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Abstract

The dynamics of single droplets in a bounded shear flow isr@xpatally and numerically in-
vestigated for blends that contain one viscoelastic corapbriResults are presented for systems
with a viscosity ratio of 1.5 and a Deborah number for the adastic phase of 1. The numer-
ical algorithm is a volume-of-fluid method for tracking thiagement of the two liquids. First,
we demonstrate the validation of the code with an existingnidary integral method and with
experimental data for confined systems containing Newtoodemponents. This is followed by
numerical simulations and experimental data for the costbdfect of geometrical confinement
and component viscoelasticity on the droplet dynamics atertup of shear flow at a moder-
ate capillary number. The viscoelastic liquids are Boged#uwhich are modeled with the
Oldroyd-B constitutive model and the Giesekus model. Cemfient substantially increases the
viscoelastic stresses and the elongation rates in and @&tberdroplet. We show that the latter
can be dramatic for the use of the Oldroyd-B model in confirystesns with viscoelastic compo-
nents. A sensitivity analysis for the choice of the modebpaeters in the Giesekus constitutive
equation is presented.

Keywords: droplet deformation, Oldroyd-B, numerical simulatioretdl morphology,

viscoelasticity, confinement
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1. Introduction

Technology improvements have triggered a continuous tr@mdrds ever smaller scales. The
ability to create structures and patterns on micron andlenlehgth scales has led to the use of
microfluidic devices in a variety of applications, [2, 3, 4]. When transporting complex two-
phasic fluids in microdevices, deviations from bulk behagian be expected if the dimensions
of the channel become comparable to the size of the dispetrsask 1, 3, 5]. Up to now, re-
search on confined multiphase fluid dynamics has mainly hegtetl to systems that contain
only Newtonian component8,[5]. Microfluidic applications are however diverse, rangingn
life sciences industries for pharmaceuticals and bionieelido printing, microreaction engi-
neering, etc. Therefore, the fluid rheology is an importantdr in the design and optimization
of microfluidic devices. Recently, there is a growing ingri@ the éfect of viscoelasticity of
one of the components on the dynamics of multiphase flows énaflisidic systemsg, 7, 8, 9].

In order to gain more fundamental insight in the physicalqamena that drive microstructure
formation in confined multiphase flow, a number of studiessifacused on droplet dynamics in
blends with only Newtonian components that are placed iméimed shear flow. A recent review
is given by Van Puyvelde et al5]. Itis found experimentally, theoretically and numerlgathat
the presence of two parallel walls increases the steadg difbrmation and the orientation
towards the flow direction for droplets in shear flosy.[In addition, after startup of shear flow,
confinement causes the steady state to be reached after tamgs, especially at high viscosity
ratios [LQ]. At very high confinement ratios and for capillary numbdose to the critical value,
steady state is only reached after long-time oscillatidnth® droplet deformation and droplet
orientation, that are not present in unconfined Newtoniamdis [LO, 11]. In addition, highly
confined droplets become sigmoidal. For systems with Neatocomponents, the full transient
behavior of droplets in the whole range of confinement ragind capillary numbers is well
described by numerical simulations? 13, 14, 15].

In bulk shear flow, the féects of component viscoelasticity on the droplet dynamingeh
extensively been studied. Experimentally it was shown thatdroplet deformation in a vis-
coelastic Boger fluid matrix is less as compared to that opléts in a Newtonian matrix
[16, 17, 18, 19, 20]. If the Boger fluid is used as the droplet fluid on the otherchamly minor
effects of viscoelasticity have been observéd RO, 21]. For high values of the flow intensity

and for highly elastic materials, matrix viscoelasticignanduce considerable overshoots in the
2
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droplet deformation, accompanied by undershoots in trentation angle17, 18, 22]. Droplet
viscoelasticity is less studied but it seems to have no niafluience on the deformation dynam-
ics [17, 20, 23]. Recently, researchers have started to experimentalgsiigate the combined
effects of component viscoelasticity and geometrical confer@ri6, 24, 25|. In addition, three-
dimensional numerical simulations of the droplet behaiidslends with viscoelastic fluids are
emerging L7, 23, 26, 27, 28, 29, 30, 31]. However, to our knowledge, no numerical studies of the
droplet dynamics in confined shear flow have been performefbysystems with viscoelastic
components.

In this work, the &ect of confinement on the droplet dynamics after startup easfow is
studied for systems with one viscoelastic component. Expartal data obtained from droplet
visualisation experiments in a counter rotating shear flevick are compared to the results of
a volume-of-fluid simulation method. Pressure fields, stréiaes as well as contours of the
viscoelastic stresses, obtained from the numerical stioakg, are used to gain physical insight

in the droplet behavior.

2. Materialsand methods

2.1. Rheological characterization

The deformation of droplets is microscopically studied$gstems with either a viscoelastic
droplet or a viscoelastic matrix. A Boger fluid (BF2, a conteleheological characterization of
the material can be found in previous wolk/] 18]) consisting of 0.2 w% high molecular weight
polyisobutylene (Oppanol B200) in a highly viscous polyistylene solvent (PIB, Infineum
S1054) is used as the viscoelastic fluid throughout the stidg Newtonian phase consists of
linear polydimethylsiloxanes (PDMS, Rhodorsil and Sited with diferent molecular weights,
that were chosen to obtain a rafi@f droplet to matrix viscosity of 1.5. When used as the matrix
phase, PDMS was first saturated with low molecular weight®iBopol H50) in order to avoid
depletion of the low molecular weight fraction PIB in the giet due to difusion into the PDMS
matrix fluid [32]. The system consisting of a Newtonian PDMS droplet in a Nevan PIB
matrix was used as the reference system. The interfacigioteh of the diferent blends was
determined by fitting the slow flow droplet deformation datéhte second order theory of Greco

[33]. The experimental temperatures and the correspondingctagistics of the experimental
3
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TABLE 1: Blend and component characteristics at viscositiorl = 1.5.

Blend dm Droplet Matrix T Tm Yig Yim r
°C Pas P& Pass mNm

1 N/N  PDMS100-200 PIB1300 25.5 83.5 0 0 2.7
2 N/VE  PDMS30-100 BF2 264 36.5 0 197 2.0
3 VE/N BF2 PDMS30 26.0 25.2 212 0 2.2

system are given in Table The properties of the matrix and droplet fluid are denoteith wi

subscripts m and d, respectively.

2.2. Experimental setup

The droplet dynamics in shear flow are experimentally stlithg means of a counter ro-
tating plate-plate device (based on a Paar Physica MCR8§Q)pped with a microscope (Wild
M5A) and a digital camera (Basler 1394). The latter are medinh vertically translating stages,
enabling observations of the droplet shape in both the itgjeelocity gradient plane and the
velocity-vorticity plane. The experimental setup and imamalysis protocol are detailed else-
where [L6, 18].

3. Numerical ssmulations

3.1. Governing equations

The motion and deformation of a single droplet in a matrixdflaan be described by the

momentum conservation equation and the incompressibiiitgrion for both fluids:

V-u=0 @
p(%L: +(U-V)U) =V T =Vp+V-(ns(Vu+ (Vu)")) + F @
4
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whereu denotes the velocity fielgh andrs the density and solvent viscosity of the fluid, p the
pressure] the extra stress tensor aRdhe interfacial tension force that is formulated as a body
force:

F =Tknds (3)

with n the unit normal to the interfacés the delta-function at the interface andhe curvature

-V - n of the interface. Each liquid is represented by a color fiomct

C(x,y,zt) =

0 inthe matrix
(4)

1 inthe droplet,

which is advected by the flow. The position of the interfaceeonstructed from the locations
whereC(x,y, z t) jumps from 0 to 1, wherea = VC/|VC| andds = |[VC|. For the extra stress
tensorT, the Giesekus constitutive equation is used:

Tp(‘z—I FU-V)T = (V)T - TVWT) + T + %TZ = (VU + (VU)T) 5)
wherer, is the relaxation time of the fluid, the polymer part of the zero-shear rate viscosity
anda the mobility parameter of the Giesekus model. A value 0 results in the Oldroyd-B
constitutive equation.

Buoyancy and inertiafiects can be neglected in the experiments. Therefore, themum
cal simulations are performed with density-matched liguathd the Reynolds number Re (
pyR2/nm, with ¥ the shear rate and R the droplet radius) is chosen sma# (R&) so that inertia
is negligible. The remaining dimensionless parametertsgingern the behavior of a Newtonian
droplet in a Newtonian matrix are the viscosity rafic= nq/nm and the capillary number Ca
= (Rynm)/T". If the viscoelastic fluid is described by the Oldroyd-B mipdeo additional di-
mensionless groups should be included. The retardaticanpeter3 = ny/n gives the solvent
part of the viscosity of the viscoelastic fluid. In additi@an\Weissenberg number Wi y7, is
defined. For the Giesekus model, the dimensionless Giegeasneterr is needed to fully
specify the material rheology. The latter determines tlegliotions of the Giesekus model for

both the second normal stresffeience and the high-shear plateau value of the TroutonTatio

_—2¥; _2(1-p)

= Y1 Tr (6)

with ¥; and¥; the first and second normal stressfti@gents. After setting all previous param-

eters, the Deborah number, Bg'¥; I)/(2R7?), which describes the ratio of the fluid relaxation
5
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time 7, based on a second-order fluids modgH¥1/27), to the emulsion timee = (nmR/T)
of the droplet, is fixed sinc®ey=(1-84)Wi/(1Ca) andDen=(1-8n)Wi/Ca. Viscoelastic fects
on the droplet behavior become noticeable if the De numbeorbes order of magnitude 1

[11, 17, 23, 33. In the present work, all experiments and simulations @régomed at De= 1.

3.2. Numerical method

The direct numerical simulations are performed with a vaeofi-fluid (VOF) formulation
which is detailed in literaturel]7, 23, 29, 34, 35, 36]. Briefly, the code uses a finiteftirence
methodology on a regular Cartesian mesh. The placementcbffead is determined from the
discretized color function, which gives the volume frantior the droplet liquid in each grid
cell. The interface shape is reconstructed from the voluaetibn function with the paraboloid
reconstruction scheme (PROSTDQ[ 37], and it is advected in a Langrangian manner by the
computed velocity field. The computational domain is a negtdar box with 0< x < Ly, 0 <
y <Ly and 0< z < L, = 1, where the velocity of the background shear is in the xetiive
and the velocity gradient is in the z-direction. Spatialipéicity is imposed in the x and y
directions. The value of the droplet radiBgsis set to obtain the same confinement ratiy 2
2R/H as in the experimentk, andL, are chosen to minimize théfect of neighbouring droplets
and the walls, typicallyLx andL, range from 1 to 4, where higher values are used at higher
confinement ratios. Convergence tests for spatial and tehpefinement were conducted for
Dey, = 1,Ca= 0.2,2Ry/H = 0.44. The results were independent of mesh size whea Ay =
Az = 1/64 andy - At = 0.0001. Therefore, further results are presented at tfirreraent. The
initial condition consists of a spherical droplet in a matsiith zero initial viscoelastic stresses.
The movement of the walls is started instantaneously anddleeity field adjusts immediately
to a simple shear flow.

Droplet deformation in the velocity-velocity gradient p&a(x-z plane) is quantified by means
of the deformation parameter B (L-B)/(L+B), where L and B are the long and short droplet
axes, respectively. In addition, the droplet orientatioglaé is defined as the angle between
the longest axis of the droplet and the flow direction. For-etipsoidal droplets, the droplet
deformation is characterized by meands.gf which is the projection of the longest axis of the
droplet on the velocity direction x and/,, which is the droplet axis in the vorticity direction
y. Generally, droplet axes are obtained by fitting an ellijpstine droplet contour in the x-z and

x-y planes. Only for the highest confinement ratios, wheeedtoplet shape starts to become
6
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sigmoidal, the droplet axes are taken to be twice the disténoen the center to the farthest node
on the droplet contour. In the following, we presépt andW, as dimensionless values, with

respect to the initial droplet diameter.

3.3. Benchmark computation and validation

Simulations of droplet deformation in systems with one @&astic component are mostly
available for unbounded domains, and the performance of-PBOST is documented in several
works [17, 23, 26]. For example, VOF-PROST predictions agree with the resafitAggarwal
and Sarkar27, 38, who developed a numerical methodology based on frocking for the
3D study of droplet dynamics in blends with viscoelastic poments. Their results on systems
of equiviscous Oldroyd-B liquids in unbounded flow agreehvtfiose obtained with the VOF-
PROST code thatis used in the present papgr A comparison between numerical simulations
with the VOF method and experimental data for droplet de&diom and droplet orientation in
bulk shear flow for systems with one viscoelastic componamte found in the work of Verhulst
etal. [L7, 23].

Validation of the numerical results for a confined droplesvpeerformed for the case of a
Newtonian liquid pair aCa = 0.35, 2R/H = 0.88 andA = 1. This set of parameters was chosen
in order to compare with Figure 11 of Vananroye et &b]][ where numerical simulations using
the boundary integral method (BIM) of Janssen et B2] hre compared with experimental data
for highly confined Newtonian droplets at viscosity ratio We also compare with the VOF-
based height-function (VOF-HF) metha89 40|, which uses the oct-tree adaptive mesh. Hig.
shows the comparison of results with VOF-PROST simulatairike level of discretization that
is used for the present paper, and with the VOF-HF method.1f&) displays the dimensionless
lengthL,(0) and widthW, (o) in the velocity-vorticity plane (z-y plane) versus dimemdess
timet/re. Fig. 1(b) shows droplet shapes in the velocity - velocity gradiert) and velocity
- vorticity (z-y) planes and pressure fields obtained with WOF-PROST method dfrg =2,
18.2, 60.6 and 135.5. The resolution is choseMat Ay = Az = H/64, At - ¥ = 0.001, and
the computational domain size lis = 4H, Ly = 2H, L, = H. Fig. 1(a) shows that all three
numerical results are close to each other. BIM and VOF-PR@&Tpredict the experimental
values ofL, with maximum deviations of 7% and 9%, respectively, while tteady staté,
is overpredicted by 3% and 5%, respectively. A similar ovedgction of the experimental data

for highly confined droplets with numerical simulations denfound in literature for BIM 15]
7

Page 7 of 29



om L]

I I I I
[¢] 60 80 100 120 140 160 180 200
(a) IITE
1
08
0.6
1
0.4
0.2
0
— 2 o 3 4
t/TE = o 05
1
08
06
1
04
o -
182"~ ' ¢ _ o o
1
181
08
1.36
0.6
1 0.90
04
0.45
/
02 r 0.00
0
606 T -— .
1 2.26
08 181
0.6 36
! 0.90
0.4
/ 0.45
0.2 0.00
0
1355 "> : ¢ — o os i s a "

(b)

FIG. 1: (a) LengthLp(c) and widthW, (0) in the velocity-vorticity plane versut/re. Newtonian systemCa =
0.35,2R/H = 0.88, viscosity ratio 1. Experimental data (symbols), BIM)(-VOF-PROST (-) and VOF-HF (- -), (b)
Shapes (VOF-PROST) in the velocity - velocity gradient aelbeity - vorticity planes and pressure fields relative ® th
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and VOF B1]. The VOF-HF result lies between these methods. The expatafly obtained
W, is consistently close to all three numerical simulatiortse $Sigmoidal droplet shapes and the
significant increase of the pressure at the droplet tip,daabe seen in FidL(b), is in agreement
with the results of the BIM method!f].

4. Resultsand discussion

4.1. Startup dynamics of a viscoelastic droplet in a Nevenmnatrix

The evolution of the droplet deformation and orientatioteaétartup of shear flow at Ca
0.2 is shown in Fig2 for a viscoelastic droplet in a Newtonian matrix. Results given for
confinement ratios 2Rl ranging from 0.11 to 0.74. Time after startup of the flow isdma
dimensionless with the emulsion time. The experimental results show that, from a dimen-
sionless time of about 3, confinement accelerates the drdphamics. In addition, it leads to
more oriented and more deformed droplets than bulk sheardtdahe same capillary number,
as shown by Cardinaels et al.g). The results of VOF simulations, using the Oldroyd-B model
to describe the droplet rheology, are also shown in 2g.The parameters, 8 andtp in the
Oldroyd-B model have been obtained from a best fit of the stehdar data of the Boger fluid,
as in Table 3 in the work of Verhulst et. @2]. The agreement between the experimental data
and the results of VOF simulations is good, both for the defdion parameter and for the ori-
entation angle. In addition, simulation results for blemdth Newtonian components are added
for the highest confinement ratio of 0.74. The results of tli#\simulations for blends with a
viscoelastic or a Newtonian droplet and the experimensallte at 2RRH = 0.74 almost coincide,
indicating that, under these conditions, droplet viscstgly has a minor #ect on the droplet
deformation after startup of shear flow, even for confinegblts.

The pressure field in and around the droplet is shown inFigr an unbounded and a confined
droplet in steady shear flow at G&0.2. The pressures are scaled with the Laplace presE(iRe 2
for a spherical droplet. Increasing the confinement ratsolte in an increase of the maximum
pressure inside the droplet tip whereas in regions with lowature, such as the droplet waist,
the pressure remains low. This is in agreement with the tesilVananroye et al. 4] for
systems with Newtonian components. From Hgf.can be seen that the position of the pressure

maximum shifts closer to the droplet tip when the dropletosfined. At this tip, the increased
9
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fluid (8 = 0.68) and for systems with only Newtonian components. (dpeation parameter. (b) Orientation angle.
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pressure drop across the interface balances the high oueviiat is present due to the more

deformed droplet shape at high confinement ratios.

(a) 2RH = 0.11 (b) 2RH = 0.74

FIG. 3: Pressure field in the x-z cross-section, relativédtaplace pressure of a spherical droplet. The motionvslri

by moving walls at z= 0 and z= 1. Viscoelastic droplet in a Newtonian matrix at €8.2 andt = 1.5.

The stream lines in and around the droplet aE@a2 are shown in Figd. In bulk conditions,
the flow field is completely rotational, which is in agreemwith earlier studies for systems with
viscoelastic dropletsl]7, 27]. However, also for the confined droplet, the droplet shapeains
close to ellipsoidal and the flow field is almost a pure rotatiblowever, outside the droplet a
large recirculation zone is formed at the front and rear efdfoplet, together with higher shear
rates below the droplet tip. This reversal of a substantal pf the fluid stream has also been
reported for confined droplets in blends with Newtonian congnts L0, 12, 31]. For the present
system, the extent of this recirculation zone increases fibout 20 % of the droplet height in
bulk conditions to above 50 % of the droplet height in confinedditions (2RH = 0.74). The
changes in the flow field around the droplet, caused by con@ingnmight significantly alter
droplet interactions and droplet coalescence in more aurated or confined blendd J].

Fig. 5 gives the contour plots of the viscoelastic stress féedént confinement ratios. In the
present work, the trace of the extra stress tefigsrused to discuss the viscoelastiteets, since
this quantity is directly proportional to the extensionlod polymer molecules. The viscoelastic
stress inside the droplet is mainly concentrated above ribyglet tip at the back of the droplet
and below the droplet tip at its front. It can be seen in Fig&) - 5(c) that with increasing
confinement ratio, the maximum viscoelastic stress indigedroplet increases, showing that

viscoelasticity of the droplet fluid becomes more importamtconfined droplets. However,
11
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(a) 2RH = 0.11 (b) 2RH = 0.74

FIG. 4: Stream lines in the x-z cross-section. Viscoeladtiplet in a Newtonian matrix at Ca0.2 andl = 1.5.

the position of the stress maximum remains approximatedyséime. From the rather good
agreement between the numerical results for the systemN@tttonian components and the
system with a viscoelastic droplet at/HR= 0.74 (Fig.2), it can be concluded that the increase
of the viscoelastic stress is only very moderately refleatethe droplet deformation. This
behavior is similar to that observed for increasing valuethe De-number in bulk conditions
[17]. In summary, the localized high viscoelastic stress infio@a conditions might slightly
influence the details of the shape of the droplet tip, butstdmainsignificant#ect on the overall

droplet deformation.
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FIG. 5: Contour plots of the tracd} in the x-z cross-section, stresses are in Pa. Viscoeldstjglet in a Newtonian
matrix at Ca= 0.2 andl = 1.5.
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4.2. Startup dynamics of a Newtonian droplet in a viscoalasttrix

4.2.1. Droplet deformation and droplet orientation

The experimental results for the deformation parametettlamdrientation angle of a Newto-
nian droplet in a viscoelastic matrix are presented in Eidor a series of confinement ratios.
For confinement ratios 2R up to 0.75, a monotonous evolution towards the steady sakie
obtained. Similar to the results for a viscoelastic drgmebwn in Fig.2, confinement accel-
erates the deformation kinetics and increases the steatly ditoplet deformation and droplet
orientation. In addition, the dimensionless time at whiohfmement starts toféect the droplet
behavior is approximately the same, independent of whiaselis viscoelastic (Fig&.and6).
However, from a comparison between the steady state vaflzad-igs.2 and6 it is clear that,
for all confinement ratios, a Newtonian droplet in a visceitamatrix is less deformed than a
viscoelastic droplet in a Newtonian matrix. Therefore, pinesence of viscoelastic stresses is

clearly manifested in the results for droplets in a viscstidanatrix that are presented in Fig).

The results of simulations with the VOF method have been ddaéigs.6(a) and6(b) for
different confinement ratios. Analogous to the simulations liemdis with a viscoelastic droplet,
the Oldroyd-B model was used to describe the rheology of thgeBfluid matrix. Under bulk
conditions, this method has proven to be successful as letigeatransient droplet deformation
follows a monotonous startup transied]. A comparison between the simulation results for
the droplet deformation and the experimental results atdithat up to a confinement ratio of
0.44 the agreement is satisfactory. However, if the confarematio is increased to 0.60 or 0.75,
the numerical simulations capture the initial trend of thepdet dynamics, but overpredict the
steady droplet deformation. Fig(a) shows that the deviation between the experimental and
the simulated deformation gradually increases with confierat ratio and the simulations with
an Oldroyd-B matrix result in a higher value for the droplefatmation than the experimental
one. For the orientation angle, there is already a discipanlow confinement ratios. The
simulation results for systems with Newtonian componergsiacluded in Figs6(a) and6(b)
for a confinement ratio 2/Rl of 0.75. The simulated curve for the system with a viscdelas
matrix shows a slightly slower transient deformation thiaat for the system with Newtonian
components. This is in agreement with the results obtaiggutdvious authors for the evolution

of the droplet deformation in a viscoelastic matrix aftartp of bulk shear flowds, 44, 45|.
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4.2.2. Sensitivity analysis for the parameters in the dariste equation for the matrix fluid

From a comparison between Fi@saand6 it can be seen that the bulk droplet deformation in an
Oldroyd-B matrix with De= 1 is smaller than that in a Newtonian matrix €30.21 as compared
to 0.23). However, at the highest confinement ratio showngn&; the simulations for systems
with an Oldroyd-B matrix give a value for the droplet defotioa that is higher than that of
droplets in a Newtonian matrix. An increase of the droplévdeation due to the viscoelasticity
of the Oldroyd-B matrix fluid has also been observed witfiudie-interface and front-tracking
finite difference simulation methods for unbounded droplets in higisd&aberg number flows
[38,46]. However, experiments with a viscoelastic Boger fluid ixagenerally show a reduction
of the droplet deformatiori[7, 18, 19, 20]. Therefore, under more critical conditions such as high
values of Wi or high confinement ratios, the numerical resfdt systems with an Oldroyd-B
matrix deviate from the experimental results for blend$waiBoger fluid matrix. The deviation
is more pronounced as Ca gadDe grows larger.

A possible explanation for this mismatch can be found byyshgithe elongation rates around
the droplet. The Oldroyd-B model predicts an infinite valiieh® elongational viscosity at a
dimensionless elongation rate-{p) of 0.5 [47]. Therefore, numerical problems can be expected
if the dimensionless elongation rates in and around theler@xceed this critical value. In

order to quantify this, we define the elongation rate to bddigest positive eigenvalue of the

2 X 2 matrix
ou  ou
X 0z
ow 0w
IX 0z

where we consider the x-z cross-section at the droplet ceantbu and w are the velocities in
the x and z directions respectively. The evolution of the imaxn dimensionless elongation
rate around the droplet at threeffdrent confinement ratios is shown as a function of time in
Fig. 7. 1t is clear from this figure that the dimensionless elorgatiate remains below the
critical value at a confinement ratio of 0.09, but it excedds Vvalue for higher confinement
ratios. At a confinement ratio of 0.76, it crosses the ciitiedue of 0.5 at a dimensionless time
as low as 3. The simulated values for the deformation pammetthe other hand agree with the
experimental results up to a dimensionless time of aboutdZ @a)). This can be attributed to
the fact that the elongational viscosity needfisient time to build up in order to influence the

droplet behavior, as was shown in Figure A.2 of the work ohwst et al. L7]. The contours of
15
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tr(T) at e = 10 show that there is a region just outside the interface @hiscoelastic stresses
build up. The streamlines are shown at the same time, tdriitesthe existence of a hyperbolic
streamline roughly at the edge of the region where stressagrawing. With time, the gradient
of tr(T) grows in the direction of the dividing streamline. This é&miniscent of the result of
Ref. [48] which establishes the formation of singular structureshia polymer stress field at
hyperbolic stagnation points in the flow of an Oldroyd-B fluithe stresses grow exponentially
in time along a dividing streamline. In our case, although itaximum elongation rate is a
small distance downstream of the stagnation point, the mranrwhich the viscoelastic stresses
blow up depends on the elongation rate at the stagnation p®édf; this is dificult to resolve
numerically. Therefore, we study the maximum elongatide,iaut we need to keep in mind that
the quantity of interest is less than that. For example, dH2R.46, the maximum elongation
rate in Fig.7 is above 0.5, while the agreement in F@is still reasonable, and this can be
attributed to the fact that the elongation rate at the stégmaoint is somewhat lower than the
maximum value. In our simulations, we see numerically that ¢lastic energy, represented
by tr(T) grows to unphysically large values when the product of g&tion rate and relaxation
time is above roughly 0.5. Beyond this value, the predictibthe Oldroyd-B model for the
elongational viscosity breaks down. At this time, a nunmadniesolution to this issue is not clear.
One method is to use a model that is nonlinear in the stressttamd therefore we choose the
Giesekus model which has an additional parametand thus enables the modeling of a finite

elongational viscosity at high elongation rates.

Numerical simulations have been performed in which the Idgoof the matrix fluid was
represented by the Giesekus constitutive equation. Frond Egan be seen that the predictions
of the Giesekus model for the elongational viscosity depaathly on the value of the dimen-
sionless Giesekus parameterTherefore, the dimensionless Giesekus parameter wasviari
order to assess th&ect of the elongational viscosity on the droplet behaviuoitidlly, @ = 0.002
was chosen, which results in a plateau Trouton ratio of 320s ¥alue is much lower than the

experimental Trouton ratio that is approximatelg@ [17]. The result of a simulation with this

value ofa is shown in Table2(a) at a confinement ratio of 0.76. The deformation parameter

(and also the orientation angle) for a droplet in an Oldr8yahatrix and a droplet in a viscoelas-

tic matrix that obeys the Giesekus model with= 0.002 are exactly the same. An increase of

the mobility parametet only results in a reduction of the droplet deformation fonsiderably
16
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FIG. 7: Newtonian droplet in a viscoelastic matrix with= 1.5 after startup of shear flow at @20.2. Evolution of the
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higher values ofr, where the elongational viscosity has dropped to a valueishaf the same
order of magnitude as the shear viscosity> 0.1, Eq. 6). However, even when the limiting
value for obtaining physically sound results£ 0.5) is almost reached§], the simulation re-
sults slightly overpredict the experimental data (Ted{s)). In addition, as shown in E, the

value ofa also determines the ratio of the second to the first normedsiifference. For Boger
fluids, this ratio is known to be very lovb]. However, the second normal stresffelience in

polymer melts has been shown to influence the droplet dettsmgb1]. Therefore, using a too
high value fora in the simulations might result in additional contributsoof the second normal

stress dierence, that are not present in the experimental systenmefne, in the remainder of
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this work, the value of is limited to a maximum of 0.2, which agrees with a rati/¥; of 0.1,

in agreement with literature values for polymer solutiond Boger fluids $0, 52, 53, 54, 55].

In addition to the dimensionless Giesekus parametdine fluid rheology represented by the
Giesekus model is determined by the solvent contributidhgoviscositys and by the polymer
relaxation timerp. The rheology of the Boger fluid matrix material is far moremgex than
that of an Oldroyd-B or Giesekus fluid with a single relaxattone. The steady and dynamic
shear rheology and the elongational viscosity of the Bogea BBF2 can be well described by
means of a 5-mode Giesekus modg]|[ A substantial amount of the polymer contribution to the
viscosity has a relaxation time that is far below the emulsion time, which is on the order of
3 seconds in the present work. Thus, these modes do notlmatetio the viscoelastic response
at the time scales that are of relevance here. Thereforerampresentative single-mode model
would consist of an Oldroyd-B or Giesekus fluid with a lowelymoer contribution and a higher
average relaxation time. In order to assess the influendeeafdlvent contribution, simulations
were performed for systems with an Oldroyd-B or Giesekugimaith a solvent contribution
B of 0.84 as compared to 0.68 in the previous simulations. tfitiaeh, the relaxation time and
consequently also the Weissenberg number were increasectagthe Deborah number was
kept constant at 1. In bulk shear flows with a high Wi numberinganease of3 can relief the
deforming viscoelastic stresses somewhat and reducedpéetideformation17, 38]. However,
the results in Tabl@(a) for 2RH = 0.76 indicate that for an Oldroyd-B matrix with= 0.84 an
even higher droplet deformation is obtained as compareldabfor droplets in an Oldroyd-B
matrix with 3 = 0.68. Therefore, under the present conditions, the inerefithe Weissenberg
number and the corresponding increase of the extensioreqgidtymer molecules overtake the

reduction in polymer content in the Boger fluid.

From Table2(b) it can be seen that the results for simulations with thér@id-B model or
the Giesekus model witta = 0.2 coincide, up to the confinement ratio where the elongatite
exceeds the critical value. This supports the above prapesglanation for the overestimation
of the droplet deformation. However, for the highest confieat ratio, an exact quantitative
agreement with the experimental data is still not obtainBEuerefore, it can be concluded that
in confined systems, the complex rheology and multiple edlar times of the Boger fluid can
not be lumped easily into a simple single-mode model. Thieksion is in line with the results

for the deformation of unconfined droplets in a viscoelastatrix in bulk shear flow17, 23].
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However, in bulk conditions deviations between experirakamnd simulation results were only
observed when the droplet deformation overshoots befaehirg its final steady state value.
From the results in Tablg(b) it can be concluded that the droplet deformation become®
sensitive to the exact viscoelastic nature of the matridfiuhen geometrical confinement comes
into play. This is most probably caused by the more complexfield in confinement, as shown

in Fig. 4, that involves a larger variation in type and intensity af flow around the droplet.
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TABLE 2: Steady state deformation parameter D at=C&2 for a Newtonian droplet in a viscoelastic matrix with-

1.5. A sensitivity analysis of the VOF simulations to chasg@ethe model parameters.

(a) 2RH=0.76 D
Experimental 0.29
Oldroyd-B=0.68¢=0 0.36
Giesekug = 0.68a = 0.002 0.36
Giesekug =0.68a0=0.4 0.31
Giesekug =0.84a =0 0.37
Giesekug =0.84a=0.2 0.33

(b)2RH Exp. Oldroyd-B Giesekus

B=0.68 pB=0.84

a=0 a=0.2

0.09 0.19 0.21 0.19

0.46 0.23 0.24 0.23

0.60 0.25 0.29 0.27

0.76 0.29 0.36 0.33
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4.2.3. Viscoelastic stresses and elongation rates in andrad the droplet

In order to qualitatively study theffect of confinement on the viscoelastic stresses, the flow
field and the pressure in and around a deformed droplet ircaefiastic matrix, the contour plots
of these variables have been calculatedder 0.84 ande = 0.2 as a representative case. For
the sake of brevity, the plots of the stream lines and presdor the systems with a viscoelastic
matrix are not shown here. The contour plots of the presseraearly indistinguishable from
those for systems with a viscoelastic droplet. In addittbe,plots of the stream lines show that
the recirculation zone at the front and rear of the droplektended over the same portion of the
gap for a Newtonian droplet in a viscoelastic matrix as comgao a viscoelastic droplet in a

Newtonian matrix.

The contour plots of the viscoelastic stress and the dimatess elongation rate for Newto-
nian droplets in a viscoelastic matrix are shown in Edor different confinement ratios. From
Figs. 8(a) - 8(c) it is clear that, similar to the results for a system witkiscoelastic droplet
(Fig. 5), the maximum value of the viscoelastic stress increaseiiie confinement ratio is
increased. In addition, it can be seen that the area aroerdtdiplet where substantial viscoelas-
tic stresses are present is significantly extended if thpldtbecomes more confined. However,
the position of the maximum viscoelastic stress, whichighdlly above the droplet tip, remains

exactly the same, independent of the confinement ratio.

The contour plots of the dimensionless elongation rate mengn Figs. 8(d) - 8(f). These
contour plots show that the maximum dimensionless eloagadte increases with confinement
ratio, as was shown in Figi. The position of the maximum with respect to the droplet resma
however the same. The highest viscoelastic stress (R®-8(c)) is present some distance
downstream of the maximum elongation rate. This is in agezgrwith the results of the 2D
simulations of Yue et al. 46] for bulk conditions and it reflects the finite relaxation &énof
the polymer molecules. An increase of the maximum value efvilcoelastic stress was also
observed in bulk conditions, when increasing the valueseodDWi [17]. However, in that case
the increase of the viscoelastic stress is coupled to aatifte position of the maximum value
higher upwards along the droplet contour. This is a reflectibthe higher relaxation time of
the polymer molecules due to the increase of Wi. The highkregaof the viscoelastic stress
combined with a shift of the position of the maximum, restilte a reduction of the droplet

deformation (Figure 14 in1[7]). However, the increase of the maximum viscoelastic sties
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the matrix due to confinement causes an increase of the ddgfrmation as compared to the
Newtonian reference case. This conclusion is derived frasnraparison between the results
in Table2 for systems with a viscoelastic matrix and in Figfor systems with a viscoelastic
droplet. It can be seen there that the droplet deformatioarpeter in bulk conditions is 0.19

for a viscoelastic matrix (Giesekus model wigh= 0.84 anda = 0.2) compared to 0.23 for a

viscoelastic droplet, whereas at/BHR= 0.75 this becomes 0.33 compared to 0.32 for respectively

a viscoelastic matrix and a viscoelastic droplet.

The matrix fluid in the experimental system has a spectruralakation times. Therefore, the
viscoelastic stress is expected to be spread over a largerfmmm the droplet tip upwards along
the droplet contour. Based on the results in F&fa) - 8(c) an increase of the viscoelastic stress
in this complete zone is expected, which might contributeédfact that in the experimental data,
matrix viscoelasticity reduces the droplet deformationgib confinement ratios. In addition, it
should be keptin mind that the elongational viscosity wasiced to the same order of magnitude
as the shear viscosity in the simulations, whereas the dnottio in the experimental fluid is

approximately 3L0* [17].

Fig. 8 shows that the elongation rates inside the droplet are muwhkrlthan outside the
droplet, with only a very small region of high elongationestlose to the droplet tip. For the
systems with a viscoelastic droplet (Sectibr), the contour plots of the elongation rate are
similar to those for the systems with a viscoelastic matdawever, at the same De, the value of
Wi for the systems with a viscoelastic matrix wigh= 0.84 is substantially higher than that for
a system with a viscoelastic droplet. Therefore, in the cfiseviscoelastic droplet at Ga0.2,
the elongation rate inside the droplet remains well beloavdfitical value of 0.5 for divergence

of the elongational viscosity at all confinement ratios.

For bulk shear flow, it has been shown that at high capillamplpers, viscoelasticity of the
matrix phase can cause overshoots in the transient drogletrdation and droplet orientation
after startup of shear flowi[r, 18, 22. Yue et al. 5] attributed this behavior to a mismatch of
two time scales: the emulsion time for droplet deformation and the relaxation timgof the
polymers in the viscoelastic matrix phase. Since a reduafdhe droplet deformation due to
matrix viscoelasticity only occurs after a time intervaltbé orderrp, this causes an overshoot
in the droplet deformation wherg is substantially shorter tharp. Figure6 shows that the

kinetics of the droplet deformation after startup of sheawfpeeds up due to confinement. This
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faster kinetics might change the ratio of the droplet to tbl/mer relaxation time and could
thus induce overshoots in droplet deformation in confinedhsfow. In order to investigate this
in more detail, the evolution of the maximum value of the ¢&#&E) as a function of time has
been studied. Results for Newtonian droplets in a visctielasatrix are given in Fig9 for two
different confinement ratios. This figure shows that confinenasuits in a faster buildup of the
viscoelastic stresses, which corresponds to the fasteandigs of the droplet deformation, that
is presented in Figé. From a comparison between Figgand9 it can be concluded that the
faster development of the droplet deformation in confinegrasrcompared to bulk conditions is
accompanied by a more or less equal increase in the growdd sgfehe viscoelastic stresses.
This simultaneous buildup of the viscoelastic stressestla@diroplet deformation results in a
monotonous evolution towards a steady state droplet shhépeever, confinement introduces a
slight overshoot in the evolution of the maximum viscoétastress that is not caused by, nor

results in an over- or undershoot in droplet deformation.

In more concentrated blends, a dropletis surrounded by dtbelets and frequently interacts
and collides with its neighboring droplets. When dropletaiviscoelastic matrix come close

together, overlap of the regions with high viscoelastiesges around each droplet will influence
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their interaction. Therefore, matrix viscoelasticity igected to significantly enhance droplet
interactions in confined blends. In addition, although kesgre than solid walls, neighboring
droplets in a blend also cause a sort of confinement, whichiegpand the zones with signif-

icant viscoelastic stresses, even in bulk conditions, hod might alter the droplet interactions
in concentrated blends. In blends with viscoelastic ditspda the other hand, the viscoelastic
stresses are restricted within the viscoelastic fluid. &toge, matrix viscoelasticity is expected
to have a significant influence on droplet interactions araleszence in concentrated blends

whereas theféects of droplet viscoelasticity on these processes areceeghto be rather limited.

5. Concluding remarks

An experimental and numerical study of droplet dynamicsradtartup of shear flow in sys-
tems with one viscoelastic component is conducted for bualtk eonfined conditions. In the
experiments, the viscoelastic phase is a highly elasticeBflgid, whereas fluids that obey a
single-mode Oldroyd-B or Giesekus constitutive equati@nused in the numerical modeling.
Results are presented for blends with a viscosity ratio ®fhd flow capillary number 0.2. The
numerical results allow us to view the evolution of pressamd viscoelastic stresses, and the
interesting correlation of the elongation rate with limgibehavior of the Oldroyd-B model.

Confinement is shown to accelerate the kinetics of dropltrdeation independent of which
phase is viscoelastic. Both for systems with a viscoelanttrix and for systems with a vis-
coelastic droplet, the droplet deformation and orientatimvards the flow direction increase
when the confinement ratio is increased. However, for thdistuexperimental system, the
droplet deformation in a viscoelastic Boger fluid matrix imadler than that in a Newtonian
matrix, for all studied confinement ratios. The simulatishew that confinement increases the
pressure justinside the droplet tip and the visualizatfdh@streamlines shows that a stagnation
point is generated just outside the droplet tips where alhiglongational flow occurs close to
the interface. These observations are in agreement wittethts for Newtonian droplghatrix
pairs [L2,15]. In addition, we found that confinement substantially @ases the elongation rates.
In the case of a viscoelastic droplet, the purely rotatidioal inside the droplet yields relatively
low levels of viscoelastic stresses. When the matrix isoatastic, the strongly elongational
flow which follows the dividing streamline just outside theoglet tip generates higher elastic

stresses, and the region of maximum elastic stress expatidsomfinement. This phenomenon
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has implications for droplet interactions and droplet esaénce in concentrated blends in which
droplets are confined between their neighbors. In suchmegstine &ect of matrix viscoelastic-
ity is expected to dominate over that of droplet viscoetdtsti The occurrence of high gradients
in viscoelastic stresses generated by the Oldroyd-B maddiifhly confined droplets is a bar-
rier, given the numerical resolution, and therefore, omammmise is to reduce the elongational
viscosity with the use of the Giesekus parameter. Howelsrjipedes quantitative agreement
with the experimental data for Boger fluids that possessladiigngational viscosity. It is shown
that the sensitivity of the droplet deformation to the usedstitutive equation is higher in con-
fined conditions as compared to bulk conditions. Therefngher refinement and validation
of numerical codes for confined droplet dynamics in the presef viscoelasticity is needed to

enable modeling of shear-induced morphology developnmeciimfined blends.
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