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1
Introduction

1.1 Content protection

In the last decades we witnessed an unstoppable conversion from analog
to digital: songs, movies, mail, money, books, TV programs and official
documents are only a small set of products that we can obtain and ma-
nipulate just by using a home computer. Rather than buying music and
other content types on physical carriers like CDs, nowadays it is increas-
ingly common to buy them on-line. However, it is also extremely easy to
find unauthorised free versions of these contents, a phenomenon known
as piracy.

Since Internet is of common use, piracy has become frequent, par-
ticularly thanks to P2P (peer-to-peer) file sharing programs that allow
people to easily share and find almost any kind of digital content while
staying nearly anonymous. To contain this behaviour, music and video
vendors have the following main options:

• Copy prevention, i.e. putting in place mechanisms that make it
hard to produce copies. This technique, while effective against
most users, is restrictive and unpractical since it often requires the
usage of specific software or hardware.

• Content tracing, i.e. the vendor links the distributed content to
the receivers by hiding a unique code, called watermark, inside
the content. In this way, when an unauthorised copy is found,
it is possible to recognise which users can be held responsible for
starting the unauthorised sharing. It does not prevent a user from
copying, nor does it hinder him when using the content. Instead,
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it is a deterrent against piracy. Content tracing is also known as
traitor tracing.

With the decreasing role of physical data carriers in content sales, one
expects that tracing will become the predominant content protection
technique for audio and video.

Online sales channels are particularly suitable for the implementation
of content tracing. The one-to-one nature of the transaction and the lack
of a physical data carrier make it easy for the vendor to customize the
purchased data, i.e. to hide an individual watermark. Furthermore,
vendor websites as a rule oblige buyers to provide personal data, which
makes it possible to physically locate them.

Content tracing finds a natural place in pay-TV too. A pay-TV sub-
scriber receives a device that decrypts only those TV channels that he has
paid for. Such a device carries keys that are unique for each subscriber.
By cleverly organizing the encrypted broadcast, the pay-TV operator
can, to a certain extent, hand out different versions of the video stream
to different devices, and thus make sure that different subscribers receive
differently watermarked versions of the video.

1.2 Hidden watermarks

For the purpose of this thesis, a watermark is a sequence of small modifi-
cations that the vendor applies to a multimedia file in a secret way. The
idea is that the vendor should be able to efficiently identify the water-
mark he inserted into the file, while the user should not notice anything
out of the ordinary about the file he receives. The action of inserting
a watermark into the original file is called embedding. A version of the
content carrying a watermark is called a watermarked copy.

The embedding must satisfy two important requirements:

1. The watermark must be well hidden. In particular, the user should
not be able to find the locations where changes were made. If the
user is able to locate enough of the watermark, he may corrupt it,
making it impossible to link the content to the user.

2. The presence of the watermark should not compromise the quality
of the content. Defects in the multimedia may discourage users
from purchasing the product.
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Obviously, it is not efficient for the vendor to keep a full record of
all the differently watermarked versions of the same content. In practice
the data he stores consists merely of a compact description of the mod-
ifications that were made in the distributed versions. In audio/video,
the number of different ways in which a file position1 can be (robustly)
watermarked is limited. In mathematical terms, these limited options
can be represented as symbols from a small alphabet, and each user’s
watermark as a unique sequence of symbols.

Then, the vendor needs to store:

• For each user, the sequence of symbols present in his version.

• For each position, the differently watermarked versions of this posi-
tion; or, alternatively, a short description how the watermark sym-
bols were embedded. The details of how each symbol is embedded
differ per position.

Obviously all this data is kept secret. When the vendor finds an unautho-
rized copy, he investigates it using a watermark detector. The detector
takes as input the stored information as detailed above, the original (non-
watermarked) file, and the unauthorized copy. For each position, the
detector tries to determine which watermark symbol, if any, is present.
This results in a sequence of detected symbols. The vendor compares this
sequence to the stored user sequences, and in this way identifies which
user illegitimately redistributed his copy.

1.3 Attacks on watermarks

Malicious users are interested in locating the watermark in their files, in
order to alter it and thus destroy the link between the file and the user.
Such an attempt to make the watermark unusable is called an attack.

Attacks on hidden watermarks can be grouped in two categories: at-
tacks based on a single copy, and attacks based on multiple copies, also
known as collusion attacks (or coalition attacks).

Today’s watermarking techniques are particularly robust against single-
copy attacks. One approach for the attacker is to insert noise, in the hope

1 The description of an audio/video file as a sequence of positions is somewhat
abstract. A ‘position’ in video typically refers to a complex combination of many
screen pixels, spread out in time.
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that the watermark gets damaged. However, the effectiveness of this ap-
proach is very limited. The noise must not degrade the perceptual quality
of the audio/video. Furthermore, not knowing the secret embedding in-
formation as described in Section 1.2 the attacker cannot ‘shape’ the
noise so as to target the watermark.

Another approach is the use of statistical techniques that lead to
partial disclosure of a watermark. Such techniques, however, have a
limited impact. If the requirements listed in Section 1.2 are satisfied, it
is difficult for a single attacker to locate the watermark.

The situation changes when a collusion attack takes place. The col-
luders can compare each other’s files, which immediately reveals differ-
ences in those locations where they did not all receive the same symbol.
This additional information allows for a much stronger attack on the
watermark.

1.4 Collusion resistant codes

The only defense against collusion attacks is to make sure that there are
enough positions in the content where the colluders receive insufficient
information to damage the watermark. In other words, enough redun-
dancy must be built into the user sequences. This is achieved by using a
collusion resistant code (traitor tracing code).

In the sequel, a sequence of watermark symbols can be considered as
a codeword that identifies a recipient, while the set of all the codewords is
called the code. The aim of collusion resistant codes consists in creating
codewords such that, no matter how strong the collusion attack is, the
resulting media still contains enough information to identify at least one
of the colluders.

Figure 1.1 illustrates the elements in a traitor tracing scenario, from
the content distribution to the tracing. After the watermark detection
step, described in Section 1.2, the vendor uses a decoder to identify the
attackers. In analogy with error-correcting codes, the decoder is an algo-
rithm that tries to determine which codewords are closest to the sequence
of detected symbols. The output of the decoder is a list of suspicious
users. In making this list, there exist two important type of errors:

• False positive (FP) error: the decoder outputs one or more innocent
users. Accusing an innocent user can be particularly damaging for
the vendor because of potential (legal) repercussions. Furthermore,
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Figure 1.1: Traitor tracing problem scenario. The watermarks are em-
bedded into the original content. The personalised copies are distributed
to the recipients. Some of them (a coalition) develop an unauthorised
copy and distribute it. Once the vendor obtains this copy, the detector
tries to extract the watermark symbols. The decoder makes a list of sus-
pect users.

having frequent FP errors may cause: (i) loss of credibility of the
tracing scheme and (ii) waste of the vendor’s time and resources in
the follow-up accusation steps.

• False negative (FN) error: the list does not contain any colluder.2
This type of error is considered less damaging than the FP (not
finding any attacker causes less trouble than accusing an innocent).
However, the tracing scheme obviously becomes useless if the at-
tackers can evade capture too easily.

There is a rich literature on traitor tracing codes. The most studied
class of traitor tracing codes in the past decade are the Tardos codes (or
Tardos scheme, or bias-based codes), introduced in [38] and extended
in [39]. These have the special and highly desirable property that they
achieve optimal performance against large coalitions: the code length
required to resist a collusion attack scales as the square of the coalition
size. It has been proven that a better scaling is not possible [38]. A
detailed description of the Tardos code is presented in Chapter 3.

2Usually the vendor’s aim is to catch at least one attacker. An alternative aim
could be to catch all colluders. This aim is usually not considered because it is too
difficult to achieve when the colluders do not participate equally in the attack.
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1.5 Problem description

Despite the popularity of the Tardos code, its performance was not fully
understood prior to the work in this thesis. On the one hand, one can use
simulations to determine the error probabilities. However, simulations for
small FP probability take an infeasible amount of time [17, 7]: the re-
quired number of simulations scales as the inverse of the FP probability3,
which can be as small as 10−6, or even smaller. On the other hand, there
exist proven bounds on the error probabilities [38, 43, 42, 40]. Unfortu-
nately, these bounds are not tight and generally are orders of magnitude
too high.4

The knowledge of FP and FN probabilities is critical because the
amount of ‘space’ available for embedding watermarks is very limited
and has to be optimally exploited. According to some estimates, less
than 1 byte of hidden watermark can be robustly embedded per minute
of video (i.e. less than 960 bits in a two-hour movie). When the error
probabilities are not known, the following problems can occur:

• The estimated errors are higher than the real ones.
The vendor adopts a code that has too much redundancy, resulting
in a waste of already scarce resources. The amount of redundancy
that must be built in grows relatively weakly as a function of the
FP rate (see Section 1.4), but even so an FP overestimate of orders
of magnitude, which is typical when there is no simulation data,
has a large impact on the coalition size that can be resisted.

• The estimated errors are lower than the real ones.
The strength of the coalition has been underestimated and this
gives more untraced colluders (FN) and/or more accusations of
innocent users (FP) than anticipated.

Hence, the lack of knowledge about the actual performance of the
code leads to a situation where the vendor either does not have a tracing
capability or is faced with too many FP events.

3Typically the FP probability is fixed to be orders of magnitude lower than the
FN. For this reason the FP determines how many simulations are needed.

4 For example, simulations in [7] show that a codeword of 600 bits is enough for
the Tardos scheme to resist 4 attackers and to provide FP and FN probabilities both
of 2.5 · 10−3. For the same setting, the upper bound in [2] guarantees that the error
probabilities are below 0.47, far from the real value.



1.6 Research question 7

1.6 Research question

The above problems motivate the main research question of this thesis:

How to determine the real error rates of the Tar-
dos code?

The aim of our research is to develop a method, preferably analytical,
to efficiently compute the error probabilities at any parameter setting
(codelength, alphabet size, coalition size, ...). The method has to be
faster than the simulations and more accurate than the provable bounds;
both by whole orders of magnitude. Knowing the precise error proba-
bilities makes it possible to optimally exploit the available space for the
watermark. The ability to precisely control the FP rate makes the crucial
difference between a scheme that is unfit for use and an effective tracing
system that can be used in practice.

A second research aim is to investigate the various attacks that a
coalition can perform, in order to understand which attack works best
against the Tardos code. In each content position, the colluders have a set
of received symbols, and based on this set they have to decide what kind
of content version to create in that position. The way in which they make
their decision is called a strategy.5 The aim is to compute error rates for
a wide range of parameter settings and attack strategies; then (i) find the
‘worst case’ attack, i.e. which strategy maximises the error rates at given
system parameters and (ii) conversely, which parameters settings provide
resistance against all the tested attacks. This investigation should make
clear what both the vendor and the colluders can hope to achieve.

1.7 Contributions

In this thesis we investigate the Tardos code, focusing on the FP and FN
error probabilities. Our main results are the following:

• We develop a new procedure, which we call the ‘CSE method’ (Con-
volution and Series Expansion), to semi-analytically compute the
FP and FN probabilities for the Tardos code. The method is based

5 Some examples of strategies are majority voting (selecting the most frequent
symbol), minority voting (selecting the least frequent symbol) and interleaving (taking
the symbol of a random attacker).
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on the convolution property of characteristic functions (see Chap-
ter 4). It gives a recipe for calculating the error rates as a series
expansion in a small parameter. The small parameter decreases
as a function of the code length; hence for long codes the expansion
converges more quickly than for short codes.

• The CSE method passes a number of consistency checks. First of
all, it is consistent with simulations when simulations are doable.
Furthermore, the tails of certain important probability distribu-
tions behave exactly according to theory.

• The expansion in the CSE needs a certain number of terms in
order to achieve sufficient precision. For various attack strategies
and parameter settings we tabulate the required number of terms.

• We introduce a new parametrization of attack strategies. This leads
to two benefits: (i) more compact formulas and a better under-
standing, (ii) the possibility to do pre-computations, which speeds
up the CSE method. Computing the error probability for a spe-
cific setting then takes from few seconds to several minutes on an
average laptop.

• Using the CSE method we study the performance of the Tardos
code against a variety of attack strategies, for a wide range of sys-
tem parameters. This allows us to identify which of the strategies is
the strongest given the system parameters. The data are combined
in ROC (receiver operating characteristic) curves, to show the im-
pact of the studied strategies on both the error probabilities at the
same time. Our study shows that there are two distinct regions in
the parameter space. In one region (short code and/or small coali-
tion), the most powerful attack strategy is the well known minority
voting attack. In the other region (long code and/or large coali-
tion), it is a more complicated strategy that is tailored specifically
against the decoder algorithm of the Tardos code.

The thesis is based on the publications [33], [32], [34] and [35].



2
Background on traitor

tracing codes

In Chapter 1 we illustrated the traitor tracing problem showing the use
of watermarks and their practical limitations. In this chapter we provide
a more technical background. We focus on the coding, in line with the
topic of this thesis. We will assume that the watermark embedding is
properly done, so that the space in the content available for watermarking
is fully exploited, and there is no effective single copy attack.

2.1 Concept and notation

In this section we introduce the notation we will use in this thesis and
the basis concepts of the collusion resistant codes.

2.1.1 The marking assumption

The collusion attack introduced in Section 1.3 is a category of attacks
in which several versions of the same content are used. The colluders,
through the comparison of their copies, locate the segments that contain
different symbols. These segments are called detectable positions.

The marking assumption (or marking condition) [4] states that an
attack can take place only in detectable position. See Figure 2.1. Of
course, as was discussed in Section 1.3, the marking assumption does
not strictly hold. However, it is a good starting point for the analysis
of traitor tracing codes and as such it is often adopted as a working



10 Background on traitor tracing codes

hypothesis. In the detectable positions, the attackers can change the
watermark.

Figure 2.1: Illustration of the marking assumption in the case of a
binary alphabet. Three attackers compare their copies. The check-mark
sign indicates the detectable positions. The other positions are kept un-
changed because of the marking assumption.

In the next section we introduce the models that are most commonly
used to describe the coalition capabilities.

2.1.2 Attack models

Below we list often considered attack models. All of them except the
CDM obey the Marking Assumption.

Restricted Digit Model: the output symbol for a position can just be
one owned by at least one attacker in that position.1

Unreadable Digit Model: this model allows slightly stronger attacks
than the Restricted Digit Model. The output for each detectable
position can be either a symbol owned by at least one attacker in
that position or an erasure (removal of the watermark).

Arbitrary Digit Model: the output symbol for a detectable position
can be any of the symbols in the alphabet (but not the erasure).

General Digit Model: the output in a detectable position can be ei-
ther a symbol in the alphabet or the erasure.

1Notice that this model does not really need to distinguish between detectable and
undetectable positions. It implicitly follows the marking assumption.
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Combined Digit Model: the output in a detectable position can be
the fusion of any subset of the received symbols [41, 44]. The
scenario allows signal processing and averaging attacks, typical in
the spread-spectrum watermarking context. This symbol merging
complicates the decoder step because the result of the fusion does
not necessarily point to a specific alphabet symbol. The effect of
merging many symbols can cause trouble to the detector yielding a
probability that an erasure occurs. Furthermore the colluders are
allowed to add noise, even in undetectable positions, which causes
a small probability that a symbol is detected which is not part of
the set received by the colluders. A variant of the binary Combined
Digit Model is given by Kuribayashi in [16].

Example 1. Suppose that a 4-user coalition receives the symbols 0, 0,
1 and 2 and the alphabet is {0, 1, 2, 3}. Depending on the model, the
generated output is:

• Restricted Digit Model: Any element of the set {0, 1, 2} (Figure 2.2,
second column).

• Unreadable Digit Model: Any element of the set {0, 1, 2, ?}, where
? denotes an erasure.

• Arbitrary Digit Model: Any element of the alphabet {0, 1, 2, 3}.

• General Digit Model: Any element of the set {0, 1, 2, 3, ?}.

• Combined Digit Model: The output is obtained from the symbol
fusion of any non-empty subset of {0, 1, 2}.

Among all the models, the Combined Digit Model is the most realistic
but also the hardest to analyze. The Arbitrary Digit Model and General
Digit Model are not realistic due to the possibility of outputting any
symbol, which requires information that is not available to the colluders.
The Unreadable Digit Model, with the erasure possibility, gives to the
attackers too much power. The model we are going to consider in the
thesis will be the Restricted Digit Model (RDM). Even if it is the simplest
among the ones listed, it is already a very complicated model and its full
study is still not complete yet. Furthermore, the study of the RDM is a
useful starting point for the analysis of more complicated models.
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Figure 2.2: Example of allowed output symbols in the Restricted Digit
Model.

2.1.3 Accusation scenarios

Once the distributor finds an unauthorised copy, the detecting and trac-
ing phase begin. In the literature one finds two scenarios regarding the
content vendor’s aim:

• catch all : the distributor wants to trace all the attackers in the
coalition. This is impossible to achieve if some colluders do not
participate in the attack (or participate very little)

• catch one: the distributor is satisfied tracing at least one attacker.
This is in many cases already a good deterrent.

We use the notation C to indicate the set of colluders and L the set
of suspicious users. As mentioned before, in general the FP error is more
grave than the FN, so it is critical to avoid innocent accusations. How-
ever, there are some contexts in which the FP error is not too damaging
and its sporadic occurrence is acceptable. For example, in the pay TV
scenario one can apply dynamic traitor tracing, where the distributor
has real-time information about the attack and the watermarks can be
generated dynamically. In this case, the consequence of a FP can consist
of a temporary deactivation of a innocent user. An example of binary
dynamic traitor tracing scheme is the one developed by Laarhoven et
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al. [20]. In this thesis only the static scenario is considered, with the
“catch one” aim.

We can start now to define some parameters.
m Codelength.
n Number of users.
Q Alphabet.
q Alphabet size |Q|.
C Set of colluding users.
c Number of colluders |C|.
c0 Maximum number of colluders the scheme can resist.
X n×m matrix. The element Xji indicates the symbol received

by the user j in position i, while with Xj we indicate the
entire codeword received by user j.

XC c×m matrix containing the codewords received by the c col-
luders.

y Sequence generated by the coalition C and detected by the
distributor. With yi we indicate the symbol in position i.

L List of accused users.
To develop an efficient scheme for the RDM is not trivial. There are

many requirements to satisfy to obtain an usable scheme:

• short codelength

• resist c0 colluders

• very low probability of FP error

• low probability of FN error

• small alphabet. Typically q ≤ 16 for audio/video.

We give an short overview about the literature on the traitor tracing
problem.

2.2 Traitor tracing evolution

The traitor tracing field has evolved in many directions. In this section
we want to briefly describe the most famous results.
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2.2.1 Deterministic and probabilistic approaches

A deterministic approach produces a list of accused users that is never
empty and never contains innocent users, avoiding both the FP and FN
errors. Hollmann et al. in 1998 [10] introduced Identifiable Parent Prop-
erty (IPP) codes. These codes have the drawback of failing when the
number of colluders is more then two. In 2001 Staddon et al. [36] proved
the existence and provided the construction of a deterministic code with
a codelength m = c2

0 logq n, but the alphabet size needs to be q ≥ m− 1.
It is often the case that an algorithm can be made more efficient

by allowing a small probability of failure. In 1995 Boneh and Shaw [4]
introduced a binary scheme (q = 2) using a partly randomized inner code
with a deterministic outer code. The scheme needs a codelength m =
O(c4

0 log n
η

log 1
η
), where η indicates the probability to have a FP error.

In the same work, they also provided a lower bound on the codelength,
m = Ω(c0 log 1

c0η
). In 2003 the lower bound became more precise thanks

to Peikert et al. [30]: m = Ω(c2
0 log 1

c0η
).

In the same year, Gábor Tardos [38] proved an even tighter bound
of m = Ω(c2

0 log 1
ε1

), where ε1 denotes the probability that one specific
innocent user gets accused2 and he gave a fully randomized binary code
that achieves that bound, m = 100c2

0dln 1
ε1
e. This result represents an

important turning point in the traitor tracing field and, as expected, it
has been studied a lot from many points of view, to provide extensions,
generalizations and improvements. Tardos’ approach first generates a
bias for each segment and then in each segment randomly draw a sym-
bol for each user according to the bias. In the accusation step a score
is computed for each user that consists of summing one-segment scores.
The users whose score is higher than a threshold (decided a priori) are
considered suspicious. There are a lot of works on all the separate com-
ponents of the scheme. Among them, in 2008 Škorić et al. [42] developed
a q-ary version of Tardos’ original code. This q-ary generalisation is the
scheme we are going to study. It will be fully detailed in Chapter 3.

2.2.2 Channel capacity and code rate

Collusion-resistant coding has been analyzed also from an information-
theoretical point of view. The whole procedure that goes from the wa-

2For Tardos codes, ε1 and η are related in the following way [40]: 1−η ≈ (1−ε1)n−c.
Using c� n and ε1 � 1/n this yields η ≈ nε1.
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termark matrix to the watermark symbols detected in the unauthorised
copy can be seen as a communication channel: the colluders’ codewords
XC are the inputs of such a channel, and the output is y. The applied
attack is considered as channel noise. The knowledge about the channel
capacity is important because it gives a lower bound for the codelength.
As defined by Moulin and O’Sullivan in [25], the fingerprinting rate R is

R =
logq n

m
. (2.1)

Suppose we have to specify one out of n users usingm-segment codewords
created with q-ary symbols. The numerator logq n represents the number
of q-ary symbols needed to specify one out of n users. This is divided by
the number of symbols that is actually used. The rate R is the useful
fraction of the codeword, i.e. the fraction that conveys the message about
the identities of the colluders.

Thanks to the Shannon’s channel coding theorem [21] we know that
R must not exceed the channel capacity C to have a reliable data trans-
mission.

The channel coding theorem also gives the asymptotic relation be-
tween error probability and codelength.

PErr ≤ q−(C−R)m, (2.2)

showing that for longer codes the error probability decreases provided
that R < C. From (2.1) and (2.2) we have

PErr ≤ q−(C− logq n

m
)m (2.3)

= nq−Cm. (2.4)

Taking the equality and isolating m, we get the sufficient code length
msuff

msuff = − logq
PErr

n

C
=

ln n
PErr

C ln q
. (2.5)

In the channel coding theorem an error means that the message is wrongly
decoded. In the traitor tracing context this corresponds to a false accu-
sation. Then it is possible to write (2.5) as

msuff =
ln 1

ε1

C ln q
, (2.6)
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In [11] Huang and Moulin conjectured that asymptotically in the limit
of large c the binary channel capacity is 1/(2c2 ln 2). The conjecture was
then proved in two works independently: in [12] by Huang and Moulin,
and in [1], where Amiri and Tardos also gave a binary capacity-achieving
scheme. A more general result has been found by Boesten and Škorić in
[3] for general q: the asymptotic fingerprinting capacity in the RDM is
C = (q − 1)/(2c2 ln q). It was shown in [40] that the channel capacity
cannot be reached by the Tardos scheme due to the applied accusation
process.

2.2.3 Simple and joint decoders

Tardos’ seminal paper and most of the later work follow the so-called
simple decoder approach, i.e. a score is computed for each user indepen-
dently, and if it exceeds a certain threshold, the user is considered suspi-
cious. In contrast, one can also use a joint decoder, which considers sets
of users. The aforementioned Amiri and Tardos paper [1] introduced a
capacity-achieving joint decoder construction for the binary code. How-
ever, the construction is impractical, requiring computations for many
candidate coalitions which takes an amount of time proportional to nc.
Charpentier et al. in 2009 [5] presented the EM (Expectation Maximiza-
tion) algorithm that tries to estimate both the coalition size and the
applied attack, and then adapts the score system to the estimate. Nuida
in 2010 [26] proposed a joint decoder against c ≤ 3 attackers and at most
some hundreds of users. A binary joint decoder was proposed in 2011
by Meerwald and Furon [22]. Their algorithm, called Don Quixote, can
potentially look for coalition sets of size t building them from the (t−1)-
sets. It begins with a simple decoder approach (equivalent to t = 1 sets)
that gives a first ranking of the users. After that, the bigger sets are
built taking just the users highest in the ranking. This pruning phase
depends on the set size t and the computational power available. In their
simulations they show how their joint decoder can find more efficiently
set of colluders if compared with the simple decoder.

Even if more practical joint decoders are found, a simple decoder
typically serves as a stepping stone in their operation. Thus, interest in
simple decoders remains high. Furthermore, it was shown in [13] that
the rate achievable by simple decoders asymptotically (c → ∞) equals
that for joint decoders. Finally, Oosterwijk et al. [29] presented a simple
decoder that achieves capacity in the large c limit. This important result
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took place after the work done in this thesis.

2.2.4 Alternative bias distributions

The binary Tardos scheme [38] uses the so-called arcsine distribution
(see Section 3.1) to draw random biases. The q-ary generalisation [42]
uses a Dirichlet distribution which reduces to the arsine distribution at
q = 2. The bias distribution is one of the scheme’s parameters that can
be tweaked, and as such, alternatives have of course been studied. We
briefly list some alternatives present in the literature.

In 2007 Nuida et al. [27] introduced a discrete bias distribution that
depends on c0. The accusation step is almost identical to Tardos’ one.
The modified bias distribution improves the tracing if c ≤ c0, but it has
worse properties at c > c0. This discrete procedure has been improved
by the same team in [28]. Huang and Moulin [11] presented a discrete
distribution that maximizes an information-theoretic figure of merit at
given c0. Finally, Laarhoven and de Weger in 2013 [19] have proven
that asymptotically Nuida’s discrete distribution converges to the arcsin
distribution.

In this thesis we will keep with the Dirichlet distribution to avoid
problems at c > c0.

2.3 Group Testing

An alternative usage of the binary traitor tracing problem has been in-
troduced by Stinson et al. in [37], where they link it to the nonadaptive
group testing problem. In few words, group testing consists of detecting
a small set of infected people in a large population. Individual blood tests
are supposed to be too expensive to be done over the entire population,
so, instead, blood mixtures are taken: the blood samples of several users
are mixed together and the test is applied on this mix. A positive result
indicates that at least one user is infected. The term “nonadaptive” in-
dicates that the choice of users to mix does not depend on the outcome
of earlier tests. The blood test corresponds to the all-1 strategy being
applied by a coalition (outputting a 1 whenever possible).

The study made in [37] approached the group testing problem with
the Boneh-Shaw scheme, being at that moment the most recent result on
traitor tracing and having also the important property of being frame-
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proof, i.e. having zero FP probability below a fixed coalition size. An-
other important contribution was made by Meerwald and Furon [23]
where a joint decoder variation is used that resembles the Don Quixote
algorithm. Kitagawa et al. [14], unlike the previous two approaches,
use a group testing algorithm to solve the traitor tracing problem. The
approach presents a deterministic joint decoder that achieves very high
performance, but the whole work focuses just on coalitions of size 3 and
on three particular strategies. Already with so few attackers, the required
codelength is quite big, as expected with a deterministic approach.

The contributions in this thesis may have some impact on nonadaptive
group testing by providing a method to determine low error probabilities.



3
The q-ary Tardos code

In this chapter we describe the q-ary generalization [42] of the Tardos
code. It is “symbol symmetric”, i.e. invariant under permutation of the
alphabet, a property that was missing in Tardos’ original scheme [38].

3.1 Code generation and embedding

The distributor generates a n × m matrix X filled with the q symbols
present in Q (q ≥ 2). m vectors p(i) ∈ (0, 1)q,

∑
α∈Q pα = 1 are in-

dependently drawn (i ∈ [m]) according to the Dirichlet distribution F
with

F (p) =
1

B(κ1q)

∏

α∈Q
p−1+κ
α , (3.1)

where

• 1q stands for the vector (1, · · · , 1) of length q,

• κ is a positive constant called “concentration parameter” that de-
termines the steepness of F ,

• B is the generalized Beta function defined as follows:

Definition 3.1 (Generalized Beta function). Let v be a n-component
vector. The Beta function is defined as

B(v) :=

∏n
a=1 Γ(va)

Γ(
∑n

b=1 vb)
. (3.2)
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For parameters v1, · · · , vn > 0 the Beta function has the following
Dirichlet integral representation:

B(v) =

∫ 1

0

dnx δ

(
1−

n∑

a=1

xa

)
n∏

b=1

x−1+vb
b . (3.3)

where δ(·) is the Dirac delta function.

At q = 2 and κ = 1/2 the scheme has a problem due to the presence
of outliers that generate huge scores1. For this specific parameter choice
(3.1) coincides with the arcsine distribution used originally by Tardos
in [38]. The solution found by Tardos was to introduce a small parameter
t to modify the range of possible values for p from [0, 1] to [t, 1−t], giving
the following function:

FTardos(p) =
1

π − 4 arcsin
√
t

1√
p(1− p)

(3.4)

Tardos set t = 1/300c0 for proof-technical reasons. Laarhoven and de
Weger in [18], studying how to achieve shorter codelengths2, showed that
t ∝ c

−4/3
0 is a better choice.

Once the biases p(i) have been generated, all matrix elements Xji are
drawn independently according to the following distribution,

Pr[Xji = α|p(i)] = p(i)
α . (3.5)

Notice that the probabilities do not depend on the row index j, i.e.
p(i) determines the probabilities for a whole column of X. Finally the
codeword Xj is embedded in user j’s content. The distribution of X,
non conditioned on p, is known as the Polya distribution.

3.2 Attack

We work with the RDM as specified in Section 2.1.2. It means that, for
each segment, the coalition can output a symbol only if at least one of
the attackers has received it in that segment. We define vectors σ(i) ∈
{0, 1, . . . , c}q as

σ(i)
α := |{j ∈ C : Xji = α}| (3.6)

1The scores will be introduced in Section 3.3.
2The scheme studied in [18] is a symbol symmetric version of the original Tardos

scheme.
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i.e. the number of occurrences (or tally) of the symbol α that the attack-
ers see in column i. Obviously

∑
α∈Q σ

(i)
α = c. For given q and c, we define

the set of possible σ values as Sqc =
{
σ ∈ {0, . . . , c}q|∑α∈Q σα = c

}
. We

also define σ\α as the tally vector σ without the element σα.
The attackers have a (probabilistic) strategy for choosing their output

symbols. It is assumed that this strategy is fully column-symmetric,
symbol-symmetric and attacker-symmetric. In other words, as listed in
[40], we consider valid the following assumptions:

1. The strategy is invariant under alphabet permutation.

2. The strategy is invariant under attackers identity, i.e. the attackers
equally share the risk.

3. The strategy is applied independently for each segment.

The first assumption is justified by the Dirichlet generating function (3.1),
where the biases are drawn independently from the symbol, making each
of them equally important. Furthermore, in many embedding schemes
the embedded symbols are some random sequence that have not a natural
ordering sequence. Moreover, the tracer can permute the alphabet at will
in every segment independently and it will have zero effect. The second
assumption is needed to balance the role of the attackers: considering
that each colluder is sharing his copy, there should not be any kind
of hierarchy in the guilty set. Finally, the third assumption is due to
the independency among the p(i) biases, being these m vectors drawn
independently from (3.1). In conclusion, the symmetry present in the
Tardos scheme motivates to build one-segment attacks. Furthermore, in
[24] Moulin shows that in the context of fingerprinting capacity the most
powerful attack has segment-symmetry.

The strategy is usually expressed as a set of probabilities θy|σ that
apply independently for each segment. Omitting the column index i, we
have for each i

Pr[output y, given σ] = θy|σ. (3.7)

Due to the marking condition some of these probabilities are fixed. Let
eα denote the vector (0, · · · , 0, 1, 0, · · · , 0) with the ‘1’ in position α.
Then

θy|ceα = δyα, (3.8)

where δ is the Kronecker delta.
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Because of the assumed symbol symmetry of the attack, the θy|σ is
invariant under permutation of σ\y. Hence the attack can be described
by a smaller number of parameters. In [33] we introduced the following
parametrization:

Definition 3.2. Let α ∈ Q, b ∈ {0, . . . , c}, x ∈ {0, . . . , c}q−1 and σ ∈
Sqc such that σα = b and σ\α = x. We define

Ψb(x) = θα|σ (3.9)

Due to the Marking Assumption we have that Ψc(0) = 1 and Ψ0(x) =
0. Notice that x can be considered equivalently as a multi-set of the
partition of c − b into q − 1 parts. Similarly, σ is a multi-set of the
partition of c into q parts. For the sake of simplicity we consider and
treat x and σ as a non-negative vector.

The probability for outputting α given such a σ does not depend on
the actual value of α, but only on b and x. (In fact, it is even insensitive
to permutations of x.) In words: Ψb(x) is the coalition’s probability
of outputting a symbol which for them occurs b times, with the other
symbol tallies being x. In the case of the binary alphabet, x has only
one component equal to c− b.

We will investigate some of the most common strategies and their
definitions and properties will be discussed in Chapter 5.

3.3 Accusation

The watermark detector sees the symbol yi embedded in segment i of
the attacked content. Users are classified as suspicious (‘accused’) or not
suspicious according to the following algorithm. For each user j, the
so-called accusation sum Sj is computed,

Sj =
m∑

i=1

S
(i)
j where S

(i)
j = g[Xji==yi](p

(i)
yi

), (3.10)

where the expression [Xji == yi] evaluates to 1 if Xji = yi and to 0
otherwise, and the functions g0 and g1 are defined as

g1(p) =

√
1− p
p

; g0(p) = −
√

p

1− p. (3.11)
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In words: Having the same symbol as the attacked content induces a
positive contribution g1(pyi) to the accusation sum, which becomes worse
when yi is unlikely to occur. Having a symbol different from yi induces a
negative amount g0(pyi), which becomes more negative when yi is likely to
occur. The total accusation of the coalition is defined as SC :=

∑
j∈C Sj.

The choice (3.11) of g0, g1 is the unique combination of functions that
satisfies

E[S
(i)
j ] = p(i)

yi
g1(p(i)

yi
) + (1− p(i)

yi
)g0(p(i)

yi
) = 0 (3.12)

Var[S
(i)
j ] = p(i)

yi
[g1(p(i)

yi
)]2 + (1− p(i)

yi
)[g0(p(i)

yi
)]2 = 1. (3.13)

where j is an innocent user. This choice has been shown to be optimal
for the binary alphabet [8, 43], i.e. it minimizes the code length. Its
unique properties (3.13) also hold for q ≥ 3; that is the main motivation
for using (3.11).

A user is ‘accused’ if his accusation sum exceeds a threshold Z. A
list L is made of accused users,

L = {j : Sj > Z}. (3.14)

3.4 Performance

The ‘performance’ of the scheme involves four important parameters: the
number of attackers that has to be resisted (c0), the maximum tolera-
ble false negative probability ε2 (probability of not catching any of the
attackers),

PFN = Pr[L ∩ C = ∅] ≤ ε2, (3.15)

the maximum tolerable false positive probability ε1

for fixed innocent j : PFP = Pr[j ∈ L] ≤ ε1, (3.16)

and the length m of the code. One way of measuring how well the
scheme works is to look at how big m has to be as a function of c0, ε1

and ε2. The smaller m, the better the scheme. It is important to note
that in forensic watermarking of audio/video content, a small PFP is the
primary requirement. The PFN is far less important, since the deterring
effect of forensic watermarking is preserved even for large ε2, of the order
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of 1
2
. Hence m essentially becomes a function of c0 and ε1. In [42] an

asymptotic result was obtained for large c0,

m =
2

µ̃2
c2

0 ln
1

ε1

√
2π
. (3.17)

Here µ̃ is the expectation value of the collective accusation sum of the
coalition, scaled in such a way that the dependence on m is removed:
µ̃ = E[SC]/m. In the case of the binary scheme (with κ = 1/2 and t→ 0
because c0 → ∞), µ̃ = 2/π ≈ 0.64. For larger alphabets the µ̃ depends
on the parameter κ in a complicated way; for optimal κ, the µ̃ takes
values from approximately 0.8 to 1.4 as q goes from 3 to 10.

The global false positive probability is denoted as P global
FP :

P global
FP = Pr[L \ C 6= ∅]. (3.18)

In words: P global
FP is the probability that at least one innocent user is

accused. For n� c the following relation with PFP was proven3:

P global
FP = nPFP

[
1− c

n
−O (nPFP)

]
≈ nPFP. (3.19)

The intuition comes from the fact that the dependency between innocent
user scores is quite weak. Besides, being usually n� c, the approxima-
tion trivially follows from (3.19).

3.5 The Gaussian approximation

We briefly review the analysis of error probabilities performed in [42],
which leads to the result (3.17).

Consider, for some innocent user j, the probability distribution func-
tion (pdf) ρm of the quantity Sj/

√
m. (Note that the pdf itself depends

on m.) From (3.13) it follows that ρm has zero mean and unit variance.
For brevity we now introduce the notation Z̃ = Z/

√
m. The probability

of falsely accusing j is given by the cumulative distribution function (cdf)

Rm(Z̃) :=

∫ ∞

Z̃

dx ρm(x). (3.20)

This is depicted as the shaded area ‘FP’ in Fig. 3.1. We require

Rm(Z̃) ≤ ε1. (3.21)
3Result learnt via personal communication with Jan-Jaap Oosterwijk.
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to note that in forensic watermarking of AV content, a small false positive probability is the
primary requirement. The false negative is far less important, since the deterring effect of forensic
watermarking is preserved even for large ε2, of the order of 1/2. Hence m essentially becomes a
function of c0 and ε1. In [1] an asymptotic result was obtained for large c0,

m =
2

µ̃2
c2
0 ln

1

ε1

√
2π

. (13)

Here µ̃ is the expectation value of the collective accusation sum of the coalition, scaled in such a
way that the dependence on m is removed: µ̃ = m−1E[

∑
j∈C Sj ].

2.2 Analysis of error probabilities

We briefly review the analysis of error probabilities performed in [1], which leads to the result (13).
Analysis along the same lines will be applied in Section @??.

0 Z√
m

µ̃
√

m
c → accusation/

√
m

1innocent

guilty

FN
FP

Figure 1: .

3

Figure 3.1: Sketch of the probability distributions of Sj/
√
m for some

fixed innocent j, and of SC/(c
√
m). The horizontal axis is scaled by a

factor
√
m so that the variance of the innocent curve is exactly 1.

Similarly, consider the probability distribution τm of the quantity SC/(c
√
m),

but normalized in such a way that the mean is zero and the variance is 1.
The cdf is

Tm(x) :=

∫ x

−∞
dx′ τm(x′). (3.22)

It was shown in [38] that PFN ≤ Pr[SC < cZ]. Hence if Pr[SC < cZ] ≤ ε2

then automatically PFN ≤ ε2. The shaded area in Fig. 3.1 labeled as ‘FN’
is actually Pr[S < cZ], which acts as a convenient bound on the FN. This
area is given by Tm([Z̃− µ̃

√
m
c

]/ σ̃
c
) = Tm( cZ̃−µ̃

√
m

σ̃
), where σ̃ is the (scaled)

standard deviation of the collective accusation, mσ̃2 := E[S2
C]− (E[SC])2.

The requirement on the FN probability in case of c0 attackers is then
formulated as

Tm

(
c0Z̃ − µ̃

√
m

σ̃

)
≤ ε2. (3.23)

The two equations (3.21) and (3.23) for given c0, ε1, ε2 can be thought
of as constraints in the (Z,m)-plane. It was shown [42] that these con-
straints can be satisfied only if

m ≥ 1

µ̃2
c2

0

[
Rinv
m (ε1)− σ̃

c0

T inv
m (ε2)

]2

(3.24)
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where Rinv
m and T inv

m are the inverse functions of Rm and Tm respectively.
Note that T inv

m (ε2) < 0 for ε2 smaller4 than approximately 1/2; decreasing
ε2 leads to a longer code. It was shown that the T inv

m term is negligible
with respect to the Rinv

m term if c0 is large and/or ε2 ≈ 1/2. Hence, (3.24)
in practice reduces to

m ≥ mmin ; mmin ≈
1

µ̃2
c2

0

[
Rinv
m (ε1)

]2
. (3.25)

Eq. (3.25) in itself is not immediately useful, because Rm depends
on m. In the limit of large m, however, ρm simply becomes a Gaussian
independent of m, and Rm is the area under a Gaussian tail, which
we denote as Ω(Z̃) = 1

2
Erfc Z̃√

2
. (Here Erfc is the complementary error

function.) The result (3.17) follows by applying the bound [Ωinv(ε1)]2 =
[
√

2 Erfcinv(2ε1)]2 < 2 ln(ε1

√
2π)−1.

To the best of our knowledge, the above reasoning is the simplest
argument available that yields the asymptotic relation m ∝ c2

0.
It was argued in [43] and [42] that m is so large that ρm is Gaussian

even a sufficient number of standard deviations away from 0. (‘Sufficient’
here means that the area under the Gaussian part is at least 1−2ε1 so that
the area under the right tail is estimated accurately.) The argument was
based on the moments of the innocent accusation and the Berry-Esseen
theorem [6]. From Figure 3.1 is possible to learn the following points:

• For fixed Z and m, the effect of increasing c is that the guilty curve
shifts to the left. Later we will show that µ̃ hardly changes as a
function of c.

• In the Gaussian regime, the coalition has very little effect on PFP,
protecting the innocent users from big guilty sets.

• Z needs to be proportional to
√
m and m ∼ c2 in order to obtain

the desired ε1. Hence Z ∝ c, indeed as shown in [38].

A full analysis of the tails of ρ is important for the following reason: as
(3.25) shows, it is advantageous for the attackers not only to decrease µ̃,
but also to modify the shape of Rm such that Rinv

m (ε1) increases, i.e. such
that the right-hand tail of the innocent’s accusation probability becomes
longer. How much influence their strategy has on the shape of Rm will

4 If one is willing to set ε2 > 1/2, the contribution from T inv
m (ε2) may even reduce

the code length.
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be studied later. If there is hardly any influence, then the value of µ̃
uniquely determines mmin, and the optimal strategy is to minimize µ̃; if
there is a significant influence, then the attackers’ aim is to maximize the
quotient Rinv

m (ε1)/µ̃.

3.6 Prior analysis on the Tardos code

As mentioned in Section 1.5, existing analytical approaches do not lead to
a precise estimation of the error probabilities, while numerical approaches
fail for very small error probabilities.

The first analysis was conducted by Tardos in [38], where he found
upper bounds for both the FP and FN probabilities using the Markov
inequality. Later, tighter bounds were obtained thanks to more precise
studies by Blayer and Tassa [2] and by Škorić et al. [43]. In both cases,
some of the parameters initially fixed by Tardos are substituted with
variables that are later set to the optimal value. In [42] the scheme
was modified, making it symbol-symmetric, which increases the (q =
2) code rate by a factor 4. However, the method of analysis was not
improved. Later, in [18] Laarhoven and de Weger further improved the
binary symmetric case improving the approach of Blayer and Tassa [2].
All these proofs were based on the Markov inequality. Only recently
Škorić and Oosterwijk in [40] chose Bernstein and Bennett inequalities
instead of the Markov inequality, obtaining simpler proofs and a tighter
FN bound in the non-binary case. However, the price to pay is that a
position-symmetric attack is assumed, thus losing generality.

The alternative to the analytic approach is the numerical approach
that computes the outcomes of the Tardos scheme using simulations of
the scheme. The drawback of this approach is that the computation is
unfeasible for very small probabilities. Furon et al. [7] tried to overcome
the problem of simulating small FP probabilities by using techniques from
rare-event analysis. In the algorithm a low probability is re-formulated
as a product of larger probabilities that can be estimated separately. The
level of accuracy of this approach is not completely clear to us as it does
not reproduce the power-law probability tails in the non-Gaussian regime
(see Section 6.2).
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4
The CSE method

The precise knowledge of the FP and FN error probabilities is crucial to
determine the real strength of Tardos’ codes. In the literature, the proven
bounds on PFP use Markov, Bennet and Bernstein inequalities providing
a not so tight result. As consequence, the sufficient codelength is also
unknown. Also simulations are infeasible when the FP error probability
is too small because they would require a huge number of computations.

In this chapter we explain the Convolution and Series Expansion
(CSE) method as developed in [33]. This approach makes possible to
know the exact value of PFP for almost any desired combination of pa-
rameters (code length, alphabet size, coalition size, strategy, ...). The
whole procedure is based on the convolution property of the characteris-
tic functions (or Fourier transform).

Definition 4.1 (Fourier transform). Let f : R→ C be a function. The
Fourier transform of f is denoted as f̃ and defined as

f̃(k) =

∫ ∞

−∞
dx e−ikxf(x) with k ∈ R. (4.1)

Property 4.1 (Convolution). When random variables are added, the
pdf of the sum is obtained by multiplying the Fourier transforms of their
respective pdf’s and then doing a Fourier back-transform. In other words,
if X ∼ f1, Y ∼ f2 and Z = X + Y ∼ f3, then f̃3 = f̃1f̃2.

Proof. For z = x+ y we have that

f3(z) =

∫ ∞

−∞
dx f1(x)f2(z − x). (4.2)
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Then it follows that

f̃3(k) =

∫ ∞

−∞
dz e−ikzf3(z) (4.3)

=

∫ ∞

−∞
dz e−ikz

∫ ∞

−∞
dx f1(x)f2(z − x) (4.4)

=

∫ ∞

−∞
dx e−ikxf1(x)

∫ ∞

−∞
d(z − x) e−ik(z−x)f2(z − x) (4.5)

= f̃1(k)f̃2(k). (4.6)

Therefore, knowing the single-segment-score pdf we can find the pdf
for the entire score.

4.1 Preliminaries

4.1.1 Probabilities and expectation values

In this section we are going to introduce several new functions and vari-
ables in order to reorganise the probabilistic aspect of the Tardos’ scheme.
These ingredients will be necessary to find the one-segment pdf’s for in-
nocent and guilty users. Then applying the CSE method we will end
with the m-segments pdf’s.

Because of the column symmetry (Section 3.2), the references to spe-
cific segments will be omitted (unless strictly necessary). Especially in
the following part, in which we will investigate the single segment prop-
erties, the column index i will be omitted for the sake of simplicity. For
example, to indicate a bias vector we will use p instead of p(i).

Note about the notation: for a scalar x and a vector p, the notation
px stands for

∏
α p

x
α. For vectors p,x, the notation px means

∏
α p

xα
α .

Expectation values

We will need to compute expectation values over several random variables
mentioned above. To this end we list a number of lemmas that will be
useful later.
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Expectation over p: Let r(p) be an arbitrary function. Then the ex-
pectation over p is defined as

Ep[r(p)] :=

∫ 1

0

dqp F (p)r(p). (4.7)

with F as given in 3.1. The following lemma is helpful when one compo-
nent of p has a special status, for instance py, with y the symbol chosen
by the attackers. Similarly with σ\α, the rest of p is denoted as p\y.

Lemma 4.2 (Marginals of the Dirichlet distribution). Let r be any func-
tion of p. The expectation value Ep can be split into two parts as

Ep[r(p)] = Epy
[
Ep\y |py [r(p)]

]
, (4.8)

with

Epy [· · · ] =
1

B(κ, κ[q − 1])

∫ 1

0

dpy p
−1+κ
y (1− py)−1+κ[q−1][· · · ] (4.9)

Ep\y |py [r(p)] =
1

B(κ1q−1)

∫ 1

0

dq−1s δ


1−

∑

β∈Q\{y}
sβ


 s−1+κr(p)

∣∣
p\y=(1−py)s

.

(4.10)

Proof. See Appendix A

Expectation over σ|p: Let r(σ) be an arbitrary function. Then

Eσ|p[r(σ)] :=
∑

σ∈Sqc

(
c

σ

)
pσr(σ). (4.11)

Expectation over y|σ: Let r(y) be an arbitrary function. Then

Ey|σ[r(y)] :=
∑

y∈Q θy|σr(y). (4.12)

Expectation over y|p: Let r(y) be an arbitrary function. We intro-
duce the notation Ty|p to denote the following sum,

Ty|p =
∑

σ∈Sqc

(
c

σ

)
pσθy|σ, (4.13)
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where the condition
∑

α pα = 1 is not enforced. This will allow us to write
several important expressions compactly in terms of partial derivatives
of T . The notation τy|p is defined as Ty|p where we do enforce the ‘on-
shell’ condition

∑
α pα = 1. It represents the conditional probability that

y occurs given p. Then, the expectation value over y|p trivially follows:

Ey|p[r(y)] =
∑

y∈Q τy|pr(y). (4.14)

Probabilities

The information owned by the distributor is obviously much more wide
then the colluders one and, moreover, the marking assumptions combined
with the RDM definition increase his power. Indeed, they not only reduce
the positions and the symbols that the attackers are allowed to use to
apply their attack, also they allow to apply an ‘a priori’ study to restrict
deterministically the coalition set. The idea is quite intuitive: if colluders
output the symbol yi in position i, then the set of users that own that
symbol in position i contains certainly at least one of the attackers, and
this concept can be extended on more segments. In the lucky event
in which just a user has the symbol outputted1, then we can accuse
him with 0% chance to make a mistake. However, our study is based
only on Tardos’ pure approach and these analysis are not taken into
consideration.

For given p, the probability that the c colluders receive symbol tallies
σ is the multinomial distribution. We use the following notation,

P(σ|p) :=

(
c

σ

)∏

α∈Q
pσαα , (4.15)

where
(
c
σ

)
= c!/(

∏
α σα!). It is always implicitly understood that∑

α σα = c.
Similarly, the marginal distribution for a single component σα is the

binomial. We use the notation

P1(b|p) := Pr[σα = b|pα = p] =

(
c

b

)
pb(1− p)c−b. (4.16)

1Such unexpected event can happen more easily if the strategy used is, for example,
minority voting (see Chapter 5) combined with a big value of m and the Dirichlet
distribution nature to emphasize one symbol to the detriment of the othes.



4.1 Preliminaries 33

Lemma 4.3. The overall probability that the colluders receive symbol oc-
currences σ is given by

P(σ) :=

(
c

σ

)
B(κ1q + σ)

B(κ1q)
. (4.17)

Proof. We have Pr[σ] = EpP(σ|p), with P(σ|p) given by (4.15). The
lemma follows by applying the Dirichlet integration rule (3.3).

Lemma 4.4. The marginal probability distribution f(pα) for a single com-
ponent of the vector p is

f(pα) =
1

B(κ, κ[q − 1])
p−1+κ
α (1− pα)−1+κ[q−1]. (4.18)

Proof. We have 1 =
∫ 1

0
dpα f(pα) =

∫ 1

0
dqp F (p). From Lemma 4.2 we

have

f(pα) = p−1+κ
α (1− pα)−1+κ[q−1] 1

B(κ1q)

∫ 1

0

dq−1s δ


1−

∑

γ∈Q\{α}
sγ


s−1+κ.

(4.19)
The lemma follows after evaluation of the

∫
dq−1s integral using (3.3).

Lemma 4.5. The overall marginal probability distribution for one com-
ponent of σ is

P1(b) := Pr[σα = b] =

(
c

b

)
B(κ+ b, κ[q − 1] + c− b)

B(κ, κ[q − 1])
. (4.20)

Proof. We have

Pr[σα = b] =

∫ 1

0

dpαf(pα)P1(b|pα) (4.21)

with P1(b|pα) and f(pα) given by (4.16) and Lemma 4.4 respectively. The
integral is evaluated using (3.3).

Corollary 4.6. Let σ\α denote the vector σ without the component σα.
The probability distribution of σ\α conditioned on σα is given by

Pq−1(x|b) := Pr[σ\α = x|σα = b] =

(
c− b
x

)
B(κ1q−1 + x)

B(κ1q−1)
. (4.22)
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Proof. Follows directly from Lemmas 4.3 and 4.5 by taking Pr[σ\α =
x|σα = b] = P(σ = (x, b))/P1(b) and simplifying the Beta functions.

We now introduce a new parameter very important for our research
and for which we will dedicate the whole Chapter 5. Its definition is

Kb := Ex|bΨb(x) =
∑

x

Pq−1(x|b)Ψb(x). (4.23)

It is implicit that
∑

β∈Q\{α} xβ = c − b. For q = 2 we define Kb = Ψb.
(In some of the literature the notation θx := Pr[y = 1| #received 1s = x]
is used for the binary case. The relation with our notation is: θb = Ψb.)

For any strategy we have

K0 = 0 ; Kc = 1 (4.24)

due to the marking assumption.

Lemma 4.7. The numbers Kb satisfy

q
c∑

b=1

KbP1(b) = 1. (4.25)

Proof. The factor q can be replaced by
∑

y∈Q. Using the definition
(4.23) we get

∑

y

∑

b

KbP1(b) =
∑

b

∑

x

P(x, b) ·
∑

y

Ψb(x) (4.26)

=
∑

b

∑

x

P(x, b) ·
∑

y

θy|σy=b,σ\y=x (4.27)

=
∑

b

∑

x

P(x, b) = 1. (4.28)

The meaning of Kb is not straightforward. It indicates the overall
probability that a symbol with tally b (if such a symbol exists) gets
chosen by the attackers. Unlike θ and ψ, Kb is averages over all the other
random variables. Then the interpretation of 4.25 can be seen as follows:
the probability that some b gets chosen is 100%.
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4.1.2 Integrals and Gamma function equalities

Before going further, we need some more lemmas and definitions that
will become useful in the future.

Lemma 4.8. For d > 0, v > 0, the following holds
∫ ∞

0

du
u2d−1

(1 + u2)d+v
= 1

2
B(d, v). (4.29)

Proof. Apply a change of variables u =
√
p/(1− p), with p ∈ [0, 1].

This gives 1 +u2 = 1/(1−p) and du = 1
2
p−1/2(1−p)−3/2dp. The integral

becomes 1
2

∫ 1

0
dp p−1+d(1− p)−1+v which has the Dirichlet form (3.3).

Lemma 4.9. For x� 1, and a1, a2 ∈ R such that |a1| � x and |a2| � x
and a1, a2 independent of x, it holds that

Γ(x+ a1)

Γ(x+ a2)
= xa1−a2

[
1 +O

(
1

x

)]
. (4.30)

Proof. Follows directly from Stirling’s approximation

Γ(z + 1) ≈
√

2πz
(z
e

)z (
1 +O

(
1

z

))
. (4.31)

Corollary 4.10. Let c� 1 and 1� b ≤ c. Let |α1|, |α2|, |β1|, |β2| � b
and α1, α2, β1, β2 independent of b and c. Then

B(b+ α1, c− b+ β1)

B(b+ α2, c− b+ β2)
=

(
b

c

)α1−α2
(

1− b

c

)β1−β2 [
1 +O

(
1

b

)]
. (4.32)

Proof. Follows directly from writing out the Beta functions in terms of
Gamma functions and then applying Lemma 4.9.

Definition 4.2. We define Ω(z) as the probability mass in the right tail
of the normal distribution beyond point z,

Ω(z) =
1√
2π

∫ ∞

z

dx e−x
2/2. (4.33)
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Lemma 4.11 (See e.g. Eq. 9.254.1 in [9]). For x ∈ R
1

2πi

∫ ∞

−∞
dk

eikx

k
e−k

2/2 = 1
2
− Ω(x). (4.34)

Lemma 4.12 (See e.g. Eq. 3.462.1 in [9]). For ν > 0 and x ∈ R
∫ ∞

0

dk kν−1e−
1
2
k2eikx = Γ(ν)2ν/2H−ν

(−ix√
2

)
. (4.35)

Here H is the Hermite function.
Corollary 4.13. For x ∈ R and ν > 0∫ ∞

−∞

dk

2π
(i sgn k)α−1|k|ν−1e−k

2/2eikx =
1

π
Γ(ν)2ν/2 Im

[
i−αH−ν

(
ix√

2

)]

(4.36)
Proof. The first equality follows by applying Lemma 4.12 twice (once
for the positive part of the integral, once for the negative).

4.1.3 Fourier transforms

We now introduce few lemmas regarding the Fourier transform defined
previously in Definition 4.1.
Lemma 4.14. If f is a real-valued function, then f̃(−k) = [f̃(k)]∗.
Proof. [

∫
dx e−ikxf(x)]∗ =

∫
dx [e−ikxf(x)]∗ =

∫
dx eikxf(x) = f̃(−k).

Corollary 4.15. If f is a real-valued function, then the even part of
f̃(k) is Re f̃(k), and the odd part is i · Im f̃(k).
Proof. By Lemma 4.14, the even part is 1

2
[f̃(k) + f̃(−k)] = 1

2
f̃(k) +

1
2
[f̃(k)]∗ = Re f̃(k). The odd part is 1

2
[f̃(k)−f̃(−k)] = 1

2
f̃(k)− 1

2
[f̃(k)]∗ =

iIm f̃(k).
Lemma 4.16. Let f(x) be a probability distribution function, and X a
random variable with X ∼ f . Then

∂nf̃(k)

∂kn

∣∣∣∣∣
k=0

= (−i)nE[Xn]. (4.37)

Proof. ∂nf̃(k)
∂kn

=
∫

dx [ ∂
n

∂kn
e−ikx]f(x) = (−in)

∫
dx xne−ikxf(x). Setting

k = 0 gives the result.

Now we have all the ingredients to compute PFP using the CSE
method.
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4.2 CSE method for the innocent user score

Next step consists in deriving the probability for an innocent user to
obtain a specific score in a single segment. We denote this score Sj(i) = u
and the pdf as ϕ(u) We then calculate its Fourier transform necessary to
apply Property 4.1 obtaining finally the m-segment pdf ρm.

Before going through ϕ and ϕ̃ mathematical definitions, we are going
to talk about Rm instead. This choice, that could appear not much
intuitive, has the advantage to show which “form” of ϕ̃ is required to
write Rm, avoiding intermediate unnecessary steps. This will become
more clear in the next section.

4.2.1 From one segment to the full score

Lemma 4.16 combined with (3.13) can already produce the next helpful
corollary.

Corollary 4.17. Let ϕ be the probability distribution function of the
one-symbol accusation S

(i)
j for an innocent user j. Then its Fourier

transform ϕ̃ has the following power series expansion,

ϕ̃(k) = 1− 1
2
k2 + higher powers of k, (4.38)

where the higher powers of k are allowed to be irrational.

Proof. Trivially E[u0] = 1. From (3.13) we know that E[u] = 0 and
E[u2] = 1. Hence by Lemma 4.16 we have ϕ̃(0) = 1, ϕ̃′(0) = 0 and
ϕ̃′′(0) = −1. The expansion in the corollary is consistent with these
values. Higher orders of k do not have to be integer. In fact, if E[u3] 6= 0,
E[u3] < ∞ and E[u4] = ∞ (as we will see later) then there is a k3 term
in the expansion, and the lowest power of k higher than 3 lies somewhere
between 3 and 4.

We now apply Property 4.1 to obtain ρm from ϕ. Knowing ρm we get
the probability mass in the right tail (Rm) by integration 3.20. When
the convolution is applied to the m random variables in the accusation
sum, it leads to the following result.

Theorem 4.18. Let j be an innocent user. Let ϕ denote the pdf of S(i)
j ,

with S(i)
j as defined in (3.10). Let ϕ̃ be the Fourier transform of ϕ. Then
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the probability PFP = Pr[Sj > Z] is given by

Rm(Z̃) =
1

2
+

i

2π

∫ ∞

−∞
dk

exp ikZ̃

k

[
ϕ̃

(
k√
m

)]m
. (4.39)

Proof. See Appendix B.

This result gives us a closed-form expression for Rm(Z̃) that con-
tains only a single integration and a limited number of sums. (The sums
are contained in the evaluation of ϕ̃, as will become apparent in Sec-
tion 4.2.3.) These will have to be evaluated numerically. Note that
Pr[Sj > 0] is not necessarily equal to 1

2
.

It turns out that numerical evaluation of the integral in (4.39) is
difficult, because of the fast oscillations of the integrand at large k. For
this reason, we have chosen for a somewhat indirect method of evaluating
(4.39). It is based on a series expansion in powers of k. It has the
advantage that the accuracy of the numerical evaluation is well under
control, and that the dependence of Rm onm is visible. The disadvantage
is that many terms in the expansion have to be kept.

Theorem 4.19. Let j be an innocent user. Let ϕ have a finite third
moment. Then it is possible to write

[
ϕ̃

(
k√
m

)]m
= e−

1
2
k2

[
1 +

∞∑

t=0

ωt(m)(i sgn k)αt|k|νt
]
, (4.40)

where αt are real numbers; the coefficients ωt(m) are real; the powers νt
satisfy ν0 = 3 and νt+1 > νt. The νt are not necessarily integer. All the
coefficients ωt(m) are decreasing functions of m, decreasing as m−νt/6 or
faster.

The probability of accusing user j is given by

Rm(Z̃) = Ω(Z̃) +
1

π

∞∑

t=0

ωt(m)Γ(νt)2
νt/2Im

[
i−αtH−νt(iZ̃/

√
2)
]
. (4.41)

Here H is the Hermite function.

Proof. See Appendix C.

The proof closely follows one of the standard proofs of the Central
Limit Theorem. In the limit m→∞ all the coefficients ωt vanish, leav-
ing only the term Ω(Z̃) which is the right-hand tail mass of the normal
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distribution. For integer ν the function H−ν reduces to the Hermite
polynomial of order ν−1, multiplied by a factor exp(−1

2
Z̃2). (See Corol-

lary 4.13.) The Gaussian convergence of pdfs with finite third moment
has been investigated also in the Berry-Esseen theorem [6]:

Theorem 4.20 (Berry-Esseen). Let be X1, X2, . . . i.i.d. random vari-
ables with E(X1) = 0,E(X2

1 ) = σ2 > 0 and E(|X1|3) = M3 < ∞. Let
be

Yn =
X1 +X2 + · · ·+Xn

n
(4.42)

the simple mean, Fn the cdf of Yn
√
n

σ
and Υ(x) the cdf of the standard

normal distribution. Then it exists C > 0 s.t., for all x and n

|Fn(x)−Υ(x)| ≤ CM3

σ3
√
n
. (4.43)

In other words, the Berry-Esseen theorem proves that if a pdf ξ has a
finite third moment then the convergence to the normal distribution will
be reached adding together a large number of i.i.d. Xi ∼ ξ.

In Section 4.2.2 we determine the distribution ϕ. In Section 4.2.3 the
Fourier transform ϕ̃ is computed and the leading order parameters νt,
ωt, αt are derived.

4.2.2 Distribution function of an innocent user’s single-
segment score

Theorem 4.21. For an innocent user j, the distribution function ϕ of
S

(i)
j is given by

u > 0 : ϕ+(u) =
2q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
(u2)κ[q−1]+c−b−1

2

(1 + u2)c+1+κq
Kb,(4.44)

u < 0 : ϕ−(u) =
2q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
(u2)κ+b−1

2

(1 + u2)c+1+κq
Kb. (4.45)

Proof. See Appendix D.

Note that all dependence on the strategy is contained in the num-
bers Kb ∈ [0, 1]. Furthermore we see that the left tail and the right
tail of ϕ(u) have different power law behaviour. This is summarized in
Table 4.1.
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b Left tail Right tail u ↑ 0 u ↓ 0

1 ( 1
|u|)

2c+1+2κ[q−1] ( 1
u
)5+2κ |u|1+2κ u2c−3+2κ[q−1]

c ( 1
|u|)

3+2κ[q−1] ( 1
u
)2c+3+2κ |u|2c−1+2κ u−1+2κ[q−1]

Table 4.1: Powers in ϕ(u) in the tails and close to u = 0. Dominant
powers are shown in boldface.

Note also that for 2κ[q − 1] > 1 the absolute third moment exists:
the integral

∫
du |u|3ϕ(u) is convergent in both tails. (As opposed to

the binary case with κ = 1/2.) Consequently, there is a guaranteed
convergence to the normal distribution when i.i.d. random variables ui ∼
ϕ are added together in large numbers.

The right tail is dominated by the b = 1 term; it is proportional to
(1/u)5+2κ. The left tail is dominated by the b = c term, and is pro-
portional to (1/|u|)3+2κq−2κ. It was found numerically in [42] that the
‘optimal’ κ (in terms of maximizing µ̃) lies close to 1/q; for such a choice
of κ the left tail is heavier than the right tail. Such a property is obviously
beneficial for not accusing innocent users.

The behaviour of ϕ(u) around u = 0 is also noteworthy. For u ↑ 0
the function is dominated by the b = 1 contribution |u|1+2κ, which has
zero derivative at u = 0. For u ↓ 0 the b = c term u−1+2κ[q−1] dominates;
this one, however, has infinite derivative for κ < 1/(q − 1) (which is the
case when e.g. κ ≈ 1/q).

In Chapter 5 we will see that Table 4.1 provides useful information
that allows us to compare colluder strategies.

Corollary 4.22. For an innocent user, the overall probability of posi-
tive and negative accusation are in general unequal, and are given by

Pr[u > 0] = q

c∑

b=1

KbP1(b)
b+ κ

c+ κq
(4.46)

Pr[u < 0] = q

c∑

b=1

KbP1(b)
c− b+ κ[q − 1]

c+ κq
. (4.47)

Proof. Follows by evaluating the u-integrals with Lemma 4.8, then ap-
plying Lemma 4.5 and finally rewriting the Beta functions using B(x, y+
1) = B(x, y) y

x+y
.
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Note that the probabilities (4.46) properly add up to 1; this is readily
seen from Lemma 4.7. Note also that it is also visible from Theorem 4.18
that Pr[u > 0] 6= 1

2
in general.

4.2.3 The Fourier transform of ϕ

We finally arrive to the last missing component needed to obtain Rm:
the Fourier transform (characteristic function) of ϕ(u). To compute ϕ̃
we are going to use the following lemma:

Lemma 4.23 (From [31], section 2.5.9). Let k ∈ R, Re v > −1
2
, and

d > 0. Let the function Λ be defined as the following convergent integral,

Λ(d, v; k) :=

∫ ∞

0

du
u2d−1

(u2 + 1)v+d
eiku. (4.48)

This integral is expressed in terms of hypergeometric 1F2 functions as

Λ(d, v; k) = (−ik)2vΓ(−2v) 1F2

(
v + d; v +

1

2
, v + 1;

k2

4

)

+
1

2

∞∑

j=0

(ik)j

j!
B

(
d+

j

2
, v − j

2

)
(4.49)

= (−ik)2vΓ(−2v) 1F2

(
v + d; v +

1

2
, v + 1;

k2

4

)

+
1

2
B(d, v) 1F2

(
d;

1

2
, 1− v;

k2

4

)

+
ik

2
B

(
d+

1

2
, v − 1

2

)
1F2

(
d+

1

2
;
3

2
,
3

2
− v;

k2

4

)
.

(4.50)

Notice that in general Λ(d, v; k) is not an entire function of k due to
the appearance of the factor k2v in the first term, which for general v is
not an entire function.

The hypergeometric function 1F2 has the sum representation
1F2(α; β1, β2; z) =

∑∞
j=0

(α)j
j!(β1)j(β2)j

zj where (α)j = α(α+ 1) · · · (α+ j−1)

is the Pochhammer symbol. The radius of convergence is infinity. The
1F2 function can be evaluated by using software packages such as Math-
ematica.
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Theorem 4.24. The Fourier transform of ϕ is given by

ϕ̃(k) =
2q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
Kb ·

[
Λ(db, vb; k) + Λ(Db, Vb;−k)

]
,

(4.51)
with Λ as defined in Lemma 4.23, and

db := b+ κ ; vb := c− b+ κ[q − 1] + 1

Db := c− b+ κ[q − 1] ; Vb := b+ κ+ 1. (4.52)

Proof. The Fourier transform is defined as ϕ̃(k) =
∫∞
−∞du ϕ(u)e−iku.

We use the expression for ϕ given in Theorem 4.21. The integral for the
summands in ϕ+ is immediately of the form appearing in Lemma 4.23
and yields Λ(Db, Vb;−k). The integral over the ϕ− terms is of the form∫ 0

−∞du f(u2)e−iku, which can be rewritten as
∫∞

0
du f(u2)eiku; this has

the form of the integral in Lemma 4.23 and yields Λ(db, vb; k).

For q ≥ 3 and realistic κ, none of the values db, vb, Db, Vb in (4.73) is
integer or half-integer. Hence substitution into all the Gamma functions
and Pochhammers contained in the 1F2 functions of Lemma 4.23 is well
defined. Note that, given the summation range 1 ≤ b ≤ c, the smallest
possible value of vb or Vb is vc = 1 + κ[q − 1] > 1. Hence, in a power
series expansion for small k, the k2v term in (4.49) always comes ‘after’
the k3 power. In fact, for q ≥ 3 and κ ≈ 1/q we have 2vc ∈ (3, 4).

Corollary 4.25. For q ≥ 3 the leading order terms in the expansion of
ϕ̃(k) are given by

ϕ̃(k) = 1− 1
2
k2 +

2q

B(κ, κ[q − 1])
·

{
(ik)3

2 · 3!

c∑

b=1

Kb[B(db + 3
2
, vb − 3

2
)−B(Db + 3

2
, Vb − 3

2
)]

+(−ik)2+2κ[q−1]Γ(−2− 2κ[q − 1])

+
(ik)4

2 · 4!

c∑

b=1

Kb[B(db + 2, vb − 2)−B(Db + 2, Vb − 2)]

+(ik)4+2κK1Γ(−4− 2κ)

+ · · ·
}

(4.53)
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Proof. Follows by substituting the first expression for Λ from Lemma 4.23
into Theorem 4.24, and then cutting off the small-argument power series
of the 1F2 function (which is preceded by a factor (−ik)2v) after the k0

term.

We refer to the recipe detailed above as the Convolution and Series
Expansion (CSE) method.

All the components are now in place to obtain the false positive prob-
ability PFP. This topic will be discussed in Chapters 5 and 6 where we
will show the complexity of the various parts of Rm and how we manage
to efficiently obtain numerics.

4.3 Guilty user’s probability distribution func-
tions

To compute guilty user’s pdf the approach will be exactly the same as
for the innocent one. Our target now will be to calculate the Pr[Sj > Z],
that as for the innocent case, it is all based on just one user j that, this
time, he is going to be part of the coalition C. This small but fundamental
difference will make slightly more complicated the computations for two
main reasons:

1. being in C, j has directly contributed to the generation of y, fact
that was (pleasantly) missing in the innocent case,

2. the useful properties of g0 and g1 do not hold anymore for the guilty
users, making more complicated to obtain PFN.

It is important to point immediately the fact that, being the following
a one-user-only approach, the results we are going to obtain do not allow
us to compute the quantity PFN exactly.

4.3.1 Relation between Pr[Sj > Z] and PFN

The quantity that we compute, Pr[Sj > Z] (for a guilty user j), is not
equal to the quantity that we are most interested in, namely PFN. How-
ever, we can use Pr[Sj > Z] to give an upper bound on PFN, as we state
in the following lemma.

Lemma 4.26. Let j ∈ C. It holds that PFN < 1− Pr[Sj > Z].



44 The CSE method

Proof. Let L be the set of accused users, and A = L ∩ C the set of
attackers that end up in L. Then

1 = Pr[|A| = 0] + Pr[|A| > 0] (4.54)
= PFN + Pr[|A| > 0 ∧ j ∈ A] + Pr[|A| > 0 ∧ j 6∈ A] (4.55)
= PFN + Pr[j ∈ A] + Pr[|A| > 0 ∧ j 6∈ A] (4.56)

Unfortunately, the bound provided in Lemma 4.26 is not always tight.
Indeed, the value of the last term in Eq. (4.56) can in some cases result
in a quite high probability. However, we have not been able to prove a
tight upper bound on PFN.

4.3.2 The expected coalition score µ̃

One very important parameter we are going to use later is µ̃. This
value has been introduced in Section 3.4 as the single-segment coalition
expected score, or more formally µ̃ = E[S]/m. A more precise formula
of µ̃ has been given in [42] with the following expression (for the case
q ≥ 3),

µ̃ =
∑

σ

P(σ)
∑

y∈Q
θy|σW (σy)

{
1
2
− κ+

σy
c

(κq − 1)
}

(4.57)

W (b) := c
Γ(b+ κ− 1

2
)

Γ(b+ κ)

Γ(c− b+ κ[q − 1]− 1
2
)

Γ(c− b+ κ[q − 1])
. (4.58)

The colluders want to minimize µ̃, while the content owner wants to
maximize it.

This equation is clearly depending on the strategy chosen by the
coalition, that in this case is defined as θy|σ. We want to rewrite (4.57)
introducing instead the new variable Kb.

Theorem 4.27. The quantity µ̃ as defined in (4.57) can be written as

µ̃ = q

c∑

b=1

P1(b)KbW (b)

{
1
2
− κ+

b

c
(κq − 1)

}
. (4.59)

Proof. In (4.57) we shift the
∑

y to the front and write P(σ) = Pr[σy =
b]Pr[σ\y = x|σy = b] and

∑
σ =

∑
b

∑
x. The

∑
x of θy|σ yields Kb

according to the definition (4.23).
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Corollary 4.28. For κ > 1
2(q−1)

the contribution of the b = c term to
µ̃ vanishes in the limit of large c.

Proof. In (4.59) we split off the b = c term, which has Kc = 1 due
to the marking conditon. After some rewriting of Gamma functions this
yields

µ̃ = cq
B(c+ κ− 1

2
, κ[q − 1] + 1

2
)

B(κ, κ[q − 1])
+q

c−1∑

b=1

P1(b)KbW (b)

{
1
2
− κ+

b

c
(κq − 1)

}
.

(4.60)
In the limit of large c, the first term scales as (1/c)κ[q−1]−1/2. For κ[q−1] >
1
2
this vanishes asymptotically.

Corollary 4.28 tells us that in the relevant case κ ≈ 1/q, the contri-
butions to µ̃ work completely different than in the usual binary scheme
(q = 2, κ = 1

2
). There the b = c term scales as c0 and all the b < c terms

are zero.

4.3.3 Distribution function of a guilty-user’s score

Throughout this section we will use the shorthand notation u for S(i)
j .

We define ψ(u) the probability for a guilty user to obtain a score equal
to u.We derive the distribution function ψ(u) as follows. First we fix p
and compute the conditional pdf ψ(u|p). Then the end result follows
by taking the expectation value over p: ψ(u) = Ep[ψ(u|p)]. Because of
the different behavior of positive and negative scores we introduce the
notation ψ+ for u > 0 and ψ− for u < 0.

Theorem 4.29. Let Ty|p and τy|p be functions as defined in Section 4.1.1.
For a guilty user, the probability distribution of the score conditioned on
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p is given by

u < 0 : ψ−(u|p) =
∑

y∈Q
δ (u− g0(py))

∑

σ

(
c

σ

)(
1− σy

c

)
pσθy|σ

(4.61)

=
∑

y∈Q
δ (u− g0(py))

[
τy|p −

py
c

∂Ty|p
∂py

]
, (4.62)

u > 0 : ψ+(u|p) =
∑

y∈Q
δ (u− g1(py))

∑

σ

(
c

σ

)
σy
c
pσθy|σ (4.63)

=
1

c

∑

y∈Q
δ (u− g1(py)) py

∂Ty|p
∂py

. (4.64)

Proof. See Appendix E.

Theorem 4.30. For a guilty user, the distribution function ψ of the score
in one segment is given by

u < 0 : ψ−(u) =
2q

B(κ, κ[q − 1])

c−1∑

b=1

(
1− b

c

)(
c

b

)
(u2)b+κ−

1
2

(1 + u2)c+κq
Kb,

(4.65)

u > 0 : ψ+(u) =
2q

B(κ, κ[q − 1])

c∑

b=1

b

c

(
c

b

)
(u2)c−b+κ[q−1]− 1

2

(1 + u2)c+κq
Kb. (4.66)

Proof. See Appendix F.

The expressions (4.65, 4.66) are rather complicated. We have double-
checked their correctness by verifying the normalization and the first
moment.

Consistency check 1. The function ψ(u) given in Theorem 4.30 is
correctly normalized,

∫∞
−∞ du ψ(u) = 1.

Proof. See Appendix G.

Consistency check 2. The function ψ(u) has the correct first mo-
ment,

∫∞
−∞ duψ(u)u = µ̃/c.

Proof. See Appendix H.
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Left tail Right tail u ↑ 0 u ↓ 0

Kc−1|u|−3−2κ[q−1] K1u
−3−2κ K1(c− 1)|u|1+2κ u−1+2κ[q−1]

Table 4.2: Dominant powers of ψ(u) in the tails and near u = 0. All
the values above are multiplied by 2q

B(κ,κ[q−1])
.

The behavior in the tails and near u = 0 is summarized in Table 4.2.
The right tail is dominated by the b = 1 term; it is proportional to
(1/u)3+2κ. The integral

∫∞
0

du ψ+(u)ua converges for a < 2 + 2κ. The
left tail is dominated by the b = c − 1 term, and is proportional to
(1/|u|)3+2κ[q−1]. The integral

∫ 0

−∞ du ψ−(u)|u|a converges for a < 2 +

2κ[q − 1]. Hence, for κ ∈
(
0, 1

2

)
, the usual choice, the second moment

always exists, but not the third absolute moment. We see that the right
tail is heavier than the left tail, meaning that extreme positive scores are
more likely than extreme negative scores. Such a property is obviously
beneficial for accusing guilty users.

Definition 4.3. We denote the second moment of the pdf ψ as M2,

M2 :=

∫ ∞

−∞
du ψ(u)u2. (4.67)

Definition 4.4. We denote the variance of the pdf ψ as V ,

V := M2 − µ̃2/c2. (4.68)

Lemma 4.31. The second moment M2 as defined in Def. 4.3 is given by

M2 = q
c∑

b=1

KbP1(b)

[(
1− b

c

)
b+ κ

c− b+ κ[q − 1]− 1
+
b

c

c− b+ κ[q − 1]

b+ κ− 1

]
.

(4.69)

Proof. See Appendix I.

Remark 4.32. The scores of guilty users are not independent. As a
consequence, the variance of the coalition score S

(i)
C is not a simple
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multiple of V . Let the covariance between two guilty user scores be
Kjj′ = E[S

(i)
j S

(i)
j′ ]− µ̃2/c2. Then we have

E
[
(S

(i)
C )2

]
= E

[∑

j,j′∈C
S

(i)
j S

(i)
j′

]

= cE
[
(S

(i)
j )2

]
+
∑

j 6=j′

(
E
[
S

(i)
j S

(i)
j′

]
− µ̃2/c2

)
+ µ̃2

(
1− 1

c

)
.

(4.70)

which yields
σ̃2 := Var(S

(i)
C ) = cV +

∑
j 6=j′Kjj′ . (4.71)

In [42] the variance was bounded as σ̃2 < qc − µ̃2. From this bound we
learn that the sum

∑
j 6=j′ Kjj′ scales at most linearly in c, even though it

contains two sums over the coalition. A study of the covariances is left
for future work.

4.3.4 Fourier transform of ψ

Theorem 4.33. The Fourier transform of ψ is given by

ψ̃(k) =
2q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
Kb·
[(

1− b

c

)
Λ(d′b, v

′
b; k) +

b

c
Λ(D′b, V

′
b ;−k)

]
,

(4.72)
with Λ as defined in Lemma 4.23, and

d′b = b+ κ ; v′b = c− b+ κ[q − 1]

D′b = c− b+ κ[q − 1] ; V ′b = b+ κ. (4.73)

Proof. We use the expression for ψ given in Theorem 4.30. The Fourier
integral for the summands in ψ+ is immediately of the form (4.49) and
yields Λ(D′b, V

′
b ;−k). The integral over the ψ− terms is of the form∫ 0

−∞du f(u2)e−iku, which can be rewritten as
∫∞

0
du f(u2)eiku; this too

has the form (4.49) and yields Λ(d′b, v
′
b; k).

Corollary 4.34. For q ≥ 3 and 1
2(q−1)

≤ κ < 1
2
, the ψ̃ has the following

power series expansion,

ψ̃(k) = 1− i µ̃
c
k − 1

2
M2k

2 + A(−ik)2+2κ +O(k3), (4.74)

where A :=
2q

B(κ, κ[q − 1])
K1Γ(−2− 2κ). (4.75)
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Proof. Trivially E[u0] = 1. From Consistency check 2 and Lemma 4.31
we know that E[u] = µ̃

c
and E[u2] = M2. Hence by Lemma 4.16 we have

ψ̃(0) = 1, ψ̃′(0) = −i µ̃
c
and ψ̃′′(0) = −M2. The expansion in (4.74) is

consistent with these values. After k2 the powers can be non-integer.
The next term in the series expansion is k2+2κ. The exponent comes
from the application of Lemma 4.23 in Theorem 4.33: in the first term of
(4.49) the k2v factor can build irrational powers of k. The minimum value
generated is for V ′1 = 1 +κ, with V ′b as defined in (4.73). Note that the Λ
term obtained from v′c is not present because it is multiplied by 1− b/c.
The next contribution is v′c−1 = 1 + κ[q − 1] which (for q ≥ 3) is larger
than V ′1 . Finally, the coefficient A follows from the Λ(D′1, V

′
1 ,−k) term

in (4.72), taking only the leading term (=1) in the sum representation of
the 1F2 function.

In order to apply the CSE method we will have to work with a zero-
mean pdf. For this reason we introduce a ‘centered’ version of ψ.

Definition 4.5. We define the pdf χ as a shifted version of ψ,

χ(r) := ψ

(
µ̃

c
+ r

)
. (4.76)

We will use shorthand notation r = u − µ̃/c. From the definition it
trivially follows that E[r] = 0 and E[r2] = V .

Lemma 4.35. The Fourier transform of χ is given by

χ̃(k) = eik
µ̃
c ψ̃(k). (4.77)

Proof. χ̃(k) =
∫∞
−∞dr e−ikrχ(r) =

∫∞
−∞du e−ik(u−

µ̃
c )ψ(u) = eik

µ̃
c ψ̃(k).

Corollary 4.36. Let 1
2[q−1]

< κ < 1
2
and let χ be as given in Defini-

tion 4.5. Then χ̃ has the following power series expansion,

χ̃(k) = 1− 1
2
V k2 + A(−ik)2+2κ +O(k3) (4.78)

with A as given in (P.2).

Proof. From (4.77) we can rewrite χ̃(k) as a product of the series ex-
pansions of eik

µ̃
c and ψ̃(k). Since eik

µ̃
c = 1 + i µ̃

c
k − 1

2
µ̃2

c2
k2 + O(k3), and
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the ψ̃(k) expansion was given in (4.74), we have

eik
µ̃
c ψ̃(k) =

[
1 + i

µ̃

c
k − 1

2

µ̃2

c2
k2 +O(k3)

]

·
[
1− i µ̃

c
k − 1

2
M2k

2 + A(−ik)2+2κ +O(k3)

]
(4.79)

= 1 + 0k +

(
−M2

2
− µ̃2

2c2
+
µ̃2

c2

)
k2 + A(−ik)2+2κ +O(k3),

(4.80)

and (4.78) follows after some simplification.

Remark 4.37. The 1 − 1
2
V k2 part of (4.78) can be also found using

Lemma 4.16, since we know that E[r] = 0 and E[r2] = V .

In the expression (4.78) there are no powers between k0 and k2. This
makes it possible for us to use the CSE method.

4.3.5 Cm definition: application of the CSE method
to the guilty user score

We are now finally in a position to compute accusation probabilities for
guilty users. The Fourier transform χ̃ serves as the basis; raising it to the
power m yields the Fourier-transformed pdf of the total accusation Sj.
The computational steps are almost identical to the case of the innocent
score distribution [33], with two minor differences:

1. The variance of the single-segment pdf is V instead of 1;

2. The pdf has non-zero average.

Below we list the (slight) modifications in the CSE method, as com-
pared to the innocent case, induced by the V 6= 1 variance and the
nonzero mean. First, the tail of the Gaussian distribution changes.

Lemma 4.38. Let V > 0 be the variance defined in (4.68). Then, for
x ∈ R it holds that

1

2πi

∫ ∞

−∞
dk

eikx

k
e−

V
2
k2 = 1

2
− Ω(x/

√
V ). (4.81)
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Proof. From Eq. 9.254.1 in [9] we have that 1
2πi

∫∞
−∞dk eikx

k
e−k

2/2 =
1
2
− Ω(x). Changing the integration variable in (4.81) to k′ = k

√
V

immediately yields the result.

The modified Gaussian tail leads to modifications in all the integrals
involving the tail.

Lemma 4.39. Let V > 0 be the variance defined in (4.68). For x ∈ R
and ν > 0 it holds that
∫ ∞

−∞

dk

2π
(i sgn k)α−1|k|ν−1e−

V
2
k2eikx =

1

πV
ν
2

Γ(ν)2ν/2 Im

[
i−αH−ν

(
ix√
2V

)]
.

(4.82)

Proof. Corollary 2 in [33] states that for x ∈ R and ν > 0:
∫ ∞

−∞

dk

2π
(i sgn k)α−1|k|ν−1e−k

2/2eikx =
1

π
Γ(ν)2ν/2 Im

[
i−αH−ν

(
ix√

2

)]
.

(4.83)
A change of integration variable to k

√
V in (4.82) directly leads to the

end result.

The nonzero expectation value E[Sj] = mµ̃/c gives rise to a ‘shifted’
version of the formula for the accusation probability. We introduce a
shifted accusation threshold ∆,

∆ := Z −mµ̃/c ; ∆̃ := ∆/
√
m. (4.84)

The accusation probability can be expressed as a function of ∆̃, as shown
in the following two theorems.

Theorem 4.40. Let j be a guilty user. Let Cm denote the accusation
probability Pr[Sj > Z]. Then

Cm(∆̃) =
1

2
+

i

2π

∫ ∞

−∞
dk

exp(ik∆̃)

k

[
χ̃

(
k√
m

)]m
. (4.85)

Proof. Exactly the same as the proof of Theorem 4.18, but with ∆̃
replacing Z̃.
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Theorem 4.41. Let j be a guilty user and 1
2[q−1]

< κ < 1
2
. Then it is

possible to write
[
χ̃

(
k√
m

)]m
= exp(−1

2
V k2)

[
1 +

∞∑

t=0

ωt(m)(i sgn k)αt|k|νt
]

(4.86)

where αt are real numbers; the coefficients ωt(m) are real; the powers νt
satisfy ν0 = 2 + 2κ and νt+1 > νt. The νt are not necessarily integer. All
the coefficients ωt(m) are decreasing functions of m. The probability of
accusing user j is given by

Cm(∆̃) = Ω(∆̃/
√
V )+ 1

π

∑∞
t=0 ωt(m)Γ(νt)(2/V )νt/2 Im

[
i−αtH−νt(i∆̃/

√
2V )

]
.

(4.87)

Proof. See Appendix J.

Numerics obtained from the application of the CSE method are present
in Chapter 6.

4.4 Mixed strategies

It is worth remarking that the CSE method can be applied even when the
colluders have the option of choosing a strategy for each content segment
separately. Let ϕs denote the ϕ-function for some strategy s, and let ms

be the number of segments in which this strategy is applied. The only
thing we have to do is replace

[ϕ̃(k/
√
m)]m →

∏

s∈strategies

[ϕ̃s(k/
√
m)]ms (4.88)

and then follow all the derivation steps as before. The same procedure
can be applied on the ψ function.

4.5 Research question, revisited

With the technical background of Chapters 2 and 3, it is now possible to
formulate our research question in more technical terms:

What are the error rates of the q-ary Tardos
scheme [42] in the Restricted Digit Model?
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We restrict ourselves to the RDM because it lends itself to analysis.
In addition to the questions raised in Section 1.6, another important

aspect of Tardos codes studied in this work is the convergence to Gaussian
distributions. We investigate under which circumstances the Gaussian
assumption is justified.
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5
Strategy classification and

Kb computation

The attack chosen by the colluders has two different targets, both that
aim to make worthless the tracing scheme: to not be accused (keeping the
attacker’s scores low) and to make accused many innocent users (trying
to raise the innocent’s score). The motivation in the first case is obvious.
In the second, instead, if many innocent users get accused, the distributor
can be blamed for being untrustworthy, with the consequence that his
traitor tracing scheme is considered unreliable.

As specified in Section 3.2, the attack is assumed to have three sym-
metries:

1. Symbol symmetry,

2. Segment symmetry,

3. Attacker symmetry.

The possible strategies that attackers may use are infinite. However,
just few of them have an interesting effect on the classic Tardos’ scheme.
The explanation is given by Figure 3.1 that shows the error probabilities.
The two areas are the attackers’ targets and they want to raise them as
much as possible. To convert this task into a strategy is not trivial at
all.

The PFP and PFN depend obviously on many parameters (q, m, κ,
c and the strategy) and the applied strategy is just one of them. The
combination of the parameters creates several different scenarios, making
unattainable to proclaim a particular strategy “the best one”.
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Back to Figure 3.1, the PFP corresponds to the innocent right tail area
from the point Z/

√
m (now known also as Z̃) on. Supposing that Z̃ has

been fixed to a specific value , to raise PFP, there are two ways: to shift
the entire innocent curve to the right or to make its right tail heavier.
Unluckily for the guilty coalitions, the first option is unfeasible for a
simple reason: in (3.13) is shown that the one-segment average innocent
score is zero independently from the strategy. Obviously, this value holds
also when we consider the total innocent score. As consequence, the
innocent curve cannot be shifted in any direction. That leaves the second
option. For the Central Limit Theorem, when m → ∞ the innocent
curve shape converges exactly to a Gaussian and this shape cannot be
altered. In reality, being m < ∞ there will be always a portion of the
right innocent tail that will follow a non-Gaussian behaviour, and in this
section is possible, using the right strategy, to tweak the tail heaviness.
The lower the m, the longer the non-Gaussian part.

For the PFN can be applied the same reasoning done for PFP. To
increase its value, the coalition can try to shift the guilty curve to the
left or to raise the guilty left tail. This time the first option is totally
feasible, as we can see in Theorem 4.27 where is shown how µ̃ depends
on Kb. A strategy that can reduce µ̃ value will automatically shift the
entire curve to the left. The second option, instead, is not a good target
for the colluders as we are going to show in the following lines. When m
increases, the guilty curve becomes more Gaussian. Hence, for large m,
the strategy has less effect on the shape of the tails, and the best attack
is to reduce µ̃. At “small” m, there is a complicated tradeoff between
stretching the innocent right tail and reducing µ̃.

The structure of this chapter is the following: in Section 5.1 we define
formally the strategies we have investigated; in Section 5.2 we introduce
a classification for the attacks and we compute Kb for the investigates
strategies; in Section 5.3 we present some analytic results.

5.1 Strategy definitions

In our research the study of the q-ary Tardos’ scheme has been done
focusing on the PFP and PFN behaviour under the changes of all the
parameters involved. From this point of view, we were searching the
strategies that could behave better to accomplish the task of increasing
both these probabilities with a simple decoder approach. It is important
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Strategy Abbrev. Description θy|σ
Minority Voting MinV Select symbol that occurs

least often
Majority Voting MajV Select symbol that occurs

most often
Interleaving Int Select random attacker’s

symbol
σy/c

µ̃-minimizing µ̃-min Select σy > 0 that mini-
mizes µ̃ (see Section 5.1.5)

Random Symbol RS Choose uniformly from re-
ceived symbols

[σy>0]

|{α∈Q:σα>0}|

Table 5.1: List of the strategies investigated with brief description.

to remark that this is not the only way to judge the efficiency of an
attack. For example, from an information-theoretical point of view, the
best strategy for the coalition is the one that minimizes the fingerprinting
capacity, while the tracer sets up the scheme trying to maximise it. In
[13] it has been found that the optimal choices are the interleaving attack
for the attackers and the Dirichlet distribution with κ = 1

2
for the tracer.

Unfortunately, in [13] it was not present an optimal score system to use.
The strategies we are going to study are five: majority voting, minor-

ity voting, interleaving attack, random symbol attack, and µ̃-minimizing
attack. We start providing their definitions, arriving to their represen-
tation Ψb(x). This will prepare the way to computing the Kb given in
Section 5.2.2. For the sake of simplicity, from now on we are going to use
the abbreviations defined in Table 5.1 to refer to the various strategies.
There is also an extremely brief description of the strategies and, when
simple to do, its θy|σ. These abbreviations will be also used as labels on
θy|σ, Ψb(x) and Kb.

5.1.1 Majority voting

Definition 5.1 (Majority Voting). The MajV attack selects the symbol
that highest tally in the segment. In case of two or more symbols occur the
most, one of them will be randomly drawn. Formally, its θy|σ definition
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is:

θMajV
y|σ =

{
1
a

if σy = max
β∈Q

σβ

0 otherwise
, (5.1)

where a = |{α ∈ Q : σα = maxβ∈Q σβ}|.
Lemma 5.1. For MajV, Ψb(x) parametrization is:

ΨMajV
b (x) =

{
1
`+1

if b = max
1≤i≤q−1

xi

0 otherwise
, (5.2)

where ` = |{i : xi = b}|
Intuitively, to output the most frequent symbol has the side effect of

giving a high coalition score because many attackers will have a positive
match between the chosen symbol and their received symbol. As conse-
quence, the score function g1 will be applied more often. On the other
hand, it is likely that also many innocent people have received the same
symbol (especially when c is big), and then also their score will be higher.
Furthermore, if the symbol in question is often present as consequence of
a high probability in the generating p, then the score gained g1(py) will
not be very big and then not much damaging for the coalition.

5.1.2 Minority voting

Definition 5.2 (Minority Voting). The MinV attack selects the symbol
with the smallest non-zero tally in the segment. In case of two or more
symbols occur the least, one of them will be randomly drawn. Formally,
its θy|σ definition is:

θMinV
y|σ =





1
a

if σy = min
β∈Q:
σβ>0

σβ

0 otherwise
, (5.3)

where a = |{α ∈ Q : σα = minβ∈Q σβ}|.
Lemma 5.2. For MajV, Ψb(x) parametrization is:

ΨMinV
b (x) =





1
`+1

if b = min
1≤i≤q−1
xi>0

xi

0 otherwise
, (5.4)

where ` = |{i : xi = b}|
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Choosing the least frequent symbol, the colluders reduce their score
by having as few matches with the chosen symbol as possible, collecting
more negative scores. Many innocent users will also have a negative
score. On the other hand, any match will cause a high positive score
when the py is low.

5.1.3 Interleaving attack

Definition 5.3 (Interleaving attack). The Int attack output the symbol
of a randomly drawn attacker. Formally, its θy|σ definition is:

θInt
y|σ =

σy
c

(5.5)

Lemma 5.3. For Int, Ψb(x) parametrization is:

ΨInt
b (x) =

b

c
(5.6)

The ‘interleaving’ colluder strategy, which is known to be information-
theoretically optimal [11, 13] for c0 → ∞, turns out to have special
properties: the pdf and µ̃ do not depend on the coalition size (see Section
5.3.2); the left and right tail are maximally heavy (see Tables 4.1 and
4.2).

This strategy has an important difference from MajV and MinV: its
has an extra probabilistic step thank to which it is not possible to know
in advance which symbol will be chosen even knowing σ. This does not
happen for MajV and MinV, where in many cases Ψb(x) is populated
just by 0s and 1s.

It is important to notice that, for large c, θInt
α|σ ≈ pα, meaning that

big coalitions look like innocent users.

5.1.4 Random symbol attack

Definition 5.4 (Random symbol attack). The RS attack selects uni-
formly one of the symbols detected by the coalition. Formally, its θy|σ
definition is:

θRS
y|σ =

{
1
a′ if σy > 0
0 otherwise (5.7)

where a′ = |{α ∈ Q : σα > 0}|.
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Lemma 5.4. For RS, Ψb(x) parametrization is:

ΨRS
b (x) =

{
1

w+1
if b > 0

0 otherwise , (5.8)

where w = |{i : xi > 0}|

5.1.5 µ̃-minimizing attack

Definition 5.5 (µ̃-minimizing attack). The µ̃-min attack chooses the
symbol such that the expected single-segment coalition score µ̃ is mini-
mized.

This is the strongest attack in the Gaussian regime. It is very easy
to describe µ̃-min in words, while it is difficult to do it as θy|σ or Ψb(x).
The symbol chosen depends on all the parameters due to µ̃ definition
(see (4.59)). However, we will show later how is instead possible to give
its definition in Kb form, that is the one we will really need to apply the
CSE method.

Asymptotically for large code lengths the colluder strategy has neg-
ligible impact on the Gaussian shape of the innocent (and guilty) accu-
sation pdf. For q ≥ 3 the main impact of their strategy is on the value
of the statistical parameter µ̃. (For the binary symmetric scheme with
κ = 1

2
, the µ̃ is fixed at 2

π
; the attackers cannot change it. Then the

strategy’s impact on the pdf shape is not negligible.)
Hence for q ≥ 3 the strategy that minimizes µ̃ is asymptotically a

‘worst-case’ attack in the sense of maximizing the false positive probabil-
ity. This was already argued in [42], and it was shown how the attackers
can minimize µ̃.

From (4.59) let be

T (b) = W (b)

{
1
2
− κ+

b

c
(κq − 1)

}
. (5.9)

It is evident that, for a given σ, the attackers must choose the symbol y
such that T (σy) is minimal1, i.e. y = arg minα T (σα). In case of a tie it
does not matter which of the best symbols is chosen, i.e. if the minimum
T (σα) is shared by N different symbols, then each of these symbols will
have probability 1/N of being elected.

1Notice that P1(b) is unknown to the coalition



5.1 Strategy definitions 61
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Figure 5.1: The function T (b) for q = 3, c = 20 and two values κ
outside ( 1

2[q−1]
, 1

2
).

Let us introduce the notation x = b/c, x ∈ (0, 1). Then for large c we
have [33]

T (cx) ≈
1
2
− κ+ x(κq − 1)√

x(1− x)
. (5.10)

From (5.10) we deduce some elementary properties of the function T .

• If κ < 1
2(q−1)

then T is monotonically decreasing, and T (b) may
become negative at large b.

• If κ > 1
2
, then T is monotonically increasing, and T (b) may become

negative at small b.

• For κ in between those values, T (b) is nonnegative and has a min-
imum at b

c
≈ 1

q−2
( 1

2κ
− 1).

We expect that the existence of negative T (b) values has a very bad
impact on µ̃ (from the accuser’s point of view), and hence that κ is best
chosen in the interval ( 1

2(q−1)
, 1

2
).

Fig. 5.1 shows the function T (b) for two values of κ outside this ‘safe’
interval. For κ = 0.2 it is indeed the case that T (b) < 0 at large b, and for
κ = 0.9 at small b. Note that T (c) is always positive due to the Marking
Assumption. For small κ, the T (b)-ranking of the points is clearly such
that majority voting is the best strategy; similarly, for large κ minority
voting is best. For intermediate values of κ a more complicated ranking
will occur.

These are the five strategies we are going to investigate. In the next
section we are going to compute their Kbs. This is the last ingredient
necessary to compute the error curves.
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5.2 Strategy classifications and Kb precom-
putation

The Kb pure definition given in (4.23) can require an enormous amount
of time to be computed. The full sum over x can make unpractical to
compute Kb for some strategies. Luckily, many attacks can drastically
simplify Kb formula.

One of our contribution consists in defining some Ψb(x) strategy
classes for which the computation of Kb becomes quicker. In the next
section we are going to define these classes, describe the achieved speed-
up and show in which classes the five strategies defined in Section 5.1
fit.

5.2.1 Strategy classes

The strategy classification we are going to provide is a prescription for
efficiently computing the Kb parameters for more general colluder strate-
gies than those studied in [33]. We consider the strategy parametrization
Ψb(x) with b 6= 0. The vector x ∈ Nq−1 can contain several entries equal
to b. The number of such entries will be denoted as `. (The dependence
of ` on b and x is suppressed in the notation for the sake of brevity.)
The number of remaining entries is r , q − 1 − `. These entries will be
denoted as z = (z1, · · · , zr), with zj 6= b by definition. Many symmetric
strategies can be parameterized as a function Ψb(x) which in turn can be
expressed as a function of b, ` and z; it is invariant under permutation
of the entries in z. We will concentrate on the following ‘factorizable’
classes of attack, each one a sub-class of the previous one.

Class 1: Ψb(x) is of the form w(b, `)
∏r

k=1 W (b, `, zk)

Class 2: Ψb(x) is of the form w(b)
`+1

∏r
k=1W (b, zk)

Class 3: Ψb(x) is of the form 1
`+1

∏r
k=1 W (b, zk), with W (b, zk) ∈ {0, 1}

and W (b, zk) +W (zk, b) = 1. By definition W (b, 0) = 1.

Class 1 merely restricts the dependence on z to a form factorizable
in the components zk. This is a very broad class, and contains e.g. the
Int attack (θα|σ = σα

c
, Ψb(x) = b

c
) which has no dependence on z.
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Class 2 puts a further restriction on the `-dependence. The factor
1/(` + 1) implies that symbols with equal occurrence have equal proba-
bility of being selected by the colluders. (There are ` + 1 symbols that
occur b times.)

Class 3 restricts the function W to a binary ‘comparison’ of its two
arguments: Ψb(x) is nonzero only if for the attackers b is ‘better’ than
zk for all k, i.e. W (b, zk) = 1. An example of such a strategy is MajV,
where Ψb(x) = 0 if there exists a k such that zk > b, and Ψb(x) = 1

`+1

if zk < b for all k. Class 3 also contains MinV, and in fact any strategy
which uses a strict ordering or ‘ranking’ of the tallies b, zk. (Here a zero
always counts as ‘worse’ than nonzero.)

Our motivation for introducing classes 1 and 2 is mainly technical,
since they affect to which extent the Kb parameters can be computed
analytically.

Theorem 5.5. Let Nb ∈ N satisfy Nb > max{c−b, bq−c, (c−b)(q−2)}.
Let τb , ei2π/Nb, and let

Gba` ,
∑

z∈{0,...,c−b}\{b}

Γ(κ+ z)W (b, `, z)

τazb z!
, vba ,

Γ(κ+ b)

τabb b!
. (5.11)

Then for strategies in class 1 it holds that

Kb =
(c− b)!

NbΓ(c− b+ κ[q − 1])B(κ1q−1)
·

Nb−1∑

a=0

τ
a(c−b)
b

q−1∑

`=0

(
q − 1

`

)
Gq−1−`
ba` w(b, `)v`ba. (5.12)

Proof. See Appendix K.

Theorem 5.6. For strategies in class 2 the quantity Gba` as defined in
(5.11) does not depend on ` and can be denoted as Gba (with W (b, `, z)
replaced by W (b, z)). It then holds that

Kb =
b!(c− b)! w(b)

qNbΓ(κ+ b)Γ(c− b+ κ[q − 1])B(κ1q−1)

Nb−1∑

a=0

τacb [(Gba + vba)
q −Gq

ba] .

(5.13)

Proof. See Appendix L.
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Theorem 5.7. For strategies in class 3, Theorem 5.6 holds, where w(b) =
1 and Gba can be expressed as

Gba =
∑

z∈{0,...,c−b}\{b}
W (b,z)=1

Γ(κ+ z)

τazb z!
. (5.14)

Proof. See Appendix M.

Note that also µ̃-min fits in class 3. The function W (b, zk) evaluates
to 1 if T (b) < T (zk) and to 0 otherwise.2

Without these theorems, straightforward computation of Kb follow-
ing (4.23) would require a full sum over x, which for large c comprises
O(cq−2/(q − 1)!) different terms. (q − 1 variables ≤ c− b, with one con-
straint, and with permutation symmetry. We neglect the dependence
on b.) Theorem 5.5 reduces the number of terms to O(q2c2) at worst; a
factor c from computing Gba, a factor q from

∑
` and a factor Nb from∑

a, with Nb < qc. In Theorem 5.6 the `-sum is eliminated, resulting in
O(qc2) terms.

We conclude that, for q ≥ 5 and large c, Theorems 5.5 and 5.6 can
significantly reduce the time required to compute the Kb parameters.3
A further reduction occurs in Class 3 if the W (b, z) function is zero for
many z.

5.2.2 Kb computation

We compute Kb for the five strategies and study the computational
effort needed. As aforementioned, the naive approach would require
O(cq−2/(q − 1)!) terms. The knowledge of Kb provides a better under-
standing of the attacks when combined with the study done before on ϕ
and ψ.

2 For x, y ∈ N, with x 6= y, it does not occur in general that T (x) = T (y). The
only way to make this happen is to choose κ in a very special way as a function of q
and c. W.l.o.g. we assume that κ is not such a pathological case.

3 To get some feeling for the orders of magnitude: The crossover point where
qc2 = cq−2/(q − 1)! lies at c = 120, 27, 18, 15, 13, for q =5, 6, 7, 8, 9 respectively.



5.2 Strategy classifications and Kb precomputation 65

Computing KMajV
b

Lemma 5.8. Let the colluder strategy be MajV. Let Nb ∈ N with Nb >
max{c− b, bq − c}, and let τb and Gba be defined as

τb = ei2π/Nb ; Gba =
b−1∑

z=0

Γ(κ+ z)

τazb z!
. (5.15)

Then KMajV
b is given by

b <
c

q
: KMajV

b = 0 (5.16)

c

q
≤ b <

c

2
: KMajV

b =
b!(c− b)!

qNbΓ(κ+ b)Γ(c− b+ κ[q − 1])B(κ1q−1)

·
Nb−1∑

a=0

τacb [(Gba + vba)
q −Gq

ba] (5.17)

b =
c

2
: KMajV

c/2 = 1− q − 1

2
· B(κ1q−1 + c

2
e1)

B(κ1q−1)
(5.18)

= 1− 1
2

(1 + κ)c/2−1

(1 + κ[q − 1])c/2−1

(5.19)

b >
c

2
: KMajV

b = 1. (5.20)

Proof. See Appendix N.

These expressions look very complicated. However, they are easier
to evaluate numerically than (4.23). Evaluation of (5.17) requires only
two summations: for every a, the computation of Gba involves fewer than
c/2 terms, and the a-sum has Nb terms, with Nb = O(cq/2). The total
number of terms is O(c2q/4).

Note that a large number N can be chosen that satisfies N > max{c−
b, bq − c} for all c/q ≤ b < c/2. Then all the Nb values in (5.17) can be
set to N . The price one pays for this small simplification is that the sums
contain more terms.

Remark 5.9. Eq. (5.17) holds for all b ∈ {1, . . . , c}. However, it is not
evident to see how it reduces to (5.16), (5.18) and (5.20) without doing
the derivation in Appendix N backwards.
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Computing KMinV
b

Lemma 5.10. Let the colluder strategy be MinV. Let Nb ∈ N with

Nb >

{
c− 2b if q = 2
(c− b)(q − 2) if q > 2

, (5.21)

and let τb and Gba be defined as

τb = ei2π/Nb ; Gba =
c−b∑

z=b+1

Γ(κ+ z)

τazb z!
. (5.22)

Then KMinV
b is given by

b ≤ c

q
: KMinV

b =
b!(c− b)!

qNbΓ(κ+ b)Γ(c− b+ κ[q − 1])B(κ1q−1)

·
Nb−1∑

a=0

τacb [(Gba + vba)
q −Gq

ba] (5.23)

b >
c

q
: KMinV

b = 0. (5.24)

Proof. See Appendix O.

Similarly to MajV, the evaluation of (5.23) contains two summations:
for every a, the computation of Gba involves c − 2 terms in the worst
case (b = 1), and the a-sum has Nb terms, with Nb = O(cq). The total
number of terms is O(c2q), more then the MajV case but still a huge
improve compared to (4.23).

Computing KInt
b

Lemma 5.11. If the colluder strategy is the Int attack, θy|σ = σy
c
, then

Kb = b/c.

Proof. This strategy implies Ψb(x) = b/c independent of x. Substitute
this into (4.23) and use the fact that the probabilities add up to 1.

The computational complexity for Int is negligible considering the
helpful simplification given by Lemma 5.11.
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Computing K µ̃−min
b

Lemma 5.12. Let the colluder strategy be µ̃-min. Then the form of
K µ̃−min
b corresponds to the one of Theorem 5.7 with

W (b, z) =

{
1 if T (b) < T (z)
0 otherwise (5.25)

for T as defined in (5.9).

Proof. As discussed in Section 5.2.1, µ̃-min fits in Class 3 description.
Then K µ̃−min

b is attainable trivially using Theorem 5.7 and (5.25).

The complicated nature of µ̃-min does not allow to find ranges of b for
which the computation can be quicker. However, it is possible to predict
the tally ranking for some particular values of κ. Indeed, as shown in
(5.10), the function T can have three different behaviours as a function
of κ: monotonically decreasing, monotonically increasing and cup-shape.
When T has a monotonic behaviour, it is trivial to understand which
tally b will minimize T . From the properties obtained about T in (5.10),
follows that:

• If κ < 1
2(q−1)

, then T is monotonically decreasing and it is minimized
by high b. Then K µ̃−min

b ≡ KMajV
b

• If κ > 1
2
, then T is monotonically increasing, and T (b) and it is

minimized by low b. Then K µ̃−min
b ≡ KMinV

b

A very important scenario that we have already encountered appears
when κ ≈ 1/q. In this case, even if T (b) has a cup-shape behaviour,
µ̃-min behaves as MajV, as shown in the following theorem.

Theorem 5.13. For q ≥ 3 and κ ≈ 1/q, the MajV strategy minimizes µ̃.

Proof. The ‘optimal’ colluder strategy (in the sense of making µ̃ as
small as possible) is, for given σ, to choose y such that the expression
W (σy){1

2
− κ + σy

c
(κq − 1)} is minimized. Putting κ ≈ 1/q in (4.57),

we see that the optimal attack strategy is effectively to minimize W , i.e.
the coalition chooses y = argminα∈Q:σα>0W (σα). Numerical inspection
shows that the function W (b) has a minimum at b = dc/2e (see Fig. 5.2).

For large c this is easily understood: application of Lemma 4.9 for
large b and c−b givesW (b) ≈ [ b

c
(1− b

c
)]−1/2, a function with its minimum
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Figure 5.2: Example of W (b) for q = 3, κ = 0.34.

at b = c/2 and symmetric around this minimum. Hence the optimal
strategy consists of choosing the symbol α whose σα is closest to c/2. It
turns out that this is precisely the same as majority voting. This can be
seen as follows. First consider the case where the ‘closest to c/2’ strategy
results in σy > c/2. Because of the sum rule

∑
α σα = c, there can be

no α 6= y with σα > c/2; hence the strategy has resulted in selecting the
majority symbol. Second, consider the ‘closest to c/2’ strategy yielding
σy = c/2 − δ, with δ > 0. If there is any α 6= y with σα > σy, it will
have to satisfy σα ≥ c/2 + δ = c − σy. Only the equality is allowed
(σα = c−σy) by the sum rule; it gives rise to almost the same amount of
accusation as σy, since W (b) is very close to symmetric around c/2.

Computing KRS
b

The RS attack does not fit in any of the classes defined in Section 5.2.1.
Indeed, the factor 1/w in Definition 5.4 does not fit with the ` Even so,
KRS
b can also be simplified obtaining a result that looks similar to the

formula for Class 2.

Theorem 5.14. Let q > 2 and b ∈ {1, . . . , c − 1}. Let Nb ∈ N satisfy
Nb > (c− b)(q − 2) . Let τb = ei2π/Nb, and let Gba be defined as

Gba =
c−b∑

z=1

Γ(κ+ z)

τazb z!
. (5.26)

The Kb parameter for the RS strategy can then be expressed as

KRS
b =

(c− b)!Γ(κ[q − 1])Γ(κ)

qNbΓ(c− b+ κ[q − 1])

Nb−1∑

a=0

τ
a(c−b)
b

(Gba/Γ(κ) + 1)q − 1

Gba

. (5.27)
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Proof. See Appendix P.

Theorem 5.14 reduces the number of terms to O(qc2): a factor c− b
from the z-sum and a factor Nb = O(qc) from the a-sum.

Theorem 5.14 holds for q > 2. For the binary alphabet the result is
much simpler.

Lemma 5.15. Let q = 2 and b ∈ {1, . . . , c− 1}. Then the Kb parameter
for the RS strategy is

KRS
b = 1

2
. (5.28)

Proof. With b ∈ {1, . . . , c − 1} it is guaranteed that both symbols in
the alphabet are detected by the attackers. Then, by definition of the
RS strategy, one of the two symbols is chosen uniformly at random.

Lemma 5.16. Let q > 2. Then

KRS
1 < KRS

2 < · · · < KRS
c−1 = 1

2
. (5.29)

Proof sketch. When b increases, the average number of symbols α ∈
Q with σα > 0 decreases. At b = c− 1 it is guaranteed that the number
of detected symbols is exactly two.

5.3 Analytic results

Some of the results given in Chapter 4 can be rewritten using the Kb

formulas of Section 5.2.2.

5.3.1 Dominant power on tails

In ϕ definition (Theorem 4.2.2) Kb has an important role and the tail
behaviours shown in Table 4.1 does not hold for MajV. Indeed, the dis-
crepancy between the tails is even more pronounced if the attackers use
MajV strategy (which for q ≥ 3, κ ≈ 1/q minimizes µ̃, as shown in
Theorem 5.13) as shown in Figure 5.3.

Then the right tail is dominated by the b = dc/qe term, which behaves
as (1/u)3+2dc/qe+2κ, which for c > q decreases even faster than (1/u)5+2κ.
From this perspective it may be better for the attackers not to use MajV;
another strategy may yield a form of the ρ curve that is better for them.
The best strategy strikes a balance between decreasing µ̃ and lengthening
the tail of ϕ+(u).
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7

2.3 The CSE method for computing false accusation probabilities

We briefly review the method introduced in [20]. It is based on the convolution rule for generating functions

(Fourier transforms): Let A1 ∼ f1 and A2 ∼ f2 be continuous random variables, and let f̃1, f̃2 be the

Fourier transforms of the respective pdfs. Let A = A1 + A2, and A ∼ Φ. Then the easiest way to find Φ

is to use the fact that Φ̃(k) = f̃1(k)f̃2(k). If i.i.d. variables Ai ∼ ϕ are summed, A =
∑m
i=1Ai, then the

pdf of A is found using Φ̃(k) = [ϕ̃(k)]m.

The pdf of an innocent user’s one-segment accusation S
(i)
j will be denoted as ϕ. It was found that ϕ has

the following form, (Theorem 5 in [20])

u > 0 : ϕ(u) =
2q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
(u2)κ[q−1]+c−b−

1
2

(1 + u2)c+1+κq
Kb

u < 0 : ϕ(u) =
2q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
(u2)κ+b−

1
2

(1 + u2)c+1+κq
Kb. (14)

Notice that the formulas contain the strategy-dependent parameters Kb. In Figure 1 we show ϕ for different

strategies. The strategy has a minor influence on the left tail, but strongly affects the shape of the right

tail. A fat positive tail is favorable to the attackers, as it leads to (1) an increased probability of FP

errors and (2) slower convergence of the total score pdf to the Gaussian form. We see that MinV causes

the biggest tail, followed by RS and Int. MajV has the shortest tail. (The µ̃-min attack is equivalent to

MajV for the given parameter values. See [19].) This behaviour is easily understood from the powers of u

occurring in (14) for u > 0. For u � 1, the summand is proportional to Kb(1/u)3+2κ+2b. The dominant

contribution to the tail occurs at b = 1. MinV has a very large K1 due to its preference for symbols that

occur infrequently. In contrast, MajV has Kb = 0 for b < c/q.

q = 3, c = 3, κ ≈ 1/3

u

log10 ϕ(u) MajV/µ̃-min

MinV

RS

Int

-4 -2 2 4

-4

-3

-2

-1

Fig. 1 The pdf ϕ of the single-segment score, shown for several strategies. The right tail strongly depends on the
strategy, while the left tail is hardly affected.

The Fourier transform ϕ̃ was computed in [20], and an expression for [ϕ̃(k/
√
m)]m was derived as a power

series in k/
√
m. The pdf of Sj for innocent j then follows from the inverse Fourier transform; finally the

FP probability is the area under the tail at Sj > Z.

The result was formulated as follows. Let Rm be a function defined as Rm(Z̃) := Pr[Sj > Z̃
√
m] (for

innocent j). Let Ω be the corresponding function in case the pdf of Sj is Gaussian, Ω(Z̃) = 1
2Erfc(Z̃/

√
2).

Figure 5.3: The pdf ϕ of the single-segment score, shown for several
strategies. The right tail strongly depends on the strategy, while the left
tail is hardly affected.

In the binary case, it is easy to identify where the balance lies: For
κ ≈ 1

2
, the strategy has practically no effect on µ̃, so the attackers should

concentrate on lengthening the ϕ+(u) tail. This is achieved by setting
Ψb nonzero for small values of b, e.g. Int or MinV.

Note too what happens to the overall probability when the colluders
choose a MajV strategy: then Kb tends to be small for small b and large
for large b. The terms with large b then dominate the summations in
Corollary 4.22, and consequently Pr[u > 0] > Pr[u < 0]. This is consis-
tent with the fact that the left (u < 0) tail is heavier: the probability
mass at u < 0 must be further removed from u = 0 in order to cause
E[u] = 0.

Let us now analyse the effects on ψ(u) when the strategies defined
are used. In case the chosen strategy is MajV, the right tail is dominated
by the b = dc/qe term, which behaves as (1/u)2dc/qe+2κ+1, which for c > q
decreases faster than (1/u)3+2κ. For MinV the left tail is dominated by
b = bc/2c, which behaves as (1/|u|)2dc/2e+2κ[q−1]+1 and decreases faster
than (1/|u|)3+2κ[q−1] for c > 2. Since K1 is the coefficient associated with
the dominant power in the right tail, we find that MinV yields the most
pronounced right tail. On the left side it is MajV, the strategy that most
emphasizes Kc−1. Fig. 5.4 illustrates these trends.
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Figure 5.4: The pdf ψ of the single-segment score of a guilty user,
shown for several strategies. c = 4, q = 3, κ ≈ 1/3.

5.3.2 Simplifications for Int attack

The extremely effective simplification on KInt
b let us simplified also other

equations.

Corollary 5.17 (Of Theorem 4.27). For the Int strategy, the µ̃ param-
eter becomes

µ̃Int = q
B(κ+ 1

2
, κ[q − 1] + 1

2
)

B(κ, κ[q − 1])
. (5.30)

Proof. From the definition of µ̃ it follows that it can be computed as
an expectation value in a single content segment, µ̃ = E[σyg1(py) + (c−
σy)g0(py)], with E the expectation over p, σ and y, and g1 and g0 as
defined in (3.11). The Ey(· · · ) expectation is given by

∑
y
σy
c

(· · · ). We
write

σy
c

[σyg1(py) + (c− σy)g0(py)] = py
σy − cpy√
py(1− py)

+
1

c

(σy − cpy)2

√
py(1− py)

.

(5.31)
From the properties of the multinomial distribution we get Eσ[σy−cpy] =
0 and Eσ[(σy − cpy)2] = cpy(1 − py). Next, the expectation Ep over the
full vector p reduces to the expectation over the component py, for which
we use the marginal pdf f(p) (Lemma 4.4). This gives

µ̃Int =
∑

y

1

B(κ, κ[q − 1])

∫ 1

0

dpy p
−1+κ
y (1− py)−1+κ[q−1]

√
py(1− py).

(5.32)
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The result of the integration does not depend on y, so the
∑

y yields a
factor q. The integral yields B(κ+ 1

2
, κ[q − 1] + 1

2
).

Corollary 5.18 (Of Theorem 4.21). If the colluder strategy is the Int,
then

ϕInt
+ (u) =

2q

B(κ, κ[q − 1])

(u2)κ[q−1]−1
2

(1 + u2)2+κq
(5.33)

ϕInt
− (u) =

2q

B(κ, κ[q − 1])

(u2)κ+
1
2

(1 + u2)2+κq
, (5.34)

and Pr[u > 0] = κ+1
κq+1

.

Proof. The first part follows directly by applying Lemma 5.11 to (4.45)
and using

∑c
b=0

(
c
b

)
bxb = xc(1 + x)c−1. The second part follows from

computing the integral
∫∞

0
du ϕ+(u) using Lemma 4.8.

It is interesting to note that the Int attack yields a ϕ(u) distribution
that has the heaviest possible tails for both positive and negative u (see
Table 4.1): proportional to (1/|u|)3+2κ[q−1] for the left tail and (1/u)5+2κ

for the right tail. It also has the lowest possible dominant powers around
u = 0. Furthermore, ϕ(u) has the special property that it is completely
independent of c.

The simplified ϕ(u) given by Corollary 5.18 yields also a simplified
Fourier transform:

Corollary 5.19 (Of Theorem 4.24). If the colluders use the Int attack,
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then

ϕ̃Int(k) = 1−1

2
k2 +

2q

B(κ, κ[q − 1])
·

[
(ik)4+2κΓ(−4− 2κ)1F2

(
κq;κ+

5

2
, κ+ 3;

k2

4

)

+ (−ik)2+2κ[q−1]Γ(−2− 2κ[q − 1])

· 1F2

(
κq;κ[q − 1] +

3

2
, κ[q − 1] + 2;

k2

4

)

+
1

2

∞∑

j=3

(ik)j

j!

[
B

(
κ+ 1 +

j

2
, κ[q − 1] + 1− j

2

)

+(−1)jB

(
κ[q − 1] +

j

2
, κ+ 2− j

2

)]]
. (5.35)

Proof. The Fourier integrals of the ϕ+ and ϕ− given in Corollary 5.18
are precisely of the form handled in Lemma 4.23, with (d = κ[q− 1], v =
κ+ 2) and (d = κ+ 1, v = κ[q − 1] + 1) respectively.

Corollary 5.20 (Of Theorem 4.30). If the colluder strategy is the Int,
then

ψInt
− (u) = (1− 1

c
)

2q

B(κ, κ[q − 1])

(u2)κ+1/2

(1 + u2)2+κq
(5.36)

ψInt
+ (u) =

2q

B(κ, κ[q − 1])
(c+ u2)

(u2)κ[q−1]−1/2

(1 + u2)2+κq
. (5.37)

The left tail has dominant power (1/|u|)3+2κ[q−1] and the right tail (1/u)3+2κ,
which corresponds to the longest possible tails as listed in Table 4.2. This
does not come as a surprise; the Int attack has the same tail behavior in
the case of innocent users.

Proof. In the case of the Int attack, we have Kb = b/c. Then the∑
b summations in Theorem 4.30 can be evaluated exactly yielding the

result.
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6
Numerical results

In this chapter we apply the CSE method to obtain numerics about PFP

and PFN. These two cases are going to be studied first separately and
then combined in the ROC curve. We analyzed how the errors probability
scales over changes on all the parameters involved in the scheme: c, q,
m, κ and, obviously, the strategy.

6.1 Convergence properties of the CSE method

In this section we are going to discuss the convergence of the CSE method.
How many terms in the series expansions must be kept in order to obtain
an accurate result? If too few are taken, the result is incorrect. If many
are taken, too much time is spent. As we will see, it can even happen that
a series first converges and then diverges when more terms are added.
The power of k where we cutoff the series will be called “the cutoff”.
The motivation is critical: in order to obtain computable numerics it is
necessary to introduce some cutoffs that produce an important speedup.
Our target is to analyze whenever these approximations can produce
good or bad results.

Among all the components defined so far, it has been necessary to
introduce a cutoff just in these four functions:

• [ϕ̃(k/
√
m)]m defined in (4.40),

• [χ̃(k/
√
m)]m defined in (4.86),

• Rm(Z̃) defined in (4.41),
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• Cm(∆̃) defined in (4.87).

Theorems 4.19 shows how [ϕ̃(k/
√
m)]m provides the variables ωt, νt and

αt necessary to compute Rm. The exact same type of relation holds
between [χ̃(k/

√
m)]m and Cm as shown in Theorem 4.41. In (4.40) and

(4.86) the summations represent a series expansion over k, so we can
equivalently fix a cutoff νmax as degree of these series expansions (namely
we remove from the series the terms kν s. t. ν > νmax).

To understand the accuracy of the approximated power series we an-
alyze the effect of the cutoff on the Rm(Z̃) and Cm(∆̃) curves. Indeed,
thanks to the CLT, we know in advance the kind of shape the two curves
should have: for low Z̃ and ∆̃ values, they follow a Gaussian curve be-
haviour, while for higher values they change their slopes to a power-law
behaviour. The power-law behaviour has to be consistent with Figures
5.3 and 5.4 and with Theorems 4.21 and 4.30. So, we can conclude that
the cutoff is accurate enough if the curves:

• do not visibly change when we increase the cutoff,

• have a Gaussian region around the expected value,

• have a power-law region in the tail,

• have values in [0, 1].

The results we are going to show are mostly based on a trial-and-
error approach. We have not been able to find an expression, or even
a rule of thumb, that a priori predicts good values for νmax. Several
parameters have a large impact on the speed of convergence1, in partic-
ular the attack strategy. When νmax is chosen too small, we observe one
of the following problems: there exist Z̃ for which Rm(Z̃) is not in the
range [0, 1]; the Rm(Z̃) is not a smooth function of Z̃; or is not a strictly
decreasing function, e.g. containing oscillations. The most pronounced
effect is around the point where the curve leaves the Gaussian curve.
The numerics have been computed using Mathematica 8 on a Windows
machine. The running time depends on many parameters, in particular
νmax. To compute Rm(Z̃) for 100 points it can take from few seconds to
several hours. However, the code has not been fully optimized. The code

1 By ‘convergence’ we mean convergence of the series to the correct value Rm(Z̃)
and Cm(∆̃), not to be confused with the CLT effect that the pdf tends to the Gaussian
form.
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Figure 6.1: Examples of incorrect Rm(Z̃) curves (solid line) when the
cutoff νmax is chosen too small. Oscillations occur in the region where the
curve departs from Gaussian behaviour. The dotted curve is the correct
result.

is available online2. Examples are shown in Fig. 6.1. The exact same
effect happens for Cm(∆̃).

6.1.1 Convergence of the innocent user series

Table 6.1 shows νmax values which lead to a correct Rm(Z̃) curve, as a
function of c, q, m and the attack strategy. The numbers listed in the last
four columns are νmax values. We investigated νmax ∈ {10, 20, 30, 40, 50}.
The parameter κ is set to approximately 1/q. The µ̃-min strategy is then
equivalent to MajV [32], so they are shown together in one column.

From the table we can see that νmax = 30 is in general a safe choice.
As we expected, the common effect of raising νmax is to stabilize the so
called “correction term” added to Ω(Z̃) in (4.41). An example of this
effect can be seen in Figure 6.2,

There are some rare cases where problems occur when νmax is too
large. This happens just for MajV and MinV at small m. We suspect
that this effect has its origin in the ‘large’ value of 1/

√
m which is used

as the expansion parameter, leading to an ill-defined series expansion in
the CSE method. It is known that Edgeworth expansions and Gram-
Charlier expansions are not always convergent [15], especially in the case
of fat tails. Our expansion is similar to an Edgeworth expansion, but
with non-integer powers.

2http://www.win.tue.nl/CREST/

http://www.win.tue.nl/CREST/
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c q m MajV/ MinV Int RS
µ̃-min

3 3 300 30 ≥15 ≥25 ≥25
3 1000 ≥15 ≥15 ≥15 ≥15
3 2000 ≥15 ≥15 ≥15 ≥15
5 300 ≥15 ≥10 ≥10 ≥10
5 1000 ≥10 ≥10 ≥10 ≥10
5 2000 ≥10 ≥10 ≥10 ≥10

8,15 300,1000,2000 ≥10 ≥10 ≥10 ≥10
5 3 300 - ≥15 ≥25 ≥15

3 1000 ≥40 ≥15 ≥15 ≥15
3 2000 ≥25 ≥10 ≥15 ≥15
5 300 ≥20 ≥10 ≥10 ≥10
5 1000,2000 ≥15 ≥10 ≥10 ≥10
8 300 ≥15 ≥10 ≥10 ≥10
8 1000 ≥15 ≥10 ≥10 ≥10
8 2000 ≥10 ≥10 ≥10 ≥10
15 300,1000,2000 ≥10 ≥10 ≥10 ≥10

8 3 300 - ≥10 ≥25 ≥15
3 1000 - ≥10 ≥15 ≥15
3 2000 - ≥10 ≥15 ≥15
5 300 - ≥10 ≥10 ≥10
5 1000 ≥20 ≥10 ≥10 ≥10
5 2000 ≥20 ≥10 ≥10 ≥10
8 300,1000,2000 ≥15 ≥10 ≥10 ≥10
15 300 ≥15 10 - 40 ≥10 ≥10
15 1000 ≥15 ≥10 ≥10 ≥10
15 2000 ≥10 ≥10 ≥10 ≥10

15 3 300 - ≥10 ≥25 ≥15
3 1000 - ≥10 ≥15 ≥15
3 2000 - ≥10 ≥15 ≥10
5 300,1000,2000 - ≥10 ≥10 ≥10
8 300 - 10 - 35 ≥10 ≥10
8 1000 ≥35 ≥10 ≥10 ≥10
8 2000 ≥25 ≥10 ≥10 ≥10
15 300 25 - 35 10 ≥10 ≥10
15 1000 ≥20 ≥10 ≥10 ≥10
15 2000 ≥15 ≥10 ≥10 ≥10

Table 6.1: Cutoff values νmax giving proper convergence of the CSE
method to Rm(Z̃), listed for various combinations of coalition size, al-
phabet size, code length and attack strategy. κ ≈ 1/q.
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Figure 6.2: Logarithmic plot of the correction to Ω(Z̃) as a function
of νmax, the maximum power of k kept in the expansion. The applied
strategy is MajV.

In Table 6.1 we can also observe how the variables c, q, and m alter
the convergence speed of Rm(Z̃).

c For MajV/µ̃-min it is clear that for growing c the convergence is more
difficult to achieve. This effect is not present for the other three
strategies where, on the contrary, in some cases the convergence is
obtained even more quickly (for example, for RS attack the case
(c = 8, q = 3,m = 2000) converges more slowly than (c = 15, q =
3,m = 2000)).

q For all the strategies a higher q speeds up the convergence.

m Increasing m facilitates the convergence. The cases mentioned be-
forehand, in which νmax can be too big, occur for low values of m
combined with high c and q values and just for Class 3 strategies.

In conclusion, all the parameters studied affect the convergence speed
of the CSE method. Non-ranking-based strategies seem to converge bet-
ter than Class 3 strategies. We hypothesize that the presence of cases
such that Kb = 0 for some b (high or low), typical for Class 3 strategies,
can be the reason why these strategies has more convergence issues then
RS and Int, where Kb is always positive for b > 0. A detailed analysis of
the CSE convergence properties is left for future work.



80 Numerical results

6.1.2 Convergence of the guilty user series

The study of the guilty curve is less complete than the innocent one
because of time limitations. We preferred to concentrate more on the
innocent case being the most important.

The convergence of (4.87) turns out to be rather quick. Often it
suffices to take powers only up to νt ≈ 10 in order to get good accuracy.
An example is shown in Fig. 6.3. (The parameters were chosen such that
we are not in the Gaussian regime but in the right tail.)

log10 Cm(∆̃)

10

3.2 Relation between Pr[Sj > Z] and the False Negative probability

The quantity that we compute, Pr[Sj > Z], is not equal to the quantity we are most interested in, PFN.

Below we explain how we obtain a bound on PFN based on Pr[Sj > Z].

Lemma 13 Let j ∈ C. Let L be the set of accused users, and A = L ∩C the set of attackers that end up

in L. Then the False Negative probability can be expressed as

PFN = 1 − c Pr[j ∈ L] + (c − 1)Pr[A = C]. (60)

Proof: We start by writing

Pr[j ∈ L] = Pr[A = {j}] +
X

k∈C\{j}
Pr[A = {j, k}] +

X

(k,!):k,!∈C\{j}
Pr[A = {j, k, !}] + · · · + Pr[A = C], (61)

where (k, !) is a pair with k $= !, and the dots denote summation over all tuplets in C \ {j} up to and

including size c − 2. Next we take the sum
P

j∈C over the whole equation (61). This yields c Pr[j ∈ L] =
Pc−1

s=1 Pr[|A| = s] + c Pr[A = C]. Finally we use 1 − PFN =
Pc

s=1 Pr[|A| = s]. !
The CSE method applied to one guilty user does not allow us to compute Pr[A = C]. In order to upper

bound the PFN we will therefore use the following corollary.

Corollary 4 Let j ∈ C. It holds that PFN < 1 − Pr[Sj > Z].

Proof: Use Pr[A = C] < Pr[j ∈ A] = Pr[j ∈ L] = Pr[Sj > Z] in Lemma 13. !
Remark. The bound provided in Corollary 4 is not tight. Note that Pr[L = C] % Pr[j ∈ L] if Z is

‘significantly’ larger than mµ̃/c, yielding PFN ≈ 1 − c Pr[Sj > Z]. This is a much smaller number than

what Corollary 4 gives us. However, we have not been able to prove a tight upper bound on PFN.

3.3 Numerical results

We have implemented the CSE formulas of Section 3.1 in Wolfram Mathematica. In this section we present

graphs to demonstrate that our implementation works and that we can generate ROC curves with it; we

do not yet put the method to work to derive many “useful” results, e.g. exhaustive comparison of strategies

for a large region of parameter space. That is left for future work.

Convergence

The convergence of (59) turns out to be rather quick. Often it suffices to take powers only up to νt ≈ 10

in order to get good accuracy. An example is shown in Fig. 2.

q=3, c=20, m=2000, κ=0.301, ∆̃=5, strategy=Int

νmax

log10 Rm(∆̃)

15 20 25 30

!4.26165

!4.26160

!4.26155

!4.26150

!4.26145

Fig. 2 Rm(∆̃) as a function of the cutoff power νmax.

Consistency check: power law in the tails

In Table 1 we see that the single-segment pdf has a power law (1/u)3+2κ in the right tail (provided that

Figure 6.3: Convergence example. Cm(∆̃) computed according to (4.85)
as a function of the cutoff power νmax.

6.2 Power-law behaviour of the FP tail

In this section we present numerics showing that the tail of Rm(Z̃) (4.41)
indeed has power law behaviour that follows directly from the dominant
contribution in ϕ(u) (4.45). In Section 5.2.2 we saw that all the investi-
gated strategies, except MajV and sometimes µ̃-min, have K1 > 0. This
leads to a dominant term proportional to (1/u)5+2κ at u � 1 (see Ta-
ble 4.1). Hence, far into the right tail we have ϕ(u) ∝ (1/u)5+2κ. Integrat-
ing the tail beyond a threshold z we then get

∫∞
z

du ϕ(u) ∝ (1/z)4+2κ.
Thus we expect logRm(Z̃) = −(4 + 2κ) log Z̃+constant at Z̃ � 1 for
the MinV, RS, Int strategies (and µ̃-min whenever it is not equivalent to
MajV).
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In Fig. 6.4 we show a log-log plot of Rm(Z̃) for several strategies, for
one combination of q, c, m, κ. (Without providing further evidence we
mention that the behaviour is the same for other parameter choices.) In
the same graph we have also plotted the single-segment PFP R1(Z̃) =∫∞
Z̃

du ϕ(u) for Int. We notice the following

• The tails of MinV, RS, Int and µ̃-min indeed follow the expected
power law, as can be seen from the straight lines that are parallel
to each other and to the single-segment curve.

• The curves for the different strategies lie in the same order as in
Fig. 5.3. (Except for MajV which has a completely different tail.)

The fact that the tail of the MinV curve lies higher than the rest is shown
again in Table 4.1: the K1 parameter determines how strongly the dom-
inant power −(5 + 2κ) is present in ϕ(u), and MinV has the highest K1

of all strategies. The order of RS and Int can also be understood from
the value of K1.

Lemma 6.1. It holds that KRS
1 ≥ KInt

1 .

Proof. We have ΨInt
1 (x) = 1

c
and, ΨRS

1 (x) = 1
s(x)+1

, where s(x) is the
number of non-zero elements in x. We can bound s(x) as s(x) + 1 ≤
min{c, q} since the number of distinct received symbols cannot exceed
the alphabet size or the coalition size. This yields

ΨRS
1 (x) =

1

s(x) + 1
≥ 1

min{c, q} = max

{
1

c
,
1

q

}
≥ 1

c
= ΨInt

1 (x). (6.1)

Finally, from the definition of Kb (4.23) we know that ΨRS
1 (x) ≥ ΨInt

1 (x)
implies KRS

1 ≥ KInt
1 .

The µ̃-min strategy is more difficult to analyze. As shown in [32],
it behaves in a rather complicated way, sometimes being equivalent to
MinV, sometimes MajV, or something in-between, depending on many
parameters, mostly κ and q.

In [7] a rare event estimation technique was used to estimate FP
probabilities. There no transition from Gaussian to power-law shape
was observed down to ε1 ≈ 10−25 at m = 600 and c ≤ 5.
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Fig. 2 Log-log plot of Rm(Z̃) for several strategies. The single-segment FP probability R1(Z̃) for the Int is also
plotted.

5 Numerical study of the power series cutoff

Our third contribution is an investigation how the cutoff power νmax should be chosen in order to achieve

sufficient accuracy in the numerical computation of Rm(Z̃) while keeping the computation time of the

series expansion (15) under control.

We have not been able to find an expression, or even a rule of thumb, that a priori predicts good values

for νmax. Several parameters have a large impact on the speed of convergence6, in particular the attack

strategy. When νmax is chosen too small, we observe one of the following problems: There exist Z̃ for

which Rm(Z̃) is not in the range [0, 1]; the Rm(Z̃) is not a smooth function of Z̃; or is not a strictly

decreasing function, e.g. containing oscillations. The most pronounced effect is around the point where

the curve leaves the Gaussian curve. Examples are shown in Fig. 3.

Z̃ Z̃

log10 FPlog10 FP

q = 3
c = 3
m = 300
νmax = 10
κ = 0.301
attack = MinV

q = 8
c = 15
m = 300
νmax = 50
κ = 0.301
attack = MinV

4 5 6 7

-8

-7

-6

-5

-4

-3
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(a)

3 4 5 6 7

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

(b)

Fig. 3 Examples of incorrect Rm(Z̃) curves (solid line) when the cutoff νmax is chosen too small. Oscillations
occur in the region where the curve departs from Gaussian behaviour. The dotted curve is the correct result.

6 By ‘convergence’ we mean convergence of the series to the correct value Rm(Z̃), not to be confused with the
CLT effect that the pdf tends to the Gaussian form.

Figure 6.4: Log-log plot of Rm(Z̃) for several strategies. The single-
segment FP probability R1(Z̃) for the Int is also plotted.

6.3 Comparison of FP rates for different at-
tacks

The precise PFP is the most critical error to study. When we were de-
veloping the CSE method it was our first target and, once we manage to
compute it, we faced the problem of how to make fair comparisons be-
tween the strategies, not having at that moment access to accurate FN
numbers. Once we manage to compute also FN probabilities, we did not
present many comparisons via ROC curve because of lack of time and
because the usual plots makes more visible the dependence on the thresh-
old. Before going through the study of the effect of the several scheme
parameters on PFP, we first describe the procedure used to compare the
strategies.

6.3.1 Comparison method: comparing FP at (ap-
proximately) equal FN

In [34] we chose the following way to compare different attack strategies
to each other: we approximately fix the FN probability and then compare
the FP probabilities. Here the word ‘approximately’ needs some expla-
nation. (For a better understanding, see Figure 3.1.) For each strategy
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we set the threshold Z to a different value. We set Z = mµ̃/c, where µ̃
depends on the strategy. We refer to this specific value as Zhalf . Each
colluder separately has a probability of approximately 1

2
that his score

stays below Zhalf [43]; hence the FN probability is approximately (1
2
)c.

Other than this, very little information was available about the scores of
the colluders. Fortunately, the pdf of the collective score S is narrow.
Consequently, a broad range of FN values is represented in a narrow in-
terval around Zhalf , and thus we do not lose much generality by setting
Z = Zhalf .

12

6.1 Comparison method: comparing FP at (approximately) equal FN

The CSE method demands that an attack strategy is specified. Thus, the most informative kind of graph

that we can hope to get from this method is ROC curves (one curve per strategy). Unfortunately CSE has

not yet7 been applied to the FN probability. Not having access to accurate FN numbers, we have chosen the

following way to compare different attack strategies to each other: we approximately fix the FN probability

and then compare the FP probabilities. Here the word ‘approximately’ needs some explanation. For each

strategy we set the threshold Z to a different value. We set Z = mµ̃/c, where µ̃ depends on the strategy.

We refer to this specific value as Zhalf . Each colluder separately has a probability of approximately 1
2 that

his score stays below Zhalf [25]; hence the FN probability is approximately ( 12 )c. Other than this, very

little information is available about the scores of the colluders. Fortunately, the pdf of the collective score

S is known to be narrow. Consequently, a broad range of FN values is represented in a narrow interval

around Zhalf , and thus we do not lose much generality by setting Z = Zhalf .
8

q = 5, c = 50, m = 100000, κ = 0.301
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Fig. 4 FP probability as a function of the accusation threshold, for different strategies. The auxiliary lines connect
each curve to its Z̃half , allowing us to read off FP values for a fair comparison of strategies. Note that for the
chosen parameter values, the µ̃-min attack the Z̃half lies in the Gaussian part of the curve, making µ̃-min the
strongest attack.

Our comparison method is illustrated in Figs. 4 and 5. At first sight, it looks as if MinV is always the

strongest attack, since it causes the largest FP probability Rm(Z̃). However, we must not evaluate the

curves at the same Z̃, but each at its own Z̃half . The vertical lines connect each curve to its Z̃half point.

The horizontal lines point to the corresponding FP probability. Comparing the FP values, we see that in

Fig. 4 the µ̃-min attack wins9, while in Fig. 5 MinV wins. The c and the strategy-dependent behaviour of

µ̃ play a crucial role here. When the Z̃µ̃−min
half lies in the Gaussian part of the µ̃-min curve, there can be no

stronger attack than µ̃-min. On the other hand, when it lies in the non-Gaussian part (which is often the

case for small c) then the curves that lie higher than the µ̃-min curve get a chance to yield a higher FP.

7 This is work in progress.
8 This also makes it impossible to do the strategy comparison in the other order, “comparing FN at fixed FP”.
9 In fact, this is the first numerical corroboration of the statement made in [19] that the µ̃-min attack is optimal

in the Gaussian regime.

Figure 6.5: FP probability as a function of the accusation threshold, for
different strategies. The auxiliary lines connect each curve to its Z̃half ,
allowing us to read off FP values for a fair comparison of strategies. Note
that for the chosen parameter values, the µ̃-min attack the Z̃half lies in
the Gaussian part of the curve, making µ̃-min the strongest attack.

Our comparison method is illustrated in Figs. 6.5 and 6.6. At first
sight, it looks as if MinV is always the strongest attack, since it causes the
largest FP probability Rm(Z̃). However, we must not evaluate the curves
at the same Z̃, but each at its own Z̃half . The vertical lines connect each
curve to its Z̃half point. The horizontal lines point to the corresponding
FP probability. Comparing the FP values, we see that in Fig. 6.5 the
µ̃-min attack wins, while in Fig. 6.6 MinV wins. The c and the strategy-
dependent behaviour of µ̃ play a crucial role here. When the Z̃ µ̃−min

half lies
in the Gaussian part of the µ̃-min curve, there can be no stronger attack
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Fig. 5 Same type of plot as Fig. 4, but with different q, c and m. In this case the µ̃-min attack has its Z̃half far
outside the Gaussian part of the curve.

6.2 Study of the effect of c, q and m

We present plots for the dependence of the attacks on the three parameters c, q and m separately. The

parameter κ is a bit problematic. The best choice of κ (from the tracing point of view) depends on q and c

in a complicated way, which is only partially known via lower bounds on µ̃ (see e.g. [24]). We have decided

not to show all plots for multiple κ as this would lead to an excessive number of figures. Instead we have

picked a representative κ. In [23] (Fig.2) it was shown that at ‘finite’ c and q > 3, the bound on µ̃ has an

optimum at κ > 1/q, where the distance between the optimal κ and 1/q increases with decreasing c. From

this we distilled a ‘compromise’ κ ≈ 0.3 that is not too far away from the optimum for all considered q.

Varying the coalition size c

Fig. 6 shows four plots where Rm(Z̃half) is computed as a function of c while q and m are kept fixed.

Obviously, increasing c makes every attack type more powerful. (FP increases.) The µ̃ strongly depends on

the strategy, moderately depends on q, and weakly decreases with c. The Z̃half =
√
mµ̃/c is a decreasing

function of c, which means that the “read-off” point in a figure like Fig. 4 moves to the left, causing a

higher FP probability. In several of the plots we see crossovers occurring, most notably between µ̃-min

and MinV.

Varying the alphabet size q

Fig. 7 analogously shows the dependance on q. All attacks weaken with increasing q. This is mainly caused

by the fact that µ̃ is an increasing function of q [23], forcing the “read-off” point in Fig. 4 to the right.

We see crossovers occurring as a function of q too.

Varying the code length m

Fig. 8 shows the dependance on m. All attacks weaken with increasing m. This is due to two effects: the

Rm curve becomes more Gaussian (Central Limit Theorem), and Z̃half ∝
√
m shifts to the right. The

CLT effect differs per strategy, causing the observed crossovers.

Varying the parameter κ

Fig. 9 shows the dependance on κ. Apart from µ̃-min, all the strategies have a smooth behaviour. As

was explained in [19], the µ̃-min strategy coincides with majV for small κ and with MinV for large κ. At

intermediate κ there are jumps in the µ̃-min curve, indicating a re-definition of the µ̃-minimizing strategy.

For all the curves, the impact of κ on the FP rate is mostly due to the fact that µ̃ depends on κ; the Z̃half

in turn is linear in µ̃.

Figure 6.6: Same type of plot as Fig. 6.5, but with different q, c and m.
In this case the µ̃-min attack has its Z̃half far outside the Gaussian part
of the curve.

than µ̃-min. On the other hand, when it lies in the non-Gaussian part
(which is often the case for small c) then the curves that lie higher than
the µ̃-min curve get a chance to yield a higher FP.

6.3.2 Study of the effect of c, q and m

We present plots for the dependency of the attacks on the three param-
eters c, q and m separately. The parameter κ is a bit problematic. The
best choice of κ (from the tracing point of view) depends on q and c in
a complicated way, which is only partially known via lower bounds on µ̃
(see e.g. [40]). We have decided not to show all plots for multiple κ as this
would lead to an excessive number of figures. Instead we have picked a
representative κ. In [42] (Fig.2) it was shown that at ‘finite’ c and q > 3,
the bound on µ̃ has an optimum at κ > 1/q, where the distance between
the optimal κ and 1/q increases with decreasing c. From this we distilled
a ‘compromise’ κ ≈ 0.3 that is not too far away from the optimum for all
considered q. In [13], instead, they used κ = 1

2
focusing at the code rate

min-max game for general decoders, while we just concentrate on Tardos
score.

Varying the coalition size c
Fig. 6.7 shows four plots where Rm(Z̃half) is computed as a function
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of c while q and m are kept fixed. Obviously, increasing c makes every
attack type more powerful. (FP increases.) The µ̃ strongly depends on
the strategy, moderately depends on q, and weakly decreases with c. The
Z̃half =

√
mµ̃/c is a decreasing function of c, which means that the “read-

off” point in a figure like Fig. 6.5 moves to the left, causing a higher
FP probability. In several of the plots we see crossovers occurring, most
notably between µ̃-min and MinV.

Notice that Pictures 6.7(b), (c) and (d) show a change of slope for
many strategies passing from an almost straight increasing behaviour to
a curved one. This change indicates the transaction from the power-law
behaviour (high Z̃half) to the Gaussian one (low Z̃half). In the plot 6.7(a)
just the curved behaviour is present indicating that all the studied Z̃half ’s
lie in the Gaussian regime and, indeed, µ̃-min is the leading strategy.
(Notice that in all the plots MajV follows the Gaussian curve.) In the
other of Fig. 6.7 we have the same result in the curved side, while in the
straight one is MinV to win, proving that the regime is not Gaussian. The
better results provided by µ̃-min is expected and can be seen also from
this point of view: once the Gaussian regime is entered, the strategies
are basically overlapping. The contribution given by the strategies and
the parameters is affecting just the Z̃half which is minimized by µ̃-min
attack.

Varying the alphabet size q
Fig. 6.8 analogously shows the dependance on q. All attacks weaken

with increasing q. This is mainly caused by the fact that µ̃ is an increasing
function of q [42], forcing the “read-off” point in Fig. 6.5 to the right. We
see crossovers occurring as a function of q too.

Varying the code length m
Fig. 6.9 shows the dependance onm. All attacks weaken with increas-

ing m. This is due to two effects: the Rm curve becomes more Gaussian
(Central Limit Theorem), and Z̃half ∝

√
m shifts to the right. The CLT

effect differs per strategy, causing the observed crossovers. Notice also
that for growing m the broadening of the Gaussian region is slower than
the increasing of the Z̃half ’s. Indeed, for high m, MinV is always the best
strategy, indicating that the Z̃half are outside the Gaussian region even
if higher m contributes to enlarge its range.

Varying the parameter κ
Fig. 6.10 shows the dependance on κ. Apart from µ̃-min, all the

strategies have a smooth behaviour. As shown in Section 5.2.2, the µ̃-
min strategy coincides with MajV for small κ and with MinV for large κ.
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At intermediate κ there are jumps in the µ̃-min curve, indicating a re-
definition of the µ̃-min strategy.

For all the curves, the impact of κ on the FP rate is mostly due to
the fact that µ̃ depends on κ; the Z̃half in turn is linear in µ̃.

From Fig. 6.10 we see that κ ≈ 0.3 minimizes the coalition’s effec-
tiveness at q = 3 (given, of course, that they are restricted to the arsenal
of strategies presented here).

In [40], attack strategy independent bounds were obtained on the
error probabilities in q-ary Tardos codes. If we compare Fig. 6.10 to
those bounds (in particular the rightmost part of Table 1 in [40]), we see
that the bounds are far from tight. In Fig. 6.10 the FP error around
κ = 0.3 for the most powerful attack in our set is more than 104 times
smaller than the strategy-independent bound in [40]. (And we believe
that there exists no attack strategy that significantly outperforms the set
considered here.)

6.3.3 Transition in the µ̃-min attack

We dedicate a separate section to µ̃-min attack. This strategy represents
the best attack in the asymptotic scenario. In the Gaussian regime it has
been shown that a codelength m = (2/µ̃2)c2 ln(1/ε1) is sufficient against
a coalition of size c. We want to show how the parameters influence the
convergence to the Gaussian regime when the µ̃-min is chosen, giving
particular attention to κ.

In [33] the µ̃-min attack was studied for a restricted parameter range,
κ ≈ 1/q. For such a choice of κ the strategy reduces to MajV. We study
a broader range. We use Theorem 5.7 to precompute the Kb and then
(4.51), (4.40) and (4.41) to compute the false accusation probability Rm

as a function of the accusation threshold. We found that keeping terms
in the expansion with νt ≤ 37 gave stable results.

For a comparison with [33], we set ε1 = 10−10, and search for the
smallest codelength m∗ for which it holds that Rm(µ̃

√
m/c) ≤ ε1. The

special choice Z̃ = µ̃
√
m/c puts the threshold at the expectation value

of a colluder’s accusation. As a result the probability of a false negative
error is ≈ 1

2
. Our results for m∗ are consistent with the numbers given

in [33].
In Fig. 6.11 we present graphs of 2/µ̃2 as a function of κ for various q,

c.3 If the accusation pdf is Gaussian, then the quantity 2/µ̃2 is very close
3 The µ̃ can become negative. These points are not plotted, as they represent a
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to the proportionality constant in the equation m ∝ c2 ln(1/ε1). We also
plot m∗

c2 ln(1/ε1)
as a function of κ for various q, c. Any discrepancy between

the µ̃ and m∗ plots is caused by non-Gaussian tail shapes.
In the plots on the left we see that the attack becomes very powerful

(very large 2/µ̃2) around κ = 1
2
, especially for large coalitions. This can

be understood from the fact that the T (b) values are decreasing, and some
even becoming negative for κ > 1

2
, as discussed in Section 5.1.5. This

effect becomes weaker when q increases. The plots also show a strong
deterioration of the scheme’s performance when κ approaches 1

2(q−1)
, as

expected.
For small and large κ, the left and right graphs show roughly the same

behaviour. In the middle of the κ-range, however, them∗ is very irregular.
We think that this is caused by rapid changes in the ‘ranking’ of b values
induced by the function T (b); there is a transition from majority voting
(at small κ) to minority voting (at large κ). It was shown in 5.3.1 (i)
majority voting causes a more Gaussian tail shape than minority voting;
(ii) increasing κmakes the tail more Gaussian. These two effects together
explain the m∗ graphs in Fig. 6.11: first, the transition for majority
voting to minority voting makes the tail less Gaussian (hence increasing
m∗), and then increasing κ gradually makes the tail more Gaussian again
(reducing m∗).

In Fig. 6.12 we show the shape of the false accusation pdf of both sides
of the transition in the q = 3, c = 7 plot. For the smaller κ the curve is
better than Gaussian up to false accusation probabilities of better than
10−17. For the larger κ the curve becomes worse than Gaussian around
10−8, which lies significantly above the desired 10−10. The transition
from majority to minority voting is cleanest for q = 2, and was already
shown in [42] to lie precisely at κ = 1

2
for all c. For q ≥ 3 it depends on

c and is less easy to pinpoint.

6.4 Power-law behaviour of the FN tail

In Table 4.2 we see that the single-segment pdf has a power law (1/u)3+2κ

in the right tail (provided that K1 6= 0). Hence the integrated probability
mass beyond Z scales as (1/Z)2+2κ. For large Z we expect to see the
(1/Z)2+2κ scaling also in the Cm(∆̃) curves. (Due to the Central Limit

situation where the accusation scheme totally fails, and there exists no sufficient code
length m∗.)
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Theorem, the Cm(∆̃) goes to a Gaussian shape, but only for small ∆̃; for
large ∆̃ the original single-segment tail is still there.) We use this as a
consistency check on our CSE implementation. Fig. 6.13 shows a log-log
plot of the right tail for various strategies. The tails in this plot indeed
have the same slope as the curve for m = 1.

6.5 ROC curves

One of the most useful types of graph for decision-making problems is
the Receiver Operating Characteristic (ROC). We take a slightly different
graph, with ε1 and (our upper bound on) PFN on the axes. This way,
being closer to the origin means better performance. An example is
shown in Fig. 6.14 and 6.14(b). Each curve corresponds to tracing Z
from very low (lots of users get accused: high FP and low FN) to very
high (almost nobody gets accused: low FP and high FN).

In Fig. 6.14(a) most of the relevant Z values lie outside the Gaussian
regime, i.e. for all the attacks except MajV and µ̃-min Z lies in the
linear tail of the innocent-user score pdf. The order of the curves for
the different strategies is consistent with Section 6.3: the most powerful
attack is MinV, then RS, Int, and MajV/µ̃-min. (The MajV and µ̃-
min are identical for the chosen parameters.) The quick transition from
almost 1 to almost 0 on the vertical axis occurs when Z passes through
the peak of the guilty-user score pdf. The FP probability changes little
during this transition, since Z lies in the tail of the innocent-user score
pdf.

In Fig. 6.14(b) we used the same settings as in Fig. 6.13. This is an
example of a choice of parameters such that the Z visits the innocent-user
Gaussian regime during the FN-transition. When Z is lowered (down-
ward and to the right in the figure) into the innocent-user Gaussian
regime, µ̃-min becomes the most powerful attack. This is not surpris-
ing, as µ̃-min is designed to be the strongest attack under the Gaus-
sian assumption. Note that the FN-transition is much wider than in
Fig. 6.14(a). This is caused by the fact that µ̃ enters the steep Gaussian
part of the innocent-user score pdf. This is particularly the case for the
µ̃-min attack, which has the lowest µ̃ value.
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Figure 6.7: FP probability Rm(Z̃half) as a function of c for all the attack
strategies. Four combinations of q and m are shown.



90 Numerical results
2

(a
)

lo
g
1
0

F
P

c
=

2
0
,

m
=

2
0
0
0
,
κ
=

0
.3

0
1

µ̃
-m

in

M
a
jV

In
t

!
!

M
in

V

R
S

q

(b
)

q

M
a
jV

M
in

V

c
=

2
0
,

m
=

1
0
0
0
0
,
κ
=

0
.3

0
1

lo
g
1
0

F
P

In
t

µ̃
-m

in

R
S

(c
)

q

lo
g
1
0

F
P

c
=

3
0
,

m
=

2
0
0
0
,
κ
=

0
.3

0
1

µ̃
-m

in

M
a
jV

In
t

R
S

M
in

V

(d
)

lo
g
1
0

F
P

q

R
S

µ̃
-m

in

M
a
jVIn

t

M
in

V

c
=

3
0
,

m
=

1
0
0
0
0
,
κ
=

0
.3

0
1

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

4
6

8
1
0

1
2

1
4

1
6

-
1
0

-
8

-
6

-
4

-
2

æ

æ

æ

ææ
æ

æ
æ

æ
æ

æ
ææ

æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ
æ

æ
ææ

æ
æ

æ
æ

æ
æ

ææ

æ

æ

æ
æ

æ
æ

ææ
æ

æ
æ

æ
æ

æ

ææ

æ

æ

æ

æ

æ
æ

ææ

æ
æ

æ
æ

æ
æ

4
6

8
1
0

1
2

1
4

1
6

-
1
1

-
1
0

-
9

-
8

-
7

-
6

-
5

-
4

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

4
6

8
1
0

1
2

1
4

1
6

-
6

-
5

-
4

-
3

-
2

-
1

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

ææ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ
æ

æ
æ

æ
æ

ææ

æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

4
6

8
1
0

1
2

1
4

1
6

-
1
0

-
8

-
6

-
4

-
2

F
ig

.
2

F
P

p
ro

ba
bi

li
ty

R
m

(Z̃
h
a
lf
)

a
s

a
fu

n
ct

io
n

o
f

q
fo

r
a
ll

th
e

a
tt
a
ck

st
ra

te
gi

es
.
F
o
u
r

co
m

bi
n
a
ti
o
n
s

o
f

c
a
n
d

m
a
re

sh
o
w
n
.

2

(a
)

lo
g
1
0

F
P

c
=

2
0
,

m
=

2
0
0
0
,
κ
=

0
.3

0
1

µ̃
-m

in

M
a
jV

In
t

!
!

M
in

V

R
S

q

(b
)

q

M
a
jV

M
in

V

c
=

2
0
,

m
=

1
0
0
0
0
,
κ
=

0
.3

0
1

lo
g
1
0

F
P

In
t

µ̃
-m

in

R
S

(c
)

q

lo
g
1
0

F
P

c
=

3
0
,

m
=

2
0
0
0
,
κ
=

0
.3

0
1

µ̃
-m

in

M
a
jV

In
t

R
S

M
in

V

(d
)

lo
g
1
0

F
P

q

R
S

µ̃
-m

in

M
a
jVIn

t

M
in

V

c
=

3
0
,

m
=

1
0
0
0
0
,
κ
=

0
.3

0
1

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

4
6

8
1
0

1
2

1
4

1
6

-
1
0

-
8

-
6

-
4

-
2

æ

æ

æ

ææ
æ

æ
æ

æ
æ

æ
ææ

æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ
æ

æ
ææ

æ
æ

æ
æ

æ
æ

ææ

æ

æ

æ
æ

æ
æ

ææ
æ

æ
æ

æ
æ

æ

ææ

æ

æ

æ

æ

æ
æ

ææ

æ
æ

æ
æ

æ
æ

4
6

8
1
0

1
2

1
4

1
6

-
1
1

-
1
0

-
9

-
8

-
7

-
6

-
5

-
4

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

4
6

8
1
0

1
2

1
4

1
6

-
6

-
5

-
4

-
3

-
2

-
1

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

ææ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ
æ

æ
æ

æ
æ

ææ

æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

4
6

8
1
0

1
2

1
4

1
6

-
1
0

-
8

-
6

-
4

-
2

F
ig

.
2

F
P

p
ro

ba
bi

li
ty

R
m

(Z̃
h
a
lf
)

a
s

a
fu

n
ct

io
n

o
f

q
fo

r
a
ll

th
e

a
tt
a
ck

st
ra

te
gi

es
.
F
o
u
r

co
m

bi
n
a
ti
o
n
s

o
f

c
a
n
d

m
a
re

sh
o
w
n
.

2

(a
)

lo
g
1
0

F
P

c
=

2
0
,

m
=

2
0
0
0
,
κ
=

0
.3

0
1

µ̃
-m

in

M
a
jV

In
t

!
!

M
in

V

R
S

q

(b
)

q

M
a
jV

M
in

V

c
=

2
0
,

m
=

1
0
0
0
0
,
κ
=

0
.3

0
1

lo
g
1
0

F
P

In
t

µ̃
-m

in

R
S

(c
)

q

lo
g
1
0

F
P

c
=

3
0
,

m
=

2
0
0
0
,
κ
=

0
.3

0
1

µ̃
-m

in

M
a
jV

In
t

R
S

M
in

V

(d
)

lo
g
1
0

F
P

q

R
S

µ̃
-m

in

M
a
jVIn

t

M
in

V

c
=

3
0
,

m
=

1
0
0
0
0
,
κ
=

0
.3

0
1

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

4
6

8
1
0

1
2

1
4

1
6

-
1
0

-
8

-
6

-
4

-
2

æ

æ

æ

ææ
æ

æ
æ

æ
æ

æ
ææ

æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ
æ

æ
ææ

æ
æ

æ
æ

æ
æ

ææ

æ

æ

æ
æ

æ
æ

ææ
æ

æ
æ

æ
æ

æ

ææ

æ

æ

æ

æ

æ
æ

ææ

æ
æ

æ
æ

æ
æ

4
6

8
1
0

1
2

1
4

1
6

-
1
1

-
1
0

-
9

-
8

-
7

-
6

-
5

-
4

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

4
6

8
1
0

1
2

1
4

1
6

-
6

-
5

-
4

-
3

-
2

-
1

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

ææ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ
æ

æ
æ

æ
æ

ææ

æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

4
6

8
1
0

1
2

1
4

1
6

-
1
0

-
8

-
6

-
4

-
2

F
ig

.
2

F
P

p
ro

ba
bi

li
ty

R
m

(Z̃
h
a
lf
)

a
s

a
fu

n
ct

io
n

o
f

q
fo

r
a
ll

th
e

a
tt
a
ck

st
ra

te
gi

es
.
F
o
u
r

co
m

bi
n
a
ti
o
n
s

o
f

c
a
n
d

m
a
re

sh
o
w
n
.

2

(a
)

lo
g
1
0

F
P

c
=

2
0
,

m
=

2
0
0
0
,
κ
=

0
.3

0
1

µ̃
-m

in

M
a
jV

In
t

!
!

M
in

V

R
S

q

(b
)

q

M
a
jV

M
in

V

c
=

2
0
,

m
=

1
0
0
0
0
,
κ
=

0
.3

0
1

lo
g
1
0

F
P

In
t

µ̃
-m

in

R
S

(c
)

q

lo
g
1
0

F
P

c
=

3
0
,

m
=

2
0
0
0
,
κ
=

0
.3

0
1

µ̃
-m

in

M
a
jV

In
t

R
S

M
in

V

(d
)

lo
g
1
0

F
P

q

R
S

µ̃
-m

in

M
a
jVIn

t

M
in

V

c
=

3
0
,

m
=

1
0
0
0
0
,
κ
=

0
.3

0
1

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

4
6

8
1
0

1
2

1
4

1
6

-
1
0

-
8

-
6

-
4

-
2

æ

æ

æ

ææ
æ

æ
æ

æ
æ

æ
ææ

æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ
æ

æ
ææ

æ
æ

æ
æ

æ
æ

ææ

æ

æ

æ
æ

æ
æ

ææ
æ

æ
æ

æ
æ

æ

ææ

æ

æ

æ

æ

æ
æ

ææ

æ
æ

æ
æ

æ
æ

4
6

8
1
0

1
2

1
4

1
6

-
1
1

-
1
0

-
9

-
8

-
7

-
6

-
5

-
4

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

4
6

8
1
0

1
2

1
4

1
6

-
6

-
5

-
4

-
3

-
2

-
1

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

ææ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ
æ

æ
æ

æ
æ

ææ

æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

4
6

8
1
0

1
2

1
4

1
6

-
1
0

-
8

-
6

-
4

-
2

F
ig

.
2

F
P

p
ro

ba
bi

li
ty

R
m

(Z̃
h
a
lf
)

a
s

a
fu

n
ct

io
n

o
f

q
fo

r
a
ll

th
e

a
tt
a
ck

st
ra

te
gi

es
.
F
o
u
r

co
m

bi
n
a
ti
o
n
s

o
f

c
a
n
d

m
a
re

sh
o
w
n
.

Figure 6.8: FP probability Rm(Z̃half) as a function of q for all the attack
strategies. Four combinations of c and m are shown.
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Figure 6.9: FP probability Rm(Z̃half) as a function of m for all the
attack strategies. Four combinations of c and q are shown.
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Figure 6.11: Numerical results for the µ̃-minimizing attack. ε1 =
10−10. Left: The Gaussian-limit code length constant 2

µ̃2
as a function

of κ, for various q and c. Right: The sufficient code length m∗, scaled
by the factor c2 ln(1/ε1) for easy comparison to the Gaussian limit.
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Figure 6.12: Accusation probability for a fixed innocent user as a func-
tion of the (scaled) accusation threshold Z̃ = Z/

√
m. The attack is the

µ̃-minimizing attack. The graph shows the Gaussian limit, and two pa-
rameter settings which correspond to ‘before’ and ‘after’ a sharp transi-
tion.

11

K1 6= 0). Hence the integrated probability mass beyond Z scales as (1/Z)2+2κ. For large Z we expect to

see the (1/Z)2+2κ scaling also in the Rm(∆̃) curves. (Due to the Central Limit Theorem, the Rm(∆̃) goes

to a Gaussian shape, but only for small ∆̃; for large ∆̃ the original single-segment tail is still there.) We

use this as a consistency check on our CSE implementation. Fig. 3 shows a log-log plot of the right tail

for various strategies. The tails in this plot indeed have the same slope as the curve for m = 1.

q = 10, c = 30, m = 10000, κ = 0.301

∆̃

log10 Cm(∆̃)

MinV

CInt
1

RS

Int
µ̃-min

MajV

Gaussian MajV Gaussian MinV

2 5 10 20 50 100

-8

-6

-4

-2

Fig. 3 Log-log plot of Rm(∆̃) for several strategies. The single-segment tail integral R1(∆̃) for the Int attack is
also plotted.

@ Missing labels and parameter choices in the figures!! @

ROC curves

One of the most useful types of graph for decision-making problems is the Receiver Operating Charac-

teristic (ROC). We take a slightly different graph, with PFP and (our upper bound on) PFN on the axes.

This way, being closer to the origin means better performance. An example is shown in Fig. 4. Each curve

corresponds to tracing Z from very low (lots of users get accused: high FP and low FN) to very high

(almost nobody gets accused: low FP and high FN).

@ Say more about how the strategies perform, and consistency with [?] @@

@ Perhaps plot FN non-logarithmically? @
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Figure 6.13: Log-log plot of Cm(∆̃) for several strategies. The single-
segment tail integral C1(∆̃) for the Int attack is also shown. Two Gaus-
sian tails are plotted: for the V value corresponding to the MajV and
MinV strategies. The MajV curve coincides with its Gaussian approxi-
mation.
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Fig. 4 Our upper bound on PFN versus PFP. The PFP data is taken from [?].

Appendix

A Proof of Lemma 2

The proof is similar to the steps taken in Appendix D of [4]. First we split the q-dimensional integration
R

dqp F (p)r(p)
as follows,

Ep [r(p)] =
1

B(κ1q)

Z 1

0
dpy p−1+κ

y

Z 1−py

0
dq−1p\yδ

0

@1 − py −
X

β∈Q\{y}
pβ

1

A p−1+κ
\y

r(p). (62)

Then we write p\y = (1−py)t. We get δ
“
1 − py − P

β∈Q\{y} pβ

”
= (1−py)−1δ

“
1 − P

β∈Q\{y} tβ

”
. Furthermore,

dq−1p\y = (1 − py)q−1dq−1t and p−1+κ
\y

= (1 − py)(q−1)(−1+κ)t−1+κ. Combined with the fact that B(κ1q) =

B(κ,κ[q − 1])B(κ1q−1), these steps yield the end result. !

B Proof of Theorem 1

The guilty user’s symbol is denoted as X. The one-segment score is either g0(py) (when X #= y) or g1(py) (when
X = y). Since no other values are possible, the probability distribution at given p will consist of delta-function
peaks. Each peak is multiplied by the probability that the corresponding event occurs

ψ−(u|p) =
X

y∈Q
δ (u − g0(py)) Pr[u = g0(py)|p] (63)

ψ+(u|p) =
X

y∈Q
δ (u − g1(py)) Pr[u = g1(py)|p]. (64)

Notice that

Pr[u = g0(py)|p] = Pr[X #= y ∧ Y = y|p] ; Pr[u = g1(py)|p] = Pr[X = y ∧ Y = y|p] (65)

and that
Pr[X #= y ∧ Y = y|p] + Pr[X = y ∧ Y = y|p] = Pr[Y = y|p] = τy|p . (66)

Next step is to compute Pr[u = g1(py)|p] in (64). Let be ey a q-ary vector entirely set to 0 except for the y-th
element that is instead equal to 1.

Pr[u = g1(py)|p] = Pr[Xji = y]Pr[Y = y|Xji = y, p] (67)

= py

X

σ∈Sqc

“ c − 1

σ− ey

”
pσ−eyθy|σ . (68)
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Figure 6.14: Example ‘ROC’ curves. Our upper bound Pr[Sj < Z] on
PFN versus the probability ε1 of accusing a fixed innocent user. The ε1

data is taken from [34].
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7
Conclusions

The main topic of this thesis is the performances of collusion resistant
codes in the context of audio-video watermarking. Watermarking is a
content protection technique that can be used independent of other pro-
tection measures. Unique watermarks are hidden in content so that unau-
thorized redistribution of the content can be traced. The most powerful
attack against this form of watermarking is the collusion attack: a coali-
tion of users receives differently watermarked versions of the same con-
tent; by comparing their versions they obtain partial knowledge about
the embedded watermark sequences, which allows for a more targeted
attack.

The aim of collusion resistant codes is to provide watermark sequences
that can resist coalition attacks, i.e. even after such an attack has taken
place enough information is still present in the damaged watermark to
trace at least one coalition member. Bias-based codes, also known as
Tardos codes, were proposed by G. Tardos in 2003 [38]. Their asymp-
totic optimality m ∝ c2

0 has made them a popular topic of study. Work
in this field has concentrated on different issues, e.g. improvements of
the code construction and the decoder algorithm. The field has reached
a certain maturity. For general alphabet size the asymptotic (c → ∞)
channel capacity for bias-based fingerprinting has been determined, as
well as the combination (attack, bias distribution) constituting the cor-
responding saddlepoint. A simple decoder has been found achieving this
asymptotic capacity. For small c, numerical methods are available to lo-
cate the saddlepoint, and joint decoders have been developed to improve
the tracing efficiency.

In spite of all this progress, it has turned out to be surprisingly dif-
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ficult to establish how well a scheme performs in the non-asymptotic
regime. (And this is usually the regime of interest.) The performance is
usually measured in term of the False Positive and False Negative prob-
ability. The two main approaches both yield unsatisfactory results. On
the one hand, simulations have difficulty handling the required low FP
probability; they take time on the order of 1/P global

FP . On the other hand,
provable bounds overestimate the FP probability by orders of magnitude.
Because of these problems it was difficult to use a Tardos code in prac-
tice: either there would be the danger of an FP rate turning out higher
than expected, or resources would not be used well. Given the limited
resources in typical audio/video content, the ability to determine the er-
ror rates accurately is crucial for making a system that can be deployed
in practice.

In view of the situation sketched above, the main research question of
this thesis was how to accurately determine error probabilities in Tardos
codes. We restricted ourselves to an attack model that lends itself to
analysis, and to the best known q-ary scheme at the beginning at the
project. Thus the main question was

How to determine the actual error rates of the
symmetric Tardos scheme [42] in the Restricted
Digit Model?

7.1 Contributions

This thesis work has resulted in a new algorithm that quickly computes
error probabilities as a function of all the system parameters and the
attack strategy. In many cases the code can resist twice or more the
number of attackers suggested by the provable bounds on the error rates.
The results are summarized below in detail.

CSE method
We have developed a new method to compute the probability distri-
bution of the scores (for innocent as well as guilty users) in the sym-
metric Tardos scheme. We call it ‘Convolution and Series Expansion’
(CSE). It is based on the convolution property of characteristic func-
tions (Property 4.1, page 29): the probability distribution of a sum of
independent random variables is obtained simply by multiplying their



7.1 Contributions 99

Fourier-transformed pdfs (characteristic functions) and then doing a sin-
gle reverse Fourier transform. Hence, if the pdf of a user’s score in a
single content segment is known, the pdf of his total score can be found.

The single-segment pdf is computed in Theorem 4.21 (innocent user,
‘ϕ’) and Theorem 4.30 (colluder, ‘ψ’). The expressions obtained here are
interesting in their own right, because they tell us how the attack strategy
influences the tails of the pdf. The right tail of the innocent user pdf is
especially interesting since it has an impact on the FP rate. It turns
out that, of all the strategies we studied, Minority Voting causes the
longest tail, while Majority Voting maximally shortens it. Furthermore,
the single-segment pdf provides us with a valuable consistency check: the
total pdf must have the same power-law in its tails as the single-segment
pdf.

The Fourier transform of ϕ and ψ is computed in Section 4.2.3 and 4.3.4.
The results are analytic complex-valued expressions containing hypergeo-
metric 1F2 functions. The ϕ̃ and ψ̃ are not entire functions of the Fourier
variable k, making further analysis nontrivial.

Performing the final reverse Fourier transform turned out to be a diffi-
cult task. Our initial attempt to straightforwardly do a one-dimensional
numerical integration of ϕ̃m failed because the integrand is oscillating
very fast. Instead we decided to perform a series expansion of the inte-
grand (as correction terms on the Gaussian curve), yielding an infinite
sum of integrals that can be evaluated analytically. The small parame-
ter in the expansion is 1/

√
m. The result is given in Theorem 4.19 and

Theorem 4.41. The procedure resembles an Edgeworth expansion, but
with non-integer powers. Though the expansion is presented in analytical
form, the task of finding all the parameters ωt, νt and αt is best not done
by hand but automated, since it is quite complicated, involving a se-
ries expansion of numerous 1F2 functions substituted into two successive
Taylor series. We automated this procedure by writing a Mathematica
program.

Compact parametrization of the attack strategy and pre-com-
putations
During the work on the innocent-user single-segment pdf, we realized
that the set of parameters θy|σ describing the attack strategy can be re-
duced to Ψb(x) (Section 3.2) when the strategy is symbol-symmetric, i.e.
when the alphabet has no natural ordering. The Ψb(x) stands for the
probability that a symbol with tally b (given that such a symbol exists)
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gets chosen by the attackers, conditioned on the other tallies x. Fur-
thermore, many formulas contain the expectation Ex|bΨb(x) for which
we introduced the notation Kb. Kb is the probability that the colluders
choose a symbol α given that α has tally b. With this notation, amongst
others the pdfs ϕ and ψ and the average coalition score µ̃ can be written
in a compact form. There is a further advantage: for all the strategies
that we wanted to investigate we were able to ‘pre-compute’ the Kb pa-
rameters (Section 5.2). We found a sum representation for Kb that (from
a certain alphabet size onward) requires far fewer terms than the Ex|b
sum. This helps to significantly speed up the CSE method when the
alphabet is not small.

Testing the CSE method
We subjected the CSE method to a number of tests. Most importantly,
we did two consistency checks. First, the results of the CSE method agree
with simulations whenever simulation are feasible. Second, the pdf tails
properly follow the same power law as the single-segment pdf (Section
6.2 and 6.4).

Furthermore we studied the convergence of the expansion (4.41). We
proved (Theorem 4.19) that the parameters ωt(m) decrease as m−νt/6
or faster. However, that does not guarantee convergence. It is known
that Edgeworth expansions are not always convergent, and indeed in our
overview Table 6.1 we see a few cases where adding extra terms causes
the series to diverge from the correct result. Furthermore, when m is
too small the series does not produce the desired result at all (or at
least not with a feasibly computable number of terms); this problem
does not come as a surprise, since the CSE method uses 1/

√
m as the

expansion parameter. The worst convergence occurs when the attack
strategy is Majority Voting. We do not fully understand why this is the
case. However, Majority Voting happens to have a very wide Gaussian
regime, the largest of all the strategies we tested, so actually we hardly
need the CSE here and can just use the Gaussian approximation.

Regarding the running time of our CSE implementation in Mathe-
matica, we noticed the following. The computational effort is strongly
dependent on several parameters, in particular ν. The strategies, in-
stead, did not affect directly the computational effort thanks to the pre-
computation of the Kb parameter1. The needed time to compute Rm(Z̃)
or Cm(Z̃) for a fixed Z̃ could vary from few seconds to few minutes.

1Still the strategies affect indirectly the computational effort through ν, as shown
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Investigation of the Tardos scheme using the CSE method
In Sections 6.3–6.5 we applied the CSE method to a large number of
parameter combinations for the Majority Voting, Minority Voting, Inter-
leaving, Random Symbol and µ̃-minimizing attack. When plotted as a
function of the threshold Z, the FP rate (and the guilty-user accusation
probability Cm) is seen to have a Gaussian regime at small Z and then a
transition to power-law behaviour in the tail. The point of transition de-
pends on the attack strategy and shifts to larger Z when the code length
m is increased.

For understanding the performance of the Tardos code it is crucial
to look at the location of the standard threshold Z̃half =

√
mµ̃/c (which

suffices to keep the FN rate under control) compared to the transition
point in the innocent-user plot. If Z̃half lies in the Gaussian part, then
(i) the Gaussian approximation (Section 3.5) applies, and (ii) the µ̃-
minimizing attack is the strongest attack. If Z̃half lies in the tail, then
Minority Voting is the strongest attack. (This summary of events is
slightly complicated by the fact that the transition point actually depends
on the attack strategy.) Increasing c causes Z̃half to move to the left while
the PFP plot hardly changes; this makes the situation ‘more Gaussian’.
Increasing m has two counter-acting effects: Z̃half moves to the right, but
at the same time the Gaussian region becomes wider.

In Section 6.3.2 we compared five strategies for a large part of the
parameter space in order to compare their strength and to chart where
the pdf transitions lie. For a better understanding about how the two
errors change simultaneously, we presented results also as ROC curves
(Section 6.5). The ROC representation permits to point more easily
which is the strongest strategy.

Investigation of the µ̃-minimizing attack
contribution. asymptotically big m. It is also optimal whenever the
Gaussian regime is entered. In Section 6.3.3 we dedicated a separate
study on this attack, focusing in particular on its dependency on the
parameter κ. For κ < 1

2(q−1)
, µ̃-minimizing attack behaves as Majority

Voting, while for κ > 1
2
it behaves as Minority Voting. In between these

values the behaviour becomes more complicated, as shown in Figure 6.11.
The transition from Majority to Minority voting consists of complicated
intermediate ‘rankings’ (as defined in Section 5.2.1) of b values.

in Table 6.1.
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7.2 Limitations

The proposed CSE method and the way we use it has two noteworthy
limitations. The first limitation concerns the strategies that can be writ-
ten in the compact Kb form. The Kb formulation is possible only for
strategies that have symbol symmetry, attacker symmetry and segment
symmetry. As explained in Chapter 5, relevant (i.e. strong) attacks
typically satisfy these symmetries because of (respectively) the symbol
symmetry of the embedding method, equal risk sharing by the attack-
ers, and large coalition size. Our focus on strong attacks excludes some
strategies that surely will not be strong but that have interesting prop-
erties in other contexts, like for instance the all-1 attack (non-symbol-
symmetric), typically needed in the group testing problem (Section 2.3),
and the scapegoat attack (non-attacker-symmetric) studied in the dy-
namic Tardos scheme [20] in which a random attacker is sacrificed to
save the rest of the coalition.

The CSE method is still able to handle a certain lack of symmetry in
the following cases:

• non-segment-symmetric attacks: as shown in Section 4.4, the CSE
method can handle mixed strategies, allowing it to be used in case
of some non-segment-symmetric attacks.

• non-symbol-symmetric attacks: Even though it is impossible to for-
mulate Kb in this case, θy|σ is still well defined. It is relatively
straightforward to derive expressions for ϕ and ψ based on θy|σ:
e.g. (D.3) still applies. This will of course require more work than
in the symmetric case.

The second limitation is the convergence of the CSE method. As
discussed in Section 6.1 and shown in Table 6.1, the expansion parameter
1/
√
m can lead to a ill-defined series expansion whenever m is too small.

7.3 Future work

The work done is this thesis can be extended in many directions. First of
all, the CSE method can be applied under different circumstances, e.g.
for different decoders, attack models and strategies than those considered
here.
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• Oosterwijk et al. [29] recently found a simple decoder that is
asymptotically capacity-achieving. We expect that it will com-
pletely supplant the score function (3.11). It will be interesting to
see how the CSE performs when applied to their new score function.

• In this thesis the Restricted Digit Model was adopted because it
is relatively simple to analyze. An obvious next step is to adapt
the CSE to the more realistic Combined Digit Model. The main
complication will probably be the introduction of extra averages
in the computation of ϕ (4.45) due to the additional probabilistic
degrees of freedom in the detector when it is faced with noise and
symbol fusion.

• We have considered symbol-symmetric strategies, and we have seen
that they allow for particularly efficient and compact formulas in
terms of the parameters Kb. However, it would be interesting to
also study strategies that do not have the symbol symmetry, e.g.
the all-1 attack which, as was discussed in Section 2.3, links traitor
tracing codes to Group Testing. Though it is impossible to formu-
late Kb parameters for the all-1 attack, it is relatively straightfor-
ward to derive expressions for ϕ and ψ: e.g. (D.3) still applies,
hence it is possible to apply the CSE method.

• One of the most discussed topic in this thesis is the Gaussian ap-
proximation. We have shown that in the Gaussian regime many
things change, in particular how the various attacks affect the users’
score and the error probabilities. We have also shown that the
width of the Gaussian region depends on all the parameters in-
volved in the system. The knowledge of the point in which the
curves switch from Gaussian to power-law behaviour determines
which would be the best strategy for a specific threshold Z̃ and
then which will be the worst scenario. A deeper study on the
change of slope as function of the whole parameter set would let to
know the regime widths without computing the entire curves.

Future research could also concentrate on improving the CSE method,
especially its convergence properties. A closer study of Edgeworth-like
expansions may provide a way to get tighter provable bounds, i.e. bounds
that lie close to the CSE results.
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Appendix

A Proof of Lemma 4.2

First we write for all α 6= y: pα = (1− py)sα, with sα ∈ [0, 1]. This gives

dqp = dpy(1− py)q−1dq−1s, (A.1)
∏

β∈Q
p−1+κ
β = p−1+κ

y (1− py)(q−1)(−1+κ)
∏

α∈Q\{y}
s−1+κ
α , (A.2)

δ

(
1−

∑

β∈Q
pβ

)
= δ


[1− py]


1−

∑

α∈Q\{y}
sα




 (A.3)

= (1− py)−1δ


1−

∑

α∈Q\{y}
sα


 . (A.4)

Then we split the q-dimensional integration
∫

dqp F (p)r(p) as follows,

Ep[r(p)] =
1

B(κ1q)

∫ 1

0

dpy p
−1+κ
y

∫ 1−py

0

dq−1p\y·

δ


1− py −

∑

β∈Q\{y}
pβ


p−1+κ

\y r(p). (A.5)

Combining all these ingredients, we find

Ep[r(p)] =
1

B(κ1q)

∫ 1

0

dpy p
−1+κ
y (1− py)−1+κ[q−1]·

∫ 1

0

dq−1s δ


1−

∑

γ∈Q\{y}
sγ


 ∏

β∈Q\{y}
s−1+κ
β r(p). (A.6)
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Combined with the fact that B(κ1q) = B(κ, κ[q − 1])B(κ1q−1), these
steps yield the end result. �

B Proof of Theorem 4.18

For an innocent user j we have Pr[Sj > Z] = Pr
[∑m

i=1 S
(i)
j > Z

]
. The

‘Pr’ refers to the whole set of random variables p, σ, y. The terms S(i)
j

are independent, identically distributed random variables. This allows
us to write

Pr[Sj > Z] =

∫ ∞

−∞
du1ϕ(u1) · · ·

∫ ∞

−∞
dumϕ(um) Θ(u1 + · · ·+ um − Z).

(B.1)
Here Θ is the Heaviside step function. Next we use a well known integral
representation of the step function,

Θ(x) = lim
η↓0

1

2πi

∫ ∞

−∞
dλ

eiλx

λ− iη . (B.2)

Substituting (B.2) into (B.1) and rearranging the order of the integra-
tions, we get

Pr[Sj > Z] = lim
η↓0

∫ ∞

−∞

dλ

2πi

e−iλZ

λ− iη
m∏

a=1

[∫ ∞

−∞
dua ϕ(ua)e

iλua

]
(B.3)

= lim
η↓0

∫ ∞

−∞

dλ

2πi

e−iλZ

λ− iη [ϕ̃(−λ)]m (B.4)

= − lim
η↓0

∫ ∞

−∞

dk

2πi

eikZ/
√
m

k + iη

[
ϕ̃(

k√
m

)

]m
. (B.5)

In the last line of (B.5) we changed the integration variable to k =
−λ√m in order to get the ‘scaled’ threshold Z/

√
m in the integrand,

which makes it easier to visualize the result using Fig. 3.1.
We define D(k) = (2π)−1eikZ/

√
m
[
ϕ̃( k√

m
)
]m

for brevity and write
D(k) = Deven(k) +Dodd(k). The power expansion of Dodd around k = 0
has dominant term ka, where a > 0 (Corollary 4.17). We write

lim
η↓0

∫ ∞

−∞
dk

D(k)

k + iη
= lim

η↓0

∫ ∞

−∞
dk

(k − iη)D(k)

k2 + η2
(B.6)

= lim
η↓0

∫ ∞

−∞
dk

kDodd(k)

k2 + η2
− iπD(0). (B.7)
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Here we made use of a standard representation of the delta function,

δ(k) =
1

π
lim
η→0

η/(k2 + η2). (B.8)

We also used the fact that in the remaining integration the Deven vanishes
since it gets multiplied by an odd function of k. Then we use that
a > 0 in the power series of Dodd (from Corollary 4.17 together with
Corollary 4.15). This causes the integrand to behave like k−1+a in the
limit η → 0, i.e. the integral near k = 0 is convergent even when η is
precisely zero. Thus we can set η = 0 in this integral.

Pr[Sj > Z] = i lim
η↓0

∫ ∞

−∞
dk

D(k)

k + iη
= i

∫ ∞

−∞
dk

D(k)

k
+ πD(0). (B.9)

After substituting D(k) with its definition and D(0) with (2π)−1 (ob-
tained easily with Corollary 4.17) the result is given. �

C Proof of Theorem 4.19

We start from Corollary 4.17 and write a general power series expansion,

ϕ̃(k) = 1− 1
2
k2 +

∞∑

t=0

γt|k|rt , (C.1)

where the rt ≥ 3 are powers and the γt ∈ C are coefficients of the
form iβt sgn k times a real factor. In this expression the desired relation
ϕ̃(−k) = [ϕ̃(k)]∗ evidently holds, and the properties ϕ̃(0) = 1, ϕ̃′(0) = 0,
ϕ̃′′(0) = −1, |ϕ̃′′′(0)| <∞ are clearly present. Then we write

[
ϕ̃(

k√
m

)

]m
= exp

[
m ln ϕ̃(

k√
m

)

]
= e−

1
2
k2 exp

[
m
∞∑

t=0

(
|k|√
m

)r
′
tδt

]
,

(C.2)
where the powers r′t ≥ 3 and coefficients δt ∝ iβ

′
tsgn k are obtained (la-

boriously) by substituting (J.1) into the Taylor series for the logarithm,
ln(1 + ε) = ε− ε2/2 + ε3/3− ε4/4 + · · · . It is worth noting that m disap-
pears from the k2 term, but not from the others. Eq. (4.40) is obtained
from (J.2) by using the Taylor series for the exp function,

exp ε = 1 + ε+ ε2/2! + ε3/3! + · · · (C.3)



114 Appendix

and (again laboriously) collecting terms with equal powers of k.
Since we started out with powers rt ≥ 3, we end up with powers

νt ≥ 3. A power |k|νt may occur together with many different powers
of m. This is seen as follows. The series expansion of ln ϕ̃(k/

√
m) is a

power series in |k|/√m. Then the logarithm is multiplied by m, and a
power |k|r′ always occurs together with m1−r′/2. Next, the k-expansion
of exp mixes up the powers of m. For instance, the power k6 occurs
as mδ(6)(|k|/

√
m)6 ∝ k6m−2 but also as a term [mδ(3)(|k|/

√
m)3]2/2! ∝

k6m−1. Here we defined δ(x) such that r′(x) = x.
The ‘worst case’ (many factors m resulting from high powers of ε in

(J.3)) occurs when νt is a multiple of 3, say νt = 3j; there the power k3j

can be built up from a term [mδ(3)(|k|/
√
m)3]j/j!, which is proportional

to k3jmj−3j/2 = kνtm−νt/6. All the j factors scale as m(|k|/√m)3 =
|k|3/√m. This is the least negative power of m that can occur relative
to the power of k. For other powers νt, the ‘building blocks’ from which
kνt is built up cannot all scale in this way; at least one of the factors has
faster decay.2 This proves the statement about the at least m−νt/6 decay.

Finally, (4.41) follows by applying Lemma 4.11 and Corollary 4.13 to
evaluate the integrals that arise when (4.40) is substituted into Theo-
rem 4.18. �

D Proof of Theorem 4.21

We start by considering the probability of a certain accusation value u
occurring for an innocent user, for fixed p and y. (We omit all column
indices.) There are only two discrete possibilities: (i) g1(py) if the user’s
symbol is y; this occurs with probability py; (ii) g0(py) if the user’s symbol
is not y; this occurs with probability 1 − py. Hence we can write this
distribution as a sum of two delta peaks as follows,

ϕ(u|p, y) = pyδ(u− g1(py)) + (1− py)δ(u− g0(py)). (D.1)

The full ϕ(u), without conditioning, is obtained by taking the expectation
over y and p. Since the expectation over y involves the parameters θy|σ,

2 For instance, the least negative power of m multiplying k7 is obtained from
the ε2 term in (J.3) and is given by 2[mδ(3)(|k|/

√
m)3][mδ(4)(|k|/

√
m)4]/2! ∝

[|k|3/√m][|k|4/m].
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the expectation over σ has to be done as well.

ϕ(u) = EpEσ|p
∑

y∈Q
θy|σ ϕ(u|p, y). (D.2)

Next we note that ϕ(u|p, y) depends only on py. Hence we can write
ϕ(u|py), and

ϕ(u) =
∑

y∈Q
EpyEσ|pyθy|σ ϕ(u|py) =

∑

y∈Q
EpyEσy |pyEσ\y |σyθy|σ ϕ(u|py).

(D.3)
Now we use Eσ\y |σyθy|σ = Kσy , the binomial form (4.16) of Eσy |py and
the marginal distribution of py (Lemma 4.4). The dummy summation
variable σy is replaced by the notation b in order to stress the fact that
it does not depend on y. Substitution of all these ingredients gives

ϕ(u) =
∑

y∈Q

∫ 1

0

dpy f(py)
c∑

b=0

(
c

b

)
pby(1− py)c−bKb ϕ(u|py) (D.4)

=
q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
Kb

∫ 1

0

dpy p
−1+κ+b
y (1− py)−1+κ[q−1+]c−bϕ(u|py).

(D.5)

In the last line we have used that K0 = 0 and that the integral over py
yields the same result for every y. In order to evaluate the py-integral
we have to rewrite the delta functions of (D.1) into the form δ(py − · · · ).
We use the rule

δ(u− w(p)) =
δ(p− winv(u))

|dw/dp| (D.6)

for any monotonic function w(p), which yields

δ(u− g1(p)) = Θ(u)
2u

(1 + u2)2
δ

(
p− 1

1 + u2

)
,

δ(u− g0(p)) = Θ(−u)
2|u|

(1 + u2)2
δ

(
p− u2

1 + u2

)
. (D.7)

After some algebra, it is then seen that the py-integral evaluates to

2

(1 + u2)c+κq+1

[
Θ(u)(u2)κ[q−1]+c−σy−1

2 + Θ(−u)(u2)κ+σy−1
2

]
. (D.8)

Splitting ϕ into a part containing Θ(u) and a part containing Θ(−u)
finally yields the end result. �
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E Proof of Theorem 4.29

The guilty user’s symbol is denoted as X. The one-segment score is
either g0(py) (when X 6= y) or g1(py) (when X = y). Since no other
values are possible, the probability distribution at given p will consist of
delta-function peaks. Each peak is multiplied by the probability that the
corresponding event occurs

ψ−(u|p) =
∑

y∈Q δ (u− g0(py)) Pr[u = g0(py)|p] (E.1)

ψ+(u|p) =
∑

y∈Q δ (u− g1(py)) Pr[u = g1(py)|p]. (E.2)

Notice that

Pr[u = g0(py)|p] = Pr[X 6= y ∧ Y = y|p] (E.3)
Pr[u = g1(py)|p] = Pr[X = y ∧ Y = y|p] (E.4)

and that

Pr[X 6= y∧Y = y|p]+Pr[X = y∧Y = y|p] = Pr[Y = y|p] = τy|p. (E.5)

Next step is to compute Pr[u = g1(py)|p] in (E.2). Let be ey a q-ary
vector entirely set to 0 except for the y-th element that is instead equal
to 1.

Pr[u = g1(py)|p] = Pr[Xji = y]Pr[Y = y|Xji = y,p]

= py
∑

σ∈Sqc

(
c− 1

σ − ey

)
pσ−eyθy|σ. (E.6)

The last equation is obtained as follows: Pr[Xji = y] = py; Pr[Y =
y|Xji = y,p] is equal to the sum over all the possible σ vectors that
have at least one occurrence of y (expressed with the condition σy > 0).
Knowing that Xji = y, the multinomial factor is needed to count the
remaining c− 1 attacker symbols in σ, subtracting 1 from σy (using the
ey vector).

Pr[u = g1(py)|p] =
∑

σ∈Sqc

σy
c

(
c

σ

)
pσθy|σ. (E.7)

In the last equation we used pσ = pyp
σ−ey and

(
c−1
σ−ey

)
= σy

c

(
c
σ

)
. Then

the condition σy > 0 becomes superfluous and (4.63) trivially follows.
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Notice that

py
∂Ty|p
∂py

= py
∂

∂py

∑

σ∈Sqc

(
c

σ

)
pσθy|σ (E.8)

=
∑

σ∈Sqc

(
c

σ

)
θy|σpy

∂pσ

∂py
(E.9)

=
∑

σ∈Sqc

(
c

σ

)
θy|σσyp

σ (E.10)

proving that (4.64)=(4.63) and (4.62)=(4.61). Finally, from (E.5) com-
bined with (E.4) we have

ψ−(u|p) =
∑

y∈Q
δ (u− g0(py))

(
τy|p − Pr[X = y ∧ Y = y|p]

)
. (E.11)

This, together with (E.7), completes the proof. �

F Proof of Theorem 4.30

The full ψ(u), without conditioning, is obtained by taking the expectation
over p of (4.61)+(4.63).

ψ(u) = Ep[ψ(u|p)] = Θ(−u)Ep[ψ−(u|p)] + Θ(u)Ep[ψ+(u|p)]. (F.1)

We first prove (4.65) starting from Ep[ψ−(u|p)] with ψ−(u|p) as given
in (4.61).

Ep[ψ−(u|p)] = Ep


∑

y∈Q
δ (u− g0(py))

∑

σ∈Sqc

(
c

σ

)(
1− σy

c

)
pσθy|σ




(F.2)

=
∑

y∈Q

∑

σ∈Sqc

(
c

σ

)(
1− σy

c

)
θy|σEp [δ (u− g0(py))p

σ] .

(F.3)
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From Lemma 4.2 and pσ\y\y = (1− py)c−σy
∏

α∈Q\{y} t
σα
α we have that

Ep [δ (u− g0(py))p
σ] =

1

B(κ1q)

∫ 1

0

dpy δ (u− g0(py)) p
σy+κ−1
y

· (1− py)c−σy+κ[q−1]−1

∫ 1

0

dq−1t δ(1−
∑

β∈Q\{y}
tβ)

∏

α∈Q\{y}
tσα+κ−1
α . (F.4)

The second integral in (F.4) evaluates to B(σ\y + κ1q−1), having the
structure shown in Def. 3.1. In order to evaluate the py-integral we have
to rewrite the delta function into the form δ (py − · · · ). We use the rule

δ (u− w(p)) =
δ
(
p− winv(u)

)

|dw/dp| (F.5)

for any monotonic function w(p). This gives

δ (u− g0(p)) = Θ(−u)
2|u|

(1 + u2)2 δ

(
p− u2

1 + u2

)
. (F.6)

We substitute (F.6) into (F.4) and solve the integral

Ep [δ (u− g0(py))p
σ] = 2|u|Θ(−u)

(
1

1 + u2

)2 B(σ\y + κ1q−1)

B(κ1q)

·
∫ 1

0

dpy δ

(
py −

u2

1 + u2

)
pσy+κ−1
y (1− py)c−σy+κ[q−1]−1

= 2|u|Θ(−u)

(
1

1 + u2

)2 B(σ\y + κ1q−1)

B(κ1q)

·
(

u2

1 + u2

)σy+κ−1(
1

1 + u2

)c−σy+κ[q−1]−1

= 2Θ(−u)
B(σ\y + κ1q−1)

B(κ1q)

(u2)σy+κ−1/2

(1 + u2)c+κq
. (F.7)

Substituting (F.7) into (F.3) we have

Ep[ψ−(u|p)] = 2
∑

y∈Q

∑

σ∈Sqc

(
c

σ

)(
1− σy

c

) B(σ\y + κ1q−1)

B(κ1q)

(u2)σy+κ−1/2

(1 + u2)c+κq
θy|σ.

(F.8)
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Now we change the summations as follows: the
∑
σ can be written as∑

b

∑
x with b = σy and x = σ\y, so θy|σ = Ψb(x). Then the summand

is a function of only b and x, which allows us to write

∑

y

∑

σ

(
c

σ

)
→ q

c∑

b=0

∑

x

(
c

b

)(
c− b
x

)
. (F.9)

Now we have

Ep[ψ−(u|p)] = 2q
c∑

b=0

∑

x

(
c

b

)(
c− b
x

)
c− b
c

B(x+ κ1q−1)

B(κ1q)

(u2)b+κ−1/2

(1 + u2)c+κq
Ψb(x)

(F.10)
where

∑

x

(
c

b

)(
c− b
x

)
B(x+ κ1q−1)

B(κ1q)
Ψb(x)

=

(
c

b

)∑

x

(
c− b
x

)
B(x+ κ1q−1)

B(κ1q−1)B(κ, κ[q − 1])
Ψb(x)

(F.11)

=

(
c

b

)
1

B(κ, κ[q − 1])

∑

x

Pq−1(x|b)Ψb(x) (F.12)

=

(
c

b

)
Kb

B(κ, κ[q − 1])
. (F.13)

In the last line we used Kb Definition (4.23). Substituting (F.13) into
(F.10) and removing 0 and c from the b-range, we have (4.65).

We can use exactly the same steps to obtain (4.66) from (4.63). The
only significant difference is the delta function which in this case will be

δ (u− g1(p)) = Θ(u)
2u

(1 + u2)2 δ

(
p− 1

1 + u2

)
. (F.14)

�
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G Proof of Consistency Check 1

Integration of (4.65) and (4.66) gives
∫ ∞

−∞
duψ(u) =

2q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
Kb

[(
1− b

c

)∫ 0

−∞
du

(u2)
b+κ− 1

2

(1 + u2)c+κq

+
b

c

∫ ∞

0

du
(u2)

c−b+κ[q−1]− 1
2

(1 + u2)c+κq

]
. (G.1)

Let be λ := b + κ and w := c − b + κ[q − 1]. Applying Lemma 4.8 we
have

2q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
Kb

[(
1− b

c

)
1

2
B(λ,w) +

b

c

1

2
B(w, λ)

]

=
q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
KbB(λ,w). (G.2)

The result follows applying Lemma 4.5 followed by Lemma 4.7. �

H Proof of Consistency Check 2

Taking (4.65) and (4.66), the integral
∫∞
−∞du uψ(u) can be written as

2q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
Kb

[(
1− b

c

)∫ 0

−∞
du

u (u2)
b+κ− 1

2

(1 + u2)c+κq
+

b

c

∫ ∞

0

du
u (u2)

c−b+κ[q−1]− 1
2

(1 + u2)c+κq

]
. (H.1)

Let λ := b + κ − 1
2
and w := c − b + κ[q − 1]− 1

2
. Applying Lemma 4.8

and the property Γ(x+ 1) = xΓ(x) we have
∫ ∞

−∞
duuψ(u) =

2q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
Kb

[(
b

c
− 1

)
Γ(λ)Γ(w)λ

2Γ(c+ κq)

+
b

c

Γ(λ)Γ(w)w

2Γ(c+ κq)

]
. (H.2)

To obtain µ̃ as in (4.59) we use Lemma 4.5 to substitute
(
c
b

)
1

B(κ,κ[q−1])

with P1(b)
B(λ+1/2,w+1/2)

. After some simplifications, the result follows. �
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I Proof of Lemma 4.31

The integral
∫∞
−∞ du u2ψ(u) can be written as

2q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
Kb

[(
1− b

c

)∫ 0

−∞
du

u2 (u2)
b+κ− 1

2

(1 + u2)c+κq
+

b

c

∫ ∞

0

du
u2 (u2)

c−b+κ[q−1]− 1
2

(1 + u2)c+κq

]
. (I.1)

Let λ := c− b+κ[q− 1] and w := b+κ. Applying Lemma 4.8 with (3.3)
and the property Γ(x+ 1) = xΓ(x), we get

2q

B(κ, κ[q − 1])

c∑

b=1

(
c

b

)
Kb

[(
1− b

c

)
Γ(λ− 1)Γ(w − 1)w(w − 1)

2Γ(c+ κq)
+

b

c

Γ(λ− 1)Γ(w − 1)λ(λ− 1)

2Γ(c+ κq)

]
. (I.2)

Then using (4.20) we have
∫ ∞

−∞
duu2ψ(u) = q

c∑

b=1

KbP1(b)

[(
1− b

c

)
w

λ− 1
+
b

c

λ

w − 1

]
(I.3)

and (4.69) follows after some rewriting. �

J Proof of Theorem 4.19

We start from Corollary 4.36 and write a general power series expansion,

χ̃(k) = 1− (V/2)k2 +
∑∞

t=0 γt|k|rt , (J.1)

where the rt ≥ 2 + 2κ are powers and the γt ∈ C are coefficients of the
form iβt sgn k times a real factor. In this expression the desired relation
χ̃(−k) = [χ̃(k)]∗ evidently holds, and the properties χ̃(0) = 1, χ̃′(0) = 0,
χ̃′′(0) = −V are clearly present. Then we write

[χ̃(k/
√
m)]m = exp[m ln χ̃(k/

√
m)] = e−

V
2
k2 exp

[
m
∑∞

t=0 (
|k|√
m

)r
′
tδt

]
,

(J.2)
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where the powers r′t ≥ 2 + 2κ and coefficients δt ∝ iβ
′
tsgn k are obtained

(laboriously) by substituting (J.1) into the Taylor series for the logarithm,
ln(1+ε) = ε−ε2/2+ε3/3−ε4/4+· · · . It is worth noting thatm disappears
from the k2 term, but not from the others. Eq. (4.86) is obtained from
(J.2) by using the Taylor series for the exp function,

exp ε = 1 + ε+ ε2/2! + ε3/3! + · · · (J.3)

and (again laboriously) collecting terms with equal powers of k. Since we
started out with powers rt ≥ 2 + 2κ, we end up with powers νt ≥ 2 + 2κ.
Finally, (4.41) follows by applying Lemma 4.11 and Lemma 4.39 to evalu-
ate the integrals that arise when (4.86) is substituted into Theorem 4.18.
�

K Proof of Theorem 5.5

We start from (4.23), with Pq−1 defined in (4.22), and reorganize the
x-sum to take the multiplicity ` into account:

∑

x

[· · · ]→
`max∑

`=0

(
q − 1

`

) ∑

z∈({0,...,c−b}\{b})r
δ0,c−b(`+1)−∑r

k=1 zk
[· · · ]

=
`max∑

`=0

(
q − 1

`

) ∑

z1∈{0,...,c−b}\{b}
· · ·

∑

zr∈{0,...,c−b}\{b}
δ0,c−b(`+1)−∑r

k=1 zk
[· · · ]

where δ is the Kronecker delta, and `max = min{q−1, b c−b
b
c}. The factor(

q−1
`

)
pops up because the summand in (4.23) is fully symmetric under

permutations of x. The Kronecker delta takes care of the constraint that
the components of z add up to c− b− `b.

If `max = b c−b
b
c and the sum over ` is extended beyond `max, then

all the additional terms are zero, because the Kronecker delta condition
cannot be satisfied. (The

∑
k zk would have to become negative.) Hence

we are free to replace the upper summation bound `max by q− 1 without
changing the result of the sum.

Next we use a sum representation of the Kronecker δ as follows,

δ0,s =
1

Nb

Nb−1∑

a=0

(ei2π/Nb)as, (K.1)
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with s = c−b(l+1)−∑k zk. This is a correct representation only if Nb is
larger than the maximum |s| that can occur. The most positive possible
value of s is attained at (` = 0, z = 0), namely s = c − b. The most
negative value (sneg) is attained when zk = c− b for all k. Since there are
r = q−1− ` components in z, we have sneg = min`[c− b(`+1)− (q−1−
`)(c − b)]. The function is linear in `, so there are only two candidates:
the extreme values ` = 0 (that minimize s if c − 2b > 0) and ` = q − 1
(that minimize s if c − 2b < 0), which yield |sneg| = (q − 2)(c − b) and
|sneg| = |c−bq| respectively. In the second result, the condition c−2b < 0
yield that also c− bq < 0 allowing to write |sneg| = bq− c. Hence Nb has
to be larger than max{c− b, (q − 2)(c− b), bq − c}.

Our expression for Kb now contains sums over `, zk and a. We shift
the a-sum completely to the left. Next we write

B(κ1q−1 + x) =
[Γ(κ+ b)]`

∏q−1−`
k=1 Γ(κ+ zk)

Γ(c− b+ κ[q − 1])
, (K.2)

(
c− b
x

)
=

(c− b)!
[b!]`

∏q−1−`
k=1 zk!

. (K.3)

All the expressions depending on the zk variables are fully factorized; the
part of the summand that contains the zk is given by

q−1−`∏

k=1


 ∑

zk∈{0,...,c−b}\{b}

W (b, `, zk)Γ(κ+ zk)

zk! τ
azk
b


 = (Gba`)

q−1−`. (K.4)

Theorem 5.5 follows after some elementary rewriting. �

L Proof of Theorem 5.6

We start from Kb as given by Theorem 5.5. The Gba` becomes Gba, so
the factor Gq−1

ba can be moved out of the `-sum. The w(b, `) becomes
w(b)/(`+ 1) and w(b) can also be moved out of the `-sum. The remain-
ing sum is

∑q−1
`=0

(
q−1
`

)
1
`+1

(vba/Gba)
` which evaluates to [(Gba + vba)

q −
Gq
ba]G

1−q
ba /(qvba). Theorem 5.6 follows after substituting the definition of

vba and some rewriting. �
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M Proof of Theorem 5.7

In (5.11) theW (b, `, z) becomesW (b, z). The definition of class 3 specifies
that W (b, z) is either 1 or 0. The result (5.14) trivially follows. �

N Proof of Lemma 5.8

N.1 The case b < c/q

A symbol that occurs fewer than c/q times cannot have the majority.
Consider the extreme case where all the other symbols also occur b times:
then the total number of symbols received by the coalition would be
q · b < c.

N.2 The case b > c/2

Since the colluder strategy is majority voting, we have Ψb(x) = 1 for
b > c/2. (This follows from the fact that none of the components xa can
exceed c/2 due to the sum rule

∑
a xa = c− b < c/2.) The result (5.20)

follows after substitution of Ψb(x) = 1 into (4.23), summing up (
∑
x)

the probabilities to 1, and finally writing the Beta functions in terms of
Gamma functions according to (3.3).

N.3 The case b = c/2

Now Ψb(x) = 1 unless xβ = c/2 for some β ∈ {1, · · · , q− 1}; in that case
Ψb(x) = 1/2 since there are two equivalent symbols to choose from. We
have

Kc/2 =
∑

x:xβ 6=c/2
Pq−1(x| c

2
) +

q−1∑

a=1

(
c/2

c/2

)
B(κ1q−1 + c

2
ea)

B(κ1q−1)
· 1

2

=
∑

x

Pq−1(x| c
2

)− 1

2

q−1∑

a=1

B(κ1q−1 + c
2
ea)

B(κ1q−1)

= 1− q − 1

2

B(κ1q−1 + c
2
ea)

B(κ1q−1)
. (N.1)

In the last line we used the fact that the a is arbitrary. Finally, without
loss of generality we can set a = 1.
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N.4 The case c/q ≤ b < c/2

MinV can be described as a Class 3 strategy whose ranking is a decreasing
sequence of tallies (the higher the better). This is equivalent to defining
W (b, z) as follows:

W (b, z) =

{
1 if b > z
0 otherwise . (N.2)

Using this definition in Theorem 5.7, the Gba summation range can be
shrunk in z ∈ {0, 1, . . . , b− 1}, and (5.17) immediately follows.

Nb computation: The Nb value introduced in Theorem 5.5 is defined
as a positive integer s. t. Nb > |s| = |c − b(l + 1) − ∑k zk|. The
range of solutions for Nb given in the theorem is safe for any strategy
contained in Class 1, 2 or 3. However, in some particular cases, it is
possible to obtain lower bounds due to specific strategies and smaller
variable ranges. One of these cases is the actual one, where the strategy
is MajV and c/q ≤ b < c/2. Because of the strategy, we have that
0 ≤ xj ≤ b − 1. The most positive possible value of s is attained at
(` = 0, z = 0), namely s = c − b. The most negative value (sneg)
is attained when zk = b − 1 for all k. Since there are r = q − 1 − `
components in z, we have sneg = min`[c+ q(1− b)− `−1]. Then trivially
we set ` = q − 1 which yield |sneg| = |c − bq|. Being b ≥ c/q, we attain
|sneg| = bq − c. Hence Nb has to be larger than max{c− b, bq − c}.

�

O Proof of Lemma 5.10

O.1 The case b < c/q

MinV can be described as a Class 3 strategy whose ranking is an in-
creasing sequence of tallies (the lower the better). This is equivalent to
defining W (b, z) as follows:

W (b, z) =

{
1 if b < z
0 otherwise . (O.1)

Using this definition in Theorem 5.7, the Gba summation range can be
shrunk in z ∈ {b+ 1, . . . , c− b}, and (5.23) immediately follows.

Nb computation: As for MajV, also for MinV is possible to obtain
lower bounds for Nb. We recall that Nb needs to be bigger than |s| =
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|c− b(l + 1)−∑k zk|. We start looking for the highest possible value of
s. We first of all set zk = b+ 1 for each k. Since there are r = q − 1− `
components in z, we attain s = c−q(b+1)+1+`. Notice that this is the
lowest zk value being b+ 1 ≤ zk ≤ c− b. Then for ` = q− 1 we end with
s = c − bq, that is always positive for the actual range of b values. The
most negative value (sneg) is attained when zk = c− b for all k. Then we
have sneg = min`[`(c−2b)−(q−2)(c−b)]. Being c−2b > 0, the best result
is given setting ` = 0, obtaining sneg = −(q − 2)(c − b) ≤ 0. So |sneg| =
(q−2)(c− b). Hence Nb has to be larger than max{c− bq, (q−2)(c− b)}.
The first function is bigger than the second just when q = 2, then we can
split the two cases obtaining (5.21).

O.2 The case b > c/q

A symbol that occurs more than c/q times cannot have the minority.
Consider the extreme case where all the other symbols also occur b times:
then the total number of symbols received by the coalition would be
q · b > c.

�

P Proof of Theorem 5.14

We first need the following Lemma:

Lemma P.1.
q−1∑

w=1

(
q − 1

w

)
1

w + 1
αwβq−1−w =

(α + β)q − βq
αq

− βq−1. (P.1)

Proof. We define

A(α) :=

q−1∑

w=0

(
q − 1

w

)
αwβq−1−w = (α + β)q−1. (P.2)

Integrating A we have:
∫ α

0

A(α′)dα′ =
q−1∑

w=0

(
q − 1

w

)
1

w + 1
αw+1βq−1−w =

(α + β)q − βq
q

. (P.3)

Dividing both expressions by α and then subtracting the w = 0 term
βq−1, the result (P.1) follows.
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Starting from the general definition of Kb (4.23) we have

KRS
b = Ex|bΨRS

b (x) =
∑

x

(
c− b
x

)
B(κ1q−1 + x)

B(κ1q−1)
ΨRS
b (x). (P.4)

Given that the strategy can be defined as

ΨRS
b (x) =

1

w + 1
, w = |{i : xi > 0}| (P.5)

we need to rewrite the x-sum in (P.4) to take the w non-zero elements
in x into account. We write x as a vector containing q − 1 − w zeroes
and w nonzero integers z1, · · · , zw.

∑

x

{· · · } →
q−1∑

w=1

(
q − 1

w

) ∑

z∈{1,...,c−b}w
δ0,c−b−∑w

i=1 zi

{
· · ·
}

(P.6)

=

q−1∑

w=1

(
q − 1

w

) ∑

z1∈{1,...,c−b}
· · ·

∑

zw∈{1,...,c−b}
δ0,c−b−∑w

i=1 zi

{
· · ·
}

(P.7)

where δ is the Kronecker delta. Next we use a sum representation of the
Kronecker δ as follows:

δ0,s =
1

Nb

Nb−1∑

a=0

(
ei2π/Nb

)as
(P.8)

with s = c − b −∑w
i=1 zi. This is a correct representation only if Nb is

larger than the maximum |s| that can occur. The most positive value of
s is attained at z = 0, namely s = c − b. The most negative value is
attained when w = q−1 and zk = c−b for all k, namely s = −(c−b)(q−2).
Being q > 2, Nb has just to be larger than (c− b)(q− 2). Our expression
for Kb now contains sums over zk and a. We shift the a-sum completely
to the left. Next we write

B(κ1q−1 + x) =
[Γ(κ)]q−1−w∏w

i=1 Γ(κ+ zi)

Γ(c− b+ κ[q − 1])
(P.9)

(
c− b
x

)
=

(c− b)!∏w
k=1 zk!

. (P.10)
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All the expressions depending on the zk variables are fully factorized; the
part of the summand that contains the zk is given by

w∏

k=1

[
c−b∑

zk=1

Γ(κ+ zk)

zk!τ
azk
b

]
= (Gba)

w. (P.11)

After some elementary rewriting we have

KRS
b =

(c− b)!Γ(κ(q − 1))

NbΓ(c− b+ κ(q − 1))

Nb−1∑

a=0

τ
a(c−b)
b

q−1∑

w=1

(
q−1
w

)

w + 1

[
Gba

Γ(κ)

]w
. (P.12)

We can go further applying Lemma P.1 on the w-sum with α = Gba
Γ(κ)

and
β = 1, obtaining

q−1∑

w=1

(
q−1
w

)

w + 1

[
Gba

Γ(κ)

]w
=

(Gba/Γ(κ) + 1)q − 1

qGba/Γ(κ)
− 1. (P.13)

Substituting (P.13) into (P.12) we obtain

KRS
b =

(c− b)!Γ(κ(q − 1))

NbΓ(c− b+ κ(q − 1))

[
Nb−1∑

a=0

τ
a(c−b)
b

(Gba/Γ(κ) + 1)q − 1

qGba/Γ(κ)
−

Nb−1∑

a=0

τ
a(c−b)
b

]

(P.14)
The second summation yields δ0,c−b which is zero because we are looking
at b < c. The result (5.27) follows. �



Nomenclature

C Set of colluding users

χ Shifted version of ψ

L List of accused users

Q Alphabet

Sqc Set containing all the possible σ for a given alphabet size q and a
coalition size c

X Matrix n×m filled with symbol inQ containing all the watermarks
embedded in the digital content. The element Xji indicates the
symbol received by the user j in position i, while with Xj we
indicate the entire codeword received by user j

XC Portion of X observed by the coalition

µ̃ Expectation value of the collective coalition accusation sum on
one segment. Formally, µ̃ = E[SC]/m

PFN False negative probability

PFP One-user false positive probability

P global
FP Global false positive probability. It indicates the probability that

any innocent user gets accused. It is approximatively nPFP

P(σ|p) Probability that c users receive symbol occurrences σ given p

P1(b|p) Marginal distribution for a single component σα. It gives the
probability for the attackers to receive b occurrences of a symbol
α when pα = p

P1(b) The overall marginal probability distribution for one component
of σ
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Pq−1(x|b) Probability distribution of x = σ\α conditioned on b = σα

δ(x) Dirac delta. It is equal to +∞ for x = 0 and 0 otherwise.

δx Kronecker delta. It is equal to 1 for x = 0 and 0 otherwise.

ε1 Probability to accuse an innocent user

ε2 Maximum acceptable error probability to accuse none of the col-
luders

ϕ(u) Probability distribution of one-segment contribution to innocent’s
accusation

Ψb(x) Probability that the attackers output a symbol that occurs b times
in a segment and the other q − 1 symbols occur as indicated in x

κ Shape parameter contained in F

Ω(z) Probability mass in the right tail of the normal distribution beyond
point z

ψ(u) Probability distribution of one-segment contribution to guilty’s
accusation

ρm Probability distribution of the quantity Sj/
√
m for innocent j

σ
(i)
α Tally of symbol α in attackers’ segment i

τm Probability distribution of the quantity SC/(c
√
m) normalized to

0 mean and variance 1

Θ Heaviside step function

θy|σ Probability that attackers output symbol y given σ

Z̃ Z/
√
m

Z̃half Z̃half = µ̃
√
m
c

1q Vector of length q filled just with 1s

p(i) Probability vector used to generate the symbols in the i-th seg-
ment of matrix X. The symbols are drawn randomly according
to P[Xji = α|p(i)] = p

(i)
α , where α ∈ Q

p\y Bias vector p without the element py

σ\α Tally vector σ without the element σα
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y Unauthorised watermark created by the coalition C. With yi we
indicate the symbol in position i

B Generalized Beta function

c Number of colluders |C|
c0 Maximum number of colluders the scheme can resist

Cm Area function for the right-hand tail of one-guilty user score pdf

F (p) Dirichlet distribution. It is used to draw randomly the vectors p(i)

f(p) Marginal probability distribution for a single component of the
vector p

g0(p
(i)
yi ) Score function applied when user’s symbol in position i is not yi.

It gives a negative value to the user’s final score

g1(p
(i)
yi ) Score function applied when user’s symbol in position i is yi. It

gives a positive value to the user’s final score

Kb Probability that attackers output a symbol that occurs b times. It
is made averaging over all the possible occurrences x given b

m Codelength

M2 Second moment of the pdf ψ

n Number of users

q Alphabet size |Q|
Rm Area function for the right-hand tail of ρm

Sj User j accusation sum

S
(i)
j Accusation score obtained from i-th symbol of user j

SC Coalition accusation sum. Formally, SC :=
∑

j∈C Sj

Tm Cumulative distribution function for τm

V Variance of the pdf ψ

Zhalf Specific value of Z such that the PFN ≈ 1
2
. It is defined as Zhalf =

mµ̃/c
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Summary

Error probabilities in Tardos codes

The digital piracy is a phenomenon that has become very popular with
the growth of the Internet. The constant digitalization of our goods (like
movies, books and money) and the creation of peer-to-peer platforms
made possible to share and find unauthorized copies of copyrighted con-
tents and, in most of the cases, without disclosing the identity of the
pirates. The vendors are the main victims of this behaviour together
with the authors of the digital contents (singers, movie directors, soft-
ware houses,...): the original copies sold become less and so the income.
One of the ways to fight piracy consists on denying the pirates to hide
their identities. To do so, the digital watermarking technique fits with
the purpose (in particular with movies). A watermark can be seen as
a string of data stored into the original content that contains extra in-
formation about the content itself. The watermark has to follow two
important constraints: (i) its presence should not damage the original
content; (ii) it has to be hard to detect. Then, a vendor can use wa-
termarks to identify the owners of the original contents and, whenever a
plain copy is shared, it is easy to trace the pirate (that could not find and
remove the watermark because well hidden). The pirates can still try to
corrupt the watermarks with the so called collusion attack: a group of
pirates compares their original watermarked copies to locate part of the
watermark. In this way they can create a new watermark and avoid the
tracing. In the literature it is possible to find several solutions against
the collusion attack. Certainly, the Tardos code (or Tardos scheme) is
the most popular since it is the first to achieve optimal performances
against big coalitions. Despite its popularity, Tardos code performances
were not fully understood: both the analytical and numerical approaches
could not provide a complete explanation of the error probabilities (false
positive and false negative) that are bound to the code, and consequently



134 Summary

its real performances. How to determine the real error rates of the Tardos
code? In this dissertation it has been studied therefore the error prob-
abilities associated to the Tardos code, in particular its fully symmetric
and non-binary version introduced by Škorić et al. The aim was to ob-
tained a preferably analytical method to compute both the false positive
and the false negative probabilities at any parameter setting (codelength,
alphabet size, coalition size,...). To achieve this target we develop a new
procedure, called CSE method (Convolution and Series Expansion) that
succeeds on computing semi-analytically the error probabilities. This
method has shown to be consistent with the theory and with the sim-
ulations (when simulations are doable). The CSE method required a
new parameterization of the attack strategies to describe in a better way
the symmetry of the scheme. This new parameterization permits also
to do pre-computations, which speeds up the whole process. Thanks to
the CSE method it has been possible to study the real performances of
the Tardos code against the most popular attacks. We used the ROC
(receiver operating characteristic) curves to have a better representation
of both the error probability behaviours at the same time. This shows
clearly which are the best attacks and in which cases they should be
used. Finally, the CSE method can be applied also to other schemes and
attacks. Also, future works can be addressed to non-symmetric scenarios.
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