contradicting the claim shown above that any

shortest path from x to u′
4 does not traverse u

′
2. �	

The following corollary follows immediately from Lemmas 5.10 and 5.12.

Corollary 5.13 Let L be a minimal landmark set of a graph G which results from a
k-edge-augmented tree by the preprocessing step (where k ≥ 2). Then |L| ≤ 18k−18.

To summarize, our algorithm for computing wmd(G) where G is a k-edge-
augmented tree (for k ≥ 2) is to apply the preprocessing step (which can be imple-
mented faster than the next part of the algorithm), and afterwards try all possibilities of
sets L such that |L| ≤ 18k −18, and for each of them test its feasibility in polynomial
time (using amatrix of distances), and among the feasible solutions we pick a cheapest
one. Clearly, the algorithm runs in polynomial time (for a constant value of k) and
computes a cheapest feasible landmark set. The running time is O(nO(k)). Therefore,
we have established the following.

Theorem 5.14 Given a k-edge-augmented tree G = (V, E) for a constant number
k, there is a polynomial time algorithm for solving wmd.

6 Wheels

6.1 Complete Wheels

In this section we consider complete wheels. A (complete) wheel on n vertices
{1, 2, . . . , n} is defined as follows. There is a cycle C over the vertices 1, 2, . . . , n−1
(the clockwise order of the vertices along C is 1, 2, . . . , n − 1, 1), and vertex n is
adjacent to all other vertices. Vertex n is called the hub of the wheel, whereas the other
vertices are called cycle-vertices. All distances in G are either 1 or 2; clearly the dis-
tance between every cycle-vertex and the hub is 1, the distance of every cycle-vertex
and its two neighbors along the cycle is 1, and any two non-adjacent cycle-vertices
are reachable via a two-edge path through the hub. Consider a feasible landmark set
L . A gap between consecutive landmarks is defined as follows: If �, �′ ∈ L are cycle-
vertices such that there is no other landmark along the clockwise path from � to �′,
then the set of internal vertices of the clockwise path from � to �′ is the gap (between
� and �′), and we say that the gap is adjacent to � and �′. The length of the gap is
the number of vertices in the gap. Here, we characterize the lengths of the gaps in a
feasible solution L .

Lemma 6.1 Assume that G is a wheel over at least 8 vertices. Let L ⊆ V . L is a
feasible landmark set if and only if the following three conditions hold with respect to
L:

1. There is no gap of length at least 4.
2. There is at most one gap of length 3.

123

Algorithmica (2015) 72:1130–1171 1153

a b

c d

Fig. 4 An example of a complete wheel. Subsets of vertices marked with ellipses are considered. In the
subset of a, there is a gap of length four 16, 1, 2, 3, contradicting condition 1. Indeed, d1,� = d2,� = 2 for
any � ∈ {4, 5, 8, 10, 12, 15}. In the subset of b, there are two gaps of length three, contradicting condition
2. Indeed, d1,� = d9,� = 2 for any � ∈ {3, 5, 7, 11, 13, 15}. In c, there are two consecutive gaps of
length two, contradicting condition 3. Indeed, d1,� = d15,� = 2 for any � ∈ {3, 5, 8, 10, 11, 13} and
d1,16 = d15,16 = 1. Finally, the subset of d satisfies the three conditions; the hub is the unique vertex of
distance 1 from any landmark, vertex 1 is the unique vertex of distance 2 from any landmark, and the lists of
distances of other non-landmark vertices to the landmarks {3, 5, 8, 10, 13, 15} are {1, 2, 2, 2, 2, 2} (vertex 2),
{1, 1, 2, 2, 2, 2} (vertex 4), {2, 1, 2, 2, 2, 2} (vertex 6), {2, 2, 1, 2, 2, 2} (vertex 7), {2, 2, 1, 1, 2, 2} (vertex 9),
{2, 2, 2, 1, 2, 2} (vertex 11), {2, 2, 2, 2, 1, 2} (vertex 12), {2, 2, 2, 2, 1, 1} (vertex 14), and {2, 2, 2, 2, 2, 1}
(vertex 16)

3. Two gaps of length at least two are not adjacent to a common vertex of L ∩ C.

Proof See Fig. 4 for an illustration of the conditions. First, assume that L is a feasible
landmark set. In this part of the proof we use the fact that the hub vertex can never
separate two cycle-vertices, and hence they must be separated by a landmark that is
a cycle-vertex. We prove the three conditions. Assume by contradiction that at least
one of the conditions does not hold. First, assume that there is a gap of length at least
4 between the landmarks �1, �2. Then, there are at least two vertices v, v′ from this
gap (those that are not adjacent to �1 and �2) that have distance 2 from any vertex in
L ∩ C . Thus, there is no vertex in L that separates v from v′. Next, assume that there
are (at least) two gaps, each of length 3. Let v, v′ be the middle vertices of these gaps.
Therefore, for every � ∈ L ∩C we have d�,v = d�,v′ = 2. Finally, assume that the two
gaps which are adjacent to � ∈ L ∩ C have length at least 2. Denote by v, v′ the two

123

1154 Algorithmica (2015) 72:1130–1171

neighbors of � in C . Then, dv,� = dv′,� = 1, for every �′ ∈ L ∩ C such that �′ �= �

we have dv,�′ = dv′,�′ = 2. In all cases, we conclude that there is no vertex in L that
separates v from v′.

For the other direction, assume that L satisfies the three conditions, then L ′ = L\{n}
also satisfies these conditions, and it suffices to show that L ′ is a feasible landmark
set. Therefore, without loss of generality assume that L ′ satisfies the three conditions.
Note that since G has at least eight vertices, there are at least seven vertices in the
cycle C , and by the three conditions we conclude that |L ′| ≥ 3. Given any set of three
cycle-vertices, there is exactly one vertex whose distance from all of these vertices is
1, and this unique vertex is the hub, n, so the hub is separated from every cycle-vertex
(even though there is no landmark at the hub in L ′). Therefore, it suffices to show
that if v, v′ ∈ C \ L ′, then there is � ∈ L ′ that separates v from v′. By the first and
second conditions there is at most one vertex (the middle vertex of a gap of length
3, if it exists) whose distance from every vertex of L ′ is 2 (any other vertex in C is
either a landmark or adjacent to a landmark). Therefore, we can assume without loss
of generality that v is adjacent to � ∈ L ′. If v′ is not adjacent to �, then � separates v

from v′. Otherwise, v and v′ are cycle-vertices adjacent to � (along C). By the third
condition, one of their gaps contains a single vertex, so we conclude that either v or
v′ is adjacent to another landmark �′ ∈ L ′. Since the length of C is at least 7, then �′
cannot be adjacent to both v and v′, and therefore it separates v from v′. Therefore L ′
is a feasible landmark set. �	
Corollary 6.2 A minimal landmark set L of a complete wheel G does not contain the
hub.

Based on the characterization in the above lemma, our algorithm is defined by a
straightforward dynamic program. Note that without loss of generality, we can assume
that G has at least 8 vertices (otherwise G has a constant size, and thus we can
compute wmd(G) in constant time using an exhaustive enumeration). We first guess
a position of a single landmark � such that the clockwise path from � to the next
landmark along C has at most two edges. By the conditions of Lemma 6.1, in every
six consecutive vertices along C there is at least one such landmark, and thus it is
sufficient to enumerate six possibilities for �.Without loss of generality and for the sake
of presentationwe assume that � = n−1.Using this assumption, our dynamic program
positions landmarks along a path, and it selects the location of additional landmarks
among the vertices 1, 2, . . . , n − 2. By our assumption that the next landmark after
� must occur at one of the next two vertices, exactly one of the vertices 1,2 must
contain a landmark (positioning landmarks at both of them does not result in an
optimal solution, or it does not result in a minimal landmark set, as in such a case, the
landmark of vertex 1 can be removed without violating the properties). We position
the remaining landmarks using a recursive formula where every state of the dynamic
program recalls whether we already used a gap of length 3 and therefore we cannot
use it again.

For i = 0, 1, denote by Fi
1(�

′) and Fi
2(�

′) the minimum total cost of the landmarks
in a solution for the path P = {1, 2, . . . , �′} such that �′ is a landmark, and such that
the last gap before �′ has length at most 1 and at least 2, respectively, where the subpath
of P from the first landmark (1 or 2) to �′ has i gaps of length 3. Then, the following

123

Algorithmica (2015) 72:1130–1171 1155

holds (where if the argument of Fi
1 or Fi

2 is not positive then its corresponding value
is ∞).

F0
1 (�′) = min{F0

1 (�′ − 1), F0
2 (�′ − 1), F0

1 (�′ − 2), F0
2 (�′ − 2)} + c(�′),

F0
2 (�′) = F0

1 (�′ − 3) + c(�′),
F1
1 (�′) = min{F1

1 (�′ − 1), F1
2 (�′ − 1), F1

1 (�′ − 2), F1
2 (�′ − 2)} + c(�′),

F1
2 (�′) = min{F1

1 (�′ − 3), F0
1 (�′ − 4)} + c(�′).

The starting conditions are F0
1 (1) = c(1), F0

1 (2) = c(2), and F1
1 (1) = F1

1 (2) =
F0
2 (1) = F0

2 (2) = F1
2 (1) = F1

2 (2) = ∞. The goal is to compute the value
min{F1

1 (�), F0
1 (�), F1

2 (�), F0
2 (�)}. We thus conclude the following result.

Theorem 6.3 Given a complete wheel G = (V, E),there exists an algorithm that
solves wmd in linear time O(n).

In [9], it is (inaccurately) stated that for a complete wheel on n vertices, the metric
dimension is always 2. This was corrected in [17] where they showed the following
result (which can be derived from the above conditions and a straightforward analysis
for the case n ≤ 8).

Proposition 6.4 [17] Given a complete wheel G on n vertices, md(G) is as follows:
If n = 4, 7, md(G) = 3; If n = 5, 6, md(G) = 2; for n ≥ 8, md(G) = � 2n

5 �.
Remark 6.5 Since a complete wheel on n vertices is an (n− 1)-edge-augmented tree,
by the last proposition, we conclude that there exist k-edge-augmented trees without
any legs that need �(k) landmarks in any feasible solution.

Note that not every k-edge-augmented tree requires �(k) landmarks. Any two-
dimensional grid graphs requires only two landmarks in the L1 norm (i.e., if distances
are defined as distances in the corresponding graph) [14,15], while k = �(n) is this
case as well.

6.2 The General Case

An incomplete wheel on n vertices {1, 2, . . . , n} is defined as follows. There is a cycle
C over the vertices 1, 2, . . . , n − 1 (the clockwise order of the vertices along C is
1, 2, . . . , n − 1, 1), and vertex n is adjacent to some of the other vertices, but not to
all of them. In what follows we consider either an incomplete or a complete wheel,
and refer to it as a wheel. Vertex n is called the hub of the wheel, whereas the other
vertices are called cycle-vertices. The neighbors of n are called connectors, and the
edges incident at n are called spokes. We let layer j be the set of vertices of distance
j from n, and denote it by Vj (i.e., Vj = {u ∈ V : du,n = j}, and thus V0 = {n},
and V1 is the set of connectors). For L ⊆ V , we say that a cycle-vertex u is close to
� ∈ L if d�,u < d�,n + dn,u , i.e., the shortest path through the hub between � and u
is not a shortest path between them (note that no vertex can be close to the hub). We
say that u is close to L if there is � ∈ L such that u is close to � (see Fig. 5). In this

123

1156 Algorithmica (2015) 72:1130–1171

Fig. 5 An example of an incomplete wheel with 22 connectors and 58 vertices. The ellipse shaped vertices
are landmarks of a landmark set. Vertex 53 is not close to any landmark as its distance from vertex 56 is
2 (the only shortest path traverses the hub), and its distance to vertex 50 is 3 (there are two shortest paths,
one of which traverses the hub). The vertex 18 is close to the landmark 16 (with a distance 2) while 19 is
not close to 16. The vertex 6 is close to the landmark 12 (with distance 6) but the vertex 18 is not close to
12. Vertex 45 is not close to landmark 47, but it is close to landmark 43

section we consider wheels with at least 22 connectors, and present a polynomial time
algorithm for solving wmd for such a graph. Since wheels with at most 21 connectors
are k-edge-augmented trees for a value of k such that k ≤ 21, we conclude that we
will obtain a polynomial time algorithm for solving wmd on (arbitrary) wheels. Thus
let G = (V, E) be a wheel with at least 22 connectors (where n = |V | ≥ 23). We first
characterize a minimal landmark set L in such graphs (some of the properties that we
prove hold for smaller numbers of connectors as well).

Lemma 6.6 Let L be a feasible landmark set. Then, for every j there is at most one
vertex of Vj that is not close to L. Moreover, the vertices in V that are not close to L
form a shortest path from some vertex v to the hub.

Proof Assume by contradiction that there is a value of j such that there are two vertices
u1, u2 ∈ Vj that are not close to L . By the definition of closeness, we conclude that
for every � ∈ L and for i = 1, 2, we have dui ,� = dui ,n + dn,� = j + dn,�, and thus �

does not separate u1 from u2, contradicting the feasibility of L .

123

Algorithmica (2015) 72:1130–1171 1157

Let v ∈ V be the vertex of a maximum layer that is not close to L . The vertex v

is well-defined because by definition n is not close to L , and since we showed that
each layer has at most one vertex that is not close to L . We next argue that the vertices
that are not close to L form a shortest path from v to n. Assume otherwise. For every
� ∈ L , the shortest path from � to v traverses n, and continues along a shortest path
from n to v. The vertices along this path are not close to �, since a subpath of a shortest
path is also a shortest path. �	

In the example shown in Fig. 5, the path of vertices that are not close to L consists
of the two vertices 53 and 58.

Lemma 6.7 Let � ∈ V . The set of vertices that are close to � is a proper subpath P of
C containing �. Moreover, consider P as a clockwise path from a vertex u to a vertex
v, then the subpath of P from u to � (including u, �) has at most two connectors, and
the subpath of P from � to v has at most two connectors. Thus, P contains at most
four connectors and all subpaths of P that do not contain � as an inner vertex are
unique shortest paths.

Proof Obviously, � is close to itself. Consider the set of vertices that are close to �

such that each one of them has a clockwise shortest path to � on C . Let u be a vertex
of maximum distance from � among these vertices. By the property that a subpath of a
shortest path is a shortest path, we conclude that this set of vertices is a subpath of C ,
and this is the clockwise path from u to �. Similarly, consider the set of vertices that are
close to � such that each one of them has a counterclockwise shortest path to �, and let
v be such a vertex of maximum distance on the cycle from �. We get another subpath
of C from � to v. Let P denote the subpath of C that results from concatenating these
two subpaths. The subpath of P starting at � and ending at v contains at most two
connectors, as otherwise a path from � to v, where the subpath between the first and
last connectors (containing at least two edges), is replaced by a two-edge path through
the hub is a shortest path, and hence v is not close to �. The proof for the subpath from
u to � is similar. Thus, the total number of connectors in P cannot exceed four, and
P is a proper subpath of C . Assume by contradiction that a subpath of the subpath of
P from � to v is not unique (the proof for the subpath of P from u to � is similar).
If there is another shortest path through the hub, then this implies another shortest
path from � to v through the hub, and contradicts the property that v is close to �. If
there is another shortest path on the cycle, then this shortest path has more than four
connectors (as the path from � to v has at most two connectors), in which case it can
be replaced with a path through the hub using the first and last connector, and this path
is shorter, which is a contradiction. �	
Lemma 6.8 L is a feasible landmark set if and only if the following conditions hold:

1. For every layer Vj , there is at most one vertex of Vj that is not close to L.
2. For every � ∈ L and every j , if u1, u2 ∈ Vj are close to � and d�,u1 = d�,u2 , then

there is �′ ∈ L \ {�} that is close to at least one of the vertices u1 or u2.
Proof First assume that L is a feasible landmark set. By Lemma 6.6, the first condition
holds. If the second condition does not hold, then let u1, u2 ∈ Vj be two vertices that

123

1158 Algorithmica (2015) 72:1130–1171

are close to �, such that d�,u1 = d�,u2 holds, but neither u1 nor u2 is close to another
vertex in L . We find that u1 and u2 are not separated by �, and are not separated by
�′ ∈ L \ {�} because for i = 1, 2 we have dui ,�′ = j + dn,�′ , and this contradicts the
feasibility of L .

Next, assume that L satisfies the two conditions. Let u1, u2 ∈ V , we need to show
that u1 and u2 are separated by L . We next prove that there is �′ ∈ L such that none of
u1 and u2 is close to �′. Consider the path P in C connecting u1 and u2 that contains
at least 10 connectors as internal vertices (such a path exists since G has at least 22
connectors). Assume without loss of generality that this is a clockwise path from u1 to
u2. Consider the pair of middle connectors v1, v2 along P (these are two connectors
such that each of the subpaths of P from u1 to v1 and from v2 to u2 contains at least
four connectors as internal vertices). By the first condition, since v1, v2 ∈ V1, at least
one of v1 and v2 is close to some landmark �′ ∈ L . By Lemma 6.7, the set of vertices
that are close to �′ is a proper subpath of C that has at most four connectors. Since
this subpath contains either v1 or v2, we conclude that none of u1 and u2 is close to
�′. Therefore, if u1 and u2 belong to distinct layers, then there is �′ ∈ L (which is not
close to any of them) that separates u1 and u2, since d�′,ui = d�′,n +dn,ui for i = 1, 2.
In what follows we assume that u1, u2 ∈ Vj .

Next, if there is a landmark � ∈ L that is close to u1 but not close to u2, then
du1,� < j + dn,� and du2,� = j + dn,�, and therefore � separates u1 from u2. Thus,
in the remaining case, every � ∈ L that is close to either u1 or u2 must be close to
both of these vertices. There is at least one landmark � ∈ L close to at least one of the
two vertices by the first condition, and it is close to both of them by the assumption.
If du1,� �= du2,�, then we are done. Thus, assume that du1,� = du2,�. Since u1 and u2
are close to �, we conclude that the (unique) shortest path from u1 to u2 in C traverses
� which is exactly the middle vertex along this path. Thus, a vertex � which satisfies
all these conditions is unique (for a given pair of vertices u1 and u2). By the second
condition, we conclude that in this case there is another landmark �′ ∈ L such that
�′ �= � and it is close to either u1 or u2 or both, but according to the assumption, it is
close to both, and this is a contradiction to the uniqueness of � as established above. �	
Corollary 6.9 A minimal landmark set L of a wheel with at least 22 connectors does
not contain the hub, and |L| ≥ 6.

Proof The first part holds because if L satisfies the two conditions of Lemma 6.8, then
so does L \ {n}. As for the second part, assume by contradiction that |L| ≤ 5. G has
at least 22 connectors, and by Lemma 6.8, at most one of them is not close to L . Thus,
there is a landmark � ∈ L such that at least five connectors are close to � contradicting
Lemma 6.7. �	

Let L∗ be a fixed optimal solution. We say that two landmarks �1 and �2 are
consecutive if the clockwise path from �1 to �2 does not contain an additional landmark.
Such a path is called thenatural path between the landmarks. Given a landmark � ∈ L∗,
we say that a pair of cycle-vertices x, y is a bad pair with respect to � (or a bad pair
of �), if x, y are close to �, belong to a common layer, dx,� = dy,�, and the clockwise
path from x to y traverses �. Recall that in this case there must be a landmark �′ �= �

that is close to at least one of x and y, and we say that �′ covers the bad pair x, y of �.

123

Algorithmica (2015) 72:1130–1171 1159

Lemma 6.10 Let x, y be a bad pair with respect to a landmark �. Let �′ �= � be a
landmark that is close to one of x and y (or both). Let �1 and �2 be landmarks such
that �1 and � are consecutive landmarks and � and �2 are consecutive landmarks.
Then the landmark �1 is close to x, or the landmark �2 is close to y (or both). Thus,
every bad pair of � is covered by either �1 or �2 (or by both of them).

Proof First consider the case where the clockwise path (the shortest path) from x to
� traverses �1 (perhaps x = �1). Then, the subpath of this path from x to �1 is the
unique shortest path between x and �1, so x is close to �1 and we are done. The case
where the counterclockwise path from y to � traverses �2 is symmetric. Without loss
of generality, assume that x is close to �′ and the clockwise path from �1 to �2 traverses
x, �, y (in this order) but does not traverse �′ (the last assumption holds since there
are no landmarks except for � that are internal vertices of this path). We split this case
into two subcases. In the first subcase the shortest path P from �′ to x is clockwise,
and in the second one this path is counterclockwise. In the first subcase, the subpath
of P from �1 to x is a unique shortest path, and in the second subcase the clockwise
path from y to �2 is a subpath of P , and thus it is a unique shortest path. �	

A minimal bad pair of a landmark � is a bad pair x, y such that dx,� is minimal
among all bad pairs of �.

Lemma 6.11 Let �′ �= � be a landmark that covers a minimal bad pair x, y of � such
that either �′, � are consecutive or �, �′ are consecutive, then �′ covers every bad pair
of �.

By Lemma 6.10, it is indeed possible to assume without loss of generality that �′
satisfies the condition of the lemma.

Proof Let x ′, y′ be a bad pair of �. Thus, the clockwise path from x ′ to y′ traverses
x, �, y in this order. Without loss of generality, assume that �′, � are consecutive and x
is close to �′. If the clockwise path from �′ to � traverses x ′, then this path contains the
unique shortest path from �′ to x that contains as a subpath the unique shortest path
from �′ to x ′, and we are done. Otherwise, the clockwise path from x ′ to � (which is
the unique shortest path between them) traverses �′, and therefore the clockwise path
from x ′ to �′ is a unique shortest path, and the claim holds. �	

We say that a minimal bad pair x, y of � that is covered by �′ is covered from the
left by �′ if �′ and � are consecutive, and otherwise if � and �′ are consecutive, then we
say that x, y are covered from the right by �′. By Lemma 6.10, we can assume that a
bad pair which is covered is either covered from the right by some �′ or covered from
the left by some �′ (or both). By Lemma 6.11, we find that it is sufficient to verify that
minimal bad pairs are covered (rather than all bad pairs).

Corollary 6.12 Let L ⊆ V be a minimal feasible landmark set. The set L satisfies
the following conditions.

1. n /∈ L.
2. The set of vertices that are not close to L forms a shortest path from n to some

vertex v (possibly v = n), in particular, if v �= n, then the path contains exactly
one connector and no landmark.

123

1160 Algorithmica (2015) 72:1130–1171

3. For every � ∈ L, there is �′ ∈ L \ {�} that covers the minimal bad pair of � either
from the left or from the right (if there exists a bad pair of �).

Moreover, if a set L ⊆ V satisfies these three conditions, then L is a feasible landmark
set.

If there is a cycle-vertex that is not close to L∗, then all such cycle-vertices form
a path without a landmark. In order to construct an optimal landmark set, we guess a
pair of consecutive landmarks in L∗ such that if there exists a cycle-vertex not close
to L∗, then all such vertices appear along the natural path between the two guessed
landmarks. Without loss of generality and for the sake of presentation, we assume
that the two guessed landmarks are 1 and k ≤ n − 1, and the natural path between
them is the clockwise path from k to 1. Once again, we will define a dynamic program
along the path from 1 to k that positions landmarks along this path. The number of
possibilities for the selection of these two landmarks is O(n2). We first verify that the
set of vertices along the natural path from k to 1 that are not close to 1 or to k (if such
a cycle-vertex exists) form a shortest path from some vertex to n (and in particular,
if it is non-empty, then it contains exactly one connector, since all connectors are in
V1). If this condition does not hold, then this possibility (the choice of two landmarks)
is impossible, and we stop considering it. In what follows, we consider a possibility
which passed this test. Since the number of connectors along the natural path from k
to 1 is at most five, the clockwise path from 1 to k contains at least 17 connectors, and
it is not a shortest path.

Let 1 < v < k. We define low(v) as the minimum index i such that 1 ≤ i ≤ v

and the clockwise path from i to v is a unique shortest path. We let high(v) be the
maximum index i such that v ≤ i ≤ k and the clockwise path from v to i is the
unique shortest path. δ(v) is the minimum number i ≥ 1 such that v − i ≥ low(v)

and v + i ≤ high(v) belong to a common layer. If such i does not exist, then we let
δ(v) = ∞. The motivation for this definition of δ(v) is to identify the minimal bad
pair of v (if it exists).

Claim 6.13 Let 1 < v < k be a landmark such that �1, v are consecutive landmarks
and v, �2 are consecutive landmarks (1 ≤ �1 < v < �2 ≤ k since 1, k are landmarks),
assume that v has a bad pair, and let x, y be the minimal bad pair of v. If {x, y}
is not contained in the clockwise path from 1 to k, then either 1 or k covers x, y.
Otherwise, x, y is covered if and only if at least one of the following conditions holds:
(i) x ≤ high(�1), (ii) y ≥ low(�2).

Proof First consider the case where x is not contained in the clockwise path from 1
to k. As x is close to v, the unique shortest path from x to v traverses 1. Thus, this is
the unique shortest path from x to 1, and 1 covers the bad pair x, y. The case where y
is not contained in the clockwise path from 1 to k is similar.

Consider the second claim. We have x = v − δ(v) and y = v + δ(v). If �1 ≤ x ,
then x is close to �1 if and only if �1 ≤ x ≤ high(�1) and the claim holds. Otherwise,
if �1 > x , then the unique shortest path from x to v traverses �1, and therefore x is
close to �1 as well, and in this case x ≤ �1 ≤ high(�1). The claim that y ≥ low(�2)

if and only if y is close to �2 is proved similarly. �	

123

Algorithmica (2015) 72:1130–1171 1161

For the vertex 1, we define the parameters Low(1), High(1),�(1) as follows.
Low(1) is the minimum index 1 < i ≤ n − 1 such that the clockwise path from
i to 1 is the unique shortest path (by definition n − 1 satisfies this condition, hence
Low(1) is well-defined, and we find that the vertices i, i + 1, . . . , n − 1 are close to
1). High(1) is the maximum index i > 1 such that the clockwise path from 1 to i is
the unique shortest path (similarly to the existence of Low(1), the value of High(1)
is well-defined, vertices 2, 3, . . . , High(1) are close to 1, and High(1) < k). �(1) is
the minimum number i ≥ 1 such that i + 1 and n − i ≥ k + 1 are both close to 1 (and
have the same distance from 1) and belong to a common layer. If such a value i does
not exist, then we let �(1) = ∞. This definition is related to bad pairs and the goal is
to define a minimal bad pair. We only consider bad pairs x, y of a specific form, that
x appears on the clockwise path between k and 1. It can be the case that there exists a
bad pair of 1 even if �(1) = ∞, but in this case we show later that k covers all such
bad pairs.

For the vertex k, we define similar parameters Low(k), High(k),�(k) as follows.
Low(k) is the minimum index i > 1 such that the clockwise path from i to k is the
unique shortest path (by definition k − 1 satisfies this condition, hence Low(k) is
well-defined). High(k) is the maximum index i ≤ n− 1 such that the clockwise path
from k to i is the unique shortest path (note that it is possible that vertex 1 is also close
to k, using the clockwise path from k to 1, but we are not interested whether this holds
or not). �(k) is the minimum number i ≥ 1 such that k + i ≤ n − 1 and k − i ≥ 1 are
both close to k (and have the same distance from k) and belong to a common layer.
If such i does not exist, we let �(k) = ∞. In this case we are only interested in bad
pairs x, y where y appears on the clockwise path between k and 1 (and other bad pairs
are covered by 1, as we show later).

We also let low(1) = 1, high(1) = High(1), low(k) = Low(k) and high(k) = k.
Wedefine δ(1) and δ(k) in the followingway.We let δ(1) = ∞ if High(k) ≥ n−�(1),
and otherwise, δ(1) = �(1). The motivation is to define δ(1) to be infinite if there is
no bad pair of 1, or if k covers the minimal bad pair of 1 (this can happen if there is
a bad pair of 1 but �(1) = ∞, or if �(1) < ∞ and δ(1) = ∞). Similarly, we define
δ(k) = ∞ if Low(1) ≤ k + �(k). Otherwise, we let δ(k) = �(k). The next lemma
establishes the correctness of the differences between � and δ and the property that
�(1),�(k) can be infinite even if there is a bad pair of 1, and k, respectively.

Lemma 6.14 High(k) ≥ n−�(1) if and only if the minimal bad pair of 1 is covered
by k. Similarly, Low(1) ≤ k+�(k) if and only if the minimal bad pair of k is covered
by 1.

Proof If there is no bad pair of 1, then �(1) = ∞ and the claim holds. Otherwise
let x, y be the minimal bad pair of 1. If �(1) = ∞, then the inequality holds and the
clockwise path from x to 1 traverses k (possibly x = k), and k covers this bad pair
since the unique shortest path from x to k is contained in the clockwise path from
x to 1. In the remaining case, the clockwise path from k to 1 traverses x , and then
x = n − �(1). Then, x is close to k if and only if the inequality holds. Thus, the first
claim holds. The proof of the second claim is analogous. �	

We define a function F : {1, 2, . . . , k} × {le f t, right} → R+ as follows.
F(v, right) (F(v, le f t)) is the minimum cost of a set L such that 1, v ∈ L , every

123

1162 Algorithmica (2015) 72:1130–1171

1 < i < v is close to at least one of the vertices in L , and for every � ∈ L \ {v} (� ∈ L ,
respectively) such that δ(�) is finite, the minimal bad pair of � is covered by a vertex
in L \ {�}.

We compute the values of F using the following dynamic program. If δ(1) = ∞,
then we let F(1, right) = F(1, le f t) = c(1), and if δ(1) is finite, then F(1, le f t) =
∞ and F(1, right) = c(1). For � > 1, we define sets of feasible values of �′ < �

(with the goal that �′,�will be consecutive landmarks) α(�) = {�′ ∈ {1, 2, . . . , �−1} :
high(�′) ≥ low(�) − 1}, β(�) = {�′ ∈ α(�) : high(�′) ≥ � − δ(�)}, γ (�) = {�′ ∈
α(�) : low(�) ≤ �′ + δ(�′)}. The recursive formula is as follows.

F(�, le f t) = min

{

min
�′∈β(�)

F(�′, le f t), min
�′∈β(�)∩γ (�)

F(�′, right)
}

+ c(�),

F(�, right) = min

{

min
�′∈α(�)

F(�′, le f t), min
�′∈γ (�)

F(�′, right)
}

+ c(�).

If δ(k) = ∞, then we are looking for F(k, right), and otherwise we are looking
for F(k, le f t). Then, by backtracking we compute the optimal landmark set. We
conclude that the algorithm computes an optimal solution in polynomial time. Thus,
we established the following.

Theorem 6.15 Given a wheel G = (V, E), wmd can be solved in polynomial time. In
particular, if G is a wheel with at least 22 connectors, then the running time is O(n4).

Proof First, we construct two matrices of sizes n × n, the first one containing all the
distances (this can be computed in O(n3)), and the second one indicating for every
pair of cycle-vertices whether they are close (each entry is computed in O(1) using
the other matrix). The second matrix later allows to check in time O(1)whether a pair
of vertices are close. The first matrix will be used to find levels of vertices. In what
follows, we call the two chosen vertices (denoted by 1 and k in the algorithm) special
vertices.

For every pair of cycle-vertices the following process is done. All the attributes
defined above are computed (δ(v), high(v), low(v), α(v), β(v), and γ (v)) for all
vertices on the cycle path between the two special vertices. Note that the values of the
attributes depend on the choice of the two special vertices. The additional attributes
of the two special vertices are computed as well. This can be done using O(n) time
per vertex. Then, the function F is computed using linear time per vertex. We find a
total time of O(n2) for each pair of special vertices, and thus the total running time is
O(n4). �	

7 Hard Cases

In this section we extend the classes of graphs for which computing md(G) is known
to be NP-hard. Here the graphs are unweighted, and there is no cost function. We
define a variant of 3- Dimensional Matching (3DM) which we call Cover 3-
Dimensional Matching (C3DM). We first consider this variant and show that it
is NPC. Then, we define a gap creating procedure that we use in our reductions.

123

Algorithmica (2015) 72:1130–1171 1163

Afterwards, we prove that computing md(G) is NPC for the following classes of
graphs: Split graphs, bipartite graphs, co-bipartite graphs, and line graphs of bipartite
graphs.

7.1 Preliminaries

Recall that the 3DM problem is defined as follows. Given three disjoint sets each
consisting of n elements, A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} and C =
{c1, c2, . . . , cn}, and a set of triples S ⊆ A × B × C (where a triple is an element of
A × B × C), is there a subset S′ of S (consisting of exactly n triples) such that each
element of A ∪ B ∪ C occurs in exactly one of the triples of S′. It is well-known that
3DM is NPC.

Here we consider the following variant which we call Cover 3- Dimensional
Matching (C3DM). Given three disjoint sets each consisting of n elements, A =
{a1, a2, . . . , an}, B = {b1, b2, . . . , bn} and C = {c1, c2, . . . , cn}, and a set of triples
S ⊆ A × B × C , for every subset S′ of S we define its cost to be the sum of two
values: the first of which is |S′|, and the second one is the number of elements that
do not belong to any of the triples in S′. The goal is to find out whether there exists a
subset S′ of S which has cost of at most n. Clearly a subset S′ of S has a cost at most
n if and only if it is a feasible 3-dimensional matching. Therefore, C3DM is NP-hard.
C3DM is in NP, and therefore it is in fact NPC as well.

In our reductions we need a gap between the cost of optimal solutions for the
following two cases: the case that a 3-dimensional matching exists, and the case
that such a 3-dimensional matching does not exist. For this, we define a subroutine
CREATE-GAP that receives an input of C3DM with the parameter n and creates (in
polynomial time) another instance of C3DM with the parameter n′ = 212(n)2, that
satisfies the following properties. The first property is n′ ≥ 212 (the reason for this
large value will become clear in the next section). Additionally, if the original instance
has a solution of cost at most n, then for the new instance there is a solution of cost
at most n′. However, if for the original instance the cost of an optimal solution is at
least n + 1, then the cost of any solution for the new instance is at least n′ + √

n′.
Thus, for the new instance, the question whether there is a solution of cost at most n′
is equivalent to the question whether there is a solution of cost at most n′ + √

n′ − 1.

Lemma 7.1 There exists a polynomial time subroutine CREATE-GAP as described.

Proof The subroutine CREATE-GAP is defined as follows. Consider an instance
to C3DM with the parameter n and 3n elements, and construct “an N = 212n
copies instance of C3DM” by repeating each element N times. Thus, instead of
the sets A, B,C we have N sets Ai , Bi ,Ci (for i = 1, 2, . . . , N), where Ai =
{ai1, ai2, . . . , ain}, Bi = {bi1, bi2, . . . , bin} and Ci = {ci1, ci2, . . . , cin},and each triple
has N copies, i.e., if (a, b, c) ∈ S, then for i = 1, 2, . . . , N we have (ai , bi , ci) in
the collection of triples (that is, letting n′ = Nn, the number of elements in the new
instance is 3n′ = 3Nn). We claim that the question whether the new instance has
a sub-collection S′ ⊆ S of cost at most n′ + √

n′ − 1 is equivalent to the question
whether it has a solution of cost at most n′. This last claim holds because every such

123

1164 Algorithmica (2015) 72:1130–1171

sub-collection S′ induces N sub-collections S′
i (for i = 1, 2, . . . , N) where S′

i is the set
of triples whose elements are all in Ai ∪ Bi ∪Ci . The cost of S′ is similarly partitioned
into the N copies of the original instance. Therefore, if there is a sub-collection S′ of
cost at most n′ +√

n′ −1 then at least one of the S′
i ’s has cost at most � n′+√

n′−1
N � = n.

To prove the other direction we assume that it is possible to get a sub-collection of cost
at most n to the original instance. In this case we can take N copies of this solution
(one for every i), and obtain a solution of cost nN = n′ to the new instance. �	

7.2 Split Graphs, Bipartite Graphs, and Co-bipartite Graphs

A split graph G = (V, E) is a graph such that the vertex set V can be partitioned
into a clique set Cl and an independent set I s such that every pair of vertices in Cl is
adjacent and every pair of vertices in I s is not adjacent.

Theorem 7.2 1. Given a split graph G = (V, E) and a value K , deciding whether
md(G) ≤ K is NPC.

2. Given a bipartite graph G = (V, E) and a value K , deciding whethermd(G) ≤ K
is NPC.

3. Given a co-bipartite graphG = (V, E) and a value K , decidingwhethermd(G) ≤
K is NPC.

Proof The problems are in NP, as the problem for general graphs is in NP. To see
that the problems are NPC we will use three reductions from C3DM. In each case,
with a slight abuse of notation, we assume that the subroutine CREATE-GAP was
already applied to the considered instance of C3DM. See Fig. 6 for an illustration of
the construction of bipartite graphs.

Given an instance of C3DMwith 3n elements partitioned into the three ground sets
A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} andC = {c1, c2, . . . , cn} and a collection
S of τ triples, each containing one element of A, one element of B and one element
of C (and so τ ≤ n3). Let ν = �log2 τ� and γ = ν + 8. Note that γ <

√
n − 1 since

n ≥ 212 (the function
√
n−3 log2 n−10 ≤ √

n−1− (�log2 τ�+8) is monotonically
increasing, and it is equal to 64 − 36 − 10 > 0 for n = 212). Let K = n + γ − 3.

We describe theconstruction of a graph G whose vertices are partitioned into two
sets I and J . In the set J we will have a vertex for each element of A ∪ B ∪ C (we
will use the element and its corresponding vertex interchangeably), and an additional
νvertices d0, d1, . . . , dν−1. In the set I we have one vertex for each triple s ∈ S.
We further assume that these vertices have indices s0, s1, . . . , sτ−1 (we will use the
triple and its corresponding vertex interchangeably). Moreover, I has four additional
vertices sA, sB, sC , sD . We next describe the edge set of the graph connecting a vertex
of I and a vertex of J . If u ∈ J and v ∈ I , then {u, v} ∈ E in the seven following
cases:

1. u ∈ A and v = sA.
2. u ∈ B and v = sB .
3. u ∈ C and v = sC .
4. u ∈ A ∪ B ∪ C and v = sD .

123

Algorithmica (2015) 72:1130–1171 1165

Fig. 6 An example for constructing the input for md(G) for the case of bipartite graphs. The instance of
C3DM is defined as follows (the instances actually used for the reduction are much larger and the resulting
graphs are much larger as well). Let n = 3, τ = 7, and ν = 3. The triples are {(a1, b1, c1), (a1, b2, c3),
(a1, b3, c2), (a2, b1, c2), (a2, b2, c3), (a3, b3, c1), (a3, b3, c2)}

5. u ∈ A∪B∪C and v ∈ {s0, s1, . . . , sτ−1} and the triple corresponding to v contains
the element u.

6. u = di (for some value of i) and v = s j for some j = 0, 1, . . . , τ − 1, such that
the i-th (least significant) bit of the binary representation of the index j is 1.

7. u = di (for some value of i) and v = sD .

The set of additional edges of G (between pairs of vertices of I and between pairs
of vertices of J) is defined according to the following cases. For the case of bipartite
graphs there are no additional edges. For the case of split graphs, J is a clique and I
is an independent set, and for the case of co-bipartite graphs both I and J are cliques.
Clearly, the construction of the graph G in all cases can be done in polynomial time.

If there exists a solution to C3DM of cost at most n, then there exists a set of n
indices i1, . . . , in such that the collection of triples {si1, . . . , sin } is a 3-dimensional
matching. Let L = {si1, . . . , sin } ∪ {sA, sB, sC , sD} ∪ {d0, d1, . . . , dν−1}. We have
|L| < K and thus it suffices to show that L is a feasible landmark set. Let x, y ∈ V .
It suffices to prove that if x, y /∈ L then there is a landmark in L that separates x from
y. Therefore, assume that x, y ∈ A∪ B ∪C ∪ S. Consider the case x, y ∈ A∪ B ∪C .
The vertex corresponding to a triple that contains x separates x from y, unless they

123

1166 Algorithmica (2015) 72:1130–1171

both belong to this triple, but in this case they belong to different ground sets. Since
x and y belong to different ground sets, x is adjacent to exactly one of the vertices
sA, sB, sC and y is adjacent only to another vertex in {sA, sB, sC }. Next consider the
case in which x, y ∈ S. Let j be an index of a bit in which the index of x differs from
the index of y. Then d j is adjacent to exactly one of them, and thus separates x from
y. In the last case, without loss of generality, x ∈ A ∪ B ∪ C whereas y ∈ S. In this
case, x is adjacent to exactly one of the vertices sA, sB, sC , and y is either adjacent
to all of them (in the case of co-bipartite graphs) or none of them (in split graphs and
bipartite graphs), and therefore there exists a landmark that separates x from y. We
conclude that in this case md(G) ≤ K .

To prove the other direction, assume that G has a landmark set L of cardinality
at most K . We define V ′ ⊆ V in the following way: V ′ = A ∪ B ∪ C ∪ S, and
L ′ = V ′ ∩ L . We say that an element x ∈ A ∪ B ∪ C is covered if either x ∈ L ′
or x is contained in a triple si ∈ L ′, and otherwise x is uncovered. We claim that
each ofA, B and C has at most one uncovered element. To see this fact, assume by
contradiction that it does not hold. Without loss of generality, A has two uncovered
elements x1, x2.

For the case of split graphs and co-bipartite graphs, the distance from any vertex of
L ∩ J to either x1 or x2 is 1, and therefore such a vertex does not separate x1 from x2
(if it is a landmark). For every � ∈ L ′ ∩ I and i = 1, 2, we have dxi ,� = 2 because �

is not adjacent to xi (as it does not contain xi) and there is a path of length 2 between
these two vertices using an intermediate vertex which is the vertex corresponding to
the element of � which belongs to A. Therefore, such a vertex does not separate x1
from x2. Finally (L ∩ I) \ L ′ ⊆ {sA, sB, sC , sD} and none of sA, sB, sC , sD separates
x1 from x2, as their distances to sA and sD are 1, and their distances to sB and sC are
2, through some vertex of B or C , respectively.

For the case of bipartite graphs, the distance from any vertex w ∈ L ∩ J to either
x1 or x2 is 2 since there is a path via sD (and no direct edge between w and x1
or x2). For every � ∈ L ′ ∩ I and i = 1, 2, we have dxi ,� = 3 because � or its
neighbors are not adjacent to xi (as � does not contain xi) and there is a path of
length 3 between these two vertices which traverses an element of � and sD (a path of
length 2 cannot exist as the graph is bipartite with the partitions I and J). Therefore,
such a vertex does not separate x1 from x2. Finally (L ∩ I) \ L ′ ⊆ {sA, sB, sC , sD}
and none of sA, sB, sC , sD separates x1 from x2, as their distances from sA and sD
are 1, and their distances from sB and sC are 3 (once again, the distance cannot
be 2), and there must exist paths of length 3 since every vertex of A has a path
of length 2 to all vertices of B ∪ C , as every element of A ∪ B ∪ C has sD as a
neighbor.

Therefore, A has at most one uncovered element, and similarly each one of the
sets B and C has at most one uncovered element. Therefore, the collection of triples
consisting of L ′ \ (A∪ B ∪C) costs at most |L ′|+3 ≤ K +3 = n+γ < n+√

n−1
when it is considered as a solution to C3DM, and thus (since the input for C3DM is
the one resulting from applying the procedure CREATE-GAP), there is a solution of
cost at most n for the C3DM instance. �	

123

Algorithmica (2015) 72:1130–1171 1167

7.3 Line Graphs of Bipartite Graphs

Here, we consider the problem of computing wmd(G ′) where G ′ is a line graph of a
bipartite graphG. Instead of describing our reduction in terms ofG ′, we will discuss it
with respect to G. To do so, we introduce the problem of computing the edge metric
dimension of a graph G as follows. The input consists of a graph G = (V, E).
An edge � ∈ E is called a separating edge landmark for two edges e, e′ ∈ E with
e �= e′, if the length of the shortest path whose first edge is e and its last edge is � (this
is the shortest path from e to �) differs from the length of the shortest path from e′ to
�. A distance between a pair of edges is the distance between the two corresponding
vertices in the line graph G ′, that is, the number of edges in the shortest path that starts
at the first edge and ends at the second edge minus 1. A subset L ⊆ E is an edge
landmark set for the graph G, if for any two edges e, e′ ∈ E with e �= e′ there exists a
separating edge landmark � ∈ L that separates e from e′. The goal of our problem is to
select a feasible edge landmark set of a minimum cardinality. Note that the goal of this
problem is equivalent to computing md(G ′) where G ′ is the line graph of G. Thus, in
order to show that computing the metric dimension of line graphs of bipartite graphs
is NP-hard, we will prove that computing the edge metric dimension of a bipartite
graph G is NP-hard.

Lemma 7.3 Given a bipartite graph G and a value K , deciding whether there is a
feasible edge landmark set of cardinality at most K is NPC.

Proof The problem is in NP, as given an edgelandmark set, it is easy to verify in
polynomial time that it is indeed feasible and that its cardinality is at most K . To see
that the problem is NPC we will use a reduction from C3DM. Once again, we assume
that the subroutine CREATE-GAP was already applied to the considered instance of
C3DM. See Fig. 7 for an illustration of the construction of the reduction.

Given an instance of C3DM with 3n elements A = {a1, a2, . . . , an}, B =
{b1, b2, . . . , bn} and C = {c1, c2, . . . , cn} and a collection S of τ triples, each con-
taining one element of A, one element of B and one element of C (note that τ ≤ n3),
we let ν = �log2 τ� and γ = ν + 8, and construct a bipartite graph as a layer graph
with 5 layers V1, V2, V3, V4, V5 as follows.

V1 and V2 have a vertex for each triple,V3 has one vertex for each element
of A ∪ B ∪ C (we will use the element to denote this vertex and vice versa),
and an additional ν = �log2 τ�vertices d0, d1, . . . , dν−1. V4 has ν + 4 vertices,
where V4 = {vA, vB, vC , vD, d ′

0, d
′
1, . . . , d

′
ν−1}. Finally, V5 has four vertices and we

letV5 = {uA, uB, uC , uD}.Wenext describe the edge set ofG. Each triple (a, b, c) ∈ S
has unique index in 0, 1, . . . , τ − 1. For (a, b, c) ∈ S of index j , the two vertices in
V1 and V2 corresponding to this triple are denoted by s j and s′

j , respectively, and
we have the following edges {s j , s′

j }, {s′
j , a}, {s′

j , b}, {s′
j , c}. Moreover, if the index

j of the triple (a, b, c) has 1 in its i-th bit then we add an edge {s′
j , di }. In addi-

tion, for each vertex a in V3 ∩ A (corresponding to an element a ∈ A), we have
an edge {a, vA}. Similarly, for each b ∈ B ∩ V3, there is an edge {b, vB}, and for
each c ∈ C ∩ V3, there is an edge {c, vC }. Every vertex of V3 is adjacent to vD . For
each i = 0, 1, . . . , ν − 1 we have an edge {di , d ′

i }, and the last four edges of G are

123

1168 Algorithmica (2015) 72:1130–1171

Fig. 7 An example for constructing the input in Lemma 7.3. The instance of C3DM is defined as in Fig. 6

{vA, uA}, {vB, uB}, {vC , uC }, {vD, uD}. Note that the construction of G can be done
in polynomial time. We argue that G has an edge landmark set of cardinality at most
K = n + ν + 4 if and only if the optimal solution to C3DM has cost at most n + γ .
This is sufficient since γ <

√
n−1, so a solution of cost at most n+γ is equivalent to

a solution of cost at most n for C3DM (since the input for C3DM is the one resulting
from applying the procedure CREATE-GAP).

First, assume that there is a solution to C3DMof cost at most n + γ . Then, there
is a solution to C3DM of cost at most n, that is, there is a sub-collection S′ of n
disjoint triples. Our edge landmark set L will consist of the n edges from V1 × V2
connecting the pair of vertices s j to s′

j for the triples of S′. We also have an edge
landmark at {di , d ′

i } for i = 0, 1, . . . , ν − 1 and an edge landmark in the four edges
{vA, uA}, {vB, uB}, {vC , uC }, {vD, uD}. |L| = K , and it remains to show that this is
a feasible edge landmark set. Let e, e′ be a pair of edges. We will show that there is
� ∈ L that separates e from e′. Note that we need to consider only pairs of edges such
that e, e′ /∈ L . Let ê, ē /∈ L . Assume that ê connects vertices from V4 and V5, and ē
connects a vertex of V4−i and a vertex of V5−i . The distance between the two edges is
at least i . Note that there is a path consisting of exactly two edges between any vertex in

123

Algorithmica (2015) 72:1130–1171 1169

V3 to uD (through vD), and therefore a path consisting of exactly three edges between
any vertex in V2 to uD . Moreover, every non-landmark edge connecting a vertex in
V3 and a vertex in V4 has an edge among {vA, uA}, {vB, uB}, {vC , uC }, {vD, uD} that
is of distance 1 from it. Therefore, by letting j be the minimum distance of a non-
landmark edge ē to one of the landmark edges {vA, uA}, {vB, uB}, {vC , uC }, {vD, uD},
j determines the pair of consecutive layers that ē connects. Therefore, it suffices to
consider the cases in which e, e′ /∈ L connect pairs of vertices of the same pair of
consecutive layers.

Assume that each of e, e′ connects a vertex of V1 with a vertex of V2. The two
triples corresponding to the end-vertices of e and e′ have different index. Therefore,
there exists a value of i such that the indices of these triples differ in the i-th bit. Then,
the edge {di , d ′

i } separates e from e′ since it has a path of three edges only to one of e
and e′.

Next assume that each of e, e′ connects a vertex of V2 with a vertex of V3. Letw,w′
denote the vertices of e and e′ that belong to V3, respectively. Let s′

j , s
′
j ′ denote the

other end-vertices of e and e′, respectively. First assume that s′
j �= s′

j ′ , and therefore
there exists a value of i such that the indices of the corresponding triples differ in
the i-th bit. Then, the landmark edge {di , d ′

i } has distance at most 2 from one of e
and e′ and a larger distance from the other one. Thus, we can assume that s′

j = s′
j ′ ,

and since e �= e′, we have w �= w′. If w = d j , then the landmark edge {d j , d ′
j }

has distance 1 from e and a distance 2 from e′. Therefore, without loss of generality
w,w′ ∈ A∪ B ∪C . Therefore, w and w′ belong to different sets(among A, B and C),
and two of the landmark edges {vA, uA}, {vB, uB}, {vC , uC } separate e from e′.

Finally assume that each of e, e′ connects a vertex ofV3 with a vertex ofV4. e, e′ /∈ L
and therefore each of these edges is incident to one of the vertices vA, vB, vC , vD .
If they are incident to different vertices among these four vertices, then two of the
following landmark edges {vA, uA}, {vB, uB}, {vC , uC }, {vD, uD} separate e from e′.
Moreover, if either e or e′ is incident to one of the vertices d j (for some j), then the
landmark edge {d j , d ′

j } separates e from e′. Let w,w′ denote the vertices of e and e′
which belong to V3, respectively. Then, w,w′ ∈ A ∪ B ∪ C and w �= w′. Denote by
(a, b, c) and (a′, b′, c′) the triples in S′ which contain w and w′, respectively. First,
assume that (a, b, c) = (a′, b′, c′). Since w �= w′, w and w′ belong to different sets
among A, B and C . Without loss of generality assume that w ∈ A and w′ /∈ A. In
this case the edge {vA, uA} separates e from e′ (it has distance 1 from e and a larger
distancefrom e′). Otherwise, (a, b, c) �= (a′, b′, c′), and let j denote the index of
(a, b, c). Then the distance between the landmark edge {s j , s′

j } to e is 1 and a larger
distance from e′ (since {s′

j , w} ∈ E and {s′
j , w

′} /∈ E). Therefore, L is a feasible edge
landmark set and |L| = K as we required.

To prove the other direction, assumethatG has an edge landmark set L of cardinality
at most K . We say that L has chosen a triple (a, b, c) ∈ S whose index is j if (at least)
one of the edges {s j , s′

j }, {s′
j , a}, {s′

j , b}, {s′
j , c} belongs to L . We say that an element

x ∈ A ∪ B ∪ C is covered if either it belongs to a chosen triple, or (at least) one of
the edges connecting x to a vertex of V4 belongs to L , and otherwise x is uncovered.
We claim that each ofA, B and C has at most one uncovered element. To see this fact
assume by contradiction that it does not hold. Without loss of generality, A has two

123

1170 Algorithmica (2015) 72:1130–1171

uncovered elements x1, x2. We claim that there is no � ∈ L that separates the edge
e1 = {x1, vA} from the edge e2 = {x2, vA}. We consider the possible landmark edges
as follows.

If � = {s j , s′
j }, then the triple corresponding to � does not contain xi (for i = 1, 2),

and we conclude that the distance from � to ei is 3 (it is not 2 because there is no edge
between s′

j and xi , thus it is 3 using the path through s′
j , a and vA). Next assume that

� connects a vertex of V2 with a vertex of V3. Then, for i = 1, 2 the distance from �

to ei cannot be 1 because this would imply that � connects a vertex of the form s j to
xi , and cannot be the case as xi is not covered. This distance can be 2 for both x1 and
x2 if � has an end-vertex a in A (using the path through a and vA) or 3 for both x1 and
x2 otherwise (as there is no edge between an end-vertex of � and an end-vertex of ei ,
there cannot be an edge between two vertices of V3, and there is a path of two edges
between any two vertices of V3 through vD). Next, assume that � connects a vertex
of V3 with a vertex of V4. Note that � is not incident with x1 or x2, since they are not
covered. Then, the distance from � to each of e1 and e2 is 1 if � is incident with vA, 2,
(to both e1 and e2) if � is incident with vD , and 3 otherwise (it is not at most 2 because
there is no edge connecting the end-vertices of ei and the end-vertices of �, and there
is a path of length 3 through vD). Finally, if � connects a vertex of V4 with a vertex of
V5, then for i = 1, 2, the distance from � to ei is 1 if � = {vA, uA}, 2 if � = {vD, uD},
and 4 otherwise. In all these cases � does not separate e1 from e2.

Therefore A has at most one uncovered element, and similarly B and C have at
most one uncovered element (each). Therefore, the collection of chosen triples costs
at most |L ′| + 3 ≤ K + 3 when it is considered as a solution to C3DM.

Corollary 7.4 Given a line graph of a bipartite graph G and a value K , deciding
whether md(G) ≤ K is NPC.

8 Conclusion

We studied the weighted version of the metric dimension optimization problem. We
found a number of graph classes where finding a landmark set of minimum cost can
be done in polynomial time, and a number of graph classes where the problem is NPC.
For each case studied here, the weighted problem and the unweighted problem belong
to the same complexity class. Two interesting graph classes for which the complexity
of the problem is open are interval graph and series-parallel graphs.

References

1. Babai, L.: On the order of uniprimitive permutation groups. Ann. Math. 113(3), 553–568 (1981)
2. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihalák, M., Ram, L.S.: Network

discovery and verification. IEEE J. Sel. Areas Commun. 24(12), 2168–2181 (2006)
3. Cáceres, J., Hernando, M.C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood, D.R.: On the

metric dimension of cartesian products of graphs. SIAM J. Discr. Math. 21(2), 423–441 (2007)
4. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric

dimension of a graph. Discr. Appl. Math. 105(1–3), 99–113 (2000)
5. Chartrand, G., Zhang, P.: The theory and applications of resolvability in graphs: A survey. Congressus

Numerantium 160, 47–68 (2003)

123

Algorithmica (2015) 72:1130–1171 1171

6. Chvátal, V.: Mastermind. Combinatorica 3(3), 325–329 (1983)
7. Corneil, D., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4),

926–934 (1985)
8. Díaz, J., Pottonen, O., Serna, M.J., van Leeuwen, E.J.: On the complexity of metric dimension. In:

Epstein, L., Ferragina, P. (eds.) ESA, Lecture Notes in Computer Science, vol. 7501, pp. 419–430.
Springer, Berlin (2012)

9. Harary, F., Melter, R.: The metric dimension of a graph. Ars Combinatoria 2, 191–195 (1976)
10. Hartung, S., Nichterlein,A.:On the parameterized and approximation hardness ofmetric dimension. In:

Umans, C. (ed.) Proceedings of IEEE Conference on Computational Complexity (CCC), pp. 266–276
(2013)

11. Hauptmann,M., Schmied, R., Viehmann, C.: Approximation complexity ofmetric dimension problem.
J. Discr. Algorithms 14, 214–222 (2012)

12. Hoffmann, S., Wanke, E.: Metric dimension for Gabriel unit disk graphs is NP-complete. In: Bar-Noy,
A., Halldórsson, Magnús, M. (eds.) ALGOSENSORS: Lecture Notes in Computer Science, vol. 7718,
pp. 90–92. Springer, Berlin (2013). Also in CoRR, abs/1306.2187 (2013)

13. Johnson, D.: The NP-completeness column: an ongoing guide. J. Algorithms 6(3), 434–451 (1985)
14. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discr. Appl. Math. 70(3), 217–229

(1996)
15. Melter, R.A., Tomescu, I.: Metric bases in digital geometry. Comput. Vis. Graph. Image Process. 25,

113–121 (1984)
16. Sebö, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004)
17. Shanmukha, B., Sooryanarayana, B., Harinath, K.S.: Metric dimension of wheels. Far East J. Appl.

Math. 8(3), 217–229 (2002)
18. Slater, P.J.: Leaves of trees. Congressus Numerantium 14, 549–559 (1975)
19. Wojciechowski, J.: Minimal equitability of hairy cycles. J. Combin. Math. Combin. Comput. 57, 129–

150 (2006)

123

	The (Weighted) Metric Dimension of Graphs: Hard and Easy Cases
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Definitions and Notation

	2 Extending Known Polynomial Cases to the Weighted Variant
	2.1 Paths
	2.2 Trees
	2.3 Cycles

	3 Dealing with Disconnected Input Graphs
	4 Cographs
	5 k-Edge-Augmented Trees
	5.1 Preprocessing Step
	5.2 The Case k=1
	5.3 The General Case
	5.3.1 The Structure of the Base Graph
	5.3.2 Bounding the Number of Landmarks Associated with One Path

	6 Wheels
	6.1 Complete Wheels
	6.2 The General Case

	7 Hard Cases
	7.1 Preliminaries
	7.2 Split Graphs, Bipartite Graphs, and Co-bipartite Graphs
	7.3 Line Graphs of Bipartite Graphs

	8 Conclusion
	References

