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Abstract

The dynamics of single droplets in a bounded shear flow is experimentally and numerically in-

vestigated for blends that contain one viscoelastic component. Results are presented for systems

with a viscosity ratio of 1.5 and a Deborah number for the viscoelastic phase of 1. The numer-

ical algorithm is a volume-of-fluid method for tracking the placement of the two liquids. First,

we demonstrate the validation of the code with an existing boundary integral method and with

experimental data for confined systems containing Newtonian components. This is followed by

numerical simulations and experimental data for the combined effect of geometrical confinement

and component viscoelasticity on the droplet dynamics after startup of shear flow at a moder-

ate capillary number. The viscoelastic liquids are Boger fluids, which are modeled with the

Oldroyd-B constitutive model and the Giesekus model. Confinement substantially increases the

viscoelastic stresses and the elongation rates in and around the droplet. We show that the latter

can be dramatic for the use of the Oldroyd-B model in confined systems with viscoelastic compo-

nents. A sensitivity analysis for the choice of the model parameters in the Giesekus constitutive

equation is presented.

Keywords: droplet deformation, Oldroyd-B, numerical simulation, blend morphology,

viscoelasticity, confinement
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1. Introduction

Technology improvements have triggered a continuous trendtowards ever smaller scales. The

ability to create structures and patterns on micron and smaller length scales has led to the use of

microfluidic devices in a variety of applications [1, 2, 3, 4]. When transporting complex two-

phasic fluids in microdevices, deviations from bulk behavior can be expected if the dimensions

of the channel become comparable to the size of the dispersedphase [1, 3, 5]. Up to now, re-

search on confined multiphase fluid dynamics has mainly been limited to systems that contain

only Newtonian components [3, 5]. Microfluidic applications are however diverse, ranging from

life sciences industries for pharmaceuticals and biomedicine, to printing, microreaction engi-

neering, etc. Therefore, the fluid rheology is an important factor in the design and optimization

of microfluidic devices. Recently, there is a growing interest in the effect of viscoelasticity of

one of the components on the dynamics of multiphase flows in microfluidic systems [6, 7, 8, 9].

In order to gain more fundamental insight in the physical phenomena that drive microstructure

formation in confined multiphase flow, a number of studies have focused on droplet dynamics in

blends with only Newtonian components that are placed in a confined shear flow. A recent review

is given by Van Puyvelde et al. [5]. It is found experimentally, theoretically and numerically, that

the presence of two parallel walls increases the steady state deformation and the orientation

towards the flow direction for droplets in shear flow [5]. In addition, after startup of shear flow,

confinement causes the steady state to be reached after longer times, especially at high viscosity

ratios [10]. At very high confinement ratios and for capillary numbers close to the critical value,

steady state is only reached after long-time oscillations of the droplet deformation and droplet

orientation, that are not present in unconfined Newtonian blends [10, 11]. In addition, highly

confined droplets become sigmoidal. For systems with Newtonian components, the full transient

behavior of droplets in the whole range of confinement ratiosand capillary numbers is well

described by numerical simulations [12, 13, 14, 15].

In bulk shear flow, the effects of component viscoelasticity on the droplet dynamics have

extensively been studied. Experimentally it was shown thatthe droplet deformation in a vis-

coelastic Boger fluid matrix is less as compared to that of droplets in a Newtonian matrix

[16, 17, 18, 19, 20]. If the Boger fluid is used as the droplet fluid on the other hand, only minor

effects of viscoelasticity have been observed [17, 20, 21]. For high values of the flow intensity

and for highly elastic materials, matrix viscoelasticity can induce considerable overshoots in the
2
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droplet deformation, accompanied by undershoots in the orientation angle [17, 18, 22]. Droplet

viscoelasticity is less studied but it seems to have no majorinfluence on the deformation dynam-

ics [17, 20, 23]. Recently, researchers have started to experimentally investigate the combined

effects of component viscoelasticity and geometrical confinement [16, 24, 25]. In addition, three-

dimensional numerical simulations of the droplet behaviorin blends with viscoelastic fluids are

emerging [17, 23, 26, 27, 28, 29, 30, 31]. However, to our knowledge, no numerical studies of the

droplet dynamics in confined shear flow have been performed yet for systems with viscoelastic

components.

In this work, the effect of confinement on the droplet dynamics after startup of shear flow is

studied for systems with one viscoelastic component. Experimental data obtained from droplet

visualisation experiments in a counter rotating shear flow device are compared to the results of

a volume-of-fluid simulation method. Pressure fields, stream lines as well as contours of the

viscoelastic stresses, obtained from the numerical simulations, are used to gain physical insight

in the droplet behavior.

2. Materials and methods

2.1. Rheological characterization

The deformation of droplets is microscopically studied forsystems with either a viscoelastic

droplet or a viscoelastic matrix. A Boger fluid (BF2, a complete rheological characterization of

the material can be found in previous work [17, 18]) consisting of 0.2 w% high molecular weight

polyisobutylene (Oppanol B200) in a highly viscous polyisobutylene solvent (PIB, Infineum

S1054) is used as the viscoelastic fluid throughout the study. The Newtonian phase consists of

linear polydimethylsiloxanes (PDMS, Rhodorsil and Silbione) with different molecular weights,

that were chosen to obtain a ratioλ of droplet to matrix viscosity of 1.5. When used as the matrix

phase, PDMS was first saturated with low molecular weight PIB(Indopol H50) in order to avoid

depletion of the low molecular weight fraction PIB in the droplet due to diffusion into the PDMS

matrix fluid [32]. The system consisting of a Newtonian PDMS droplet in a Newtonian PIB

matrix was used as the reference system. The interfacial tensionΓ of the different blends was

determined by fitting the slow flow droplet deformation data to the second order theory of Greco

[33]. The experimental temperatures and the corresponding characteristics of the experimental
3
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TABLE 1: Blend and component characteristics at viscosity ratio λ = 1.5.

Blend d/m Droplet Matrix T ηm Ψ1,d Ψ1,m Γ

◦C Pa.s Pa.s2 Pa.s2 mN/m

1 N/N PDMS100-200 PIB1300 25.5 83.5 0 0 2.7

2 N/VE PDMS30-100 BF2 26.4 36.5 0 197 2.0

3 VE/N BF2 PDMS30 26.0 25.2 212 0 2.2

system are given in Table1. The properties of the matrix and droplet fluid are denoted with

subscripts m and d, respectively.

2.2. Experimental setup

The droplet dynamics in shear flow are experimentally studied by means of a counter ro-

tating plate-plate device (based on a Paar Physica MCR300),equipped with a microscope (Wild

M5A) and a digital camera (Basler 1394). The latter are mounted on vertically translating stages,

enabling observations of the droplet shape in both the velocity/velocity gradient plane and the

velocity-vorticity plane. The experimental setup and image analysis protocol are detailed else-

where [16, 18].

3. Numerical simulations

3.1. Governing equations

The motion and deformation of a single droplet in a matrix fluid can be described by the

momentum conservation equation and the incompressibilitycriterion for both fluids:

∇ · u = 0 (1)

ρ(
∂u
∂t
+ (u · ∇)u) = ∇ · T − ∇p+ ∇ · (ηs(∇u + (∇u)T)) + F (2)

4
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whereu denotes the velocity field,ρ andηs the density and solvent viscosity of the fluid, p the

pressure,T the extra stress tensor andF the interfacial tension force that is formulated as a body

force:

F = Γκ̃nδs (3)

with n the unit normal to the interface,δs the delta-function at the interface and ˜κ the curvature

−∇ · n of the interface. Each liquid is represented by a color function,

C(x, y, z, t) =



















0 in the matrix

1 in the droplet,
(4)

which is advected by the flow. The position of the interface isreconstructed from the locations

whereC(x, y, z, t) jumps from 0 to 1, wheren = ∇C/|∇C| andδS = |∇C|. For the extra stress

tensorT, the Giesekus constitutive equation is used:

τp

(∂T
∂t
+ (u · ∇)T − (∇u)T − T(∇u)T

)

+ T +
τpα

ηp
T2 = ηp(∇u + (∇u)T) (5)

whereτp is the relaxation time of the fluid,ηp the polymer part of the zero-shear rate viscosity

andα the mobility parameter of the Giesekus model. A valueα = 0 results in the Oldroyd-B

constitutive equation.

Buoyancy and inertia effects can be neglected in the experiments. Therefore, the numeri-

cal simulations are performed with density-matched liquids and the Reynolds number Re (=

ργ̇R2/ηm, with γ̇ the shear rate and R the droplet radius) is chosen small (Re= 0.1) so that inertia

is negligible. The remaining dimensionless parameters that govern the behavior of a Newtonian

droplet in a Newtonian matrix are the viscosity ratioλ = ηd/ηm and the capillary number Ca

= (Rγ̇ηm)/Γ. If the viscoelastic fluid is described by the Oldroyd-B model, two additional di-

mensionless groups should be included. The retardation parameterβ = ηs/η gives the solvent

part of the viscosity of the viscoelastic fluid. In addition,a Weissenberg number Wi= γ̇τp is

defined. For the Giesekus model, the dimensionless Giesekusparameterα is needed to fully

specify the material rheology. The latter determines the predictions of the Giesekus model for

both the second normal stress difference and the high-shear plateau value of the Trouton ratioTr:

α =
−2Ψ2

Ψ1
=

2(1− β)
Tr

(6)

with Ψ1 andΨ2 the first and second normal stress coefficients. After setting all previous param-

eters, the Deborah number, De= (Ψ1 Γ)/(2Rη2), which describes the ratio of the fluid relaxation
5
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time τp, based on a second-order fluids model (τp=Ψ1/2η), to the emulsion timeτE = (ηmR/Γ)

of the droplet, is fixed sinceDed=(1-βd)Wi/(λCa) andDem=(1-βm)Wi/Ca. Viscoelastic effects

on the droplet behavior become noticeable if the De number becomes order of magnitude 1

[11, 17, 23, 33]. In the present work, all experiments and simulations are performed at De= 1.

3.2. Numerical method

The direct numerical simulations are performed with a volume-of-fluid (VOF) formulation

which is detailed in literature [17, 23, 29, 34, 35, 36]. Briefly, the code uses a finite difference

methodology on a regular Cartesian mesh. The placement of each fluid is determined from the

discretized color function, which gives the volume fraction for the droplet liquid in each grid

cell. The interface shape is reconstructed from the volume fraction function with the paraboloid

reconstruction scheme (PROST) [29, 37], and it is advected in a Langrangian manner by the

computed velocity field. The computational domain is a rectangular box with 0≤ x ≤ Lx, 0 ≤

y ≤ Ly and 0≤ z ≤ Lz = 1, where the velocity of the background shear is in the x-direction

and the velocity gradient is in the z-direction. Spatial periodicity is imposed in the x and y

directions. The value of the droplet radiusR0 is set to obtain the same confinement ratio 2R0 =

2R/H as in the experiments,Lx andLy are chosen to minimize the effect of neighbouring droplets

and the walls, typicallyLx and Ly range from 1 to 4, where higher values are used at higher

confinement ratios. Convergence tests for spatial and temporal refinement were conducted for

Dem = 1,Ca= 0.2, 2R0/H = 0.44. The results were independent of mesh size when∆x = ∆y =

∆z = 1/64 andγ̇ · ∆t = 0.0001. Therefore, further results are presented at this refinement. The

initial condition consists of a spherical droplet in a matrix with zero initial viscoelastic stresses.

The movement of the walls is started instantaneously and thevelocity field adjusts immediately

to a simple shear flow.

Droplet deformation in the velocity-velocity gradient plane (x-z plane) is quantified by means

of the deformation parameter D= (L-B)/(L+B), where L and B are the long and short droplet

axes, respectively. In addition, the droplet orientation angle θ is defined as the angle between

the longest axis of the droplet and the flow direction. For non-ellipsoidal droplets, the droplet

deformation is characterized by means ofLp, which is the projection of the longest axis of the

droplet on the velocity direction x andWp, which is the droplet axis in the vorticity direction

y. Generally, droplet axes are obtained by fitting an ellipseto the droplet contour in the x-z and

x-y planes. Only for the highest confinement ratios, where the droplet shape starts to become
6



Page 7 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

sigmoidal, the droplet axes are taken to be twice the distance from the center to the farthest node

on the droplet contour. In the following, we presentLp, andWp as dimensionless values, with

respect to the initial droplet diameter.

3.3. Benchmark computation and validation

Simulations of droplet deformation in systems with one viscoelastic component are mostly

available for unbounded domains, and the performance of VOF-PROST is documented in several

works [17, 23, 26]. For example, VOF-PROST predictions agree with the results of Aggarwal

and Sarkar [27, 38], who developed a numerical methodology based on front-tracking for the

3D study of droplet dynamics in blends with viscoelastic components. Their results on systems

of equiviscous Oldroyd-B liquids in unbounded flow agree with those obtained with the VOF-

PROST code that is used in the present paper [26]. A comparison between numerical simulations

with the VOF method and experimental data for droplet deformation and droplet orientation in

bulk shear flow for systems with one viscoelastic component can be found in the work of Verhulst

et al. [17, 23].

Validation of the numerical results for a confined droplet was performed for the case of a

Newtonian liquid pair atCa= 0.35, 2R/H = 0.88 andλ = 1. This set of parameters was chosen

in order to compare with Figure 11 of Vananroye et al. [15], where numerical simulations using

the boundary integral method (BIM) of Janssen et al. [12] are compared with experimental data

for highly confined Newtonian droplets at viscosity ratio 1.We also compare with the VOF-

based height-function (VOF-HF) method [39, 40], which uses the oct-tree adaptive mesh. Fig.1

shows the comparison of results with VOF-PROST simulationsat the level of discretization that

is used for the present paper, and with the VOF-HF method. Fig. 1(a) displays the dimensionless

lengthLp(◦) and widthWp (�) in the velocity-vorticity plane (z-y plane) versus dimensionless

time t/τE. Fig. 1(b) shows droplet shapes in the velocity - velocity gradient(x-z) and velocity

- vorticity (z-y) planes and pressure fields obtained with the VOF-PROST method att/τE =2,

18.2, 60.6 and 135.5. The resolution is chosen at∆x = ∆y = ∆z = H/64,∆t · γ̇ = 0.001, and

the computational domain size isLx = 4H, Ly = 2H, Lz = H. Fig. 1(a) shows that all three

numerical results are close to each other. BIM and VOF-PROSToverpredict the experimental

values ofLp with maximum deviations of 7% and 9%, respectively, while the steady stateLp

is overpredicted by 3% and 5%, respectively. A similar overprediction of the experimental data

for highly confined droplets with numerical simulations canbe found in literature for BIM [15]
7
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FIG. 1: (a) LengthLp(◦) and widthWp (�) in the velocity-vorticity plane versust/τE . Newtonian system,Ca =

0.35, 2R/H = 0.88, viscosity ratio 1. Experimental data (symbols), BIM (-.-), VOF-PROST (–) and VOF-HF (- -), (b)

Shapes (VOF-PROST) in the velocity - velocity gradient and velocity - vorticity planes and pressure fields relative to the

Laplace pressure att/τE =2, 18.2, 60.6 and 135.5.
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and VOF [31]. The VOF-HF result lies between these methods. The experimentally obtained

Wp is consistently close to all three numerical simulations. The sigmoidal droplet shapes and the

significant increase of the pressure at the droplet tip, thatcan be seen in Fig.1(b), is in agreement

with the results of the BIM method [41].

4. Results and discussion

4.1. Startup dynamics of a viscoelastic droplet in a Newtonian matrix

The evolution of the droplet deformation and orientation after startup of shear flow at Ca=

0.2 is shown in Fig.2 for a viscoelastic droplet in a Newtonian matrix. Results are given for

confinement ratios 2R/H ranging from 0.11 to 0.74. Time after startup of the flow is made

dimensionless with the emulsion timeτE. The experimental results show that, from a dimen-

sionless time of about 3, confinement accelerates the droplet dynamics. In addition, it leads to

more oriented and more deformed droplets than bulk shear flowat the same capillary number,

as shown by Cardinaels et al. [16]. The results of VOF simulations, using the Oldroyd-B model

to describe the droplet rheology, are also shown in Fig.2. The parametersη, β andτP in the

Oldroyd-B model have been obtained from a best fit of the steady shear data of the Boger fluid,

as in Table 3 in the work of Verhulst et. al [42]. The agreement between the experimental data

and the results of VOF simulations is good, both for the deformation parameter and for the ori-

entation angle. In addition, simulation results for blendswith Newtonian components are added

for the highest confinement ratio of 0.74. The results of the VOF simulations for blends with a

viscoelastic or a Newtonian droplet and the experimental results at 2R/H = 0.74 almost coincide,

indicating that, under these conditions, droplet viscoelasticity has a minor effect on the droplet

deformation after startup of shear flow, even for confined droplets.

The pressure field in and around the droplet is shown in Fig.3 for an unbounded and a confined

droplet in steady shear flow at Ca= 0.2. The pressures are scaled with the Laplace pressure 2Γ/R

for a spherical droplet. Increasing the confinement ratio results in an increase of the maximum

pressure inside the droplet tip whereas in regions with low curvature, such as the droplet waist,

the pressure remains low. This is in agreement with the results of Vananroye et al. [41] for

systems with Newtonian components. From Fig.3 it can be seen that the position of the pressure

maximum shifts closer to the droplet tip when the droplet is confined. At this tip, the increased
9
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(a)

FIG. 2: Droplet dynamics after startup of shear flow at Ca= 0.2 for a viscoelastic droplet in a Newtonian matrix withλ =

1.5. Comparison between experimental data (symbols), VOF simulations (lines) for systems with an Oldroyd-B droplet

fluid (β = 0.68) and for systems with only Newtonian components. (a) Deformation parameter. (b) Orientation angle.

10
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pressure drop across the interface balances the high curvature that is present due to the more

deformed droplet shape at high confinement ratios.

(a) 2R/H = 0.11 (b) 2R/H = 0.74

FIG. 3: Pressure field in the x-z cross-section, relative to the Laplace pressure of a spherical droplet. The motion is driven

by moving walls at z= 0 and z= 1. Viscoelastic droplet in a Newtonian matrix at Ca= 0.2 andλ = 1.5.

The stream lines in and around the droplet at Ca= 0.2 are shown in Fig.4. In bulk conditions,

the flow field is completely rotational, which is in agreementwith earlier studies for systems with

viscoelastic droplets [17, 27]. However, also for the confined droplet, the droplet shape remains

close to ellipsoidal and the flow field is almost a pure rotation. However, outside the droplet a

large recirculation zone is formed at the front and rear of the droplet, together with higher shear

rates below the droplet tip. This reversal of a substantial part of the fluid stream has also been

reported for confined droplets in blends with Newtonian components [10, 12, 31]. For the present

system, the extent of this recirculation zone increases from about 20 % of the droplet height in

bulk conditions to above 50 % of the droplet height in confinedconditions (2R/H = 0.74). The

changes in the flow field around the droplet, caused by confinement, might significantly alter

droplet interactions and droplet coalescence in more concentrated or confined blends [43].

Fig. 5 gives the contour plots of the viscoelastic stress for different confinement ratios. In the

present work, the trace of the extra stress tensorT is used to discuss the viscoelastic effects, since

this quantity is directly proportional to the extension of the polymer molecules. The viscoelastic

stress inside the droplet is mainly concentrated above the droplet tip at the back of the droplet

and below the droplet tip at its front. It can be seen in Figs.5(a) - 5(c) that with increasing

confinement ratio, the maximum viscoelastic stress inside the droplet increases, showing that

viscoelasticity of the droplet fluid becomes more importantfor confined droplets. However,
11
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(a) 2R/H = 0.11 (b) 2R/H = 0.74

FIG. 4: Stream lines in the x-z cross-section. Viscoelasticdroplet in a Newtonian matrix at Ca= 0.2 andλ = 1.5.

the position of the stress maximum remains approximately the same. From the rather good

agreement between the numerical results for the system withNewtonian components and the

system with a viscoelastic droplet at 2R/H = 0.74 (Fig.2), it can be concluded that the increase

of the viscoelastic stress is only very moderately reflectedin the droplet deformation. This

behavior is similar to that observed for increasing values of the De-number in bulk conditions

[17]. In summary, the localized high viscoelastic stress in confined conditions might slightly

influence the details of the shape of the droplet tip, but it has an insignificant effect on the overall

droplet deformation.

(a) 2R/H = 0.11 (b) 2R/H = 0.58 (c) 2R/H = 0.74

FIG. 5: Contour plots of the trace (T) in the x-z cross-section, stresses are in Pa. Viscoelasticdroplet in a Newtonian

matrix at Ca= 0.2 andλ = 1.5.

12
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4.2. Startup dynamics of a Newtonian droplet in a viscoelastic matrix

4.2.1. Droplet deformation and droplet orientation

The experimental results for the deformation parameter andthe orientation angle of a Newto-

nian droplet in a viscoelastic matrix are presented in Fig.6 for a series of confinement ratios.

For confinement ratios 2R/H up to 0.75, a monotonous evolution towards the steady values is

obtained. Similar to the results for a viscoelastic droplet, shown in Fig.2, confinement accel-

erates the deformation kinetics and increases the steady state droplet deformation and droplet

orientation. In addition, the dimensionless time at which confinement starts to affect the droplet

behavior is approximately the same, independent of which phase is viscoelastic (Figs.2 and6).

However, from a comparison between the steady state values of D in Figs.2 and6 it is clear that,

for all confinement ratios, a Newtonian droplet in a viscoelastic matrix is less deformed than a

viscoelastic droplet in a Newtonian matrix. Therefore, thepresence of viscoelastic stresses is

clearly manifested in the results for droplets in a viscoelastic matrix that are presented in Fig.6.

The results of simulations with the VOF method have been added to Figs.6(a) and6(b) for

different confinement ratios. Analogous to the simulations for blends with a viscoelastic droplet,

the Oldroyd-B model was used to describe the rheology of the Boger fluid matrix. Under bulk

conditions, this method has proven to be successful as long as the transient droplet deformation

follows a monotonous startup transient [17]. A comparison between the simulation results for

the droplet deformation and the experimental results indicates that up to a confinement ratio of

0.44 the agreement is satisfactory. However, if the confinement ratio is increased to 0.60 or 0.75,

the numerical simulations capture the initial trend of the droplet dynamics, but overpredict the

steady droplet deformation. Fig.6(a) shows that the deviation between the experimental and

the simulated deformation gradually increases with confinement ratio and the simulations with

an Oldroyd-B matrix result in a higher value for the droplet deformation than the experimental

one. For the orientation angle, there is already a discrepancy at low confinement ratios. The

simulation results for systems with Newtonian components are included in Figs.6(a) and6(b)

for a confinement ratio 2R/H of 0.75. The simulated curve for the system with a viscoelastic

matrix shows a slightly slower transient deformation than that for the system with Newtonian

components. This is in agreement with the results obtained by previous authors for the evolution

of the droplet deformation in a viscoelastic matrix after startup of bulk shear flow [38, 44, 45].
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(a)

FIG. 6: Droplet dynamics after startup of shear flow at Ca= 0.2 for a Newtonian droplet in a viscoelastic matrix withλ

= 1.5. Experimental data (symbols) and VOF simulations (lines) for systems with an Oldroyd-B matrix fluid (β = 0.68)

and for systems with only Newtonian components. (a) Deformation parameter, (b) Orientation angle.
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4.2.2. Sensitivity analysis for the parameters in the constitutive equation for the matrix fluid

From a comparison between Figs.2 and6 it can be seen that the bulk droplet deformation in an

Oldroyd-B matrix with De= 1 is smaller than that in a Newtonian matrix (D= 0.21 as compared

to 0.23). However, at the highest confinement ratio shown in Fig. 6, the simulations for systems

with an Oldroyd-B matrix give a value for the droplet deformation that is higher than that of

droplets in a Newtonian matrix. An increase of the droplet deformation due to the viscoelasticity

of the Oldroyd-B matrix fluid has also been observed with diffuse-interface and front-tracking

finite difference simulation methods for unbounded droplets in high Weissenberg number flows

[38, 46]. However, experiments with a viscoelastic Boger fluid matrix generally show a reduction

of the droplet deformation [17, 18, 19, 20]. Therefore, under more critical conditions such as high

values of Wi or high confinement ratios, the numerical results for systems with an Oldroyd-B

matrix deviate from the experimental results for blends with a Boger fluid matrix. The deviation

is more pronounced as Ca and/or De grows larger.

A possible explanation for this mismatch can be found by studying the elongation rates around

the droplet. The Oldroyd-B model predicts an infinite value of the elongational viscosity at a

dimensionless elongation rate ( ˙ε ·τP) of 0.5 [47]. Therefore, numerical problems can be expected

if the dimensionless elongation rates in and around the droplet exceed this critical value. In

order to quantify this, we define the elongation rate to be thelargest positive eigenvalue of the

2× 2 matrix




















∂u
∂x

∂u
∂z

∂w
∂x

∂w
∂z





















where we consider the x-z cross-section at the droplet center and u and w are the velocities in

the x and z directions respectively. The evolution of the maximum dimensionless elongation

rate around the droplet at three different confinement ratios is shown as a function of time in

Fig. 7. It is clear from this figure that the dimensionless elongation rate remains below the

critical value at a confinement ratio of 0.09, but it exceeds this value for higher confinement

ratios. At a confinement ratio of 0.76, it crosses the critical value of 0.5 at a dimensionless time

as low as 3. The simulated values for the deformation parameter on the other hand agree with the

experimental results up to a dimensionless time of about 7 (Fig. 6(a)). This can be attributed to

the fact that the elongational viscosity needs sufficient time to build up in order to influence the

droplet behavior, as was shown in Figure A.2 of the work of Verhulst et al. [17]. The contours of
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tr(T) at t/τE = 10 show that there is a region just outside the interface where viscoelastic stresses

build up. The streamlines are shown at the same time, to illustrate the existence of a hyperbolic

streamline roughly at the edge of the region where stresses are growing. With time, the gradient

of tr(T) grows in the direction of the dividing streamline. This is reminiscent of the result of

Ref. [48] which establishes the formation of singular structures inthe polymer stress field at

hyperbolic stagnation points in the flow of an Oldroyd-B fluid. The stresses grow exponentially

in time along a dividing streamline. In our case, although the maximum elongation rate is a

small distance downstream of the stagnation point, the manner in which the viscoelastic stresses

blow up depends on the elongation rate at the stagnation point itself; this is difficult to resolve

numerically. Therefore, we study the maximum elongation rate, but we need to keep in mind that

the quantity of interest is less than that. For example, at 2R/H=0.46, the maximum elongation

rate in Fig.7 is above 0.5, while the agreement in Fig.6 is still reasonable, and this can be

attributed to the fact that the elongation rate at the stagnation point is somewhat lower than the

maximum value. In our simulations, we see numerically that the elastic energy, represented

by tr(T) grows to unphysically large values when the product of elongation rate and relaxation

time is above roughly 0.5. Beyond this value, the predictionof the Oldroyd-B model for the

elongational viscosity breaks down. At this time, a numerical resolution to this issue is not clear.

One method is to use a model that is nonlinear in the stress tensor and therefore we choose the

Giesekus model which has an additional parameterα and thus enables the modeling of a finite

elongational viscosity at high elongation rates.

Numerical simulations have been performed in which the rheology of the matrix fluid was

represented by the Giesekus constitutive equation. From Eq. 6 it can be seen that the predictions

of the Giesekus model for the elongational viscosity dependmainly on the value of the dimen-

sionless Giesekus parameterα. Therefore, the dimensionless Giesekus parameter was varied in

order to assess the effect of the elongational viscosity on the droplet behavior. Initially, α = 0.002

was chosen, which results in a plateau Trouton ratio of 320. This value is much lower than the

experimental Trouton ratio that is approximately 3.104 [17]. The result of a simulation with this

value ofα is shown in Table2(a) at a confinement ratio of 0.76. The deformation parameter

(and also the orientation angle) for a droplet in an Oldroyd-B matrix and a droplet in a viscoelas-

tic matrix that obeys the Giesekus model withα = 0.002 are exactly the same. An increase of

the mobility parameterα only results in a reduction of the droplet deformation for considerably
16
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FIG. 7: Newtonian droplet in a viscoelastic matrix withλ = 1.5 after startup of shear flow at Ca= 0.2. Evolution of the

maximum of the dimensionless elongation rate (˙ε · τP) as a function of time in VOF simulations for an Oldroyd-B matrix

with β = 0.68. For 2R/H=0.76 and t/τE =10, contours of the tr (T) and streamlines are shown. The values of tr (T) reflect

the propagation of elastic energy, with the gradient in the direction of the dividing streamlines.

higher values ofα, where the elongational viscosity has dropped to a value that is of the same

order of magnitude as the shear viscosity (α ≥ 0.1, Eq. 6). However, even when the limiting

value for obtaining physically sound results (α = 0.5) is almost reached [49], the simulation re-

sults slightly overpredict the experimental data (Table2(a)). In addition, as shown in Eq.6, the

value ofα also determines the ratio of the second to the first normal stress difference. For Boger

fluids, this ratio is known to be very low [50]. However, the second normal stress difference in

polymer melts has been shown to influence the droplet deformation [51]. Therefore, using a too

high value forα in the simulations might result in additional contributions of the second normal

stress difference, that are not present in the experimental system. Therefore, in the remainder of
17
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this work, the value ofα is limited to a maximum of 0.2, which agrees with a ratio -Ψ2/Ψ1 of 0.1,

in agreement with literature values for polymer solutions and Boger fluids [50, 52, 53, 54, 55].

In addition to the dimensionless Giesekus parameterα, the fluid rheology represented by the

Giesekus model is determined by the solvent contribution tothe viscosityβ and by the polymer

relaxation timeτP. The rheology of the Boger fluid matrix material is far more complex than

that of an Oldroyd-B or Giesekus fluid with a single relaxation time. The steady and dynamic

shear rheology and the elongational viscosity of the Boger fluid BF2 can be well described by

means of a 5-mode Giesekus model [42]. A substantial amount of the polymer contribution to the

viscosity has a relaxation timeτP that is far below the emulsion timeτE, which is on the order of

3 seconds in the present work. Thus, these modes do not contribute to the viscoelastic response

at the time scales that are of relevance here. Therefore, a more representative single-mode model

would consist of an Oldroyd-B or Giesekus fluid with a lower polymer contribution and a higher

average relaxation time. In order to assess the influence of the solvent contribution, simulations

were performed for systems with an Oldroyd-B or Giesekus matrix with a solvent contribution

β of 0.84 as compared to 0.68 in the previous simulations. In addition, the relaxation time and

consequently also the Weissenberg number were increased whereas the Deborah number was

kept constant at 1. In bulk shear flows with a high Wi number, anincrease ofβ can relief the

deforming viscoelastic stresses somewhat and reduce the droplet deformation [17, 38]. However,

the results in Table2(a) for 2R/H = 0.76 indicate that for an Oldroyd-B matrix withβ = 0.84 an

even higher droplet deformation is obtained as compared to that for droplets in an Oldroyd-B

matrix with β = 0.68. Therefore, under the present conditions, the increase of the Weissenberg

number and the corresponding increase of the extension of the polymer molecules overtake the

reduction in polymer content in the Boger fluid.

From Table2(b) it can be seen that the results for simulations with the Oldroyd-B model or

the Giesekus model withα = 0.2 coincide, up to the confinement ratio where the elongation rate

exceeds the critical value. This supports the above proposed explanation for the overestimation

of the droplet deformation. However, for the highest confinement ratio, an exact quantitative

agreement with the experimental data is still not obtained.Therefore, it can be concluded that

in confined systems, the complex rheology and multiple relaxation times of the Boger fluid can

not be lumped easily into a simple single-mode model. This conclusion is in line with the results

for the deformation of unconfined droplets in a viscoelasticmatrix in bulk shear flow [17, 23].
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However, in bulk conditions deviations between experimental and simulation results were only

observed when the droplet deformation overshoots before reaching its final steady state value.

From the results in Table2(b) it can be concluded that the droplet deformation becomesmore

sensitive to the exact viscoelastic nature of the matrix fluid when geometrical confinement comes

into play. This is most probably caused by the more complex flow field in confinement, as shown

in Fig. 4, that involves a larger variation in type and intensity of the flow around the droplet.
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tTABLE 2: Steady state deformation parameter D at Ca= 0.2 for a Newtonian droplet in a viscoelastic matrix withλ =

1.5. A sensitivity analysis of the VOF simulations to changes in the model parameters.

(a) 2R/H=0.76 D

Experimental 0.29

Oldroyd-Bβ = 0.68α = 0 0.36

Giesekusβ = 0.68α = 0.002 0.36

Giesekusβ = 0.68α = 0.4 0.31

Giesekusβ = 0.84α = 0 0.37

Giesekusβ = 0.84α = 0.2 0.33

(b) 2R/H Exp. Oldroyd-B Giesekus

β = 0.68 β = 0.84

α = 0 α = 0.2

0.09 0.19 0.21 0.19

0.46 0.23 0.24 0.23

0.60 0.25 0.29 0.27

0.76 0.29 0.36 0.33
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4.2.3. Viscoelastic stresses and elongation rates in and around the droplet

In order to qualitatively study the effect of confinement on the viscoelastic stresses, the flow

field and the pressure in and around a deformed droplet in a viscoelastic matrix, the contour plots

of these variables have been calculated forβ = 0.84 andα = 0.2 as a representative case. For

the sake of brevity, the plots of the stream lines and pressures for the systems with a viscoelastic

matrix are not shown here. The contour plots of the pressure are nearly indistinguishable from

those for systems with a viscoelastic droplet. In addition,the plots of the stream lines show that

the recirculation zone at the front and rear of the droplet isextended over the same portion of the

gap for a Newtonian droplet in a viscoelastic matrix as compared to a viscoelastic droplet in a

Newtonian matrix.

The contour plots of the viscoelastic stress and the dimensionless elongation rate for Newto-

nian droplets in a viscoelastic matrix are shown in Fig.8 for different confinement ratios. From

Figs. 8(a) - 8(c) it is clear that, similar to the results for a system with aviscoelastic droplet

(Fig. 5), the maximum value of the viscoelastic stress increases when the confinement ratio is

increased. In addition, it can be seen that the area around the droplet where substantial viscoelas-

tic stresses are present is significantly extended if the droplet becomes more confined. However,

the position of the maximum viscoelastic stress, which is slightly above the droplet tip, remains

exactly the same, independent of the confinement ratio.

The contour plots of the dimensionless elongation rate are given in Figs. 8(d) - 8(f). These

contour plots show that the maximum dimensionless elongation rate increases with confinement

ratio, as was shown in Fig.7. The position of the maximum with respect to the droplet remains

however the same. The highest viscoelastic stress (Figs.8(a)-8(c)) is present some distance

downstream of the maximum elongation rate. This is in agreement with the results of the 2D

simulations of Yue et al. [46] for bulk conditions and it reflects the finite relaxation time of

the polymer molecules. An increase of the maximum value of the viscoelastic stress was also

observed in bulk conditions, when increasing the values of De or Wi [17]. However, in that case

the increase of the viscoelastic stress is coupled to a shiftof the position of the maximum value

higher upwards along the droplet contour. This is a reflection of the higher relaxation time of

the polymer molecules due to the increase of Wi. The higher values of the viscoelastic stress

combined with a shift of the position of the maximum, resulted in a reduction of the droplet

deformation (Figure 14 in [17]). However, the increase of the maximum viscoelastic stress in
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(a) 2R/H = 0.09 (b) 2R/H = 0.44 (c) 2R/H = 0.76

(d) 2R/H = 0.09 (e) 2R/H = 0.44 (f) 2R/H = 0.76

FIG. 8: Newtonian droplet in a viscoelastic matrix at Ca= 0.2 andλ = 1.5, Giesekus model withβ = 0.84 andα =

0.2; (a)-(b)-(c) Contour plots of trace (T) in the x-z cross-section, stress values are in Pa, (d)-(e)-(f) Contour plots of the

dimensionless elongation rate (˙ε · τP).

22



Page 23 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

the matrix due to confinement causes an increase of the droplet deformation as compared to the

Newtonian reference case. This conclusion is derived from acomparison between the results

in Table2 for systems with a viscoelastic matrix and in Fig.2 for systems with a viscoelastic

droplet. It can be seen there that the droplet deformation parameter in bulk conditions is 0.19

for a viscoelastic matrix (Giesekus model withβ = 0.84 andα = 0.2) compared to 0.23 for a

viscoelastic droplet, whereas at 2R/H = 0.75 this becomes 0.33 compared to 0.32 for respectively

a viscoelastic matrix and a viscoelastic droplet.

The matrix fluid in the experimental system has a spectrum of relaxation times. Therefore, the

viscoelastic stress is expected to be spread over a larger zone from the droplet tip upwards along

the droplet contour. Based on the results in Figs.8(a) -8(c) an increase of the viscoelastic stress

in this complete zone is expected, which might contribute tothe fact that in the experimental data,

matrix viscoelasticity reduces the droplet deformation for all confinement ratios. In addition, it

should be kept in mind that the elongational viscosity was reduced to the same order of magnitude

as the shear viscosity in the simulations, whereas the Trouton ratio in the experimental fluid is

approximately 3.104 [17].

Fig. 8 shows that the elongation rates inside the droplet are much lower than outside the

droplet, with only a very small region of high elongation rates close to the droplet tip. For the

systems with a viscoelastic droplet (Section4.1), the contour plots of the elongation rate are

similar to those for the systems with a viscoelastic matrix.However, at the same De, the value of

Wi for the systems with a viscoelastic matrix withβ = 0.84 is substantially higher than that for

a system with a viscoelastic droplet. Therefore, in the caseof a viscoelastic droplet at Ca= 0.2,

the elongation rate inside the droplet remains well below the critical value of 0.5 for divergence

of the elongational viscosity at all confinement ratios.

For bulk shear flow, it has been shown that at high capillary numbers, viscoelasticity of the

matrix phase can cause overshoots in the transient droplet deformation and droplet orientation

after startup of shear flow [17, 18, 22]. Yue et al. [45] attributed this behavior to a mismatch of

two time scales: the emulsion timeτE for droplet deformation and the relaxation timeτP of the

polymers in the viscoelastic matrix phase. Since a reduction of the droplet deformation due to

matrix viscoelasticity only occurs after a time interval ofthe orderτP, this causes an overshoot

in the droplet deformation whenτE is substantially shorter thanτP. Figure6 shows that the

kinetics of the droplet deformation after startup of shear flow speeds up due to confinement. This
23
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FIG. 9: Maximum value of the trace(T) as a function of time for systems with a Newtonian droplet ina Giesekus matrix

fluid with β = 0.84 andα = 0.2.

faster kinetics might change the ratio of the droplet to the polymer relaxation time and could

thus induce overshoots in droplet deformation in confined shear flow. In order to investigate this

in more detail, the evolution of the maximum value of the trace (T) as a function of time has

been studied. Results for Newtonian droplets in a viscoelastic matrix are given in Fig.9 for two

different confinement ratios. This figure shows that confinement results in a faster buildup of the

viscoelastic stresses, which corresponds to the faster dynamics of the droplet deformation, that

is presented in Fig.6. From a comparison between Figs.6 and9 it can be concluded that the

faster development of the droplet deformation in confinement as compared to bulk conditions is

accompanied by a more or less equal increase in the growth speed of the viscoelastic stresses.

This simultaneous buildup of the viscoelastic stresses andthe droplet deformation results in a

monotonous evolution towards a steady state droplet shape.However, confinement introduces a

slight overshoot in the evolution of the maximum viscoelastic stress that is not caused by, nor

results in an over- or undershoot in droplet deformation.

In more concentrated blends, a droplet is surrounded by other droplets and frequently interacts

and collides with its neighboring droplets. When droplets in a viscoelastic matrix come close

together, overlap of the regions with high viscoelastic stresses around each droplet will influence
24
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their interaction. Therefore, matrix viscoelasticity is expected to significantly enhance droplet

interactions in confined blends. In addition, although lesssevere than solid walls, neighboring

droplets in a blend also cause a sort of confinement, which might expand the zones with signif-

icant viscoelastic stresses, even in bulk conditions, and thus might alter the droplet interactions

in concentrated blends. In blends with viscoelastic droplets on the other hand, the viscoelastic

stresses are restricted within the viscoelastic fluid. Therefore, matrix viscoelasticity is expected

to have a significant influence on droplet interactions and coalescence in concentrated blends

whereas the effects of droplet viscoelasticity on these processes are expected to be rather limited.

5. Concluding remarks

An experimental and numerical study of droplet dynamics after startup of shear flow in sys-

tems with one viscoelastic component is conducted for bulk and confined conditions. In the

experiments, the viscoelastic phase is a highly elastic Boger fluid, whereas fluids that obey a

single-mode Oldroyd-B or Giesekus constitutive equation are used in the numerical modeling.

Results are presented for blends with a viscosity ratio of 1.5 and flow capillary number 0.2. The

numerical results allow us to view the evolution of pressureand viscoelastic stresses, and the

interesting correlation of the elongation rate with limiting behavior of the Oldroyd-B model.

Confinement is shown to accelerate the kinetics of droplet deformation independent of which

phase is viscoelastic. Both for systems with a viscoelasticmatrix and for systems with a vis-

coelastic droplet, the droplet deformation and orientation towards the flow direction increase

when the confinement ratio is increased. However, for the studied experimental system, the

droplet deformation in a viscoelastic Boger fluid matrix is smaller than that in a Newtonian

matrix, for all studied confinement ratios. The simulationsshow that confinement increases the

pressure just inside the droplet tip and the visualization of the streamlines shows that a stagnation

point is generated just outside the droplet tips where a highly elongational flow occurs close to

the interface. These observations are in agreement with theresults for Newtonian droplet/matrix

pairs [12, 15]. In addition, we found that confinement substantially increases the elongation rates.

In the case of a viscoelastic droplet, the purely rotationalflow inside the droplet yields relatively

low levels of viscoelastic stresses. When the matrix is viscoelastic, the strongly elongational

flow which follows the dividing streamline just outside the droplet tip generates higher elastic

stresses, and the region of maximum elastic stress expands with confinement. This phenomenon
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has implications for droplet interactions and droplet coalescence in concentrated blends in which

droplets are confined between their neighbors. In such systems, the effect of matrix viscoelastic-

ity is expected to dominate over that of droplet viscoelasticity. The occurrence of high gradients

in viscoelastic stresses generated by the Oldroyd-B model for highly confined droplets is a bar-

rier, given the numerical resolution, and therefore, one compromise is to reduce the elongational

viscosity with the use of the Giesekus parameter. However, this impedes quantitative agreement

with the experimental data for Boger fluids that possess a high elongational viscosity. It is shown

that the sensitivity of the droplet deformation to the used constitutive equation is higher in con-

fined conditions as compared to bulk conditions. Therefore,further refinement and validation

of numerical codes for confined droplet dynamics in the presence of viscoelasticity is needed to

enable modeling of shear-induced morphology development in confined blends.
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