
 

Decomposing conformance checking on Petri nets with data

Citation for published version (APA):
Leoni, de, M., Munoz-Gama, J., Carmona, J., & Aalst, van der, W. M. P. (2014). Decomposing conformance
checking on Petri nets with data. (BPM reports; Vol. 1406). BPMcenter. org.

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/f2f53052-ad39-46d4-945c-ceb7cd5059ea


Decomposing Conformance Checking on Petri
Nets with Data

Massimiliano de Leoni1,2, Jorge Munoz-Gama3, Josep Carmona3, and
Wil M.P. van der Aalst2

1 University of Padua, Padua (Italy)
2 Eindhoven University of Technology, Eindhoven (The Netherlands)

3 Universitat Politecnica de Catalunya, Barcelona (Spain)

jmunoz@lsi.upc.edu, m.d.leoni@tue.nl jcarmona@lsi.upc.edu ,
w.m.p.v.d.aalst@tue.nl

Abstract. Process mining techniques relate observed behavior to mod-
eled behavior, e.g., the automatic discovery of a Petri net based on an
event log. Process mining is not limited to process discovery and also in-
cludes conformance checking. Conformance checking techniques are used
for evaluating the quality of discovered process models and to diagnose
deviations from some normative model (e.g., to check compliance). Ex-
isting conformance checking approaches typically focus on the control-
flow, thus being unable to diagnose deviations concerning data. This
paper proposes a technique to check the conformance of data-aware pro-
cess models. We use so-called “data Petri nets” to model data variables,
guards, and read/write actions. Additional perspectives such as resource
allocation and time constraints can be encoded in terms of variables.
Data-aware conformance checking problem may be very time consuming
and sometimes even intractable when there are many transitions and
data variables. Therefore, we propose a technique to decompose large
data-aware conformance checking problems into smaller problems that
can be solved more efficiently. We provide a general correctness result
showing that decomposition does not influence the outcome of confor-
mance checking. Moreover, two decomposition strategies are presented.
The approach is supported through ProM plug-ins and experimental
results show that significant performance improvements are indeed pos-
sible.

Keywords: Process Mining, Conformance Checking, Petri Net with
Data, Process Model Decomposition

1 Introduction

The practical relevance of process mining is increasing as more and more event
data becomes available. Process mining techniques aim to discover, monitor and
improve real processes by extracting knowledge from event logs. The two most
prominent process mining tasks are: (i) process discovery: learning a process
model from example behavior recorded in an event log, and (ii) conformance



Credit 
Request 

(a)

Verify

 (b)

Assessment 

(c)

Positive 
Vefication

Register 
Negative 

Verification (d)Negative 
Verification

Inform Requester 

(e)

Renegotiate 

Request(f)

Register 
Negative 

Request (g)

Negative 
Decision

Open Credit 

(h)Positive
Decision

Amount (A)

Interest (I)

Decision (D)

Verification (V)

 0.1 Amount < Interest < 0.2 Amount

The renegotiated amount is 
smaller than the original 
amount

Decision = Negative

Fig. 1: Example of a (simplified) process to request loans. The dotted arcs going
from a transition to a variable denote the writing operations; the reverse arcs
denote the read operations, i.e. the transition requires accessing the current
variables’ value. In the paper, each transition is abbreviated with the lower-case
letter in brackets and each variable with the upper-case letter in brackets.

checking: diagnosing and quantifying discrepancies between observed behavior
and modeled behavior [1].

Most of the work done in conformance checking in the literature focuses
on the control-flow of the underlying process. There are various approaches to
computer the fraction of events or traces in the log that can be replayed by the
model [2,3,4].

In a data-aware process model, each case, i.e. a process instance, is charac-
terized by its case variables. Paths taken during the execution may be governed
by guards and conditions defined over such variables. A process model specifies
the set of variables and their possible values, guards, and write/read actions.
Since existing conformance checking techniques typically completely abstract
from data, resources, and time, many deviations remain undetected. Therefore,
the event log may record executions of process instances that appear fully con-
forming, even when it is not the case. Only the analysis of the data perspective
would be able to highlight the deviation.

Let us consider the process that is modeled as BPMN diagram in Figure 1.
The process is concerned with customers requesting loans and is deliberately
oversimplified to be able to explain the concepts more easily. The process starts
with a credit request where the requestor provides some documents to demon-
strate the capability of paying the loan back. These documents are verified and
the interest amount is also computed. If the verification step is negative, a nega-
tive decision is made, the requestor is informed and, finally, the negative outcome
of the request is stored in the system. If verification is positive, an assessment



is made to take a final decision. Independently of the assessment’s decision, the
requestor is informed. Moreover, even if the verification is negative, the requestor
can renegotiate the loan (e.g. to have lower interests) by providing further docu-
ments or by asking for a smaller amount. In this case, the verification-assessment
part is repeated. If both the decision and verification are positive and the re-
questor is not willing to renegotiate, the credit is opened.

Let us consider the following trace:4

σex = 〈(a, ∅, {(A, 4000)}), (b, {(A, 4000)}, {(I, 450), (V, false)}), (c, {(V, false)},
{(D, true)}), (e, ∅, ∅), (f, {(A, 4000)}, {(A, 5000)}), (b, {(A, 5000)}, {(I, 450),
(V, false)}), (d, {(V, false)}, {(D, false)}), (e, ∅, ∅), (h, {(D, true)}, ∅)〉

Seen from a control-flow perspective only, the trace seems to be fully conforming.
Nonetheless, a number of deviations can be easily noticed if the data perspective
is considered. Firstly, if activity c is executed, previously activity b cannot result
in a negative verification, i.e. V is set to false. Secondly, activity f cannot write
value 5000 to variable A, as this new value is larger than the previous value, i.e.
4000. Furthermore, if the decision and verification are both negative, i.e. both
V are D are set to false, then h cannot be executed at the end.

The identification of non-conforming traces clearly has value in itself. Nonethe-
less, organizations are often interested in explanations that can steer measures to
improve the quality of the process. Alignments aim to support more refined con-
formance checking. An alignment aligns a case in the event log with an execution
path of the process model as good as possible. If case deviates from the model,
then it is not possible to perfectly align with the model and a best matching sce-
nario is selected. Note that for the same deviation, multiple explanations can be
given. For instance, the problem that h was executed when it was not supposed
to happen can be explained in two ways: (1) h should not have occurred because
V and D are both set to false (“control-flow is wrong”) and (2) V and D should
both have been set to true because h occurs (“data-flow is wrong”). In order to
decide for the most reasonable explanation, costs are assigned to deviations and
we aim to find the explanation with the lowest cost. For instance, if assigning
a wrong value to V and D is less severe than executing h wrongly, the second
explanation is preferred.

To the best of our knowledge, [5] is the only paper on data-aware conformance-
checking analysis. Readers are referred to it for a state-of-the-art analysis. This
work also shows that the problem of finding an alignment of an event log and a
data-aware process model is NP-hard. In practice, it is exponential on the size
of the model, i.e. the number of activities and data variables.

In this paper, we aim to speed up the computation of alignments by using a
divide-and-conquer approach. The data-aware process model is split into smaller

4 Notation (act, r, w) is used to denote the occurrence of activity act
that writes and reads variables according to functions w and r, e.g.,
(b, {(A, 4000)}, {(I, 450), (V, false)}) is an event corresponding to the occurrence of
activity b while reading value 4000 for variable A and writing values 450 and false
to variables I and V respectively. (e, ∅, ∅) corresponds to the occurrence of activity
e without reading/writing any variables.



partly overlapping model fragments. For each model fragment a sublog is created
by projecting the initial event log onto the activities used in the fragment. Given
the exponential nature of conformance checking, this may significantly reduce
the computation time. If the decomposition is done properly, then any trace that
fits into the overall model also fits all of the smaller model fragments and vice
versa.

Recently, several approaches have been proposed to decompose process min-
ing problems, both for discovery and conformance checking. As described in [6,7]
it is possible to decompose process mining problems in a variety of ways. Special
cases of this more general theory are passages [8] and SESE-based decomposition
[9,10]. However, these approaches are limited to control-flow. In this paper, we
extend the general approach of [6] to Petri nets with data.

The decomposed data-aware conformance checking approach presented in
this paper has been implemented using ProM framework and tested with several
synthetic event logs. Experimental results show that data-aware decomposition
may indeed be used to significantly reduce the time needed for conformance
checking.

Preliminaries are presented in Section 2. Section 3 introduces our approach
for data-aware decomposition. Section 4 describes different algorithms for in-
stantiating the general results presented in Section 3. Section 5 reports on ex-
perimental results. Section 6 concludes the paper.

2 Preliminaries

In this section, we introduce preliminaries ranging from (data) Petri nets and
event logs to data-aware alignments. Petri nets with data can be seen as a
abstraction of high-level/colored Petri nets [11]. Petri nets with data provide
precisely the information needed for conformance checking of data-aware models
and logs.

2.1 System Nets

Petri nets and their semantics are defined as usual: A Petri net is a tuple (P, T, F )
with P the set of places, T the set of transitions, P ∩T = ∅, and F ⊆ (P ×T )∪
(T × P ) the flow relation. The marking of a Petri net is a multiset of tokens,
i.e., M ∈ IB(P ). For some multiset M ∈ IB(P ), M(p) denotes the number of
times element p appears in M . The standard set operators can be extended to
multisets, M1 ]M2 is the union of two multisets.

Definition 1 (Labeled Petri Net). A labeled Petri net PN = (P, T, F, l) is a
Petri net (P, T, F ) with labeling function l ∈ T 6→ UA where UA is some universe
of activity labels.

Definition 2 (System Net). A system net SN = (PN ,Minit ,Mfinal) is a
triplet where PN = (P, T, F, l) is a labeled Petri net, Minit ∈ IB(P ) is the initial
marking, and Mfinal ∈ IB(P ) is the final marking. USN is the universe of system
nets.



n1 n2

n3 n5 n6

Credit Request

Register Negative 
Verification

Inform Customers

Renegotiate

Open Credit Loan 

Assessment
Interests

Amount

Verification

Decision

Register Loan Rejection Register Loan Rejection 

n4n4

VerifyVerify

Fig. 2: Pictorial representation of a data Petri net that models the process earlier
described in terms of BPMN diagram (cf. Figure 1). Places, transitions and
variables are represented as circles, rectangles and triangles, respectively. The
dotted arcs going from a transition to a variable denote the writing operations;
the reverse arcs denote the read operations, i.e. the transition requires accessing
the current variables’ value.

Definition 3 (System Net Notations). Let SN = (PN ,Minit ,Mfinal) ∈ USN

be a system net with PN = (P, T, F, l).

– Tv(SN ) = dom(l) is the set of visible transitions in SN ,
– Av(SN ) = rng(l) is the set of corresponding observable activities in SN ,
– Tuv (SN ) = {t ∈ Tv(SN ) | ∀t′∈Tv(SN ) l(t) = l(t′) ⇒ t = t′} is the set of

unique visible transitions in SN (i.e., there are no other transitions having
the same visible label), and

– Auv (SN ) = {l(t) | t ∈ Tuv (SN )} is the set of corresponding unique observable
activities in SN .

To define the union of two nets, we need to merge the labeling functions.
For any two partial functions f1 ∈ X1 6→ Y1 and f2 ∈ X2 6→ Y2: f3 = f1 ⊕ f2
is the union of the two functions. f3 ∈ (X1 ∪ X2) 6→ (Y1 ∪ Y2), dom(f3) =
dom(f1) ∪ dom(f2), f3(x) = f2(x) if x ∈ dom(f2), and f3(x) = f1(x) if x ∈
dom(f1) \ dom(f2).

Definition 4 (Union of Nets). Let SN 1 = (N1,M1
init ,M

1
final) ∈ USN with

N1 = (P 1, T 1, F 1, l1) and SN 2 = (N2,M2
init ,M

2
final) ∈ USN with N2 = (P 2, T 2,

F 2, l2) be two system nets.

– l3 ∈ l1 ⊕ l2 is the union of l1 and l2,
– N1 ∪N2 = (P 1 ∪ P 2, T 1 ∪ T 2, F 1 ∪ F 2, l3) is the union of N1 and N2, and
– SN 1∪SN 2 = (N1∪N2,M1

init ]M2
init ,M

1
final ]M2

final) is the union of system

nets SN 1 and SN 2.



2.2 Data Petri Nets

A data Petri net is a Petri net having any number of variables.

Definition 5 (Variables and Values). UVN is the universe of variable names.
UVV is the universe of values. UVM = UVN 6→ UVV is the universe of variable
mappings.

In such a net, transitions may read from and/or write to variables. Moreover,
transitions are associated with guards over these variables. These define the
conditions when these transitions can fire. Formally, a Data Petri Net (DPN) is
defined as follows:

Definition 6 (Data Petri Net). A Data Petri Net DPN = (SN, V, val , init ,
read ,write, guard) consists of

– a system net SN = (PN ,Minit ,Mfinal) based on labeled Petri net PN =
(P, T, F, l),

– a set V ⊆ UVN of data variables,
– a function val ∈ V → P(UVV ) that defines the values admissible for each

variable, i.e., val(v) is the set of values that variable v can have,5

– a function init ∈ V → UVV that defines the initial value for each variable v
such that init(v) ∈ val(v) (initial values are admissible),

– a read function read ∈ T → P(V ) that labels each transition with the set of
variables that it reads,

– a write function write ∈ T → P(V ) that labels each transition with the set
of variables that it writes,

– a guard function guard ∈ T → P(UVM × UVM ) that associates a guard with
each transition such that for any t ∈ T and (r, w) ∈ guard(t):
• dom(r) = read(t), i.e., transitions read the specified set of variables,
• dom(w) = write(t), i.e., transitions write the specified set of variables,
• for any v ∈ read(t): r(v) ∈ val(v), i.e., all values read should be admis-

sible, and
• for any v ∈ write(t): w(v) ∈ val(v), i.e., all values written should be

admissible.

UDPN is the universe of data Petri nets.

If guard(t) = ∅, then the guard of t is false and the transition can never
fire. RW (t) = {(r, w) ∈ UVM × UVM | dom(r) = read(t) ∧ dom(w) =
write(t) ∧ ∀v∈read(t) r(v) ∈ val(v) ∧ ∀v∈write(t) w(v) ∈ val(v)} denotes the
weakest guard possible. If guard(t) = RW (t), transition t can never block on
data. This corresponds to the true guard. Note that if read(t) = write(t) = ∅,
then guard(t) = {(∅, ∅)} corresponds to true.

The notion of bindings is essential for the remainder. A binding is a triplet
(t, r, w) describing the execution of transition t while reading values r and writing
values w. A binding (t, r, w) is valid if and only if (r, w) ∈ guard(t).

5 P(X) is the powerset of X, i.e., Y ∈ P(X) is and only if Y ⊆ X.



Table 1: Definitions of the guards of the transitions in Fig. 2. Variables and
transition names are abbreviated as described in Figure 1.

Transition Guard

Credit Request RW (a)

Verify {(r, w) ∈ RW (b) | 0.1 · r(A) < w(I) < 0.2 · r(A)}
Assessment {(r, w) ∈ RW (c) | r(V ) = true}
Register Negative Verification {(r, w) ∈ RW (d) | r(V ) = false ∧ w(D) = false}
Inform Requester RW (e)

Renegotiate Request {(r, w) ∈ RW (f) | r(V ) = false ∧ w(A) < r(A)}
Register Negative Request {(r, w) ∈ RW (g) | r(D) = false}
Open Credit {(r, w) ∈ RW (h) | r(D) = true}

A marking (M, s) of a data Petri net DPN has two components: M ∈ IB(P )
is the control-flow marking and s ∈ UVM with dom(s) = V and s(v) ∈ val(v) for
all v ∈ V is the data marking. The initial marking of a data Petri net DPN is
(Minit , init). Recall that init is a function that defines the initial value for each
variable.

A binding b = (t, r, w) is enabled in marking (M, s) of DPN , denoted as
(DPN , (M, s))[b〉, if each of its input places •t contains at least one token
(control-flow enabled), b is valid (i.e., the guard of t is satisfied: (r, w) ∈ guard(t)),
and s�read(t)= r (the actual values read match the binding).6

An enabled binding b = (t, r, w) may occur, i.e., one token is removed from
each of the input places •t and one token is produced for each of the output
places t• . Moreover, the variables are updated as specified by w. Formally: M ′ =
(M \ •t)] t• is the control-flow marking resulting from firing enabled transition
t in marking M (abstracting from data) and s′ = s ⊕ w is the data marking
where s′(v) = w(v) for all v ∈ write(t) and s′(v) = s(v) for all v ∈ V \ write(t).
(DPN , (M, s))[b〉(DPN , (M ′, s′)) denotes that b is enabled in (M, s) and the
occurrence of b results in marking (M ′, s′).

Figure 2 shows a Data Petri Net DPNex that models the same process as
represented in Figure 1 as BPMN diagram, and Table 1 illustrates the conditions
of the guards of the transitions of this data Petri net. The labeling function l
is such that the domain of l is the set of transitions of DPNex and, for each
transition t of DPNex, l(t) = t. In other words, the set of activity labels coincides
with the set of transitions.

Let σb = 〈b1, b2, . . . , bn〉 be a sequence of bindings. (DPN , (M, s))[σb〉(DPN ,
(M ′, s′)) denotes that there is a set of markings (M0, s0), (M1, s1), . . . , (Mn, sn)
such that (M0, s0) = (M, s), (Mn, sn) = (M ′, s′), and (DPN , (Mi, si))[bi+1〉
(DPN , (Mi+1, si+1)) for 0 ≤ i < n. A marking (M ′, s′) is reachable from (M, s)
if there exists a σb such that (DPN , (M, s))[σb〉(DPN , (M ′, s′)).

6 f �Q is the function projected on Q: dom(f �Q) = dom(f) ∩ Q and f �Q (x) =
f(x) for x ∈ dom(f �Q). Projection can also be used for bags and sequences, e.g.,
[x3, y, z2]�{x,y}= [x3, y] and 〈y, z, y〉�{x,y}= 〈y, y〉.



φf (DPN ) = {σb | ∃s (DPN , (Minit , init))[σb〉(DPN , (Mfinal , s))} is the set of
complete binding sequences, thus describing the behavior of DPN .

Definition 7 (Union of Data Petri Nets). Let DPN 1 = (SN 1, V 1, val1,
init1, read1,write1, guard1) and DPN 2 = (SN 2, V 2, val2, init2, read2, write2,
guard2) with V 1 ∩ V 2 = ∅. DPN 1 ∪ DPN 2 = (SN 1 ∪ SN 2, V 1 ∪ V 2, val1 ⊕
val2, init1 ⊕ init2, read3,write3, guard3) is the union such that
– read3(t) = read1(t), write3(t) = write1(t), and guard3(t) = guard1(t) if
t ∈ T 1 \ T 2,

– read3(t) = read2(t), write3(t) = write2(t), and guard3(t) = guard2(t) if
t ∈ T 2 \ T 1, and

– read3(t) = read1(t) ∪ read2(t), write3(t) = write1(t) ∪ write2(t), and
guard3(t) = {(r1⊕r2, w1⊕w2) | (r1, w1) ∈ guard1(t) ∧ (r2, w2) ∈ guard2(t)}
if t ∈ T 1 ∩ T 2.

We use the notation guard3 = guard1 ⊗ guard2 to describe this merge.

2.3 Event Logs and Relating Models to Event Logs

Next we introduce event logs and relate them to the observable behavior of a
data Petri net.

Definition 8 (Trace, Event Log with Data). A trace σ ∈ (UA × UVM ×
UVM )∗ is a sequence of activities with input and output data. L ∈ IB((UA ×
UVM × UVM )∗) is an event log with read and write information, i.e., a multiset
of traces with data.

Definition 9 (From Bindings to Traces). Consider a data Petri net with
transitions T and labeling function l ∈ T 6→ UA. A binding sequence σb ∈ (T ×
UVM×UVM )∗ can be converted into a trace σv ∈ (UA×UVM×UVM )∗ by removing
the bindings that correspond to unlabeled transitions and by mapping the labeled
transitions onto their corresponding label. l(σb) denotes the corresponding trace
σv.

Note that we overload the labeling function to binding sequences, σv = l(σb).
This can be used to define φ(DPN ): the set of all visible traces.

Definition 10 (Observable Behavior of a Data Petri Net). Let DPN
be a data Petri net. (DPN , (M, s))[σv � (DPN , (M ′, s′)) if and only if there
is a sequence σb such that (DPN , (M, s))[σb〉(DPN , (M ′, s′)) and σv = l(σb).
φ(DPN ) = {l(σb) | σb ∈ φf (DPN )} is the set of visible traces starting in
(Minit , init) and ending in (Mfinal , s) for some data marking s.

Definition 11 (Perfectly Fitting with Data). A trace σ ∈ (UA × UVM ×
UVM )∗ is perfectly fitting DPN ∈ UDPN if σ ∈ φ(DPN ). An event log L ∈
IB((UA ×UVM ×UVM )∗) is perfectly fitting DPN if all of its traces are perfectly
fitting.



Later, we will need to project binding sequences and traces onto subsets of
transitions/activities and variables. Therefore, we introduce a generic projection
operator ΠY,V (σ) that removes transitions/activities not in Y and variables not
in V .

Definition 12 (Projection). Let X be a set of transitions or activities (i.e.,
X ⊆ T or X ⊆ UA. Let Y ⊆ X be a subset and V ⊆ UVN a subset of vari-
able names. Let σ ∈ (X × UVM × UVM )∗ be a binding sequence or a trace
with data. ΠY,V (σ) ∈ (Y × (V 6→ UVV ) × (V 6→ UVV ))∗ is the projection
of σ onto transitions/activities Y and variables V . Bindings/events unrelated
to transitions/activities in Y are removed completely. Moreover, for the re-
maining bindings/events all read and write variables not in V are removed.
ΠY,V (L) = [ΠY,V (σ) | σ ∈ L] lifts the projection operator to the level of logs.

2.4 Alignments

Conformance checking requires an alignment of event log L and process model
DPN , that is the alignment of each single trace σ ∈ L and process model DPN .

The events in the event log need to be related to transitions in the model,
and vice versa. Such an alignment shows how the event log can be replayed on
the process model. Building this alignment is far from trivial, since the log may
deviate from the model at an arbitrary number of places.

We need to relate “moves” in the log to “moves” in the model in order to
establish an alignment between a process model and an event log. However, it
may be that some of the moves in the log cannot be mimicked by the model and
vice versa. We explicitly denote such “no moves” by �.

An alignment is a sequence of moves:

Definition 13 (Legal alignment moves). Let DPN = (SN, V, val, init,
read, write, guard) be a data Petri net, with SN = (PN ,Minit ,Mfinal) and
PN = (P, T, F, l). let SL = UA × UVM × UVM be the universe of events. Let
SDPN = T × UVM × UVM be the universe of bindings of DPN . Let be S�DPN =
SDPN ∪ {�} and S�L = SL ∪ {�}.

A legal move in an alignment is represented by a pair (sL, sM ) ∈ (S�L ×
S�DPN ) \ {(�,�)} such that
– (sL, sM ) is a move in log if sL ∈ SL and sM =�,
– (sL, sM ) is a move in model if sL =� and sM ∈ SDPN ,
– (sL, sM ) is a move in both with correct read/write operations if sM =

(t, r, w) ∈ SDPN and sL = (l(t), r, w) ∈ SL,
– (sL, sM ) is a move in both with incorrect read/write operations if sM =

(t, r, w) ∈ SDPN and sL = (l(t), r′, w′) ∈ SL, and r 6= r′ or w 6= w′.
All other moves are considered as illegal.

Definition 14 (Alignments). Let DPN = (SN, V, val, init, read, write, guard)
be a data Petri net and σ ∈ (SL)∗ be a event-log trace. Let ADPN be the set of
legal moves for DPN . A complete alignment of σL and DPN is a sequence
γ ∈ ADPN ∗ such that, ignoring all occurrences of �, the projection on the first
element yields σL and the projection on the second yields a σP ∈ φf (DPN ).



Table 2: Examples of complete alignments of σexample and N . For readability,
the read operations are omitted. Of course, read operations for any variable must
match the most recent value for that variable.

(a)

Event-Log Trace Process
(a, {(A,4000)}) (a, {(A,4000)})
(b, {(I,450),(V,false)}) (b, {(I,450),(V,true)})
(c, {(D,true)}) (c, {(D,true)})
(e, ∅) (e, ∅)
(f, {(A,5000)}) (f, {(A,3000)})
(b, {(I,450),(V,false)}) (b, {(I,450),(V,false)})
(d, {(D,false)}) (d, {(D,false)})
(e, ∅) (e, ∅)
(h, ∅) �
� (g, ∅)

(b)

Event-Log Trace Process
(a, {(A,4000)}) (a, {(A,5100)})
(b, {(I,450),(V,false)}) (b, {(I,511),(V,true)})
(c, {(D,true)}) (c, {(D,true)})
(e, ∅) (e, ∅)
(f, {(A,5000)}) (f, {(A,5000)})
(b, {(I,450),(V,false)}) (b, {(I,511),(V,false)})
(d, {(D,false)}) (d, {(D,false)})
(e, ∅) (e, ∅)
(h, ∅) �
� (g, ∅)

Table 2 shows two complete alignments of the process model in Figure 2 and
the log trace σex from Section 1.

In order to define the severity of a deviation, we introduce a cost function
on legal moves: κ : ADPN → R+

0 . This cost function can be used to favor
one type of explanation for deviations over others. The cost of each legal move
depends on the specific model and process domain and, hence, the cost function
κ needs to be defined specifically for each setting. The cost function can be
generalized to an alignment γ as the sum of the cost of each individual move:
K(γ) =

∑
(sL,sM )∈γ κ(sL, sM ).

However, we do not aim to find just any complete alignment. Our goal is
to find a complete alignment of σL and DPN which minimizes the cost: an
optimal alignment. Let ΓσL,N be the (infinite)set of all complete alignments of
σL and DPMN . The alignment γ ∈ ΓσL,DPN is an optimal alignment if, for all
γ′ ∈ ΓσL,N , K(γ) ≤ K(γ′). Note that an optimal alignment does not need to be
unique, i.e. multiple complete alignments with the same minimal cost may exist.

Let us consider again our example introduced above. Let us assume to have
a cost function κs such that κs(sL, sM ) = 1 if (sL, sM ) is a move in log or visible
move in process (i.e. sM =� or sL =� and sM corresponds to a labeled tran-
sition, respectively) or a move in both with incorrect read/write operations and
κs(sL, sM ) = 0 in case of move in both without incorrect read/write operations
or a move in model corresponding to an unlabeled transition. The alignment in
Table 2a is associated with a cost 6 whereas that in Table 2b with a cost 8.7

It follows that the former is a better alignment. As a matter of fact, it is also
an optimal alignment, although it is not the only one. For instance, any vari-
ation of such an alignment where the move for f is of the form (now including

7 They also include a cost of two accounted for incorrect read operations, not shown
in the alignments, which are caused by incorrect write operations.



read operations) ((f, {(A, 4000)}, {(A, 5000)}) (f, {(A, 4000)}, {(A, x)})})) with
2250 < x < 4000 corresponds to an optimal alignment, as well.

3 Valid Decomposition of Multi-perspective Models

In [6] the author defines valid decomposition in terms of Petri nets: the overall
system net SN is decomposed into a collection of subnets {SN 1,SN 2, . . . ,SN n}
such that the union of these subnets yields the original system net. A decom-
position is valid if the subnets “agree” on the original labeling function (i.e.,
the same transition always has the same label), each place resides in just one
subnet, and also each invisible transition resides in just one subnet. Moreover, if
there are multiple transitions with the same label, they should reside in the same
subnet. Only unique visible transitions can be shared among different subnets.

Definition 15 (Valid Decomposition for Petri nets [6]). Let SN ∈ USN

be a system net with labeling function l. D = {SN 1,SN 2, . . . ,SN n} ⊆ USN is a
valid decomposition if and only if:
– SN i = (N i,M i

init ,M
i
final) is a system net with N i = (P i, T i, F i, li) for all

1 ≤ i ≤ n,
– li = l�T i for all 1 ≤ i ≤ n,
– P i ∩ P j = ∅ for 1 ≤ i < j ≤ n,
– T i ∩ T j ⊆ Tuv (SN ) for 1 ≤ i < j ≤ n, and
– SN =

⋃
1≤i≤n SN i.

D(SN ) is the set of all valid decompositions of SN .

From the definition the following properties follow:

1. each place appears in precisely one of the subnets, i.e., for any p ∈ P :
|{1 ≤ i ≤ n | p ∈ P i}| = 1,

2. each invisible transition appears in precisely one of the subnets, i.e., for any
t ∈ T \ Tv(SN ): |{1 ≤ i ≤ n | t ∈ T i}| = 1,

3. visible transitions that do not have a unique label (i.e., there are multiple
transitions with the same label) appear in precisely one of the subnets, i.e.,
for any t ∈ Tv(SN ) \ Tuv (SN ): |{1 ≤ i ≤ n | t ∈ T i}| = 1,

4. visible transitions having a unique label may appear in multiple subnets, i.e.,
for any t ∈ Tuv (SN ): |{1 ≤ i ≤ n | t ∈ T i}| ≥ 1, and

5. each edge appears in precisely one of the subnets, i.e., for any (x, y) ∈ F :
|{1 ≤ i ≤ n | (x, y) ∈ F i}| = 1.

As shown in [6] these observations imply that conformance checking can be
decomposed. Any trace that fits the overall process model can be decomposed
into smaller traces that fit the individual model fragments. Moreover, if the
smaller traces fit the individual model fragments, then they can be composed
into an overall trace that fits into the overall process model. This result is the
basis for decomposing process mining problems.

Theorem 1 (Conformance Checking Can be Decomposed [6]). Let L ∈
IB(A∗) be an event log with A ⊆ UA and let SN ∈ USN be a system net. For any



valid decomposition D = {SN 1,SN 2, . . . ,SN n} ∈ D(SN ): L is perfectly fitting
system net SN if and only if for all 1 ≤ i ≤ n: the projection of L onto Av(SN i)
is perfectly fitting SN i.

In this paper, the definition of valid decomposition is extended to cover Petri
nets with data.

Definition 16 (Valid Decomposition for Petri nets with Data). Let
DPN ∈ UDPN be a data Petri net. D = {DPN 1,DPN 2, . . . ,DPN n} ⊆ UDPN is
a valid decomposition if and only if:
– for all 1 ≤ i ≤ n: DPN i = (SN i, V i, val i, init i, read i,writei, guard i) is a

data Petri net, SN i = (PN i,M i
init ,M

i
final) ∈ USN is a system net, and

PN i = (P i, T i, F i, li) is a labeled Petri net,
– D′ = {SN 1,SN 2, . . . ,SN n} ⊆ USN is a valid decomposition of

⋃
1≤i≤n SN i,

– V i ∩ V j = ∅ for 1 ≤ i < j ≤ n,
– DPN =

⋃
1≤i≤n DPN i.

D(DPN ) is the set of all valid decompositions of DPN .

Each variable appears in precisely one of the subnets. Therefore, there cannot
be two fragments that read and or write the same data variables:

⋃
t∈T i read i(t)∪

writei(t)
⋂ ⋃

t∈T j read j(t) ∪ writej(t) = ∅ for 1 ≤ i < j ≤ n. Moreover, two
guards in different fragments cannot refer to the same variable. If a transition
t appears in multiple fragments, then it needs to have a visible unique label
as shown in [6]. Such a uniquely labeled transition t shared among fragments,
may use, read, or write different variables in different fragments. Since DPN =⋃

1≤i≤n DPN i, we know that the overall guard = guard1 ⊗ guard2 ⊗ . . . ⊗
guardn. Without loss of generality we can assume that the first k fragments
share t. Hence, guard(t) = {(r1 ⊕ r2 ⊕ . . .⊕ rk, w1 ⊕ w2 ⊕ . . .⊕ wk) | (r1, w1) ∈
guard1(t) ∧ (r2, w2) ∈ guard2(t) ∧ . . . ∧ (rk, wk) ∈ guardk(t)}. Hence, in
a valid decomposition, the guard of a shared transition can only be split if the
different parts do not depend on one another.

Based on these observations, we prove that we can decompose conformance
checking also for Petri nets with data.

Theorem 2 (Conformance Checking With Data Can be Decomposed).
Let L ∈ IB((UA×UVM×UVM )∗) be an event log with information about reads and
writes and let DPN ∈ UDPN be a data Petri net. For any valid decomposition
D = {DPN 1,DPN 2, . . . ,DPN n} ⊆ UDPN : L is perfectly fitting data Petri net
DPN if and only if for all 1 ≤ i ≤ n: ΠAv(SN i),V i(L) is perfectly fitting DPN i.

Proof. Let DPN = (SN , V, val , init , read ,write, guard) be a data Petri net with
SN = (PN ,Minit ,Mfinal) and PN = (P, T, F, l). Let D = {DPN 1,DPN 2, . . .
DPN n} be a valid decomposition of DPN with DPN i = (SN i, V i, val i, init i,
read i, writei, guard i), SN i = (PN i,M i

init ,M
i
final) ∈ USN , and PN i = (P i, T i, F i,

li).
(⇒) Let σv ∈ L be such that there exists a data marking s such that (DPN ,



(Minit , init))[σv�(DPN , (Mfinal , s)). This implies that there exists a correspond-
ing σb with (DPN , (Minit , init))[σb〉(DPN , (Mfinal , s)) and l(σb) = σv. For all
1 ≤ i ≤ n, we need to prove that there is a σib with (DPN i, (M i

init , init i))
[σib〉(DPN i, (M i

final , s
i)) for some si. This follows trivially because DPN i can

mimic any move of DPN with respect to transitions T i: just take σib = ΠT i,V i(σb).
Note that guards can only become weaker by projection.
(⇐) Let σv ∈ L. For all 1 ≤ i ≤ n, let σib be such that (DPN i, (M i

init , init i))[σib〉
(DPN i, (M i

final , s
i)) and li(σib) = ΠAv(SN i),V i(σv). The different σib sequences

can be stitched together into an overall σb such that (DPN , (Minit , init))[σb〉
(DPN , (Mfinal , s)) with s = s1⊕s2⊕ . . .⊕sn. This is possible because transitions
in one subnet can only influence other subnets through unique visible transitions
and these can only move synchronously as defined by σv. Moreover, guards can
only be split in independent parts (see Definition 16). Suppose that t appears in
Ti and Tj , then guard(t) = {(ri⊕ rj , wi⊕wj) | (ri, wi) ∈ guard i(t) ∧ (rj , wj) ∈
guard j(t)}. Hence, a read/write in subnet i cannot limit a read/write in subnet
j. Therefore, we can construct σb and l(σb) = σv. ut

4 Strategies for Realizing Valid Decomposition

In this section we present two different strategies to instantiate the valid decom-
position definition over a Petri net with data presented in the previous section (cf.
Def.16). The strategies proposed are: 1) maximal decomposition and 2) SESE-
based decomposition The two strategies are based on partitioning the arcs of the
Petri net with data, i.e., control-flow arcs of the Petri net F , and data arcs for
variables result of the read and the write functions, R = {(v, t)|v ∈ read(t)} and
W = {(t, v)|v ∈ write(t)}. While the first strategy is devoted to finding subnets
of minimal size thus alleviating the complexity of analyzing the derived subnets,
the latter strategy is grounded in recent decomposition techniques focusing on
the identification of meaningful subprocesses [12,9,10].

4.1 Maximal Valid Decomposition

In [6] a strategy to decompose the overall Petri net into the minimal subnets
satisfying the valid decomposition definition without data was proposed. In this
section, we present a similar strategy for decomposing Petri nets with data:

1. Partitioning the arcs: The construction of the maximal decomposition is
based on partitioning the arcs. Each arc will end up in precisely one subnet.
The partitioning is done such that all arcs connected to a variable are in-
cluded in the same part. The same is done for the arcs connected to a place,
invisible or duplicate transitions, in order to preserve Def. 16.

2. Create and merge subnets if necessary : Once the partitioning is done, a sub-
net is created for each part. Whenever a unique visible transition is shared,
the guard of the original transition is split among these transitions. If this
splitting contradicts some of the requirements of Def. 16, the transitions are
merged (and subsequently the subnets).



n3
Verify

Register Negative 
Verification

Assessment

n2
Credit Request

Verify

Renegotiate

n1
Credit Request

Register Negative 
Verification

Inform Customers

Assessment

n4n4

n5
Inform Customers

Renegotiate

Open Credit Loan 

Register Loan Rejection Register Loan Rejection 

n6

Open Credit Loan 

Register Loan Rejection Register Loan Rejection 

Verify

Register Negative 
Verification

Open Credit Loan 

Assessment

Verification Decision

Register Loan Rejection Register Loan Rejection 

Credit Request

Verify

Renegotiate

Interests

Amount

Fig. 3: Maximal decomposition for the running example.

Figure 3 shows the result of applying the maximal-decomposition technique for
the Data Petri Net in Figure 2.

Decomposing an overall net into minimal subnets aims to reduce the compu-
tation time of checking its conformance, i.e., the simpler the subnets, the faster is
to check its conformance. This makes this technique a clear option when dealing
with large conformance instances. However, this maximal decomposition may
not be optimal from a conformance diagnosis point of view, i.e, the compo-
nents tend to be extremely simple and hence become meaningless (specially on
the control-flow, where typically a subnet may include only a pair of arcs). In
addition, a maximal decomposition may create a vast number of components,
reducing the comprehension of the decomposition, and moreover may increase
excessively the overhead for each component (e.g., creating the sublog for each
subnet). In the remainder of this section we propose a different decomposition
strategy in order to address these issues.

4.2 SESE-based Valid Decompositions

In the context of business processes, Single-Entry Single-Exit (SESE) components
have been recently identified as meaningful fragments of a process model [12,9,10].
In the aforementioned work only the control flow dimension was considered. In
the remaining of this section we propose to lift the SESE-based valid decompo-
sition to also incorporate data.

We will now informally describe the necessary notions for understanding
the proposed data-oriented SESE-based valid decomposition strategies described
below. For the sake of clarity, we will focus on the control flow to illustrate the
concepts, although the definitions will be extended at the end to also consider
data.

Given Petri net PN = (P, T, F, l), its workflow graph is the structural graph
WG = (V,E) with no distinctions between places and transitions, i.e., V = P∪T
and E = F . For instance, Fig. 4(b) reports the workflow graph of the Petri net
of Fig. 4(a) (corresponding with the control-flow part of the running example).
Given a subset of edges S ⊆ E of WG, the corresponding nodes S �V can be
partitioned into interior and boundary. Interior nodes have no connection with
nodes outside S�V , while boundary nodes do. Furthermore, boundary nodes can
be partitioned into entry (no incoming edge belongs to S), or exit (no outgoing



edge belongs to E′). S ⊆ E is a SESE of WG iff the subnet derived from S
has exactly two boundary nodes: one entry and one exit. Fig. 4(b) shows all
non-trivial SESEs8 of the Petri net of Fig. 4(a). For a formal definition we refer
to [12].

n1 n2 n3 n5 n6

Credit Request Verify

Register Negative 
Verification

Inform Customers

Renegotiate

Open Credit Loan 

Assessment
Register Loan Rejection Register Loan Rejection 

n4n4

a b

c

d
e

g

f

h

i

j

lk

m n

po

S1
S2

S8

S3

S4

S9

S5

S10

S7

S6

S1

S8 S2

S9 S10 S4 S3

S5

S6 S7

a b

m n o p k l

c d i j

e f g h

a) Petri Net

b) Workflow graph and SESEs

c) RPST

Fig. 4: A Petri net modeling the control-flow of the running example, its workflow
graph and the RPST and SESE decomposition.

The decomposition based on SESEs is a well studied problem in the liter-
ature, and can be computed in linear time. In [13,14], efficient algorithms for
constructing the Refined Process Structure Tree (RPST), i.e., an hierarchical
structure containing all the canonical SESEs of a model, were presented. Infor-
mally, an RPST is a tree where the nodes are canonical SESEs, such that the
parent of a SESE S is the smallest SESE that contains S. Fig. 4(c) shows the
RPST of the workflow graph depicted in Fig. 4(b). By selecting a particular
set of SESEs in the RPST (e.g., k-decomposition [9]), it is possible to obtain a
partitioning of the arcs. We refer the reader to the aforementioned work for a
formal description of the SESE-based decomposition.

To extend the previous definitions to also account for data, one simply has
to incorporate in the workflow graph the variables and read/write arcs, i.e., the
data workflow graph of a data Petri net (((P, T, F, l),Minit ,Mfinal), V, val , init ,
read ,write, guard) with data arcs R = {(v, t)|v ∈ read(t)} and W = {(t, v)|v ∈
write(t)} is DWG = (V,E) with V = P ∪ T ∪ V and E = F ∪ R ∪W . The
subsequent definitions after this extension (SESE, RPST) are analogous.

Similar to [9,10], we propose a SESE decomposition to analyze the confor-
mance of Petri nets with data, but considering data workflow graph instead.
Algorithm 1 describes the steps necessary to construct a SESE decomposition.
The arcs are partitioned in SESEs by means of creating the RPST from the
data workflow graph, and selecting a particular set of SESES over it. Once the
partitioning is done, a subnet is created for each part. Subnets contradicting

8 Note that by definition, a single edge is a SESE.



Algorithm 1 SESE-based Decomposition

1: Build data workflow graph DWG from F , R, W
2: Compute RPST from DWG
3: Compute SESE decomposition D from the RPST
4: Compute and merge subnets if necessary to preserve valid decomposition.
5: return valid decomposition where perspectives are decomposed altogether

some of the requirements of Def. 16 (e.g, sharing places, invisible or duplicate
transitions, variables, or transitions with non-splitting guards) are merged to
preserve the valid decomposition definition.

Figure 5 shows the decomposition for the running example of Fig.2, where
the RPST is partitioned using the 2-decomposition algorithm [9], i.e., SESEs of
at most 2 arcs9. The merging at step 4 of Algorithm 1 combines multiple SESE
fragments into larger ones, which are no more necessarily SESE, thus ensuring
to always obtain valid decompositions.

n3
Verify

Register Negative 
Verification

Assessment

n2
Credit Request

Verify

Renegotiate

n1
Credit Request

Register Negative 
Verification

Inform Customers

Assessment

n4n4

n5

Renegotiate

Open Credit Loan 

Register Loan Rejection Register Loan Rejection 

n6

Open Credit Loan 

Register Loan Rejection Register Loan Rejection 

Verify

Register Negative 
Verification

Open Credit Loan 

Assessment

Verification Decision

Register Loan Rejection Register Loan Rejection 

Credit Request

Verify

Renegotiate

Interests

Amount

Fig. 5: SESE-based decomposition for the running example, with 2-
decomposition.

5 Implementation and Experimental Results

We have implemented the two instantiations of the framework of data-aware
valid decomposition discussed in Section 4 as plug-ins for the open-source ProM
framework.10 ProM is a pluggable process mining framework. New process-
mining algorithms can be easily developed as ProM plug-ins, thus avoiding re-
implementing standard functionality.

Our implementation provides two outputs. The first type of output is shown
in Figure 6a. The data Petri net is split in a number of fragments according to
the decomposition’s instantiation of choice and, for the SESE-based, the value
chosen for parameter k. Each tab refers to a different fragment DPNi; in each

9 Although the SESEs have at most two arcs, this is not guaranteed for the final
subnets, i.e., some subnets are merged to preserve the valid decomposition definition.

10 http://www.promtools.org



(a) The visualization of the
alignments. Each tab refers to
a different fragment. Each se-
quence of triangle refers to the
alignment of a trace with re-
spect to that fragment, where
events referring to transitions
not present in the fragment are
removed.

(b) The projection of the deviations on the pro-
cess model. Due to implementation’s issues, vari-
ables are not visualized as triangles but as ovals.
We are currently working on fixing the visualiza-
tion.

Fig. 6: Screenshots of the two types of output returned by the operationalization
in the ProM framework.

tab, an optimal alignment is shown for each trace σ. In particular, we show
the alignment of SN and the projection of σ onto the transitions of N . Optimal
alignments are shown as a sequence of triangles, each representing an alignment’s
move. Each triangle is colored according to the move that it represents. The green
and white colors are used to identify moves in both without or with incorrect
write operations, respectively; yellow and purple are for moves in the log or in the
process, respectively. Finally, the gray is used for moves for invisible transitions.
When the user passes over a triangle with the mouse, the plug-in highlights the
two transition firings sL and sP associated with the move (sL, sP ). The value
0.97 associated with the trace is the fitness level, obtained by normalizing the
alignment’s cost between 0 and 1, where 1 indicates a zero cost (perfect fitness).
We refer to [5] for details.

The second type of output is obtained by projecting every alignment for
every fragment onto the data Petri net, as shown in Figure 6b. Transitions are
colored according to the number of deviations: if no deviation occurs for a given
transition, the respective box in the model is white-colored. The color shades
towards red as a larger fraction of deviations occur for transition t, i.e. the
number of moves in log, model or both with incorrect read/write operations for
t divided by the total number of moves for t. Something similar is also done for
variables: the more incorrect read/write operations occur for a variable, the more
the variable is shown with a colour close to red. This visualization specializes
what was proposed in [5] for the decomposition case. The main difference is that a
transition tmay appear in multiple fragments, sayDPN1, . . . , DPNn. Therefore,



Fig. 7: Computation time for checking the conformance of the data Petri net in
Figure 2 and event logs of different size. The Y axis is on a logarithmic scale.

an event for t in a trace σ is related to one move in n alignments, i.e. the
alignments of σ with DPN1, . . . , DPNn. To guarantee uniformity, the fraction
of deviations is normalized by dividing it by n, i.e. the number of fragments in
which t appears.

This output is extremely interesting from an end-user viewpoint as it allows
for gaining a helicopter view on the main causes of deviations.

The plug-in has been evaluated using the model in Figure 2 and with a
number of event logs that were artificially generated. In particular, we have gen-
erated different event logs with the same number of traces, 5000, but increasing
number of events, meaning that, on average, traces were of different length. To
simulate that, for each simulated process execution, an increasing number of
renegotiations was enforced to happen. Traces were also generated so as to con-
tain a number of deviations: the event logs were generated in a way that 25% of
transitions fired violating the guards.

Figure 7 shows the results of checking for conformance of the different event
logs and the process model, using both the maximal and the SESE-based de-
composition (with k = 2). The decomposed nets are the same as in Figures 3
and 5. Regarding the cost function, we assign cost 1 to any deviation (this could
be customized based on domain knowledge).

The results show that, for every combination of event log and process model,
the decomposition significantly reduces the computation time and the improve-
ment is exponential in the size of the event log. An interesting observation is that
the SESE-based decomposition is faster for small log sizes. Initially, this may
seem counterintuitive, since the SESE-based decomposition generates fragments
of greater size. Nonetheless, it is easy to explain. As discussed, we employed



the conformance checker reported on in [5], which includes a overhead related to
building one Integer Linear Problem for each trace. The SESE-based decomposi-
tion produces fewer data Petri nets to check the event-log conformance against.
Since the number of traces is always 5000, a larger number of data Petri nets
implies that the overhead is greater. If traces are not too long, the improvement
in performance due to a maximal decomposition is lower than such an overhead.

For this particular example the computation time for the SESE-based and the
maximal decomposition are comparable. This is due to the fact that the process
model is too small to show dramatic differences between the two decompositions.
The generation of synthetic event logs for large data Petri nets is far from being
trivial, since there is no tool to automatically generate them, as it exists for
normal Petri nets (e.g., [15]). However, in the future, we aim to perform extensive
evaluations using much larger process models (e.g., with dozens or hundreds of
transitions and process variables).

6 Conclusions and Future Work

Conformance checking is becoming more important for two reasons: (1) the vol-
ume of event data available for checking normative models is rapidly growing
(the topic of “Big Data” is on the radar of all larger organizations) and (2) be-
cause of a variety of regulations there is a need to check compliance. Moreover,
conformance checking is also used for the evaluation of process discovery algo-
rithms. Also genetic process mining algorithms heavily rely on the efficiency of
conformance checking techniques.

Thus far, lion’s share of conformance checking techniques has focused on
control-flow and relatively small event logs. As shown in this paper, abstracting
from other perspectives may lead to misleading conformance results that are too
optimistic. Moreover, as process models and event logs grow in size, divide-and-
conquer approaches are needed to still be able to check conformance and diagnose
problems. Perspectives such as work distribution, resource allocation, quality of
service, temporal constraints, etc. can all be encoded as data constraints. Hence,
there is an urgent need to support data-aware conformance checking in-the-large.

In this paper we demonstrated that data-aware decomposition can be used
to speed up conformance checking significantly. As future work we would like to
extend our experimental evaluation. For example, here we only used synthetic
data. Moreover, we would like to explore alternative decomposition strategies
using properties of the underlying data.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer (2011)

2. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Information System 33(1) (2008) 64–95



3. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking
using cost-based fitness analysis. In: Proceedings of the 15th IEEE International
Enterprise Distributed Object Computing Conference, (EDOC 2011), IEEE Com-
puter Society (2011) 55–64

4. Munoz-Gama, J., Carmona, J.: A General Framework for Precision Checking.
International Journal of Innovative Computing, Information and Control (IJICIC)
8(7B) (July 2012) 5317–5339

5. de Leoni, M., van der Aalst, W.M.P.: Aligning event logs and process models
for multi-perspective conformance checking: An approach based on integer linear
programming. In: Proceedings of the 11th International Conference on Business
Process Management, (BPM 2013). Volume 8094 of Lecture Notes in Computer
Science., Springer (2013) 113–129

6. van der Aalst, W.M.P.: Decomposing petri nets for process mining: A generic
approach. Distributed and Parallel Databases 31(4) (2013) 471–507

7. van der Aalst, W.M.P.: A General Divide and Conquer Approach for Process
Mining. In Ganzha, M., Maciaszek, L., Paprzycki, M., eds.: Federated Conference
on Computer Science and Information Systems (FedCSIS 2013), IEEE Computer
Society (2013) 1–10

8. van der Aalst, W.M.P.: Decomposing process mining problems using passages.
In Haddad, S., Pomello, L., eds.: Petri Nets. Volume 7347 of Lecture Notes in
Computer Science., Springer (2012) 72–91

9. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Conformance checking in
the large: Partitioning and topology. In: Proceedings of the 11th International Con-
ference on Business Process Management, (BPM 2013). Volume 8094 of Lecture
Notes in Computer Science., Springer (2013) 130–145

10. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Hierarchical conformance
checking of process models based on event logs. In: Proceedings of 34 Internation
Conference on Application and Theory of Petri Nets and Concurrency (PETRI
NETS 2013). Volume 7927 of Lecture Notes in Computer Science., Springer (2013)
291–310

11. Jensen, K., Kristensen, L.: Coloured Petri Nets. Springer Verlag (2009)
12. Polyvyanyy, A.: Structuring process models. PhD thesis, University of Potsdam

(2012)
13. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data

Knowl. Eng. 68(9) (2009) 793–818
14. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generaliza-

tion of the refined process structure tree. In: 7th International Workshop on Web
Services and Formal Methods. Revised Selected Papers. Volume 6551 of Lecture
Notes in Computer Science., Springer (2011) 25–41

15. Burattin, A., Sperduti, A.: PLG: A Framework for the Generation of Business Pro-
cess Models and Their Execution Logs. In: Business Process Management Work-
shops. Volume 66 of Lecture Notes in Business Information Processing. Springer
(2011) 214–219


