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As-produced carbon nanotubes come in bundles that must be exfoliated for practical applications in
nanocomposites. Sonication not only causes the exfoliation of nanotube bundles but also unwanted
scission. An understanding of how precisely sonication induces the scission and exfoliation of nan-
otubes will help maximising the degree of exfoliation while minimising scission. We present a the-
oretical study of the mechanics of carbon nanotube scission under sonicaton, based on the accepted
view that it is caused by strong gradients in the fluid velocity near a transiently collapsing bubble. We
calculate the length-dependent scission rate by taking the actual movement of the nanotube during the
collapse of a bubble into account, allowing for the prediction of the temporal evolution of the length
distribution of the nanotubes. We show that the dependence of the scission rate on the sonication
settings and the nanotube properties results in non-universal, experiment-dependent scission kinetics
potentially explaining the variety in experimentally observed scission kinetics. The non-universality
arises from the dependence of the maximum strain rate of the fluid experienced by a nanotube on
its length. The maximum strain rate that a nanotube experiences increases with decreasing distance
to the bubble. As short nanotubes are dragged along more easily by the fluid flow they experience a
higher maximum strain rate than longer nanotubes. This dependence of the maximum strain rate on
nanotube length affects the scaling of tensile strength with terminal length. We find that the terminal
length scales with tensile strength to the power of 1/1.16 instead of with an exponent of 1/2 as found
when nanotube motion is neglected. Finally, we show that the mechanism we propose responsible for
scission can also explain the exfoliation of carbon nanotube bundles. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4884823]

I. INTRODUCTION

Carbon nanotube-based polymer composites1–3 are
promising new materials in which carbon nanotubes are, for
example, used to create transparent conductive layers.4, 5 Dis-
persions of exfoliated nanotubes are required for the pro-
duction of these so-called latex based nanotube composites.1

Such dispersions can be obtained by means of sonication,6–12

however, sonication also induces scission of nanotubes. Scis-
sion is unwanted because the quality of nanotube compos-
ites strongly depends on nanotube length.13 Hence, the sub-
ject of nanotube scission under sonication has received some
attention in literature.14–24 There has however been little the-
oretical work on the scission mechanics of carbon nanotubes
under sonication.15, 16, 19, 22, 23 In fact, no attempt to describe
exfoliation and scission simultaneously has been made. Such
a description is highly relevant for it would, in principle, al-
low for the determination of optimal sonication settings. Per-
tinent questions that arise in this context include: How can a
maximum degree of exfoliation and a minimum of nanotube
scission under sonication be achieved? How can sonication
be used to control the length distribution of a nanotube dis-
persion? This article provides a first step towards answering
these questions.

During sonication an acoustic field is applied to a liq-
uid and the resulting interaction between small bubbles in it

a)Electronic mail: j.stegen@tue.nl

and the acoustic field is known as acoustic cavitation.25–31 In
the process of acoustic cavitation, oscillations of the acous-
tic pressure cause the growth of microbubbles due to rec-
tified diffusion.31 These become unstable above a critical
bubble radius.28, 30, 32 The instability leads to the explosive
growth of the bubble up to some maximum radius32 and
ends in the violent transient collapse of the bubble.26 The
violent nature of transient cavitation has been used to cut
a wide variety of macromolecules, including carbon nan-
otubes. Much attention has been devoted to the disentan-
glement and scission of polymers.33, 34 The degradation of
DNA35 and the fragmentation of other fiber-like structures
such as protein fibrils36 has been studied. All of these macro-
molecules have a high aspect-ratio, which makes them sensi-
tive to the strong gradients in fluid velocity that accompany
the transient collapse of a bubble. The exact scission mech-
anism will however depend on the atomic structure of the
macromolecule. Relevant in this regard is the work by Yu
et al. who have studied the mechanics of scission under ten-
sion for single and multi-wall carbon nanotubes as well as
that of single-wall nanotube ropes.37, 38 They observed that
scission occurs in the outer tubes as, in their experiments,
forces are primarily exerted on these tubes. We expect that
similar scission mechanisms are at play during sonication.
Here too, forces are primarily exerted on the outer tubes
by the fluid flow, potentially leading to layer-by-layer scis-
sion of multi-wall nanotubes and to exfoliation of nanotube
bundles.

0021-9606/2014/140(24)/244908/14/$30.00 © 2014 AIP Publishing LLC140, 244908-1
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The mechanics of nanotube scission under sonication is
determined by the interaction between the flow set up in the
fluid following the transient collapse of a bubble and a nan-
otube. Following the model for polymer scission under son-
ication, as proposed by Kuijpers et al.,33 Hennrich et al. at-
tributed the scission of carbon nanotubes to the high strain
rate of the fluid flow resulting from the transient collapse of
the bubble. Strong viscous drag forces exerted by the fluid on
the nanotube, which is radially aligned in the flow field, are
responsible for scission of the nanotube. In particular, they
demonstrated that the total drag force exerted by the fluid on
the nanotube is proportional to the square of the nanotube
length, and realised that this implies a terminal nanotube
length below which scission can no longer occur.15 This idea
was reformulated by Ahir et al. in a simple model that gives
a mathematical expression for the minimum nanotube length
that can be reached by sonication for a given maximum strain
rate experienced by the nanotube.16 Lucas et al. realised that
the scission rate of nanotubes should be length-dependent and
is related to the probability that a nanotube is close to a cavi-
tating bubble. Because a longer nanotube sweeps out a larger
volume it is more likely to be close to a cavitating bubble
and should thus break more easily. Their experimental results
show a power law dependence of the average nanotube length
on the amount of supplied acoustic energy.19 A power law de-
cay of the average length has been reported by other groups as
well, albeit that the reported value of the exponent seems to be
non-universal.11, 15, 19, 21 A very similar result was obtained for
the exfoliation of nanotube bundles under sonication,11, 12 in-
deed suggesting that perhaps the same mechanism is respon-
sible for scission and exfoliation.

Although the mechanism by which scission is thought
to occur, that is, under tension, is well established, there has
been some discussion on the role of buckling-mediated scis-
sion of nanotubes. Simulations by Chew et al. suggest that
nanotubes enter the bubble during explosive growth and are
expelled from the bubble due to their inertia in the final stages
of collapse. After expulsion from the bubble into the liquid,
the tangentially oriented nanotubes buckle and break due to
overbending.22 Pagani et al. argue that the mechanism pro-
posed by Chew et al. is relevant only to a tiny fraction of
carbon nanotubes for most nanotubes never get sufficiently
close to the bubble to be absorbed into it.23 Their simula-
tions show that the scission mechanism is length-dependent,
long nanotubes are expected to buckle and break while short
nanotubes orient radially and break under tension, where the
crossover-length between the two mechanisms is determined
by the bending stiffness of the nanotube. Furthermore, they
realised that there is a critical distance between bubble and
nanotube at the start of bubble collapse beyond which no scis-
sion occurs: beyond this critical distance the fluid strain rate
around the nanotube does not become sufficiently high. Fi-
nally, and importantly, Pagani et al. show that the two pro-
posed mechanisms lead to different exponents for the power
law describing the average nanotube length as a function of
time, thus potentially explaining the non-uniformity of exper-
imental results.23

Here we expand on earlier work15, 16, 19, 22, 23 and primarily
investigate the mechanics of nanotube scission under tension

in detail, by taking nanotube motion during bubble collapse
explicitly into account. In doing so, we find that the kinetics
of scission under tension are non-universal, potentially pro-
viding an alternative to the mechanism proposed by Pagani
et al.23 as responsible for the variety in experimentally de-
termined scission kinetics that are reported in literature. In
our model, we approximate a carbon nanotube as a rigid, in-
exstensible rod. We characterise the process of transient cav-
itation by two length scales, being the typical bubble radius
before and after explosive growth. We model the collapse of
a bubble using the empty cavity approximation,39 because,
unlike the Rayleigh-Plesset equation26 it gives a universal an-
alytical relation between the bubble radius and the velocity of
the bubble wall, which allows for the derivation of a universal
equation giving the stress exerted on a nanotube by the fluid
as a function of bubble radius. Furthermore, we make plau-
sible that it is a reasonable approximation for the mathemat-
ically more complicated but more realistic Rayleigh-Plesset
equation.26 To describe the interaction between the fluid and
the nanotube we invoke first-order slender-body theory,40, 41

and by assuming Stokesian dynamics, we derive the equations
of motion for the temporal evolution of the translation and ro-
tation of the nanotube. Using these equations of motion we
investigate the scission mechanics for radially aligned nan-
otubes by taking the actual motion of nanotubes during bub-
ble collapse explicitly into account.

By taking nanotube motion into account, we derive a
length-dependent scission rate that is determined by the criti-
cal initial distance between nanotube and bubble below which
scission occurs. We find that the scission rate depends on nan-
otube properties, such as their length and tensile strength, as
well as on the sonication conditions. For nanotubes signifi-
cantly longer than the terminal length, the scission rate scales
with L2, in agreement with earlier work.15, 23 However, when
approaching the terminal nanotube length, deviations from
this scaling law arise. This gives rise to non-universal scission
kinetics, where the mean nanotube length scales as t−α with
α ≤ 0.5 a non-universal exponent. This is in agreement with
experimental results where exponents varying between 0.2219

and 0.515 have been reported, but contrasts with earlier work
where scission of radially aligned nanotubes under tension
was thought to result in universal scission kinetics.15, 16, 18, 19

We furthermore find that the minimum scission length, the
nanotube length below which no scission can occur, scales as
σ

1/1.16
T when nanotube motion is taken into account instead of

the previously predicted σ
1/2
T ,15, 16, 18, 19 where σ T is the ten-

sile strength of the nanotube. The terminal length, the short-
est nanotube segments that can be produced by sonication,
follows an identical scaling relation with tensile strength for
it is equal to approximately half the minimum scission length.
Finally, we briefly discuss the implications of our model for
the competition between scission under tension and buckling
mediated scission as proposed by Pagani et al.23 and we make
plausible that the mechanism responsible for scission can pro-
vide an explanation for the exfoliation of carbon nanotube
bundles.

The remainder of this article is organised as follows: in
Sec. II we discuss the model that we invoke to describe a bub-
ble undergoing transient cavitation. In Sec. III we present our
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description of a nanotube and the interaction it has with a cav-
itating bubble. In Sec. IV we combine the models of Secs. II
and III to determine the motion of and the forces exerted on
a radially oriented nanotube during bubble collapse. Subse-
quently, in Sec. V we investigate the implications of the re-
sults from Sec. IV for scission kinetics. The article concludes
with a discussion in Sec. VI, where we propose a scission-
mediated exfoliation mechanism.

II. BUBBLE DYNAMICS

Any attempt to describe the mechanics of carbon nan-
otube scission under sonication requires three key ingredients:
(1) a model describing fluid motion during transient cavita-
tion, (2) a model for a carbon nanotube, and (3) a model for
the interaction between the nanotube and the fluid. In this sec-
tion we discuss the first ingredient and give a brief and simple
overview of the process of transient cavitation. We discuss
relevant length scales and show how the assumption of in-
compressibility in combination with Rayleigh’s model for the
collapse of an empty cavity39 provides a full description of
the fluid flow following the transient collapse of a bubble. It is
explained why we use the empty cavity approximation rather
than the more accurate and more frequently used Rayleigh-
Plesset equation.26 We shall be using the results of this sec-
tion in Sec. IV, where we study the mechanics of scission
under tension for radially aligned nanotubes. Before that, in
Sec. III, we discuss our model of a nanotube and the interac-
tion between a nanotube and a fluid flow.

During sonication an acoustic field is applied to a liq-
uid, causing oscillations in the size of small bubbles present
within the liquid. This is known as stable cavitation.26, 27 Due
to rectified diffusion,31 i.e., the net diffusion of dissolved gas
into an oscillating bubble, these small bubbles slowly grow
over many pressure cycles up to a critical radius, the so-called
Blake threshold, for a discussion of which we refer to the
literature.28, 30, 32 This threshold is determined by the ampli-
tude of the applied acoustic field and the surface tension of
the bubble surface. It separates stable and transient cavita-
tion, the latter being initiated when the surface tension can no
longer contain the growth of the bubble during the negative
pressure peak or the rarefaction phase of the applied acous-
tic field. The bubble then undergoes explosive growth and,
assuming it grows sufficiently much, it undergoes transient
collapse during the next positive pressure peak of the acoustic
field.32 The maximum bubble radius is reached when growth
eventually slows down as the rarefaction phase ends and the
acoustic pressure becomes positive.32 Collapse of the bubble
is now initiated by the still increasing acoustic pressure.26 A
schematic overview of the various stages of a bubble in an
acoustic field is shown in Fig. 1. The bubble sizes as shown
for the various stages are not drawn to scale.

To model transient cavitation, we consider a single spher-
ical bubble within an incompressible liquid medium. To the
liquid, a harmonic acoustic field, p(t), with frequency ω and
amplitude pa is applied,

p(t) = −pa sin ωt, (1)

R(t)

(a) Stable cavitation, 
     R<R

B
:

(b)  Explosive growth,
     R>R

B

R(t)

R
B

R
max

(c) Transient collapse,
     R>R

B

R(t)

FIG. 1. Overview of bubble dynamics: (a) For bubbles with a radius R(t)
smaller than the Blake threshold, RB, small amplitude oscillations in bubble
radius, indicated schematically by double-pointed arrows, are induced by the
acoustic field. The bubble slowly grows over many pressure cycles through
rectified diffusion.31 (b) The bubble radius exceeds the Blake threshold and
grows explosively so long as the pressure within the fluid is smaller than
that in the bubble, �p < 0. At the end of explosive growth the bubble has a
maximum radius, Rmax, given by Eq. (3). (c) The pressure difference between
fluid and bubble becomes positive, �p > 0, and the bubble collapses violently
as described by Eqs. (4) and (5). Note that the bubble sizes shown for the
various stages are not to scale.

where pa = √
2Pacρc/Ason is the acoustic pressure ampli-

tude with ρ the mass density and c the speed of sound in the
liquid, while Pac is the power of the applied acoustic field
and Ason is a typical surface area through which the acoustic
field passes. We approximate Ason by the surface area of the
sonicator horn, which should be seen as a lower estimate for
Ason. Using typical sonication conditions,42 that is, a power of
40 W, a frequency of 20 kHz, and a sonicator horn of 15 mm
diameter, we find a typical acoustic pressure amplitude of
pa = 8.2 × 105 Pa for sonication in water under ambient
conditions.

We can now turn to the following question: How does
the size of a bubble prior to undergoing explosive growth
compare to the mean size of a nanotube for a typical son-
ication experiment?42 We find by calculation of the Blake
threshold,28, 30, 32 that bubbles with a radius larger than 0.1 μm
grow explosively while at higher sonication power this radius
is even smaller. Hence, in most practical situations the length
of a nanotube, which we assume to be of the order of a micron,
exceeds the radius of a bubble undergoing stable cavitation by
at least a factor 5.

This leads us to the following question: how large is a
bubble after it has reached the Blake threshold and undergone
explosive growth? To answer this question, it seems reason-
able to presume that growth of the bubble occurs when the
pressure in the surrounding liquid is lowered by the applied
acoustic field to a value below the pressure within the bubble.
If we follow Apfel,32 then the average bubble-wall velocity
during this period must be vg = √

4(pa − p0)/9ρ, where 2(pa

− p0)/3 is the average pressure difference between the interior
of the bubble and the surrounding liquid during this period
and p0 is the ambient pressure in the liquid in the absence of
an applied acoustic field. This average velocity follows from
Rayleigh’s model for the collapse of an empty cavity which
we will discuss shortly.39 If we multiply this average veloc-
ity with the time that the interior bubble pressure, which we
assume to be zero, exceeds the pressure in the surrounding
liquid, that is, the time for which p(t) + p0 < 0 where p(t) is
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given by Eq. (1), we obtain a first approximation for the max-
imum bubble radius. The time for which p(t) + p0 < 0 holds
is approximately equal to tg = 2

√
2(1 − p0/pa)/ω.32 If we

multiply this period of time with the average velocity of the
bubble wall during this period, we obtain a first approxima-
tion for the maximum bubble radius,

R1 = 4

3ω
(pa − p0)

√
2

paρ
. (2)

Note that we neglected the radius the bubble has prior to un-
dergoing explosive growth and assume R1 to be equal to the
amount by which the bubble radius increases. This is reason-
able because the bubble radius typically grows by several or-
ders of magnitude during explosive growth.

This approximation may be improved upon by taking into
account that the bubble remains to grow even after the pres-
sure in the surrounding liquid exceeds the pressure in the bub-
ble. In this period the accumulated kinetic energy of the fluid
flow is dissipated as pressure-volume work. By accounting for
this Apfel obtained the following equation for the maximum
bubble radius after explosive growth,32

Rmax = 4

3ω
(pa − p0)

√
2

paρ

[
1 + 2 (pa − p0)

3p0

]1/3

, (3)

where the last factor of the equation is the correction to our
first approximation. Equation (3) allows us to estimate the
maximum bubble radius after explosive growth for a typical
sonication experiment,42 which turns out to be of the order
of 0.7 mm. The actual maximum bubble radius is somewhat
smaller than this, because viscous effects were neglected in
the derivation of Eq. (3). Interestingly, this implies that the
correction factor included in Eq. (3), which is typically of the
order of unity, is not necessarily an improvement on Eq. (2).
Nonetheless, bubbles are, at the end of explosive growth, typi-
cally at least a factor 100 or more larger than the typical length
of a carbon nanotube, which we again assume to be of the or-
der of a μm.

After the bubble has reached a maximum radius, the
acoustic pressure is positive and the final stage of transient
cavitation is initiated, being the violent collapse of the bub-
ble. It is during this stage of transient cavitation that nanotube
scission occurs as the fluid flow subjects the nanotube to a
high stress. We are interested in obtaining an expression for
the fluid velocity as a function of time and distance from the
center of the collapsing bubble. The radial dependence of the
fluid velocity is fully determined if the bubble is assumed to
remain spherical at all times and if the fluid is assumed to be
incompressible. We presume both these assumptions to hold.
Let the bubble radius be denoted as R = R(t), the velocity of
the bubble wall as Ṙ = Ṙ(t) and the fluid velocity at a dis-
tance r from the center of the bubble as �v(r, t). The radial
dependence of the fluid velocity as a function of the radius of
the bubble and the velocity of the bubble wall is then,

�v (r, t) = R2 (t) Ṙ (t)

r2
êr , (4)

where êr is the radial unit vector.

Equation (4) requires as input a model for the bubble ra-
dius as function of time. Even though the Rayleigh-Plesset
equation26 is a better and more frequently used model, we use
the empty cavity approximation as proposed by Rayleigh39

to model this, for it leads to a universal and mathematically
tractable description of transient cavitation, which is easily
applied. As we will see in Secs. IV and V, it allows us to
quantify the interaction between a nanotube and a collapsing
bubble in terms of a few dimensionless numbers. Rayleigh de-
rived the empty cavity approximation by modeling the bubble
as an empty cavity that is filled up by fluid during its collapse,
and by assuming that the energy released by pressure-volume
work during collapse is converted into the kinetic energy of
the fluid moving in to fill the cavity. This allowed him to de-
rive a simple equation describing the transient collapse of a
bubble. It takes the following dimensionless form:

dx

dτ
= −

√
1 − x3

x3
, (5)

where x = R(t)/Rmax is the dimensionless bubble radius and τ

= t/tc the dimensionless time with tc =
√

3ρRmax
2/2p a mea-

sure for the lifetime of the collapsing bubble, p is the (static)
pressure difference between the inside and outside of the bub-
ble and ρ is, as before, the fluid mass density. In the deriva-
tion of Eq. (5) a static pressure difference between the bubble
and the surrounding liquid, p, is assumed, in reality it is not
static and the value of p must be approximated. We approxi-
mate p by the sum of the ambient pressure and the root-mean-
square acoustic pressure, p = pa/

√
2 + p0. For given soni-

cation conditions, Eqs. (3)–(5) fully describe the fluid flow
during the collapse of a bubble.

The question arises whether the description of transient
cavitation as given by these equations is a good description.
How do the results from Eqs. (3)–(5) compare to results of the
more advanced Rayleigh-Plesset equation?26 This equation is
not reproduced here, but unlike Eq. (5) it does include iner-
tial and viscous effects as well as a time-dependent acoustic
pressure. This question is in part answered by Fig. 2, which
shows the bubble radius and fluid strain rate at the surface of
the bubble as a function of time during bubble collapse for a
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FIG. 2. The bubble radius and strain rate at the bubble surface, ε̇ = Ṙ(t)/
R(t), as a function of time during the transient collapse of a bubble for a
typical sonication experiment.42 Dashed blue lines represent the solution as
obtained from the empty cavity approximation while the solid red line repre-
sents the solution obtained from the Rayleigh-Plesset equation. The solution
of the empty cavity approximation, with length and time scales matched to the
solution of the Rayleigh-Plesset equation, is represented by the dotted blue
line. Note that it is virtually identical to the solution of the Rayleigh-Plesset
equation.
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typical sonication experiment42 as determined by the empty
cavity approximation (dashed blue line), the Rayleigh-Plesset
equation (solid red line) as well as for the empty cavity ap-
proximation with length and time scales matched to the solu-
tion of the Rayleigh-Plesset equation (dotted blue line). The
solution of the empty cavity approximation was obtained by
numerically solving Eq. (5) where Rmax is determined by Eq.
(3) and the average pressure difference between bubble and
the surrounding liquid, p, is approximated as pa/

√
2 + p0.

The Rayleigh-Plesset equation was solved for a full acoustic
cycle, as given by Eq. (1), using the methodology of Pagani
et al.,23 and by using an initial bubble radius of 0.1 μm, which
equals the Blake radius for the given sonication conditions,
only the collapse phase is shown here. From Fig. 2 it is clear
that solutions of the empty cavity approximation (dashed blue
line) and the Rayleigh-Plesset equation (solid red line) do not
match quantitatively even though the shapes of the curves are
virtually identical. This is not so much the result of the poor
quality of the empty cavity approximation but rather a result
of a poor choice for the corresponding length and time scale,
Rmax and tc.

How good is the empty cavity approximation if we
rescale it to have it match time and length scales with the
results from the Rayleigh-Plesset equation? In this case the
agreement is excellent, the solutions of the rescaled empty
cavity approximation (dotted blue line) and the Rayleigh-
Plesset equation (solid red line) are virtually identical. For
typical sonication settings,42 the relative error in bubble radius
and strain rate as given by the rescaled empty cavity approx-
imation and as compared to the solution obtained from the
Rayleigh-Plesset equation is less than 4% at all times. In an
identical manner we compared the solution of the Rayleigh-
Plesset equation and the rescaled empty cavity approximation
for all combinations of acoustic powers of Pac = 10 W, 40 W,
and 160 W, acoustic frequencies of 10, 20, and 40 kHz and
initial bubble radii of 0.1 RB, 1 RB, and 10 RB. In doing so,
we find the following, when a bubble has an initial radius of
0.1 RB it undergoes stable cavitation as surface tension pre-
vents the explosive growth of the bubble. For bubbles with
an initial size of 1 RB and 10 RB we observe transient cavita-
tion, in agreement with the definition of the Blake threshold.
Here, we observe that the quality of the rescaled empty cavity
approximation decreases with increasing acoustic power and
increasing initial bubble radius, the relative error in bubble
radius and strain rate reaches a maximum of approximately
35% and 45%, respectively, for an acoustic power of 160 W
and an initial bubble radius of 10 RB, while its quality appears
to be independent of the acoustic frequency.

Note that even for a maximum relative error of 35% in
the bubble radius and 45% in the strain rate, the disagree-
ment is only quantitative. By matching the length and time
scales of the empty cavity approximation to the solution of
the Rayleigh-Plesset equation we assure that begin and end
points of both curves are identical. Furthermore, an expansion
of both the Rayleigh-Plesset equation and the empty cavity
approximation yield identical behaviour for the initial stages
of bubble collapse.43 In conclusion, the empty cavity approxi-
mation is typically very good but our approximation of the as-
sociated typical length and time scale of the transient collapse

is poor. Fortunately, we can improve upon this poor approxi-
mation by determining the correct length and time scales di-
rectly from the solution of the Rayleigh-Plesset equation and
use these values as input for the rescaled empty cavity ap-
proximation. Note that in the derivation of both the Rayleigh-
Plesset equation and Rayleigh’s model for the collapse of an
empty cavity the fluid is presumed to be incompressible. As it
is the assumption of incompressibility that leads to the strong
gradient in the fluid velocity, which is responsible for nan-
otube scission, we feel confident in using Rayleigh’s model
for the collapse of an empty cavity because it captures the
essential physics of the process.

Having described the process of transient cavitation, we
can now investigate the interaction between a nanotube and
the fluid flow generated by a bubble undergoing transient
cavitation.

III. FLUID-NANOTUBE INTERACTION

The motion of, and the forces exerted on a carbon nan-
otube near a transiently cavitating bubble are determined by
the interaction between that nanotube and the fluid flow fol-
lowing the transiently cavitating bubble. We focus attention
on defect-free carbon nanotubes with lengths well below their
persistence length, determined to be in excess of 26 μm,44, 45

and model them as rigid rod-like particles with diameter d,
length L, and uniform tensile strength σ T. Hence, in treating
the nanotubes as rigid rod-like particles, we neglect any elas-
tic bending and stretching of the nanotubes due to thermal
fluctuations or the fluid flow. This is a reasonable approxima-
tion when studying the scission of radially aligned nanotubes
under tension, because any bending of the nanotube is sup-
pressed by the fluid flow. However, it does fail in the initial
stages of bubble collapse, when a nanotube relaxes from a
tangential orientation into either a stretched radially aligned
or a highly bent conformation that can potentially lead to sub-
sequent scission under tension or buckling-mediated scission
respectively.23 We return to this issue in Sec. VI.

By modeling the carbon nanotube as a rigid rod-like par-
ticle we are able to invoke first-order slender-body theory to
model the viscous drag forces exerted on the nanotube by
the fluid flow, just as in previous work on nanotube scis-
sion under sonication.15, 18, 19, 23 Slender-body theory40, 41 de-
scribes the viscous drag forces exerted on an elongated parti-
cle in a Stokes flow. Stokes flows are characterized by a small
Reynolds number, Re � 1,46 implying that viscous effects are
dominant over inertial effects. In our case, the Reynolds num-
ber is for most of the time typically small if we assume the
typical length scale of interaction between the fluid flow and a
nanotube to be the nanotube diameter. Intuitively this choice
of length scale makes sense, because the fluid flow is “per-
turbed” by the radially aligned nanotube over a length equal
to its diameter. However, in the final stages of collapse of the
bubble the relative fluid velocity at the tips of the nanotube
becomes very large. Indeed, a simple scaling analysis shows
that the Reynolds number must reach a maximum of the or-
der of unity near the nanotube tips at the moment of scission47

but is smaller than that in the central part of the nanotube and
prior to the moment of scission. Even though the assumption
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FIG. 3. The spatial geometry of the nanotube bubble interaction. The bubble
has radius R(t), the center of the nanotube of length L is at a distance rcm

from the center of the bubble and at an angle ϕ from a radial orientation. The
contour distance away from the center of mass of the nanotube is given by l.
Two coordinate systems are shown: êx , êy denote, respectively, the direction
perpendicular and the direction tangential to the bubble surface. Coordinate
system ê⊥, ê‖ defines the directions parallel and perpendicular to the main
axis of the nanotube.

of small Reynolds numbers does not quite hold at all times,
it does hold for the majority of time and justifies our use of
slender-body theory to model the fluid-nanotube interaction.

Before applying slender-body theory, we need to con-
sider the geometry of the interaction between the bubble and
the nanotube. Due to the presumed radial symmetry of bubble
collapse and because the nanotube and the center of the bub-
ble are always in a single plane, the fluid-nanotube interaction
is reduced to a two-dimensional problem. The corresponding
geometry is shown in Fig. 3, where êx is the direction per-
pendicular to the bubble surface while êy is a direction tan-
gential to the bubble surface. Although rotational motion of
the nanotube around êx and out of the x–y plane is possible,
we need not explicitly consider it. The reason is that the ra-
dial distance between any segment of the nanotube and the
center of the bubble is invariant under any such rotation, that
is, the geometry of the problem does not change as a result of
this rotational motion. Furthermore, rotation around êx affects
neither translational nor rotational motion in the x–y plane, as
we show below.

Within first-order slender-body theory,40, 41 the viscous
drag force per unit length exerted by the fluid flow on the
nanotube, �f , can be decomposed into a component parallel,
f‖, and perpendicular, f⊥, to the main axis of the nanotube,

f‖ = 2πμv‖,rel , f⊥ = 4πμ v⊥,rel , (6)

where μ is the dynamic viscosity of the liquid, v‖,rel is the rel-
ative fluid velocity parallel to the axis of the nanotube, while
v⊥,rel is the relative fluid velocity perpendicular to the axis of
the nanotube. These velocities are relative ones, that is, rela-
tive to the translational and rotational motion of the nanotube.
Here we neglect a logarithmic dependence of these forces on
the aspect ratio of the nanotube, which is of the order of unity
for experimentally relevant nanotube lengths.15 The relative
fluid velocity is given by,

�vrel = �v (r) − �vcnt − ϕ̇lê⊥, (7)

where �v(r) is the local fluid velocity at a radial distance r from
the center of the bubble as given by Eqs. (4) and (5), �vcnt

is the translational velocity of the nanotube, ϕ̇ denotes the
angular velocity of the nanotube around its center of mass,
l is the contour distance away from the center of mass of the
nanotube, and ê⊥ is a unit vector perpendicular to the main
axis of the nanotube, all as shown in Fig. 3.

As mentioned, the fluid flow along the nanotube is pre-
sumed to be characterised by a small Reynolds number. For
small Reynolds numbers, viscous effects predominate over in-
ertial effects, implying an overdamped limit. Inertialess mo-
tion implies mechanical equilibrium, so the total force,

∑ �F ,
and torque,

∑ �τ , exerted by the fluid on the nanotube must
equal zero. The assumption of mechanical equilibrium leads
to a set of equations of motion that are independent of the
actual fluid viscosity and do allow for acceleration of the nan-
otube. Because this is a somewhat counter-intuitive result, two
remarks are in order. First, acceleration is possible even if the
total force and torque exerted on the nanotube by the fluid is
assumed to be zero at all times, because the fluid-nanotube
interaction is in the overdamped limit and inertial effects re-
lax fast relative to the relevant timescale of nanotube motion.
Second, the equations of motion are independent of fluid vis-
cosity because the total force and torque exerted on the nan-
otube must equal zero and only forces of a viscous origin,
Eq. (6), are exerted on the nanotube and these are all propor-
tional to fluid viscosity.

Given a local fluid velocity, �v(l), along the nanotube,
where l ∈ [−L/2, +L/2] denotes the contour distance away
from its center, mechanical equilibrium implies zero net force,

∑ �F =
+L/2∫

−L/2

�f (l) dl = 0, (8)

and zero net torque,

∑
�τ =

+L/2∫
−L/2

lê‖ × �f (l) dl = 0, (9)

where ê‖ is a unit vector along the axis of the nanotube. Sub-
stitution of Eqs. (6) and (7) into Eqs. (8) and (9) yields the
equations of motion for the nanotube,

�vcnt = 1

L

+L/2∫
−L/2

�v (l) dl (10)

and

ϕ̇ = 12

L3

+L/2∫
−L/2

lv⊥ (l) dl, (11)

where v⊥(l) is the component of the local fluid velocity
which is perpendicular to the main axis of the nanotube (see
Fig. 3). Note that the equations of motion, Eqs. (10) and (11),
for a rod-like particle in a Stokes flow have been derived
previously.41 These equations of motion are instantaneously
decoupled, that is, the instantaneous rotational velocity, ϕ̇, and
translational velocity, �vcnt , are independent of each other as is
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evident from Eqs. (10) and (11). This is so because rotational
motion around the center of mass of the nanotube produces
a local drag force proportional to −ϕ̇l of which the integral
along the nanotube is always zero, while the net torque result-
ing from any translational motion is always zero for the local
torque due to translational motion is again anti-symmetric in
l. Note that this decoupling only holds instantaneously, trans-
lational motion does depend on the orientation of the nan-
otube and rotational motion depends on the position of the
nanotube.

Above we reduced the interaction between a nanotube
and a bubble to a two-dimensional problem. We claimed to
be able to do this because translational and rotational motion
within the plane spanned by the nanotube and the center of the
bubble, i.e., the x–y plane as defined in Fig. 3, is independent
of any rotational motion out of the x–y plane. We are now
able to understand this. Indeed, the net drag force resulting
from any rotational motion is zero and does not affect trans-
lational motion. Rotational motion in the x–y plane, as given
by ϕ̇, is not affected by rotational motion out of this plane for
the torque resulting from such motion is perpendicular to the
torque responsible for rotational motion in the x–y plane.

With the equations of motion as given by Eqs. (10) and
(11) combined with Eqs. (4) and (5), which describe the fluid
flow during bubble collapse, we are able to investigate the
interaction between a nanotube and the fluid flow during var-
ious stages of transient cavitation. In Sec. IV we evaluate the
motion of and forces exerted on a radially aligned nanotube
during the transient collapse of a bubble.

IV. MECHANICS FOR A RADIALLY ALIGNED
NANOTUBE DURING BUBBLE COLLAPSE

Let us assume that the nanotube has a fully stretched and
perfect radial conformation throughout the process of bubble
collapse, with angle ϕ = 0 as Fig. 3. In assuming this, we ne-
glect the relaxation of a nanotube from an unstable tangential
orientation, ϕ = π /2 in Fig. 3, in the initial stages of bubble
collapse, which has been shown to occur by Pagani et al.23

We return to this assumption and discuss the initial relaxation
from a tangential orientation briefly in Sec. VI.

Let the nanotube have length L and let its tip closest to
the bubble be at an initial distance r0 from the center of a bub-
ble with radius Rmax that has just undergone explosive growth
and is about to collapse. During bubble collapse the nanotube
will be dragged along by the fluid and the distance between
the center of the bubble and the nanotube will decrease. We
denote the distance between the tip of nanotube closest to the
bubble and the center of the bubble as rcnt(t) where rcnt(t = 0)
= r0 (see Fig. 4).

Assuming incompressibility of the fluid and a spheri-
cally symmetric fluid flow, implicit in Eq. (4), and substituting
�r(l) = (rcnt + L/2 + l)êx , we can calculate the velocity of the
nanotube straightforwardly from Eq. (10) to give,

�vcnt = R2Ṙ

rcnt (rcnt + L)
êx , (12)

where we note that R, Ṙ, rcnt, and vcnt are functions of time
and that vcnt is the time derivative of the tip position, rcnt, so

FIG. 4. The geometry of the interaction between a radially oriented nanotube
and the fluid flow following the transient collapse of a bubble with radius
R(t). The distance between the tip of the nanotube, of length L, closest to
the bubble and the center of the bubble is denoted by rcnt(t). The directions
as given by êx and êy and the parameter l are as defined in Fig. 3. Above
the nanotube the direction and magnitude of the actual fluid velocity v(r),
Eqs. (4) and (5), the nanotube velocity, Eq. (12), and the relative fluid velocity
along the nanotube, Eq. (7), are shown.

vcnt = ṙcnt . Integrating Eq. (12) over time by separation of
variables, gives the nanotube position as a function of time.
After rescaling all distances to Rmax, as given by Eq. (3) or as
obtained from a numerical solution of the full Raleigh-Plesset
equation, see our earlier discussion in Sec. II, the dimension-
less nanotube position y(t) ≡ rcnt(t)/Rmax obeys,

y3 − y3
0 + 3

2
L̃

(
y2 − y2

0

) = x3 − x3
0 , (13)

where x = R(t)/Rmax is the dimensionless bubble radius that
we calculate from Eq. (5), x0 = 1 for it is the value of x
at the start of bubble collapse, y0 = r0/Rmax is the dimen-
sionless distance between the center of the bubble and the
tip of the nanotube closest to the bubble at the start of bub-
ble collapse and L̃ = L/Rmax is the dimensionless nanotube
length.

By way of illustration we have plotted in Fig. 5 the mo-
tion of nanotubes of length L̃ = 0.05 (dashed line, red) and
L̃ = 0.2 (dotted-dashed line, green) for two different initial
distances y0 = 1 and y0 = 1.15 as obtained from Eq. (13).
The values used for L̃ are unrealistically large but serve to

x R Rmax

L 0.05
L 0.2
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FIG. 5. The position of the tip of a nanotube scaled to Rmax as a function
of dimensionless time, τ , during bubble collapse. The dimensionless bubble
radius x, Eq. (5), is indicated by the solid blue line. Nanotube motion as given
by Eq. (13) is shown for L̃ = 0.05 (dashed line, red) and L̃ = 0.2 (dotted-
dashed line, green) for an initial distance of y0 = 1 and y0 = 1.15.
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highlight the dependence of nanotube motion on length and
initial position. The dimensionless bubble radius, given by Eq.
(5), is depicted by the solid blue line. Note that for L̃ → 0 and
y0 = 1 the motion of nanotube equals the motion of the bub-
ble wall. From Fig. 5 it is clear that nanotubes cannot keep
up with the wall of the collapsing bubble and that the nan-
otubes slow down as their length and/or initial distance from
the bubble increases. This is easily understood from Eq. (10)
that equates the nanotube velocity to the average of the lo-
cal fluid velocity along the nanotube. Because the local fluid
velocity decreases with distance as r−2, nanotubes become
slower with increasing initial distance from the bubble and
with increasing length.

Having established where the nanotube is relative to the
bubble from the moment it starts to collapse, we are now able
to evaluate the maximum stress it is subjected to by the sur-
rounding fluid as it is dragged along by the fluid during the
collapse of the bubble. During bubble collapse the nanotube’s
velocity equals the average local fluid velocity along the nan-
otube because this ensures that the net force exerted on the
nanotube equals zero. This is precisely the requirement of me-
chanical equilibrium that we used to derive the translational
equation of motion, Eqs. (10) and (13). Although the net drag
force experienced by the nanotube vanishes, viscous friction
does exert a large stress on the nanotube. The relative fluid
velocity along the part of the nanotube closest to the bubble
is directed radially inward while that furthest away is directed
outward (see Fig. 4). The stress exerted by the fluid is at a
maximum at the point on the nanotube where the local fluid
velocity, Eq. (4), is equal to the nanotube velocity, Eq. (12),
and the relative fluid velocity is zero. Equating Eqs. (4) and
(12), we find that the relative fluid velocity is zero and the
stress on the nanotube maximal at a distance r*(t) from the
center of the bubble,

r∗ (t) =
√

rcnt (t) (rcnt (t) + L). (14)

Note that r* is time-dependent as we are following the nan-
otube as it is dragged along by the fluid flow following the
collapsing bubble. In Sec. V we show that r* corresponds to
a point on the nanotube that is close to center of mass of the
nanotube.

The maximum stress on the nanotube, i.e., that at r*,
where the relative fluid velocity equals zero, is given by the
difference of the forces exerted by the fluid on the segment of
the nanotube where the relative fluid velocity is directed radi-
ally inward and the segment where it is directed radially out-
ward, divided by A, the cross sectional area of the nanotube.
The force exerted on each of these two segments is equal in
magnitude but opposite in direction, again, ensuring that the
nanotube remains in mechanical equilibrium. The magnitude
of this force is then given by the absolute value of the inte-
gral of Eq. (6) along one of these two segments, where �vrel is
given by Eqs. (7) and (12). In dimensionless form we find for
the maximum stress on the nanotube at r*,

σ̃∗ =
√

x − x4

(
1√
y

− 1√
y + L̃

)2

, (15)

where σ̃∗ = σ∗/σ0 is the dimensionless stress with σ 0 the
characteristic stress scale as determined by experimental
settings,

σ0 = 4πμRmax

A

√
2p

3ρ
, (16)

where μ is the dynamic viscosity of the liquid, Rmax is the bub-
ble radius just before the start of the collapse of the bubble,
A is the cross sectional area of the nanotube, p is the (static)
pressure difference between the interior of the bubble and the
surrounding liquid, and ρ is the mass density of the liquid.
Both y and σ̃∗ are functions of x, L̃, and y0, so time enters im-
plicitly. However, unlike Eq. (13), which is independent of the
time-dependence of x(t), Eq. (15) only holds for x(t) as calcu-
lated from Rayleigh’s model for the collapse of an empty cav-
ity, Eq. (5). Note that Eq. (14) was derived previously by Ahir
et al.,16 who also derived an equation for the maximum stress
on the nanotube. Their expression for the maximum stress ex-
erted on the nanotube differs from our Eq. (15) because we
explicitly model the fluid velocity using Rayleigh’s model for
the collapse of an empty cavity and explicitly take nanotube
motion into account through Eq. (13).

Given the values of L̃ and y0, nanotube motion is given
as a function of x by Eq. (13). Substitution of this into
Eq. (15) yields the stress at r*(t) as a function of x(t). At some
value of x the stress at r* will be at a maximum, denote this
value as x = xmax. Substitution of xmax into Eq. (15) yields the
maximum stress, σ̃ max

∗ , experienced by the nanotube during
bubble collapse as a function of its dimensionless length and
initial distance to the center of the bubble,

σ̃ max
∗ (L̃, y0) = max[σ̃∗(x; L̃, y0), 0 < x < 1]. (17)

We have not been able to obtain an analytic expression for
σ̃ max

∗ , so we determine it numerically. In Fig. 6, σ̃ max
∗ is shown

as a function of L̃ and y0, the relation between the three pa-
rameters contains important information regarding the scis-
sion mechanics. A line over the surface at y0 = 1 gives the di-
mensionless minimum nanotube length for which scission can
occur as a function of dimensionless tensile strength, while
lines at constant σ̃ max

∗ give the dimensionless maximum ini-
tial distance between the nanotube and the bubble for which
scission can occur as a function of dimensionless nanotube
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FIG. 6. The maximum dimensionless stress exerted on a nanotube during
bubble collapse, σ̃ max∗ , as a function of the dimensionless nanotube length,
L̃, and the dimensionless distance, y0, between the nanotube and the center
of the bubble at the time of the start of the bubble collapse.
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length. The scission rate is related to this maximum initial
distance.

In summary, we have shown that the motion of a stretched
and radially aligned nanotube during bubble collapse is deter-
mined by its length and initial distance away from the center
of the bubble. As the fluid strain rate around the nanotube de-
pends on the nanotube’s position, the maximum stress expe-
rienced by a nanotube is determined by, again, its length and
initial position as well as the sonication conditions through
the characteristic stress scale σ 0. In Sec. V. we show how the
minimum scission length and the scission rate can be deter-
mined from Fig. 6.

V. IMPLICATIONS FOR SCISSION KINETICS

In Sec. IV the motion of a radially oriented nanotube and
the forces exerted on it during bubble collapse were calcu-
lated. The analysis resulted in Fig. 6, which gives the maxi-
mum stress exerted on the nanotube as a function of its length
and of its initial distance away from the center of the bubble at
the time of the start of the bubble collapse. From this figure it
is clear that the maximum stress experienced by a nanotube
increases with decreasing initial distance to the center of
the bubble.

A nanotube of a given length then experiences a maxi-
mum stress when it starts out as close as possible to the sur-
face of the bubble. The smallest initial distance between nan-
otube and bubble center allowed for in the model is y0 = 1.
Given L̃, the maximum dimensionless tensile strength, σ̃T ,
of a nanotube of that length that will still break under soni-
cation is given by σ̃T = σ̃ max

∗ (L̃, y0 = 1), of which the value
can be obtained by numerically solving Eq. (17). The short-
est nanotube segments produced by sonication, the so-called
terminal length, then depends on sonication conditions and
the tensile strength of the nanotube. As we show below, scis-
sion occurs very close to the center of the nanotube, so the
dimensionless terminal length is in good approximation equal
to L̃min/2, where L̃min is the dimensionless minimum scission
length. The relation between the minimum scission length and
tensile strength, as numerically determined from Eq. (17), can
be fitted to a power law. The resulting power law in dimen-
sionless form is,

L̃min ≈ 7.04σ̃
1/1.16
T , (18)

where σ̃T = σT /σ0 is the dimensionless tensile strength of the
nanotube, with σ 0 as given by Eq. (16). The power law is an
excellent fit, as is shown in Fig. 7. The relative error of the
power law to the numerically determined values is smaller
than 5% over 7 orders of magnitude in L̃.

Equation (18) shows a stronger dependence of the termi-
nal length on tensile strength than the previously predicted
scaling of Lmin ∝ σ

1/2
T , which was obtained by neglecting

nanotube motion and assuming a constant fluid strain rate
along the nanotube.15, 16, 18, 19, 24 In this approximation, the av-
erage relative fluid velocity along the nanotube scales with L
and the total length over which viscous drag forces are ex-
erted scales with L resulting in an L2 scaling for the stress
exerted on the nanotube. The stronger dependence obtained
from our calculations results from the dependence of the max-

numerical solution eq. 14 
power law fit
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FIG. 7. The dimensionless minimum scission length, L̃min, as a function
of the dimensionless tensile strength, σ̃T . The blue dots represent numerical
solutions of σ̃T = σ̃ max∗ (L̃min, y0 = 1). The dashed red curve represents the
power law as given by Eq. (18).

imum fluid strain rate along the nanotube on the length of the
nanotube. As is illustrated in Fig. 5, the velocity of a nanotube
decreases with increasing length. Longer nanotubes are not
dragged along as easily as short ones during bubble collapse
and their distance to the center of the bubble remains larger.
Because the strain rate of the fluid flow scales with the re-
ciprocal distance cubed, longer nanotubes experience smaller
fluid strain rates. This results in a smaller increase in the max-
imum stress exerted on a nanotube with increasing nanotube
length and thus a stronger increase of terminal length with
increasing tensile strength.

When the dimensionless initial distance between a nan-
otube of length Lmin and bubble increases beyond y0 = 1, the
maximum stress exerted on the nanotube decreases as is evi-
dent from Fig. 6. An increase in nanotube length is required
if the stress exerted on the nanotube is to exceed the ten-
sile strength of the nanotube. As a result, there is a critical,
length-dependent, maximum initial distance from the center
of the bubble, rmax(L), beyond which scission cannot occur
for nanotubes of length less than L.23 For nanotubes of ten-
sile strength σ T, scission occurs when σmax

∗ ≥ σT . The di-
mensionless maximum initial distance for which scission of
a nanotube of dimensionless tensile strength σ̃T occurs, ymax,
can be read off from Fig. 6 by taking the intersection of
the horizontal plane of constant σ̃T = σ̃ max

∗ and the plotted
surface. In Fig. 8 the dimensionless critical initial distance,
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FIG. 8. The dimensionless maximum initial distance, ymax for scission to
occur as a function of dimensionless nanotube length L̃ for various values of
dimensionless tensile strength, σ̃T . Dots show the minimum nanotube length
for scission to occur. Dashed lines indicate a power law with exponent 2/3.
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ymax is shown as a function of dimensionless nanotube length
for various values of σ̃T , as obtained by numerically solv-
ing σ̃ max

∗ (L̃, ymax) = σ̃T for ymax as a function of L̃. For nan-
otubes significantly longer than the minimum length a clear
power law with slope 2/3 is obtained for all values of σ̃T .
This is to be expected because when the nanotube starts out
at a sufficiently large distance from the bubble it will not be
dragged to region of high fluid strain rate during bubble col-
lapse, and the strain rate of the fluid flow, ε̇, as experienced
by the nanotube becomes independent of nanotube length and
scales with distance as ε̇ ∝ r−3. The stress experienced by the
nanotube scales as ε̇L2, so the critical distance must scale as
rmax ∝ L2/3.

For very short nanotubes the strain rate must be signif-
icantly larger than the strain rate experienced by long nan-
otubes if scission is to occur. Such an increase in the strain
rate occurs for short nanotubes that are close to the surface of
the bubble at the point in time when bubble collapse com-
mences. During bubble collapse these short nanotubes are
easily dragged along by the fluid flow to distances typically
less than 0.1Rmax from the center of the bubble. This results
in a significant increase in the experienced strain rate because
the strain rate scales with distance as r−3. If we consider a
slightly longer nanotube, scission occurs at a lower strain rate
of the fluid. However, the maximum strain rate experienced
by a nanotube decreases with increasing nanotube length for
longer nanotubes are not dragged along as easily. As a re-
sult, the allowed increase in the initial distance between nan-
otube and bubble cannot increase as strongly as it would if
the maximum strain rate of the fluid flow experienced by the
nanotube is independent of the nanotube length. The critical
distance remains close to ymax = 1 for a large range of nan-
otube lengths as shown in Fig. 8 and deviates from a power
law with slope 2/3 as the maximum strain rate experienced
by a nanotube becomes dependent on nanotube length. As we
shall shortly see, this has an important consequence, the pre-
viously predicted L2 scission rate15, 23 breaks down near the
terminal length, causing the scission kinetics to become non-
universal.

Let us now consider how we can derive the scission rate
of nanotubes in solution from these findings. If scission oc-
curs when a nanotube of length L starts out at a distance less
or equal to rmax(L) away from the center of a bubble, then
the scission rate, k(L), of a nanotube of length L must be pro-
portional to the probability that a nanotube is found within
a distance rmax(L) of the center of a bubble at the moment
the bubble starts to collapse. Assuming a homogeneous spa-
tial distribution of nanotubes, this probability is proportional
to the “scission volume” enclosed between spheres of radius
Rmax and rmax(L). We surmise that the scission rate must then
obey,

k(L) ∝ (
rmax (L)3 − R3

max

)
, (19)

where the proportionality constant is equal to the number of
transiently collapsing bubbles per unit time per unit volume
and the scission rate, k(L), gives the fraction of nanotubes of
length L that undergo scission per unit time. Note that Pagani
et al. used similar arguments to derive a scission rate.23 Let us
now focus on the implications for scission kinetics. In Fig. 9,
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FIG. 9. The dimensionless scission rate, k̃(L̃) as a function of dimension-
less nanotube length L̃ for the same values of dimensionless tensile strength
σ̃T as presented in Fig. 8. The dashed lines correspond to a power law with
exponent 2.

the dimensionless scission rate, k̃(L̃) ∝ k(L̃)R3
max , is plotted

as a function of dimensionless nanotube length for the same
values of σ̃T as presented in Fig. 8. Here, we have set the
dimensionless proportionality constant equal to unity. We can
do this, because using its actual value merely shifts the curves
upward or downward in the double logarithmic plot.

Fig. 9 shows that the previously derived L2 scission
rate15, 23 breaks down for lengths within an order of magni-
tude above the minimum scission length while this power law
still holds for sufficiently long nanotubes. This is indeed what
we expect, because from Fig. 8 we know that nanotube motion
only affects the scission mechanics for sufficiently short nan-
otubes and hence that the L2 power law, derived by neglecting
nanotube motion, must hold for sufficiently long nanotubes.
The break down of the universal L2 power law scission rate
for the last three or four scissions before the nanotube reaches
a length below the minimum scission length has an important
consequence, a non-power law scission rate will yield non-
universal scission kinetics. In the discussion, Sec. VI, we will
see that this can potentially explain the non-universal scission
kinetics as reported in literature.11, 15, 19, 21

The scission rate, as shown in Fig. 9, goes to zero at
the minimum scission length within our approximation for
the minimum scission length is obtained when ymax = 1, and
hence rmax(Lmin) = Rmax. The assumption of a homogeneous
nanotube distribution is however tenuous, because nanotubes
tend to be concentrated near the surface of the bubble dur-
ing explosive growth. This happens to be the case, because
the nanotubes are slower than the expanding bubble for the
same reasons as why the nanotubes cannot keep up with the
bubble during bubble collapse. By taking this effect into ac-
count, one would arrive at a non-zero scission rate for nan-
otubes of a length equal to the minimum scission length, Lmin.
However, we choose not to take this into account as it does
not qualititatively change the predicted scission rate, while it
would require us to model nanotube motion during the explo-
sive growth of the bubble.48

Fig. 9 shows that the nanotube properties and the ex-
perimental settings determine the length-dependent scis-
sion rate through the parameters Rmax and σ 0 predicted by
Eqs. (3) and (16) respectively. Although that for nanotube
lengths far larger than Lmin, we do obtain a universal power
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law with exponent 2, the behaviour at lengths close to Lmin

is non-universal. Here scission only occurs because the nan-
otube is dragged along by the fluid to regions with high strain
rate. Transport of the nanotube over a significant length is
only possible if the nanotube is short compared to the bub-
ble radius. The smaller L̃min, the larger the length range over
which transport is significant and the larger the region over
which deviations from the universal power law are observed.

It is clear now that scission occurs only if the nanotube
is sufficiently long and if it is sufficiently close to a bubble.
To determine the time-evolution of the nanotube length dis-
tribution we need to know at which point on the nanotube
scission will occur. In Sec. IV we saw that if the nanotube is
at a distance of rcnt from the center a bubble, the stress on the
nanotube is at a maximum on the point on the nanotube that
is at a distance r* from the center of the bubble, where r* is
given by Eq. (14). It is insightful to define a relative scission
position,

r∗
rel(t) = r∗(t) − rcnt (t)

L
, (20)

where we note that the position of the nanotube is time-
dependent as it is dragged along by the fluid during bubble
collapse, and as a consequence of that, the position of maxi-
mum stress, r*, is also time-dependent. The relative scission
position is 0.5 if scission occurs at the center of mass of the
nanotube, it is 0 for scission at the tip closest to the bubble
(l = −L/2) and 1 for scission at the far end of the nanotube
(l = L/2).

To plot the relative scission position, r∗
rel , we solve

Eq. (17) numerically as a function of L̃ and y0 to determine
the bubble radius, xmax at which the stress exerted on the nan-
otube is at a maximum. Substitution of xmax into Eq. (13) pro-
duces the corresponding value of rcnt, which, after substitution
into Eq. (20) gives the relative scission position. This we plot
in Fig. 10 as a function of L̃ and y0.

Note that, a nanotube with a higher tensile strength will
not break for these values of L̃ and y0, while scission of a nan-
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FIG. 10. Contour plot of the relative scission position, r∗
rel , as a function of

dimensionless nanotube length, L̃, and dimensionless initial distance between
nanotube and bubble at the start of the collapse of the bubble, y0.

otube with a lower tensile strength will occur at an earlier mo-
ment and thus at a larger value of rcnt. From Eq. (20) follows
that the relative scission position, r∗

rel , increases with rcnt up
to a value of 0.5 for L/rcnt → 0. So, any nanotube with a ten-
sile strength smaller than σmax

∗ (L̃, y0) will undergo scission
at a point closer to its center than indicated in Fig. 10. As, for
a typical sonication experiment,42 we have L̃ = 1.5 × 10−3

corresponding to a nanotube of a length of approximately 1
μm, scission indeed occurs very close to the center of the
nanotube.

VI. DISCUSSION

In Secs. IV and V the mechanics of nanotube scission
under tension has been investigated. Key results of the anal-
ysis are, (1) an expression for the terminal length, i.e., the
length of the shortest nanotube segments that can be reached
by means of sonication, (2) the derivation of a non-universal
length-dependent scission rate which provides an explanation
alternative to the one of Pagani et al.23 for the experimentally
observed non-universal scission kinetics, and (3) the determi-
nation of the scission position. We showed that the motion
of a nanotube during the collapse of a bubble leads to non-
universal scission kinetics and affects the scaling of the ter-
minal length with the tensile strength of the nanotube.

Let us first discuss the key assumption underlying our
findings, being that nanotubes are oriented radially during
bubble collapse. Simulations by Pagani et al.23 indicate that a
nanotube relaxes in the initial stages of bubble collapse from
an unstable tangential orientation to either a stretched radial
conformation through rotation or to a highly bent conforma-
tion after buckling. They showed that relaxation by reorien-
tation is favoured by short nanotubes while longer ones bend
and buckle. They argued that this is what one would expect,
because relaxation by reorientation relies on the breaking of
symmetry through rotational diffusion, for a perfectly straight
and tangentially oriented nanotube in a perfectly radial fluid
flow experiences a net torque of zero. Because rotational dif-
fusion slows down with increasing nanotube length, while the
propensity to buckle increases with length, short nanotubes
should indeed reorient while longer ones should buckle. This
suggests that our model only holds for sufficiently short
nanotubes.

We argue that this is not necessarily always the case. In-
deed, neglected in the analysis by Pagani et al. is, first, the po-
tential presence of defects in the nanotube structure, making
them not quite straight and resulting in a break of symmetry.
Second, fluctuations in the fluid flow, caused, for example,
by other nearby bubbles, can cause a break in the spherical
symmetry of the fluid flow. Both of these effects promote the
relaxation of longer nanotubes into a stretched radial confor-
mation through a break of symmetry as longer nanotubes ar-
guably contain more defects and are more prone to interact
with asymmetries in the fluid flow because they interact with
a larger volume of the fluid. Note also that the time scale of
both relaxation mechanisms is of the same order of magni-
tude, as the assumption of Stokesian dynamics ensures that
it is the fluid flow that dictates the time scale of any type
of motion. Because of this, we argue that short nanotubes
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reorient into a radial orientation and scission of these nan-
otubes is well described by our model, and that for long
nanotubes both scission under tension and scission due to
overbending can occur. The predominant mechanism is deter-
mined by the lack or presence and degree of symmetry break-
ing during bubble collapse, meaning that an understanding of
both scission under tension and scission due to overbending
is important for nanotubes of all lengths.

While an analysis of the competition between the two
scission mechanisms is beyond the scope of this paper and
most likely beyond the scope of analytical theory, it is tempt-
ing to speculate about combined breaking scenarios. For in-
stance, even if the nanotube relaxes into a perfectly symmet-
ric and highly bent conformation after buckling, there must
still be a competition within the same nanotube between scis-
sion due to overbending and scission under tension. The scis-
sion under tension mechanism operates on the two highly bent
halves of the nanotube, which are aligned nearly radially and
thus under high tension. Scission under tension in one of these
halves would now result in a segment of a length of a quarter
and a segment of three quarters of the length of the nanotube
prior to scission. This is of course no more than qualitative
reasoning of which we hope to explore the consequences in
future work.

We return now to the question how the minimum scission
length predicted by our theory and given by Eq. (18) differs
from earlier work. First, because we take the previously ne-
glected motion of a nanotube during bubble collapse explic-
itly into account, we find an exponent of 1/1.16 that differs
from the value of 1/2 predicted earlier.15, 16, 18, 19 Second, we
explicitly relate the minimum scission length to the sonica-
tion settings and the tensile strength of the nanotube. Interest-
ingly, the minimum scission length scales with the radius of
a bubble just prior to it start to collapse as Lmin ∝ Rmax

0.14.
This weak dependence of the minimum scission length on
Rmax suggests that there is indeed a well-defined terminal
length, which equals approximately half the minimum scis-
sion length, even if there is some spread in the size of the
transiently collapsing bubbles.

It is however doubtful whether the terminal length is ob-
served in experiments.19 Experiments show a power law rela-
tion between the average length of nanotubes and the time for
which they have been sonicated,11, 15, 19, 21 suggesting that the
terminal length has not been reached in these experiments.
Indeed, when a significant number of the nanotubes have a
length close to the minimum scission length, one would ex-
pect the number of nanotubes with a length above the mini-
mum scission length to decrease exponentially over time. This
is because scission of these nanotubes is essentially a first-
order “reaction” in which the nanotubes go from being able to
undergo scission to being unable to undergo scission, for after
scission the resulting segments have a length below the mini-
mum scission length. Intuitively one would expect the power
law relating average length to time to break down if the num-
ber of the nanotubes available to undergo scission starts to
decrease exponentially. This discrepancy is possibly resolved
by our work, which shows the scission rate to decrease by
several orders of magnitude when the length of the nanotubes
approaches the minimum scission length, see Fig. 9. This sug-

gests that experimental time scales might indeed be too short
to observe the terminal length.

The experimentally observed power law relation between
the average nanotube length and sonication time11, 15, 19, 21 has
been reproduced by a simple kinetic model for a power law
scission rate.19, 23 In this kinetic model the length-dependent
scission rate is assumed to obey a simple power law, k(L)
∝ L1/α , meaning that there is no terminal length below which
scission stops in this kinetic model. By treating the scission
of nanotubes as a first-order reaction, and by assuming an
initially monodisperse length-distribution and finally by im-
posing conservation of carbon nanotube mass, one can de-
rive that the average length must scale with sonication time
as 〈L〉 ∝ t−α . This, in light of our discussion so far, is a re-
markable result. By assuming that there is no terminal length
the experimentally observed power law decrease of the av-
erage length over time is reproduced, which, again, suggests
that the terminal length is not reached on experimental time
scales.

We can use the same simple kinetic model to compare
the results of our model with experimental results. Let us
first consider the situation where all nanotubes have a length
well above the minimum scission length. Here, our model
predicts that the scission rate is a power law with exponent
α−1 = 2 and the kinetic model predicts the power law relat-
ing average length and sonication time to have an exponent
of α = 0.5, in agreement with some experimental results.15

However, an experimentally determined value of α = 0.22
has also been reported,19 which corresponds to a slow down
of the scission kinetics as compared to the situation where
α = 0.5.

This is potentially explained by our model, which pre-
dicts the scission kinetics to slow down significantly near the
minimum scission length, as compared to the situation where
the scission rate is an L2 power law, for here our model pre-
dicts the scission rate to deviate from a pure power law with
exponent α−1 = 2. This deviation from a power law is sig-
nificant in terms of scission kinetics. For a power law, the
scission kinetics must be identical at all length scales while
this is not necessarily true for a non-power law scission rate.
This suggests that the scission kinetics depends on how many
of the nanotubes are sufficiently close to the terminal length
to have their scission governed by the non-power law region
of the scission rate as predicted by our model. Interestingly,
our model predicts that deviations from a 0.5 power law oc-
cur when close to the terminal length, this is in contradiction
with the work by Pagani et al.23 who predict that the scission
rate of long nanotube that buckle and break deviates from a
0.5 power law and follows a 0.25 power law. Unfortunately,
the current kinetic model is too simple to come to a sensible
comparison of our model with experimental results. The ki-
netic model only allows for the analysis of a simple power
law scission rate and does not take the existence of a terminal
length into account and hence is not suited to the analysis of
the results of our model. Although our model certainly pre-
dicts the scission kinetics to be slower than a 0.5 power law
when close to the terminal length, we believe that a more thor-
ough study of the scission kinetics, using a more advanced ki-
netic model, is required to see if our model can reproduce the
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FIG. 11. The exfoliation of a nanotube rope by scission of individual nan-
otubes in the outer layer. Nanotube ropes will be dragged along by the fluid
flow following the transient collapse of a bubble just like a single nanotube.
Strong gradient in the fluid velocity results in a large stress exerted on the
nanotubes on the outer layer of the rope, possibly causing scission of these
nanotubes. After scission the two resulting segments will be “pulled of” the
bundle if the drag force exerted by the fluid flow exceeds the binding force
between the nanotube segment and the bundle.

experimentally observed exponent of 0.22. This, we intend to
pursue in the near future.

We end this paper with a discussion of the connection
between sonication and exfoliation, where we recall that scis-
sion is an unwanted by-effect of sonication. Any attempt to
optimise the sonication process requires an understanding of
both the mechanics and kinetics of exfoliation and scission.
The exfoliation of single-wall carbon nanotubes bundles has
been attributed to the diffusion of surfactant molecules into
nanotube bundles after cracks are formed in these bundles by
means of sonication. When a surfactant layer has formed be-
tween a nanotube and the bundle it is part of, this nanotube
is separated from the bundle.6, 8 Here, we would like to pro-
pose a different mechanism. If nanotube bundles orient into
a radial orientation during bubble collapse, just as individ-
ual nanotubes do, scission of a nanotube in the outer layer
of the bundle can occur when the stress exerted by the fluid
flow exceeds the tensile strength of the nanotube. After scis-
sion has occurred, the fluid exerts large drag forces on each
of the resulting nanotube halves. If these drag forces exceed
the binding force between bundle and nanotube segment, the
nanotube segments slide off the bundle and are separated from
the bundle. In this scenario exfoliation relies on nanotube scis-
sion as is illustrated schematically in Fig. 11. If this process
is indeed responsible for the exfoliation of nanotube bundles,
then the sonication process can be optimised. The sonication
power should be just sufficient to cause scission of nanotube
in the outer layer of the bundle, while it should be insufficient
to cause the scission of the resulting nanotube segments that
have a length approximately equal to half the length of the
nanotubes in the bundle. Here, a more thorough analysis is
required that we will pursue in the near future.

In conclusion, we have shown that scission of nanotubes
under tension during bubble collapse does not result in uni-
versal scission kinetics. This can potentially explain the va-
riety in the experimentally observed scission kinetics and
is in contrast with previous work on scission under tension
in which scission under tension was thought to result in

universal kinetics. Given the length-dependent scission rate,
Eq. (19), the lengths of the segments resulting from scission,
Eq. (20), and the terminal scission length, Eq. (18), the scis-
sion kinetics, and the time-evolution of the length distribution
are fully determined, allowing, in principle for controlled ma-
nipulation of the length distribution. Finally, if exfoliation is
indeed scission-mediated, knowledge of both scission and ex-
foliation kinetics will allow for optimisation of the sonication
process.
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