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Abstract

Premixed flames stabilized behind the trailing edge of a semi-infinite cylindrical rod placed coaxially in a
circular channel were investigated numerically within the diffusive-thermal model. Apart from the inverted
flames, or V-flames, widely reported in the literature, the other kind of flames was observed for the Lewis
number lower than unity. The main characteristic of such flames is confinement in the interior of a recir-
culating vortex formed behind the trailing edge. For a fixed Reynolds number, the flames of this kind exist
within a finite range of the Damköhler number. Once the Damköhler number is fixed, they are observed for
the Reynolds numbers above a critical value with no limit on large Re, assuming that flow remains laminar.
Global linear stability analysis of the axisymmetric steady-state solutions of both kinds was performed.
The ranges of the parameters where the axisymmetry-breaking bifurcation arises and the oscillatory behav-
ior takes place were found. The results of the stability analysis were successfully compared with the direct
two- and three-dimensional numerical simulations.
� 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

The stabilization of premixed flames has
received much attention in the literature, due to
the role it plays in many engineering applications.
The earliest studies of stabilized flames anchored
on a central bluff-body, or inverted flames, can
http://dx.doi.org/10.1016/j.proci.2014.05.056
1540-7489/� 2014 The Combustion Institute. Published by El
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be traced back to Lewis and von Elbe [1,2]. Such
flames resembles the stabilization phenomenon
on multiple-slit burners and perforated plates
common in industrial and compact household
burners.

There have been a number of papers investi-
gating theoretically, experimentally and numeri-
cally different stabilization and blow-off
mechanisms. Among which one can mention the
discussions about the stretch effect [2–4], the flame
area increase due to the strong positive curvature
at the base flame [5,6], the heat exchange between
sevier Inc. All rights reserved.
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Fig. 1. Sketch of the problem, the coordinate system,
illustration of an inverted flame: isotherms (upper half, h
at intervals 0:1), reaction rate contours (lower half,
x ¼ 2 and 10) and stream function contours (w at
intervals 0:05) calculated for Le ¼ 1;Re ¼ 100; a ¼ 0:2
and d ¼ 1500.
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the flame and the flame-holder [8,7] and the
hydrodynamic straining of the flame base [9,10].
Detailed numerical simulations of a methane-air
flame stabilized on a perforated plane have been
performed recently in [11,12]. Influence of a string
stretched along the flow on the stabilization con-
ditions of an inverted propane–air flame was
investigated experimentally in [13]. All these stud-
ies showed that the stabilization phenomenon
comprises a complex nature where a number of
physical effects play a role. The latest comprehen-
sive review of the different flame stabilization/
blow-off mechanisms can be found in the intro-
ductory part of [12].

In the recent article [14], the experimental
study of inverted premixed methane–air and
hydrogen–methane–air flames stabilized behind
the trailing edge of a cylindrical rod positioned
along the symmetry axis of the circular channel
has been reported. For mixtures with high hydro-
gen content, anomalous stabilization and blow-off
behavior has been observed. Flames in those mix-
tures could be stabilized at equivalence ratios
below the lean flammability limit for a zero-
stretch planar flame. Stabilization of such flames
was possible only when the mixture velocity
exceeded some critical value.

Motivated by the above-mentioned results, the
main purpose of the present paper is to elucidate
the influence of the differential diffusion effect on
flame stabilization. With this aim in view, a con-
stant density approximation is used in order to
eliminate the flame–fluid interactions. The prob-
lem of the flame attachment is considered for a
semi-infinite rod placed coaxially in an infinite cir-
cular channel in order to eliminate the external
gas entrainment. The steady axisymmetric flames
are studied first. A global stability analysis aiming
to test the stability properties of the axisymmetric
solutions is carried out thereafter. It is followed by
the results of the time-dependent dynamics where
oscillatory symmetric flames and non-axisymmet-
ric steady flames were obtained. Results of the sta-
bility analysis are compared with those of the
direct numerical simulations.
2. General formulation

Consider an infinite circular channel with a
semi-infinite cylindrical rod positioned along the
symmetry axis. The radii of the channel and
the rod are R and R1 ¼ aR, respectively, where
a < 1. A combustible mixture of fuel and oxi-
dizer at initial temperature T 0 flows inside the
channel with mass flow rate M. The thermal con-
ductivity of the channel’s wall and the rod is
taken to be sufficiently high so as to maintain
their temperatures constant and equal of the
upstream temperature of the mixture T 0. The
sketch of the problem and the coordinate system
are shown in Fig. 1, where x ¼ 0 lies at the head-
surface of the rod.

One might imagine conditions, known in the
literature as a flashback effect, when a premixed
flame propagates upstream in the slot between
the rod and the channel’s wall. In the opposite sit-
uation the flame can be swept away downstream
by the flow. In the present work we consider a
range of parameters for which a premixed flame
is stabilized behind the trailing end of the cylindri-
cal rod. The resulting axisymmetric and non-axi-
symmetric flames constitute the subject of this
paper.

In this study we consider a diffusive-thermal
model, formally assuming that the density of the
mixture q, the thermal diffusivity DT , the individ-
ual molecular diffusivity of fuel D, the heat capac-
ity cp, and the kinematic viscosity m are all
constant. Consequently, the flow field is not
affected by the combustion field and is determined
a priori by solving the steady Navier–Stokes equa-
tions. If the characteristic length and speed are
chosen as R and U c ¼ M=pqR2 and the pressure
is made dimensionless with respect to the dynamic
pressure qU 2

c , the velocity field v is determined
from

ðv � rÞv ¼ �rp þ Re�1r2v; r � v ¼ 0; ð1Þ
where Re ¼ U cR=m is the Reynolds number. It is
necessary to stress that, in contrast to the combus-
tion field, the flow field always remains axisym-
metric (@=@u � 0), v ¼ ðu; vÞ, where u and v
denote the axial and radial velocity components,
respectively. Equation (1) was subject to the
no-slip condition, v ¼ 0, at all solid surfaces.
Anticipating the results presented below, axisym-
metry constraint is not required for the tempera-
ture and mass fractions fields.

The combustible mixture undergoes a chemical
reaction modeled by a global irreversible step
F þ O! P , where F denotes the fuel, O the oxi-
dizer and P the products. The amount of fuel con-
sumed in moles per unit volume, per unit time, is

given by X � qY F
W F

� �
qY O
W O

� �
expð�E=RT Þ, where

Y F ; Y O are the mass fractions and W F ; W O are
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the molecular weights of the fuel and oxidizer,
respectively, q is the density of the mixture, E is
the overall activation energy, R is the universal
gas constant. Assuming that the mixture is lean
in fuel, the oxidizer mass fraction remains nearly
constant and X ¼ Bq2Y F expð�E=RT Þ, where B
is a pre-exponential factor containing Y O and
the molecular weights. Subindex “F ” will not be
applied below.

For the sake of a non-dimensional description,
it is worth to present the reaction rate in the form

X ¼ q
U 2

L

DT

b2

2Le
Y exp

E
RT e

� E
RT

� �
; ð2Þ

where the factor U L is the asymptotic value of
the planar flame speed calculated in the high
activation energy limit b� 1, namely

UL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qBDT Leb�2

q
expð�R=RT eÞ. The tempera-

ture T e ¼ T 0 þ QY 0=cp represents the adiabatic
temperature of the planar flame based on the
unburned gas temperature T 0, the heat released
per unit mass of fuel Q, and the upstream fuel
mass fraction Y 0. The non-dimensional value
b ¼ EðT e � T 0Þ=RT 2

e is the Zel’dovich number.
In the following, we use the laminar flame

speed SL and the thermal flame thickness defined
as dT ¼ DT=SL to specify the non-dimensional
parameters. The non-dimensional temperature is
defined by h ¼ ðT � T 0Þ=ðT e � T 0Þ and the fuel
mass fraction is normalized by its upstream value
Y 0. By applying Eq. (2) and choosing the convec-
tion time R=U c as a unit of time, the dimensionless
transport equations become

@h
@t
þ u

@h
@x
þ v

@h
@r
¼ 1

RePr
Dhþ d

RePr
x; ð3Þ

@Y
@t
þ u

@Y
@x
þ v

@Y
@r
¼ 1

LeRePr
DY � d

RePr
x; ð4Þ

where D ¼ @2=@x2 þ @2=@r2 þ r�1@=@r þ r�2@2=
@u2 is the three-dimensional Laplace operator.
The reaction rate x takes the form

x ¼ b2

2Leu2
p

Y exp
bðh� 1Þ

1þ cðh� 1Þ

� �
: ð5Þ

The following non-dimensional parameters
appear in the above equations: the Zel’dovich
number, b ¼ EðT e � T 0Þ=RT 2

e , the Lewis number,
Le ¼ DT=D, the heat release parameter,
c ¼ ðT e � T 0Þ=T e, the Prandtl number, Pr ¼ m=DT ,
the Reynolds number Re ¼ M=pqmR, and the
reduced Damköhler number, d ¼ R2S2

L=D2
T . In the

calculations reported below, b ¼ 10; c ¼ 0:7 and
Pr ¼ 0:72 were assigned. In what follows, these values
will be kept fixed considering them as representative
for combustion processes.
Equations (3) and (4) are to be solved subject
to the following boundary conditions. The func-
tion h and Y are 2p-periodic functions of u. The
solid surfaces are assumed to be impermeable
and held at a constant temperature:

h ¼ 0; @Y =@n ¼ 0; ð6Þ

where @=@n denotes a normal-surface derivative.
Far upstream and far downstream we require

x! �1; a < r < 1 : h ¼ Y � 1 ¼ 0; ð7Þ

x!1; 0 < r < 1 : @2h=@x2 ¼ @2Y =@x2 ¼ 0: ð8Þ
The numerical simulations reported below

showed that the influence of the downstream
boundary conditions becomes negligible if the size
of the computational domain is sufficiently large.
For the axisymmetric calculations, the standard
symmetry conditions are required

x > 0; r ¼ 0 : @h=@r ¼ @Y =@r ¼ 0; ð9Þ
while for three dimension calculations the lack of
singularity is required for the temperature and
mass fraction fields at the axis.

The factor up ¼ SL=U L arises in Eq. (5) if the
planar flame speed, SL, is used to define the
thermal flame thickness dT ¼ DT=SL. Adequate
calculation of up requires the solution of the

eigenvalue problem dh=dn ¼ d2h=dn2 þ x,
dY =dn ¼ Le�1d2=dn2 � x, with boundary condi-
tions at n! �1 : h ¼ Y � 1 ¼ 0, at n! þ1 :
h� 1 ¼ Y ¼ 0, and with x given by Eq. (5). The
numerical values of up can be found in [15] as a
function of the Lewis number calculated for
b ¼ 10 and c ¼ 0:7.

The formulation presented above facilitates to
study separately the influence of the fluid dynam-
ics governed by the Reynolds number Re and the
effect of the combustion properties of the mixture
controlled by the reduced Damköhler number d.
These parameters can be easily modified in exper-
iments. Variations in Re are realized by changing
the mass flow rate M while parameter d can be
modified by means of the equivalent ratio of the
mixture which affects directly the planar flame
speed SL. The results presented below elucidate
the influence of Re and d on the flame structure
for the Lewis number lower then one.
3. Numerical treatment

Steady as well as time-dependent computations
were carried out in a finite domain, xmin 6 x 6 xmax.
The typical values were xmin ¼ �0:5 and
xmax ¼ 3:5, but they were varied to ensure the
independence of the results. The spatial deriva-
tives were discretized with second-order, three-
point central finite differences on a rectangular
uniform grid. The calculations based on the
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two-dimensional form of the governing equations
(imposing @=@u ¼ 0) were carried out using a typ-
ical resolution of dx ¼ dr ’ 0:01. The number of
grid points was doubled in some cases to test the
grid independence. When the three dimensions
were taken into account, the same accuracy could
not be obtained because of computational con-
straints. Therefore, three-dimensional calculations
were made with coarser grids than in the two-
dimensional cases, typically using dx ¼ dr ’ 0:02
and du ’ 2p=50. These values were also varied
in some cases with no significant influence on
the results.

The steady two-dimensional axisymmetric
Navier–Stokes Eqs. (1) were written in terms of
the stream function w defined from the relations
u ¼ r�1@w=@r; v ¼ �r�1@w=@x and the vorticity
f ¼ @v=@x� @u=@r. The corresponding equations
were solved numerically using a Gauss–Seidel
method with over-relaxation.

In order to determine steady (but not necessar-
ily stable) solutions, the steady counterpart
(@=@t ¼ 0) of Eqs. (3) and (4) were solved using
a Gauss–Seidel method with over-relaxation for
two- and three-dimensional cases. For the time-
dependent calculations, an explicit marching
method was used with first-order discretization
in time. A sufficiently small time step dt � 10�4

or less, dictated by the presence of the highly
non-linear chemical reaction term (5), was typi-
cally chosen to ensure numerical stability. No sig-
nificant differences were found in the results when
dt was halved.
4. Axisymmetric steady-state flames

Consider first the steady axisymmetric counter-
part (@=@t ¼ @=@u ¼ 0) of Eqs. (3), (4). The
numerical calculations of the corresponding two-
dimensional equations showed existence of two
kinds of solutions with qualitatively different tem-
perature and reaction rate distributions. The first
kind of solutions comprises the inverted flames
widely investigated experimentally and numerically
in the past. Such a flame, exemplified in Fig. 1, con-
sists of the edge situated immediately behind the
rod and the cone-like flame extending downstream.
When d is sufficiently large, the cone angle remains
notable and the flame approaches to the channel
wall, as shown in Fig. 1. With decreasing values
of d (for a fixed value of Re) the flame cone shrinks
being transformed into a cylindrical flame tail sur-
rounding the axis, as shown in Fig. 2. It should be
noted that flames with a cylindrical tail also belong
among the inverted flame family because they can
be obtained from them by gradual reduction of d.
Hence we will refer to these flames as the
“inverted” flames.

The other kind of flames found numerically is
shown in Fig. 3 calculated for Le ¼ 0:5;
a ¼ 0:4; Re ¼ 200 and d ¼ 2:3. One can see that
this flame is confined entirely inside the recirculat-
ing region formed behind the rod with no flame
prolonged in the rear. The lack of the flame tail
is considered below as a main characteristic of
these flames. This kind of flames is referred to
below as the “vortex” flames. It is necessary to
stress that the flames shown in Figs. 2 and 3 were
obtained at exactly the same set of parameters.

In order to characterize a flame quantitatively,
the dimensionless total heat flux into the rod is
introduced in the form

q ¼ 2pa
Z 0

�1

@h
@r
jr¼a dxþ 2p

Z a

0

@h
@x
jx¼0 r dr: ð10Þ

This quantity computed for flames with Le ¼ 0:5
is plotted in Fig. 4 as a function of the reduced
Damköhler number d for various values of the
Reynolds number Re and a ¼ 0:4. The curves cor-
responding to the inverted and vortex flames are
plotted with solid and dashed lines, respectively.
The flame extinction points of the inverted flame
are marked in this figure with gradient symbols
while the critical points of vortex flames are
marked with circles.
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One can see in Fig. 4 that when the Reynolds
number is larger than a critical value, Re > Rec,
the vortex flames (dashed lines) exist within a
finite range of the reduced Damköhler number,
dmin < d < dmax. No vortex flames were found
for Re < Rec. In contrast to this, the inverted
flames (solid lines) exist for d > dc and no limit
on d was found for d > dc for a fixed value of
Re. The critical Reynolds number above which
the vortex flames can be observed was found
about Rec � 165 computed for Le ¼ 0:5 and
a ¼ 0:4.

In Fig. 5 the heat flux q is shown as a function
of the Reynolds number Re for the values of the
reduced Damköhler number equal to 1.5, 2 and
2.5. All curves were calculated for Le ¼ 0:5 and
a ¼ 0:4. The solid curves correspond to the
inverted flames and the dashed ones to the vortex
flames. The critical points of the vortex flames are
indicated with circles and the critical point of the
inverted flames are shown with gradient symbols.

Figure 5 shows that for small values of d the
inverted flames exist within a finite interval of
Re (bounded by the gradient symbols). This inter-
val widens for increasing values of the Damköhler
number becoming unbounded for high Reynolds
numbers for sufficiently large d. Figure 5 shows
also that the vortex flames exist for the Reynolds
numbers larger than a critical value. It is interest-
ing, that for sufficiently small d (e.g. case with
d ¼ 1:5) the existence regions of the inverted and
vortex flames are separated by an interval of d
with no flames.

All these results are summarized in Fig. 6
where the curves bounding the existence regions
of the inverted and vortex flames are shown for
Le ¼ 0:5 and a ¼ 0:4. The critical curve corre-
sponding to the inverted flames is plotted with a
solid line and gradient symbols while the curve
of the vortex flames is shown with a dashed line
with circles. The inverted flames exist in the region
above the solid curve and the vortex flame appear
to the right of the dashed curve. It is interesting
that there is a region where both kinds of flames
coexist. The flames from this region are shown
in Figs. 2 and 3 computed for the values marked
with a dark point in Fig. 6, namely Re ¼ 200
and d ¼ 2:3.
5. Stability analysis

Global stability analysis of the axisymmetric
steady-states presented in the previous section is
described below. Two-dimensional distributions
of the steady-state temperature and mass fraction,
all now denoted by subindex “0”, are perturbed as
usual with small perturbations

h ¼ h0ðx; rÞ þ �F ðx; rÞ expðkt þ inuÞ;

Y ¼ Y 0ðx; rÞ þ �Gðx; rÞ expðkt þ inuÞ;
ð11Þ
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where �	 1 is the perturbation amplitude, k is a
complex number, n ¼ 0; 1; 2 . . . is the azimuthal
wave number where the mode with n ¼ 0 repre-
sents axisymmetric perturbation. The real part
of k gives the growth rate. The linearized eigen-
value problem obtaining when substituting Eq.
(11) into Eqs. (3), (4) takes the form

kF þ uF x þ vF r ¼ L̂F þ AF þ BG
n o

=RePr;

kGþ uGx þ vGr ¼ Le�1L̂G� AF � BG
n o

=RePr;

ð12Þ
where L̂ ¼ @2=@x2 þ @2=@r2 þ r�1@=@r � n2r�2.
The functions A and B appearing in Eqs. (12)
are all functions of x and r determined by the
steady-state solution

A ¼ db3Y 0

2Leu2
p½1þ cðh0 � 1Þ
2

exp
bðh0 � 1Þ

1þ cðh0 � 1Þ

� �
;

B ¼ db2

2Leu2
p

exp
bðh0 � 1Þ

1þ cðh0 � 1Þ

� �

The appropriate boundary conditions are

F ¼ @G=@n ¼ 0 ð13Þ
at the solid surfaces and

x! �1 : F ¼ G ¼ 0

x!1 : @2F =@x2 ¼ @2G=@x2 ¼ 0
ð14Þ

far upstream and downstream. It can be shown
that at the axis of the channel the following con-
dition should be imposed
r ¼ 0; x > 0 :
@F =@r ¼ @G=@r ¼ 0; n ¼ 0;

F ¼ G ¼ 0; n > 0:
ð15Þ

The eigenvalue problem given by Eqs. (12)–(15)
is not amenable to the analytical analysis and,
therefore, numerical calculations are required.
The numerical method described in [15] was
applied to calculate the eigenvalue with a greatest
real part, or the main eigenvalue. This eigenvalue
determines completely if a given steady-state is
stable or not. If the real part of this eigenvalue
is positive, kR > 0, then the steady-state is unsta-
ble, and, conversely, if its real part is non positive,
kR 6 0, the steady-state is linearly stable.

Consider first the stability of vortex flames
shown by dashed response curves in Fig. 5. The
growth rate kR is shown in Fig. 7 as a function
of the Reynolds number for the modes with the
azimuthal wave-numbers n ¼ 0; 1 and 2, all calcu-
lated with Le ¼ 0:5; d ¼ 1:5. The solid and
dashed segments in Fig. 7 correspond to the eigen-
values with zero and non-zero imaginary part,
respectively. The extinction point is indicated with
the symbol �. One can see that when the Reynolds
number decreases below a critical value, marked
in Fig. 7 with the symbol �, the eigenvalue corre-
sponding to the n ¼ 1 mode becomes positive.
This critical point is shown with the same symbol
in Fig. 5 for d ¼ 1:5 and 2. With decreasing Re
even further, the eigenvalue corresponding to the
next mode, n ¼ 2, also becomes positive. Notice
that the n ¼ 1; 2 eigenvalues are both real. The
axisymmetric mode n ¼ 0 is also plotted in
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Fig. 7 having kI – 0 for sufficiently large Re and
becoming completely real near the extinction
point. It is important that for the axisymmetric
mode n ¼ 0 the real part remains negative and
the n ¼ 0 mode is stable. The numerical calcula-
tions showed that for the eigenvalues with n > 2
(not plotted) kR < 0 and these perturbation modes
also remain stable. It was found also that the
growth rate kR calculated for the n ¼ 1; 2 modes
remain always negative for higher value of d and
the axisymmetric flames corresponding to the
dashed curve calculated with d ¼ 2:5 are all
stable.

The results of the global stability analysis of
the axisymmetric vortex flame indicate that the
flame loses stability for sufficiently low values of
Re and d near the extinction limit. One can expect
that, because of kR > 0 and kI ¼ 0 for n ¼ 1; 2,
this loss of stability produces a flame which is
non-axisymmetric and time-independent, by anal-
ogy with the cellular instability of planar flames.
The direct numerical calculations based on the
three-dimensional Eqs. (3), (4) reinforce the stabil-
ity results. Figure 8 shows the iso-surface of the
constant temperature h ¼ 0:5 plotted for the
steady-state 3D-solution calculated with
Re ¼ 270; Le ¼ 0:5 and a ¼ 0:4.

Consider now the stability of the inverted
flames represented in Fig. 5 with solid curves. This
figure shows that for low values of d the inverted
flame exist within a finite interval of the Reynolds
number, Remin < Re < Remax. In Fig. 9 we plot the
dependence of the real part of the eigenvalue kR

on the Reynolds number for the perturbation
modes n ¼ 0 and n ¼ 1 calculated with d ¼ 1:5,
Le ¼ 0:5 and a ¼ 0:4. One can see that apart from
a tiny interval close to Remax the axisymmetric
inverted flame remains stable. With Re approach-
ing to Rmax the Hopf bifurcation occurs for the
-1

0

1

0
1

2
3

Le=0.5, d=1.5, Re=270

Fig. 8. Three-dimensional iso-surface h ¼ 0:5 calculated
for the non-axisymmetric vortex flame with Le ¼ 0:5 and
a ¼ 0:4.
axisymmetric mode n ¼ 0 and the real part of
the eigenvalue becomes positive. It is important
that all non-axisymmetric modes (n > 0) remain
stable having kR > 0.

This fact makes possible to use the two-dimen-
sional counterpart of Eqs. (3), (4). The calcula-
tions were carried out for Le ¼ 0:5 and the
Reynolds number close to Remax. In Fig. 10 we
show the time history of the temperature maxi-
mum in the domain for distinct Re. One can see
that for Re ¼ 79 the flame is stabilized after a
transitory time while for the case with Re ¼ 80:2
the maximum temperature suffers oscillations with
a constant amplitude. Finally, for Re ¼ 80:5, the
extinction event takes place. Apparently there will
exist difficulties to observe such oscillatory behav-
ior in experiments due to the range of the
Reynolds number is very narrow.
6. Conclusions

In this study, we have examined numerically
the structure and stability of the flames formed
behind the trailing edge of a cylindrical rod placed
coaxially in a circular channel. The flame stabil-
ization occurs due to the low flow velocity region
behind the rod. In the analysis we suppressed
hydrodynamic disturbances, but relying on a real-
istic flow field computed from the full Navier–
Stokes equations. The existence of two kinds of
flames has been demonstrated for the Lewis
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number lower than one. The first kind of flames
comprises the well-known V-flame family for
which the low flow-velocity region formed imme-
diately behind the trailing edge plays a role of a
flame holder and the flame extends downstream
in the form of a cone or a cylinder.

The second kind of flames has a completely dif-
ferent structure. The distinctive property of these
flames, denominated in the paper as the vortex
flames, is to be confined inside the recirculating
region. Evidently, the vortex flames can exist only
if the characteristic size of the recirculating region
is sufficiently large. The other requisite condition
is the Lewis number lower than one. It is interest-
ing that two kinds of fames can coexist for some
values of parameters. The loss stability of the axi-
symmetric flames of both kinds was studied by
means of the global stability analysis and direct
numerical simulations. It was found that the axi-
symmetric inverted flame can manifest an oscilla-
tory behavior while the axisymmetric vortex
flames can turn into a non-axisymmetric flames
close to the extinction limits.
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