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Weakly nonequilibrium properties of a symmetric inclusion process with open boundaries
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We study close-to-equilibrium properties of a one-dimensional symmetric inclusion process (SIP) with finite
size by coupling it to two particle reservoirs at the two boundaries with slightly different chemical potentials. The
boundaries introduce irreversibility and induce a weak particle current in the system. We calculate the McLennan
ensemble for the SIP, which corresponds to the entropy production, and the first-order nonequilibrium correction
for the stationary state. We find that the first-order correction is a product measure and is exactly consistent with
the local equilibrium measure corresponding to the steady-state density profile in the finite-size SIP, without
the need to be in the thermodynamic limit. This provides a novel example for microscopic extensions of the
McLennan formula and the interpretation of first-order nonequilibrium correction as entropy production.

DOI: 10.1103/PhysRevE.90.052143 PACS number(s): 02.50.Ga, 05.70.Ln

I. INTRODUCTION

A central concept in equilibrium statistical mechanics is the
Gibbs-Boltzmann ensemble [1],

ρ(−→η ) ∝ e−βU (−→η ),

which relates the probability ρ(−→η ) of finding a system in a
state −→η at an inverse temperature β to its energy function
U (−→η ). Out of equilibrium, however, the situation is more
complex and there is no simple result analogous to the
Gibbs-Boltzmann distribution. There have been many attempts
to provide a general formalism for nonequilibrium statistical
mechanics; see, e.g., Refs. [2,3] and references therein.

Microscopic models, such as stochastic lattice gases or
interacting particle systems [4,5] and interacting diffusions [6],
have been found to be useful in understanding nonequilibrium
phenomena. One big class of models are those of particle and
heat transport, which have been used to model very diverse
phenomena from phase transitions to condensation and heat
and mass transport. To be able to tackle the nonequilibrium
problem, instead of considering a general nonequilibrium
situation, one approach is to study systems in contact to two
particles or heat reservoirs at the boundaries, the so-called
boundary-driven systems [7]. These, in a sense, constitute
the simplest and most controllable nonequilibrium settings.
In this realm, exactly solvable models play an important role,
as they enable us to test various ideas and concepts about
nonequilibrium [8].

A concept about nonequilibrium systems is the local equi-
librium. Intuitively, it says that although on a macroscopic level
the thermodynamic variables might vary significantly in space,
there are regions of smaller scale which have nearly constant
macro variables. Therefore, we might approximately consider
such regions in equilibrium. It is important to understand the
criteria and situations in which the local equilibrium holds,
for example, in research related to the hydrodynamic limits
of different microscopic systems [9]. This of course can be
studied in two settings, for instance, in the thermodynamic
limit where the size of the system becomes very large. Or, as is
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our focus here, the local equilibrium can also have a meaning
for finite systems in close-to-equilibrium conditions; a main
question we ask is whether the first-order nonequilibrium
correction to the steady state is of local equilibrium type.

In this paper we study a boundary-driven symmetric
inclusion process (SIP) [10], which is a bosonic counter model
to the fermionic symmetric exclusion process (SEP) [11].
The SEP and its variations have been studied extensively
in the literature. The SIP, which on the other hand is new
and under active research, provides an interesting model
for nonequilibrium statistical mechanics where instead of
hardcore-repulsion in the SEP there is attraction.

For the boundary-driven SEP and also its asymmetric
version (ASEP) exact results for the stationary state were
obtained via a matrix formalism [12–14]. A similar approach
has not yet been successfully applied to the SIP [15], mainly
due to the fact that the particle states in the SIP are unbounded
in contrast to the bounded states in the SEP; i.e., at any site
in the SIP there can be an arbitrary number of particles, while
in the SEP the maximum occupancy is 1. In this paper thus
we follow a different strategy. We couple the system to two
particle reservoirs that are nearly identical, differing by a factor
ε � 1, in order to keep the system close to equilibrium. There
will be, however, some nonreversibility and current flow of
particles and, as a consequence, an entropy production of the
order of ε. We studied earlier another model of interacting
diffusion type [16] in related weak-coupling settings.

In the current paper, we calculate the first-order nonequi-
librium correction from the reversible equilibrium state for the
SIP in the context of entropy production and the McLennan
ensemble. The novel feature that we observe is that the
first-order nonequilibrium correction in the boundary-driven
SIP with finite size matches exactly the local equilibrium
(LEQ) measure. This provides a microscopic extension of the
McLennan formula and correspondence with the LEQ for a
classical stochastic particle system. It is worth mentioning
that the local equilibrium property is usually studied for
systems with very large sizes and with arbitrarily different
boundaries [17,18]. Our focus here is, quite differently, on a
finite system and boundaries that differ by a small amount of ε.
There is, however, an important issue of proper choice for the
boundaries, which is closely related to the issue of stochastic
integrability that we will explain more in Sec. V. Roughly
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speaking, if one chooses the boundaries well, then one can use
the LEQ measure with stationary profile exactly in place of
the first-order nonequilibrium correction, which in general is
much more complicated to compute.

The plan of the paper is as follows. In Sec. II, we introduce
the SIP in contact with particle reservoirs and review its
equilibrium properties and the corresponding thermodynamic
potential. Later, in Sec. II C, we introduce the irreversible
model with slightly perturbed boundary reservoirs and derive
the corresponding “external” force on the system. In Sec. III,
we present an elementary derivation of the stationary density
profile and the corresponding local equilibrium measure,
and in particular their first-order expansions. The results for
reversible measure and that of stationary profile were known
from Refs. [10,19], respectively. Since they are our main
starting point, we review them with our choice of model
parameters, for the sake of completeness. We provide a
more elementary derivation of the stationary profile without
explicitly using the concept of duality as in Ref. [19].

We proceed in Sec. IV to approve the McLennan proposal
[20,21] for the SIP that the first-order nonequilibrium correc-
tion to the equilibrium measure is the entropy production. The
details of the calculation are presented in the appendix. We
then confirm in Sec. IV B that a formal first-order expansion
calculation in orders of ε for the nonequilibrium correction
to the stationary measure, as expected, yields the McLennan
formula.

Comparing the entropy production and the local equilib-
rium measure, in Sec. IV we find that the first-order correction
of the stationary measure is a product measure and corresponds
exactly to the local equilibrium measure. Finally, in Sec. V,
we then discuss the LEQ in the thermodynamic limit and the
important issue of the choice of the boundary operators and
the kind of perturbation.

II. SYMMETRIC INCLUSION PROCESS (SIP)

The SIP is a stochastic lattice gas introduced in Refs. [22,23]
and further studied in Refs. [10,24,25]. A related model is
studied in Ref. [26] from the condensation point of view. In
the SIP there is an effective attraction between particles in
neighboring sites. We show a state of the system by −→η =
(η1, . . . ,ηN ), where ηi is the number of particles at the site i.
We consider here the nearest-neighbor interactions, where a
transition happen when a particle jumps to its neighboring
sites, at an exponential time with a rate that depends on
the occupation number of the destination site. The process
in the bulk part of the system is defined via its generator
corresponding to a Markov jump process, acting on the core of
smooth functions f : NN → R as observables of the system,

Lbulkf (−→η ) =
∑

i

ηi(m + ηi+1)[f (−→η i,i+1) − f (−→η )]

+
∑

i

ηi+1(m + ηi)[f (−→η i+1,i) − f (−→η )]. (1)

Here −→η i,i+1 denotes the configuration obtained from −→η after
a particle jumps from site i to site i + 1. The rate of such
transition is therefore ηi(m + ηi+1), in which m is a parameter
of the model that effectively controls the strength of diffusion

FIG. 1. A schematic representation of the symmetric inclusion
process with parameter m. The system size is N , and the full
circles show particles while empty circles indicate empty sites.
The two squares at the boundaries with index L and R are the
particle reservoirs. Arrows show the possible transitions and jumps
of particles and the rates of such transitions are written next to the
arrows. For example, a particle at site i jumps to site i + 1 with rate
ηi+1 + m and since there are ηi particles at site i and the particles are
indistinguishable, the total rate of such a transition is ηi(ηi+1 + m),
which is the quantity appearing in the generator (1).

in the system. The two sums in the generator Lbulk correspond
to jumps to the right and to the left, respectively. We also
consider two particle reservoirs, one at each boundary, such
that particles can be put or removed at sites 1 and N with rates
specific of the reservoirs. The generators corresponding to the
reservoirs can be written as

B1f (−→η ) = b1(m + η1)[f (−→η 1+) − f (−→η )]

+ d1η1[f (−→η 1−) − f (−→η )] (2)

and

BNf (−→η ) = bN (m + ηN )[f (−→η N+) − f (−→η )]

+ dNηN [f (−→η N−) − f (−→η )], (3)

for the left and right boundaries, respectively. Here −→η i+
and −→η i− are the configurations where a particle is added or
removed at the site i with rates bi and di , respectively. See
Fig. 1 for an illustration of the boundary-driven SIP.

Therefore the Markovian generator for the whole system is

L = Lbulk + B1 + BN. (4)

In the theory of Markov processes [27, Theorem 3.16], the
generator determines the time evolution of the process in the
following sense:

d

dt
〈f (−→ηt )〉−→η = 〈Lf (−→ηt )〉−→η ,

for any smooth function f . Here the symbol 〈 〉−→η indicates the
average with respect to the distribution of the process started
at −→η at time t = 0. A stationary measure ν for the process can
be defined as a measure that satisfies∫

Lf (−→η )dν(−→η ) = 0

for all functions f . The generator formalism is equivalent to the
master equation for the evolution of the probability measure
of the system,

d

dt
νt (

−→η ) = L∗νt (
−→η )

=
∑
−→η ′

λ(−→η ′,−→η )νt (
−→η ′) − λ(−→η ,−→η ′)νt (

−→η ), (5)
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where L∗ is the adjoint generator and the transition rates
λ(−→η ′,−→η ) can be read from the generator expression. For the
states

−→η = (η1,η2, . . . ,ηN ), −→η ′ = (η′
1,η

′
2, . . . ,η

′
N ),

they can be verified to be

λ(−→η ,−→η ′) = b1(m + η1)δ−→η 1+,−→η ′ + d1η1δ−→η 1−,−→η ′

+ bN (m + ηN )δ−→η N+,−→η ′ + dNηNδ−→η N−,−→η ′

+
∑

i

ηi(m + ηi+1)δ−→η i,i+1,−→η ′

+ ηi+1(m + ηi)δ−→η i+1,i ,−→η ′ . (6)

An important property of the boundary-driven SIP is its
self-duality property [19,23], which is directly related to the
issue of stochastic integrability and makes this Markov process
well defined.

A. Reversible stationary measure

We first calculate the stationary measure of the SIP with
closed boundaries and parameter m. Consider two states

−→η = (η1,η2, . . . ,ηN ),
−→η i,i+1 = (η1, . . . ,ηi−1,ηi − 1,ηi+1 + 1, . . . ,ηN ).

By (6), we have

λ(−→η ,−→η i,i+1) = ηi(m + ηi+1),

λ(−→η i,i+1,−→η ) = (ηi+1 + 1)(m + ηi − 1).

As a result,

λ(−→η ,−→η i,i+1)

λ(−→η i,i+1,−→η )
= ηi(m + ηi+1)

(ηi+1 + 1)(m + ηi − 1)
. (7)

The process satisfies the condition of detailed balance and
has product invariant measures

ν(−→η ) =
N∏

i=1

γ (ηi), (8)

where the marginals γ can be obtained via detailed balance,

ν(−→η )λ(−→η ,−→η i,i+1) = ν(−→η i,i+1)λ(−→η i,i+1,−→η ). (9)

This, together with (7), results in

γ (ηi)γ (ηi+1)ηi(m + ηi+1)

= γ (ηi − 1)γ (ηi+1 + 1)(ηi+1 + 1)(m + ηi − 1),

or, equivalently,

γ (ηi)ηi

γ (ηi − 1)(m + ηi − 1)
= γ (ηi+1 + 1)(ηi+1 + 1)

γ (ηi+1)(m + ηi+1)
.

Since this equation has to be valid for all values of ηi and ηi+1,
we conclude that the right-hand side and the left-hand side are
both equal to a constant θ . This suggests a recursive formula
for γ ,

γ (n + 1) = (m + n)θ

n + 1
γ (n).

It is convenient to write the general solution [10] in terms of
the � function,

γ (n) = θn �(m + n)

Zθ n! �(m)
, with �(s) :=

∫ ∞

0
xs−1e−xdx,

(10)
where θ becomes a parameter determining the average density
of particles in the system and therefore can be thought of as
fugacity. Here Zθ is a normalization constant given by

Zθ :=
∑ θn �(m + n)

n! �(m)
= 1

(1 − θ )m
. (11)

The average number of particles at site i in equilibrium can be
calculated as

ρi := 〈ηi〉ν =
∑

ηiγ (ηi)

=
∑ ηiθ

ηi �(m + ηi)

Zθ ηi! �(m)

= θ
∂

∂θ
log Zθ

= mθ

1 − θ
, (12)

which clearly does not depend on i.
The process with open boundaries also has the same

reversible stationary measure. The value of θ in (10) can be
obtained via considering the transitions at the two boundaries.
For instance, we consider two states differing at the site 1,

−→η = (η1, . . . ,ηN ), −→η 1+ = (η1 + 1, . . . ,ηN ),

and with transition rates

λ(−→η ,−→η 1+) = b1(m+η1), λ(−→η 1+,−→η ) = d1(η1 + 1). (13)

Similar equations hold also for the other boundary at the site
N . Combining these with the condition of detailed balance in
Eq. (9) gives that in equilibrium θ = θ0 = b1

d1
= bN

dN
. This has

the interpretation that fugacity at both boundaries are equal
to θ0. In order to simplify the formulas, we assume without
loss of generality that b1 = bN = b,d1 = dN = d, and, hence,
θ0 = b

d
, i.e., we consider two identical particle reservoirs. In

equilibrium, kinetic effects (such as absolute value of bi and
di) do not play a role, and as a consequence, choosing totally
identical reservoirs at the two ends is equivalent to choosing
reservoirs with only equal fugacity.

Remark 1. Note that this calculation is valid for any
arbitrary number of particle reservoirs coupled to the system
at different sites, in particular for only one particle reservoir.
The system would need to be in contact with at least one
reservoir to have the canonical reversible measure of Eq. (10).
An isolated system will have the microcanonical reversible
measure which is the measure (10) conditioned on having
a fixed total number of particles Np, i.e., restricted to the
hyperplane

∑
ηi = Np. In the canonical measure, for the

system to have a finite density of particles we need 0 < θ < 1
in Eq. (10). This corresponds to having a bigger death rate
than the birth rate from the particle reservoir, i.e., b < d.

Remark 2. The choice of d = b + m for the transition rates
at boundaries is somehow special. Looking at the form of
the generator for the bulk part of the system, this choice
corresponds to introducing two extraboundary sites with
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indices’s 0,N + 1 and freezing the number of particles at these
sites to η0 = ηN+1 = b. Particles from neighboring sites can
still jump to and back from these imaginary boundary sites,
as if they are annihilated or created such that the number of
particles at the extraboundary site stays fixed. In this sense,
that is a natural choice for the boundary rates to be made;
however, the process with general d 
= b + m is quite possible
and well defined.

B. Thermodynamic potential

In analogy with thermodynamics, it is useful to define a
thermodynamic potential U such that in equilibrium

ν(−→η ) ∝ e−U (−→η ),

where the proportionality constant is independent of the state−→η . We choose here, instead, to absorb the proportionality
constant in U and write an equality,

U (−→η ) = − log ν(−→η ). (14)

Rewriting the detailed balance condition in terms of U gives

λ(−→η ,−→η ′)
λ(−→η ′,−→η )

= eU (−→η )−U (−→η ′), (15)

with the left-hand side given in Eq. (7).
Since we have product stationary measures, from (8), we

conclude that U is a sum of single-site potentials V ,

U (−→η ) =
N∑

i=1

V (ηi)

and

V (n) = − log γ (n)

= −n log θ + m log(1 − θ )

+ log(n!) − log
�(m + n)

�(m)
. (16)

In the bulk dynamics, the rates λ(−→η ,−→η ′) are non-zero only
when the two states −→η ,−→η ′ above differ at only two places,
namely at sites i and i + 1. As a side-check, a direct calculation
using �(z + 1) = z �(z) shows that

U (−→η ) − U (−→η i,i+1) = log
ηi

m + ηi − 1
− log

ηi+1 + 1

m + ηi+1
.

Similar calculations can be done for the boundary-driven
transitions at sites 1 and N . Thus Eqs. (7) and (15) are satisfied.

C. Irreversible process

To obtain an irreversible process, we consider a small
perturbation of the condition θ0 = b1

d1
= bN

dN
to achieve a system

coupled to two particle reservoirs with slightly different
chemical potentials. This can be done, for instance, by taking

b1 = b + εb,d1 = d; bN = b − εb,dN = d. (17)

This means that we slightly perturb the system out of
equilibrium by increasing the birth-rate at the left boundary
while decreasing it at the right boundary. The proper choice of
the boundaries and the kind of perturbation are crucial in the

calculations in the rest of the paper. We discuss these issues
more in Sec. V.

Following the definition in Ref. [21] of local detailed
balance, which is a particular perturbation of the transition
rates in the process such that

λ(−→η ,−→η ′)
λ(−→η ′,−→η )

= eU (−→η )−U (−→η ′)+Fε(−→η ,−→η ′), (18)

we find what is equivalent of an external force, Fε(−→η ,−→η ′),
corresponding to the irreversible boundaries. Let us first
consider these two states and their corresponding transition
rates

−→η = (η1, . . . ,ηN ), −→η 1+ = (η1 + 1, . . . ,ηN ), (19)

λ(−→η ,−→η 1+) = b1(m + η1), λ(−→η 1+,−→η ) = d1(η1 + 1), (20)

hence,

λ(−→η ,−→η 1+)

λ(−→η 1+,−→η )
= b1(m + η1)

d1(η1 + 1)
. (21)

The external force Fε(,−→η 1+) must satisfy

λ(−→η ,−→η 1+)

λ(−→η 1+,−→η )
= eU (−→η )−U (−→η 1+)+Fε(−→η ,−→η 1+)

= λ0(−→η ,−→η 1+)

λ0(−→η 1+,−→η )
eFε(−→η ,−→η 1+). (22)

From (21) and (22), it implies that

Fε(−→η ,−→η 1+) = log(1 + ε). (23)

Defining Fε(−→η ,−→η 1+) = εF1(−→η ,−→η 1+) + O(ε2), it follows
that

F1(−→η ,−→η 1+) = 1.

Similarly, for the other cases,
(1) −→η = (η1, . . . ,ηN ), −→η 1− = (η1 − 1, . . . ,ηN ),

F1(−→η ,−→η 1−) = −1;
(2) −→η = (η1, . . . ,ηN ), −→η N+ = (η1, . . . ,ηN + 1),

F1(−→η ,−→η N+) = −1;
(3) −→η = (η1, . . . ,ηN ), −→η N− = (η1, . . . ,ηN − 1),

F1(−→η ,−→η N−) = 1.

Remark 3. The external force F is antisymmetric and
nonreversible, i.e., F (−→η ,−→η ′) = −F (−→η ′,−→η ) and satisfies
the following property: For at least one set of states−→η 1,

−→η 2, . . . ,
−→η n−1,

−→η n = −→η 1

φF (−→η 1, . . . ,
−→η n) := F (−→η 1,

−→η 2) + F (−→η 2,
−→η 3) + · · ·

+F (−→η n−1,
−→η n) 
= 0.

For instance, one can show that
φF (−→η ,−→η 1+,−→η 1+,N−,−→η N−,−→η ) = 2 log(1 − ε2) 
= 0. Note
that G(−→η ,−→η ′) := U (−→η ) − U (−→η ′) while antisymmetric, it is
reversible: φG(−→η 1, . . . ,

−→η n) = 0.

III. STATIONARY DENSITY PROFILE AND THE LOCAL
EQUILIBRIUM MEASURE

Here we consider the general nonequilibrium process with
the generator (4), where the corresponding rates in particle
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reservoirs are b1,d1,bN , and dN . We define the average density
of particles at the site i to be

ρi = 〈ηi〉ν, (24)

where the average is taken according to the stationary measure
ν satisfying the stationarity condition∫

Lf (−→η )dν(−→η ) = 0

for all functions f . Setting fi(
−→η ) = ηi , a direct calculation

shows that for all 2 � i � N − 1

Lfi(
−→η ) = m (ηi−1 + ηi+1 − 2ηi) ,

and, for the boundaries,
Lf1(−→η ) = b1m + (b1 − d1 − m)η1 + mη2,

LfN (−→η ) = bNm + (bN − dN − m)ηN + mηN−1.

These, in combination with the stationarity condition, give rise
to

ρi−1 + ρi+1 − 2ρi = 0,

b1m + (b1 − d1 − m)ρ1 + mρ2 = 0,

bNm + (bN − dN − m)ρN + mρN−1 = 0.

One way to solve these set of equations is to use an ansatz
ρi = α + βi with two unknown parameters α and β. This
ansatz automatically satisfies the first equation. From the other
two equations we obtain

α = b1(dN − bN ) m N + (bN + b1) m2 + bN (b1 − d1) m

(bN − dN )(b1 − d1)N + (dN + d1 − bN − b1) m + (b1 − d1)(dN − bN )
, (25)

β = (bN d1 − b1 dN ) m

(bN − dN )(b1 − d1)N + (dN + d1 − bN − b1) m + (b1 − d1)(dN − bN )
. (26)

Remark 4. This formula is in accordance with the result in Ref. [19]. While here we did not explicitly used the duality concept.
However, duality and symmetries are the underlying reasons why such a calculation as presented here is possible, i.e., that we get a
set of equations for the first moments that do not depend on the higher-order moments, which are actually more difficult to calculate.

Remark 5. Acting the generator on the function fi(
−→η ) = ηi and equating the result to the discrete gradient of the quantity

Ji = m (ηi+1 − ηi) show that Ji is the instantaneous particle current on the bond {i,i + 1} in the system. Its expectation, J , in
the stationary state is then equal to

J := 〈Ji〉ν = m (〈ηi+1〉ν − 〈ηi〉ν)

= m (ρi+1 − ρi)

= m β.

A. Local-equilibrium measure

For every general density profile ρi we can associate a corresponding θ profile θi , using the equilibrium relation (12)

ρi = mθi

1 − θi

, (27)

despite the fact that the equilibrium only corresponds to a constant density profile. This suggests a corresponding local-equilibrium
measure (LEQ), which, similarly to the equilibrium measure, is a product measure and defined as

νLEQ(−→η ) =
N∏

i=1

γθi
(ηi), (28)

whereas in the equilibrium reversible measure (8) the marginal γθi
(ηi) is given as

γθi
(n) = θn

i �(m + n)

Zθi
n! �(m)

. (29)

Since there is a one-to-one correspondence between ρi and θi we can freely index the local equilibrium measure by either a ρ

profile or a θ profile.

B. Weakly nonequilibrium case

In the weakly nonequilibrium case, with rates given as in Eq. (17), the coefficients α,β in Eq. (25) and (26) of the density
profile are simplified to

α = (bd − b2 + bdε + b2ε2)mN + 2bm2 + (b2 − bd + bdε − b2ε2)m

((b − d)2 − b2ε2)N + (2d − 2b)m + (b2ε2 − (b − d)2)
,

β = −2bdmε

((b − d)2 − b2ε2)N + (2d − 2b)m + (b2ε2 − (b − d)2)
.
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Now expanding the density ρi up to the first order in ε gives

ρi = α(ε) + β(ε)i + O(ε2), (30)

where

α(ε) = b m

d − b
+ b d m (N + 1) ε

(d − b)2 N + 2 (d − b) m − (d − b)2
,

(31)

β(ε) = − 2 b d m ε

(d − b)2 N + 2 (d − b) m − (d − b)2
. (32)

As expected, in the case ε = 0 we get back to the equilibrium
and obtain that ρi = b m

d−b
= mθ0

1−θ0
.

C. ε dependence of θ and the corresponding LEQ measure

The LEQ measure depends explicitly on θ and the relation
between θ and ρ is nonlinear, therefore we need to first find
the appropriate expansion coefficients for θ before proceeding
to do the first-order expansion for the LEQ measure. Focusing
on a single-site density ρ we have the corresponding θ value
from (12)

θ = ρ

m + ρ
. (33)

Now the linear expansion

ρ = ρ(0) + ρ(1)ε + O(ε2)

and

θ = θ (0) + θ (1)ε + O(ε2)

give the following relations:

θ (0) = ρ(0)

m + ρ(0)
, (34)

θ (1) = mρ(1)

(m + ρ(0))2
. (35)

Notice that the superscripts (0),(1) do not indicate the sites
index, but they show the expansion order.

The LEQ measure (28) contains terms with θn, which for
them we have1

θn = (θ (0))n
(

1 + nε
θ (1)

θ (0)

)
+ O(ε2). (36)

Now we can express the LEQ (28) corresponding to the
stationary density profile in terms of the equilibrium measure
(8) up to the first order in ε using (34) and (35),

νLEQ(−→η ) = νEQ(−→η )

(
1 + ε

N∑
i=1

θ
(1)
i

θ
(0)
i

ηi

)
+ O(ε2)

= νEQ(−→η )

[
1 + ε

N∑
i=1

mρ
(1)
i

ρ
(0)
i

(
m + ρ

(0)
i

)ηi

]
+ O(ε2),

(37)

1Neglecting the normalization constant Zθ , it can be shown that its
contribution to the expansion is zero up to the first order in ε.

or, equivalently,

νLEQ(−→η ) = νEQ(−→η ) exp

[
ε

N∑
i=1

mρ
(1)
i

ρ
(0)
i

(
m + ρ

(0)
i

)ηi

]
+ O(ε2).

(38)

From (30)–(32), we have

ρ
(0)
i = b m

d − b
, (39)

ρ
(1)
i = bdm(N + 1)

(d − b)2 N + 2 (d − b) m − (d − b)2

− 2bdmi

(d − b)2 N + 2 (d − b) m − (d − b)2
, (40)

and therefore

νLEQ(−→η ) = νEQ(−→η ) exp

(
ε

N∑
i=1

N + 1 − 2 i

N − 1 + 2m
d−b

ηi

)
+ O(ε2).

(41)

Remark 6. In the special case that d = b + m we obtain

ρ
(0)
i = b,

ρ
(1)
i = bd

m

(
1 − 2 i

N + 1

)
,

and, as a result,

νLEQ(−→η ) = νEQ(−→η ) exp

[
ε

N∑
i=1

(
1 − 2 i

N + 1

)
ηi

]
+ O(ε2).

(42)

IV. FIRST-ORDER EXPANSION: MCLENNAN FORMULA

In the seminal work of McLennan [20], a Hamiltonian
system which is weakly interacting with an environment
was considered. McLennan ensembles were introduced as
irreversible generalization of Gibbs ensembles for systems
away but close to equilibrium. Formally, one approximates
the stationary density ν of such system up to first order as

ν(−→η ) = Z−1 exp[−U (−→η ) + ε W (−→η )] + O(ε2), (43)

where Z−1 exp(−U (−→η )) is the equilibrium stationary mea-
sure, W is the first-order non-equilibrium correction, and ε is
the strength of nonequilibrium forces.2 In Ref. [20] such dis-
tributions were obtained as (approximate) time-independent
solutions of the modified Liouville equation. The Liouville
equation was modified to incorporate the external irreversible
forces. McLennan ensembles were shown to lead to linear
relations between thermodynamic fluxes and the external
forces, very much in the spirit of linear-response theory of
Kubo [28,29].

In Refs. [21,30], the authors provided a rigorous interpreta-
tion of this formula in the context of Markov jump and diffu-
sion processes. We now briefly recall the result in Ref. [21] for

2Note that we have set the inverse temperature β = 1, since we do
not study the effect of temperature here.
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the case of Markov jump processes. Considering a continuous
Markov process on a finite state space � = {−→η ,−→η ′, . . .}, let
λ(−→η ,−→η ′) be the transition rate between the states −→η → −→η ′.
The probability μt (

−→η ) of state −→η evolves according to the
master equation (5). The equilibrium distribution (indicated
by subscript 0) fulfills the detail balanced condition

λ0(−→η ,−→η ′)
λ0(−→η ′,−→η )

= ν0(−→η ′)
ν0(−→η )

,

where ν0(−→η ) ∝ e−U (−→η ) for some potential U . As mentioned
in Sec. II C, in Ref. [21], the authors considered a close-
to-equilibrium dynamics by replacing the detailed balanced
condition by the local detailed balance condition,

λ(−→η ,−→η ′)
λ(−→η ′,−→η )

= eF (−→η ,−→η ′)+U (−→η )−U (−→η ′),

where F is antisymmetric and nonconservative force. To
parametrize the distance to equilibrium, the authors took
Fε(−→η ,−→η ′) = εF1(−→η ,−→η ′). The main result in Ref. [21] is the
following asymptotic formula for the stationary distribution of
the close-to-equilibrium dynamics,

νε(−→η ) = ν0(−→η ) exp

{
−ε

∫ ∞

0
〈w1(−→ηt )〉0−→η dt + O(ε2)

}
,

(44)

where 〈·〉0−→η is the averaging over the equilibrium reference

process started from −→η and

w1(−→η ) =
∑

−→η ′ 
=−→η
λ0(−→η ,−→η ′)F1(−→η ,−→η ′) (45)

is the entropy production rate [31]. The integral in Eq. (44)
is well defined depending on the process and the specific
nonequilibrium perturbation, and we will address this impor-
tant issue further in Sec. V. In the case of boundary-driven SIP
(Sec. IV A), we are able to calculate this integral explicitly and
establish its convergence.

The proof of (44) given in Ref. [21] consists of three main
steps which we summarize here. The first step is to connect
the nonequilibrium distribution Pν0 on path-space with driving
F with the equilibrium reference distribution P 0 both starting
from the equilibrium law ν0 using the Girsanov formula

dPν0 (ω) = dP 0(ω) e−A(ω). (46)

In this formula, ω = (−→ηt )Tt=0 denotes the process trajectory in
the time interval [0,T ], and A is called the path-space action
and is effectively defined by this equation. The derivation and
explicit expression for the action A can be found in Ref. [32,
Appendix 1, Proposition 2.6]. Since the equilibrium process
P 0 is time-reversal invariant, the time-antisymmetric part,
ST

IRR, of the action A can be computed as follows:

ST
IRR(ω) := A(�ω) − A(ω)

(46)= log
Pν0 (ω)

Pν0 (�ω)
, (47)

where �ω = (−→η T −t )Tt=0 for any ω = (−→η t )Tt=0.
Defining νε

T as the distribution of the nonequilibrium
process at time T starting from ν0, the second step is to express
νε

T in terms of ST
IRR. We have

νε
T (−→η ) = 〈δ(−→ηT − −→η )〉Pν0

(47)= ν0(−→η )
〈
e−ST

IRR
〉
−→η ,

where the right-hand side averages over the nonequilibrium
process started from the state −→η . The last step is to calculate
〈e−ST

IRR〉−→η . For the Markov jump process, it was proven in
Ref. [21] that

lim
ε→0

1

ε
log

〈
e−ST

IRR
〉
−→η = −

∫ T

0
〈w1(−→ηt )〉0−→η dt.

This, together with νε = limT →∞ νε
T , gives the McLennan

formula (44). It is worth comparing the two formulas (43)
and (44): The result in Ref. [21] provides an explanation
for the McLennan formula in the sense that it identifies the
correction term W as the transient part of the irreversible
entropy production for the process started from state −→η .

A. McLennan formula for the boundary-driven SIP

We will apply the method in Ref. [21] as described above
to the SIP. The small perturbation has already been introduced
in Sec. II C. We now compute w1(−→η ). By (45),

w1(−→η ) =
∑

−→η ′ 
=−→η
λ0(−→η ,−→η ′)F1(−→η ,−→η ′)

= λ0(−→η ,−→η 1−)F1(−→η ,−→η 1−) + λ0(−→η ,−→η 1+)

×F1(−→η ,−→η 1+) + λ0(−→η ,−→η N+)F1(−→η ,−→η N+)

+ λ0(−→η ,−→η N−)F1(−→η ,−→η N−). (48)

It is worth noting that the entropy production has only
boundary terms. This is because the entropy production is
due to the nonequilibrium driving force F , and this force is
only nonzero between two configurations which differ at the
boundary sites 1 and N .

By (19) and (20), we have

λ0(−→η ,−→η 1+) = b(m + η1),

λ0(−→η ,−→η 1−) = dη1,

λ0(−→η ,−→η N+) = b(m + ηN ),

λ0(−→η ,−→η N−) = dηN .

In Sec. II C, we already calculated

F1(−→η ,−→η 1+) = F1(−→η ,−→η N−) = 1,

F1(−→η ,−→η 1−) = F1(−→η ,−→η N+) = −1.

Therefore,

w1(−→η ) = b(m + η1) − dη1 − b(m + ηN ) + dηN

= (b − d)(η1 − ηN ). (49)

Remark 7. We note that 〈w1(−→η )〉ν = 0, i.e., the mean rate
of entropy production in equilibrium is zero. This follows from
the fact that in equilibrium the average density at all sites are
equal as was shown in Eq. (12).

To obtain the McLennan formula, we need to compute the
time integral of 〈w1(−→ηt )〉0−→η . In the appendix we show that

lim
T →∞

∫ T

0
〈w1(−→ηt )〉0−→η dt = −L−1w1(−→η ) = −

N∑
i=1

ciηi,

where the coefficients ci given as

ci = A + Bi for all 1 � i � N,
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with

A = N + 1

N − 1 − 2m
b−d

, and B = −2

N − 1 − 2m
b−d

,

giving rise to the following McLennan formula for the SIP:

νε(−→η ) = ν0(−→η ) exp{εL−1w1(−→η ) + O(ε2)},

= ν0(−→η ) exp

{
ε

N∑
i=1

(A + B i) ηi + O(ε2)

}
.

This is identical to the local equilibrium measure corre-
sponding to the stationary density profile that we obtained in
Sec. III, i.e., the first-order nonequilibrium correction to the
steady state is exactly the LEQ.

B. Dyson expansion around equilibrium

It is instructive to perform a formal perturbation expansion
and see whether we recover the entropy production as in
McLennan formula. We can write the generator as a sum of
the reversible part and an external perturbation with strength
ε,

L = L0 + ε�.

Expanding the (yet unknown) stationary measure νε up to the
first order of ε in terms of the equilibrium measure ν0 = ν(ε=0),

νε = ν0(1 + εh) + O(ε2),

which must satisfy the stationarity condition

0 = L∗νε = (L∗
0 + ε�∗)(ν0(1 + εh) + O(ε2))

= L∗
0ν0 + ε(L∗

0(ν0h) + �∗ν0) + O(ε2).

This implies that

L∗
0(ν0 h) = −�∗ν0, (50)

or, equivalently,

h = − 1

ν0
(L∗

0)−1(�∗ν0).

For the perturbation corresponding to the boundary rates
considered in Sec. II C, we have

�f (−→η ) = b(m + η1)(f (−→η 1+) − f (−→η ))

− b(m + ηN )(f (−→η N+) − f (−→η ))

and

�∗ν(−→η ) = b(m + η1 − 1)ν(−→η 1−) − b(m + η1)ν(−→η )

− b(m + ηN − 1)ν(−→η N−) + b(m + ηN )ν(−→η ).

The equilibrium measure has been computed in Eq. (10),

ν0(−→η ) =
N∏

i=1

γ (ηi),

γ (n) = θn�(m + n)

zθn!�(m)
,

z�(z) = �(z + 1).

We get

�∗ν0(−→η ) = b[(m + η1 − 1)γ (η1 − 1)

− (m + η1)γ (η1)]
N∏

i=2

γ (ηi)

+ b[(m + ηN )γ (ηN )

− (m + ηN − 1)γ (ηN − 1)]
N−1∏
i=1

γ (ηi). (51)

By definition of γ in Eq. (10), the first and the last terms in the
right-hand side of (51) can be transformed respectively as

(m + η1 − 1)γ (η1 − 1) = 1

θ
η1γ (η1),

(m + ηN − 1)γ (ηN − 1) = 1

θ
ηNγ (ηN ).

Hence it follows that

�∗ν0 = (b − d)(ηN − η1)ν0.

Substituting to (50), we obtain

L∗
0(h ν0) = ν0L0h = −�∗ν0 = (b − d)(η1 − ηN )ν0.

Therefore, finally, we obtain the first-order correction

L0h = (b − d)(η1 − ηN ). (52)

Comparing this with the entropy production in Eq. (49) we see
that

h = L−1
0 w1(−→η ).

As a result, the first-order Dyson perturbation expansion
becomes identical to the McLennan formula for the SIP in
Sec. IV A since we have

νε = ν0 (1 + εh) + O(ε2) = ν0 exp[εh + O(ε2)].

Remark 8. The equality L∗
0(h ν0)(−→η ) = ν0(−→η )(L0h)(−→η )

can be verified as follows. First we define the following
notation for the function f and measure ν,

〈f,ν〉 :=
∫

f dν.

Using definition of L∗
0 we have that for every f ,

〈f,L∗
0(ν0 h)〉 = 〈L0f,ν0 h〉.

Furthermore, the reversibility of the process with respect to ν0

implies that

〈L0f,ν0 h〉 = 〈f,ν0L0h〉.
Together, these indicate that L∗

0(h ν0) = ν0L0h.

V. DISCUSSIONS

It is interesting to compare the boundary-driven SIP in this
paper with the case of the boundary-driven symmetric exclu-
sion process studied in Ref. [18] with boundaries arbitrarily
far from each other, where it is shown that the Gibbs-Shannon
entropy of the stationary measure converges to that of the
LEQ in the thermodynamic limit as N → ∞. In other words,
it was shown in Ref. [18], for a rather general class of models,
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that local equilibrium is sufficient to describe the leading-order
asymptotic of Gibbs-Shannon entropy. The result in the present
paper is in a sense more microscopic; we study finite-size
systems (fixed N ) with nearly identical boundaries, and this is
a different asymptotic regime, as explained in the Introduction.
It is worth mentioning that the proof in Ref. [18] does not
directly apply to the SIP; the SIP lacks at least one of the
sufficient conditions in the proof. This is due to the fact that
the particle states in the boundary-driven SIP are unbounded:
Particles can be added and removed via boundaries. As a result,
the entropy production rate in Eq. (49) (which is a function
of the number of particles in the first and last sites) is also
unbounded. Nevertheless, the integral appearing in McLennan
formula (44) is well defined.

We now discuss the thermodynamic limit for the SIP.
Consider coupling the SIP to two particle reservoirs that
arbitrarily differ, for instance, with ε not being small, and with
very large N . Now, looking at a section of the system with size
L � N , for instance, −→η (L)

i = (ηi, . . . ,ηi+L−1), the density
profile looks similar to a system of size L which is coupled to
two particle reservoirs whose chemical potential difference is
small and of the order of L

N
� 1. This suggests the following.

Intuitively, one might expect that in the thermodynamic limit
and with two boundary reservoirs with arbitrary chemical
potentials, the first-order nonequilibrium correction to the
stationary state is again the LEQ corresponding to the density
profile. This is the property that was shown rigorously for the
SIP in Ref. [17] with the help of the probabilistic technique of
coupling.

An important issue in the study of close-to-equilibrium
systems of the kind presented in this paper is the choice
of boundaries. Good choice of the boundary operators can
make the calculations feasible and other choices can make
the calculations sometimes impossible. We can mention three
reasons for this situation. The first reason is the so-called
stochastic integrability. For example, the particular choice of
boundary generators in Eqs. (2) and (3) was made in order
to ensure the self-duality property of the boundary-driven SIP
[23], a property that is essential for it to be exactly solvable
and gives us the possibility to obtain the stationary density
profile in Sec. III. There are other physically relevant choices
for the boundary generators which do not have the self-duality
property and thus make the calculations difficult or impossible.
For example, consider the following choice for the boundary
operators:

B1f (−→η ) = b1[f (−→η 1+) − f (−→η )] + d1[f (−→η 1−) − f (−→η )]

and

BNf (−→η ) = bN [f (−→η N+) − f (−→η )]

+ dN [f (−→η N−) − f (−→η )],

where the transition rates bi and di do not depend on the particle
configurations. This choice might be physically sensible and
such process is well defined. However, the SIP with such
boundaries does not have the self-duality property. The fact
that we are more interest in modeling and understanding of the
nonequilibrium phenomena favors choosing mathematically
tractable choices.

The second reason is related to the issue of absolute
continuity of the nonequilibrium perturbed process with
respect to the reference equilibrium process. One process is
absolutely continuous with respect to another process if the
path measures of both processes are related by a density
h(ω), which is called the the Radon-Nykodim derivative
[32, Appendix 1, Proposition 2.6]. This absolute-continuity
property is directly related to the choice of the boundary
operators which induce the irreversibly in the system. It is also
an essential property for the Radon-Nykodim derivative that
appears in the McLennan formula to be well defined. Without
this property the McLennan calculation is not possible. There
are cases, e.g., as suggested in Ref. [21], that even in cases of
no absolute-continuity, sometimes the perturbation expansion
is still possible. This suggests that perturbation-type calcula-
tions are more generally applicable, although the resulting
corrections will lack an interpretation in terms of entropy
productions. The particular example provided in Ref. [21] is a
general jump process where in the original unperturbed process
certain jumps are forbidden but allowed in the perturbed
process. The two processes are not absolutely continuous. One
might consider such two systems to be partially of different
physical nature. For two Markov jump processes on the same
countable state space, the absolute continuity property can
be established if there is no jump which is forbidden (i.e., the
rate of such transition is zero) in one process but is allowed
in the other. This is indeed the case with the choices of
the boundaries in this paper. However, the situation is more
delicate in general, and even in such cases of no absolute
continuity, there is still the possibility that perturbation
expansion might also fail. This can be the case if we would
need to apply the inverse generator in Eq. (52) on a function
that is not in this operator domain. Note that the right-hand
side of this equation is related directly to the choice of the
boundaries.

The third issue to consider is that for certain choices of
the boundaries the system will have a linear stationary density
profile, as was the case in the current paper. While this is not
exactly the same as the issue of stochastic integrability, such
choices for boundaries can simplify the calculations and are
somehow more natural choices.
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APPENDIX

In this Appendix we provide some of the details of the
calculation of McLennan formula in Sec. IV and then derive
the McLennan formula given in Sec. IV A for the case of the
SIP generator.

1. Detailed calculation of the McLennan formula

From the theory of continuous-time Markov processes
[27, Theorem 3.16] and by definition of the generator we have
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that for all smooth functions f ,

∂

∂t
〈f (−→ηt )〉0−→η = 〈Lf (−→ηt )〉0−→η .

The Markov process defines a semigroup

Stf (−→η ) := 〈f (−→ηt )〉0−→η .

By definition of the semigroup

St = etL,

formally, it follows that

lim
T →∞

∫ T

0
〈f (−→ηt )〉0−→η dt = lim

T →∞

∫ T

0
etLf (−→η ) dt

= lim
T →∞

L−1etLf (−→η )
∣∣∣T
t=0

= −L−1f (−→η ) + L−1 lim
T →∞

eT Lf (−→η )

= −L−1f (−→η ) + L−1 lim
T →∞

〈f (−→ηT )〉0−→η .

For an irreducible Markov process, there is a unique equilib-
rium measure ν and starting from any state −→η the dynamics
will converge exponentially fast to this equilibrium state.
Hence limT →∞〈f (−→ηT )〉0−→η = 〈f 〉ν . For computation of the

McLennan formula, f = w1 and we know that 〈w1〉0
ν = 0.

In general we have that L−1(0) = C, where C is a constant
function that does not depend on the configuration −→η . As a
result we can interpret C as a normalization constant for the
measure, which is straightforward to calculate and we omit it
here. Therefore, up to an additive constant,

lim
T →∞

∫ T

0
〈w1(−→ηt )〉0−→η dt = −L−1w1(−→η ).

2. Calculation of L−1w1 for SIP

We need to calculate �(−→η ) defined as

�(−→η ) := L−1w1(−→η ), (A1)

where L is the generator of the reversible process (4)
with b1 = bN = b and d1 = dN = d and w1(−→η ) given in
Eq. (49). Applying both sides of the equation above with L

we obtain

L�(−→η ) = w1(−→η ). (A2)

This has the advantage that we avoid calculating L−1 explicitly.
One way to solve this equation is to use an ansatz for �(−→η ),

�(−→η ) =
N∑

i=1

ciηi . (A3)

Now acting L on �(−→η ) gives

L�(−→η ) =
N∑

i=1

ciLηi

=
N−1∑
i=2

mci(ηi−1 + ηi+1 − 2ηi)

+ c1[bm + (b − d − m)η1 + mη2]

+ cN [bm + (b − d − m)ηN + mηN−1].

Using summation by parts to make explicit the coefficients of
ηi , we get, after some rearrangement of the terms,

L�(−→η ) = (c1 + cN )bm + [c1(b − d − m) + mc2]η1

+ [cN (b − d − m) + mcN−1]ηN

+
N−1∑
i=2

mηi(ci−1 + ci+1 − 2ci).

Equating this to

L�(−→η ) = w1(−→η ) = (b − d)(η1 − ηN ), (A4)

we will need that the coefficients of all powers of ηi for all i

be equal on both sides of the equation. This results in

ci−1 + ci+1 − 2ci = 0

for all 2 � i � N − 1, i.e., in the bulk, and the following for
the boundary conditions:

c1 + cN = 0,

c1(b − d − m) + mc2 = b − d,

cN (b − d − m) + mcN−1 = −(b − d).

We use again a linear ansatz for ci ,

ci = A + Bi for all 1 � i � N,

which will automatically satisfy the bulk discrete Laplace
equations. We can find the coefficients A and B from the
boundary equations which results in

A = N + 1

N − 1 − 2m
b−d

, and B = −2

N − 1 − 2m
b−d

.
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