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Abstract In this paper, we present a general partition of unity-based cohesive zone model
for fracture propagation and nucleation in saturated porous materials. We consider both
two-dimensional isotropic and orthotropic media based on the general Biot theory. Fluid
flow from the bulk formation into the fracture is accounted for. The fracture propagation is
based on an average stress approach. This approach is adjusted to be directionally depended
for orthotropic materials. The accuracy of the continuous part of the model is addressed by
performing Mandel’s problem for isotropic and orthotropic materials. The performance of the
model is investigated with a propagating fracture in an orthotropic material and by considering
fracture nucleation and propagation in an isotropic mixed-mode fracture problem. In the latter
example we also investigated the influence of the bulk permeability on the numerical results.

Keywords Cohesive zone method · Partition of unity method · Poromechanics

1 Introduction

Modelling of crack propagation behaviour correctly is important in many soil and biomedical
engineering problems. Understanding of the fracture mechanism in porous materials is of
great importance in oil recovery and intervertebral disc herniation. Prediction of fractures
may enhance the oil recovery rates or give more insight in the treatment of intervertebral
disc herniation. Last three decades numerical models are being developed for this purpose.
Boone and Ingraffea (1990) developed an hydraulic fracturing model using the finite element
method (FEM) for poroelastic materials. A cohesive zone description was used for the fracture
process and the fluid flow in the fracture was solved using a finite difference method. In their
work, the cohesive zone elements that model the crack were inserted in the finite element
mesh beforehand, which requires an a priori knowledge of the fracture path. Secchi et al.
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(2007) used the finite element method to model a cohesive fracture as well, but included an
adaptive remeshing method in order to accommodate for fracture propagation in arbitrary
directions. This method was successfully applied to simulate a propagating crack in arbitrary
directions and was even extended to three-dimensional situations (Secchi and Schrefler 2012).
Unfortunately, the remeshing algorithm is computationally inefficient and may give rise to
incorrect results in the case of non-linear behaviour of the bulk material.

An alternative technique to model arbitrary crack growth, irrespective of the structure of the
underlying finite element mesh, is the use of the partition-of-unity property of finite element
shape functions (Melenk and Babuška 1996). Belytschko and Black (1999), Dolbow et al.
(2000) used this property to model a propagating crack in a solid material following linear
elastic fracture mechanics. The crack is modelled as a discontinuity which is incorporated
in the finite element method by enhancing existing nodes by additional degrees of freedom
and is commonly referred to as the extended finite element method (X-FEM). Wells and
Sluys (2001) incorporated a cohesive zone model in X-FEM to model fracture propagation
in arbitrary directions in a solid. The strength of X-FEM is that a fracture can grow in any
direction and at any time without the need of remeshing.

Recently, partition of unity method has also been used to model fracture propagation in
porous materials. Borst et al. (2006) investigated shear banding in a porous material. A dis-
continuous description was used for both solid and fluid phase. Fluid flow is described by
Darcy’s law with a constant permeability and a pressure gradient defined by the pressure
difference on both sides of the crack. A continuous pressure description over the fracture was
presented in (Réthoré et al. 2007). In their latter work the fluid flow is related to crack opening
and a viscous Couette flow profile in the crack. However, no crack propagation was consid-
ered. Kraaijeveld and Huyghe (2011) extended this work towards ionized porous materials
and considered propagating cracks. Pure mode-I and mode-II fractures were described with
a continuous and discontinuous pressure, respectively.

In this contribution we enhance the aforementioned models to accommodate for crack
nucleation similar to (Remmers et al. 2003), mixed-mode crack growth and propagation in
an orthotropic material. We use the model to study the effect of the direction of crack growth
in saturated porous media as a function of permeability. The porous material is described by
the standard Biot equations and the fluid flow in the material is included by Darcy’s law. The
partition of unity method in combination with the cohesive zone approach is used to introduce
a crack. The crack is described by a strong discontinuity in the displacement field while the
pressure field is considered to be continuous across the fracture. Fluid flow from the crack
into the formation is accounted for. The tangential fluid flow is described with lubrication
theory.

In the next paragraph the kinematic relations are described. We then present the momen-
tum and mass balance equations in Sect. 3 and describe the discretization and numerical
implementation in Sect. 4. The constitutive equations are given in Sect. 5. Finally, we show
the performance of the numerical model in Sect. 6 and give some concluding remarks in
Sect. 7.

2 Kinematic Relations

Consider a body Ω that is crossed by a discontinuity Γd, as shown in Fig. 1. The discontinuity
divides the body in two domains, Ω+ and Ω−. The vector nd is defined as the normal of
the discontinuity surface Γd pointing into domain Ω+. The total displacement field of the
solid skeleton can, at any time t , be described by a regular displacement field û(x, t) and an
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Fig. 1 The body Ω crossed by
discontinuity Γd. The body is
completed with the boundary
conditions
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additional displacement field ũ(x, t) (Belytschko and Black 1999; Moës et al. 1999; Remmers
et al. 2008)

u(x, t) = û(x, t) + HΓd (x)ũ(x, t), (1)

where x is the position of a material point in the domain Ω and HΓd is the Heaviside step
function, which is defined as

HΓd =
{

1 if x ∈ Ω+
0 if x ∈ Ω−.

(2)

The strain field ε results from differentiating the displacement field (1) with respect to material
point x with the assumption of small strain theory

ε(x, t) = ∇s û(x, t) + HΓd∇s ũ(x, t), x /∈ Γd. (3)

Here, ∇s is the symmetric part of the differential operator

∇su = 1

2
(∇u + (∇u)T ). (4)

The strain is not defined at the discontinuity surface Γd. Here, the opening of the discontinuity
is the governing kinematic quantity, which is equal to the jump in the displacement field

[u(x, t)]d = ũ(x, t), x ∈ Γd. (5)

The pressure field contains a weak discontinuity over the fracture. The gradient of this pressure
difference quantifies the interaction of fluid flow between the fracture and the formation. By
enhancing the pressure field with a signed distance function, as was used by Réthoré et al.
(2007), the gradient near a discontinuity is taken into account in a natural way

p(x, t) = p̂(x, t) + DΓd (x) p̃(x, t), (6)

where the distance function DΓd (x) is defined as

DΓd (x) = |(x − xΓd ) · nd| x ∈ Ω. (7)

Here, xΓd is the coordinate of the nearest point on the discontinuity and nd is the corresponding
normal vector. The pressure gradient follows from the spatial derivative of the pressure
field (6)

∇ p(x) = ∇ p̂(x) + DΓd (x)∇ p̃(x) + ∇DΓd (x) p̃(x), (8)
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where the gradient of the distance function DΓd

∇DΓd (x) =
{

nd if x ∈ Ω+
−nd if x ∈ Ω−.

(9)

3 Balance Equations

The system is described by two balance equations: the balance of linear momentum and the
mass balance. In the following, the weak form of both balance equations will be derived for
both the bulk material and the interface.

The porous solid skeleton is considered to be fully saturated with a fluid. We assume that
there is no mass transfer between the two constituents. The process is isothermal and gravity,
inertia and convection are neglected. With these assumptions the linear momentum balance
reads

∇ · σ = 0, (10)

where σ is the total stress which is decomposed in Terzaghi’s effective stress σe and the
hydrostatic pressure p (Terzaghi 1943)

σ = σe − pI . (11)

In this equation I is the unit matrix. The effective stress σe is related to the strains ε which
have been defined in (3) by means of the constitutive law. In rate form, this reads

σ̇e = Cε̇. (12)

The momentum balance is completed with the following boundary conditions, see Fig. 1.

σ · nΓ = tp(x, t), x ∈ Γt ,

u(x, t) = up(x, t), x ∈ Γu,
(13)

with Γt ∪ Γu = Γ, Γt ∩ Γu = ∅.
Under equal assumptions as made for the momentum balance, and assuming the fluid to

be incompressible, the mass balance is written as

∇ · vs + ∇ · q = 0, (14)

where vs is the deformation velocity of the solid skeleton and q is the seepage flux, which
is related to the pressure gradient by means of Darcy’s law: Darcy’s relation is assumed to
hold for the fluid flow in the bulk material (Biot 1941)

q = −K · ∇ p, (15)

where K is the permeability tensor, which is assumed to be constant in time and space
(Kraaijeveld and Huyghe 2011). In the case of an isotropic material, the permeability is
equal to K = K I . The mass balance is completed with the following boundary conditions,
see Fig. 1.

q(x, t) · nΓ = qp, x ∈ Γq ,

p(x, t) = pp, x ∈ Γp ,
(16)

with Γq ∪ Γp = Γ, Γq ∩ Γp = ∅.
In accordance with the cohesive zone approach, the softening of the material is governed

by a traction acting on the discontinuity surface. This traction is coupled to the hydrostatic
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pressure in the crack. Assuming continuity of stress from the formation to the fracture we
can write the local momentum balance as

σ · nd = td − pdnd, (17)

where pd is the hydrostatic pressure in the discontinuity

pd = p(x ∈ Γd) (18)

Mass balance is described by an equilibrium of fluid exchange between the formation and
the fracture, the opening rate of the fracture and the tangential fluid flow in the fracture. This
is written as

q+
Γd

· nd − q−
Γd

· nd = −[u̇]n + un
∂

∂s

(
kd

∂pd

∂s

)
, (19)

with q+
Γd

and q−
Γd

being the fluid flow from the fracture into formation for the fracture lip
of the Ω+ and the Ω− domain, respectively, [u̇]n denotes the time derivative of the normal
opening of the fracture and kd being the permeability in the fracture. The latter is given by
Witherspoon et al. (1980):

kd = u2
n

12μ
, (20)

where μ is the viscosity of the fluid. For the derivation of this equilibrium equation, we refer
to Irzal et al. (2013). In Eq. (19) we used, under the assumption of small deformations, that
the normal vector of the two fracture lips is in opposite direction.

The weak form of the balance equation is obtained by multiplying Eqs.(10) and (14) with
an admissible displacement and pressure field, η and ζ , respectively. These admissible fields
have the same form as the original fields

η = η̂ + HΓd η̃, ζ = ζ̂ + DΓd ζ̃ . (21)

Substituting the variations into Eqs.(10) and (14), Applying Gauss theorem, using the sym-
metry of the Cauchy stress tensor, introducing the internal boundary Γd and the corresponding
admissible displacement jump and using the boundary conditions at the external boundaries
Γt and Γq gives ∫

Ω

∇η̂ : σdΩ +
∫

Ω

HΓd∇η̃ : σdΩ

=
∫

Γt

η̂ · tpdΓt +
∫

Γt

HΓd η̃ · tpdΓt −
∫

Γd

η̃ · (σ · nd)dΓd (22)

and

−
∫

Ω

ζ̂∇ · vsdΩ −
∫

Ω

DΓd ζ̃∇ · vsdΩ +
∫

Ω

∇(ζ̂ ) · qdΩ +
∫

Ω

∇(DΓd ζ̃ ) · qdΩ

=
∫

Γq

ζ̂qpdΓq +
∫

Γq

DΓd ζ̃qpdΓq −
∫

Γd

ζ̂q+
Γd

· nddΓ +
∫

Γd

ζ̂q−
Γd

· nddΓ. (23)

In these equations, tp and qp are the prescribed traction and prescribed fluid outflow
boundary conditions, respectively (Fig. 1) and Γd represents the integral over the internal
boundary of the discontinuity. The terms σ ·nd , q+

Γd
·nd and q−

Γd
·nd are given by the balance

Equations at the discontinuity (17) and (19). By taking one of the admissible variations
δη̂, δη̃, δζ̂ and δζ̃ at the time, the weak form of equilibrium can be separated into four sets
of equations. A detailed description is given in (Réthoré et al. 2007; Wells and Sluys 2001).
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4 Discretization and Numerical Implementation

The spatial discretization of the system of equations is based on the partition-of-unity property
of finite element shape functions (Melenk and Babuška 1996). Using this property, the fracture
is included in the FEM by adding an additional degree of freedom to the finite element nodes
surrounding the fracture (Fig. 2). These additional degrees of freedom have the form of the
additional terms in the field Eqs. (1) and (6) for the displacement and the pressure, respectively.
The time discretization is performed using an implicit Euler time scheme. The resulting
system is non-linear and is therefore solved with a Newton–Raphson iterative procedure. A
detailed derivation and description is given in (Irzal et al. 2013; Kraaijeveld and Huyghe
2011; Réthoré et al. 2007)

The numerical implementation is based on and described in detail in the work of Remmers
(2006) and Remmers et al. (2008). The most important aspects will be recaptured in this
section. In addition, the new implementations of the nucleation of cracks and the propagation
of cracks in transverse isotropic materials are introduced. Consider a finite element domain
crossed by a discontinuity as shown in Fig. 2. A structured mesh containing four nodal
elements is used in this work. Additional degrees of freedom are added to the black nodes
which are crossed by the discontinuity. It is assumed that the discontinuity within an element
is a straight line, always ends at an element edge, and is referred to as a cohesive segment.
The numerical integration is performed by the standard Gauss integration. However, only
using the original integration points is not sufficient any more since the discontinuity can
cross an element at an arbitrary location. To acquire sufficient integration points at each side
of the discontinuity, an integration method (Fig. 3) introduced by Wells and Sluys (2001),
is used. Two integration points per element are located at the discontinuity to integrate the
discretized local balance equations.

To govern the propagation of a fracture, a fracture criterion is needed to determine the
moment and the direction of propagation. The stress state at the crack tip is estimated based

Fig. 2 A two-dimensional finite
element mesh crossed by a
discontinuity is represented by
the black line. The black nodes
surrounding the discontinuity are
enhanced with additional degrees
of freedom. The grey elements
therefore contain additional terms
in the stiffness matrix and the
force vector

Enhanced node

Regular node

Fig. 3 Numerical integration of
a quadrilateral element crossed
by a discontinuity
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Fig. 4 Schematic representation
of a material with at the crack tip
the global x–y coordinate system
and the local coordinate system,
described with a normal unit
vector n and a tangential unit
vector s x

y

n s

on the average stress in the vicinity of the tip. The averaging is calculated with a Gaussian
weighting function (Jirásek 1998). The average stress σ av at the crack tip is then the weighted
sum of the stress in the integration points near the crack tip

σ av =
nint∑
i=1

wi

wtot
σ e,i with wtot =

nint∑
j=1

w j . (24)

Here nint is the number of integration points in the domain, σ e,i is the current effective stress
state in integration point i which has a weight factor wi defined as

wi = (2π)− 3
2

l3
a

e
−r2

i
2l2a , (25)

with ri being the distance between the crack tip and the integration point ni , and la being a
length scale parameter defining how fast the weight factor decays as a function of the distance
between the integration points and the crack tip. As was proposed by Remmers et al. (2008)
the average stress surrounding the crack tip is used to determine both the moment and the
direction of propagation. From this average stress, an equivalent traction teq at the crack tip
is calculated (Camacho and Ortiz 1996)

teq(θ) =
√

〈tn〉2 + 1

β
t2
s with 〈tn〉 =

{
0 if tn ≤ 0
tn if tn > 0

, (26)

where β is a scaling factor for the shear stress, tn and ts are the normal and shear traction,
respectively

tn = nT σavn ts = sT σavn. (27)

Here n is the normal vector and s is the tangent vector to an axis η which is rotated by an angle
θ with respect to the x-axis (Fig. 4). If the maximum equivalent traction exceeds the ultimate
strength τult of the material the fracture is extended in the direction of angle θ through one
element.

The disadvantage of using an average stress in the fracture criterion is that the crack
propagation can be slightly delayed due to the averaging of the stress. The advantage is that
the direction of propagation is more reliable since it is based on a global stress state. However,
the initial traction in the discontinuity will also be underestimated (Remmers et al. 2008).
To avoid this two different length scale parameters la are used, see Eq. (25). The moment
and direction of fracture propagation are determined by a length scale parameter which is
typically three times the element length (Wells and Sluys 2001), while the initial tractions
are calculated with one-forth of this length scale.
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(a) (b) (c)

Fig. 5 Three different locations of nucleation checkpoints with corresponding cohesive zones

The average stress criterion based on the equivalent traction in Eq. (26) is also used to
determine the moment of fracture nucleation. Instead of calculating this criterion in each
integration, which would be computationally inefficient, an additional checkpoint is added
in the centre of each element (Fig. 5). Once the equivalent traction in one of the checkpoints
exceeds the nucleation criterion a discontinuity is added. The cohesive segment is assumed
to be straight and crosses the checkpoint under the angle θ with respect to the x-axis. The
cohesive zone of the nucleated crack must have a length of at least 1 element. The numerical
implementation of this restriction is illustrated in Fig. 5 with three examples. If the nucleation
criterion is exceeded in multiple checkpoints at the same time, nucleations occurs in the
checkpoint with the highest equivalent traction.

4.1 Fracture Propagation in an Orthotropic Material

The structure of an orthotropic material induces anisotropic fracture properties. We assume
the strongest direction of the orthotropic material as a fibre direction. Following Yu et al.
(2002) we can define a directional depended ultimate strength as

τult(α) = τmin + (τmax − τmin) cos(α)2, (28)

here α is the angle between the fibres and normal n of the fracture, τmax is the ultimate
strength in the fibre direction and τmin is the ultimate strength perpendicular to the fibre
direction (Fig. 6). To determine if the equivalent traction (26) at angle θ exceeds the fracture
criterion it is necessary to express Equation (28) in terms of θ

τult(θ) = τmin + (τmax − τmin) cos

(
θ + 1

2
π − θf

)2

. (29)

Fig. 6 Schematic representation
of a fracture under an angle θ in
an orthotropic isotropic material.
The strength of the material
defined by a fibre direction θf .
The angle α is the angle between
the fibre direction and the normal
n of the fracture

1

2

y

Fracture direction

Fiber direction

f

x

n
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In the orthotropic material a fracture propagates or initiates if

teq(θ)

τult(θ)
> 1. (30)

5 Constitutive Equations

The mathematical formulation of the balance equations are completed by constitutive behav-
iour for the bulk material and the fracture. The constitutive relation for an orthotropic bulk
material is also given.

5.1 Mechanical Behaviour of the Orthotropic Bulk

In the remainder of the paper we consider a special orthotropic material; a transverse isotropic
material. Transverse isotropy is a common form of anisotropy in rock formations but is also
present in many biological materials (Abousleiman et al. 1996; Weiss et al. 1996). A transverse
isotropic material is an orthotropic material with one axis of material rotational symmetry.
We assume that the strength of the transverse isotropic material is highest in the direction
of the axis of rotational symmetry. Defining this direction again as the fibre direction, the
isotropic relationships for the effective stress are replace by

⎛
⎝σ11

σ22

σ12

⎞
⎠ = C

⎛
⎝ε11

ε22

γ12

⎞
⎠ , (31)

where the stress components σ and the strain components ε are defined in a local coordinate
system (1, 2), as shown in Fig. 6. The [3 × 3] stiffness matrix C is defined as

C =

⎛
⎜⎜⎝

E2
11(1−ν23)

E11(1−ν23)−2E22ν2
12

E11 E22ν12
E11(1−ν23)−2E22ν2

12
0

E11 E22ν12
E11(1−ν23)−2E22ν2

12

E22(E11−E22ν2
12)

(1+ν23)[E11(1−ν23)−2E22ν2
12] 0

0 0 G12

⎞
⎟⎟⎠ . (32)

In this equation, E11 and E22 are Young’s moduli, ν12 and ν23 are the Poisson’s ratios
representing the compressive strain in the direction of the second subscript due to a tensile
stress in the direction of the first subscript, and G12 is the shear modulus in the 1–2 plane.
Here, based on symmetry, the following identity was used

ν12

E11
= ν21

E22
. (33)

The permeability is also a parameter depending on direction in an orthotropic material
(Abousleiman et al. 1996). We also describe the fluid flow in an orthotropic material by
Darcy’s law Eq. (15), with the permeability tensor K being defined as

K =
(

K1 0
0 K2

)
(34)

where K1 and K2 are the permeabilities in the direction of the subscript.
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-1

0

1

t n
t n

0

n n cr

(a) Tensile crack.

0

1

0 1 -1 0

-1

1

t s
t s 0

s s cr

(b) Shear crack.

Fig. 7 The normalized tractions across the discontinuity as a function of the displacement jump in: a a
cleavage crack and b a shear crack

5.2 Mechanical Behaviour in the Fracture

The constitutive mechanical behaviour at the discontinuity is given by a relation between the
traction at the interface and the displacement jump ud across the discontinuity (Irzal et al.
2013)

td = td(ud, κ). (35)

Here κ is a history parameter that is equal to the largest displacement jump reached. The
relation between the traction td and the displacement jump ud can be any phenomenological
relation, see e.g. Shet and Chandra (2002), and is referred to as a cohesive law.

The initial normal and shear tractions, respectively written as tn0 and tn0 , are taken to be
equal to the normal and shear traction at the moment of propagation (27) in order to avoid
sudden jumps in the stress. Based on the work of Camacho and Ortiz (1996) a distinction is
made between normal and shear softening behaviour. If the initial normal traction is positive
the discontinuity is assumed to open as a cleavage crack. The normal and shear tractions
decay linearly to zero from their initial values as a function of the normal opening of the
crack (Fig. 7)

tn = tn0

(
1 − vn

vncr

)
ts = ts0

(
1 − vn

vncr

)
sgn(vs). (36)

Here vn and vs are respectively the normal and sliding the displacement, sgn(·) is the signum
function.
The parameter vncr is the length of the fully developed traction-free crack. This parameter
depends on the fracture toughness Gc, which is the area under the softening curve, and the
initial normal traction tn0

vncr = 2Gn

tn0

. (37)

The traction-separation relations for unloading and shear opening are described in detail
in (Camacho and Ortiz 1996). Self-contact of the fracture is simulated by using a penalty
stiffness method.

It is necessary to perform a linearisation on Eq. (35) in order to use the tangential stiffness
matrix in an incremental iterative solution

�td = T�ud. (38)
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Fig. 8 Scheme and result of the
Mandel Cryer benchmark

F

qp=0

qp=0

p=0 p=0
a

5a

F

Table 1 Model parameters used
in the isotropic Mandel–Cryer
benchmark

E = 1.5 [Mpa] ν = 0.2 [–]

K = 2.8e−4 [ mm4

Ns ]

6 Examples

In the first two examples, the accuracy of the model for an isotropic and a transverse isotropic
material is analysed in an unconfined compression test. An analytical solution is available
for both problems. In the last two examples the performance of the numerical model is
investigated by simulating fracture propagation in a transverse isotropic material and by a
mixed-mode fracture problem. All examples are two dimensional in a plane strain setting.
The mesh consists of quadrilateral elements with bilinear shape functions for both the dis-
placement and the pressure. This interpolation order means we violate the Babuška-Brezzi
condition (Brezzi 1974). However, no adverse effects of the violation have been observed in
the numerical results.

6.1 Unconfined Compression

The accuracy of the poroelastic model is tested by considering the Mandel–Cryer benchmark
(Cryer 1963; Mandel 1953). In the Mandel–Cryer problem an infinitesimal long plate, consid-
ered under plane strain conditions, is rigged compressed by a force of F = 0.1 N (Fig. 8). The
specimen dimension is taken as a = 1 mm. The material parameters are given in Table 1. The
squared elements have a size of 0.05 mm and the time step is 150 s. Free drainage is assumed
at the lateral sides of the specimen. Due to the drainage a pore pressure decrease occurs,
leading to a loss of stiffness at the sides. To compensate for this loss, the pore pressure rises
in the undrained centre of the specimen. This non-monotonic pressure response character-
izes the Mandel–Cryer problem. The normalized pore pressure across the specimen in the
x-direction is shown in Fig. 9. The numerical pore pressure is consistent with the analytical
solution.

The isotropic solution for the Mandel–Cryer problem was extended to transverse isotropic
materials by Abousleiman et al. (1996). This analytical solution is used to determine the
accuracy of the numerical model for a transverse isotropic material. The benchmark problem
is similar than that in the isotropic case (Fig. 8). The transverse isotropic material has a
higher stiffness in the vertical direction (θf = 90◦). The material parameters are given in
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Fig. 9 Normalized pressure 5a
F p

over the sample in x-direction,
where x = 0 is in the centre. The
numbers drawn in the line
indicate the time in seconds.
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Table 2 Model parameters used in the anisotropic Mandel–Cryer benchmark

E11 = 15.0 [Mpa] ν12 = 0.30 [–] θf = 90◦ [–]

E22 = 1.5 [Mpa] ν23 = 0.18 [–] K = 2.0e−5 [ mm4

Ns ]

Fig. 10 Normalized pressure
5a
F p over the sample in

x-direction, where x = 0 is in the
centre. The numbers drawn in the
line indicate the time in seconds.
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Table 2. The anisotropic permeability has no influence on the analytical solution. Therefore,
we consider the permeability also isotropic in this example. The numerical result for the
anisotropic Mandel–Cryer problem is also consistent with the analytical solution (Fig. 10).

6.2 Fracture Propagation in a Transverse Isotropic Material

To illustrate the performance of the numerical model for a fracture propagating in a transverse
isotropic material a mode I fracture is considered (Fig. 11). Free drainage (p = 0) is assumed
at the sides of the specimen. An initial fracture with a length of 5.0 mm is created in the centre
and the anisotropic stiffness taken as θf = 70◦. The top and bottom surface are pulled with
a constant velocity v = 5.0e−6 mm

s in vertical direction while the displacement in horizontal
direction is constrained. The element length is 0.20 mm and a time step of 50 s is used. The
average stress is scaled by parameter la = 0.6 mm. An overview of the material parameters
are given in Table 3.

A small influence of the transversal permeability can be seen in the pressure distribution
before propagation occurs (Fig. 12a). The pressure gradient is aligned with the direction of
the low permeability. Using the adapted propagation criterion (29) for anisotropic materials,
the crack grows parallel to the anisotropic stiffness (Fig. 12b). This is a result of the values
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p=0

V

V

40 mm

10 mmf

x

p=0
y

5 mm
p=0

p=0

Fig. 11 A rectangular plate of porous material with an initial crack. The material is transverse isotropic with
θf = 70◦

Table 3 Model parameters used in the anisotropic Mode 1 fracture simulation

E11 = 90.0 [MPa] θf = 70 [◦] τmin = 0.004 [MPa]

E22 = 15.0 [MPa] K1 = 7.5e−3 [ mm4

Ns ] Gc = 0.00001 [ N
mm ]

ν12 = 0.30 [–] K2 = 7.5e−4 [ mm4

Ns ] β = 2.3 [ mm
s ]

ν23 = 0.18 [–] τmax = 0.40 [MPa] μ = 1.0e−4 [Pa ·s]

Fig. 12 Visualization of the pressure distribution. The displacements are amplified by a factor 10. a Pressure
distribution at t = 500 s, b pressure distribution at t = 2,000 s

for τmax and τmin but does represent the propagation of a fracture in a transverse isotropic
material.

6.3 Mixed-Mode Fracture

The performance of the numerical model is analysed considering a mixed-mode fracture in
a L-shaped porous material (Fig. 13). This type of problem has been investigated experi-
mentally by Winkler (2001) in a concrete material and was successfully reproduced using
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Fig. 13 Schematic representation of the L-shaped fracture problem

Table 4 Material properties
L-shaped mixed-mode test

E = 90 [Mpa] β = 2.3 [–]

ν = 0.18 [–] τult = 0.2 [ N
mm2 ]

K = 7.5e−3 [ mm4

Ns ] Gc = 0.15 [ N
mm ]

μ = 1.0e−4 [Pa · s]

solid mechanics X-FEM (Dumstorff and Meschke 2007; Unger et al. 2007). In this example
we consider a soft porous material with a Young’s modulus of 90.0 MPa and a permeabil-

ity of 7.5e−3 mm4

Ns . The time step is 300 s and the element length is 10.0 mm. The average
stress parameter is taken as la = 30.0 mm. Further material parameters are given in Table 4.
The specimen is constrained in both directions at the bottom surface. At the right surface
free drainage is prescribed while the other surfaces are impervious. There is no initial crack
present in the material so the nucleation point will be determined numerically. A

¯
velocity

U = 2.5e−4 mm
s is prescribed at a distance of 30 mm of the boundary at the middle surface.

The early pressure distribution can be seen in Fig. 14a. The prescribed displacement
induces a positive pressure near the loading point. At the middle surface a negative pres-
sure arises due to extension. This leads to fluid flow towards this region (Fig. 15). Fracture
nucleation takes place, as expected, at the central corner and results in a negative pressure
surrounding the fracture (Fig. 14b). The negative pressure is generated by the triaxial stress
state near the fracture tip Anderson (2005). This stress is first taken up by the fluid resulting in
negative pore pressure. The pressure profiles at two later time points can be seen in Figs. 14c,
d. The low pressure surrounding the fracture leads to fluid flow from the formation into the
fracture (Fig. 16). Immediately after fracture nucleation occurred, closing of the fracture took
place. This is a result of the initial traction present in the nucleated fracture. To prevent this,
the initial traction in the element at the mesh border is neglected.
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Fig. 14 Pressure distribution of the L-shaped mixed-mode fracture. a t = 17,100 s, b t = 29,700 s, c t = 54,000 s,
d t = 150,000 s

Fig. 15 Flow ( mm
s ) distribution of the L-shaped mixed-mode fracture at t = 17,100 s. a Flow in x-direction,

b flow in y-direction

To further investigate the performance of numerical model the same simulation is repeated

with two different permeabilities. Permeability values of 7.5e−2 mm4

Ns and 7.5 mm4

Ns are used.
The permeability has an influence on the moment of fracture nucleation, on the fracture
propagation velocity and on the fracture pattern (Fig. 17). The higher the permeability, the
earlier a fracture nucleates. This phenomenon is a consolidation effect. The tensile stress near
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Fig. 16 Flow ( mm
s ) distribution of the L-shaped mixed-mode fracture at t = 42,300 s. a Flow in x-direction,

b flow in y-direction

K 7 5e 3 mm4N 1s 1
K 7 5e 2 mm4N 1s 1
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Fig. 17 Crack path for 3 different permeability values at t = 60,000 s. The graph is zoomed in at the grey box
shown in Fig. 13

the nucleation point is initially carried by the fluid pressure. This results in a negative pressure
and a fluid flow towards this point (Figs. 14a and 15). There is a stress transfer from the fluid
towards the solid skeleton as fluid flow progresses. Since the fluid flow is linearly depended
on the permeability there is a faster stress transfer in a more permeable material. The fracture
criterion is therefore exceeded earlier. For the same reason the fracture propagates faster in
a highly permeable material.

We hypothesize that the bending of the crack is also correlated with the consolidation
theory. The right part of the sample is in compression and fluid is squeezed out of this
area resulting a slower tensile stress transfer. This effect is strengthened in case of a lower
permeability. Therefore, the fracture propagates downwards because the right side of the
material compressed.

7 Conclusion

We have extended two-dimensional numerical formulation for fracture propagation in porous
materials to model nucleation in orthotropic materials. A fracture can grow in arbitrary
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directions by exploiting the partition-of-unity property of finite element shape functions.
The direction of propagation is based on an average stress criterion surrounding the crack
tip. This criterion is adapted for a orthotropic material by considering the directional stiffness
of the material. The exchange of fluid between the formation and the fracture is accounted for.
The tangential fluid flow in the fracture is included by the lubrication theory. The accuracy of
the numerical model is investigated using the Mandel–Cryer Benchmark for both isotropic
and transverse isotropic materials. The results show good consistency with the analytical
solution.

In the transverse isotropic mode I fracture problem we successfully showed a propagating
fracture in an anisotropic material. The pressure distribution is depending on the anisotropic
permeability and the fracture direction is aligned with the highest strength direction of the
material. The L-shaped problem demonstrates the possibility to use a poroelastic partition of
unity-based cohesive zone model to simulate crack nucleation and subsequent mixed-mode
growth in porous materials. The fracture path and propagation velocity were found to depend
on the permeability of the bulk material. It shows the capability of our numerical model to
respond to a change in a material parameter. Experimental validation and quantification of
this phenomenon remains to be demonstrated.
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