EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Control flow in the wild : a first look at 13K Java projects
(Extended abstract)

Citation for published version (APA):

Landman, D., Serebrenik, A., & Vinju, J. J. (2013). Control flow in the wild : a first look at 13K Java projects
(Extended abstract). In T. Mens, M. Claes, M. Goeminne, & S. Drobisz (Eds.), 12th Belgian-Netherlands
Software Evolution Seminar (BENEVOL'13), December 16-17, 2013, Mons, Belgium (pp. 33-36). Université de
Mons.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/27eea2ed-31ed-477e-b933-20e308249721

Control Flow in the Wild
A first look at 13K Java projects

Davy Landman*, Alexander Serebrenik*!, Jurgen Vinju*
* Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
{Davy.Landman, Jurgen.Vinju} @cwi.nl
t Eindhoven University of Technology, Eindhoven, The Netherlands
a.serebrenik @tue.nl

I. INTRODUCTION

We are interested in the understandability of software. Maintainability models such as the SIG model
use cyclomatic complexity to measure understandability. However, doubts have been raised about the
relation between cyclomatic complexity and understanding of the code. In a grounded theory approach
we first observe control flow in a large corpus. Which in the long term will enable us to find categories
and create well-founded metrics or indicators for understandability.

We present our early observations of Control Flow Patterns (CFPs) [1] in the Sourcerer Corpus [2], a
set of 13 thousand Java projects. We observe saturations when CFPs belonging to two or more systems are
considered, but no saturation when all patterns are considered. Most observed patterns are unique, only
present in one system, moreover they are small, less than 20 statements. We conclude with questions for
future research.

II. EXPERIMENT

We took the Sourcerer Corpus which contains 18K (13K non empty) Java projects. Using a Java grammar
and RASCAL [3] we parsed all Java files. All methods were transformed []1] into CFPs.

A CFP is an AST created by removing all statements not related to control flow. Table [[] contains a list
of Java’s language constructs kept. The last step is to change all expressions inside the arguments of the
constructs into an empty string.

TABLE I
JAVA LANGUAGE CONSTRUCTS USED IN A CFP.

if if else switch case labeled continue break
for while do while return throw synchronized try

Table [[T] describes how large the Sourcerer corpus is, and how many CFps we extracted and how many
of those CFPs were unique to one system.

TABLE 11
SIZE OF SOURCERER CORPUS AND EXTRACTED CFPs

Size Files LOCT Methods CFPs CFPst

unique

19GB 2M 47TM 23M 678K 516K

T measured using we -1
¥ CFPs only observed in one system.

III. OBSERVATIONS

Figure E] shows the amount of CFPs observed, where we see that almost every time when we add a new
systems, we observe new patterns. Narrowing our definition of a pattern, only considering patterns present
in 2 or more systems, we observe a saturation. Even more so for patterns shared by 3 or more and 4 or
more. Figure [2] shows these narrowed definitions in more detail.

Unique CFPs are patterns only occurring in exactly one system. The almost linear growth in Figure [I]
raises the question what causes it. Figure [3] shows that this is not primarily caused by large patterns, that
most unique patterns are actually smaller then 20 control flow statements.

33

7e+05
1

Shared by

—— >=1systems
--- >=2systems
>=3 systems

-+ >=4 systems

6e+05
1

New patterns (cumulative)
3e+05 4e+05 5e+05
1 1 1

2e+05
I

1e+05
1

0e+00
1

0 2000 4000 6000 8000 10000 12000

Systems observed

Fig. 1. Saturation of the patterns in the Sourcerer corpus. The four lines represent the saturation of patterns appearing in x or
more systems.

Sharedby | e
- >=2 systems
>=3 systems

-+ >=4 systems

150000
1

100000
1

New patterns (cumulative)

50000
1

T T T T T T T
0 2000 4000 6000 8000 10000 12000

Systems observed

Fig. 2. Zoomed in on the patterns shared in more than one system.

The theoretical reason for so many small unique CFPs, is the exponential growth in possible patterns.
For size 4 there are already 2.474.634 possible CFps. Figure] shows how many different CFPs per size
were observed and it shows the theoretical maximum.

Figure [5] shows the distribution of the size of a CFP and in how many systems it occurs. Here we can
see that even the larger CFPs are shared. Eye-balling these larger shared CFPs revealed code clones and
code generated by the same generator. We also observed code clones where the full library was embedded.

IV. OPEN QUESTIONS
As future work we have the following questions:

1) Are systems with a lot of CFPs not using OO constructs?

2) Can we find categories of CFPs?

3) Are CFPs abstract enough?

4) Can we find a relation between the naming of a method and it’s CFP?

5) If we observe more systems, would the saturation change?

6) If we analyse non Java systems, would we find similar patterns and saturations?
7) What would be the impact of removing clones on the amount of shared patterns?

34

Unique patterns
30000 40000 50000
1 1 1

20000
1

10000
1

1 2 5 10 20 50 100 200

Pattern size (<= 200)

Fig. 3. How many unique patterns of a certain size are found. Patterns equal or larger than 200 are grouped to show that the
long-tail does not contribute that much to the continuous growth of patterns observed.

00 o Sourcerer

o ° A Maximum

° ;]

% o + Maximum without gotos

10000
1

Patterns

T T T T T T T T
1 2 5 10 20 50 100 200

Pattern size (<= 200)

Fig. 4. How many different patterns of a certain size were observed and the maximum possible (only shown for 1 — 3 due to the
exponential growth). The “maximum without GOTOs” does not take into account the "structured" GOTOs in Java.

8) Could CFPs be used to fingerprint systems?
9) Why is there so much control flow in an OO language?

REFERENCES

[1] J. J. Vinju and M. W. Godfrey, “What does control flow really look like? eyeballing the cyclomatic complexity metric,” in Ninth
IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM). 1EEE Computer Society, 2012.

[2] E. Linstead, S. K. Bajracharya, T. C. Ngo, P. Rigor, C. V. Lopes, and P. Baldi, “Sourcerer: mining and searching internet-scale
software repositories,” Data Min. Knowl. Discov., vol. 18, no. 2, pp. 300-336, 2009.

[3] P. Klint, T. van der Storm, and J. J. Vinju, “RASCAL: A Domain Specific Language for Source Code Analysis and Manipulation,”
in Proc. 9th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM). 1EEE, September
2009, pp. 168-177.

35

=]
g3
- .
.
H
.
o
S
o
» - L]
£
7]
17
>
(2]
H*
s 84
- -
o
<
[}
@
8 .
E -
.
.
- - o oo
T T T T T
1 10 100 1000 10000

Pattern Size

Fig. 5. A scatterplot of the pattern’s sizes and in how many projects they occurred.

36

