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Abstract

In this report, the biological network of the glycolysis pathway has been modeled using
discrete event models (DEMs). The most important feature of this pathway is that
energy is released. To create a stable steady-state system an energy molecule equilibrating
enzyme and metabolic reactions have been added, resulting in the energy balance system.
Stability and stochastic influences on the results have been investigated and result in
an unstable system, except for a small region of input parameters. To stabilize the
energy balance system some feedback regulators are presented. It is shown that stochastic
behavior has got a significant influence on a otherwise stable biological system.
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Chapter 1

Introduction

Why does the functioning of biological systems seem miraculous? One reason is that we do
not know how to design systems that do what cells do. In contrast, we know how to design
highly complex information systems. The fundamental reason for the successful evolution
of information systems is the development of mathematical abstractions that enable effi-
cient and robust design processes. In the physical sciences and engineering, mathematical
models are usually expressed in terms of nearly exactly measurable quantities and the goal
is to obtain precise quantitative results to be compared with experimental observations.
In the biological sciences however, it is rare that the phenomenon to be studied can be so
precisely quantified, due to the complexity of the systems to be considered. It is difficult
to account for all the intricacies of predator-prey interactions, tumor growth or the spread
of infectious diseases for example. Typically biological models are more qualitative, aim-
ing to predict only quantitative features rather than yielding detailed quantitative results.

Applying mathematics to biology has a long history, but only recently there has been
an explosion of interest in the field. Some reasons for this include a better understanding
of how molecules and cells function due to continued development and innovations in
experimental and visualizing tools. Examples are Fluorescence Correlation Spectroscopy
and Nuclear Magnetic Resonance where systems can be investigated on a moleculair
level. These techniques renewed the interest in biological networks with a small number
of molecules, and therefore modeling these networks is important for new insights. Also
development of mathematical tools and an increase in computing power enabled perform-
ing calculations and simulations that were not previously possible. Another contribution
is an increasing interest in in silico experimentation, i.e. via computer simulation, due to
ethical considerations, risk, unreliability and other complications involved in human and
animal research.

This report presents an approach to modeling a biological network consisting of substrate-
enzyme reactions as discrete event models (DEMs), which are mostly used in manufac-
turing and queueing systems. Different types of biological networks exist, e.g. metabolic
or signal transduction networks. A biological network consists of a network of chemical
substrate-enzyme reactions. Enzymes are the proteins that catalyze chemical reactions.
In enzymatic reactions, the molecules at the beginning of the process are called substrate
molecules, and the enzyme reconfigures them into different molecules, called product
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molecules. With this approach the glycolysis pathway, one of the most ancient and well-
studied pathways, has been modeled and studied. In [12], a beginning in modeling the
first steps of the glycolysis pathway as a DEM has been described. These first steps have
been remodeled and extended with activating and/or inhibiting feedback and reversibility
in [14].

In this report the model of [14] has been extended to the complete glycolysis pathway with
related energy balancing reactions and enzymes. The glycolysis pathway is presented in
Chapter 2 and Chapter 3 presents the ODE model of this pathway, giving some insight
in the model. Chapter 4 introduces the DEM of this pathway, based on a manufacturing
line approach. The DEM is validated by the ODE model. This chapter also contains
analysis of stochastic influence and steady-state behavior. The glycolysis pathway has
been extended with metabolic reactions and an energy-molecule equilibrating enzyme in
Chapter 5, to keep the energy molecules in the desired balance. This system resulted
stable for a very specific relation of input parameters and only in a deterministic setting.
Stabilization of the energy balance system with different feedback regulators is presented
in Chapter 6. Conclusions and recommendations are given in Chapter 7.
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Chapter 2

Glycolysis

In 1860 Louis Pasteur discovered that microorganisms are responsible for fermentation [5].
This led to a new insight and many biological discoveries in the years that followed. The
details of the glycolysis pathway were eventually determined in 1940 by Otto Meyerhof
and Gustav Embden [9]. This pathway is thought to be the archetype of an universal
metabolic pathway. It occurs, with variations, in nearly all organisms and is therefore
intensively studied.

The constant supply of energy that cells need to generate and maintain the biological
order that keeps them alive comes form the energy in food molecules, which thereby
serve as fuel for cells [1]. The major process for converting glucose Gluc (sugar) to energy
is the sequence of reactions known as glycolysis (from the Greek glukus, ”sweet” and
lusis, ”rupture”). A scheme of the glycolysis pathway used in this report is presented in
Figure 2.1. Glycolysis occurs in the cytosol, the liquid found inside cells, without involve-
ment of oxygen. The high energy molecule considered is adenosine triphosphate ATP,
which is a convenient and versatile store of energy used to drive a variety of chemical
reactions in cells. When required, ATP gives up its energy packet and becomes adeno-
sine diphosphate ADP. In glycolysis, for each Gluc molecule, two molecules of ATP are
used to provide energy to drive the early steps (reactions denoted by 1 and 3), but four
molecules of ATP are produced in the later steps by the reactions denoted by 6 and 9.
At the end of glycolysis, there is consequently a net gain of two molecules of ATP for
each broken down Gluc molecule. For a layman in the biological world, to get more in-
formation about the glycolysis pathway and the molecules involved, you can take a look
at [13]. Molecules ATP, ADP, NADH and NAD+ all are energy carriers and from now
on are referred to as ’energy molecules’.

As a starting point the pathway model of [11] has been used. It is argued that applying
results from test-tube measures on the enzymes does not always provide a satisfactory un-
derstanding of what is happening in cells. Since test-tube measures are used, all reactions
are reversible. It is widely thought that most reactions of glycolysis, while technically
reversible, are thermodynamically irreversible, i.e. the ’backwards’ reaction is thermo-
dynamically unfavorable within a cell and therefore of negligible consequence. Reactions
in enzymes PGI and PGM are assumed reversible since the backward flux can not be
neglected.
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Figure 2.1: Glycolysis reaction scheme with metabolic reactions and equilibrating enzyme
ADK.
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Chapter 3

ODE approach

In this chapter a set of ordinary differential equations (ODEs) for the glycolysis pathway
and simulations with this model are presented. It is assumed that all enzymic reactions
in the pathway can be divided into three groups, from [8]:

• Single substrate reactions: A single substrate molecule is reconfigured into a prod-
uct molecule. Specific activity for this reaction is presented in (3.1a) with maximal
reconfiguration rate Vmax, Michaelis Menten constant Km,S and substrate concen-
tration CS.

vS =
VmaxCS

Km,S + CS
(3.1a)

• Bi-substrate reactions: Two different substrate molecules are reconfigured into two
different product molecules. Specific activity is presented in (3.1b) with Michaelis
Menten constants for both substrates and the concentration of both substrates.

v2S =
Vmax · CS1 · CS2(

Km,S1 + CS1

)
·
(

Km,S2 + CS2

) (3.1b)

• Reversible reactions: Single substrate reaction where a substrate molecule is recon-
figured into a product molecule and a product molecule can be reconfigured into a
substrate molecule. Specific activity is presented in (3.1c) with equilibrium constant
Keq.

vrev =
Vmax ·

(
CS − CP

Keq

)
Km,S ·

(
1 + CP

Km,P

)
+ CS

(3.1c)

The ODE model consists of these three enzyme types. In the glycolysis pathway re-
actions with enzymes Ald, TPI, Eno and PDC are single substrate reactions, reactions
with enzymes HK, PFK, GAPDH, PGK, PYK and ADH are bi-substrate reactions and
reactions with enzymes PGI and PGM are considered reversible. With specific activities
defined in (3.1) and the pathway described in Figure 2.1, the set of ODEs belonging to
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this pathway is:

dGluc
dt

= −vHK, (3.2a)

dG6P
dt

= vHK − vPGI, (3.2b)

dF6P
dt

= vPGI − vPFK, (3.2c)

dF1,6bP
dt

= vPFK − vAld, (3.2d)

dDHAP
dt

= vAld − vTPI, (3.2e)

dGAP
dt

= vAld + vTPI − vGAPDH, (3.2f)

d1,3bPG
dt

= vGAPDH − vPGK, (3.2g)

d3PG
dt

= vPGK − vPGM, (3.2h)

d2PG
dt

= vPGM − vEno, (3.2i)

dPEP
dt

= vEno − vPYK, (3.2j)

dPyr
dt

= vPYK − vPDC, (3.2k)

dCO2

dt
= vPDC, (3.2l)

dAcAld
dt

= vPDC − vADH, (3.2m)

dEth
dt

= vADH, (3.2n)

dNADH
dt

= vGAPDH − vADH, (3.2o)

dNAD+

dt
= vADH − vGAPDH, (3.2p)

dATP
dt

= −vHK − vPFK + vPGK + vPYK, (3.2q)

dADP
dt

= vHK + vPFK − vPGK − vPYK. (3.2r)

Scaled parameters for all reactions are presented in Appendix A. These parameters are
derived from [11]. It is assumed that the mass of each enzyme in the system is equal to
1mg. This corresponds to about 10-40 nMol per enzyme, and is therefore much smaller
than the substrate concentrations.
For an infinite number of substrate molecules enzyme PGM reconfigures substrates at
the highest rate, 1.0 mMol per minute, and enzyme PDC reconfigures substrates at the
lowest rate, 0.069 mMol per minute.
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3.1 Simulation results

With the set of ODEs, simulations can be performed depending on the initial concen-
trations. For an initial concentration of 5 mMol for each energy molecule and 3 mMol
for the other concentrations (except CO2 and Eth), simulation results are presented in
Figures 3.1, 3.2 and 3.3. The results show a quick depletion of ADP. This slows down
enzymes PGK and PYK leading to a build-up in concentration of 1,3bPG and PEP.
Figure 3.2 shows an increase of GAP after 20 time units, since the NAD+ concentration
is is zero, this shows the importance of fermentation, it regenerates NAD+ depending on
the GAP concentration to prevent high concentrations of GAP in the cell.

Figure 3.1: ODE simulation results: Energy molecule concentrations

Figure 3.2: ODE simulation results: concentrations of Gluc - 13bPG
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Figure 3.3: ODE simulation results: concentrations of 3PG - Eth

Another transient simulation is with an initial Gluc concentration C Gluc(0) = 6mMol,
the energy molecule initial concentrations are 5mMol and all non-energy molecule initial
concentrations are 0 mMol. Results of this simulation are presented in Figures 3.4,
3.5 and 3.6. It can be seen that CNAD+ depletes since all molecules first react with
enzyme GAP. CADP shows a little increase before depleting since it takes time for the
ADP -consuming enzymes PGK and PYK to bind with their substrate molecules. The
CG6P shows a peak due to the depletion of CGluc, CGAP builds up when CNAD+ depletes
and C13bPG builds up when CADP depletes. CPyr, C3PG and CPEP are also affected by
the depletion of one of the energy molecules, since they are required for their reaction.
Formation of CEth, however, shows no effects of the upstream fluctuations. This can be
explained by the fact that enzyme PDC is very slow compared to the rest of the system.

Figure 3.4: ODE simulation results: Energy molecule concentrations
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Figure 3.5: ODE simulation results: concentrations of Gluc - 13bPG

Figure 3.6: ODE simulation results: concentrations of 3PG - Eth
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Chapter 4

Manufacturing approach

In the manufacturing approach a distinction has been made between two processes; search
process and reconfiguration process. In the search process an enzyme waits a certain
search time τs (4.2) before a substrate molecule binds; this represents the time it takes
for an enzyme and a substrate molecule to collide in the cell. When a substrate is bound,
i.e. begin of the reconfiguration process, the enzyme reconfigures the substrate molecule
into a product molecule. This reconfiguration time is denoted by τr (4.1).

τr =
1

Vmax · V
, (4.1)

with volume of the cell V and maximal reaction rate Vmax,

τs =
Km

CS
· τr, (4.2)

with Michealis-Menten constant Km and substrate concentration CS.

In [14] the first steps of the pathway has been constructed out of multiple processes
and functions. The DEM of the glycolysis pathway is constructed in a similar way and
a representation of the DEM is presented in Figure 4.1. Rectangular blocks represent
buffers with molecules and reaction processes catalyzed by enzymes are denoted by circles.
The lines show the path of the molecules. Intersected lines represent energy molecule
channels. Outgoing channels of enzymes PGK and PYK lead to buffer ATP (dotted
lines). The model has been build from existing processes and functions from [14] and new
processes presented in Appendix B. The complete model with all channels is presented
in Appendix C. A simplification of the DEM representation of the glycolysis pathway is
presented in Figure 4.2. The ADP and ATP buffers are not included in the glycolysis
box since they play an important role in the energy transitions in Chapter 5.
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AcAld ADH
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Figure 4.1: DEM representation of the glycolysis pathway.

4.1 Simulation results

Simulations with a transient system have been performed first to check if the results
match the ODE results. This implies generator G does not generate any new molecules.
An initial concentration of 5 mMol for each energy molecule and 3 mMol for the other
concentrations (except CO2 and Eth) has been taken and parameters used are shown in
Appendix A. The simulation results of the DEM are presented in Figures 4.3, 4.4 and 4.5.
The first figure shows all energy molecule concentrations, while the other figures show the
remaining concentrations. It can be seen that the DEM results match the ODE results
as expected. This concludes that the DEM has been constructed properly.
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G Gluc Glycolysis

ATP

ADP
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Figure 4.2: Compact representation of the glycolysis pathway.

Figure 4.3: DEM simulation results: Energy molecule concentrations
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Figure 4.4: DEM simulation results: concentrations of Gluc - 13bPG

Figure 4.5: DEM simulation results: concentrations of 3PG - Eth
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4.2 Including feedback

It is believed that the main feedback in the glycolysis pathway occurs at enzyme PFK.
This enzyme is inhibited by ATP and activated by ADP. So, the enzyme contains two
different catalytic sites (F6P and ATP) and one regulatory site that can bind either ATP
or ADP. Also enzymes HK and GAPDH are under regulatory feedback. The upstream
energy molecules (ATP for enzymes HK and PFK and NAD+ for enzyme GAPDH )
inhibit the enzyme and downstream energy molecules (ADP for enzymes HK and PFK
and NADH for enzyme GAPDH ) activate the enzyme. All regulatory feedback is assumed
to affect the search process. Further details on regulatory feedback is presented in [14].
If the regulatory site binds with an activating molecule, the search process is accelerated
by a factor of 50. If an inhibiting feedback molecule binds the search process will be
paused until the feedback molecule unbinds. Feedback binding time is assumed to be 1
second. The simulation results of the energy concentrations in the system are presented
in Figure 4.6. ADP and ATP concentrations are almost similar to the results of the
system without feedback, while the concentrations of NADH and NAD+ differ a lot.
This argues that the main feedback occurs in enzyme GAPDH instead of enzyme PFK.
Figure 4.7 presents the first part of the non-energy molecule concentrations. Compared to
the results of the system without feedback in Figure 4.4, the concentrations of GADP and
1,3bPG differ a lot. This is because of the feedback on enzyme GAPDH. The feedback
has very little effect on downstream products, see Figure 4.8.

Figure 4.6: DEM Feedback simulation results: Energy molecule concentrations
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Figure 4.7: DEM Feedback simulation results: concentrations of Gluc - 13bPG

Figure 4.8: DEM Feedback simulation results: concentrations of 3PG - Eth
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4.3 Stochastic behavior

The effect of stochastic behavior on the transient system is researched in this section. The
search process is considered exponentially distributed. Reconfiguration time is assumed
to be Γ distributed with a coefficient of variation (CV) of 3.0. A more detailed description
of the stochastic distributions can be found in [14].

A comparison of the final product of the glycolysis pathway, Eth, with the deterministic
and stochastic model is presented in Figure 4.9. In this figure the deterministic result
(red dotted line) and results of five stochastic simulations are shown (blue lines). Initial
concentrations are; Gluc = 1.0mMol, ATP = 1.0mMol, ADP = 2.0mMol, NADH =
0.5mMol, NAD+ = 0.5mMol and all other initial concentrations are equal to zero. The
stochastic results do not differ much from the deterministic results in this case.

Figure 4.9: Comparison of Eth concentration, deterministic (red dotted) and stochastic
(blue lines) results

In the previous case, stochastic distributions didn’t influence the systems behavior much.
It is expected that with few molecules in the cell the stochastic differences are significant.
Results of transient stochastic simulations are presented in Table 6.1. This table shows the
clearing time of a transient glycolysis pathway without reversible reactions and constant
ATP, ADP, NAD+ and NADH buffers. For the stochastic values, results of 15000
simulations are used. It can be seen that the coefficient of variation decreases if there are
more molecules in the system, this is also presented in Figure 4.10.

The difference between the mean stochastic and deterministic clearance times are very
small, see Figure 4.11. This is not expected comparing this system to a manufacturing
line of 12 machines with buffers in between, described in [10]. Total search time of all
reactions for 1 energy molecule and 1 substrate molecule is 1401 time units. The total
reconfiguration time of all reactions is 0.07 time units. It can be seen that τs � τr and
the reconfiguration time can be neglected for a low number of molecules. Note that the
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Table 4.1: Comparison of deterministic and stochastic simulation results.

[Gluc]0 [Energy]0 Deterministic Stochastic Coefficient Min Max Difference
clearing time clearing time of variation

[µMol] [µMol] [t] [t] [%] [t] [t] [%]

1.00 1.00 1602.47 1630.77 60.55 141.01 11067.57 1.77
5.00 387.31 414.77 52.21 54.42 2156.79 7.09
50.00 141.43 144.29 51.52 19.64 801.91 2.02

2.00 1.00 2036.14 2185.56 51.61 398.25 11021.96 7.34
5.00 474.25 531.99 44.01 117.04 2577.28 12.18
50.00 166.05 185.68 42.22 30.72 753.61 11.82

3.00 1.00 2351.16 2535.32 46.66 523.92 11884.89 7.83
5.00 537.51 600.59 39.62 142.79 2536.64 11.73
50.00 191.85 207.38 38.11 48.61 781.62 8.09

4.00 1.00 2595.53 2792.23 42.59 608.26 10849.14 7.58
5.00 585.81 654.24 36.62 182.58 2305.50 11.68
50.00 210.83 225.75 35.10 60.00 752.52 7.07

5.00 1.00 2844.43 2997.62 40.21 701.22 12977.17 5.39
5.00 633.52 695.95 35.22 210.35 2743.25 9.85
50.00 224.60 237.93 32.75 76.62 816.13 5.93

10.00 1.00 3521.58 3669.51 34.01 1110.09 14867.76 4.20
5.00 771.59 833.07 29.96 306.66 3096.87 7.97
50.00 271.59 283.29 28.46 118.51 859.64 4.31

20.00 1.00 4306.76 4435.24 28.57 1567.51 13757.90 2.98
5.00 929.08 990.87 25.80 450.51 3032.61 6.65
50.00 319.57 328.00 24.61 161.89 902.29 2.64

50.00 1.00 5513.68 5645.86 23.01 2732.11 14414.76 2.40
5.00 1173.54 1227.34 21.46 625.06 3668.97 4.58
50.00 383.15 387.71 20.71 207.81 979.52 1.19

100.00 1.00 6704.99 6811.79 19.03 3497.84 14566.72 1.59
5.00 1412.80 1462.38 17.64 864.88 3629.05 3.51
50.00 435.21 439.51 18.27 266.74 1137.30 0.99

200.00 1.00 8398.90 8507.91 15.42 5526.11 17426.46 1.30
5.00 1753.30 1804.02 14.59 1128.16 3334.54 2.89
50.00 494.89 496.90 16.00 319.16 1106.49 0.41

500.00 1.00 12315.57 12398.00 10.60 9097.76 22326.83 0.67
5.00 2541.51 2594.46 10.40 1906.16 4079.22 2.08
50.00 602.13 603.82 13.37 429.90 1096.91 0.28
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Figure 4.10: Coefficient of variation change by the number of initial Gluc molecules.

Figure 4.11: Difference between mean stochastic and deterministic simulation results.

sum of total search and reconfiguration time are not equal to the deterministic clearing
time presented in Table 6.1 since the calculation is based on a single substrate molecule,
where in the glycolysis system 2 substrate molecules are present after the reaction with
enzyme Ald. For a network of reactions with a single substrate the clearing time τclear
can be calculated by (4.3) and the corresponding coefficient of variation by (4.4). For the
single substrate, single energy molecules case the coefficient of variation is 57%.

τclear =
n∑
i=1

τs,i, (4.3)

CV =

√∑n
i=1 σ

2
s,i

µτclear
. (4.4)

In a line of multiple buffers and machines, e.g. a phone manufacturing line, stochastic
fluctuations in arrival and process times causes the clearance time to go up compared to
a similar line with deterministic times. This is not the case in this network of substrate-
enzyme reactions, as shown in Table 6.1. This difference is caused by the fact that the
enzyme is not represented by a single manufacturing machine. The reconfiguration of
a molecule consists of 2 processes, search and reconfiguration process. Reconfiguration
process can be presented by a machine with a raw process time equal to 1/Vmax. Mean
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search process time however, is variable and inversely proportional with the buffer content,
see (4.2). Therefore this system can not be compared to a line of manufacturing systems
and the difference between deterministic and stochastic clearance times is very small.

4.4 Steady-state analysis

The discrete event model from Figure 4.1 is a transient model. This model stops working
when ATP, ADP, NAD+ or NADH has been depleted or all Gluc molecules are recon-
figured into Eth molecules. For analyzing a steady-state simulation the DEM has to be
extended with an influx of Gluc molecules. Also, the ADP concentration has to be replen-
ished since every conversion from Gluc to Eth produces 2 ATP molecules and requires
2 ADP molecules. The influx has been modeled by a simple generator G that produces
new Gluc molecules with inter-arrival time ta. ADP molecules have to be regenerated
to prevent depletion. This happens outside the glycolysis-pathway and therefore a con-
version process C has been introduced. This process represents conversion from ATP to
ADP with conversion time tc.

An important notion for this systems is stability. A manufacturing system is called
stable if all buffer levels in the system remain bounded. This definition is commonly used
for manufacturing systems, see [4]. Two ingredients are necessary to achieve a stable
manufacturing system:

• The system characteristics should meet the product inflow (i.e. is it physically
possible to process all incoming products?).

• The production policy must stabilize the system.

For example, a manufacturing system that has enough capacity to process all incoming
products, but has a production policy that says to process only all odd numbered products
is not stable. On the other hand, a manufacturing system with a production policy that
says that all incoming products are to be processed as fast as possible, but with an arrival
rate of products that outreaches the production capacity is also unstable.
In case of the glycolysis system, without ADP or a larger Gluc influx than the enzyme
capacity the system becomes unstable, i.e. substrate molecules are piling up. When the
system is stable, all Gluc molecules can be converted into Eth molecules.

To calculate throughput δ of the system, the number of Eth molecules produced are
counted in a time interval. To obtain better insight about stability, half of the overall
average throughput is scaled to mean input 1

ta
and dimensionless variable ∆ in (4.5) is

introduced. Half of the average throughput is used since for every Gluc molecule entering
the system, two Eth molecules exit the system. If ∆ = 1 the input is equal to the
output, i.e. all incoming Gluc molecules will be reconfigured into Eth molecules. In a
stable system no buffers blow up, and the outflux is twice the influx. For measurement
purposes ∆ ≈ 1 is assumed to be a stable system.

∆ =
0.5δ
1/ta

= 0.5δ · ta. (4.5)

Initial concentrations of the steady-state simulations are 0.5 mMol for ATP, ADP, NAD+

or NADH and all other concentrations are 0 mMol. In the simulations no feedback is
used. The stability boundary is presented in Figure 4.12.
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Figure 4.12: Stability boundary.

In the stability boundary figure four regimes can be distinguished:

• Stable system. For each Gluc molecule entering the system and exiting as Eth
molecule, two ATP molecules are reconfigured into ADP molecules and four ADP
molecules are reconfigured into ATP molecules. Therefore, ADP regeneration must
be twice as fast as the arrival rate to fulfill the need for ADP. tc/ta = 0.5, ∆ = 1.

• Overloaded system due to a high demand for ATP. If the regeneration is faster than
twice the arrival rate, the ATP buffer is slowly drained until it is empty and the
Gluc buffer blows up, see Figure 4.13. This also occurs when glucose influx exceeds
the enzymic capacity. Enzyme PFK is the bottleneck in this system. If the influx
is beyond this enzymes capacity, buffer ATP will be depleted by enzyme HK. So
for tc/ta < 0.5 and ta > tenz, ∆ = 0.

• Overloaded system due to low demand for ATP. If the regeneration rate is lower
than twice the arrival rate, the ADP buffer depletes and buffer 13BPG grows, see
Figure 4.14. There will be a throughput of Eth molecules, but it depends on the
conversion rate. Therefore, ∆ < 1 for tc/ta > 0.5. If there is no conversion or a
very large conversion time and the glucose influx is within the enzyme capacity ∆
approaches 0.5.
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Figure 4.13: ta = 0.05, tc = 0.01: ATP demand too high or Gluc transport too low for
stable system.

Figure 4.14: ta = 0.05, tc = 0.1: ATP demand too low or Gluc transport too high for
stable system.
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4.5 Molecule concentration analysis

The stochastic behavior of a transient system and the stability boundary of the steady-
state system have been investigated in the previous sections. To get more informa-
tion about this system and the stochastic influence, the mean concentration levels of all
molecules and the fluctuations of these levels are analyzed in this section.

Initial parameters of all simulations are presented in (4.6) and all initial non-energy
concentrations are zero.

CATP = 1000µMol, (4.6a)
CADP = 1000µMol, (4.6b)

CNADH = 500µMol, (4.6c)
CNAD+ = 500µMol, (4.6d)

λG = 12.5µMol/time, (4.6e)
µC = 25µMol/time. (4.6f)

For the glycolysis pathway without reversibility and feedback, mean buffer contents and
coefficient of variation of the buffers are presented in Figure 4.15. Figure 4.15a shows the
mean value of the energy molecules concentration and the coefficient of variation (CV) of
these buffer levels for simulations with the deterministic system. Figure 4.15b presents
the mean and CV for simulations with stochastic distributions and Figure 4.15c shows
the difference between the deterministic and stochastic results for all buffer levels. The
mean buffer levels of the non-energy molecules are not shown since these values are very
low (0,5 - 20 µMol), the mean buffer levels of the stochastic and deterministic system are
almost similar and compared to the energy molecules the variation can be neglected.
A significant detail in the comparison between results of the system with deterministic
and stochastic distributions is the difference in CV for the energy molecule buffer levels.
The CV for these levels is 30-90 times higher in the stochastic system. This large fluctu-
ation does not have an effect on the non-energy molecule buffer levels.

Implementing reversible reactions in enzymes PGI and PGM decreases the fluctuation in
the ATP and ADP buffer levels for the stochastic system, as can be seen in Figure 4.16.
Furthermore, there are no significant changes.

With downstream inhibiting and upstream activating feedback from the energy molecules
on enzymes HK, PFK and GAPDH, the coefficient of variation for the ATP and ADP
molecules goes up, see Figure 4.17. This drastic increase in CV is not amplified by
the stochastic distributions. Note that the deterministic results with feedback are not
completely deterministic, as the model for the enzyme with feedback consists of some
stochastic distributions, explained in [14].
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(a) Deterministic (b) Stochastic

(c) Difference

Figure 4.15: Deterministic and stochastic results for the glycolysis system without re-
versibility, feedback and λ = 0.8, µC = 0.4.
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(a) Deterministic (b) Stochastic

(c) Difference

Figure 4.16: Deterministic and stochastic results for the glycolysis system with reversibil-
ity and λ = 0.8, µC = 0.4.
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(a) Deterministic (b) Stochastic

(c) Difference

Figure 4.17: Deterministic and stochastic results for the glycolysis system with reversibil-
ity, feedback and λ = 0.8, µC = 0.4.
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Chapter 5

Adenylate transitions

In Chapter 4 the glycolysis pathway has been modeled as a DEM and a convertor has
been added to analyze steady-state behavior. In this chapter the convertor is replaced
with energy transitions by energy molecule equilibrating enzyme ADK and metabolic
reactions, as can be seen by the intersected boxes in Figure 2.1. These energy tran-
sitions should function the same as the simple convertor. For convenience the term
”adenylate” is slightly abused by restricting its meaning to adenosine 5-mono-, di- and
triphosphate—AMP, ADP and ATP, respectively. Adenylate concentrations in a typical
cell are: CATP = 10 ·CADP = 100 ·CAMP. In the glycolysis pathway the overall adenylate
transition is:

2ADP
glycolysis−−−−−−→ 2ATP, (5.1)

meaning that for a steady-state simulation the ADP buffer will deplete and the ATP
buffer will fill up. Metabolism, the set of chemical reactions that occurs in living or-
ganisms to maintain life, requires ATP. Some metabolic reactions, especially involving
resting functions like the Na+/k+ pump, reduce ATP to ADP, and others, especially
macromolecular synthesis, degrade ATP to AMP. Therefore, the relative fractions of
these two reactions, ATP → ADP and ATP → ADP, vary depending on how active the
cell is, especially how many new macromolecules it is synthesizing. The relation between
the products of metabolism, ADP and AMP, depends on the state of the cell, this can be
from resting to active. As a start, the metabolism process is introduced as in an active
or in a resting state:

ATP metabolism−−−−−−−→
active

0.4ADP + 0.6AMP. (5.2)

ATP metabolism−−−−−−−→
rest

0.8ADP + 0.2AMP. (5.3)

Since conversion from ATP to ADP or ATP to AMP are different processes, two drains
with different rates are used in the model:

ATP
µ1−→ ADP. (5.4)

ATP
µ2−→ AMP. (5.5)
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Table 5.1: Adenylate rates.

Process Rate
Glycolysis 1.00
Metabolism [ATP→ ADP] 1.00
Metabolism [ATP→ AMP] 1.33
ADK 200.00

These rates are linked to each other by µ2 = 1.5µ1 and µ2 = 0.25µ1 to represent an active
or a resting cell, respectively. When discussing stability in Section 5.2.4, these relations
are used as boundaries for a reasonable metabolism rate.

Another important process concerning the cellular energy homeostasis is enzyme adeny-
late kinase ADK that catalyzes a reaction between the adenylate molecules. The reaction
catalyzed by this enzyme is:

ATP + AMP � 2ADP. (5.6)

This reaction is sufficiently fast in cells to maintain the reactants at their equilibrium
concentrations, and therefore plays an important role in cellular energy stabilization.
Another important property of this reaction is that ADK is recognized as a sensitive
reporter of the cellular energy state, translating small changes in the balance between
ATP and ADP into relatively large changes in AMP concentration. This enables enzymes
and metabolic sensors that are affected by AMP to respond with higher sensitivity and
fidelity to stress signals [6].

Forward and backward reaction rates are approximately equal in the cellular environment,
and always very fast, so:

CATP · CAMP ≈ C2
ADP. (5.7)

A schematic overview of the adenylate transitions is presented in Figure 5.1. The rates of
all processes, normalized to glycolysis are shown in Table 5.1. The reaction rate of ADK
is much faster and the energy molecules will therefore be brought into an equilibrium
according to 5.7 after each change in concentrations caused by metabolism or glycolysis.

ATP ADP AMP
met1

met2

glyc

ADK ADK

Figure 5.1: Adenylate transitions.
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5.1 Energy charge

To have a measure of the content of adenylate molecules, Atkinson introduced the term
energy charge [2]. Energy charge ϕ is used as a dimensionless value for the energy balance
in the cell, depending on the relation between adenylate concentrations, see (5.8).

ϕ =
[ATP] + 0.5[ADP]

[AMP] + [ADP] + [ATP]
. (5.8)

The energy charge is something that the cell regulates homeostatically. Precisely why
is unclear. Energy charge is usually maintained quite close to 1 (typical measures are
between 0.95 and 0.98). In our simulations energy charge ϕ has been tracked, if it goes
down (below 0.85) in a stable system we’re leaving physiologically reasonable ground.
This indicates that either the model is wrong or it’s predicting pathology.

The DEM representation of the glycolysis model with the adenylate transitions is pre-
sented in Figure 5.2. An abstraction of the glycolysis pathway is presented by the thick
box named Glycolysis. The ADP and ATP buffers are not included in this box since
they play an important role in the energy balance. The energy charge is calculated in
process ϕ, represented by the dotted circle. This process tracks the concentrations of the
adenylate molecules, represented by the dotted lines. From now on, this system will be
called the ’energy balance’ system.

Met2 Met1 G Gluc Glycolysis

ATP

ADP

AMP

Eth ADK ϕ

Figure 5.2: DEM representation of the glycolysis pathway with adenylate transitions and
energy charge ϕ.

5.1.0.1 Cell death

If the energy charge drops below a certain level, the cell can’t sustain the membrane and
the cell dies [3]. In this report it is assumed that if the energy charge drops below 0.70 the
cell dies instantaneously. We are focussing on cell death since cells die for no apparent
reason and that this might be caused by fluctuations of the energy charge in an otherwise
stable system. This hypothesis will be investigated in Chapter 6.
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5.2 Stability

Addition of the metabolic reactions and equilibrating enzyme ADK to the glycolysis
pathway is thought to stabilize the energy balance. More specifically, here the system is
assumed to be stable if there is no buildup in the buffers and the mean energy charge is
close to unity (about 0.95). If the energy charge drops below 0.70 the system will also
be labeled unstable. The system depends on three variables, Gluc influx λ, metabolic
reaction rate from ATP to ADP µ1 and metabolic reaction rate from ATP to ADP
µ2. Simulations with the system varying these input variables resulted in some different
regions, presented and explained in the following subsections.

5.2.1 Unstable, influx rate too high

There are two cases where the system becomes unstable if the Gluc influx rate is too
high. First, if the influx exceeds the enzymic capacity. This results in a build up of
molecules in the buffer since not all molecules can be handled. Second, if the ADP buffer
is drained by glycolysis and the metabolic reactions and enzyme ADK can’t stabilize
it, eventually buffer GAP blows up, see Figure 5.3. What happens here is that enzyme
PYK is inhibited by the lack of ADP. Enzymes downstream of the pathway work with
the same rate as PYK, which results in depletion of NAD+. This depletion slows down
enzyme GAPDH, resulting in GAP buildup.

Figure 5.3: Buffer contents of GAP , PEP , ADP, NADH and NAD+.

5.2.2 Unstable, metabolic ATP demand too high

When the metabolic reactions require a lot of ATP molecules and both glycolysis and
enzyme ADK are insufficient to keep the ATP concentration at a constant level, the
system becomes unstable. The Gluc buffer eventually blows up since ATP is required for
the first reaction. Simulation results of the unstable system due to a exceeding metabolic
demand are presented in Figure 5.4. This figure shows the adenylate concentrations in
the upper figure, energy charge in the middle figure and the amount of molecules in the
system, labeled as work in progress (WIP). It can be seen that the ATP concentration
constantly decreases, resulting in an increase in AMP and decrease of the energy charge.
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When the ATP buffer has been depleted, the system can’t reconfigure any incoming
molecules and the WIP increases.

Figure 5.4: Unstable system, metabolic reactions too fast, λ = 0.02, µ1 = 0.03 and µ2 =
0.03.

5.2.3 Unstable, insufficient metabolic ATP demand

If the metabolic ATP demand is insufficient to handle the ATP increase by glycolysis,
the system blows up in the AcAld buffer, as presented in Figure 5.3. Simulation results
are presented in Figure 5.5. The energy charge stays very close to 1, since the ADP and
AMP concentrations are almost zero. Enzyme ADK can’t stabilize this system either,
since AMP is required to diminish the ATP concentration.

5.2.4 Stable

For a small region of input variables the deterministic system is stable, simulation results
of a stable system are presented in Figure 5.6. It can be seen that after an initial phase,
the adenylate concentrations, energy charge and WIP remain at a constant level. For the
metabolic reaction rates to be physiologically reasonable, these rates must be somewhere
between an active and resting cell, as expressed in (5.2) and (5.3). The relation between
µ1 and µ2 is shown in (5.9), and this area is presented in Figure 5.7. The upper edge
represents an active cell and the lower edge represents a resting cell.

0.25µ1 ≤ µ2 ≤ 1.5µ1 (5.9)

In order to find the stability region the adenylate concentrations must be investigated.
The rates in which the adenylate concentrations change depends on input rate λ and
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Figure 5.5: Unstable system, metabolic reactions too slow, λ = 0.02, µ1 = 0.00 and µ2

= 0.00.

Figure 5.6: Stable system, λ = 0.02, µ1 = 0.02 and µ2 = 0.01.

metabolic reaction rates µ1 and µ2:

rATP = 2λ− µ1 − µ2, (5.10a)
rADP = −2λ+ µ1, (5.10b)
rAMP = µ2, (5.10c)

where rx denotes the rate of concentration change of molecule x. Enzyme ADK keeps the
adenylate concentrations in equilibrium, see (5.7). ADK stabilizes the system if the sum
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Figure 5.7: Area of reasonable metabolic input rates.

of the rates of ATP and AMP are opposite to the rate of ADP. Also the rates of ATP
and AMP must be similar to prevent a build-up in the system:

rATP + rAMP = −rADP, (5.11a)
rATP = rAMP. (5.11b)

Combining (5.10) and (5.11) shows that the system can be stable if the input variables
satisfy (5.12).

2λ− µ1 − 2µ2 = 0. (5.12)
In all cases enzyme ADK reconfigures ATP and AMP into ADP. The backward ADK
reaction is not possible since it requires an diminishing AMP concentration, what is not
possible in the current setup.
Another restriction on the stability of the system is the maximal rate in which the in-
coming molecules can be handled. The system is assumed to be stable if all incoming
molecules can be handled, e.g. no accumulating buffer levels, and if the mean energy
charge level stays above 0.85. Mean energy charge decreases with increasing λ, see Fig-
ure 5.8. If λ exceeds 0.055, the overall energy charge drops below 0.85 and the system is
unstable. Mean ϕ for the stable system is about 0.89, and is close to 0.95 in actual cells.
The total set of input values that result in a stable system is presented in Figure 5.9.
The red section represent the values that are in the reasonable metabolic area. It can be
seen that this is a very specific region.

Figure 5.8: Mean energy charge and CV versus input rate λ.
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Figure 5.9: Input parameter combinations resulting in a stable deterministic system.

5.2.5 Unstable, stochastic influence

It is clear that the energy balance system can be stable with deterministic values. If
stochastic distributions are used the system becomes unstable, independent of the input
variables. Simulation results of the system with stochastic distributions are presented in
Figure 5.10. Similar input variable values as in Figure 5.7 have been used. The stable
system becomes unstable when stochastic distributions are used instead of deterministic
values. The time it takes for the energy charge in simulations with the stochastic system
to drop below 0.70 is presented in Figure 5.11. shows the time it takes for the system
to become unstable. This figure contains results of 10000 simulations and shows that in
95% of the simulations, the system becomes unstable within 2 · 104 time units. Looking
at cell environment, nothing is exactly deterministic and this would result in an unstable
energy balance when only the glycolysis pathway, metabolic reactions and enzyme ADK
are considered. In Chapter 6 downstream regulation has been implemented to stabilize
this system.

5.3 Conclusion

The glycolysis pathway has been extended with metabolic reactions, reconfiguring ATP
into ADP and AMP and adenylate equilibrating enzyme ADK in order to stabilize the
energy molecule concentrations. It has been showed that this deterministic system got
a very small region of input variable values resulting in a stable system. If stochas-
tic distributions are used the system always results unstable, independent of the input
variables.
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Figure 5.10: Unstable stochastic system, λ = 0.02, µ1 = 0.02 and µ2 = 0.01.

Figure 5.11: Time it takes for the stochastic system to become unstable.
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Chapter 6

Energy balance regulation

The energy balance system consisting of the glycolysis pathway, metabolic reactions and
enzyme ADK can not be stabilized by the input variables when using stochastic distri-
butions. A stable system could be obtained by adding more reactions as shown in [11],
or by regulating the Gluc influx. This chapter presents the latter approach in several ways.

In order to maintain the energy charge near the desired level, the cell regulates the
Gluc influx by putting more or less glucose receptors on the membrane. The receptors
have got a certain death rate, therefore the influx of Gluc can be decreased or increased
depending on the rate glucose receptors are placed. In this chapter, two feedback regu-
lators have been implemented in the model. The robustness of the regulator, stochastic
influences and adding a time delay have been investigated. Section 6.1 presents a regula-
tor feedback based on the energy charge and Section 6.3 presents feedback based on the
ATP/AMP ratio. In Section 6.4, regulation according to (5.12) is presented and the first
steps towards a continuous regulator are taken in Section 6.5.

6.1 Regulation by energy charge

In order to keep the energy charge at a constant level, the cell asks for more Gluc molecules
when energy charge φ is low. When more Gluc molecules enter the glycolysis pathway,
more ADP molecules are reconfigured into ATP molecules and the energy charge in-
creases. However, in the first steps of the glycolysis pathway ATP is reconfigured into
ADP and this means an extra drop in the energy charge before it increases. If ϕ exceeds
a certain level the Gluc influx is decreased, resulting in a lower energy charge due to
a lower ATP production. It is not exactly clear how the energy charge is measured in
the cell and how this leads to a change in influx. To examine if a regulation based on ϕ
stabilizes the system, the energy charge is calculated in a separate process, see Figure 6.1.
The red dotted lines represent data going to process ϕ that calculates the energy charge.
ϕ is connected to Gluc influx λ by the blue dotted channel.

As a start, the regulation scheme used is a three-way switch depending on the energy
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Figure 6.1: DEM representation with regulation based on ϕ

charge, presented in (6.2) with λ0 the initial influx rate. A graphical representation of
this regulator is presented in Figure 6.2.

λ =

 1.5 · λ0 if ϕ < 0.90
λ0 if 0.90 ≤ ϕ ≤ 0.98

0.25 · λ0 if ϕ > 0.98
(6.1)

ϕ

λ

0.90 0.98

25%

100%

150%

Figure 6.2: Gluc influx rate λ depending on the energy charge level.

This link results in a stable system for input variables outside the stable area presented in
Section 5.2.4, see Figure 6.3. Simulations results of a deterministic system with λ = 0.025,
µ1 = 0.015, µ2 = 0.017 are presented, which is a little outside the stable region presented
in Figure 5.9. Average energy charge is 0.96. The lower figure shows the influx over time,
it can be seen that the influx rate has been decreased for a short period with periodic
intervals, lowering the energy charge. Due to stochastic distributions in the system, the
energy charge fluctuates much more, see Figure 6.4. ϕ even reaches a value of 0.61 what
in the cell means instant death. However, ϕ of the stochastic system will not go down
to 0.60 or lower in contrast to the system without regulation. So essentially the feedback
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regulator stabilizes the system but due to the energy charge constraint of 0.70 the system
will be labeled unstable. These simulations also show that even if a deterministic system
is very stable, stochastic distributions in the system can cause a dramatic decrease of the
energy charge.

Figure 6.3: Deterministic simulation results with λ = 0.025, µ1 = 0.015, µ2 = 0.017.
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Figure 6.4: Stochastic simulation results with λ = 0.025, µ1 = 0.015, µ2 = 0.017.
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6.1.1 Robustness

The robustness of the regulator. i.e. the ability of keeping a stable system, has been
investigated by varying the Gluc influx rate λ, and metabolism rates M 1 and M 2 (con-
version of ATP to respectively ADP and AMP). The deterministic system has been used,
and the system is assumed to be stable if there is no build-up in the buffers and the mean
energy charge is higher than 0.85. The red dots represent the set of parameters that are
reasonable values for the metabolic reactions. It can be seen that the system with regu-
lation is stable for a much bigger area than the system without regulation, as expected.

Figure 6.5: Robustness regulator, time = 1.000.000.

Figure 6.6 shows the difference between simulations of the stochastic system with parame-
ters in the deterministic stable region (λ = 0.025, µ1 = 0.02 and µ2 = 0.015), represented
by the blue line, and stochastic simulations with parameters outside the deterministic
stable region (λ = 0.025, µ1 = 0.03 and µ2 = 0.02), represented by the red line. Each line
shows the time it takes for the energy charge to reach 0.7 over 1000 simulations. It can
be seen that the difference between cell death of the system with parameters on the de-
terministic stable region and the system with parameters on the edge of the deterministic
regulated system differ a lot. Mean time for cell death is 45 times longer for the system
with parameters on the deterministic stable region. Mean energy charge of the regulated
system, with varying influx rate, is presented in Figure 6.7. With increasing influx rate,
average energy charge increases. The average energy charge of the stable system is 0.94,
what is very close to the desired level.
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Figure 6.6: Death rate of the cell for a system with parameters inside the stable region
and on the edge of the regulated stable region.

Figure 6.7: Mean energy charge and CV versus input rate λ.
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6.1.2 Time delay

Feedback from energy charge ϕ to Gluc influx λ in the DEM occurs instantaneously. In
the cell, there is a delay between reaching a threshold value and the actual change of
Gluc influx since it takes some time for the glucose receptors to reach the membrane.
Therefore, a time delay denoted by δ has been introduced in the model. This delay has
been modeled between the time ϕ reaches a threshold value and an actual change in
influx. This time delay does result in a significant difference for the deterministic system.
Figure 6.8 shows the influence of feedback on the death rate of the cell for the stochastic
system. It is assumed that the cell dies when ϕ ≤ 0.7. The blue line shows the system
with feedback without a time delay in the feedback. Feedback with a time delay of 100
is presented by the red line. Results of feedback with a time delay of 1000 time units
is presented by the magenta line. It can be seen that implementing a time delay in the
feedback results in a faster death rate, as expected. Cell death of the system without
feedback is represented by the green line. The distributions of the system with feedback
and system without feedback are also different.

Figure 6.8: Death rate of the cell with and without feedback based on the energy charge.

Results of tracking the number of times the energy charge reaches a certain threshold
and the percentage of total time under these thresholds are presented in Table 6.1. The
simulation time is 1 ·106 time units. Two cases are presented, one with parameters inside
the deterministic stable region and the other outside this region. In the latter case the
energy charge reaches the thresholds more and spends more time under these thresholds.
In both cases, implementing a time delay has a negative effect on the energy charge
and in all cases the energy charge never stays above 0.60. Figure 6.9 gives a graphical
representation of the time spent under the thresholds, depending on the time delay.
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Table 6.1: Simulation results of energy charge regulation.

δ < 0.9 < 0.9 < 0.8 < 0.8 < 0.7 < 0.7 < 0.6
[time] [%] [number] [%] [number] [%] [number] [%]

λ = 0.025, µ1 = 0.015, µ2 = 0.017
0 22.23 302867 0.84 18233 0.04 832 -

100 24.11 298289 1.23 23877 0.10 1762 -
500 33.66 226253 4.71 67843 0.31 6793 -
1000 41.83 139150 15.39 104147 2.62 39674 -

λ = 0.024, µ1 = 0.015, µ2 = 0.017
0 26.33 325714 1.15 23607 0.09 1413 -

100 28.14 316322 1.51 30663 0.10 1789 -
500 36.83 237070 5.48 75375 0.43 8046 -
1000 44.68 147243 16.85 107300 3.16 44083 -

Figure 6.9: Time spent under a certain energy charge level, λ = 0.024 is represented by
the dotted lines and λ = 0.025 by the solid lines.
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6.2 Molecule concentration analysis

The mean buffer levels and fluctuations in these levels of the energy balance system reg-
ulated with the energy-charge dependent regulator,are presented in this section. The
approach is similar as in Section 4.5 and simulations have been performed with different
input parameters. Initial concentrations for the simulations are:
CATP(0) = 100µMol
CADP(0) = 10µMol
CNADH(0) = 10µMol
CNAD+(0) = 10µMol
λ, µ1 and µ2 vary.

Simulation results of the system with input parameters inside the feasible determinis-
tic stable region from Figure 5.9 are presented in Figure 6.10. The input parameters are:
λ = 0.02, µ1 = 0.02 and µ2 = 0.01. Figure 6.10a shows the mean value of the energy
molecules concentration and the coefficient of variation (CV) of these buffer levels for
simulations with the deterministic system. Figure 4.16b presents the mean and CV for
simulations with stochastic distributions and Figure 6.10c shows the difference between
the deterministic and stochastic results for all buffer levels.
It can be seen that the CV of ATP is low compared to the other energy molecules, this
can be explained by the fact that there are a lot more ATP molecules present in the
system and a similar fluctuation in all energy molecules would result in a lower CV for
ATP. Furthermore, the comparison between results of simulations with the deterministic
and stochastic system show a big increase in CV for the energy molecule buffer levels,
similar to the results of the glycolysis pathway shown in Section 4.5.

Figure 6.11 presents simulation results of the system with input parameters outside the
deterministic stable region; λ = 0.025, µ1 = 0.015 and µ2 = 0.017. It can be seen that the
difference between stochastic and deterministic results are not that big as for the system
with parameters inside the stable region. Furthermore, the difference between the system
outside and inside the stable region is that the CV for the energy charge molecule levels
is twice as high in the deterministic case.

Another comparison has been performed in order to determine whether the variance in the
buffer levels depends on the dynamic state of the system. The results of simulations with
a system with active metabolism and a system which represents a resting cell have been
compared and these results show no significant difference. Therefore, it is not possible
to determine the dynamic state of the system by looking at the mean buffer levels and
fluctuations in these levels.
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(a) Deterministic (b) Stochastic

(c) Difference

Figure 6.10: Deterministic and stochastic results for a system inside the deterministic
stable region; λ = 0.02, µ1 = 0.02 and µ2 = 0.01.
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(a) Deterministic (b) Stochastic

(c) Difference

Figure 6.11: Deterministic and stochastic results for a system outside the deterministic
stable region; λ = 0.025, µ1 = 0.015 and µ2 = 0.017.
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6.3 Regulation by AMPK

Regulation of the system can be done by tracking the energy charge and depending on
the energy charge level altering the glucose influx, as shown in Section 6.1, however it
is not clear how the energy charge level is measured in the cell and what causes the
glycolysis rate to change. Another regulation approach has been argued in [7]. It is
argued that the AMP -activated protein kinase AMPK works as a kind of ”Master-switch”
between anabolism (metabolic reactions) and catabolism (glycolysis), since all living cells
must maintain a high ratio between ATP and ADP. Enzyme AMPK is activated by a
decreasing ATP concentration in combination with an increasing AMP concentration.
It is also argued that, in mammalian cells, AMPK is involved in upregulating the Gluc
uptake. This enzyme acts similar as monitoring the energy charge and giving feedback to
the Gluc influx, except it does not depend on the ADP concentration, but on the cellular
ATP/AMP ratio denoted by ϑ. The regulation scheme for regulation by AMPK is as
follows:

λ =

 1.5 · λ0 if ϑ < 90
λ0 if 90 ≤ ϑ ≤ 105

0.25 · λ0 if ϑ > 105
(6.2)

Met2 Met1 G Gluc Glycolysis

ATP

ADP

AMP

Eth ADK AMPK

Figure 6.12: DEM representation of the system with AMPK regulation

The DEM representation of the system with AMPK regulation is presented in Figure 6.12,
with the red lines representing the regulator and the blue dotted line represents the feed-
back. Figure 6.13 shows results of a simulation with the deterministic system regulated by
the ATP/AMP ratio. Energy charge ϕ has also been tracked to compare this regulated
system with the energy charge regulated system. It can be seen that the system is stable
and the mean value of the energy charge is 0.95. The brief drops in ϑ, and corresponding
increase in influx rate, occur when metabolism reconfigures an ATP molecule into an
AMP molecule and enzyme ADK quickly restores the energy balance. There is a lot of
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fluctuation in the ATP/AMP ratio and corresponding change in influx rates since there
are few AMP molecules present and a change in this concentration has a big impact on
the ratio. Results of the system with stochastic distributions are presented in Figure 6.14.
Similar to the energy charge regulated system, a lot more fluctuations occur.

Figure 6.13: Results of simulations with ATP/ADP ratio regulated deterministic system.

6.3.1 Robustness

The robustness of the regulator has been investigated by varying the Gluc influx rate λ,
and metabolism rates M 1 and M 2. The region of input variable values that result in
a stable system is presented in Figure 6.15. Compared to the energy charge regulated
system in Figure 6.5, the regions of parameters which result in a stable system are almost
similar.

Mean energy charge of the AMPK regulated system, with varying influx rate, is presented
in Figure 6.16. The average energy charge of the stable system is 0.95, what is exactly
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Figure 6.14: Results of simulations with ATP/ADP ratio regulated stochastic system.

the desired level.
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Figure 6.15: Robustness regulator, time = 1.000.000.

Figure 6.16: Mean energy charge and CV versus input rate λ.
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6.3.2 Time delay

In the cellular environment it takes time between reaching a feedback threshold value and
actual change in influx rate, as explained in Section 6.1.2. To compare the ATP/ADP
ratio regulated system with the system regulated by the energy charge, similar time
delays have been used, and the energy charge has been tracked. Figure 6.17 shows the
time it takes before the energy charge reaches 0.7 for the system feedback based on the
ATP/AMP ratio in solid lines and the system with feedback based on the energy charge
in dotted lines. It can be seen that on average the feedback improves the time it takes
for the energy charge to reach 0.7, but not as much as the feedback based on the energy
charge.

Figure 6.17: Death rate of the cell with and without feedback based on the ATP/AMP
ratio (solid lines) compared to feedback based on the energy charge (dotted lines).

Table 6.2 and Figure 6.18 present results of simulations with counting the number and
time spent under certain thresholds, as is done with the energy charge regulated system.
Compared to these results in Table 6.1, it can be seen that the drops in energy charge
below 0.90 are less frequent but more serious as the number of times ϕ drops below 0.70
is much more.
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Table 6.2: Simulation results of AMPK regulation.

δ < 0.9 < 0.9 < 0.8 < 0.8 < 0.7 < 0.7 < 0.6
[time] [%] [number] [%] [number] [%] [number] [%]

λ = 0.025, µ1 = 0.015, µ2 = 0.017
0 18.34 280397 1.39 21836 0.11 2061 -

100 21.24 273555 1.81 27408 0.16 2802 -
500 34.25 195622 6.03 77265 0.56 10205 -
1000 42.63 122057 17.77 104843 3.51 48480 -

λ = 0.024, µ1 = 0.015, µ2 = 0.017
0 20.85 293921 1.76 26458 0.14 2565 -

100 23.84 285821 2.26 32390 0.23 3757 -
500 36.99 200922 7.08 84400 0.74 12350 -
1000 45.72 124653 19.76 111558 4.28 54044 -

Figure 6.18: Time spent under a certain energy charge level, λ = 0.024 is represented by
the dotted lines and λ = 0.025 by the solid lines.
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6.4 Regulation: 2λ − µ1 − 2µ2 = 0

Another way to regulate the system, purely theoretical, is to adjust the Gluc influx rate
λ to a value that satisfies the equation for a stable deterministic system (5.12). This has
been done by setting the influx rate according to the metabolic rates, see (6.3).

λ =
µ1 + 2µ2

2
. (6.3)

A time delay δ between the actual change of the influx parameter has also been imple-
mented. Without a time delay the deterministic system is stable if the influx does not
exceed 0.055. According to (5.12), this does not occur when:

µ1 + 2µ2 ≤ 1.1 (6.4)

Results of a simulation with the deterministic system with a time delay of 1500 time units
is presented in Figure 6.19. Initial influx rate is zero and metabolic rates are respectively
µ1 = 0.02 and µ2 = 0.02. It can be seen that initially the energy charge decreases. When
the generator receives the systems ideal influx rate, it takes some time for the molecules
to get through the first part of the glycolysis pathway and convert ADP to ATP. At that
time the system is stable and the adenylate concentrations and energy charge will stay
at the same level.

Figure 6.19: δ = 1500, µ1 = 0.02, µ2 = 0.02, λ0 = 0.0, Deterministic system

In order to get the energy charge back to the desired level, regulation by energy charge is
added to the system. Figure 6.20 presents the DEM of the system, process L calculates
desired influx rate and sends this to generator G and energy charge process φ gives
feedback to make a three-way switch of the generator.

In Figure 6.21 simulation results of this system are presented. The time delay of L and
the time delay of the energy charge regulator are assumed similar. Metabolic rates are
µ1 = 0.01 and µ2 = 0.01, there is no initial influx and the time delay is 500. After 500
time units, the influx rate is set. Energy charge stabilizes at 750 time units. The influx
increases after 900 time units since the energy charge dropped below 0.90 after 400 time
units. This brings the energy charge back to the desired level and it stays there.
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ATP
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Figure 6.20: DEM representation

Figure 6.21: δ = 500, µ1 = 0.01, µ2 = 0.01, λ0 = 0.0, Deterministic system

This system always gives the best possible result with the three-way switch regulator.
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6.5 Continuous regulator

In order to increase the Gluc influx, glucose receptors are placed in the membrane and
glucose influx is lowered by internalizing receptors. In the previous sections we assumed
a 3-way switch for the Gluc inlfuc rate. Actually, the rate of placing new receptors on the
membrane depends on the energy charge level and the receptors internalize at a constant
rate, see Figure 6.23. At an energy charge level of 0.95 the placement and internalizing
rates are equal, referring to a constant influx. If ϕ exceeds this threshold, more receptors
are internalized than placed and the influx decreases. Below the equilibrium, more recep-
tors are placed than internalized and the influx increases. If the energy charge reaches
0.70, the cell starts to die and therefore no new receptors are placed.

ϕ

rate

0.7 0.95

Figure 6.22: Glycolysis receptor decay rate (red) and placement rate (blue).

A first approximation to this continuous glucose influx regulator is to consider it as a
linear relation:

λ =
{
λ+ k · (0.95− ϕ) if ϕ ≥ 0.70
0.0 if ϕ < 0.70 (6.5)

with k a rate constant determining the slope. Since ϕ changes a lot, a sampling time δs has
been introduced. The mean energy charge level is calculated over this time period and the
influx is updated every δs time units. Figure 6.23 shows a graphical representation of this
regulator. Results of the system with the linear regulator are presented in Figure 6.24.

ϕ

λ

0.7 0.95 1.0

λ
λ− 0.05k

λ+ 0.25k

Figure 6.23: Linear glucose update.

It can be seen that the feedback results in a diverging periodic oscillation in the influx
rate. This is caused by the time delay between change in influx and the corresponding
change in energy charge. It takes about 200 time units for the effect of changing the influx
rate can be noticed in the energy charge level. An increase in parameter k increases the
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steepness and therefore also shortens the period of the change in influx and an increase
in δs decreases the steepness and therefore also decreases the period, see Figure 6.25.

Figure 6.24: µ1 = 0.015, µ2 = 0.017, λ0 = 0.02, k = 1e−4 and δs = 100 time units

Figure 6.25: µ1 = 0.015, µ2 = 0.017, λ0 = 0.02 and different values of k and δs
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Another option is to use a quadratic relation, presented in 6.6. This relation results in
a very small increase or decrease in the influx if the energy charge is near the desired
level and a large change if the energy charge is far from the desired level. Results of
simulations with this system are presented in Figure 6.26. The influx does not converge
to the desired rate, but shows the same response as for the linear model.

λ =
{
λ+ k · (0.95− ϕ)2 if ϕ ≤ 0.95
λ− k · (0.95− ϕ)2 if ϕ > 0.95 (6.6)

Figure 6.26: µ1 = 0.015, µ2 = 0.017, λ0 = 0.02 and different values of k and δs

As it can be seen, these continuous regulators do not perform well. This is an interesting
topic of further research.

6.6 Conclusions

With a feedback loop from the energy charge to the glucose influx and a simple three-
way switch the energy balance system can be stabilized and the region of stable input
parameters has been expanded. But, enzymes cannot sense the energy charge: the reac-
tions they catalyze depend on molecule concentrations. It is not precisely clear how the
cells maintain the energy charge level but this direct feedback results in a stable energy
balance system, with the overall energy charge close to the desired level. However, with
stochastic distributions the energy charge starts fluctuating and ultimately causes the cell
to die. Another approach was implementing enzyme AMPH as regulator, depending on
the ATP/AMP ratio. This also resulted in a stable system, with overall energy charge
at the desired level. The AMPK regulated system has a higher overall energy charge but
with stochastic distributions cells die a little earlier compared to the energy charge regu-
lated system. A third regulator, based on the ideal relation between influx and metabolic
rates, also resulted in a stable system. Finally some steps towards a continuous influx
regulator have been presented.
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Chapter 7

Conclusions and recommendations

This report is an elaboration of the work in [14] and presents the modeling of a substrate-
enzyme network as a discrete event model (DEM). The glycolysis pathway is chosen as
the network and first modeled as a set of ODEs. The DEM has been constructed out of
four different types of reactions; single substrate-enzyme reactions, bi-substrate enzyme
reactions, reversible reactions and reactions with down- and upstream inhibiting or acti-
vating feedback. This DEM without the feedback reactions has been verified by the set
of ODEs.
Deterministic and stochastic behavior of the transient system with a low number of
molecules has been investigated. For lots of molecules the results of the deterministic
and stochastic behavior are almost similar. In this case an ODE model would be the best
choice as a model since it is computationally less expensive. The difference between the
stochastic and deterministic model become significant when there are few molecules in
the system. The mean clearing time of the results with the stochastic system is almost
similar to the deterministic results, what is unthinkable regarding the pathway as a man-
ufacturing line consisting of 12 machines and buffers in between. However, the difference
in clearing times is pretty large. This system can not be compared to a usual manufac-
turing line because the mean search time depends on the number of products in the buffer.

With a convertor between the ADP and ATP the system has been extended to a steady-
state system. Given the stochastic DEM a boundary analysis has been conducted. Three
regimes can be distinguished; one stable regime and three unstable regimes. The unstable
regimes result in no throughput due to a high demand for ATP, or less output than input
due to a low demand for ATP. The system is only stable if the conversion rate is twice
the arrival rate.

In order to keep the energy molecule concentrations balanced and to remove the con-
vertor metabolic reactions and an energy-molecule equilibrating enzyme have been added
to the glycolysis pathway. The term ’energy charge’ has been introduced to have a mea-
sure of the energy-molecule ratio. Expanding the system with the metabolic reactions
and extra enzyme was thought to stabilize the system and to be robust, but only for a
specific relation between input and metabolic rate parameters the deterministic system is
proven stable. Furthermore, using stochastic distributions, the system can’t be stabilized.
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To stabilize the energy balance system, feedback regulators based on energy charge,
ATP/AMP -ratio and a regulator based on the metabolic rates have been introduced.
These regulators act as a three-way switch and all increase the robustness and area of
input parameters for a stable deterministic and stochastic system. The stochastic influ-
ence on the system is clearly noticeable by looking at the energy charge. Where it in
the deterministic setting remains closely at a value of 0.95, the stochastic results show
a large fluctuation between 1.0 and 0.65. This is an important feature since the energy
molecules in the cell are necessary for its activity and to keep the membrane at its place.
If the energy charge level drops below 0.70, it is believed to be too low for the cell to
maintain its membrane and causes the cell to die.

As suggestions for further work, one could look into implemoenting a PID-regulator in
the energy balance system to see if it stabilizes the system better. Since there is a time
delay between Gluc influx and change in energy charge, a feedback with time delay is
also an option.

In order to compare the performance of this system with experiments, the number of
enzymes have to be matched. In this report, we assumed all enzymes in the system to
have the same mass, which is in contrast with the real situation.

These building blocks for networks of substrate-enzyme reactions can be used to construct
other networks, such as signal transducing pathways.
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Appendix A

Parameters

Table A.1: Parameters for the glycolysis pathway [11].

Enzyme Scaled vmax Ks Ks energy Keq type
HK 0.089 0.08 0.15 bi-substrate
PGI 0.134 1.4 0.3 0.314 reversible
PFK 0.0723 0.1 0.71 bi-substrate
Ald 0.127 0.3 substrate
TPI 0.894 0.02 1 substrate
GAPDH 0.468 0.21 0.09 bi-substrate
PGK 0.511 0.003 0.2 bi-substrate
PGM 1.00 1.2 0.1 0.19 reversible
Eno 0.144 0.04 substrate
PYK 0.431 0.14 0.53 bi-substrate
PDC 0.0691 4.33 substrate
ADH 0.319 1.11 0.031 bi-substrate

ADK 5.0 2 0.001 2 0.001 2

Met 1.0 - 10.0 3

1 Unknown parameter, assumption.
2 Unknown parameter, assumption. Very fast reaction.
3 Metabolism rate.
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Appendix B

Chi processes

For the glycolysis cycle and adenylate transitions some new processes must be defined.

B.1 Enzymes

B.1.1 One substrate molecule in, two product molecules out E12

This process is almost similar to the basic enzyme with one molecule, but it has got two
product molecules, see Figure B.1.

B E

B

B

a
b

c

r

Figure B.1: DEM representation of process E12.

Chi file:

proc E12( chan a?,b!,c!: mol, r?: nat, val Vmax, km, tr: real ) =
|[ chan q: void
, var x: mol

, tStart, tp, ts: real
, concS: nat = 0
, search, rec: bool = ( false, false )

:: *( concS > 0 -> tStart := time
; search:= true
; search
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*> ( ts := ( tStart + meanST( km, tr, concS )
- time ) max 0.0

;( delay ts; rec:= true; search:= false
| q?
; ( concS > 0 -> skip
| concS = 0 -> rec:= false; search:= false
)

)
)

; ( rec -> a?x
; tp:= 1 / Vmax
; delay tp
; b!x; c!x

| not rec -> skip
)

)
|| *( r?concS; ( search -> q!

| not search -> skip
)

)
]|

Model input:

proc E12( a?, b!, c!, r?, Vmax, km, tr )

B.1.2 Reversible one in, two out (E12R)

This enzyme can receive and send molecules to three different buffers and also commu-
nicates with these buffers, like enzyme ADK, see Figure B.2. The conversion direction,
according to (5.7), is determined by:{

2ADP → ATP +AMP if ([ATP ] + 1) · ([AMP ] + 1) ≤ ([ADP ]− 2)2
ATP +AMP → 2ADP if ([ATP ]− 1) · ([AMP ]− 1) ≥ ([ADP ] + 2)2 (B.1)

ATP

AMP

ADK ADP
a1

a2 c1

c2

b1b2
ra

rc

rb

Figure B.2: DEM representation of enzyme ADK.

Chi file:

proc E12R( chan a1?,a2!,b1?,b2!,c1?,c2!: mol, ra?,rb?,rc?: nat
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, val Vmax,km,km1,km2,tr,n: real
) =

|[ chan q: void
, var x1,x2: mol

, tStart, ts, tp : real
, ca,cb,cc: nat = ( 0, 0, 0 )
, cA,cB,cC: real = ( 0.0, 0.0, 0.0 )
, search,rec,sin: bool = ( false, false, false )

:: *( ( (cA-1) * (cB-1) >= (cC+2)^2 -> sin:= false
| (cA+1) * (cB+1) <= (cC-2)^2 -> sin:= true
)
; tStart := time
; search:= true
; search
*> ( ( not sin -> ts:= ( tStart + meanST1(km1,km2,tr,n,ca,cb) - time ) max 0.0

| sin -> ts:= ( tStart + meanST( km, tr, cc ) - time ) max 0.0
)
;( delay ts; rec:= true; search:= false
| q?
; ( sin and (cA-1) * (cB-1) >= (cC+2)^2 -> skip
| sin and (cA-1) * (cB-1) < (cC+2)^2 -> rec:= false; search:= false
| not sin and (cA+1) * (cB+1) <= (cC-2)^2 -> skip
| not sin and (cA+1) * (cB+1) > (cC-2)^2 -> rec:= false; search:= false
)

)
)

;( rec and sin -> c1?x1; c1?x2
; tp:= 1 / Vmax
; delay tp
; a2!x1; b2!x2

| rec and not sin -> a1?x1; b1?x2
; tp:= 1 / Vmax
; delay tp
; c2!x1; c2!x2

| not rec -> skip
)

)
|| *(( ra?ca; cA:=n2r(ca) | rb?cb; cB:=n2r(cb) | rc?cc; cC:=n2r(cc) )

; ( search -> q!
| not search -> skip
)

)
]|

Model input:

proc E12R( a1?,a2!,b1?,b2!,c1?,c2,ra?,rb?,rc?,Vmax,km,km1,km2,tr,n )

71 Enzymes



B.2 Metabolism

Metabolism can be modeled as a drain on the ATP -buffer with a certain drain rate,
or as an enzyme with the ATP conversion to ADP or AMP depending on the ATP
concentration.

B.2.1 Drain D12P

When metabolism is considered as a simple drain, it takes ATP molecules from the buffer
at a fixed rate and reconfigures them into ADP and AMP , see Figure B.3, by taking a
sample out of a uniform distribution and comparing it to the fraction of ADP products.

B D12P

B

B

a
b

c

Figure B.3: DEM representation of process D12P.

Chi file:

proc DP( chan a?,b!,c!: mol, val Vmax, frac1: real ) =
|[ var x: mol, u, at: real

, uni: -> real = uniform ( 0.0 , 1.0 )
:: *( a?x; at:= 1/Vmax ; delay at

; u:= sample uni
; ( u <= frac1 -> b!x
| u > frac1 -> c!x
)

)
]|

Model input:

proc DP( a?,b!,c!, Vmax, frac1 ) =

B.3 Buffers

B.3.1 Buffer with 3 communication channels B3

The ADP buffer has got two outgoing channels in the glycolysis cycle and with the
adenylate transitions an extra channel with communication is required for enzyme ADK.
The buffer model is presented in Figure B.4. Chi file:
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Figure B.4: DEM representation of process B4c3.

proc B3( chan a?,b!: mol, r1!,r2!,r3!: nat
, dt!: (string,nat), val S0: nat, id: string
) =

|[ var xs: [mol] = []
, x: mol
, uni: -> real = uniform ( 0.0 , 1.0 )
, i: nat = 1

:: i <= S0
*> ( xs:= injBuff ( xs, (i,time), sample uni ); i:= i + 1 )

; r1!len(xs); r2!len(xs); r3!len(xs)
; *( dt !!( id , len (xs))

; ( a?x; xs:= injBuff ( xs, x, sample uni)
| len (xs) > 0 -> b!hd(xs); xs := tl(xs)
)

; r1!len(xs); r2!len(xs); r3!len(xs)
)

]|

Model input:

proc B3( a?,b!,r1!,r2!,r3!,dt!,S0,id ) =

B.3.2 Buffer with 4 communication channels B4

If the ATP -dependent metabolism process and enzyme ADK is added to the glycol-
ysis model, the ATP buffer must have 4 outgoing channels with communication, see
Figure B.5. Chi file:

E

E

B4

E

E

a

b

b

b

b
r1

r2

r3

r4

Figure B.5: DEM representation of process B4.
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proc B4( chan a?,b!: mol, r1!,r2!,r3!,r4!: nat
, dt!: (string,nat), val S0: nat, id: string

) =
|[ var xs: [mol] = []

, x: mol
, uni: -> real = uniform ( 0.0 , 1.0 )
, i: nat = 1

:: i <= S0
*> ( xs:= injBuff ( xs, (i,time), sample uni ); i:= i + 1 )

; r1!len(xs); r2!len(xs); r3!len(xs); r4!len(xs)
; *( dt !!( id , len (xs))

; ( a?x; xs:= injBuff ( xs, x, sample uni)
| len (xs) > 0 -> b!hd(xs); xs := tl(xs)
)

; r1!len(xs); r2!len(xs); r3!len(xs); r4!len(xs)
)

]|

Model input:

proc B4( a?,b!,r1!,r2!,r3!,r4!,dt!,S0,id ) =
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Appendix C

Chi models

C.1 Glycolysis pathway

The discrete event model of the glycolysis pathway from Chapter 4 with all communica-
tion channels is presented in Figure C.1. The χ code is presented in Table C.2.

Table C.1: EMP pathway model.

Chi code Reference
type mol = ( nat, real ) // id, timein

Process G [14]
Process B1 [14]
Process B2 [14]
Process BX [14]
Process E1 [14]
Process E12 (B.1.1)
Process E2 [14]
Process Erev [14]
Process DT [14]
Function injBuff [14]
Function cond [14]
Function calcVpgiRev [14]
Function meanST [14]
Function meanST1 [14]

The model is defined by:

model L( val lambdaG: real ) =
|[ chan mg,m1,m2,m3,m3r,m4,m4r,m5,m6,m7,m8,m9,m10,m12,m13,m14,m15

, m16,m17,m18,m19,m20,m21,m22,m23,m24,m25,m26
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Figure C.1: DEM representation of the glycolysis pathway.

, a1,a2,a3,a4,n12,n13,n25,n26: mol
, r1,r1a,r3,r4,r5,r5a,r7,r10,r12,r12n,r14,r14a,r16,r17,r18
, r20,r20a,r22,r25,r25n: nat
, dt: (string , nat)

, var c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c13: nat
= (3000,3000,3000,3000,3000,3000,3000,3000,3000,3000,3000,3000)

, c15,c16,c17,c18: nat = (5000,5000,5000,5000)
:: DT(dt)
//|| G (mg,1/lambdaG)
|| B1 (mg,m1,r1,dt,c1,"Gluc") //b GLUC
|| E2 (m1,m2,a2,a3,r1,r1a

,89.0,80.0,150.0,0.0112359551,1.0) //e HK
|| B1 (m2,m3,r3,dt,c2,"G6P") //b G6P
|| Erev (m3,m4,m5,m2,r3,r4

,134.0,1400.0,300.0,0.314,0.0074626866) //e PGI
|| B2 (m4,m5,r4,r5,dt,c3,"F6P") //b F6P
|| E2 (m5,m6,a2,a3,r5,r5a

,72.3,100.0,710.0,0.0138312586,1.0 ) //e PFK
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|| B1 (m6,m7,r7,dt,c4,"F16bP") //b F16bP
|| E12 (m7,m8,m9,r7,127.0,300.0,0.0078740157 ) //e Ald
|| B1 (m8,m10,r10,dt,c5,"DHAP") //b DHAP
|| E1 (m10,m9,r10,894.0,20.0,0.0011185682 ) //e TPI
|| B1 (m9,m12,r12,dt,c6,"GADP") //b GADP
|| E2 (m12,m13,n12,n13,r12,r12n

,468.0,210.0,90.0,0.0021367521,1.0 ) //e GAPDH
|| B1 (m13,m14,r14,dt,c7,"13bPG") //b 1,3bPG
|| E2 (m14,m15,a4,a1,r14,r14a

,511.0,3.0,200.0,0.0019569472,1.0 ) //e PGK
|| B1 (m15,m16,r16,dt,c8,"3PG") //b 3PG
|| Erev (m16,m17,m18,m15,r16,r17

,1000.0,1200.0,100.0,0.19,0.001) //e PGM
|| B2 (m17,m18,r17,r18,dt,c9,"2PG") //b 2PG
|| E1 (m18,m19,r18,144.0,40.0,0.006944444 ) //e Eno
|| B1 (m19,m20,r20,dt,c10,"PEP") //b PEP
|| E2 (m20,m21,a4,a1,r20,r20a

,431.0,140.0,530.0,0.0023201856,1.0 ) //e PYK
|| B1 (m21,m22,r22,dt,c11,"Pyr") //b Pyr
|| E12 (m22,m23,m24,r22,69.1,4330.0,0.01447178 ) //e Ald
|| BX (m23,dt,"CO2") //b C02
|| B1 (m24,m25,r25,dt,c13,"AcAld") //b AcAld
|| E2 (m25,m26,n25,n26,r25,r25n

,319.0,1110.0,31.0,0.0031347962,1.0 ) //e ADH
|| BX (m26,dt,"Eth") //b Eth
|| B1 (n13,n25,r25n,dt,c15,"NADH") //b NADH
|| B1 (n26,n12,r12n,dt,c16,"NAD+") //b NAD+
|| B2 (a1,a2,r1a,r5a,dt,c17,"ATP") //b ATP
|| B2 (a3,a4,r14a,r20a,dt,c18,"ADP") //b ADP
]|
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C.2 Adenylate transitions

In Chapter 5 the glycolysis pathway is extended with adenylate transitions, see Figure C.2

Dmet G Gluc Glycolysis

ATP

ADP

AMP

Eth ADK
mg m1 m26

a3

a5

a2 a2a1

a4 a3

a2

ra2

a1
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a6
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a5

Figure C.2: DEM representation of the glycolysis pathway with adenylate transitions.

Table C.2: EMP pathway model.

Chi code Reference
type mol = ( nat, real ) // id, timein

Process G [14]
Process B1 [14]
Process B2 [14]
Process BX [14]
Process E1 [14]
Process E12 (B.1.1)
Process E12R (B.1.2)
Process E2 [14]
Process Erev [14]
Process D12 (B.2.1)
Process DT [14]
Function injBuff [14]
Function cond [14]
Function calcVpgiRev [14]
Function meanST [14]
Function meanST1 [14]

The model is defined by:
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model L( val lambdaG: real ) =
|[ chan mg,m1,m2,m3,m3r,m4,m4r,m5,m6,m7,m8,m9,m10,m12,m13,m14,m15

, m16,m17,m18,m19,m20,m21,m22,m23,m24,m25,m26
, a1,a2,a3,a4,a5,a6,n12,n13,n25,n26: mol
, r1,r1a,r3,r4,r5,r5a,r7,r10,r12,r12n,r14,r14a,r16,r17,r18
, r20,r20a,r22,r25,r25n,ra2,ra4,ra6: nat
, dt: (string , nat)

, var c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c13: nat
= (3000,3000,3000,3000,3000,3000,3000,3000,3000,3000,3000,3000)

, c15,c16,c17,c18,c19: nat = (5000,5000,5000,5000,5000)
:: DT(dt)
//|| G (mg,1/lambdaG)
|| B1 (mg,m1,r1,dt,c1,"Gluc") //b GLUC
|| E2 (m1,m2,a2,a3,r1,r1a

,89.0,80.0,150.0,0.0112359551,1.0) //e HK
|| B1 (m2,m3,r3,dt,c2,"G6P") //b G6P
|| Erev (m3,m4,m5,m2,r3,r4

,134.0,1400.0,300.0,0.314,0.0074626866) //e PGI
|| B2 (m4,m5,r4,r5,dt,c3,"F6P") //b F6P
|| E2 (m5,m6,a2,a3,r5,r5a

,72.3,100.0,710.0,0.0138312586,1.0 ) //e PFK
|| B1 (m6,m7,r7,dt,c4,"F16bP") //b F16bP
|| E12 (m7,m8,m9,r7,127.0,300.0,0.0078740157 ) //e Ald
|| B1 (m8,m10,r10,dt,c5,"DHAP") //b DHAP
|| E1 (m10,m9,r10,894.0,20.0,0.0011185682 ) //e TPI
|| B1 (m9,m12,r12,dt,c6,"GADP") //b GADP
|| E2 (m12,m13,n12,n13,r12,r12n

,468.0,210.0,90.0,0.0021367521,1.0 ) //e GAPDH
|| B1 (m13,m14,r14,dt,c7,"13bPG") //b 1,3bPG
|| E2 (m14,m15,a4,a1,r14,r14a

,511.0,3.0,200.0,0.0019569472,1.0 ) //e PGK
|| B1 (m15,m16,r16,dt,c8,"3PG") //b 3PG
|| Erev (m16,m17,m18,m15,r16,r17

,1000.0,1200.0,100.0,0.19,0.001) //e PGM
|| B2 (m17,m18,r17,r18,dt,c9,"2PG") //b 2PG
|| E1 (m18,m19,r18,144.0,40.0,0.006944444 ) //e Eno
|| B1 (m19,m20,r20,dt,c10,"PEP") //b PEP
|| E2 (m20,m21,a4,a1,r20,r20a

,431.0,140.0,530.0,0.0023201856,1.0 ) //e PYK
|| B1 (m21,m22,r22,dt,c11,"Pyr") //b Pyr
|| E12 (m22,m23,m24,r22,69.1,4330.0,0.01447178 ) //e Ald
|| BX (m23,dt,"CO2") //b C02
|| B1 (m24,m25,r25,dt,c13,"AcAld") //b AcAld
|| E2 (m25,m26,n25,n26,r25,r25n

,319.0,1110.0,31.0,0.0031347962,1.0 ) //e ADH
|| BX (m26,dt,"Eth") //b Eth
|| B1 (n13,n25,r25n,dt,c15,"NADH") //b NADH
|| B1 (n26,n12,r12n,dt,c16,"NAD+") //b NAD+
|| B3 (a1,a2,r1a,r5a,ra2,dt,c17,"ATP") //b ATP
|| B3 (a3,a4,r14a,r20a,ra4,dt,c18,"ADP") //b ADP
|| B1 (a5,a6,ra6,dt,c19,"AMP") //b AMP
|| DP (a2,a3,a5,1000.0,0.8) //D Metabolism drain (rest)
|| E12R (a2,a1,a6,a5,a4,a3,ra2,ra6,ra4

,5000.0,1.0,1.0,1.0,0.0002,1.0) //e ADK
]|
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