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Abstract

We study the solvability and homogenization of a thermal-diffusion reac-
tion problem posed in a periodically perforated domain. The system describes
the motion of populations of hot colloidal particles interacting together via
Smoluchowski production terms. The upscaled system, obtained via two-scale
convergence techniques, allows the investigation of deposition effects in porous
materials in the presence of thermal gradients.

1 Introduction

We aim at understanding processes driven by coupled fluxes through media with
microstructures. In this paper, we study a particular type of coupling: we look at
the interplay between diffusion fluxes of a fixed number of colloidal populations and
a heat flux, the effects included here incorporating an approximation of the Dufour
and Sorret effects (cf. Section 2.3, see also [10]. The type of system of evolution
equations that we encounter in Section 2.4 resembles very much cross-diffusion and
chemotaxis-like systems; see [28, 8], e.g. The structure of the chosen equations is
useful in investigating transport, interaction, and deposition of a large numbers of
hot multiple-sized particles in porous media.

Practical applications of our approach would include predicting the response of
refractory concrete to high-temperatures exposure in steel furnances, heat pollution



from open geothermal wells, propagation of combustion waves due to explosions in
tunnels, drug delivery in soils and in biological tissues, etc.; see for instance [3, 4, 24,
27, 9]. In a follow-up paper [13] we will study quantitatively some of these effects,
focussing on colloids deposition under thermal gradients. Within this framework,
our focus lies exclusively on two distinct theoretical aspects:

i) the mathematical understanding of the microscopic problem (i.e. the well-
g
posedness of the starting system);

(ii) the averaging of the thermal-diffusion system over arrays of periodically-
distributed microstructures (the so-called, homogenization asymptotics limit;
see, for instance, [5, 18] and references cited therein).

The complexity of the microscopic system makes numerical simulations on the macro
scale very expensive. That is the reason why the aspect (ii) is of concern here.
Obviously, the study does not close with these questions. Many other issues like
derivation of corrector estimates, design of convergent numerical multiscale schemes,
multiscale parameter identification etc. need also to be treated. Possible generaliza-
tions could point out to coupling heat transfer with Nernst-Planck-Stokes systems
(extending [23]) or with semiconductor equations [17].

The paper is structured in the following manner. We present the basic nota-
tion and explain the multiscale geometry as well as some of the relevant physical
processes in Section 2.

Section 3 contains the proof of the solvability of the microstructure model. Fi-
nally, the homogenization procedure is performed in Section 4. This is also the place
where we list our macroscopic equations together with their effective coefficients.

2 Notations and Assumptions

2.1 Model description and geometry

The geometry of the problem is depicted in Figure 1, given a scale factor € > 0.

(0,T) = time interval of interest

Q = bounded domain in R™

o0 =T%UTY% =T% UTY% piecewise smooth boundary of €2,
renNTy =Tr%nry, =

€; = 7th unit vector in R™

Y ={>" A€ 0 <)\ <1} unit cell in R®

Yo = open subset of Y that represents the solid grain

Y1 =Y \Y,

r = 0Y} piecewise smooth boundary of Yy

Xk =X+> " k€, where k € Z" and X C Y.

For simplicity, assume that  is a parallelipiped in R™. Then we define:

§ = U{sﬁf 1 Y& € Qf k € Z™} array of pores
QF =0\ Q, matrix skeleton
e = 00§ pore boundaries.



We are dealing with a periodic system of cells, where each cell is the reference
(standard) cell scaled by a small factor e, which relates the the pore length scale to
the domain length scale. The standard cell is a square region with a circular grain
inclusion.

The cells regions without the grain €Yjare filled with water and we denote their
union by Q¢. Colloidal species are dissolved in the pore water. They react between
themselves and participate in diffusion and convective transport. The colloidal
matter cannot penetrate the grain boundary I'?, but it deposits there reducing the
amount of mass floating inside Q°. Here 0Q° =T'S, UT'5, UT®, where I's, NT'5, = 0.
I'S; is impenetrable, while I'; admits flux. Here I'y; and I'; are portions of the
macroscopic part of 9Q°.

el

&

|

oo oeeeeeee®

Figure 1: Porous medium geometry. €)j is marked with gray color and Q° is white.

The unknowns are:
e (¢ — the temperature in €2°.
e uf — the concentration of the species that contains ¢ monomers in £2°.
e v — the mass of the deposited species on I'*.
Furthermore, for a given § > 0, we introduce the mollifier

Cet/Us’=6%) it |s| < 6,

Js(s) :== )
0 if |s| > 4,

where the constant C' > 0 is selected such that

/ Js =1,
Rd

see [7, pp. 629-630] for details.
Using J; from (1), define the mollified gradient:

Vof:=V

/ Ts(@ — ) fy)dy| - @)
B(z,0)



The following statement holds for all f € L>(Qf), g € LP(Q%)% and 1 < p < oo:

IV £ - gllioaey < &l Fllnecae) 9l ey 3)
||V5f||LP(QE) < 06||fHL2(QE)~ (4)

In the equations below all norms are L?(2°) unless specified otherwise, with c®
independent of the choice of ¢.

2.2 Smoluchowski population balance equations

We want to model the transport of aggregating colloidal particles under the influence
of thermal gradients. For this purpose, we use the Smoluchowski population balance
equation, originally proposed in [26], to account for colloidal aggregation:

N
1 .
RZ(S) = 5 k—éj_iﬂkjsks]' — j_g 1 Bijsisja 1€ {1, . ,N}; N > 2. (5)

Here s; is the concentration of the colloidal species that consists of ¢ monomers, N
is the number of species, i.e. the maximal aggregate size that we consider, R;(s)
is the rate of change of s;, and §;; > 0 are the coagulation coeflicients, which tell
us the rate aggregation between particles of size ¢ and j [6]. Colloidal aggregation
rates are described in more detail in [14].

2.3 Soret and Dufour effects

The structure of our target system is inspired by the model proposed by Shigesada,
Kawasaki and Teramoto [25] in 1979 when they’ve studied the segregation of com-
peting species. For the case of two interacting species u and v, the diffusion term
looks like:

Ou = A(dyu + auw), (6)

where the second term in the flux is due to cross-diffusion. The second term can be
expressed as:
A(uww) = uAv + vAu + 2Vu - Vo (7)

As a first step in our approach, we consider only the last term of (7) as the driving
force of cross-diffusion and we postpone the study of terms uAv and vAwu until
later.

2.4 Setting of the model equations

We consider the following balance equations for the temperature and colloid con-
centrations:

(P9)
N
010° + V- (—k°VO7) =79 Vous - VO =0,  in(0,T) x O, (8)
=1
opus + V- (=d5Vus) — 65V06° - Vs = Ry(wf), in (0,T) x QF, 9)



with boundary conditions:

— KV v =0, on (0,7) xT%, (10)
— KV - v = egob°, on (0,7) xT'%,  (11)
—Kk°VO* v =0, on (0,7) x I'®, (12)
—diVu; - v =0, on (0,7) xT%, (13)
—d:Vu5 - v = eg;us, on (0,7)xT%,  (14)
and a boundary condition for colloidal deposition:
—diVus - v = e(aui — bvs), on (0,7T) x I'%, (15)
Opvf = azui — bvf, on (0,7) x T'®. (16)
As initial conditions, we take for i € {1,...,N}:
6°(0,2) = 6°°(x), in Q°, (17)
u (0, 2) = uS (), in Q°, (18)
v5(0,2) = v5° (), on I'¢. (19)

heat conduction coefficient

d;  diffusion coefficient

Soret coefficient

6¢  Dufour coefficient

g; Robin boundary coefficient, i € {0,..., N}
a; Deposition coefficient 1, 7 € {1,...,N}

b;  Deposition coefficient 2, i € {1,...,N}.

We will refer to (8)- (19) as (P°) — our reference microscopic model. Note that
the Soret and Dufour coefficients determine the structure of the particular cross-
diffusion system (see [10], [25] [2], [3], [21], [28]). a; and b; describe the deposition
interaction between u; and v;. Each u] has a different affinity to sediment as well
as a different mass.

All functions defined in Qf and on I'® are taken to be e-periodic, i.e. k(z) =
k(z/e) and so on.

2.5 Assumptions on data

(A1) k5, 7, d5 and 6F are functions of the variable = for ¢ € {1,...,N} and
e, and g;, a; and b; are positive constants. The meaning of the notation
k% is as follows: x°(x) = x(%) (and similarly for all other coefficients with
upper index ¢), where  is a bounded measurable function on Y. Moreover,
Ko S K < Kuy T < Ty dg < d;j < diy 0; < 6, for i € {1,...,N} and € > 0,
where kg, k«, dg, ds«, 0, are positive constants.

(Az) 650 € LL(Q°) N HY(Q), ui® € L(Q°) N HY(QF), v € LP(I?) for i €
{1,...,N} and € > 0. Moreover, [|0=°||g1(qs) < Co, Huf’OHHl(QE) < Cp, and

va’0||Loc(ps) < Cp for i € {1,...,N} and ¢ > 0. where Cy is a positive
constant.



3 Global solvability of problem (F°)

Definition 1. The triplet (65, us,vs) is a solution to problem (P°) if the following
holds:

0°,us € H'(0,T; L*(Q°)) N L>(0,T; H'(2°)) N L>=((0,T) x QF), (20)
)

vf € HY(0,T; L*(T°)) N L>=((0,T) x T°),
for all p € H*(OF) :

N
Jowror [weve-Torem [00=rY" [vhu-vo6, )
Qe Qe re, =1qe

for all ; € H(QF) :
/ By + / VS - Vi + egi / s + € / (asus = bof)s
QE

Qs rs, re

(22)
= 6§/V595~Vufz/zi+/Ri(uE)z/Ji,
QE Qe

for all ¢; € L*(I¢) :

/3fv1 ©; 7/ a;u; — bvi ;. (23)

Te

together with (17), (18) and (19) for a fized value of € > 0.

To prove the existence of solutions to problem (P¢), we introduce the following
auxiliary problems:

(P1)
N
010° +V - (—K°VO7) — 7Y " Vous,; - VO° =0, in (0,7) x Q°,
i=1
—k°VE° v =0, on (0,T) x 'Y,
— K°VO° - v =ggpb°, on (0,T) x ',
—Kk°VO°-v =0, on (0,T) x I'?,
6°(0,2) = 6°°(x), in Q°,
and
(P2)
ous + V- (=d5Vus) — 6:V00 - Vs = RM(wf),  in (0,7) x QF,
—diVui -v =0, (0,T) x I'y,
—diVus - v = eg;u;, on (0,7) x I'g,
—d:Vus - u—zs( s —bivg), (0,T) x I,
ui (0,2) = u;’ (x)» in Q°,
Ow§ = a;ui — bvy, n (0,7) x I'®,
05 (0, ) = v5° (), on I'*.



Here
R}M(s) := Ri(oar(s1),0m(s2), - .., o0 (sn)), for s € RY (24)
denotes our choice of truncation of R;, where

0 forr <0
opm(r):=<(r for r € [0, M| (25)
M forr > M,

where M > 0 is a fixed threshold.

In the following, assuming (A4;)-(Az2), we show the existence, positivity and
boundedness of solutions to (P;) and ().

When we denote the solutions as #° = P;(uf) and (u$,v$) = P»(0°¢), we can
define the solution operator (6%, u$, v$) = T(6¢,u;). We will show that the operator

y Y Y

T is a contraction in the appropriate functional spaces and use the Banach fixed-
point theorem to prove the existence and uniqueness of solutions to (P<).
Let K(T,M) :={z € L*(0,T; L*>(QF)) : |2| < M a.e. on (0,T) x Q¢}.
Lemma 3.1. Existence of solutions to (/).
Let us; € K(T, M), and assume that (A1)-(As) hold.
Then there exists 0° € H(0,T; L?(Q)) N L>(0,T; H(9F))
that solves (Py) in the sense:

for all ¢ € HY(QF) and a.e. in [0,T]:

/8t<95qb +Q/ KEVE - V¢+ago/05¢—7 Z/v%e V6, (26)

re, =1ge
and
6°(0,z) = 6=°(z) a.e. in F. (27)

Proof. Let {&} be a Schauder basis of H'(QF). Then for each n € N there exists
659 ( Zao "¢;(z) such that 05° — 050 in H'(QF) as n — oo. (28)
We denote by 65 the Galerkin approximation of ¢, that is:
0z (t, z) z": for all (¢,x) € (0,T) x Q°. (29)
By definition, 65 must satisfy (26) for all ¢ € span{&;}? ;, i.e.:

/@Oflqﬁ —&-/HEVHZ -Vo+ ego/ﬁflqﬁ =7° /V‘suE - Vo5 . (30)
Qe Qe re

119



The coefficients o' (t) can be found by testing (30) with ¢ := ¢, and using (28) to
solve the resulting ODE system:

Oroff () + Y (Aij + Bij — Cij)af(t) =0, ie{l,...,n}, (31
j=1
al(0) = )" (32)

The coefficients in (31) and (32) are defined by the following expressions

Aij :://gevgi.ij, i,7€{1,...,n},

Bij = 590/51‘5]‘, i,j€{l,...,n},
FE
N

Cij = TEZ/V(SU_EWV@& i,j€{l,...,n}
k=1¢

Since the system (31) is linear, there exists for each fixed n € N a unique solution
al € C1([0,T)).

To show uniform estimates for 05 with respect to n, we take in (30) ¢ = 05. We
obtain:

N N
1 15 15 € 1) - € NE 15
OO+l V6% P + el s < 7 1 [RGB TAE o
=10 =

Using the Cauchy-Schwarz inequality and Young’s inequality in the form
ab < na? + b2 /4n, where n > 0, we get:

1 - 1 _

A; < || V|17 + EHV%QGZHQ < nllVO|1* + %Hv‘suﬂllﬂme)HO;||%4(QE)-
The mollifier property (3) yields ||V§d€i||%4(gs) < d||lug;]|%,. Using Gagliardo-
Nirenberg inequality(see [22]) we get:

1651174 e) < cll6r I IV65 2. (33)
Applying Young’s inequality, we obtain:
el IV O 12 < VO + cyll65 1. (34)

Finally, we obtain the structure:

N
1 15 15 15 - g
SOOI + (50 = 2ND)IVOL 1 + 9ol VO T2 < e D uml* 1051
i=1
Gronwall’s lemma gives:
t
601 + 50 [ 198501 < € for ¢ € (0.7),
0



where C' > 0 is independent of n. This ensues that
05 € L°°(0,T; L*(Q°)) N L*(0, T; H*(QF)). (35)

To show uniform estimates for 0,05 with respect to n, we take ¢ = 0,6; in
(30) and use the Cauchy-Schwarz and Young’s inequalities, as well as the mollifier
property (3) to get: For n > 0

N
1 _
0167+ 50Ul 2+ P05 gy < 7D [ V0 V85018

3
i=1¢e

N
_ C
< S, € i\l poorae 9,6° 2 N kEVOE 2y
< (c T ;Ilu (PR )) (Mlo07 11" + . K=V OL]1%)
Gronwall’s lemma gives:
t
|k5VOE || +/ 06512 < C for all t € (0,7),
0

where C' > 0 depends on §, but is independent of n. Together with (35) this ensues
that:
65 € H'(0,T; L*(92°)) N L>(0,T; H' (). (36)

Hence, we can choose a subsequence 65 — 6° in H'(0,T;L*(€)) and 65— 6° in
L0, T; HY(QF)) as i — oo.

Now, using
m

vt ) ==Y BN (x) (37)

j=1

as a test function in (30) and integrating with respect to time we get:

T T T
//ategivar//mve;; -va—i—sgo//HfLivm

0 Qs 0 Qs 0 Is,

o (39)
ZTEZ//V‘SdEi~V9fLivm.
=19 e
Using (36), we pass to the limit as ¢ — 0o to obtain:
T T T T
//8t9€vm+//nsv95~V’um+sgo//GEU:TEZ/ Voue,; - Votv,,. (39)
0 Qe 0 Qe 0 T, =10 g

Note that (39) holds for all v € L?(0,T; H'(QF)) since we can approximate v with
vm in L2(0,T; H1(Q°)), hence

N
/(%9511 + / kEVO° - Vv + g9 / 0°v=r1° Z/V‘Su_fi -Vov,
Qe F% izlﬂs

Oe



holds for all v € H!(Q2) and a.e. t € [0,T].
To prove 6¢(0) = 09, note first from (39) that:

T T T
—//eaatwf//ffves-w+ag0//9%
0 Q° 0 Q° 0 Te,

A (10)
Y / / Ve, - VoFu + / 0% (0)0(0).
=17 O Qe
We get a similar term from (38):
T T T
—//Gfliatvm—&—//mEVHfH -va—l—sgo//ﬁfuvm
0 Qe 0 Qe 0 T,
i (a1)
ey / / VO, - VO v + / 05 (0)un (0).
=19 0 Qe
Using now (36) and 65 (0) — 6=° as i — oo gives:
T T T
—//958tv+//ﬁ€V95-Vv—i—sgo//esv
0 Qe 0 Qe 0T
i (12
= TEZ//V(S’UT&Z‘ - Vv + /95’01}(0).
=17 Qe Qe

Comparing (40) and (42), since v(0) is chosen arbitrarily, we get 65(0) = #=°. O

Lemma 3.2. Positivity and boundedness of solutions to ().
Letus; € K(T, M), M > 0, and assume (A1)-(A42).
Then 0 < 6° < [|0=°|| Lo (qe) a.e. in (0,T) x QF.

Proof. Let 6° := 6=+ — 0%~ where 27 := max(z,0) and 2~ := max(—z,0). Testing
(26) with ¢ := —6%~ gives for n > 0 that

N
1 _ _ _ - e
5815”05, ||2+I£0HV95’ ||2+€g()||06* ||%2(1";)ScéTEZHuEiHOOHVGS’ 05, HLl(QE)
=1

N
< (C’gT‘E Z U_Ez‘|oo> 1605717 + €] Vo= ||,

=1

Choosing 1 < % and taking into account that 65~ (0) = 0, Gronwall’s lemma gives
|65~]|* < 0. This means ¢° > 0 a.e. in 2 for all ¢ € (0,7).

10



Let ¢ = (0° — Mo)™ in (26) with Mo > [|0°(0)[| L ():

1 15 £ £
F0ulI(6" — Mo)* |1 + kol V(67 — Mo)*||* + £gol[(6° — Mo) |72,

N
+ /]\4'0(9‘E - M0)+ S TE Z/V(S’UTEZ . V(QE - M0)+(98 - M0)+
Iz

=13
N

- (TEC& > U5i|00> (enll(0° = Mo)*|I? +nlIV (6 — Mo)*[|?) -
i=1

Discarding the positive terms on the left side and then applying Gronwall’s lemma
leads to:

N
1(6° = Mo)*(1)|* < (6% — Mo)™ (0)]|* exp <T€C5cn > IIUEilloot> -

i=1

Since ||(6° — My)™(0)|| = 0, we obtain (0° — My)*(¢t) = 0. Thus the proof of the
lemma is completed. O

Lemma 3.3. Existence of solutions to (F2).

Let 6= € K(T,M),M >0 and (A;)-(As) hold.

Then (P») has solutions us € H(0,T; L*(Q))NL>(0,T; H' () and v € H'(0,T; L3(T¢))
in the following sense:

For all ; € HY(QF), it holds:

/ DSt + / VS - Ve + eg; / s+ e / (atf — bivs) s
QE

Qe e Ie

" (43)
=57 [V vuiv+ [ RY
Oe Qe

uf (0,z) = us%(z)  a.e. in OF, (44)

and for all p; € L*(T°):
/(’%vfapi = /(aiuf — b;v5 )i, (45)

re re
v5(0,2) =v%(x) a.e. onT* (46)

Proof. Let {&;} — Schauder basis of H'(Q2). Then, for each n € N, there exists
us o (x) = Z "¢ (x) such that uj) — uf” in H'(Q°) as n — oo. (47)
j=1

We denote by ug,, the Galerkin approximation of u;, that is:

n

uf’n(t,x) = Zaffj(t)fj(x), for all (t,z) € (0,T) x Q°. (48)

j=1

11



ug , must satisfy (43):

/(%uinwi + /deufn -V, + €9, / Ui i € /(alufn — bv$ ),
Qs Qe re re

" (49)
= 5f/vée_s Vg i Jr/RZM(uZ)wi, for all ¢; € span{¢;}7_;.

Qe Qe

Accordingly, let {n;} — an orthonormal basis of L?(I'*). Then for each n € N there
exists

Z’Bz 'n;(x) such that v;; 9 05 in L3(T°) as n — oo. (50)
We denote by v7,, the Galerkin approximation of v, that is:
V5 () =) B () (@), for all (t,z) € (0,T) x I'®. (51)
j=1

It must satisfy (45):

/ Bt i = / (@i, — bt )i forall g € span{n; )y, (52)

Te

af;(t) and B];(t) can be found by substituting v, and vf, into (43) — (46) and
using & and 7y, for k € {1,...,n} as test functions:
Opai (t) + Z(Aijk + Bijk + Ciji. — Dijk)a Z EijkBii(

i=1

-/ szﬁm won (Za ) ou (Z a?_a,cu)fc) (53)
Qe c=1
N n n
- &3 fuion <Z a%@)gb) o (Z az,c<t>sc> ,
- a=1 b=1 c=1

Q
ai;(0) = a?’}ﬁ (54)
OBk( Z Gijra;(t) — HizeB;(t), (55)
n O n
150 =By (56)

12



The coefficients in (53) are defined by:

A= [ diVEs -V Bie i=c0i [ €56
Qe r'e
Cijr = €ai/€j5k, Dy, = 5f/V69_5 -V,
I'e Qe
Eiji == Ebi/fknj, Gijk = Eai/ﬁjﬁm
I'e Te

Hijp = €bi/77j77k-
FE

The left-hand side of this system of ODEs is linear, while the right-hand side is
globally Lipschitz. Thus there exists a unique solution aj';(t), 87;(t) € H'(0,T) to
(53)—(56) for t € (0,T).
To show uniform in n estimates for ug,, and v;,,, we take ¢; = ug,, and ; = v{ ,
n (49) and (52), respectively. We get the mequahtles For n > 0,

1
Ol + dol Vg, 17 + egillu,

7 rs,) T Eal”“’?n”%ﬂ(r‘f

sbl/ [0f 8 o] + 6 c‘*neanwnwznunumn+/ RM (uf)u,

Ta(re) T IV P + Cyllug , |* + CM + [lus 1%,

IN

< 577Hui,n||L2(F5) +eCyllvs,

1

SOV alLa ey + allviallieey < mllugallZewe + Collogall e
< 000l ey + CollvnllZzre)
<

NCIVus 1 + Cllus 1 + Cyllv 122 ey -

After adding two inequalities, Gronwall’s lemma gives:
t
luf 1 + do/o IVuiull* + [05al7z ey < € forall € (0,7),

where C' > 0 depends on , M and T, but is independent of n and &, which ensures:
(u5 ,,) is bounded in L>(0,T; L*(°) and L*(0,T; H' (%)),

(vf,,) is bounded in L>(0,T; L*(I'%)).
To show uniform estimates for dyug,, and dyv7, with respect to n, we take
Vi = Opusg , and @; = 95, in (49) and (52), respectively, and obtain for n > 0 that

/e 2%
||atuf,n|‘2+at” dfvuinHz 8t”uz n”LQ(FE) + at”uz n”LQ(I‘E)

< o bagdg,+ acénésnmnw;nn ol + | Ri-” ()0,
Ie Qe
< 6875 bivz"ﬁ,nuf,n - b 6{01 nWin + 277”815“ + O Hvuz n||2 +Cum
FE
< o [ b+ nl\vinl\%z(rs> Oyl o+ 20010005 | + G|V 1|2+ O,
FE

13



bi

|0¢v5 |%2(ra) + 5 ||Uz‘5,n||2L2(rs)

IN

77||Uz‘€,n||2L2(rs) + Cn”“f,n”Qm(rs)

A

< 7I||Uf,n||:22(rs) + Cn”“f,nH%{l(st

By adding two inequalities and integrating it, we can get
t t
ol + 1Vl + [0t ala <€ foralt e 0.7),

where C' > 0 depends on §, M and T, but is independent of n and €. Together with
(58) this gives:

(u5,,) is bounded in H*(0,T; L*(Q°) and L>°(0,T; H*(QF)),

(v§,,) is bounded in H'(0,T; L*(I'°)).
Hence, we can choose subsequences g, — uf in H'(0,T; L*(Q°)) and u5,, —
ui in C([0,T], L*(92°)) and weakly* in L>(0,T; H'(Q°)) as i — oo and v, — vf
in H'(0,T;L?(I'¢)) as j — oo. Since RM is Lipschitz continuous, the rest of the

proof follows the same line of arguments as in Lemma 3.1. O

Lemma 3.4. Positivity and boundedness of solutions to (Pz).

Let 6c € K(T,M), M > 0 and assume (A;)-(As). Then 0 < u§ < M;(T + 1) a.e.
in (0,T) x Q°, 0 <vf < My(T +1) a.e. on (0,T)x ¢, where M; >0 and M; > 0
are independent of M.

Proof. Testing (43) with ¢; = —u;"™ gives:

1 _ _ _ - _
SOl ™12 + do |V ™ I1* + egillug 17 (o, + £ail|uy IIifz(rsﬁsbi/v?Uf’

FS
i1 N
e 0| pe €,— &,— &t et e 6t et e —
< 6;c’||0 ||c>o/QVUi u; _/E Bjimjty g +/§ By uy g
Qe J=1 Qe Jj=1

The second term on the right is always negative, while the third is always zero. We
can discard them and apply Cauchy-Schwarz and Young’s inequalities to the first
term on the right, as well as discard the positive terms on the left to obtain for
1 > 0 that

1 g,— £,— e g,— £,—, €,—
S Oullug 11+ (do = Vg™ 17 < 67167 oo™ u |1 +5bi/vi u; - (57)
FE

Testing (45) with ¢; = —v;"~ gives:

1 - - _
500 ™ s eey < BiloE ey i [ 07w (59
FE
We rely on Cauchy-Schwarz, Young’s and trace inequalities to estimate the last

term. For n > 0, we obtain

/vf’_Uf’_ < v leeea lug ™ lzawey < €llvp ™ 1Za ey + nlluy ™ 172

FE
< Mo e ey +0C(us ™ [P + 1V [2).
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Adding (57) and (58) and choosing n + nC < dy and taking into account that
ui” (0) = 0, Gronwall’s lemma gives |[u5’™ || + ||v]" " ||2 < 0, that is u > 0 a.e. in
QFf and v§ > 0 a.e. in I'® for all t € (0, 7).

Let i =1 and ¢ = (u§ — M)t in (43) and ¢ = (v§ — M;)T in (45). Apply (3)

for the cross-diffusion term to get:
1
5 Oull(ui = M) 1?4 do ||V (uf = M) F(1* + egull(uf — Ma) " [[7are

+egr | Mi(uf — My)*

Iy

+5a1||(u§ — M1)+||2Lz(pa) + 5/ (a1M1 - blﬂl)(ui — M1)+
FE

—5/ bl(vf—Ml)(ui—Ml)Jr

IN

010l |V (uf = M) ™ (u§ = M1)™ |1 (ae) + / Ry (u)(uf = My)"™,
Qs

1 _ _
5‘915\\(“? - M1)+||%2(rs) + bu|(vf — M1)+||%2(re)

<)

Here, we note that

€

al(u§ — Ml)(’Ui — M1)+ —|—/ ((11M1 — blMl)(’Uf — Ml)Jr.

€
R

N
Ry(u)(uf — My)" = =" Bijufus(uf — My)*™ <0.
j=1

Now, we add the two inequalities, while dropping the positive terms on the left,
putting a; M7 — by M7 = 0 and using Cauchy-Schwarz and Young’s inequalities on
the right to obtain: For n >0

%@H(U? = M)+ (do = )|V (uf — M) |* + ean]|(uf — Mi)F |22,
300105~ B0 sy
< CM[(uf = M)+ enl (uf — M) [|72pey + C[(0F = M) T (1 Z2pe )
Then Gronwall’s lemma gives:
%H(UT = M) T @O + (0] = M) ()72 04
< (%H(ui — M)* (O + ([ (v = M) *(0)[|72(r-)) exp(CH).
Since we can choose M, and M, to satisfy ||(u§ — M;)(0)F|| = 0, ||(v — My)(0)F||

and ay My — by My = 0, we get u§ € LP((0,T) x ) and v§ € LL((0,T) x I.).
Let i = 2 and vy := (u§ — Ma(t +1))* in (43) and @9 := (v§ — Ma(t +1))" in

15



1 € £ /]
0l = Ma(t + D)7+ [[(v5 = Mot + 1) * |2 (re)
d
+ DIV (5~ Ma(t+ 1)
+eaz|(ug — Ma(t + 1) T[22 ey + eball(vg — Ma(t + 1) 7122 (e

< C(ug — Ma(t+1))7|* + /Ré\l(u‘f)(ug — My(t+1))*

Qe

- M2 /(u; - Mg(t + 1))+ - MQ(US - Mg(t + 1))+
Qe

Here, we note that

1
R} (uf) < 5 Bnow(uf)® < By M2

N |

ﬁnuia <

DN =

Similarly, we have:
1 € € \ /]
SOl = Mot + 1)) * + [[(v5 = Mot + 1) * |2 0e)

< Cll(uz = Ma(t + 1)) |* + (%511—7\/[12 — M>) /(ug — My(t+1))*
QE
< C(us — Ma(t+ 1))

By applying Gronwall’s lemma with %ﬁqu < My, we see that u§ < Mo(T + 1)
in (0,7) x Qf and v§ < Ma(T 4+ 1) on (0,T) x I'*. Recursively, we can obtain the
same estimates for u; and v§ for ¢ > 3. O

Lemma 3.5. The boundedness of the concentration gradient for (/).
Let 05 € K(T,My) and assume (A1)-(Az) to hold. Then there exists a positive

constant C(My) such that ||Vus(t)|| < C(Mo) and fOT ||0pus (t)||2dt < C(My) for
te(0,T).

Proof. Let 1; = 0gu§ in (43):
o
2
b / VEBAE + |67 / V3G - Vst | + | / Ri(uS) 0|
e Qe Qe
A

d i
1906z 12 + 20Tz + Lol 3 g + 510005 P ey <

B C
We shall now estimate one by one the terms A, B, and C. Note first that

1 e?
A= €bi8t /’Ufuf - Ebi /uf@tvf < 6b18t/vfuf + 5”8{[15”%2@5) + ?bfﬂufHQLz(ps)
FE

Ie Te

Then we have

1 e2 %2 572\ 2 a2 1 e2 56’25*2 £2
B < Sl |2+ 2 [ (V02 (Vui)? < Sl |2+ “-e 67 2 Vi P,
Qe

16



and
C < Op,e +el|0vus |
After integration from 0 to 7', all these lead to
1 g sz, %o e 2 &9y ¢ 2 €aq e 2
(5 - 77)/0 10 I” + S 1Vug (D" + - lui (D) z20g,) + 5 143 (D)l z2 e

£,2

_ 5 . r
bty [ (0uE(0) < e+ 2SN [ 72
0
FE

do gi a;
+ s )1 + e 0 0) gy + 2O e

T
+5bi/v_5(T)uf(T) —|—€bi/ /uf(“)tv_a.
0
FE

Te

D

Removing some positive terms on the left and using Cauchy-Schwarz and Young’s
inequalities to obtain an upper bound for D, we finally get for n > 0 that

T
€ do € a; €
G- [ 10l + RV + e~ el

1
2
2 sz [ 2
< TCp+ NI [ IVul? + o
T ) A e I

where Cy depends on [|uS?||. Using Gronwall’s lemma, we obtain the statement of
the Lemma. O

Lemma 3.6. The boundedness of the temperature gradient for (F;) .

Let u&; € K(T,My) and assume (A1)-(As) to hold. Then there exists a positive
constant C(Mp) such that |VO*(t)|| < C(Mop) and fOT||8t05(t)||2dt < C(My) for
te(0,7).

Proof. Let ¢; = 0,6 in (26), then for n > 0 we have
1061 + "20 V8 12 + 220 By < @ MN (046 + 1 96°))
t 9 t B L2(rs) = N0t 477 .
Applying Gronwall’s lemma gives us the desired statement. O

Theorem 3.7. Existence and uniqueness of weak solutions (F°)

Let (A[)-(AZ) hold.

Then there exists a unique solution to (PF).

Proof. For any M > 0, Xp; = K(M,T) x K(M,T)"N is a closed set of X :=
L2(0,T; LY(Q9)V . Let 651,60%,uf; 1,15 € K(M,T), for i € {1,...,N}, and
put 0_5 = 0_51—9_52, dsi = 1;51'71—1;51'72, (9?7’&21, ’Uis’l) = T(G_El,dsl) and (0§,uf72,vf’2) =

Ve 4, e _ pe__pe E _ ,E __ € € _ € o€
T(0°2,u®2). Moreover, we define 0° = 07 —05 and u§ = u§ ; —u$ , and v; = v, —v5,.

17



By Lemma 3.2 and Lemma 3.4, T : X5y — Xy for M > max(|[0=9]| Lo (0e), M1 (T+
1), Ma(T+1),...,My(T+1),). Hence, we want to prove the existence of a positive
constant C' < 1 such that

T(051,us;1) — T(0%2,u%2)||x < C||(0%1,u%i1) — (6°2,u%;2)|| x

for small 7' > 0. We substitute 605, 05, u$ 1, u 5, v, v5 in the corresponding formula-
tions to get:

/&0?(9? —03) +//@EV9§V(0§ —05) + ego/ei(ﬂi —63)
Qe Qe re

N
=7 Z/ ViuEsy - VO (0 — 05),
i=1¢.

/atog(ag — )+ / KEVOEV (05 — 0) + £gq / 05 (05 — 6%)
Qe Te

Qe %

N
=7°) / Vous; o - VO5(05 — 65).

i=1¢.

Adding the last two equations we obtain:
1
SOOI + ko[ VO + egoll 6172 o,

N
<7y /(V‘Su_‘fi,l V07— VOus, o - V05) (05 — 05) |-
=1 g

The term A can be expressed as:
A= / (VOuEs 1 - V05 — VE, 5 - VOT) (65 — 65)
QE
+ / (VOus, o - VO] — Vous; o - VO5)(65 — 65)

Qe

= / Vous; - VO56° + / VOus, o - VOO .
Qe Qe

B C

With the help of Lemma 3.6, the terms B and C can be estimated as follows: For
n>0

B < ¢"M||us|* + M]|6°|?,

_ 1
O < a2l (]| VO7 )| + @IIF)EIIQ)-

18



Looking at the formulation for the concentrations, we have:

Jowtatuiy — i)+ [ Ve, Vi, - i) + e [ ufa(u, - o)

Qe Qe 'S

N
+6a1/ zl(uzl 1,2 —Eb/ 11 zl uz2)

/w% o f@@+/mwmaf@@

Qe

/@m2 )+ /dvmﬂ V(s - u¢)+wﬁ/@gW%—UE)
Qe

FE
+£ai/u‘?,2( —eb; / ug 1)

N
/v%zu f%0+/&%W%fﬁﬂ

Qe

We also test the deposition equation with v§ to obtain:

1
300 sy = as [ fuf = il ey
FE

After adding the three above equations, we obtain for > 0 that
1 1 0
SOulluiI® + 50l I ey + AT IVUE I + gillwf 22 gy + af 1172 e

< (ai+bi)/lvfuf\ —bfllvflliz(m+/|(V59_51-VUf,1 — V0055 - Vg p)us|
F& QE

+/M&wn—&wmmu
Qs

1 1 0
SO I® + S0l e ey + A IV + gilluf T2 g + (@i = Ml Z2 ey <

2
(D b uf ey + [ 19901 Vs
n Fa
A
/szwmﬂ+/| i(65) — Ra(u)],
Qe
B C

where the sub-expressions can be estimated as:
1 _
A <l|Vug || + @C‘SH@EII s %,

B < M |67|* + M]|us >

19



Note that with the boundedness of u§ we can treat R; as Lipschitz:
C < Crllui|*.
Adding up the estimates for the temperature and concentrations:
*HuEIIQ IIUfII2 + %IIGEII2 +d5 | Vs | + w2V + Gillus T2 ey
+a5 IIUfIIiz(rs) + Goll0° 72 re) < calluf |1 + callvf I + esll6”]®
+ M ([fuzi* + [162]1%).
Gronwall’s lemma gives the estimate:

10517 + I @2 < C (130 132000 + Il 0 7220 ) -

Integrating over (0,7T), we have:

JIEEOI + 1O < €T (1120700009 + [0 11520

Accordingly, T is a contraction mapping for 7" such that CT' < 1. Then the
Banach fixed point theorem shows that (P¢) admits a unique solution in the sense
of Definition 1 on [0,7"]. Next, we consider (P°) on [T',T]. Then we can solve
uniquely this problem on [7”,2T"]. Recursively, we can construct a solution of (P*)
on the whole interval [0, T]. O

4 Passing to ¢ — 0 (the homogenization limit)

4.1 Preliminaries

Now that the well-posedness of our microscopic system is available, we can inves-
tigate what happens as the parameter € vanishes. Recall that € defines both the
microscopic geometry and the periodicity in the model parameters.

Definition 2. (Two-scale convergence [20],[1]). Let (u®) be a sequence of functions
in L*(0,T; L*(Q)) and € > 0 tends to 0. (u®) two-scale converges to a unique
function uo(t,z,y) € L*((0,T) x Q x Y) if and only if for all ¢ € C§((0,T) x
Q,CE(Y)) we have:

T
liH(l)// (t,z,— dxdt 1‘ ///uo(t,x,y)gb(t,x,y)dydxdt. (59)
e—

0 QY

We denote (59) by u® 2 .

The space C3° (Y) refers to the space of all Y-periodic C*°-functions. The spaces
H;# (Y) and C32(I") have a similar meaning; the index # is always indicating that
is about Y -periodic functions.

Theorem 4.1. (Two-scale compactness on domains)

20



(i) From each bounded sequence (uf) in L?(0,T; L*(Q)), a subsequence may be ex-
tracted which two-scale converges to ug(t,z,y) € L?((0,T)xQxY). Moreover,

for o € L% (Y) with 0°(x) = o(£), we have o°u® 2 oup.

(ii) Let (u¥) be a bounded sequence in L*(0,T; H'(Q)) and u® 2 u. Then there
exists u € L*((0,T) x H(Y)) such that up to a subsequence (u®) two-scale

converges to ug € L*(0,T; L*()) and Vu® A Vou+ Vyut.
Proof. See e.g. [20],[1], [11]. O

Definition 3. (Two-scale convergence for e-periodic hypersurfaces [19]). A se-
quence of functions (uf) € L*((0,T) x T.) is said to two-scale converge to a limit
ug € L*((0,T) x Q° x T) if and only if for all ¢ € C§°((0,T) x Q%;C¥(T)) we have

T T

. e z, 1

= [ [ o2, %) = || [wttemottaardsar. o0
0 T, 0 Q

r
Theorem 4.2. (Two-scale compactness on surfaces)

(i) From each bounded sequence (u®) € L*((0,T) x I'c) one can extract a subse-
quence u® which two-scale converges to ug € L2((0,T) x Q° x T).

(i) If a sequence (uf) is bounded in L>°((0,T) x T'.), then u® two-scale converges
to aug € L>®((0,T) x Q° xT)

Proof. See [19] for proof of (i), and [16] for proof of (ii). O

Lemma 4.3. Let (A1) and (A3) hold and denote by u® and 6° the Bochner ex-
tensions in the space L?(0,T; H'(Q)) of the corresponding functions originally be-
longing to L*(0,T; H*(Q¢)). Then the following statements hold for subsequence
u®:

(i) ui — u; and 6° — 0 in L*(0,T; H(Q)).

(ii) u§ = w; and 6° = 0 in L>((0,T) x Q).

(iii) Opus — Opu; and 9,05 — 0,0 in L?(0,T; L*(Q)).

(iv) us — u; and 0° — 0 in L?(0,T; L*()).

(v) us 2w, Vpu§ A Vou + Vyul, where u} € L*((0,T) x £ H%E(Y))

(vi) 0= 20, V,0° 2 V.0 + V0", where §' € L*((0,T) x Q; HL(Y)).

(vii) Vg 20 and 00§ 2 O; € L2((0,T) x Q x TI).

Proof. We obtain (i) and (ii) as a direct consequence of the fact that (u$) and (6°)
are uniformly bounded in L>(0,T; H*(€2)) and L>°((0,T) x §2). A similar argument
gives (iii). Since (u®) and (%) are bounded in L?(0,T; H*(2)) and H*(0,T; L?(£)),
by using Lions-Aubin lemma [15] (iv) holds for subsequences. As for the rest of the
statements (v) -(vii), since (uf) is bounded in L>(0,T; H(£2)), by Theorem 4.2 up
to a subsequence we have that u 2 u; in L2(0,T; L*(2)), and V,us A Vot +Vyul
for some u} € L%((0,T) x H;E(Y)) By Theorem 4.1 it is easy to get (vii). See
[12] for similar arguments. O
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4.2 Two-scale homogenization procedure

Theorem 4.4. Let (A1) and (Az) hold and 0,0, u;,ul,v; be functions obtained in
Lemma 4.3. Then 0, u; and v; satisfy (61), (6,2) and (()a’) fort €[0,T), respectively:

/Q(ate) \YI/ [ (904 9,020+ 9,8) + golLal 7 /e

N
1
— ZHALTvgui(vm9+vyol)a,, (61)

1
[ @we+ 7 [ /Y (a4 V) (ot + 9,0

ITr| / /
+g; ; a;u; — bv; )
Y] |Y|

N
= Z—/ 5iViui(Vmui+Vyu})a+/Ri(u)a, (62)
V1 Jo s o

/Q/F(f)tw)a = /Q/F(aiui —bivy)a for a € C(Q),8 € C(QCF(Y)).  (63)

Moreover,
T, 1 o« 5
9,0 T lv KV0 + gor—r 7 0 = |ZTVmuin0 on (0,T) x ©, (64)
—KV, 0-n=0 on(0,T) x 09, (65)
1 ITg| 1
3 U; — —V - D7Vul +g07’ul + 7(A1 U; — / b; ’U7)
Y Y| Y]
1
= mfikui V20 4 R;(u) on (0,T) x Q, (66)
—D;V,u;-n=0 on (0,T) x 09, (67)
Opv; = aju; — bv; on (0,T) x Q x T (68)

Here, K, 7, D; and F; are matrices given by K = Kol + (Kij), T =Tol + (Tk;),
D; = D6—|—(lej) and F; = F{I+(Fy;), where I is the identity matriz. Furthermore,
Ky = fy kdy, Ki; = le KOy, 00 dy, Ty; = fY 70,07, Dy = fY d;dy, D};j =
Jy, didy, wldy, Fi= Iy, didy, Dj,; = Jy, didy, wldy, and A; = Jraidyy,.

Here 67 and ui are called cell functions. They satisfy

—Vy(kVy07) = 8,k in Y1, (69)
ﬁVij ‘N = —KN;.
L) =, )
KVl -n = —d;n;.

Proof. Let o € C*((0,T) x Q) and g € C>((0,T) x ;CF(Y)). By testing with
#(t,xz) = aft,z) +ep(t, z, £), we obtain
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/OT/ (00 o+ eB) + /OT f T e 9,54 9,5)

T
+ego / 0°(a + €f)
o Jre,

N
1
= Z ¥ VUV .0 (o + €f3), (71)
i Qe

Here, we have

/()T/s(ateexwrgﬁ):/()TAXE(atea)(a+56)’

where x© is the characteristic function of Q°. Then it is easy to see that x°(z) =
X (%), where x is the characteristic function of ¥;. By Lemma 4.3 and Theorem 4.1
(i) we get that

iii%/oT/ s(at"g)(““m:W1|/0T/Q/yx<a’f") Il1//1||/ JACD

Similarly, as € — 0, we have

T
/ / KV 0 (Vea+ eV, +V,6) = / / RV 0°(Vea + eV 8+ V,y0)
0 £

/0 |Y|//Y1 (Vo + Vy0') (Vaa + Vy 3).

| v

Next, Theorem 3 guarantees that

ITg| /T/
1 06 O = 0
i“g/ / (ateh) = |Y/ // TN )y o

Since Vus — V‘sui in L2(0,T; L?(€2)), on account of Theorem 4.1 (i) it holds that
X°TEVIusEV . 0° 2 x7Vou; V0. Hence, by letting e — 0 in (74) we have

T r
/O /Q(ate)a+/0 \Yl/ [ R(V04 V0 (Vo0 +7,8) + °||lf/o /
N 1 T
- Zm/ // V3 u; (V.0 + V, 0"
i 0 QJY;

Thus we get (61). In a similar way we can prove (62) and (63). O
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