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SPARSE BLOCK FACTORIZATION OF SADDLE POINT
MATRICES

S. Lungten, W.H.A. Schilders, J.M.L. Maubach

April 20, 2014

Abstract

The factorization method presented in this paper takes advantage of the special
structures and properties of saddle point matrices. A variant of Gaussian elim-
ination equivalent to the Cholesky’s factorization is suggested and implemented
for factorizing the saddle point matrices block-wise with small blocks of order 1
and 2. The Gaussian elimination applied to these small blocks on block level also
induces a block 3 × 3 structured factorization of which the blocks have special
properties. We compare the new block factorization with the Schilders’ factor-
ization in terms of the sparsity of their factors and computational efficiency. The
factorization can be used as a direct method, and also anticipate for precondi-
tioning techniques.

1 Introduction

Indefinite matrices with special forms which occur in many scientific and engineering
problems can be exploited efficiently by taking advantage of the structures and prop-
erties of their blocks. We consider symmetric indefinite linear systems of the form (see
footnote 1 for the notations) [

Å B̊
T

B̊ 0

]
︸ ︷︷ ︸

Å

[
x̊
ẙ

]
︸︷︷︸
ů

=

[
f̊
g̊

]
︸︷︷︸̊
d

(1)

where Å ∈ Rn×n is symmetric, positive definite; B̊ ∈ Rm×n has full rank and m ≤ n;
x̊, f̊ ∈ Rn; and ẙ, g̊ ∈ Rm. In applications, the coefficient matrix Å is usually sparse
and large, which can easily turn out to be a million by million. Systems of the form (1)
are known as saddle point problems, which are resulted from discretization of PDEs
or coupled PDEs such as the Stokes and mixed finite element methods. Saddle point
systems also arise in electronic circuit simulations [30, 35], Maxwell’s equations [26],

1The original system (1) undergoes a transformation, so we use the symbol ‘̊ ’ on its notations in
order to represent the transformed system more conveniently without the symbol ‘̊ ’.
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economic models and constrained optimization problems [1, 10, 15, 16, 18, 33]. For
example consider the equality-constrained quadratic programming problem:

min
x̊
f (̊x) =

1

2
x̊T Åx̊− x̊T f̊ subject to B̊x̊ = g̊. (2)

The Karush-Kuhn-Tucker (KKT) conditions [15, 39] for the solution to (2) give rise
to the system (1), where the components of ẙ are the associated Lagrange multipliers.
Thus the coefficient matrix Å is also known as KKT matrix and it is nonsingular if (i)

B̊ has full row rank and (ii) the reduced Hessian matrix, Z̊
T
ÅZ̊ is positive definite,

where Z̊ ∈ Rn×(n−m) is the matrix whose columns span the ker(B̊) [29, p.443].

Numerous solution methods for the saddle point systems of the form (1) can be found
in the literature and many of them have focused on preconditioning techniques for
Krylov subspace iterative solvers [1, 2, 3, 7, 12, 18, 23, 24, 26, 28, 31]. As a direct
method against iterative solvers, various techniques on symmetric indefinite factoriza-
tion P T ÅP = LDLT can be found in [9, 14, 21, 34, 35, 38], where P is a permutation
matrix, L is unit lower triangular matrix, D is block-diagonal matrix with blocks of
order 1 or 2. The permutation matrix P is introduced for (i) pivoting dynamically and
(ii) reducing the fill-ins in L if Å is sparse. The block diagonal pivoting strategies
are mainly due to Bunch-Kaufman [4], Bunch-Parlett [5] and Bunch-Kaufman-Parlett
(BKP) [6].

In this paper, we propose a different transformation T T Å T = A, followed by a block
Gaussian elimination factorization Pπ

TAPπ = LbDb
−1Lb

T , where:

(i) Lb is a block lower triangular with blocks of order 1 and 2, and Db = diag(Lb)
is the block diagonal part of Lb with blocks of order 1 and 2.

(ii) T is an (n+m)×(n+m) transformation (possibly a permutation) matrix, which
follows from a transformation of the linear constraint matrix B. Operator T is
chosen such that the LbDb

−1Lb
T factorization is stable and has a sparse factor

Lb.

(iii) Pπ is a simple, predefined (n + m) × (n + m) permutation matrix for a priori
pivoting of A.

The proposed LbDb
−1Lb

T factorization method exploits the structure and properties
of A. For instance, the first m blocks of the block diagonal Db are the 2 × 2 pivots
inheriting the same structure and properties of A, and the remaining n − m blocks
are the 1× 1 pivots. At scalar level, LbDb

−1Lb
T factorization has the same computa-

tional efficiency as that of the Cholesky’s factorization for symmetric, positive definite
matrices, which is shown in the appendix of this paper. Whenever we come across the
features related to the scalar level factorization, we refer them to the appendix.

There are also several other block factorization methods for Å with larger blocks of
order n, m or n−m, which are mostly based on either the Schur complement matrix

2



B̊Å
−1
B̊
T

or the reduced Hessian matrix Z̊
T
ÅZ̊. For example, the Schilders’ factor-

ization [35] is a block 3× 3 structured factorization with blocks of order m and n−m,
applied to T T ÅT for a different T . Later in [10, 11, 13], it has been used as a basis for
implicit factorization for constructing different families of constraint preconditioners for
the saddle point matrices. We also produce such a 3× 3 structured block factorization
from LbDb

−1Lb
T factorization, and it is different from the ones in [2, 10, 11, 35].

The remaining Sections of the paper are organized as follows. In Section 2, we dis-
cuss the required properties for T and show that such matrices exist for symmetric
saddle point problems. Section 3 is the main part of the paper, in which we present
the proposed factorization Pπ

TAPπ = LbDb
−1Lb

T . It covers the existence, sparsity
and stability of Lb, and the steps for solving (1) using Lb. Comparison of the new
block factorization with the Schilders’ block factorization is discussed in Section 4.
Numerical results for this comparison are provided in Section 5.

2 Determination of transformation matrix T
There are different ways to choose the transformation matrix T depending on the
requirement of the transformed matrix B. For example, in [17, 35], T is chosen such
that it results B1 to be an m×m upper triangular matrix [ ]. With our aim to obtain
a stable and sparse block LbDb

−1Lb
T factorization, we choose a transformation matrix

T =

[
P 0
0 Q

]
, (3)

where P is an n × n permutation matrix and Q is an m ×m orthogonal (possibly a
permutation) matrix such that

QT B̊P = B =
[
B1 B2

]
=
[ ]

, (4)

a lower trapezoidal form with B1 being an m × m nonsingular lower triangular [ ]
matrix and B2 the remaining m× (n−m) part [ ]. The choice of T here, also ensures
that Å is just permuted due to P , which is an essential property for sparsity of the
transformed saddle point matrix. In the following, we give a brief overview to determine
T satisfying these conditions.

Typical B̊. If B̊ = [̊bij] is an incidence matrix with b̊ij ∈ {−1, 0, 1}, which has maxi-
mally two non-zeros ( −1 and/or 1) in each column [30, 35], then one can obtain
an m×m row permutation matrix Pr and an n× n column permutation matrix
Pc such that Pr

T B̊Pc = B is a lower trapezoidal form. Thus T in (3) is an
(n + m) × (n + m) permutation matrix with P = Pc and Q = Pr. Systems of
the form (1) with incidence matrix B̊ evolve in resistor network modeling [30],
the Stokes equations [9], and many other applications with network topology.
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General B̊. If B̊ is of more general form, then by applying a sparse QR− trans-
formation to it, one can obtain an m ×m orthogonal matrix Q1 and an n × n
permutation matrix P 1 such that

QT
1 B̊P 1 = B̃ =

[
B̃1 B̃2

]
=
[ ]

.

Define an n× n permutation matrix

P 2 =

[
Ia 0
0 In−m

]
,

where Ia = [em, . . . , e1] with ei being the ith unit vector in Rm. Then

IaB̃P 2 =
[
IaB̃1Ia IaB̃2

]
=
[
B1 B2

]
=
[ ]

.

Hence, the required T in (3) is determined by choosing an m × m orthogonal
matrix Q = Q1Ia and an n × n permutation matrix P = P 1P 2. More details
about sparse QR transformation can be found in [8, p. 82-95].

3 Block LbDb
−1Lb

T factorization

Although the transformed saddle point matrix A has special block structures with
blocks of orderm and n−m, we do not factorize it by using these blocks directly. This is
because more amount of computational work has to be spent on computing the inverses,
products and sums of large blocks during the factorization. In addition, this approach
has to come through a certain type of conjecture and requires separate algorithms for
the block matrix operations. This may also lead to a number of factorizations, which
are slightly different from each other. Our aim is to first exploit the structure of A,
partition it into small blocks of order 1 and 2, and then do a unique factorization in
exact arithmetic using simple, inexpensive and robust algorithm.

3.1 Block partitioning

We consider the transformation matrix T of size (n + m) × (n + m) defined in (3),
which is applied to the saddle point matrix Å as follows:[

P T 0
0 QT

]
︸ ︷︷ ︸

T T

[
Å B̊

T

B̊ 0

]
︸ ︷︷ ︸

Å

[
P 0
0 Q

]
︸ ︷︷ ︸

T

=

[
A BT

B 0

]
︸ ︷︷ ︸

A

, (5)

where B is lower trapezoidal form in (4) and A is permuted form of Å due to P . Be-
cause of the lower trapezoidal form of B, the transformed matrix A can be partitioned
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into a block 3× 3 structure as follows:

A =


m n−m m

m A11 A12 B1
T

n−m A21 A22 B2
T

m B1 B2 0

 =


 .

Beside B1 being a lower triangular, the blocks A11 and A22 already have nice proper-
ties – symmetric, positive definite and sparse. By taking advantage of the structures
and properties of these blocks, we reorder A by applying a simple permutation matrix
Pπ of size (n + m) × (n + m) such that the permuted A can be partitioned into a
block n×n structure with blocks of order 1 and 2. The partitioning gives four types of
blocks, namely 2× 2, 1× 2 and its transpose 2× 1, and 1× 1 (scalar) blocks, residing
in their respective domains such that

n2 = m2

(2×2 blocks)
+ 2m(n−m)

(1×2 & 2×1 blocks)

+ (n−m)2

(1×1 blocks)

.

The most significant feature of this partitioned form is that its block-diagonal part is
given by the direct sum

m⊕
k=1

[
akk bkk
bkk 0

]
⊕

n+m⊕
k=2m+1

akk ,

which form a priori pivots for the block LbDb
−1Lb

T factorization. Furthermore, all
the 2× 2 blocks of its block lower triangular part are retained in its factor Lb, thereby
ensuring the sparsity of first 2m rows of Lb. To be clearer with partitioning and
factorization, one needs to be cautious with the indices of the block elements, which
are defined according the elements of the transformed matricesA andB, i.e.,A = [aij],
1 ≤ i, j ≤ n and B = [bij], 1 ≤ i ≤ m, 1 ≤ j ≤ n. The permutation matrix Pπ that
we use here is defined as in [19, 35] as follows:

Definition 1. Consider the positive integers n and m in (1). Let Nn+m = {1, 2, . . . , n+m}.
Define a permutation π : Nn+m → Nn+m by

π =

(
1, 2, 3, 4, · · · , 2m− 1, 2m, 2m+ 1, · · · , n+m

1, n+ 1, 2, n+ 2, · · · , m, n+m, m+ 1, · · · , n

)
.

An (n+m)× (n+m) permutation matrix P π related to π is given by

P π =
[
e1, en+1, e2, en+2, · · · , em, en+m, em+1, · · · , en

]
, (6)

where ei is the ith unit vector of length m+ n.
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To gain an insight on how the application of Pπ to A can partition it into a block
n× n structure, we consider A with n = 5 and m = 3:

A =

m n n+ 1 n+m
↓ ↓ ↓ ↓

1 2 3 4 5 6 7 8



1 a11 a12 a13 a14 a15 b11 b21 b31
2 a21 a22 a23 a24 a25 0 b22 b32

m→ 3 a31 a32 a33 a34 a35 0 0 b33
4 a41 a42 a43 a44 a45 b14 b24 b34

n→ 5 a51 a52 a53 a54 a55 b15 b25 b35
n+ 1→ 6 b11 0 0 b14 b15 0 0 0

7 b21 b22 0 b24 b25 0 0 0
n+m→ 8 b31 b32 b33 b34 b35 0 0 0

. (7)

The numbers along the border of A form the domain of π that gives
P π = [e1, e6, e2, e7, e3, e8, e4, e5]. Applying P π symmetrically to A, we obtain a
block 5× 5 structure:

Pπ
TAPπ =

n+ 1 m n+m n
↓ ↓ ↓ ↓

1 6 2 7 3 8 4 5



1 a11 b11 a12 b21 a13 b31 a14 a15
n+ 1→ 6 b11 0 0 0 0 0 b14 b15

2 a21 0 a22 b22 a23 b32 a24 a25
7 b21 0 b22 0 0 0 b24 b25

m→ 3 a31 0 a32 0 a33 b33 a34 a35
n+m→ 8 b31 0 b32 0 b33 0 b34 b35

4 a41 b14 a42 b24 a43 b34 a44 a45
n→ 5 a51 b15 a52 b25 a53 b35 a54 a55

, (8)

where the numbers along the border of Pπ
TAPπ form the range of π. For general n

and m, let F = Pπ
TAPπ. Then the blocks Fij of order 1 and 2 for 1 ≤ i, j ≤ n are

given by:

Fij =



[
aii bii

bii 0

]
, 1 ≤ i = j ≤ m ;[

aij 0

bij 0

]
, 1 ≤ j < i ≤ m ;[

aij bji

0 0

]
, 1 ≤ i < j ≤ m ;

and Fij =



[
aij

bij

]
, 1 ≤ i ≤ m < j ≤ n ;[

aij bji

]
, 1 ≤ j ≤ m < i ≤ n ;[

aij

]
, m < i, j ≤ n.
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3.2 Existence, uniqueness and sparsity the block LbDb
−1Lb

T

factorization

Now, we have a nicely partitioned n×n block structured matrix Pπ
TAPπ with blocks

of order 1 and 2, in which the block diagonal forms a priori pivots. Based on the
structure and properties of these blocks and partly due to π, we show that the block
LbDb

−1Lb
T factorization of Pπ

TAPπ exists uniquely.

Theorem 1. Suppose an (n + m) × (n + m) permutation matrix P π is defined as in
(6) and F = P T

πAP π, where A is (n+m)× (n+m) transformed symmetric indefinite
matrix in (5). Then there exists (n+m)× (n+m) nonsingular block lower triangular
matrix Lb with blocks of order 1 and 2 such that

F = LbDb
−1Lb

T (9)

and the 2 × 2 blocks Lij = Fij, 1 ≤ j ≤ i ≤ m, where Db = diag(Lb) is the block
diagonal part of Lb. It is unique with respect to P π.

Proof. Similar to (39) in the appendix, one can deduce iteratively

Lij = Fij −
j−1∑
k=1

LikL
−1
kkL

T
jk (10)

where

Lij =


2× 2 blocks for 1 ≤ j ≤ i ≤ m;

1× 2 blocks for 1 ≤ j ≤ m < i ≤ n;

1× 1 blocks for m < j ≤ i ≤ n.

(11)

We show the existence of (10) by induction on j ≤ i ≤ n as follows:

(i) 2× 2 blocks.

Note that for each k = 1, . . . ,m,

F−1
kk =

[
akk bkk
bkk 0

]−1

=
1

b2kk

[
0 bkk
bkk −akk

]
which exists since bkk 6= 0. All the 2× 2 blocks Lij = Fij, 1 ≤ j ≤ i ≤ m, which
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is trivially shown in the following.

For j = 1, . . . ,m

For i = j, . . . ,m

Lij = Fij −
j−1∑
k=1

LikL
−1
kkL

T
jk

= Fij −
j−1∑
k=1

[
aik 0
bik 0

]
1

b2kk

[
0 bkk
bkk −akk

] [
ajk bjk
0 0

]

= Fij −
j−1∑
k=1

[
aik 0
bik 0

]
1

b2kk

[
0 0

bkkajk bkkbjk

]
= Fij.

(ii) 1× 2 blocks.

Let the 1× 2 blocks be Lij =
[
αij βji

]
, where 1 ≤ j ≤ m < i ≤ n.

From (10) and (11), we obtain

For j = 1, . . . ,m

For i = m+ 1, . . . , n

Lij = Fij −
j−1∑
k=1

Lik︸︷︷︸
1×2

L−1
kkL

T
jk︸ ︷︷ ︸

2×2

= Fij −
j−1∑
k=1

[
αik βki

] 1

b2kk

[
0 bkk
bkk −akk

] [
ajk bjk
0 0

]

=
[
aij bji

]
−

j−1∑
k=1

[
ajk
bkk

βki
bjk
bkk

βki

]
.

Hence

αij = aij −
j−1∑
k=1

ajk
bkk

βki and βji = bji −
j−1∑
k=1

bjk
bkk

βki, 1 ≤ j ≤ m < i ≤ n, (12)

exist since bkk 6= 0.

(iii) 1× 1 blocks.

Let the 1× 1 blocks be Lij =
[
αij
]
, where m < j ≤ i ≤ n.

8



From (10), (11) and (12), we obtain

For j = m+1, . . . , n

For i =j, . . . , n

Lij = Fij −
m∑
k=1

Lik︸︷︷︸
1×2

L−1
kk︸︷︷︸

2×2

LTjk︸︷︷︸
2×1

−
j−1∑

k=m+1

Lik︸︷︷︸
1×1

L−1
kk︸︷︷︸

1×1

LTjk︸︷︷︸
1×1

= aij −
m∑
k=1

[
αik βki

] 1

b2kk

[
0 bkk
bkk −akk

] [
αjk
βkj

]
−

j−1∑
k=m+1

αikα
−1
kk αjk

= aij −
m∑
k=1

1

b2kk
(αikbkkβkj + βkibkkαjk − βkiakkβkj)−

j−1∑
k=m+1

αikαjk
αkk

.

Apparently the 1× 1 blocks (scalars) are given by

αij = aij +
m∑
k=1

βkiβkj
b2kk

akk −
αikβkj + αjkβki

bkk
−

j−1∑
k=m+1

αikαjk
αkk

, m < j ≤ i ≤ n,

(13)

which exist only if αii 6= 0 for each i = j = m + 1, . . . , n. For this, let a
rectangular matrix H ∈ R(n−m)×n be defined by H = [H In−m], where In−m is
the (n−m)× (n−m) identity matrix, and H = [hkj] such that

hkj = −βji
bjj
, 1 ≤ j ≤ m, 1 ≤ k ≤ n−m, i = k +m.

Define G = HAHT . Then the elements of the matrix G = [grs] are defined by

grs = aij +
m∑
k=1

βkiβkj
b2kk

akk −
αikβkj + αjkβki

bkk
, 1 ≤ r, s ≤ n−m, i = r +m, j = s+m.

(14)

Computation of grs is demonstrated below for n = 4,m = 2 (note that A is
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symmetric, positive definite):

[
g11 g12
g21 g22

]
︸ ︷︷ ︸

G

=

[
−β13
b11

−β23
b22

1 0

−β14
b11

−β24
b22

0 1

]
︸ ︷︷ ︸

H


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


︸ ︷︷ ︸

A


−β13
b11

−β14
b11

−β23
b22

−β24
b22

1 0
0 1


︸ ︷︷ ︸

HT

where

g11 = a33 +
β2
13

b211
a11 +

β2
23

b222
a22 − 2

a31β13

b11
− 2

(
a32 −

a21

b11
β13

)
β23

b22

= a33 +
β2
13

b211
a11 +

β2
23

b222
a22 − 2

α31β13

b11
− 2

α32β23

b22
using (12);

g21 = g12 = a43 +
β13β14

b211
a11 +

β23β24

b222
−
a31β14 + a41β13

b11
−
(
a32 −

a21

b11
β13

)
β24

b22
−
(
a42 −

a21

b11
β14

)
β23

b22

= a43 +
β13β14

b211
a11 +

β23β24

b222
−
a31β14 + a41β13

b11
−
α32β24 + α42β23

b22
again by the fact of (12);

g22 = a44 +
β2
14

b211
a11 +

β2
24

b222
a22 − 2

a41β24

b11
− 2

(
a42 −

a21

b11
β14

)
β24

b22

= a44 +
β2
14

b211
a11 +

β2
24

b222
a22 − 2

α41β24

b11
− 2

α42β24

b22

Combining (13) and (14), we get

αij = grs −
j−1∑

k=m+1

αikαjk
αkk

, 1 ≤ r, s ≤ n−m, i = r +m, j = s+m. (15)

From (15), it is evident that the 1× 1 block elements are from a lower triangular
matrix L such that LD−1LT = G, where D = diag(L). Since the matrix H
has full rank n − m, the matrix G is symmetric positive definite. Hence by
the theorem given in the appendix, LD−1LT = G exists and αii > 0 for each
i = j = m+ 1, . . . , n. The uniqueness also follows from the same theorem in the
appendix.

From (i), (ii) and (iii), the blocks of Lb are given by

Lij =



[
aii bii

bii 0

]
, 1 ≤ i = j ≤ m ;[

aij 0

bij 0

]
, 1 ≤ j < i ≤ m ;[

αij βji

]
, 1 ≤ j ≤ m < i ≤ n ;[

αij

]
, m < j ≤ i ≤ n.


(16)
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For example, LbDb
−1Lb

T factorization of F in (8) gives:

Lb =



a11 b11 0 0 0 0 0 0
b11 0 0 0 0 0 0 0

a21 0 a22 b22 0 0 0 0
b21 0 b22 0 0 0 0 0

a31 0 a32 0 a33 b33 0 0
b31 0 b32 0 b33 0 0 0

α41 β14 α42 β24 α43 β34 α44 0

α51 β15 α52 β25 α53 β35 α54 α55


. (17)

Obviously, only the 1×2 and 1×1 blocks are required to be computed, while the 2×2
blocks are straight away from the ones in F . Perhaps the computational cost spent on
transformation of B̊ to B is compensated here. Consequently, the first 2m rows of Lb
are sparse since their elements are directly from the sparse blocks A11 and B1. The
pivots are given by

Db = diag(Lb) =
m⊕
k=1

[
akk bkk
bkk 0

]
⊕

n+m⊕
k=2m+1

αkk,

in which only the 1 × 1 pivots are updated comparing to a priori pivots. Algorithm
1 gives a MATLAB version for the factorization F = LbDb

−1Lb
T . The function s

involved in the algorithm is defined by

s(l) =


[l, l + 1] if l is a row index and 1 ≤ l ≤ m,

[l, l + 1]T if l is a column index and 1 ≤ l ≤ m,

[l] if m+ 1 ≤ l ≤ n.

It determines the positions of elements of the lth block. We use V (s(k), :) to optimize
the computational complexity (see appendix).

Below, in Definition 2, we introduce a permutation σ that swaps the two rows of every
2 × 2 block row of Lb. This is done in order to obtain a lower triangular matrix L,
which can be used to solve the system (1) through backward substitution.

Definition 2. Let a permutation σ : Nn+m → Nn+m be defined by

σ =

(
1, 2, · · · , 2m− 1, 2m, 2m+ 1, · · · , n+m

2, 1, · · · , 2m, 2m− 1, 2m+ 1, · · · , n+m

)
.

The related permutation matrix P σ of size (n+m)× (n+m) is given by

Pσ =
[
e2, e1, · · · , e2m, e2m−1, e2m+1, · · · , en+m

]
. (18)

It is easy to see that

Pσ
TPπ

TAPπPσ = LDb
−1LT , (19)
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Algorithm 1 For a block structured symmetric indefinite matrix F ∈ R(n+m)×(n+m)

with blocks of order 1 and 2, the algorithm computes a nonsingular block lower triangu-
lar matrix Lb ∈ R(n+m)×(n+m) with blocks of order 1 and 2 such that F = LbDb

−1Lb
T .

For j = 1, . . . , n, the jth block column Lb
(
s(j) : n + m, j

)
overwrites F

(
s(j) :

n+m, s(j)
)
.

1: for j = 1 : n
2: for k = 1 : j − 1

3: V
(
s(k), :

)
= F

(
s(k), s(k)

)−1
F
(
s(j), s(k)

)T
4: end for
5: for i = j : n

6: F
(
s(i), s(j)

)
= F

(
s(j), s(j)

)
−

j−1∑
l=1

F
(
s(i), s(l)

)
V
(
s(l), :

)
7: end for
8: end for

where L = Pσ
TLb is a lower triangular matrix whose block elements, say L̃ij, are given

by:

L̃ij =



[
bii 0

aii bii

]
, 1 ≤ i = j ≤ m ;[

bij 0

aij 0

]
, 1 ≤ j < i ≤ m ;[

αij βji

]
, 1 ≤ j ≤ m < i ≤ n ;[

αij

]
, m < j ≤ i ≤ n,


(20)

meaning every ith, 1 ≤ i ≤ m, 2 by 2 block row of Lb is row-interchanged, while the
other n−m block rows remain unaltered. From the example of Lb in (17), we obtain

Pσ =
[
e2, e1, e4, e3, e6, e5, e7, e8

]
,

which gives

L = Pσ
TLb =



b11 0 0 0 0 0 0 0
a11 b11 0 0 0 0 0 0

b21 0 b22 0 0 0 0 0
a21 0 a22 b22 0 0 0 0

b31 0 b32 0 b33 0 0 0
a31 0 a32 0 a33 b33 0 0

α41 β14 α42 β24 α43 β34 α44 0

α51 β15 α52 β25 α53 β35 α54 α55


.

Hence
LDb

−1LTu = d ⇒ Lv = d, w = Dbv, L
Tu = w,

12



where d = Pσ
TPπ

TT T d̊ and ů = T PπPσu , which solves the system (1) through
backward substitution. The block diagonal Db is not required to invert, since the
vector w is directly obtained from the matrix vector product Dbv. We only need to
extract the block diagonal matrix Db from Lb using the function s.

3.3 Numerical stability

Pivoting strategies are required in order to address the fundamental issue on the bound
of the growth factor, ρ which occurs during Gaussian elimination, defined by

ρ(A) =
max
i,j,l
|a(l)ij |

max
i,j
|aij|

where a
(l)
ij , l = 1, . . . , n, are the elements of the reduced matrix, A(l) at the lth step

Gaussian elimination of an n× n matrix A = A(1).

In (12) and (13), the factors bki/bkk, 1 ≤ k ≤ j − 1, may lead to arbitrarily large
updates of αij and βji, for each 1 ≤ j ≤ m < i ≤ n and m < j ≤ i ≤ n. So, for stable

LbDb
−1Lb

T factorization of Pπ
TAPπ, we consider that B̊ is transformed into a lower

trapezoidal B = [B1 B2] such that the diagonal elements of B1 satisfy the condition:
|bkk| ≥ |bki|, 1 ≤ i ≤ n for each k = 1, . . . ,m. This condition is sufficient for the bound
of the growth factor ρ, which is shown in Theorem 2. Since all the 2 × 2 blocks are
directly from A, we have to show only the bounds for the elements of 1× 2 and 1× 1
blocks.

Theorem 2. Suppose a saddle point matrix Å ∈ Rn×n is symmetrically transformed
into A as in (5) such that the lower trapezoidal form B = [B1 B2] satisfies the condi-
tion: |bkk| ≥ |bki|, 1 ≤ i ≤ n for each k = 1, . . . ,m. Let Pπ be the permutation matrix
in (6). If the block factorization P T

πAP π = LbDb
−1Lb

T runs to completion, then the
growth factor ρ is bounded by

ρ(A) =
max
i,j,l

{
|a(l)ij |, |b

(l)
ji |
}

max
i,j
{|aii|, |bjj|}

≤ 22m, 1 ≤ l ≤ n. (21)

Proof. From (12), it is easy to see that

For j = 1, . . . ,m

For i =m+ 1, . . . , n[
|αij| |βji|

]
≤ 2j−1

[
max
i,j
|aij| |bjj|

]
. (22)

Since we do not know whether max
i,j
{|aij|} or max

j
{|bjj|} is the largest, the common

upper bound on the elements of 1× 2 blocks, 1 ≤ j ≤ m < i ≤ n, is

max
i,j

{
|a(j)ij |, |b

(j)
ji |
}

= max
i,j
{|αij|, |βji|} ≤ 2m−1 max

i,j
{|aij|, |bjj|} . (23)

13



The 1 × 1 blocks of Lb are the elements decomposed from the symmetric positive
definite matrix G ∈ R(n−m)×(n−m) defined in (14). Since, the Gaussian elimination
growth factor for a symmetric positive definite matrix without pivoting is equal to 1
[37, p. 239], the bound on 1 × 1 blocks αij, m < i, j < n, in (13) is the same as that
on G. It suffices to show that the elements of G are bounded. From (14) and (22), for
1 ≤ r, s ≤ n−m, i = r +m, j = s+m, we get

|grs| ≤ |aij|+
m∑
k=1

|βki| |βkj|
|bkk|2

|akk|+
|αik| |βkj|+ |αjk| |βki|

|bkk|
,

≤ |aij|+
m∑
k=1

22(k−1)|akk|+ 2k−1|αik|+ 2k−1|αjk|,

≤ |aij|+ 3 max
i,j
|aij|

m∑
k=1

22k−2,

≤ 22mmax
i,j
|aij|. (24)

Combining (23) and (24) , we obtain

max
i,j,l

{
|a(l)ij |, |b

(l)
ji |
}
≤ 22mmax

i,j
{|aij|, |bjj|} = 22mmax

i,j
{|aij|, |bij|} , 1 ≤ l ≤ n. (25)

For Gaussian elimination of a matrix of size (m+ n)× (m+ n) with partial pivoting,
Wilkinson [41] showed that ρ ≤ 2m+n−1. The upper bound that we have derived in
(25) is sharper for m ≤ n− 1, which complies with our assumption of m < n but only
with sufficient condition on B as stated in Theorem 2. We prefer to use the above
mentioned transformation of B̊ only if Å is almost ill-conditioned, since it might not
ensure sparse B. In fact, such a transformation is equivalent to partial pivoting of Å
without having to pivote the symmetric positive definite matrix Å.

4 The new block factorization versus the Schilders’

block factorization

Schilders’ factors consist of a block 3× 3 structure with blocks of order m and n−m,
which are computed directly from the blocks with similar orders of the transformed
saddle point matrix T T ÅT , for a different T . For the interest of comparison, we
show that the block LbDb

−1Lb
T factorization can also be induced to such a block

3× 3 structured factorization with blocks of order m and n−m. Our persuasion here
is solely based on application of the inverse of the permutation π. In other words, we
do not go for any further computations in order to form the blocks of order m and
n−m from the factors Lb and Db

−1. The induced block factors are different and much
more sparser than the Schilders’ factors for large n and m. We provide both theoretical
and numerical aspects, which distinguish these two factorizations.

14



4.1 Induced block factorization

Let P π−1 be a permutation matrix of order (n + m)× (n + m) defined by the inverse
π−1. Applying P π−1 congruently to F = Pπ

TAPπ restores it to A and so the blocks
Aij and Bi, i = 1, 2. However, the question here is – if Lb is reformed with a similar
application of P π−1 to it, will there be well-defined blocks of order m and n − m in
P T
π−1LbP π−1 , which can be related to the blocks Aij and Bi? To answer this question,

consider the example of F with n = 5, m = 3 in (7). From (17), we have:

Lb =

n+ 1 m n+m n
↓ ↓ ↓ ↓

1 6 2 7 3 8 4 5



1 a11 b11 0 0 0 0 0 0
n+ 1→ 6 b11 0 0 0 0 0 0 0

2 a21 0 a22 b22 0 0 0 0
7 b21 0 b22 0 0 0 0 0

m→ 3 a31 0 a32 0 a33 b33 0 0
n+m→ 8 b31 0 b32 0 b33 0 0 0

4 α41 β14 α42 β24 α43 β34 α44 0
n→ 5 α51 β15 α52 β25 α53 β35 α54 α55

and

Db
−1 =

n+ 1 m n+m n

↓ ↓ ↓ ↓
1 6 2 7 3 8 4 5



1 0 b−1
11 0 0 0 0 0 0

n+ 1→ 6 b−1
11 −a11b−2

11 0 0 0 0 0 0

2 0 0 0 b−1
22 0 0 0 0

7 0 0 b−1
22 −a22b−2

22 0 0 0 0

m→ 3 0 0 0 0 0 b−1
33 0 0

n+m→ 8 0 0 0 0 b−1
33 −a33b−2

33 0 0

4 0 0 0 0 0 0 α−1
44 0

n→ 5 0 0 0 0 0 0 0 α−1
55

.

The positions (indices) of the elements of Lb and Db
−1 are inherited from the elements

of A. Congruence application of π−1 to Lb and Db
−1 means taking all their elements

back to the inherited positions in A. For instance, with application of π−1 to Lb in the
above example, the entries a32 and β41 are moved from their current positions (5, 3)
and (7, 2) to their inherited positions (3, 2) and (4, 6), respectively. Applying π−1 to
all other entries of Lb gives the following block 3× 3 structure with blocks of order 3
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and 2.

Pπ−1
TLbPπ−1 =

m n n+ 1 n+m
↓ ↓ ↓ ↓

1 2 3 4 5 6 7 8



1 a11 0 0 0 0 b11 0 0
2 a21 a22 0 0 0 0 b22 0

m→ 3 a31 a32 a33 0 0 0 0 b33
4 α41 α42 α43 α44 0 β14 β24 β34

n→ 5 α51 α52 α53 α54 α55 β15 β25 β35
n+ 1→ 6 b11 0 0 0 0 0 0 0

7 b21 b22 0 0 0 0 0 0
n+m→ 8 b31 b32 b33 0 0 0 0 0

and

Pπ−1
TDb

−1Pπ−1 =



0 0 0 0 0 b−1
11 0 0

0 0 0 0 0 0 b−1
22 0

0 0 0 0 0 0 0 b−1
33

0 0 0 α−1
44 0 0 0 0

0 0 0 0 α−1
55 0 0 0

b−1
11 0 0 0 0 −a11b−2

11 0 0

0 b−1
22 0 0 0 0 −a22b−2

22 0

0 0 b−1
33 0 0 0 0 −a33b−2

33


,

which are indeed as expected and have blocks with special structures and properties.
For general m and n, let

Pπ−1
TLbPπ−1 = L =

LA 0 DB

M L H
B1 0 0

 and P T
π−1Db

−1P π−1 = D =

 0 0 D−1
B

0 D 0
D−1

B 0 −DAD
−2
B

 .
Then, using the above example inductively, the blocks of order m and n −m can be
defined as follows:

LA = [aij], 1 ≤ j ≤ i ≤ m, m×m lower triangular matrix;

L = [αij] , m < j ≤ i ≤ n, (n−m)× (n−m) lower triangular matrix;

M = [αij], 1 ≤ j ≤ m < i ≤ n, (n−m)×m rectangular matrix;

H = [βji], 1 ≤ j ≤ m < i ≤ n, (n−m)×m rectangular matrix;

DB = diag(B1), m×m diagonal matrix;

DA = diag(LA), m×m diagonal matrix; and

D = diag−1(L), (n−m)× (n−m) diagonal matrix.


(26)

All these blocks are directly from Lb, they all exist and are well-defined with respect
to the permutation inverse, π−1. Also LA is the lower triangular part of the block A11,

16



and L is the lower triangular matrix decomposed from symmetric, positive definite
matrix G in (14), so they are nonsingular. Using these blocks, we easily prove Lemma
1 that gives the induced block factorization of A with blocks of order m and n−m.

Lemma 1. Consider the transformed symmetric indefinite matrix A ∈ R(n+m)×(n+m)

in (5) and the permutation matrix P π in (6). Then the factorization Pπ
TAPπ =

LbDb
−1Lb

T can be induced to a block factorization with blocks of order m, n−m and
m such thatA11 A12 BT

1

A21 A22 BT
2

B1 B2 0


︸ ︷︷ ︸

A

=

LA 0 DB

M L H
B1 0 0


︸ ︷︷ ︸

L

 0 0 D−1
B

0 D 0
D−1

B 0 −DAD
−2
B


︸ ︷︷ ︸

D

LTA MT BT
1

0 LT 0
DB HT 0


︸ ︷︷ ︸

LT

,

(27)

where LA, L, M , H, DA, DB and D are as in (26).

Proof. Notice that the blocks LA, L, M , H , DA, DB and D defined in (26) exist
due to the existence of Lb, we only need to show that (27) holds. Applying P π−1

congruently on P T
πAP π and using Theorem 1, we obtain:

A = P T
π−1

(
P T
πAP π

)
P π−1

= P T
π−1

(
LbDb

−1Lb
T
)
P π−1

=
(
P T
π−1LbP π−1

) (
P T
π−1Db

−1P π−1

) (
P T
π−1Lb

TP π−1

)
= LDLT .

Like in the proof of the Schilders’ factorization, if we compare the right- and left-hand
sides of (27), the blocks can be related by the following equations. Note that the
product of any two diagonal matrices is commutative.

A11 = LA +LTA −DA, (28)

A21 = M +ED−1
B L

T
A −EDAD

−1
B , (29)

A12 = MT +LAD
−1
B E

T −DAD
−1
B E

T , (30)

A22 = MD−1
B E

T +LDLT +ED−1
B M

T −EDAD
−2
B E

T , (31)

B2 = B1D
−1
B E

T or E = B2
TB1

−TDB. (32)

Working out the equations (28) through (32), one can obtain the relation

LDLT =
[
−E In−m

]
A
[
−E In−m

]T
. (33)

It is quite evident from (27), that the induced block factors L and D are different
from the ones in [2, 10, 11, 35], since they are deduced from A by using a different
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transformation operator T . Furthermore, in [2, 10, 11], suggestions for the blocks
of L and D are provided such that LDLT approximates the block A by keeping the
constraint matrixB intact, which is known as implicit factorization for preconditioners.
In contrary, the induced block factorization in (27) and the Schilders’ factorization
give the exact factorization of A. This motivates to draw a comparison between the
Schilders’ factorization and the induced block factorization.

4.2 Comparison with the Schilders’ factorization

According to the Schilders’ factorization [35, Lemma 4.1], a symmetric indefinite matrix
Å ∈ R(n+m)×(n+m) is transformed into Ã, partitioned into a block 3× 3 structure and
decomposed into the following form:Ã11 Ã12 B̃

T

1

Ã21 Ã22 B̃
T

2

B̃1 B̃2 0


︸ ︷︷ ︸

Ã

=

B̃
T

1 0 L̃1

B̃
T

2 L̃2 + In−m M̃
0 0 Im


︸ ︷︷ ︸

L̃

D̃1 0 Im
0 D̃2 0
Im 0 0


︸ ︷︷ ︸

D̃

L̃T
, (34)

where B̃1 is m ×m upper triangular matrix [ ]; L̃1 and L̃2 are respectively, m ×m
and (n−m)× (n−m) strictly lower triangular matrices; M̃ is (n−m)×m rectangular
matrix; and D̃1 and D̃2 are respectively, m × m and (n − m) × (n − m) diagonal
matrices. By working out the left- and right-hand sides of (35), the blocks D̃1, L̃1 and
M̃ are computed from the following equations (details can be found in [35]):

D̃1 = diag
(
B̃

−T
1 Ã11B̃

−1

1

)
, (35)

L̃1 = B̃
T

1 lower
(
B̃

−T
1 Ã11B̃

−1

1

)
, (36)

M̃ =
(
Ã21 − B̃

T

2 L̃
T

1

)
B̃

−1

1 − B̃
T

2 D̃1, (37)

whereas the blocks L̃2 and D̃2 are to be determined from the Cholesky factorization of
the reduced Hessian matrix ZT ÃZ, which is similar to the matrix on the right-hand

side of (33), where ZT =
[
−B̃T

2 B̃
−T
1 In−m

]
. Although in general, the blocks Ã11

and B̃1 are sparse, the product B̃
−T
1 Ã11B̃

−1

1 gets more fill-ins when B̃
−1

1 is dense.
Ultimately the the lower triangular block L̃1 in (36) and the rectangular block M̃ in
(37) turn out to be substantially full. It is shown in Table 1, that the induced blocks
DA, LA and M can be determined with a minimum involvement of the factor B1

−1,
which leads them to be sparser than the corresponding Schilders’ blocks D̃1, L̃1 and
M̃ .
The induced block factorization in (27) has got even more advantage over the Schilders’
factorization if the block A is a diagonal matrix, which occurs in applications such as
resistor network modeling and some convex quadratic programming problems. It is
clear from Table 1 that if A is diagonal, then the block M = 0, since LA = DA and
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Schilders’ L̃D̃L̃T
current LDLT

L̃1 = B̃1
T
(

strict lower
(
B̃1

−T
Ã11B̃1

−1
))

LA = lower triangular(A11)

D̃1 = diag
(
B̃1

−T
Ã11B̃1

−1
)

DA = diag(A11)

M̃ =
(
Ã21 − B̃2

T
L̃1

T
)
B̃1

−1 − B̃2
T
D̃1 M = A21 +BT

2B1
−T (DA −LTA

)
Table 1: Comparison of the blocks from the Schilders’ factorization and the induced
block factorization in (27).

A21 = 0. Whereas that block M̃ = −B̃2
T
(
L̃1

T
B̃1

−1
+ D̃1

)
, which cannot be zero

unless B̃2 is a zero matrix.

5 Numerical experiments

We did numerical experiments on two different categories of saddle point matrices that
are based on two types of constraint matrix B̊ as seen in Section 2. With regard to
typical B̊, we conducted our tests on the saddle point matrices, which arise in resistor
network modeling systems. With regard to more general form of B̊, we examined
the saddle point matrices provided in the repository of the University of Florida (UF)
sparse matrix collection [36], maintained by Tim Davis.

For resistor network modelings, the matrix A is a diagonal matrix with resistance
values of n resistors, and B̊ is an incidence matrix having full row rank m. There
are m + 1 nodes in a resistor network and one node is grounded. The row related
to the ground node is deleted from the incidence matrix B̊, which makes the system
stable [30]. As a result, B̊ has at most two nonzero elements in each column, which
is permuted into a lower trapezoidal form. In order to understand the structures and
sparsity patterns of A, Pπ

TAPπ and the factor Lb, we consider a small saddle point
matrix Å of size 113× 113 from an industrial resistor network problem, consisting of
44 nodes (including the ground node) and 70 arcs. The visual representations of the
resistor network and its associated saddle point matrix in this example are shown in
Figure 1. The transformation operator T applied to Å here is a permutation matrix
of order 113. The transformed matrix A and its block partitioned form Pπ

TAPπ with
blocks of order 1 and 2 are shown in Figure 2. From Figure 3, we see that the block
lower triangular factor Lb and its block diagonal part Db contain the same structure
of Pπ

TAPπ. We also obtained the factorL from Lb, which is compared with the
Schilders’ factor L̃ as shown in Figure 4. The induced block diagonal factor D and the
Schilders’ block diagonal factor D̃ are shown in Figure 5.

The numerical result for larger sizes of Å in resistor network problems is given in Table
2. Regarding more general form of B̊, we experimented on 10 saddle point matrices
available in the UF sparse matrix collection coming from various applications, which
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is presented in Table 3. For all the matrices that we have chosen were being able to
transform the B̊ part into trapezoidal form such that Å and A have the same sparsity.
All the numerical tests were done in the MATLAB R2013b.
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RNC20, n = 70, m = 43 Å, nonzeros = 328

Figure 1: A realistic industrial resistor network, RNC20 and its associated saddle point
matrix Å.

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

A , nonzeros = 328 Pπ
TAPπ, nonzeros = 328

Figure 2: Transformed matrix A and the block partitioned matrix Pπ
TAPπ with

blocks of order 1 and 2.
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Lb , nonzeros = 352 Db = diag(Lb), nonzeros = 156

Figure 3: Factors of Pπ
TAPπ—block lower triangular matrix Lb and its diagonal part

with blocks of order 1 and 2.
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L , nonzeros = 352 L̃, nonzeros = 696

Figure 4: Induced block factor L and the Schilders’ factor L̃.

6 Conclusion

Symmetric indefinite matrices arising from saddle point problems can be congruently
transformed into a special form of a block 3 by 3 structure. The transformed matrices
can be exploited efficiently by taking privilege on the structures and properties of their
blocks. We defined a transformation operator T such that the constraint matrix B̊ is
transformed into a lower trapezoidal form, while the block matrix Å is permuted only.
The transformed saddle point matrix A is partitioned into a block n by n structure
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D , nonzeros = 352 D̃, nonzeros = 696

Figure 5: Induced block diagonal factor D and the Schilders’ block diagonal factor D̃.

network
size nonzeros

n m A L̃ L

RNB28 1, 751 1, 058 8, 549 31, 137 13, 936

RNB27 2, 272 1, 380 11, 124 40, 591 20, 848

RNB26 2, 430 1, 474 11, 934 50, 845 22, 240

RNB1 7, 876 4, 835 39, 374 2, 445, 185 101, 732

RNC2 18, 762 11, 782 93, 804 12, 446, 959 192, 646

RNB5 23, 221 12, 820 116, 099 20, 767, 772 463, 294

RNB4 25, 593 16, 052 127, 959 18, 212, 250 456, 245

RNC1 58, 054 36, 392 290, 264 168, 846, 313 1, 646, 337

Table 2: Nonzero counts of L̃ and L of saddle point systems of realistic industrial
resistor network problem.

with blocks of order 1 and 2 by applying a simple, predefined permutation π. Then a
block LbDb

−1Lb
T factorization is applied to the block partitioned matrix Pπ

TAPπ.
The transformation operator T is chosen for sparsity and stability of the factor Lb,
whereas the permutation π ensures a priori pivots for the factorization. We also formed
a block 3 by 3 structured factorization with blocks of order m and n − m, which is
induced from the block LbDb

−1Lb
T factorization. We compared the induced block

factorization with the Schilders’ factorization and found that it is different and has
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matrix
size nonzeros

n m Å A L̃ L
ncvxqp1 7, 111 5, 000 73, 963 73, 963 563, 506 421, 720

tuma2 7, 515 5, 477 49, 365 49, 365 326, 722 245, 945

stokes64 8, 450 4, 096 140, 034 140, 034 5, 501, 502 4, 503, 680

ncvxqp9 9, 054 7, 500 54, 040 54, 040 321, 390 121, 956

tuma1 13, 360 9, 607 87, 760 87, 760 713, 623 535, 932

Qpband 15, 000 5, 000 45, 000 45, 000 45, 000 40, 000

mario001 23, 130 15, 304 204, 912 204, 912 7, 459, 505 903, 188

aug3dcqp 27, 543 8, 000 128, 115 128, 115 3, 839, 064 3, 547, 086

blockqp1 40, 011 20, 001 640, 033 640, 033 600, 750, 077 560, 113

mario002 234, 128 155, 746 2, 097, 566 2, 097, 566 1, 990, 093, 350 16, 620, 482

Table 3: Nonzero counts of L̃ and L of saddle point matrices from UF sparse matrix
collections.

much more sparser block factors.

Appendix

LD−1LT factorization for a symmetric, positive definite matrix

We show that LD−1LT factorization for a symmetric, positive definite matrix A ∈
Rn×n has the same computational efficiency with the Cholesky factorization, where L
is a lower triangular matrix and D = diag(L) is the diagonal part of L. Since this
factorization doesn’t require to extract square roots like in the case of the Cholesky’s,
it is much more convenient for applying it to symmetric indefinite matrices. We give a
rigorous proof of the existence and uniqueness of this factorization.

Theorem. Let A ∈ Rn×n be symmetric and positive definite matrix. Then there exists
a unique nonsingular lower triangular matrix L ∈ Rn×n such that

A = LD−1LT (38)

where D = diag (L) is the diagonal part of L.

Proof. We develop an algorithm for (38) and prove that the algorithm doesn’t break
down. Considering A = [aij] of size 3× 3, we havea11 a12 a13

a21 a22 a23
a31 a32 a33

 =

l11 0 0
l21 l22 0
l31 l32 l33

l−1
11 0 0
0 l−1

22 0
0 0 l−1

33

l11 l12 l13
0 l22 l23
0 0 l33

 .
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Through direct computations, one can obtain

l11 = a11,

l21 = a21, l22 = a22 −
l221
l11
,

l31 = a31, l32 = a32 −
l31l21
l11

, l33 = a33 −
l231
l11
− l232
l22
.

For general n,

lij = aij −
j−1∑
k=1

likljk
lkk

, 1 ≤ j ≤ i ≤ n (39)

which exists if and only if the diagonal entries

lii = aii −
i−1∑
k=1

l2ik
lkk

, 1 ≤ i ≤ n (40)

are not equal to zero. This can be shown by induction on i = j = 1, . . . , n. In the
following part of the proof, let L(j+1,j) = [lj+1,j , . . . , ln,j]

T denotes a jth column vector
of L of length n− j.
For i = j = 1, l11 = a11 > 0, let A be partitioned as follows:

A =

[
a11 AT

21

A21 A22

]
.

Let 0 6= v1 ∈ Rn−1. Define v =
[
vT0 vT1

]T ∈ Rn such that v0 = −AT
21v1/a11.

Then

0 < vTA v =
[
vT0 vT1

] [ a11 AT
21

A21 A22

] [
v0
v1

]
= vT0 a11v0 + v0A

T
21v1 + vT1A21v0 + vT1A22v1

=
vT1A21

a11
a11
AT

21v1
a11

− v
T
1A21

a11
AT

21v1 −
vT1A21

a11
AT

21v1

= vT1A22v1 − vT1
A21A

T
21

a11
v1 = vT1

(
A22 −

L(2,1)L
T
(2,1)

l11

)
︸ ︷︷ ︸

A(2)

v1. (41)

(41) implies A(2) ∈ R(n−1)×(n−1) is symmetric and positive definite. The entries of A(2)

are:

a(2)rs = aij −
li1lj1
l11

, 1 ≤ r, s ≤ n− 1, where i = r + 1, j = s+ 1.

Thus for i = j = 2,

0 < a
(2)
11 = a22 −

l221
l11

= l22.
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Assume that (41) holds up to i = j = n− 1.

i.e., A(n−1) =

(
A

(n−2)
22 −

L(n−1,n−2)L
T
(n−1,n−2)

ln−2,n−2

)
∈ R2×2

is symmetric and positive definite which has the entries:

a(n−1)
rs = aij −

n−2∑
k=1

likljk
lkk

, 1 ≤ r, s ≤ 2 , i = r + n− 2, j = s+ n− 2

giving

a
(n−1)
11 = an−1,n−1 −

n−2∑
k=1

l2n−1,k

lkk
= ln−1,n−1 > 0.

For i = j = n, apply similar partitioning to A(n−1). Define u =
[
uT0 uT1

]T ∈ R2 such

that u1 6= 0 and u0 =
(
−A(n−1)

21

)T
u1/a

(n−1)
11 . Then

0 < uTA(n−1)u =
[
uT0 uT1

] [ a
(n−1)
11 (A

(n−1)
21 )T

A
(n−1)
21 A

(n−1)
22

][
u0
u1

]
= uT1

(
A

(n−1)
22 −

L(n,n−1)L
T
(n,n−1)

ln−1,n−1

)
︸ ︷︷ ︸

A(n)

u1.

So, A(n) ∈ R1×1 is symmetric and positive definite that gives

a
(n)
11 = ann −

n−2∑
k=1

l2n,k
lkk
−

l2n,n−1

ln−1,n−1

= ann −
n−1∑
k=1

l2n,k
lkk

= lnn > 0.

For uniqueness, suppose there exist two nonsingular lower triangular matrices L1 and
L2 satisfying (39) for the same A. Then

L1D
−1
1 L

T
1 = L2D

−1
2 L

T
2

⇐⇒ L−1
2 L1D

−1
1 = D−1

2 L
T
2L

−T
1 . (42)

In (42), the left-hand side is a lower triangular matrix while the right-hand side is an
upper triangular. This is possible only if L−1

2 L1 is a diagonal matrix. Therefore, let
L−1

2 L1 = D, where D is a diagonal matrix and hence D−T = LT2L
−T
1 . Since the

diagonal of product of any two upper triangular matrices is equal to the product of
their diagonals, we get

DT
2D

−T
1 = diag(LT2 )diag(L−T

1 ) = diag(L2
TL−T

1 ) = D−T .

∴ from (42),

DD−1
1 = D−1

2 D
−T

⇐⇒ D = D−1
2 D

−TD1

⇐⇒ D = D−1
2 D

T
2D

−T
1 D1 = I

⇐⇒ L1 = L2.
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Since lkk > 0, (40) implies that lkk ≤ akk for each k = 1, . . . , n. Again from (40),

aii =
i∑

k=1

l2ik
lkk
≥ l2ik
lkk
≥ l2ik
akk

, for 1 ≤ k ≤ i ≤ n

⇒ |lij| ≤ max
i
aii , for 1 ≤ i, j ≤ n.

From (39), observe that every time the jth column of L is updated, the quotient ljk/lkk
is computed repeatedly for (n − j + 1)(j − 1) times. This recurrence causes extra
computational cost. Therefore by computing the quotients ljk/lkk for k = 1, . . . , j − 1
and storing them in a vector ν of length j − 1 before every next update, reduces the
number of divisions to j − 1 as shown in the Step 3 of Algorithm 2. Step 6 involves
(n−j+1)(j−1) multiplications and (n−j+1)(j−1) additions. Therefore, Algorithm
2 requires total flop counts precisely equal to

n∑
j=1

(j − 1) + 2(n− j + 1)(j − 1) =
1

3
n3 +

1

2
n2 − 5

6
n,

which is equal to the flop counts of the Cholesky’s factorization.

Algorithm 2 For a given symmetric and positive definite matrix A ∈ Rn×n, the
algorithm computes a nonsingular lower triangular matrix L ∈ Rn×n such that A =
L diag−1(L)LT . For j = 1, . . . , n, the column L(j : n, j) overwrites A(j : n, j).

1: for j = 1 : n
2: for k = 1 : j − 1
3: ν(k) = A(j, k)/A(k, k)
4: end for
5: for i = j : n

6: A(i, j) = A(i, j)−
j−1∑
l=1

ν (l)A(i, l)

7: end for
8: end for
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