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ABSTRACT 

We present a polymer optical waveguide integration technology for the detection of nanoparticles in an evanescent field 

based biosensor. In the proposed biosensor concept, super-paramagnetic nanoparticles are used as optical contrast labels. 

The nanoparticles capture target molecules from a sample fluid and bind to the sensor surface with biological specificity. 

The surface-bound nanoparticles are then detected using frustration of an evanescent field. In the current paper we 

elaborate on the polymer waveguides which are used to generate a well-defined optical field for nanoparticle detection. 

Keywords: biosensor, evanescent field, nanoparticle detection, polymer waveguide. 

1 INTRODUCTION  

The aging population and increases in chronic diseases put high pressure on the healthcare system, which drives a need 

for easy to use and cost-effective medical technologies. In-vitro diagnostics (IVD) plays a large role in delivering 

healthcare and within the IVD market, decentralized diagnostic testing, i.e. point-of-care testing (POCT), is a growing 

segment. Applications for which POCT is very relevant are for example the detection of protein markers to diagnose 

cardiac diseases and the detection of nucleic acid markers in case of infectious diseases. POCT devices should be 

compact and fully integrated for maximum ease of use. A new class of POCT devices is based on the use of magnetic 

nanoparticles
1
. Using magnetic nanoparticles has important advantages: they have a large surface-to-volume ratio, are 

conveniently biofunctionalized, provide a large optical contrast, and they can be manipulated by magnetic fields for full 

control of the integrated biosensing assay. 

Here, we study a polymer optical waveguide integration technology for the detection of magnetic nanoparticles. In this 

biosensor concept, super-paramagnetic nanoparticles are used as optical contrast labels. The nanoparticles capture target 

molecules from a sample fluid and bind to the sensor surface with biological specificity. Thereafter, the surface-bound 

nanoparticles are detected using frustration of an evanescent field. The evanescent field is generated by total internal 

reflection (TIR) of light at a boundary between two media with different refractive index (RI). Evanescent field detection 

has been used in several biosensing concepts, such as SPR-based, fluorescence-based and interferometer-based 

biosensors
2,3,4

, using out-of-plane as well as in-plane optical approaches. The use of in-plane waveguide methods, where 

the evanescent field is generated at the core-cladding interface, is interesting because this configuration is compatible 

with planar and therefore very compact device formats. Furthermore, the use of polymers to fabricate such waveguides is 

compatible with cost-effective mass production methods.  

2 WAVEGUIDE DESIGN 

When designing a waveguide, it is necessary to consider parameters such as the penetration depth, the uniformity of the 

evanescent field and the waveguide quality, which will influence the signal-to-noise ratio of the final particle detection 

system. Furthermore, as we need to implement a large detection area (typical dimensions 1 x 1 mm
2
), two approaches 

have been considered, namely rectangular waveguides and slab waveguides. 

A first important parameter is the penetration depth of the evanescent field at the core-cladding interface. The penetration 

depth is the distance in which the electric field intensity decays with 1/e of its value at the core-cladding interface. The 

penetration depth (Pd) of a mode in the upper cladding of a slab waveguide can be calculated with the expression: 
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with 0 the vacuum wavelength of the light propagating in the waveguide, and ncladd and neff the refractive index of the 

cladding material and the effective refractive index of the propagating mode, respectively. The formula shows that the 

penetration depth is determined by the index contrast between the effective refractive index of the mode and the cladding 

refractive index for each wavelength. The effective refractive index of a guided mode has a value between the highest of 

both cladding refractive indices, and the core refractive index. 

The proposed design, sketched in Figure 1, consists of a waveguide divided into two main parts, namely the propagation 

and the detection region. In the detection region, the core is in direct contact with the assay fluid which is serving as 

upper cladding, thereby exposing the assay fluid to the waveguide evanescent field allowing particle detection. In 

biosensor applications, the upper cladding in the sensing area will be water-based, therefore having a refractive index 

close to 1.33. The refractive indices for typical polymer waveguide materials are 1.5-1.6, resulting in penetration depths 

of around 100-200 nm for the first mode and wavelengths between 630 and 850 nm.   

A second important parameter is the uniformity of the field. Several transverse modes are allowed in rectangular 

waveguides. The wider the waveguide, the greater is the number of permitted modes. The presence of these higher order 

modes results in non-uniformity in the field in terms of its distribution on the core surface due to the successive minima 

and maxima along the waveguide width. This non-uniformity will generate dark areas where the nanoparticles cannot be 

detected. Therefore, in rectangular waveguides the quasi-uniform first mode must be selected. 

Contrarily, in slab waveguides the light is only confined in one direction, hence multimode behavior is only allowed in 

that direction and it is possible to achieve uniformity in intensity along a wide surface. To implement a slab waveguide, 

the diverging mode in the waveguide should not reach the boundaries of the waveguide. This means that the slab 

waveguide needs to be wider than the detection region; the concrete dimensions depend on the incoupling conditions that 

determine the divergence of the path, see Figure 1. 

 

Figure 1. Schematic of a realistic slab waveguide with the detection region where nanoparticles will be detected: (left) top view, and 

(right) cross-section along the waveguide. 

The evanescent field is also mode-dependent. The control of the light distribution along the height direction in the 

waveguide cross-section can be achieved by choosing the core thickness small enough so that only one mode is allowed. 

In a symmetric slab waveguide with core thickness d, only the fundamental TE or TM mode is allowed if: 
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In the asymmetric case, TE and TM modes are not degenerated, but if we ignore the polarization, the single mode cut-off 

condition for asymmetric slab waveguides can be expressed as:  
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As the cut-off condition for symmetric waveguides (propagation region) is more restrictive than in the asymmetric case 

(detection region), the symmetric waveguide was designed to be single mode, such that also the asymmetric waveguide 

will be single mode. 

For rectangular waveguides, no analytical solution exists and the use of FDTD simulations is convenient to obtain the 

propagating field parameters
5
. The thickness for which single mode behavior is obtained is slightly larger than in the 

case of a slab waveguide. 

In the following, a general analysis is presented regarding the influence of the waveguide parameters on the penetration 

depth of the evanescent field, which is used to determine the waveguide designs. Although the analysis was performed 

for slab waveguides, the qualitative results are also valid for rectangular waveguides. 

Figure 2 plots the penetration depth of the first mode in the upper cladding (i.e. water, RI 1.33) as a function of core 

refractive index for different combinations of wavelength and refractive index contrast (RIC) of the core and under 

cladding in a slab waveguide. The refractive index of the core clearly has the largest influence on the penetration depth. 

The closer this index is to the index of the analyte (water, refractive index 1.33), the higher the penetration depth of the 

evanescent field. 

 
Figure 2. First mode penetration depth Pd of the waveguide evanescent field in the upper cladding (water) for different core refractive 

indices and core under cladding RI contrast values at 635 nm and 850 nm in a slab waveguide. The core thickness was chosen close to 

the single mode thickness cut-off value of the symmetric waveguide section. 

 

The penetration depth is also influenced by the RIC between the core and under cladding, by the wavelength and by the 

core thickness. However, these influences are mainly appreciable when low refractive index materials are used for the 

core. On the other hand, the wavelength and the RIC have a strong influence on the intrinsic scattering of the 

waveguides
6
, and on the single mode thickness condition. 

After considering the above mentioned waveguide parameters, simulations on rectangular waveguide designs were 

performed using FDTD Solutions from Lumerical. With this software it is possible to obtain the waveguide mode field 
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profiles and their effective refractive indices. We simulated the mode profiles for different structures and dimensions in 

order to determine their single mode conditions. To check the validity of these results, the light distribution was 

measured experimentally. FDTD simulations can also be used to obtain the penetration depth through the analysis of the 

simulated intensity profiles. 

3 FABRICATION 

The fabrication of slab waveguides made from Ormocer polymer is described in the following. First of all, 5 x 5 cm
2
 

Borofloat glass substrates are cleaned by successive rinsing steps in acetone, in a mix of acetone & IPA and in DI water 

(2 minutes in each bath) and dried for 15 minutes on a hotplate at 150°C. Next, a surface plasma treatment cleaning step 

is performed in order to improve the adhesion between glass and polymer. Just after the treatment, the Ormocer under 

cladding layer is deposited by means of spin-coating at 3000 rpm for one minute, followed by a prebake at 80ºC on a 

hotplate for 5 minutes. The cladding layer is then UV-cured by flood exposure for 30 seconds at a power density of 8.6 

mW/cm
2
 and post exposure baked for 5 minutes at 80°C. The layer needs to be developed in OrmoDev for 3 seconds to 

remove the non-cured layer of the Ormocer. The developed polymer is then rinsed in IPA two times and dried with a 

nitrogen gun. 

A hard-bake step is applied for 90 minutes at 150°C in a convection oven. The core layer is processed following the 

same steps but with the core version of the Ormocer polymer. The layer is spin-coated at 6000 rpm for 2 minutes to 

achieve a thickness below the single-mode-condition, calculated to be 1.5 µm at 635 nm for slab waveguides with 

refractive indices 1.538 (cladding) and 1.553 (core). 

The upper cladding is processed with the same parameters as the under cladding but using a mask to define the reaction 

chamber. As the material is not hard after the first hot plate step, the mask cannot be in contact with the layer and thus 

the illumination must be performed in proximity. The developing time for the reaction chamber is 1 minute. Rectangular 

waveguides were fabricated with the same process but using a lithography mask to define the core pattern and 

developing for one minute. 

Using similar parameters, LightLink and mr-LDW waveguides were fabricated. Figure 3 shows cross-sections of 

example rectangular and slab waveguides fabricated. 

 
Figure 3. Cross-section of rectangular waveguides with 2 different thicknesses and not covered by upper cladding (left), and a slab 

waveguide covered by upper cladding (right). 

4 RESULTS 

4.1 Waveguide characterization 

The optical quality of the polymer layers (Ormocer, LightLink and mr-LDW) was characterized in terms of roughness 

using a Wyko® NT3300 optical profiler, where the considered parameter was the standard deviation of the profile 

heights, after removing large-scale tilt and curvature effects of the surface. The data presented in this paper corresponds 

to ~1 mm
2
 surfaces measured at random positions over the complete sample. Roughness measurements showing 

fabrication defects were excluded from analysis because they do not represent the intrinsic roughness of the material. 

The results indicate that the roughness for Ormocer and LightLink (cladding and core versions) is about 2-4 nm and the 
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roughness of the epoxy photopolymer, mr-LDW, was around 1 nm. Since the measured layer roughness is rather low, it 

is expected that this will only lead to a small amount of parasitic background scattering in the waveguide, being much 

smaller than the signal generated by the nanoparticles themselves. 

To characterize the profile of the light in the waveguides, a commercial camera-based Near-Field Beam Profiler was 

used. A CCD camera, Near-Field adapter and microscope objective were acquired from Ophir Optronics. First, samples 

were diced with a diamond blade in order to make clean cross-sections. Next, light was coupled into the waveguides with 

a tapered fiber and the out-coupled light was focused with a 40x objective onto a CCD camera. The beam imaging and 

data recording was performed using BeamGage® software (Ophir Optronics). 

Varying the incoupling parameters, it was possible to excite different modes of the waveguide. When no variation in the  

light profile over de waveguide cross-section was found, it was considered single mode. This was furthermore compared 

with the calculations of the single mode conditions, based on waveguide layer thickness and refractive index data. 

Figure 4 illustrates the different intensity distributions of the light in cross-sections of a rectangular and slab waveguide, 

respectively. Despite the fact that the quasi-uniform first mode is theoretically allowed in the rectangular waveguide, it 

was found experimentally that higher order modes were almost always displayed, being strongly dependent on small 

changes in the incoupling parameters. The presence of these lateral higher order modes gives rise to differences in the 

illumination intensities of nanoparticles located at different positions in the detection region. In the case of the slab 

waveguide, these differences are substantially smaller, as is shown in the figure. The intensity variation in the slab 

waveguide mode profile includes a contribution from the noise caused by the roughness of the waveguide end-face due 

to dicing and therefore the actual uniformity of the field is expected to be better than shown in Figure 4. 

 
 

 
 

Figure 4. Top: near-field profile at the end-face of a 50 µm wide (left) and an "infinitely" wide waveguide (right). The axes represent 

camera pixels (1 pixel = ~110 nm) and the color scale represents intensity (arbitrary units). Bottom: cross-section of the near-field 

profile along the middle of the waveguide thickness, for both waveguides. The horizontal axis represents camera pixels and the 

vertical axis intensity (arbitrary units). 
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4.2 Demonstration of particle detection 

In order to test the compatibility of the fabricated waveguides with the biosensing detection principle, LightLink 

rectangular waveguides were prepared and mounted in a setup, and the detection region was brought into contact with 

superparamagnetic 500 nm particles (prototype Dynabeads®) sourced from Life Technologies. In Figure 5, a schematic 

of the setup is shown. 

 
Figure 5. Schematic of the setup used to test the nanoparticle detection principle. 

Waveguides were excited using butt-coupling of a 660 nm wavelength laser with a long working distance objective lens 

(NA = 0.4). The excited modes propagate along the waveguide and reach the detection area where the nanoparticles 

scatter light out of the evanescent field. The scattered light was collected by a 20x objective (NA = 0.4) and imaged with 

a CCD camera. 

A fluid chamber was implemented in the detection region of the waveguide chamber. Thus, a liquid sample with 

particles could be deposited and subsequently monitored using dark field imaging. The monitoring was performed by 

detecting the scattered light from the particles that were present in the evanescent field extending into the liquid layer. 

Wet and dried-in particles were tested with different intensities. Figure 6 illustrates examples of the bright field (bulk 

excitation) and dark field (waveguide excitation) images of the chamber visualized in the experiment.  

From the detection experiments, we can conclude that single particles are excited by the waveguide evanescent field 

(Figure 6, right) and can be imaged with good signal-to-noise ratio. In addition, only low amounts of stray light can be 

observed in the transition between the propagating and detection regions. Hardly any light is scattered from particles at 

the region where the upper cladding is present. However, the non-uniformity of the waveguide modes intensity 

distribution causes a strong position dependence of the amount of scattered light. We expect to overcome this issue by 

using slab waveguides, allowing only one mode to propagate in the waveguide, resulting in a more homogeneous lateral 

intensity distribution.  

 

 
Figure 6. Left: Bright field microscope image of a waveguide covered with dried-in particles. Right: Dark field image of light from the 

waveguide evanescent field scattered by dried-in particles. The image was recorded with low laser power (<1mW). 
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5 CONCLUSIONS 

Polymer waveguides have been designed and fabricated for the optical detection of nanoparticles in an evanescent field 

based biosensor. Penetration depth, evanescent field uniformity and polymer layer roughness were the main parameters 

considered to achieve an evanescent field capable of detecting single nanoparticles with good signal-to-noise ratio. 

Several polymer waveguide samples were fabricated using Ormocer, mr-LDW and LightLink materials and 

photolithographic patterning. Using these waveguides, the detection of single 500 nm dried-in particles was 

demonstrated. 
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