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I. INTRODUCTION

We are interested in the understandability of software. Maintainability models such as the SIG model
use cyclomatic complexity to measure understandability. However, doubts have been raised about the
relation between cyclomatic complexity and understanding of the code. In a grounded theory approach
we first observe control flow in a large corpus. Which in the long term will enable us to find categories
and create well-founded metrics or indicators for understandability.

We present our early observations of Control Flow Patterns (CFPs) [1] in the Sourcerer Corpus [2], a
set of 13 thousand Java projects. We observe saturations when CFPs belonging to two or more systems are
considered, but no saturation when all patterns are considered. Most observed patterns are unique, only
present in one system, moreover they are small, less than 20 statements. We conclude with questions for
future research.

II. EXPERIMENT

We took the Sourcerer Corpus which contains 18K (13K non empty) Java projects. Using a Java grammar
and RASCAL [3] we parsed all Java files. All methods were transformed []1] into CFPs.

A CFP is an AST created by removing all statements not related to control flow. Table [[] contains a list
of Java’s language constructs kept. The last step is to change all expressions inside the arguments of the
constructs into an empty string.

TABLE I
JAVA LANGUAGE CONSTRUCTS USED IN A CFP.

if if else  switch case labeled  continue break
for  while do while  return  throw synchronized  try

Table [[T] describes how large the Sourcerer corpus is, and how many CFps we extracted and how many
of those CFPs were unique to one system.

TABLE 11
SIZE OF SOURCERER CORPUS AND EXTRACTED CFPs

Size Files LOCT Methods CFPs CFPst

unique

19GB 2M  47TM 23M 678K 516K

T measured using we -1
¥ CFPs only observed in one system.

III. OBSERVATIONS

Figure E] shows the amount of CFPs observed, where we see that almost every time when we add a new
systems, we observe new patterns. Narrowing our definition of a pattern, only considering patterns present
in 2 or more systems, we observe a saturation. Even more so for patterns shared by 3 or more and 4 or
more. Figure [2] shows these narrowed definitions in more detail.

Unique CFPs are patterns only occurring in exactly one system. The almost linear growth in Figure [I]
raises the question what causes it. Figure [3] shows that this is not primarily caused by large patterns, that
most unique patterns are actually smaller then 20 control flow statements.
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Fig. 1. Saturation of the patterns in the Sourcerer corpus. The four lines represent the saturation of patterns appearing in x or
more systems.
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Fig. 2. Zoomed in on the patterns shared in more than one system.

The theoretical reason for so many small unique CFPs, is the exponential growth in possible patterns.
For size 4 there are already 2.474.634 possible CFps. Figure ] shows how many different CFPs per size
were observed and it shows the theoretical maximum.

Figure [5] shows the distribution of the size of a CFP and in how many systems it occurs. Here we can
see that even the larger CFPs are shared. Eye-balling these larger shared CFPs revealed code clones and
code generated by the same generator. We also observed code clones where the full library was embedded.

IV. OPEN QUESTIONS
As future work we have the following questions:

1) Are systems with a lot of CFPs not using OO constructs?

2) Can we find categories of CFPs?

3) Are CFPs abstract enough?

4) Can we find a relation between the naming of a method and it’s CFP?

5) If we observe more systems, would the saturation change?

6) If we analyse non Java systems, would we find similar patterns and saturations?
7) What would be the impact of removing clones on the amount of shared patterns?
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Fig. 3. How many unique patterns of a certain size are found. Patterns equal or larger than 200 are grouped to show that the
long-tail does not contribute that much to the continuous growth of patterns observed.
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Fig. 4. How many different patterns of a certain size were observed and the maximum possible (only shown for 1 — 3 due to the
exponential growth). The “maximum without GOTOs” does not take into account the "structured" GOTOs in Java.

8) Could CFPs be used to fingerprint systems?
9) Why is there so much control flow in an OO language?
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Fig. 5. A scatterplot of the pattern’s sizes and in how many projects they occurred.
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