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Abstract

Communication standards developed in Europe, Japan and USA are not

compatible with each other. This is a profound drawback particularly

in the digital cellular telephony, where there is no common standard up to

now.

The variety of wireless standards leads to some disadvantages, therefore

the need for reconfigurability seems to be evident. A reconfigurable terminal

should be able to support different standards.

Reasonable integration of different standards may include standards,

which belong to the same family (e.g., GSM), but are developed in different

continents. Such terminals have been already produced and a broad offer

exists on the market.

A rather new approach of the standard integration is the combination

of different families of standards, for example between wireless data and

digital cellular telephony like UMTS with WLAN or HIPERLAN. In this

case, nearly all parameters defining a standard are different.

In the scope of this work the multistandard, reconfigurable terminal is

considered that supports the OFDM based WLAN standards (IEEE802.11

and Hiperlan/2) and the CDMA based UMTS FDD standard. Special con-

sideration has been made for the receiver of this terminal.

A reconfigurable hybrid architecture has been developed, rather than an

architecture using many parallel switchable transceivers. Additionally to the

hybrid architecture, a study on RF impairments is given.

The second part of this work handles with transistor physics and low

noise amplifier design for a reconfigurable receiver, defined earlier. Since the

small FET sizes of state of the art sub-micron RF-MOS-technologies have low

capacitance values, thus large inductors are needed for matching. Because

of theirs large dimensions they are placed off-chip. For this reason, the pad

capacitance can not be longer neglected in the design process. It is shown
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that the noise figure of low-noise amplifiers can be improved considerably

by a proper choice of passive components. A design methodology is intro-

duced, which reduces the equivalent noise resistance, and thus very good

noise performance can be achieved in spite of rather poor noise matching.

The measurements of the amplifier, in respect to the noise performance

and power consumption, show very good results, one of the best ever re-

ported. 0.76 dB noise figure and 12 dB gain were achieved at 2.14 GHz,

3.5 mA supply current and 1.2 V supply voltage.
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Chapter 1

Introduction

Decades of continuous development of wireless communication has

brought many standards. This is an ongoing process focusing on 3G-

and 4G- systems at the moment.

Although all existing wireless standards have their own particularities,

they belong to one of the four following groups: digital cordless telephony,

wireless data, analog cellular telephony and digital cellular telephony. They

cover the frequency range from 800 to 5800 MHz.

Unfortunately, standards developed in Europe, Japan and USA are not

compatible with each other. This is a profound drawback particularly in the

digital cellular telephony, where there is no common standard up to now.

This problem exists also for new WCDMA systems, where the standards

defined in Europe (e.g., UMTS) differ from the ones in USA and Japan.

Reasons for this incompatibility are: different needs of mobile users, different

frequency allocations for preceding standards, different interests of companies

and political constraints.

The variety of wireless standards leads to some disadvantages: manu-

facturers have a high effort with respect to development of many different

devices and systems for base stations and terminals. Providers and users

have additional costs because of higher base station complexity and the need

of more than one terminal (e.g., mobile phone) if international availability

is needed. The well-known dual or tri-band GSM mobile phones are not

really reconfigurable systems within meaning of this work, because they just

support very similar standards in different or even adjacent frequency bands.

Therefore the need for reconfigurability seems to be evident. A reconfig-

urable terminal should be able to support different standards. The principle

of reconfigurability presumes that only one standard will be used at a time,

but does not exclude the advanced idea of multi-usability, where the terminal

supports different standards in different networks at the same time.
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Reasonable integration of different standards may also include standards,

which belong to the same family (e.g., GSM) but are developed in different

continents. Such terminals have been already produced and a broad offer

exists on the market. These terminals support also a few frequency bands

but use very similar procedures for signal and channel coding.

A rather new approach of the standard integration is the combination

of different families of standards, for example between wireless data and

digital cellular telephony like UMTS with WLAN or HIPERLAN. In this

case, nearly all parameters defining a standard are different.

The development of such really reconfigurable systems is a challenging

matter because very innovative ideas, concepts and technologies are needed

to overcome the integration problems. Standardization-, system-, RF- and

baseband engineers have to work very close together, to find the optimal

system architecture. The optimization of the system performance can be no

longer performed on the base of the single function blocks optimization, but a

system simulation is needed. Only based on system simulations, the system

optimizations with respect to technical performance, power consumption,

dimensions, weight and cost will be possible.

This work copes with such demanding task, not only in high level system

concept but also in LNA design.

1.1. Scope of This Work

The following chapters provide extensive information about reconfig-

urable systems and LNA design guidelines. To achieve these goals, this dis-

sertation takes into consideration areas such as reconfigurability, transceiver

system simulation, device physics, noise optimization and finally LNA design.

Chapter 2 shows the demand of reconfigurability for near future systems.

For such reconfigurable systems the software defined radio and signal path

optimization techniques shall be used. Therefore, the digital and analog

part of the transceiver has to be optimized through system simulation. This

chapter shows also the reconfigurable receiver radio frequency architecture

that supports two standards. An impairments analysis based on system

simulations is also given, for this architecture.

Chapter 3 discusses passive devices realized on chip, and Chapter 4 the

submicron MOS transistor. In the latter chapter the short channel devices are

emphasized since they play a major role for current circuit designs. Besides
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of direct current (DC) characteristics, high frequency transistor behavior

is shown, together with noise models. This chapter shows also the four

noise parameters of the transistor as a function of its size. These results are

extensively needed in subsequent chapters of this thesis.

Chapter 5 gives a background for two-port noise theory. Various two-port

noise representations and their relationships are shown. The way of deriving

the four noise parameters from noise correlation matrix is shown. Moreover,

guidance for noise analysis of the circuit that consists of basic two-ports

connected together is given.

Chapter 6 shows design guidelines for LNAs in which the pad capacitance

is treated as a part of the amplifier. To the knowledge of the author, the

extensive study presented in this chapter is novel. Based on the approach on

two-port noise theory, It shows that pad capacitance have positive influence

on the amplifier noise characteristic. The LNA using the described design

methodology is designed, and the measured results are given in Chapter 7.

Although some problems has been reported, measured and simulated noise

performance is in good agreement. Finally, Chapter 8 concludes with a sum-

mary and suggestions for further improvements.

Several appendices provide more detailed explanation of certain subjects.

Appendix A introduces some issues with layout and on-chip implementation

of cascode amplifier. Appendix B gives an electrical chain matrix of a cascode

amplifier. Finally, Appendix C shows the case when the power and noise

matching in cascode amplifier leads to the same input matching network.





Chapter 2

Reconfigurable Systems

In the near future, communication systems will be required to perform

an increasing number of functions within reduced size, power, and weight

requirements and tight costs constraints. In a reconfigurable, software defined

radio (SDR) system it is even more the case due to the necessity to support

all the functionalities of two or more different systems within one hardware

architecture [1].

Because of these requirements dynamic signal path optimization (SPO)

becomes more and more important. SPO incorporates a variety of correc-

tion methods for radio frequency (RF)-related disturbances and mismatches,

which should maintain a good system performance despite of nonlinearities

and non-idealities of analog hardware elements. SPO is being carried out

in the digital baseband (BB) but under conditions defined by the analog

frontend (FE) configuration. By this way a higher precision is guaranteed

than in case of a control loop in the FE.

Due to the existence of a great number of standards covering a variety

of communication scenarios, reconfigurable multi-mode implementations for

mobile terminals gain on popularity. The SDR approach [2] emerges as a po-

tential answer to the trade-off between dynamic adaptation, reconfigurability

and technical feasibility. Unlike many standard dependent operations (i.e.

transmission techniques, modulation, coding), compensation of RF-related

effects is primarily determined by the physical nature of the phenomena, and

therefore predestinated for a joint implementation. In case of a transceiver

supporting WLAN and UMTS, several SPO methods have been studied in

order to achieve best possible performance of the complete system.

Orthogonal frequency division multiplex (OFDM) based IEEE 802.11a

and code division multiply access (CDMA) based UTRA frequency division

duplex (FDD) represent two different wireless systems using entirely different

air interface technologies. Despite of the differences, it is highly desirable to
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have an intelligent transceiver that can work seamlessly on both systems.

It is also feasible to involve particularly IEEE 802.11a and UMTS because

of their complementary character: wireless local area network (WLAN) can

provide high data rate in a stationary hot-spot situation and UMTS will take

over if high mobility is in demand.

Since the feasibility of an SDR supporting UMTS and WLAN is beyond

controversy as far as market relevance and application areas of both systems

are concerned, particular architectures and implementation solutions for the

target system must be studied (compare [3]).

2.1. General Concepts in Multi-standard Radios

The variety of communication systems existing today, with their different

applications, coverage areas, data rates, etc, raise the question about the

possibility of having multi-standard transceivers that are capable to operate

in any communication system, at any time. These super-transceivers would

definitely give the users another reality of mobility and flexibility. In addi-

tion, from the network point of view, the operators would also win another

perspective in the management of their links and services. However, the

provisioning of such a multi-standard scenario is not a trivial task and is

currently a diffused topic of research. It comprehends work on the neces-

sary network procedures (inter-system handover, inter-connection between

systems, etc) and the development of multi-standard transceivers.

In the present chapter the multi-standard transceiver architectures are

going to be discussed. The key-word when talking about multi-standard ar-

chitectures is reconfigurability. The multistandard terminal must be able to

be (re)configured according to the current application scenario. It should not

be forgotten that to keep the implementation convenient the existing hard-

ware resources must be as fast as possible [4]. In addition, the reconfiguration

procedure (intersystem-handover) have to be as fast as possible. Basically,

there are three types of reconfiguration architectures shown in Fig. 2.1.

2.1.1. One-Bit Reconfiguration

This reconfiguration scheme requires an independent baseband implemen-

tation for each standard. The incoming data stream is multiplexed to the

dedicated baseband processing chain and the processed data is given back

to the data sink. In this case, the amount of information needed for recon-



2.1. General Concepts in Multi-standard Radios 7

System 1

System 2

Data
Sink

(a) One-Bit Reconfiguration

System 1
System 2

Program

Data
Sink

(b) Software Defined Radio

System 1

System 2
Data
Sink

Parameters

(c) Software Reconfigurable Radio

Fig. 2.1. Reconfigurable architectures

figuration is at the minimum of one single bit. However, this approach fails

in sharing the existing hardware resources and for this reason is inadequate

for mobile devices where the power consumption and area play an important

role.
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2.1.2. Software Defined Radio

This is the most flexible way to provide reconfigurability to the

multi-standard transceiver. Here, (re)configuring the device has the mean-

ing of (re)programming the device to the various standards. The target of

this design-philosophy is to develop the transceiver architecture in such a

way that its operations and functions can be represented by programs that

run in a hardware platform [5]. This hardware platform must be able to

cope with the different transmit and receive algorithms and thus has to pro-

vide sufficient processing power and communication bandwidth. Therefore,

high-bandwidth communication systems such as 54 Mbit/s WLAN would

require a massively parallel implementation of the up-to-date microprocessor

and DSP resources in order to fulfill the performance requirements. This

would lead to high power supply consumption and area overhead, making

this approach uninteresting for mobile terminals. However, this is a long

term tendency in wireless world.

2.1.3. Software Reconfigurable Radio

In this approach [6], the similarities and differences between the stan-

dards will be firstly identified and parameterized. Then, the basic algorithms

underlying the systems are divided in classes according to their properties.

Dedicated hardware will be now developed for the required classes of algo-

rithms and the differences between the systems can be accommodated by

reconfiguration based on the defined parameters.

The last two architectures are somewhat similar. The software reconfig-

urable radio is a simplified version of a software defined radio architecture.

However, in recent publications the term software defined radio is used for

both architectures.

2.2. RF Receiver Requirements

2.2.1. UMTS FDD

In this section four third generation partnership project (3GPP) front-end

test cases are discussed briefly [7]. Based of these examples, it is demon-

strated how RF key parameters can be derived from the 3GPP specification.

The complete set of RF specific test cases for the 3GPP FDD mode can be

found in [8], [9], [10] and is further discussed in [11].
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In Tab. 2.1, common terms from the 3GPP specification used in the

following section are described. Unless otherwise stated, all parameters are

specified at the antenna connector of the receiver. They are defined using

the 12.2-kb/s down link (DL) reference measurement channel [8]. The to-

tal received powe spectrum density (PSD) Îor for all test cases described

in the following is composed of the actual data carrying signal (DPCH) to

be detected and the so-called common downlink channels (pilot channel,

synchronization channel, etc.), necessary for establishing and maintaining a

link between the base station and terminal. Therefore, DPCH Ec is usually

several decibels below Îor .

Tab. 2.1. Common 3GPP Parameters

DPCH Ec Average energy per chip of a dedicated physical

channel (DPCH)

Îor Received (DL) power spectral density measured at

the UE antenna connector

Ior Total DL transmit power spectral density at the

base station antenna connector

Ioac Power spectral density of the adjacent channel

measured at the EU antenna connector

Iouw Unwanted signal power level

OCNS Orthogonal Channel Noise Simulator, a mecha-

nism used to simulate users or control signals on

the other orthogonal channels of a DL

Reference sensitivity level test case

In 3GPP, the reference sensitivity is the minimum receiver input power

measured at the antenna port at which the bit error rate (BER) does not

exceed a value of 10−3. This test case determines the tolerable noise figure

(NF) of the receiver front-end. Îor and DPCH Ec are -106.7 dBm/3.84 MHz

and -117 dBm/3.84 MHz, respectively. The 12.2-kb/s reference measurement

channel used for this test case has a symbol rate of 30 ks/s and an spread

factor (SF) of 128, i.e., a spreading gain (SG) of approximately 21 dB. Let

us assume that the required bit energy to interference PSD ratio Eb,req/I is

5 dB [12], then the insertion loss (IL) for the baseband implementation is

2 dB, and that the coding gain (CG) is 4 dB (CG estimation is difficult for
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the used convolutional coder; 4 dB seems to be rather conservative). The

acceptable interference signal level after despreading (PI) then results in

PI = DPCH Ec + SG + CG − Eb,req

I
− IL. (2.1)

Inserting the above given values, we have PI=-99 dBm. This leaves a

margin for the front-end NF of

NF = PI − 10 log(kTB) = −99 dBm + 108 dBm = 9 dB (2.2)

with the Boltzmann constant k, the ambient temperature T = 300 K, and

the bandwidth B = 3.84 MHz.

Adjacent channel selectivity test case

Adjacent channel selectivity (ACS) is a measure of a receiver’s ability to

receive a W-CDMA signal at its assigned channel frequency in the presence

of an adjacent channel signal at a given frequency offset from the center

frequency of the assigned channel. ACS is the ratio of the receive filter at-

tenuation at the assigned channel frequency to the receive filter attenuation

at the adjacent channel frequencies. The ACS has to be better than 33 dB.

Simultaneously, the BER schould not exceed 10−3 for the following test pa-

rameters (see also Fig. 2.2): Îor and DPCH Ec are -92.7 dBm/3.84 MHz and

-103 dBm/3.84 MHz, respectively. The same reference measurement channel

with a symbol rate of 30ks/s and SG of 21 dB is used as in the reference

sensitivity level test case. The PSD of the adjacent channel signal ±5 MHz

away from the wanted channel is Ioac=-52 dBm/3.84 MHz. The signal levels

for the ACS test case are summarized in Fig. 2.2.

PI = DPCH Ec + SG + CG − Eb,req

I
− IL = −85 dBm. (2.3)

If the adjacent channel interference signal is treated as Gaussian noise-like

interference, the required ACS can be derived to be

ACS = Ioac − PI = −52 dBm + 85 dBm = 33 dB. (2.4)

Intermodulation test case

For the intermodulation test case, two types of interferers are specified:

a continuous wave (CW) interferer (Iouw1) and a W-CDMA interference sig-

nal (Iouw2). Both interferers have a power of 46 dBm, with the CW sig-
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Fig. 2.2. Signal levels for the ACS test case

nal spaced 10 MHz away from the wanted signal and the modulated in-

terferer having a spacing of 20 MHz. The power of the wanted channel is

DPCH Ec =-114 dBm/3.84 MHz and Îor =-103.7 dBm/3.84 MHz. The mod-

ulated interference signal consists of the necessary common channels for any

connection and 16 dedicated data channels with uncorrelated user data and

the channelization codes for data channels are chosen to optimally reduce the

peak-to-average ratio. These test-case conditions are illustrated in Fig. 2.3.

The sum of both interfering signals is transferred by means of a

third-order nonlinearity into the desired channel. Therefore, this test case

defines the required input intercept point of third order (IIP3) of the re-

ceiver. The acceptable noise-plus-interference level PN,I in the desired chan-

nel must not exceed -96 dBm/3.84 MHz if we assume a combined spreading

gain of 25 dB. Before determining the required IIP3, we have to assign the

total noise-plus-interference power PN,I to their sources. According to [13],

we assume the following: 50% noise power (-3 dB), 15% intermodulation

power (-8 dB), 15% blocking from CW interferer (-8 dB), 15% blocking from

modulated interferer (-8 dB), and 5% power from oscillator noise (-13 dB).

Furthermore, we neglect second-order products. From these assumptions,

we derive a tolerable level for the third-order intermodulation power of
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Fig. 2.3. Signal levels for the intermodulation test case

PI,3 = −104.2 dBm/3.84 MHz. The required IIP3 can be derived as

IIP3 =
2Iouw1 + Iouw2 − PI,3

2
= −16.9 dBm. (2.5)

The equations presented above exemplify how the signal levels are in-

fluenced by the despreading operation and by interference sources. Further

estimations like the above-mentioned ones can be found in [13], [9]. How-

ever, one should keep in mind that these results can only serve as coarse

estimates. What has been neglected in, e.g., the IIP3 calculation, is the

fact that (2.5) is based on pure sinusoidal signals. However, the IIP3 of a

nonlinear building block with respect to a W-CDMA signal is different from

the IIP3 for sinusoidal signals [14]. A second point neglected in the above

estimation is the fact that the modulated interference signal is a W-CDMA

signal spread with other orthogonal variable spreading factor (OVSF) codes

than the wanted signal. Depending on the preserved orthogonality between

signals that are spread with different codes, this type of interference can

behave strongly different to the Gaussian noise model, which is often used

for CDMA signals. These simplifications make the above computation of the

required IIP3 only to an estimation. Furthermore, the actual CG has to be
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simulated to achieve realistic values. Altogether, this leads for certain test

cases to the necessity of an accurate computer-aided system design using an

appropriate combination of commercial baseband and microwave simulation

tools like COSSAP, SystemC and ADS. These tools, in some cases, have to

be backed up with self-written user-defined codes. The maximum input level

test case is such an example.

Maximum input level test case

The maximum input level test case defines the maximum input power at

the antenna port of the mobile station at which a coded BER of at least 10−3

must be achieved. According to the 3GPP specifications [8], the majority of

the interference consists of a signal derived from a so-called orthogonal chan-

nel noise simulator (OCNS). This signal is used to simulate other user and

control signals on the orthogonal channels in the downlink. Îor is specified

to be -25 dBm/3.84 MHz with the wanted user signal level being 19 dB

below. If we assume the interference coming only from the common chan-

nels and the OCNS and perform the same simplified estimations, as in the

above-described test cases, we would require a combined spreading and CG

of 26 dB to achieve the necessary Eb/I of 7 dB for a BER of 10−3. However,

the system simulations show different results [15].

It proves a fact that only with system simulation full and adequate re-

ceiver requirements can be obtained. In this case the 1-dB compression point

(P1dB ) of the receiver has to be better than -20 dBm.

Other front-end specification

The font-end receiver specifications do not fully describe fully the receiver,

because signal impairments play an important role, too. Impairments have

their origin in hardware components. However, only system simulations that

connect the hardware and software processing chain can define the maximum

level of allowed signal impairments. Signal impairments are discussed later in

this work. They are noticed here, to emphasize the need of system simulation

in receiver design.

2.2.2. WLAN

The IEEE 802.11a standard [16] and Hiperlan/2 standard use the fre-

quency bands shown in Fig. 2.4.
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Fig. 2.4. Signal bandwidth for WLAN standards

Although the medium access control (MAC) layers for HiperLAN2 and

802.11a differ significantly, performance requirements for the RF signal pro-

cessing blocks are quite similar [17], [18]. This commonality concerns similar

frequency bands, data rates, and intended deployment scenarios. Conse-

quently, it is possible for a single receiver design to comply with both sets of

specifications. To determine the precise target values, we first compute the

specifications for both HiperLAN and 802.11a separately, and select the more

stringent of the two in every case. Here we reduce the specification set to

frequency range, noise figure, maximum input signal level (or input-referred

P1dB ), and limits of spurious emissions.

Wireless LAN systems require receiver architectures with wide dynamic

range[19], [20], [21], [22]. When a transmitter and receiver are close to each

other, the received signal strength can be as high as 20 dBm. A highly linear

receiver is needed to accommodate such strong signals. On the other hand,

the received signal can be quite weak due to fading. The receiver must be

sensitive enough to detect signals as small as -148 dBm/Hz. (i.e., -74 dBm

for a 24 MHz bandwidth signal [7]). To have a predetection signal-to-noise

ratio (SNR) of at least 12 dB, the overall noise figure of the receiver must be

better than

NF = −148 dBm/Hz − 12 dB − (−174 dBm/Hz) = 14 dB (2.6)

where 174 dBm/Hz is the available noise power of the source. This noise
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figure is readily achievable in CMOS with a reasonably low power consump-

tion.

Since the noise figure of the receiver is defined, other parameters can

be derived. The P1dB can be derived as maximum input power at the re-

ceiver antenna. This power is -20 dBm and -30 dBm for HIPERLAN/2 and

IEEE802.11a, respectively. The receiver that can support both standards

should have P1dB > −15 dBm, with a small 5 dB margin.

Input intercept point of second order (IIP2) and third IIP3 can be de-

rived from adjacent and non adjacent channel rejection specifications and

blocking characteristics. The adjacent and non adjacent channels are shown

in Fig. 2.5.

Wanted channel

Adjacent channel

Non–adjacent channel

Frequency

Fig. 2.5. Adjacent and non-adjacent channels

Since for both standards different blocking levels (BL) are defined as well

as different channel rejection specification they have different requirements

for the IIP2 and IIP3. It these parameters are defined as

IIP2 = Pin + SNR + 2BL (2.7)

and

IIP3 =
2Pin + SNR + 3BL

2
(2.8)

where Pin is the input power, 3 dB above sensitivity level, by definition.

Taking the most restrictive values the receiver that supports both standards

should have at least 6 dBm of the IIP2 and at least -7 dBm of the IIP3.

In both WLAN systems the phase noise of the oscillator is important,

since the systems are wide band. This is because the phase noise of the

receiver oscillator(s) is translated into the IF passband of the receiver by a

strong accompanying signal. This phenomenon is called reciprocal mixing,



16 Chapter 2. Reconfigurable Systems

and is also described later in this work as an important source of signal

impairment.

Typically, phase noise performances of the oscillators used in low cost

WLAN equipments are in the order of -120 dBc/Hz at 1 MHz offset, with

noise floors of around -140 to -150 dBc/Hz. In any system consideration,

transmitter and receiver phase noise must be take into account, although

for convenience in calculation, it is easier to assume a clean transmitter and

degrade the receiver performance by 3 dB: this assumes equal phase noise

performance between transmitter and receiver. However, the flexibility of

WLAN systems means that precise calculations are impossible, but first order

approximations are nevertheless useful in determining the magnitude of the

effects of particular parameters.

From the view of a multiple signal environment, the dominant limiting

parameter of receiver performance seems to be phase noise, rather than gain

compression or intermodulation. Even where the phase noise performance of

the receiver is adequate, the assumption that transmitters will be of equal

performance is not necessarily valid when considering the multiplicity of of-

ferings from various vendors.

The effects of phase noise in WLAN standards are devastating, insofar as

these effects are bandwidth related. Considered WLAN systems will typically

have a noise bandwidth in the order of 25 MHz, so that even a -140 dBc/Hz

noise floor will produce noise at -66 dBc. Thus, a -20 dBm signal will lead

to a noise floor some 12 to 15 dB above kTB level.

2.3. Reconfigurable RF Receiver Architecture

A high diversity of solutions regarding the analog processing of the RF

signal is available on the market. The obvious trend is towards the reduction

of the number of functional blocks needed and total integration of the analog

part together with the baseband components on a single chip. This is the

idea of the so-called system on a chip (SoC) approach.

The classical architecture used since decades is the heterodyne type pre-

sented in Fig. 2.6. The RF signal band is first down-converted to an interme-

diate frequency (IF) and in a second step down-converted to the baseband

by the I/Q demodulator. On the one hand, due to the high requirements

regarding particular components, especially an image reject filter, some com-

ponents can hardly be integrated and have to be placed off chip. On the
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other hand, heterodyne receivers offer advantages with respect to sensitivity,

selectivity and intermodulation behavior over other solutions.

It is important, too, that such architectures can easily be implemented

at very high RF frequencies. Therefore, the heterodyne architecture is often

used for standards which work at relatively high frequencies like IEEE802.11a

or HIPERLAN/2 ([23], [24]). Heterodyne architecture has also some limi-

tations. However, they can be overcome. This architecture is not a good

solution as far as reconfigurability is concerned, because external filters can-

not be combined as bandwidth varies for the various modes. Fortunately, a

lot of drawbacks can be limited, when the improved architecture [25] is used.

Band
select

LNA

Image reject
filter

LO1

LO2

RF
mixer IF filter

Mixer

Mixer

90o
VGA

VGA Low
pass

Low
pass

I

Q

AD

AD

Fig. 2.6. Heterodyne receiver architecture

The homodyne receiver shown in Fig. 2.7 has gained in popularity in the

recent years due to the overcoming of its principal challenges like the DC

offset problem or the LO leakage [26], [27], [28]. In this receiver type, the

RF signal channel is mixed with an LO frequency that is equal to the carrier

frequency and thus, IF is equal to zero. For this reason this architecture is

also called zero-IF (ZIF) or direct conversion receiver (DCR) [26]. The direct

conversion architecture offers a number of advantages due to its simplicity,

the possibility of a monolithic integration as well as the lack of image related

problems [29]. Superior integration is given by the fact that no external IF

filters are needed. It is also characterized by a smaller number of functional
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blocks than the heterodyne receiver. Other resulting qualities are low power

consumption, lower chip area and also lower production costs.
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Fig. 2.7. Homodyne receiver architecture

Apart from the already mentioned advantages, the ZIF architecture has

also some drawbacks. First of all, because of direct-conversion, the second

order intermodulation (IP2) requirements for the receiver are high. Sec-

ond, analog modules running at high frequencies suffer from I/Q imbalance.

Moreover, low insertion loss passive filters are not available at baseband,

and therefore active filters have to be used [30]. This leads to the fact that

receiver noise can become a problem. These problems are rather uncritical for

broadband baseband signals, so zero-IF is a very good candidate for UMTS or

WLAN receivers (2 or 10 MHz bandwidth). All problems enumerated above

are easier to overcome for lower RF frequencies, but the world tendency is

to use DCR receivers even for high frequency [31], [32].

It is worth to mention that another receiver type, the low-IF architecture,

gains more and more on significance. Although this architecture could also be

regarded as a potential candidate for a multi-mode receiver, low-IF structures

work well for rather narrowband baseband signals. As mentioned before, in

our case, wide band signals are used in both standards.

Neither the homodyne nor the heterodyne architecture leads to the re-

quired reconfigurability with respect to integration level, power consumption,

components design, etc., Therefore, after extensive studies of both architec-

tures [33], we propose a reconfigurable solution shown in Fig. 2.8. A few

months ago, similar solution has been published [24]. Although our solution

was suggested almost three years ago, it shows advantages with respect to
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component reuse. The objective drawback of our architecture is, that it has

not been fully integrated, yet.
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Fig. 2.8. Reconfigurable receiver architecture

The hybrid architectures combines both heterodyne and homodyne ar-

chitectures [34]. The homodyne receiver is chosen for the UMTS and the

heterodyne receiver for the WLAN standard. Such a hybrid solution does

not support both standards at the same time, leading to a reconfiguration

with downtime scenario. It means that to change the standard, power-off

power-on sequence is needed.

In the above mentioned architecture, advantages of homodyne and het-

erodyne architectures are combined. Direct conversion receiver is used by the

low frequency standard UMTS (2 GHz), therefore its well known drawback,

I/Q imbalance, is decreased. On the other hand, high frequency standard

WLAN (5 GHz) uses the heterodyne architecture, which gives good leakage

rejection between RF and local oscillator (LO) port, and good selectivity.

This hybrid architecture provides the maximum number of reusable func-

tional blocks by setting the IF band of the WLAN receiver very close to the

RF band of the UMTS receiver. This way, the receiver chain behind the first

WLAN mixer uses the same functional blocks for both standards. The active

standard is chosen by the user through control and configuration buses. The

configuration bus determines which signal path will be processed, whereas

the control bus sets the functionality parameters for the implied functional

blocks. The unused functional blocks, like the UMTS low noise amplifier



20 Chapter 2. Reconfigurable Systems

(LNA) in WLAN mode, are idled to save battery power. Both buses actually

represent digital signals coming from higher layers of the BB part of the

system.

Another advantage of this solution is the rational application of the LO

frequencies. The heterodyne receiver uses the same LO frequency for both

down-conversion stages, thus producing an IF at half of the RF input fre-

quency [25]. That means a LO frequency in the range 2.5 – 2.9 GHz for

WLAN. Moreover, in this solution the image band is centered around the

zero frequency and is highly suppressed by the antenna, channel filter and

LNA, therefore eliminating the need for external image reject filters. For the

UMTS homodyne architecture, the LO frequency is, on the other side, in the

range 2.1 – 2.2 GHz. This arrangement of LO frequencies offers the possibility

of using a common reconfigurable LO, with a relatively narrow tuning range.

To cover both standards, the voltage controlled oscillator (VCO) should work

in the range from 2.1 GHz up to 2.91 GHz, giving a differential quadrature

signal (90o phase shift).

There are two commonly used ways for generating the quadrature signal.

In the first method, the VCO is used, which works nominally at a frequency

two times higher than needed [35], [36]. Then, the VCO output signal [37]

is divided by two in a frequency divider which also introduces 90o of the

phase shift in the output signals. In our case, this method leads to the VCO

operating in the frequency range from 4.2 GHz up to 5.82 GHz. Despite the

two gaps in this range, the design of the such VCO can be challenging.

Therefore, a quadrature VCO (QVCO) is used [38]. This oscillator con-

sists of two identical oscillators connected together in such way, that it gen-

erates the quadrature output signal. It is possible to cover the whole tuning

range using only one reconfigurable QVCO [39].

The feasibility of a reconfigurable VCO is not the only argument for

the half IF heterodyne receiver. Another advantage is given by the fact

that the image band is centered around the zero frequency. This frequency

band is highly suppressed by the antenna, channel filter and LNA, therefore

eliminating the need for external image reject filters.

An advantage of the heterodyne WLAN receiver over the direct conversion

solution is the fact that the LO – RF leakage can be rejected better by the

LNA and antenna selectivity, avoiding the re-radiation problem that may

occur in this way. There are, however, some problems that one must deal

with in the heterodyne receiver. First, the flicker noise of the WLAN LNA is,
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Fig. 2.9. Image band up-conversion for WLAN receiver

as depicted in Fig. 2.9, up-converted into the IF band and corrupts the signal.

Depending on the transistor size, the flicker noise of the LNA may have a

corner-frequency of several megahertz, so that the signal-to-noise (SNR) ratio

of the WLAN signal despite its 20 MHz band may degrade considerably. In

case of an active mixer topology, the mixer input stage will contribute along

with the LNA to the flicker noise level. Therefore a resistive mixer should be

the best solution in order to minimize the flicker noise level [40]. In this case

a capacitive coupling between the LNA and the first WLAN mixer will solve

the image problem. Another problem may appear in case of poor isolation

between the LO and IF ports of the first WLAN mixer. In this case, the

LO carrier may fall into the center of the IF band. As an effect, sensitivity

problems may arise, making a double balanced mixer topology necessary to

assure the best isolation values. Another problem which also concerns the

I/Q demodulator mixer is the high linearity required for the mixer in absence

of the channel select filter in the IF band. All these problems have to solved.

2.4. LNA Requirements

Having finished the studies on system simulations and system require-

ments, the system requirements have to be translated into specifications for

each particular component [41]. It means, that all functional blocks shown

in Fig. 2.8 has to be fully specified in respect to small signal, large signal and

noise performance. Proposed reconfigurable architecture has two separate

LNAs for UMTS and WLAN standards. The set of requirements for the

UMTS LNA are collected in Tab. 2.2.
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Tab. 2.2. Specification for UMTS low noise amplifier

Parameter Value Unit

Frequency 2110 – 2170 MHz

Input power level -110 – -28 dBm

Input impedance 50 Ω

S11 < -10 dB

Gain 13 dB

Noise Figure < 3 dB

Input P1dB -17 dBm

IIP3 -7 dBm

Power dissipation 7 mW

2.5. RF Related Impairments

Despite of advanced sub-micron technologies and several particular solu-

tions (c.f. [42]), the designer still has to struggle through trade-offs, tech-

nology constrains and increasing requirements. As an effect, the receiver

components, even the best available, still show non-ideal behavior.

Since the receiver FE contains non-ideal components, the overall FE per-

formance is affected [43]. Impairments appear at the receiver output signal,

and handicap its decoding [44], [45].

This problem is ubiquitous and standard independent. However, the

maximum level of impairments differs for various standards. In case of a

reconfigurable receiver, the impairments should not exceed the limits defined

for the more restrictive standard.

For further impairments analysis, it can be assumed that the hybrid re-

ceiver is a homodyne receiver, which receives a high frequency modulated

signal r(t). In this case, when the impairments of heterodyne architecture

should be taken into account, the r(t) signal has to be improved. Due to this

assumption, impairments stem mainly from the common part of the hybrid

receiver.

Once again, this part is followed by an appropriate down-converting stage

in a heterodyne receiver, whereas it constitutes the only down-converting

stage in a homodyne receiver. Since it can be found also in a Low-IF receiver

architecture, this circuit depicts the common stage of every receiver used

nowadays. Thus, next considerations are applicable to almost all receivers.

The common part of the receiver depicted in Fig. 2.8 consists of the I/Q
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demodulator (mixers, LO, phase shifter) and amplifiers with filters for each

baseband analog branch. The LO produces a reference signal for the receiver

and provides the channel select function. The phase shifter connected to the

LO splits the LO signal into two signals with 90o phase shift between them.

The LO consist of a voltage controlled oscillator, which defines its frequency

together with reference oscillator and a phase locked loop (PLL).

Since the power of the RF signal may vary in time, the gain of the variable

gain amplifiers (VGA) depend on the RF input signal level. Therefore, the

VGA delivers a constant power level at its output. Both filters restrict the

frequency range of the baseband signal and filter adjacent, unwanted fre-

quency bands and the interferers produced by nonlinearities in the receiver.

These filters can also remove the DC component from the baseband signal.

Due to the non-deal components, the following impairments may occur:

frequency offset, phase noise, direct current (DC) offset, I/Q imbalance and

other imperfections.

Generally, the high frequency carrier modulated signal at receiver input

can be expressed as [29]

r(t) = ma(t) cos[2πfc + mp(t)] (2.9)

where fc is the carrier frequency, ma(t) is the amplitude modulation and

mp(t) is the phase modulation of the signal.

The signal

z(t) = ma(t)e
jmp(t) = zI(t) + jzQ(t) (2.10)

contains all the information and it is called the complex envelope of the

signal.

Due to quadrature demodulation, the received signal r(t) is

down-converted and divided into real and imaginary parts. The local LO

signal xLO(t) can be simplified to:

xLO(t) = cos(ωLOt) − jg sin(ωLOt + φ), (2.11)

where φ is the phase mismatch between I and Q signal and g the amplitude

mismatch factor. fLO = ωLo

2π
denotes the LO frequency. Generally, the phase

mismatch may have a considerable value, and g is bound to be very close to

one.

In the following subsections, we focus on these impairments, show their

sources and possible ways of avoiding them. We also search for implemen-

tation solutions which minimize these impairments. Unfortunately, not all
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of them can be removed in the FE, thus the cooperation with the baseband

(BB) in impairments cancellation is inevitable and necessary. This can be

done if signal path optimization approach [46] is used.

2.5.1. Frequency Offset

In the UMTS and WLAN systems the information is transmitted using

frequency channels. Each frequency channel is centered at a particular fre-

quency (called carrier frequency) and occupies a predefined bandwidth. To

retrieve the information placed in the channel, one has to shift down the

carrier frequency to zero (2.9).

In order to receive information which is being transmitted through a

channel with carrier frequency fc at the antenna, the receive frequency has

to be equal to fc. Due to the non-ideal oscillators, obtaining these frequencies

to be equal to each other is not a trivial task, and a sort of impairments called

frequency offset occurs.

Ideal Actual

fLOfcfLO = fc
f f

ff 00

Fig. 2.10. Frequency offset phenomenon

According to that and (2.10), the BB equivalent signal at the FE output

(BB input) can be expressed as

zf (t) = z(t)ej(2πfot+Θ) + n(t)ej(2πfot+Θ) (2.12)

where fo = |fLO − fc| for the homodyne case and |2fLO − fc| for the het-

erodyne case. The n(t) term denotes additive white Gaussian noise, and

Θ stems from the phase difference between transmitted and received signal
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and is responsible for twist of the constellation diagram. In other words, the

constellation diagram rotates with angle velocity depending on the difference

between the transmit and receive frequency.

In case of a WLAN system, the frequency offset disturbs the orthogonality

between the subcarriers causing intercarier interference (ICI). The character-

istics of the ICI are similar to white Gaussian noise and lead to degradation

of the SNR.

Two frequency offset situations are depicted in Fig. 2.10. The first one

shows an ideal case of fLO = fc, The other one shows he consequences of

frequency offset in a pictographic, a bit exaggerated way.

The frequency offset is responsible for the rotation of the constellation

diagram. When the frequency offset is constant, speed of rotation is also

constant. This phenomenon can be also interpreted as an additional phase

shift, which is added to the signal at each sampling time.

2.5.2. Phase Noise

In contrast to the frequency offset, which fluctuates rather slowly, quick

changes of the LO frequency may also appear (variable fo in (2.12)). Since

the changes are random and result in unpredictable phase shifts, they are

called phase noise. The LO generates also amplitude fluctuations, but the

amplitude noise can be suppressed effectively by mixers as described before,

so that in the end only the phase noise has a considerable influence on the

quality of the FE signal path.

Two problems concerning LO phase noise should be taken into account.

First, if any large blocking signal close to the wanted signal appears at the

antenna receiver input, LO phase noise will appear at the IF due to a recip-

rocal mixing phenomenon. The signal to noise ratio will be automatically

decreased by this way. Second, random changes of the LO frequency, even

without the blocking signal, decrease the SNR, too. This case is also discussed

in section 2.2.2

Phase noise induces reciprocal mixing at the receiver [47]. The receiver

LO down-converts the RF carrier of the desired signal as well as the interferer,

to a lower frequency. Ideally, the down-conversion should not spread the

interference to the desired signal frequency. However, in the mixing process,

phase noise in the LO modulates the interfering signal and can generate

significant interference in the desired signal as shown in Fig. 2.11.
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Fig. 2.11. Reciprocal mixing; the wanted signal suffers from significant noise

due to the tail of the interference.

Deployment of a more precise LO is the only feasible way to limit phase

noise in the FE. Actually, poor phase noise performance affects the FE func-

tionality and triggers further problems.

2.5.3. Direct Current Offset

The DC offset is an immediate consequence of the direct conversion pro-

cess in zero-IF and near-zero-IF receivers [48]. It can be expressed mathemat-

ically, by adding a constant value to BB signal components (2.10). Basically,

the DC offset can be classified into two types [49]:

— Static type, caused by the LO leakage back into the antenna port of the

transmitter or by circuit imbalances. This type is most common and

varies only slowly. It is often considered fixed over a packet duration.

Therefore, this type can be compensated simply by passing the signal

through a running mean operation.
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Fig. 2.12. Sources of DC errors in homodyne receivers
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— Dynamic type, resulting from the signal leakage from the RF input to

the LO. Combined with the circuit imbalances and nonlinearity within

the mixer, this type of DC offset causes second order intermodulation

distortion within the mixer

Due to the substantial influence of the I/Q imbalance and the DC offset

on the data transmission performance it is an important task to find an

adequate solution to compensate the described mismatch. Fortunately that

can be done in BB part of the receiver.

2.5.4. I/Q Imbalance

The main source of I/Q imbalance is the final stage of the receiver’s analog

part. Mixers, filters and amplifiers contribute to the I and Q mismatch,

because of their non equal gains and group delays. Significant contributors

may also be found in the digital part of the receiver. The main reason of

phase imbalance is the phase shifter. Main amplitude imbalance contributor

is a non equal gain in the I and Q signal paths. However, these impairments

can also originate from the transmitter site, either a base-station or an access

point in case of UMTS or WLAN, respectively.

An analytical description of the I/Q imbalance phenomenon may be ob-

tained by processing (2.11) in a way described in [50]. It leads to the following

form of the BB signal delivered by the receiver:

x(t) = zI(t) + j (g cos(φ)zQ(t) − g sin(φ)zI(t)) , (2.13)

where z(t) = zI(t) + jzQ(t) is the BB equivalent of the signal r(t) received

at the antenna.

Equation (2.13) describes I/Q impairments in a system with solely time

domain signal processing. OFDM based systems must be considered sepa-

rately.

Let Z(f) and X(f) denote the frequency domain representations of the

original and filtered signal, respectively. The output signal X(nfs) may be

expressed as a function of Z(nfs), where fs = 1
∆ts

stands for the sampling

frequency. After expressing z(k∆t) as inverse fast fourier transformation

(IFFT) of Z(nfs), inserting the result into (2.13) and computing fast fourier

transformation (FFT), then splitting the exponential terms in their real and

imaginary parts and taking advantage of the sum orthogonality, the following
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equation appears:

Xn = Zn +
1

2

[

(1 − g · cosφ)
(

Zn − Z∗
L−n+1

)

−jg · sinφ
(

Zn + Z∗
L−n+1

)]

, (2.14)

where L − n + 1 denotes a position symmetrical to n within the discrete

fourier transformation (DFT) (or FFT) frame characterized by the length L.

To simplify the equation, X(nfs) and Z(nfs) were referred to as Xn and Zn,

respectively.

Phase and amplitude impairments of an I/Q architecture are standard

independent. However, OFDM based systems suffer more from imbalances

than other communication systems due to a particular form of the distorted

signal [51].

The differences between I/Q imbalance impact on a single carrier time

division multiply access (TDMA)/frequency division multiply acces (FDMA)

or CDMA system compared with an OFDM based one can be found in [51].

Equation (2.14) describes the influence of I/Q imbalance on multi carrier

OFDM systems for L > 1 and single carrier systems for L = 1. Further

observations may be derived from the analytical model for OFDM based

systems:

— The FFT length has no relevance for I/Q imbalance,

— for each modulation symbol, the resulting constellation consists of the

same number of points as the order of the modulation scheme because

that is exactly the number of different Z∗
L−n+1 signals that may exist,

— I/Q architecture is very sensitive to amplitude imbalance due to the g ·
cosφ term,

— regular “chessboard-like” patterns appear for quadrature amplitude mod-

ulation (QAM) schemes due to their symmetry.

According to (2.14) the ranges of amplitude and phase imbalance values

can be derived that do not lead to bit errors when no other influences are

present. It can be seen that an error free range of phase imbalance values is

larger than error free range of amplitude imbalance values. This important

conclusion can be exploited by the SPO approach.

2.5.5. Nonlinearities

Nonlinearities are a general term for a whole class of impairments that

affect the functionality of a receiver due to nonlinear characteristics of its

components. The input power varies in time and in addition to the wanted
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signal, unwanted signals like adjacent channels and sometimes also interfer-

ers appear at the antenna, too - producing a power level, which can cause

nonlinear operation of the receiver. To avoid it, a high P1dB of the receiver

is needed, because small signal linearity measures (like IIP3) of the function

block are in the linear relation. The IIP3 is around 10 dB and IIP2 is

around 20 dB higher than P1dB , without any linearization techniques. To

define this receiver requirements some knowledge of the signal properties is

necessary. Generally, each standard specifies maximum values of the signal

at the receiver antenna, which shall be accepted without significant losses

of the transmitted data. Additionally, the so-called back-off level defined

as a minimum difference between maximum input power and P1dB , has to

be considered. Quite obviously, the larger the back-off, the more linear the

receiver. In reality its value is limited, because high P1dB requires more power

and more chip area. Therefore, the back-off about 6-7 dB is very often used.

Another problem, which has to be considered, are third order nonlineari-

ties. Since large adjacent channels accompany the received signal, nonlinear-

ities of particular receiver stages (LNA, Mixers) become important. When

large adjacent channels in the vicinity of the wanted signal appear at the

antenna, the output signal, passing through the nonlinear functional block,

contains also copies of the adjacent channels.

This phenomenon can negatively influence multiuser detection performed

in the BB. Additionally, even without any strong interferer, when the input

signal is larger than spurious free dynamic range (SFDR) of the receiver, the

nonlinearity products will have values larger than the noise floor. It can be

visible as the spectrum re-grow as depicted in Fig. 2.13. It can be seen that

f

Power

Desired signal

Regrowth

Fig. 2.13. Spectrum regrowth due to the third order nonlinearities
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the original signal, which occupies only its own frequency band, regrows to

adjacent frequency channels after passing through the nonlinear component.

The same phenomenon occurs for the two adjacent channels. Therefore, if

at least one of the adjacent channels is characterized by sufficient power, its

copy will appear in the desired channel.
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Passive Devices

The performance of the RF integrated circuits is strongly connected with

the quality of passive elements [52]. Good passive components are still

a limitation of modern CMOS technologies. For example inductors of large

values consume significant die area and have relatively poor quality factor Q.

Capacitors with high Q and low temperature coefficient are available, but

their parasitics can not be neglected. Resistors with low parasitic capacitance

and temperature coefficient are hard to come by. So design of RF integrated

circuits is highly influenced by the passive devices.

In this section pads are also discussed. Obviously they are not basic

devices, but they are passive and introduce significant contribution to the

circuit.

3.1. Inductors

From the point of view of RF circuits the lack of good inductors is the

shortcoming of the standard IC processes. Although active integrated cir-

cuits can sometimes synthesize the equivalent of an inductor, they always

have higher noise, power consumption and distortion than real passive planar

inductors.

3.1.1. Spiral Inductors

The widely used on-chip inductor is the planar spiral, which can be of

different shapes, square, hexagonal, octagonal etc. The wiring of the spiral

is implemented in the topmost available metal, sometimes are two or more

metal layers strapped together and the connection to the center of the spiral

is made with a cross-under of some lower level of metal. The inductance

of such a spiral is a complicated function of geometry and accurate anylysis

requires 3D-EM field solvers. However, using the libraries given in a Design
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Kit from foundry, the designer has only to make choice of an appropriate kind

of the inductor, and some parameters and the whole inductor parameters are

self calculated by the design environment using the information provided by

the model.

L Rs

R1 R1

C1C1

Cp

Cox
2

Cox
2

Fig. 3.1. Model for on-chip spiral inductor

To examine some important characteristic of the spiral on chip inductors

simulation used an inductor taken from design kit has been performed. Sim-

ulation results are shown in Tab. 3.1. In the used design kit only the value

of inductance L and number of turns n cab be specified by the designer. All

other parameter are self calculated by the model.

Tab. 3.1. Simulated maximum Q and self resonant frequency fres values for

various inductors

Inductor max Q fres

L [nH] n [GHz]

12 6.5 8.3 @ 1.5 GHz 2.6

10 6.5 8.7 @ 1.7 GHz 3.0

8 6.5 9.3 @ 2.0 GHz 4.0

6 6.5 10 @ 4.7 GHz 4.5

4 5.0 13 @ 3.3 GHz 6.2

2 4.25 15 @ 5.3 GHz 10.7

1 3.25 17 @ 8.5 GHz 18

In respect to the resonant frequency and maximum Q factor the best re-

sults shows the smallest inductor. Increasing the inductance leads to decreas-
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ing the maximum Q, and resonant frequency, as well. For 2 GHz operation,

maximum value of inductance used in the matching circuits is approximately

equal 8 nH, and for 6 GHz 4 nH for this kind of inductor. For other purposes,

like e.g., RF blocking larger values can be used.

The same value of inductance can be achieved by not only one combina-

tion of spiral diameter and number of turns. Tab. 3.2 shows maximum value

of factor Q and resonant frequency fres for an inductor with L=5 nH. Two

values of n are extreme; smallest and largest realizable.

Tab. 3.2. Spiral inductors parameters with L=5 nH for different number of

turns n

n max Q fres [GHz]

3.25 14 @ 4 GHz 7.9

4.25 13 @ 4 GHz 7.8

From this investigation can be found, that increasing n lowers factor

Q, but does not change the frequency at which maximum Q appears. Ad-

ditionally, increasing n lowers the self resonant frequency of the inductor.

Therefore, the conclusion is clear, one has to use inductors with as small

number of turns as possible.

These on-chip spirals consume much area. Aside from large area another

serious problem with the spiral inductors is their relatively large loss. The

DC resistive losses together with the skin effect cause a nonuniform current

distribution in a conductor at RF. The consequence is the reduction of the

effective conductor cross-section, increasing the series resistance.

In addition to the series resistive loss, capacitance to the substrate is

another problem of on-chip spirals. In silicon technology, there is a substrate

near to the spiral and is fairly conductive, creating a parallel plate capacitor

that resonates with the inductor. The resonance frequency of the LC combi-

nation represents the upper useful frequency of the inductor. The proximity

of the substrate also degrades Q because of the energy coupled into the lossy

substrate.

An additional parasitic capacitance is in shunt to the inductor that arises

from the overlap of the cross-under from rest of the spiral. The model for

on-chip spiral inductor is shown in Fig. 3.1. This model is symmetrical,

even though actual spiral are not. The error introduced is in most instances

negligible.
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The series resistance Rs is proportional to the total length of winding

and inverse proportional to the width of the interconnect and skin depth.

The shunt capacitance Cp is proportional to number of turns, to the square

of width of the interconnect and to the oxide capacitance. The capacitance

Cox is a parallel plate capacitor, with its capacitance between substrate and

interconnection. The last element, C1 denotes the substrate capacitance as

well as other reactive effects associated with the inductor.

Q of the inductor can be optimized by removing the turns in the middle of

the spiral as they contribute negligible to the total flux but contribute to the

total loss. Furthermore, a pattern ground-shield [53] also helps to improve the

Q of the inductor. A patterned ground shield prevents capacitive coupling

to the lossy substrate while avoiding short-circuiting of the magnetic flux.

Another advantage is that the shielding greatly reduces coupling of noise

from the substrate to the inductor. The penalty is the reduction of the

self resonant frequency of the inductor. In the layout of the final low noise

amplifier shielded inductors are used.

3.1.2. Bond-wire Inductors

In addition to spirals, bond wires are frequently used to make inductors.

Because standard bond wires are about 20 µm in diameter, they have much

more surface area per length than the planar spirals and hence less resistive

loss, and therefore higher Q values. The inductance of bond-wire can be

approximately given by 1 nH/mm and resistance 0.1 Ω/mm.

The cross section o fa hypothetical bond wire between a chip and a test

board shows Fig. 3.2. The length of the bond wire varies, thus the inductance

varies also. It is the main problem of bond wires, lack of repeatability. An-

other problem associated with varying shape of the bond wire are additional

parasitics. And last but not least, high values of inductance are rather not

feasible, since the bond wire can act as an antenna.

3.2. MIM Capacitors

Metal insulator metal (MIM) type capacitors are illustrated in Fig. 3.3.

They have lower parasitics than MOS capacitors. In the used technology,
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Fig. 3.2. Bonding wire

they are built using the additional dedicated metal layers. The capacitance

is given by

C =
ǫ0ǫrA

d
(3.1)

where A is the plate area, ǫ0 is the dielectric constant in the vacuum, ǫr is

the relative dielectric material constant and d the distance between the metal

plates. The capacitance per area is approximately 2 fF/µm2.

Good capacitors for RF application should have low voltage coefficients,

good capacitor matching, precision control of capacitor values and small par-

asitic elements.

Traditionally parallel plate capacitance suffers from many such problems.

One is the parasitic bottom plate capacitance which is frequently as large

as 10-30 % or more of the main capacitance and often degrades the circuit

performance.

Metal-insulator-metal (MIM) capacitors are very valuable in RF circuits.

MIM capacitors can be used for coupling capacitances and bypass capaci-

tances in RF circuits. They have good linearity and high dynamic range.In

general, when MIM capacitors are used in RF circuits the dielectric loss

must be extremely small and the series resistance of the wiring should be

minimized.
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Fig. 3.3. MIM capacitor made on-chip

3.3. Resistors

There are relatively good resistor options in the standard CMOS (comple-

mentary metal-oxide silicon) processes. One possibility is to use polysilicon

(”poly”) interconnect material, since it is more resistive than metal. How-

ever, most poly these days have small resistivity. It stems form the fact, that

poly material are used as a gate connection of the transistor, and decreasing

its resistivity improves the noise performance of the transistor 4.3.2. The

tolerance of the resistors is often poor and temperature coefficient depends

on doping composition and is typically in order of 1000 ppm/◦C. Unsilicided

poly has higher resistivity, but higher tolerance, too. Poly resistors have a

reasonably low parasitic capacitance per unit area and the lowest voltage co-

efficient of all the resistor material available in a standard CMOS technology.

Resistors made from source-drain diffusion is also an option. The resistivities
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and temperature coefficient are generally similar to those of silicided polysili-

con with lower temperature coefficient associated with higher doping. There

is also a significant parasitic capacitance and noticeably voltage coefficient.

The former limits the useable frequency range of resistors while the latter

limits the dynamic range of voltages that can be applied without introducing

significant distortion.

3.4. Pads

In this work, grounded shielded (GS) pads shown in Fig. 3.4 are used for

all signals, since only GS pads are available in used technology (HCMOS9,

STM). The first metal acts as a shield connected to ground, and a top level

metal layer acts as a pad connection [54]. For the GS structure, a grounded

highly conducting plate is inserted underneath the pad metal plates to shield

the upper bonding pad from the substrate. This technique has the advantages

of excellent isolation [55] and lowered noise figure [55], [56], [57]. However, the

insertion of the GS plate increases the pad capacitance. It results in a lower

resonant frequency of the bond-wire-pad connection for a given inductance

of the interface connection, especially for some technologies with a small

number of metallization levels.
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Fig. 3.4. Bonding pad together with connection
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Typically, a GS bonding pad can have a pad capacitance as high as

0.35 pF for a typical pad size of 100 µm x 100 µm. Assuming a 2 mm

long bond wire connected to the GS bonding pad, the inductance (≈2 nH)

of the bond wire will resonate with the pad capacitance at about 6 GHz as

f =
1

2πLC
. (3.2)

The low resonant frequency can kill the high frequency connection of

the bonding pad and the overall performance of the circuit. Hence, using

these pads, the pad capacitance and bond wire inductance shall be kept low.

However, as it is shown later in this work there are still more factors that

should be taken into account especially in LNA design.

To overcome the mentioned issues with GS pads, depletion-insulation

(DI) bonding pad structure can be used as shown in [58]. This kind of pads

can be used for high frequencies [59].
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RF MOSFET Devices

4.1. Long-channel Regime

T physical structure of a MOSFET transistor is shown in Fig. 4.1. Elec-

trically, the MOSFET has four contacts: a bulk, source, drain and gate

contact [60], [61]. When the drain to source voltage Vds is larger than zero,

then the gate source voltage Vgs larger than the threshold voltage VT forms a

conducting channel between drain and source. Between the drain and source

flows the current Ids, which is dependent on the gate source voltage and the

gate poly area (W , L).

MOSFETs exhibit three distinct regions of operation depending upon

their bias condition. They are subthreshold, triode and saturation. In the

first region, in simple MOSFET models, no current flows, and for RF design

purposes it is not interesting.

The second mentioned region is triode or linear. A MOSFET operates in

its triode when Vgs is large enough to guarantee the formation of an inversion

layer the whole distance from source to drain [52]. It means that Vgs > VT

and Vds 6 Vgs − VT , where Vgs is a threshold voltage. In this case the drain

source current can be written as

ID = µnCox

W

L

[

(Vgs − VT ) Vds −
V 2

ds

2

]

(4.1)

where W , L are device dimensions, Cox is oxide capacitance and µn electron

mobility.

Equation (4.1) shows, that in triode region drain source current is linear

for small drain-to-source voltages. Thus, a MOSFET in this region behaves

as a voltage controlled resistor.

In radio frequency applications, the MOSFET operates normally in its

saturation region. In this case Vds is high enough (Vds ≥ Vds,sat = Vgs−VT ) so
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Fig. 4.1. Physical structure of a MOSFET

that the inversion layer does not extend the whole source to drain distance,

the channel is said to be “pinched off”, and any increase in Vds increases the

drain current only slightly. The reason that the drain current increases for

increasing Vds is because the depletion layer width increases for increasing Vds.

This effect is called channel length modulation and is accounted for λ,

the channel length modulation parameter. λ is in range from approximately

0.1 for short channel devices to 0.01 for long channel devices. Since MOS-

FETs designed for radio frequency operation normally use minimum chan-

nel lengths, channel length modulation is an important concern for radio

frequency implementations in CMOS, especially for short channel devices

commonly used in nowadays RF designs. When a MOSFET operates with a

pinched off channel the drain source current can be written as

ID =
1

2
µnCox

W

L

(

Vgs − VT

)2(

1 + λ
(

Vds − Vds,sat

)

)

(4.2)
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Hence, in saturation, the drain current has a square-law dependence on the

gate-source voltage and is independent of drain voltage if the channel length

modulation is neglected.

The transconductance of such a device in saturation is easily found from

differentiating the expression for the drain current with respect to Vgs (with

neglecting the channel length modulation):

gm = µnCox

W

L
(Vgs − VT ) =

√

2µnCox

W

L
ID. (4.3)

Transit frequency ωT of a MOSFET transistor in terms of operating point,

process parameters and device geometry can be written as [60]

ωT =
3

2

µn(Vgs − VT )

L2
. (4.4)

Hence, ωT depends on the inverse square of the length, and increases with

increasing gate source voltage.

4.2. Short-channel Regime

As written above, channel lengths of state-of-the-art MOSFETs for radio

frequency applications are very small. Therefore, various high-field effects

become prominent at moderate voltages. These effects are: velocity satura-

tion, threshold reduction, hot carriers. The primary high-field effect is that

of velocity saturation.

4.2.1. Velocity Saturation

Note, that a short channel does not always refer to geometrical dimension.

What really makes difference between long and short channel is the ratio

(Vgs−VT )/L to Esat – field strength at which the carrier velocity has dropped

to one half of the value extrapolated from low-field mobility.

Velocity saturation has important practical consequences in terms of the

current-voltage characteristics of a MOSFET acting in the saturation region.

In particular, the drain current for a short channel device is given by [52]

ID =
µnCox

2
W (Vgs − VT ) Esat. (4.5)

It is visible, that in this case drain current is a linear function of Vgs and

transconductance

gm =
µnCox

2
WEsat (4.6)
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is constant over Vgs instead of linear, as it is for long-channel devices (4.3).

Moreover the transit frequency ωT for the device in saturation region in

short-channel regime can be written as

ωT =
3

4

µnEsat

L
. (4.7)

Equation (4.7) shows that the ωT of a short-channel device depends on 1/L,

rather than on 1/L2 (4.4). Additionally, it does not depend on bias condition

nor on oxide thickness.

4.2.2. Threshold Reduction

It is also called as drain-induced barrier lowering. A positive voltage

applied to the drain terminal helps to attract electrons under the gate oxide

region. This increases the surface potential and causes a threshold voltage

reduction [62]. Since the threshold decreases with increasing Vds, the result is

an increase in drain current and therefore an effective decrease in the MOS-

FET’s output resistance, beyond that associated with simple channel length

modulation. Additionally, the drain-induced barrier lowering can cause dra-

matic increases in subthreshold current.

The effects of drain-induced barrier lowering are reduced in modern

CMOS processes by using lightly doped drain (LDD) structures.

4.2.3. Hot Carriers

Velocity saturated charge carriers are often called hot carriers. Hot car-

riers can potentially tunnel through the gate oxide and cause a gate current,

or they may become trapped in the gate oxide. Hot carriers that become

trapped in the gate oxide change the device threshold voltage. Over time,

if enough hot carriers accumulate in the gate oxide, the threshold voltage is

adjusted to the point that analog circuitry performance is severely degraded.

The electric field near the drain can reach extraordinarily large values

with moderate moderate voltage in short-channel devices. As a consequence,

carriers can acquire enough energy between scattering events to cause impact

ionization upon their next collision. Impact ionization by these hot carriers

creates hole-electron pairs, and the holes are collected by the substrate while

the electrons flow to the drain. The resulting substrate current is a function

of the drain voltage, and this current represents an additional conductance

term shunting the drain to ground.
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Hot carriers effects degrade fT and fmax of the transistor, third-order

intercept point and the four noise parameters [63].

4.3. Radio Frequency Operation

MOSFET dimensions and physical layout are important determining fac-

tors for high frequency performance. As MOSFET operating frequencies

approach several hundred MHz, the MOSFET can no longer be considered

as a lumped device. The intrinsic and extrinsic capacitance, conductance,

and resistance are all distributed according to the geometry and physical

layout of the MOSFET. The distributed nature of the MOSFET operating

at high frequencies is particularly important for the front-end circuitry in

a receiver, such as in the low noise amplifier and first stage mixer input

MOSFETs.

4.3.1. MOSFET Capacitances

Since the source and drain regions form reverse-biased junctions with the

substrate, one expects the standard junction capacitance from each of those

regions to the substrate. These capacitances are denoted Cjsb and Cjdb.

gate

drainsource

p-substrate

n+n+

bulk(substrate)

Cov Cov
Cgc

Ccb
Cjsb Cjdb

Fig. 4.2. MOSFET capacitances

There are also various parallel plate capacitances terms in addition to the

junction capacitances shown in Fig. 4.2. The capacitor, called Cov, represents
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gate-source and gate-drain overlap capacitances. Another parallel plate ca-

pacitance is the gate-to-channel capacitance Cgc. There is also a capacitance

between the channel and the bulk, Ccb, that behaves as a junction capacitance

as well.

For compact modelling, the capacitances mentioned above (but also an-

other ones) can be modelled as three capacitances [64]: Cgs, Cgd and Cds.

Capacitances Cgs and Cgd represent the spatial charge in the depletion re-

gion. In normal operation Cgd is much smaller than Cgs. Capacitance Cds

represents the capacitance between source and drain transistor areas.

4.3.2. Distributed Gate Resistance

In modern MOSFET technologies, the gate electrode is made of polysil-

icon [65]. Since its resistivity is relatively high its contribution to the tran-

sistor performance can not be neglected. Generally, the distributed gate

resistance affects maximum frequency of oscillation (fmax), input referred

thermal noise, and time response [66], but also input impedance and power

gain.

Thermal noise contributions are discussed here. For an uniformly dis-

tributed MOS structure, it is possible to find an equivalent lumped resistance

that can be placed in series with the gate terminal to represent the thermal

noise of the polysilicon.

Consider the distributed model shown in Fig. 4.3, where the thermal

noise of each resistor is modelled as a series voltage source. The drain noise

current arises from both the gate resistance and the channel resistance. (The

latter is described later in this chapter.) To calculate the equivalent lumped

resistance, we determine the total drain noise current due to only the gate

resistance and refer it back to the gate terminal of a lumped MOSFET as a

voltage source (Fig. 4.3).

The drain current of M1 resulting from the gate resistance is

i1 = gm1v1 (4.8)

where v1 is the noise voltage of R1. Similarly,

i2 = gm2(v1 + v2) (4.9)

where v2 is the noise voltage of R2. Thus, for transitor Mj, we have

ij = gmj(v1 + v2 + · · · + vj) (4.10)
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M1 M2 Mn

v1 v2 vnR1 R2 Rn

(a) distributed model

Req vtot

(b) lumped model

Fig. 4.3. Circuit for calculating thermal noise generated by the gate resis-

tance

and the total drain noise current is

itot = i1 + i2 + · · · + in (4.11)

= gm1v1 + gm2(v1 + v2) + · · · + gmn(v1 + v2 + · · · + vn). (4.12)

If gm1 = gm2 = · · · = gm/n, then

itot =
gm

n
[nv1 + (n − 1)v2 + · · · + vn)]. (4.13)

Assuming v1, . . . , vn are uncorrelated, we can express the mean square

noise current as

i2tot =
g2

m

n2
[n2v2

1 + (n − 1)2v2
2 + · · · + v2

n)]. (4.14)
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If R1 = R2 = · · · = Rg/n, then v2
1 = v2

2 = · · · = v2
n = 4kTBRg/n, where

k is Boltzmann constant, T absolute temperature, and B is the bandwidth.

Equation (4.14) then reduces to

i2tot =
g2

m

n2

4kTBRg

n
[n2(n − 1)2 + · · · + 1] (4.15)

= g2
m(4kTB)Rg

n(n + 1)(2n + 1)

6n3
. (4.16)

As n → ∞,

i2tot = g2
m(4kTB)

Rg

3
(4.17)

which can be referred to the input as

v2
tot =

i2tot

g2
m

(4.18)

= 4kTB
Rg

3
. (4.19)

This relation indicates that, for noise calculation purposes, the distributed

structure of Fig. 4.3 can be replaced with a single MOS device of transcon-

ductance gm and a lumped gate resistance of Rg/3. In addition to vtot given

in (4.18), channel resistance of the transistor also contributes to the overall

thermal noise. Therefore, the relative significance of the gate resistance can

be determined by comparing Rg/3 with 1/gm, and the minimum number of

finger can be obtained.

The gate resistance can be decreased further [65], when the gate of the

transistor is contacted at both ends, as it is shown in Fig. 4.4.

In such a case the equivalent resistance is given by:

Rg =
1

12

[(

2n + 3 +
1

n

)

r +
1

n
R

]

(4.20)

where R is the resistance of a gate finger and r is the interconnect resistance.

The interconnect resistance r can be neglected [65], since it is routed on a

metal layer. However, interfinger capacitance of the gate strips affects the

noise and RF performance of the device [67].

4.3.3. Channel Resistance and Transit Time Effects

At radio frequencies, due to the finite charging time of the carriers in the

inversion layer, the gate impedance performs a remarkable phase shift from its

purely capacitive value at lower frequency [68]. The channel charging resis-

tance Ri (assumed to be noiseless) is used to account for this non-quasi-static
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Source

Gate

Gate

Drain

Drain

R

R

r

r

r

r

Rg

Fig. 4.4. Distributed gate resistance of a MOSFET, r-interconnect resis-

tance, R-finger resistance [65].

behavior along the channel length. It can be shown [60] that the channel

charging resistance is inversely proportional to the MOSFET drain conduc-

tance,

Ri ≈
1

kgd0

, (4.21)

where gd0 is is the value of gds evaluated at zero Vds.

For long channel devices, with the distributed nature of the channel re-

sistance between the source and drain taken into account, the constant of

proportionality, k, was shown to be equal five. Measurements of short chan-

nel devices indicate that the proportionality constant can go down to one.

Unlike the noisy gate-poly parasitic resistance Rg, the channel resistance

Rch cannot be reduced using layout techniques [69]. The channel charging

resistance of a MOSFET is important because it strongly influences the in-

put conductance and the forward transconductance parameters of the device.

Both the input conductance and the forward transconductance are monoton-

ically decreasing functions of the channel charging resistance.
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At high frequencies [70] the MOSFET must be considered as an RC dis-

tributed network, with the capacitive coupling to the gate representing the

distributed capacitance and the channel itself representing the distributed

resistance. This means that the high-frequency gate admittance Yg of the

device contains a conductive component gg. This component is known as

gg =
ω2C2

gs

kgd0

, (4.22)

where k has the same meaning as in (4.21).

4.3.4. Small-signal RF-model

A small-signal MOSFET transistor model is shown in Fig. 4.5. This

model consist of either intrinsic or extrinsic components. The latter ones

are Lg, Rg, Ld, Rd, Ls, Rs, and are connected with physical layout of a

transistor. The designer has to minimize these elements, whenever the high

RF performance is requested.

G

Ugs

D

S

Rg

Ri

Rd

Rs

Cgd

Cgs

Cds

Lg Ld

Ls

gdsgmUgs

Fig. 4.5. Small-signal model of a MOSFET

4.3.5. Noise Model of a MOSFET

Noise characteristic of a MOSFET transistor plays an important role in

the design of low noise circuits, particularly in low noise amplifier design.
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Noise model of the MOSFET transistor is naturally connected with its

small signal model. In RF community, the noise model presented in Fig. 4.5

is widely used, but with some simplifications described later in this text. In

this case the capacitances Cgd and Cds are neglected, since they do not affect

noise performance significantly.

The noise of the intrinsic transistor can be described using two correlated

noise sources, one in the gate circuit and one in the drain circuit.

Ugs

Rg

Ri

Rs

Red

Cgs

gmUgsi2ng
i2nd

v2
g

v2
s

Fig. 4.6. Noise model of a MOSFET

The thermal channel noise is described as

i2nd = 4kTγgd0∆f (4.23)

where γ is bias dependent parameter. The factor γ is an increasing function

of VDS, but a value of 2
3

is often used for hand calculations and simple simu-

lations. For short-channel devices γ is typically 2 - 3 times larger, but can be

considerably larger [71]. Therefore, for low noise operation, the VDS voltage

shall be kept small. However, some research laboratories, e.g., Philips [72]

prove, that γ is independent on the transistor length, and even for 0.18 µm

transistors is still equal to 2
3
. For quasi-static MOSFET operation, i2nd is

essentially independent on frequency.

The induced gate noise is described as [70]

i2ng = 4kTδgg∆f (4.24)

where gg is defined by (4.22) and δ is a bias dependent parameter typically

greater than or equal to 4
3

in long channel devices. Interestingly, the in-
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duced gate noise is proportional to the square of the frequency. Clearly this

expression cannot hold as the frequency becomes extremely large.

Although the spectral density of induced gate noise is not constant in

frequency, it can be recast to the model in a form with a noise voltage

source that possesses a constant spectral density. To derive this alternative

model, transformation of the parallel network of Cgs and the gg to the serial

RC network shall be done, with the assumption of a large Q factor at the

transistor input. In this case the serial resistance can be written as

rge =
1

gg

1

Q2 + 1
≈ 1

gg

1

Q2
=

1

kgd0

(4.25)

and the equivalent series noise voltage source as

V 2
ge = 4kTrge∆f (4.26)

The gate noise is correlated with the drain noise, and the correlation

coefficient is defined by:

c =
ing · i∗nd
√

i2nd · i2ng

(4.27)

It can be explained, because thermal noise within the channel produces both

drain channel noise and induced gate noise. Since both the channel drain

noise and the induced gate noise are generated by the same physical noise

sources, they exhibit a degree of correlation. Correlation coefficient c for long

channel transistors is equal j0.4, and according [72] this values is still valid

even for short channel transistors.

To recapitulate drain and induced gate noise we put some numbers in the

noise equations to emphasize important facts. Factor γ in drain noise (4.23)

is assumed to be 2
3

and then

i2nd = 4kT
2

3
gd0∆f. (4.28)

It can be shown [73] that induced gate noise with correlation neglected can

be axpressed as

i2ngcor =
(ωCgs)

2

g2
d0

i2nd. (4.29)

Taking the correlation into account

i2ng = 4kT |c|2
3

(ωCgs)
2

gd0

∆f = 4kT
4

15

(ωCgs)
2

gd0

∆f. (4.30)

Substituting (4.22) and assuming further long channel approximation

gg =
(ωCgs)

2

5gd0

(4.31)
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in (4.30) leads to

i2ng = 4kT
4

3
gg∆f. (4.32)

that is identical with (4.24).

In Fig. 4.5 there are also depicted two additional thermal noise sources

connected with parasitic resistance; the gate resistance Rg and the source

resistance Rs. Thermal noise connected with the resistance is defined by the

Nyquist theorem

v2
n = 4kTR∆f (4.33)

Note, the resistance Rd has no thermal noise connected with it, since its

contribution can be neglected.

4.3.6. Noise Matching

Classical noise matching analysis is applicable to the MOSFET shown

in Fig. 4.7. These methods are directly applicable when all MOSFET in-

ternal sources are referred to the input. For the common source MOSFET

configuration shown in Fig. 4.7, the input referred noise sources vn and in

are given by [60]

vn = vg −
ind

gm

+ (Rg + Ri)ing − j
f

fT

(Rg + Ri)ind (4.34)

and

in = ing − j
f

fT

ind (4.35)

Rg

in

vn

Ri

Cgs Ugs
gmUgs

Fig. 4.7. Equivalent noise model of a MOSFET

The noise performance of a transistor with source impedance

Zs = Rs + jXs is fully described in terms of four noise parameters:

— the minimum noise figure Fmin,
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— the equivalent noise conductance Gn,

— optimum driving resistance Ropt,

— optimum driving reactance Xopt

Then, the noise parameters of the MOSFET can be found as

Gn ≈
(

f

fT

)2

γgd0F1 (4.36)

Ropt ≈

√

(Rg + Ri)2

(

ft

f

)2
RgF4

γgd0

+

(

ft

f

)2
F 2

2 F5

γg2
d0F1

(4.37)

Xopt ≈
F2

2πfCgs

≈ −F2Xin (4.38)

Fmin ≈ 1 + 2Gn(Ropt + Rg + Ri) ≈ 1 + 2F3
f

fT

√

γgd0Rg (4.39)

The factors {F1, F2, F3, F4, F5} result form algebraic manipulations of

(4.34) and (4.35). If induced gate noise is ignored, then {F1, F2, F3, F4} are

qual one, otherwise they are less than one. Contrary, the fifth factor, F5, is

equal to zero if induced gate noise is ignored, and equal to one if induced

gate noise is included. Two important facts stem from these considerations

— the minimum noise figure is proportional to
√

Rg. Therefore to realize

a low noise figure the intrinsic gate resistance must be made as small as

possible.

— the minimum noise figure is inversely proportional to
√

gm, with assump-

tion that gd0 is equal to gm. Hence, increasing the gm of devices decreases

the minimum noise figure. Since both gm and γ are functions of the

transistor bias conditions, an optimum biasing point can be found that

gives the lowest minimum noise figure.

The transistor noise factor is then

F = Fmin +
Gn

Rs

|Rs − (Ropt + jXopt)|2 (4.40)

The noise performance of a two-port and is usually characterized by the noise

factor (F ) or noise figure (NF = 10 log F ). At one frequency, the noise factor

of a linear circuit shows a parabolic dependence on the source impedance.

However, admittance transistor representation is more convenient, thus

the four noise parameters are often defined in following way

— Fmin – minimum noise factor,
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— Rn – equivalent noise resistance,

— Gopt – optimum source conductance,

— Bopt – optimum source susceptance,

where the optimum source admittance is defined by Yopt = Gopt + jBopt.

When the two-port is driven by a single source with internal admittance

YS = Gs + jBs, its actual noise figure F can be written as

F = Fmin +
Rn

Gs

|Ys − Yopt|2 (4.41)

When the distributed effects are neglected, four noise parameters can be

derived as follows [74]:

Fmin ≈ 1 +
f

fT

√

γδζ(1 − |c|2) (4.42)

Rn ≈ γgd0

g2
m

(4.43)

Gopt ≈
gmωCgs

gd0

√

δζ(1 − |c|2)
γ

(4.44)

Bopt ≈ −ωCgs

(

1 − |c| gm

gd0

√

δζ

γ

)

(4.45)

where ζ = 1/k.

Note that in publications [65], [74] there is a small typographic error

in (4.45), where c instead of |c| is written.

Equations (4.39) and (4.42) suggest that devices with shorter channel

length yield better noise figures, because the angular cutoff frequency fT is

proportional to 1/Leff while
√

γδζ(1 − |c|2) becomes larger. Likewise, (4.36)

(4.43) also suggest that shorter devices improve Rn. A more detailed study

on this topic, however for silicon on insulator technology, can be found in [75].

In Tab. 4.1 scaling rules for MOSFET devices are collected. Various

parameters are considered, and not only device dimensions are analyzed,

but also two different ranges of the IDS current. This table summarizes the

consideration given in this chapter, and gives some first order approximations

for choosing the transistor dimensions with the objective to decrease the noise

and to increase the overall performance.
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Tab. 4.1. MOSFET scaling rules
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Chapter 5

Noisy two-ports

5.1. Noise Representation of Noisy Circuits

Due to the spectral representation of noise sources, noisy two-ports may

be described by small signal equations, as is very well known, for ex-

ample, for transistor equivalent circuits. The circuit theory of linear noisy

networks shows that any noisy two-port can be replaced by a noise equivalent

circuit which consists of the original two-port (assumed to be noiseless) and

two additional noise sources [76],[77]. There are many equivalent represen-

tations for noisy two-ports, but only three of them are required for common

applications.

The admittance form of the spectral representation of a noisy two-port is

[

I1

I2

]

=

[

Y11 Y12

Y21 Y22

][

V1

V2

]

+

[

IN1

IN2

]

(5.1)

The equivalent circuit of the admittance representation is given in Fig. 5.1,

where IN1, IN2 represents the port noise currents with input and output

short-circuited simultaneously. These two current sources do not actually

exist in the positions marked in Fig. 5.1; they are merely concentrated

equivalent representations of the effect of all noise-currents and noise-voltage

sources inside the two-port.

These primary physical noise sources contribute to IN1, IN2. In general

these two deduced quantities re not statistically independent. The arithmetic

of noise quantities takes into account in the following way. Products N1 · N∗
2

of two noise quantities N1 and N2 represent the Fourier transform of the

cross-correlation functions n1(t) and n2(t). These products have o be taken

as zero if n1(t) and n2(t) are not correlated at all or if there is no correlation

at the particular frequency of interest. Otherwise,
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I1

V1

I2

V2IN1
IN2Two-port

Y

Noiseless

Fig. 5.1. Admittance representation of a noisy two-port

N1 · N∗
2 = c12

√

Sn1
(f) · Sn2

(f) (5.2)

where Sn1
(f) and Sn2

(f) are spectral power densities of n1(t) and n2(t)

and c12 is the so-called cross-correlation coefficient.

The noise parameters corresponding to the admittance matrix represen-

tation of a two port are

G1 =
|IN1

|2
4kT0df

, G2 =
|IN2

|2
4kT0df

(5.3)

ρc =
I∗
N1

IN2

√

|IN1
|2|IN2

|2
(5.4)

G1 and G2 are equivalent noise conductances, and ρc is the correlation coef-

ficient (ρc = |ρc|eφc), df is an increment frequency, T0 is a standard temper-

ature (290 K), and k the Boltzmann’s constant.

The impedance representation of a noisy two port as given in Fig. 5.2 is

[

V1

V2

]

=

[

Z11 Z12

Z21 Z22

][

I1

I2

]

+

[

VN1

VN2

]

(5.5)

Equation (5.5) expresses the fact that a noisy two-port generates noise

voltages VN1
and VN2

across both of its ports if they are simultaneously

open-circuited.

The representation in Fig. 5.2, natural for the impedance matrix repre-

sentation, has the following noise parameters:

R1 =
|VN1

|2
4kT0df

, R2 =
|VN2

|2
4kT0df

(5.6)

ρv =
V ∗

N1
VN2

√

|VN1
|2|VN2

|2
(5.7)
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I1

V1

I2

V2

VN1 VN2

Two-port

Z

Noiseless

Fig. 5.2. Impedance representation of a noisy two-port

where R1 and R2 are equivalent noise resistances, and ρv is the correlation

coefficient (ρv = |ρv|eφv).

A third, equivalent form of the two-port noise representation as shown in

Fig. 5.3 formally uses two input sources VN and IN . This is the chain matrix

I1

V1

I2

V2IN

VN

Two-port

Y

Noiseless

Fig. 5.3. Chain representation of a noisy two-port

representation. The equivalence of the admittance matrix and chain matrix

representations require

IN = IN1
− Y11

Y21

IN2
, VN = −IN2

Y21

(5.8)

So, the chain representation of a noisy two-port is

[

V1

I1

]

=

[

A B

C D

][

V2

−I2

]

+

[

VN

IN

]

(5.9)

Noise parameters for the chain matrix representation of a noisy two-port

are RN , gN , and |γ| = |ρ|eφ, where

RN =
|VN |2

4kT0df
, gN =

|IN |2
4kT0df

(5.10)

ρ =
V ∗

NIN
√

|VN |2|IN |2
(5.11)
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where RN is noise resistance, gN is noise conductance and ρ is the correlation

coefficient.

Another representation often used in simulators [78] is wave represen-

tation that makes use of noise waves theory, and scattering matrix of the

two-port.

5.2. Correlation Matrices of Noisy Two-ports

A physically significant description of noise sources existing in the equiv-

alent circuits of noisy two-ports is given by their self- and cross-power spec-

tral densities, which are defined as Fourier transform of their auto- and

cross-correlation matrices [77].

The so called normalized noise correlation matrix for admittance repre-

sentation is

CY =
1

4kT0df

[

IN1

IN2

][

IN1

IN2

]+

=
1

4kT0df

[

IN1
I∗
N1

IN2
I∗
N1

IN1
I∗
N2

IN2
I∗
N2

]

(5.12)

where the overlines denote statistical average, and k Boltzmann’s constant,

T0 reference absolute temperature (290 K), df noise bandwidth, + conjugate

transpose, ∗ complex conjugate. Noise correlation matrices can be defined

for other noise representations in the same way. They can be also normalized

to thermal noise available power:

CY =
1

4kT0df
CY =

1

4kT0df

[

IN1
I∗
N1

IN1
I∗
N2

IN2
I∗
N1

IN2
I∗
N2

]

(5.13)

CZ =
1

4kT0df
CZ =

1

4kT0df

[

VN1
V ∗

N1

VN2
V ∗

N1

VN1
V ∗

N2

VN2
V ∗

N2

]

(5.14)

CA =
1

4kT0df
CA =

1

4kT0df

[

VNV ∗
N

INV ∗
N

VNI∗
N

INI∗
N

]

(5.15)

In general, elements of microwave circuits can be divided into two groups:

passive and active multiports. Lossy multiports consist only of passive el-

ements. Because of thermodynamical reasons, the correlation matrices in

impedance and admittance representation are given by

CZ = 4kT ℜ{Z} (5.16)

CY = 4kT ℜ{Y}. (5.17)
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where Z and Y are electrical representation of a noiseless two-port, k is the

Boltzmann constant and T absolute temperature.

Theoretical estimations of the correlation matrix are also obtained if noise

equivalent circuits of the elements are used. For example if the currents IN1

and IN2
current of the two-port are known the correlation matrix can be

found using (5.12).

In cases where the correlation matrix cannot be derived from theory,

measurements of four noise parameters can be used. With these quantities,

the chain representation of the correlation matrix is obtained as

CA = 4kTdfCA = 4kTdf

[

Rn
Fmin − 1

2 − RnY
∗
opt

Fmin − 1
2 − RnYopt Rn|Yopt|2

]

(5.18)

using

CA =

[

c11 c12

c21 c22

]

(5.19)

the four noise parameters are given by

Rn = c11 (5.20)

Bopt =
c12 − c21

2 · j · c11

(5.21)

= ℑ
(

c12

c11

)

(5.22)

= −ℑ
(

c21

c11

)

(5.23)

Gopt =

√

4 · c11 · c22 + (c12 − c21)2

2 · c11

(5.24)

=

√

c22

c11

−
(

ℑ
(

c12

c11

))2

(5.25)

=

√

c22

c11

−
(

ℑ
(

c21

c11

))2

(5.26)

Fmin = 1 + c12 + c21 +
√

4 · c11 · c22 + (c12 − c21)2 (5.27)

Noise correlation matrices are Hermitian matrices because

ℑ(c11) = ℑ(c22) = 0 and c12 = c∗21 (5.28)

Because of this fact, noise properties of noisy linear two-ports are fully de-

scribed by four numbers:

c11, c22, ℜ(c12), and ℑ(c12) (5.29)
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Another very important aspect of these matrices is that c11, c22 and the

determinant of these matrices are greater or equal to zero.

This formalism gives two matrices for each noisy two-port, namely the cor-

relation matrix, which describes noisy components and the electrical matrix,

which describes the noiseless part of the noise equivalent two-port. Obviously,

each electrical matrix representation (impedance, admittance, chain) has its

own corresponding correlation matrix.

5.3. Relations Between Different Noise Correlation

Matrices

The noise correlation matrices can be transformed to different representa-

tions. The reason for changing the representations is given later in the text.

The transformation can be made using the following general form:

C′ = PCP+ (5.30)

where C′ and C denote the correlation matrices of the original and resulting

representations, respectively, and the plus sign indicate conjugate transpose.

Transformation matrix P can be obtained by establishing relations between

the noise amplitudes of the original and resulting two-port and by expressing

these relations in matrix form. The set of P matrices is shown in Tab. 5.1.

Tab. 5.1. Transformation matrices P

Resulting
Noise

Original Noise Representation

Representation Y Z A

Y

[

1 0

0 1

] [

Y11 Y12

Y21 Y22

] [

−Y11 1

−Y21 0

]

Z

[

Z11 Z12

Z21 Z22

] [

1 0

0 1

] [

1 −Z11

0 −Z21

]

A

[

0 A12

1 A22

] [

1 −A11

0 −A21

] [

1 0

0 1

]
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5.4. Relations Between Different Electrical Matrices

In circuit analysis as it is shown in the next chapter, one has to transform

electrical matrix representation of two-ports. All transformations, which are

important in this thesis are summarized in Tab. 5.2.

Tab. 5.2. Transformation relations for electrical chain, admittance and

impedance matrix representation of two-ports

A Y Z

A

[

A B

C D

]







−Y22

Y21

−1

Y21
∆Y

Y21

−Y11

Y21













−Z11

Z21

∆Z

Z21
1

Z21

Z22

Z21







Y







D

B

−∆

B−1

B

A

B







[

Y11 Y12

Y21 Y22

]







−Z22

∆Z

−Z12

∆Z−Z21

∆Z

−Z11

∆Z







Z







A

C

∆

C
1

C

D

C













−Y22

∆Y

−Y12

∆Y−Y21

∆Y

−Y11

∆Y







[

Z11 Z12

Z21 Z22

]

where ∆ = AD − BC, ∆Z = Z11Z22 − Z12Z21, ∆Y = Y11Y22 − Y12Y21.

5.5. Interconnections of Noisy Two-ports

The correlation matrix of an interconnection of noisy two-ports is a linear

transformation of their individual correlation matrices. A general form of this

transformation is

C = P1C
(1)P1

+ + P2C
(2)P2

+ (5.31)

where C(1) and C(2) are correlation matrices of two-ports to be connected,

P1 and P2 are transformation matrices, and C is the resulting correlation

matrix of the interconnection. The transformation matrices corresponding to

the various types of interconnections can be obtained by establishing matrix
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relations between the noise amplitudes of the individual two-ports to be

connected and the resulting two-port.

Of particular interest for the noise analysis of circuits composed of in-

terconnected two-ports are series, parallel and cascaded connections. The

following formulas can be used for these three connection types:

Parallel connection:

CY = C
(1)
Y

+ C
(2)
Y

(5.32)

Series connection:

CZ = C
(1)
Z

+ C
(2)
Z

(5.33)

Cascade connection:

CA = A(1)C
(2)
A

A(1)+ + C
(2)
A

(5.34)

For series and parallel connection of two-ports the resulting correlation

matrix is the sum of the correlation matrices in admittance or impedance

representation of the original two-ports, respectively. In case of the cascade

connection, the formula is more complicated (5.34).

     

A B C

C

D

E

Ma

Ma

Ma

Ma

Ls

Ls

Ls

Ls

LgLg

C C

Fig. 5.4. Principle of noise analysis for the amplifier
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Using the correlation and electrical matrices the noise analysis of circuits

composed of interconnected two-ports can be easily performed. The principle

of the analysis procedure is shown in Fig. 5.4.

The amplifier A, which has to be analyzed is decomposed into four basic

two-ports B, C, D, E. The basic two-ports have to be specified by their

electrical and correlation matrices. The electrical matrices are obtained by

applying standard procedures, either calculations or measurements. Once all

matrices are known the basic two ports are interconnected in a manner that

finally the two-port A is obtained. The two-port A consist of two-ports B

and C connected in cascade, and the two-port C consist of two-ports D and

E connected in series. Depending of the kind of connection, noise correlation

and electrical matrices are obtained using previous considerations.





Chapter 6

Low Noise Amplifier Design

The most critical point for the realization of a highly integrated receiver

is the RF input. The first stage of a receiver is a low noise amplifier

(LNA), which dominates the noise figure of the whole receiver. Besides of

low noise, low power consumption, high linearity and small chip size are the

other key requirements. Because of this situation the design of the LNA is

really a challenge.

(a) (b)

LsLs

LgLg

VddVdd

M1M1

M2M2

LL CC

VinVin

VoutVout

Cpad
Cpad

Fig. 6.1. Amplifiers with input matching circuits: (a) inductor Lg connected

directly to the transistor, (b) pad capacitance Cpad connected directly to the

transistor.

Among a few possible solutions for the LNA core, a cascode amplifier

shown in Fig. 6.1 with inductive degeneration is often preferred. The tran-

sistor in common-gate (CG) configuration of the cascode amplifier reduces

the Miller effect. It is well known, that the capacitance connected between

output and input of an amplifier with inverting gain, is seen at its input

and output multiplied by the gain. The gain of the common-source (CS)

configuration is −gmRL where RL is the output impedance, and the input

impedance of CG configuration is 1/gm. Therefore, if both transistors have
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similar gm the gain of the transistor in CS configuration decreases and the

Miller capacitance is reduced [79]. At the output of the cascode amplifier,

the overlap capacitance does no affect the Miller effect since the gate of

the amplifier is grounded. Thus, the tuned capacitor of the LC tank only

has to be large enough to make the tank insensitive to Cgd2. In addition,

with a low impedance point at the output of the common source amplifier,

the instability caused by the zero of the transfer function is highly reduced.

Finally, with an AC ground at the gate of the cascode amplifier, the output

is decoupled from the input, giving the cascode configuration a high reverse

isolation. Although in Fig. 6.1 the LC tank is shown explicitly, in practical

situations another configuration can be made, while for small signal circuits,

it does not matter if the second node of the capacitor C is connected to

Vdd or ground. However, in any case a serial output capacitor is needed to

block the DC path. This capacitor, not shown in Fig. 6.1, can contribute to

the output matching, so it has to be chosen very carefully. The output pad

capacitance can be used for output matching additionally.

In order to connect the LNA to a measurement equipment, a package

or an antenna bonding pads (Cpad) are needed. Fig. 6.1 shows two LNAs

witch different input matching networks. In the networks from Fig. 6.1a

all components are placed on the chip. This principle is very often used,

therefore we start the LNA analysis from this point. The bonding pad is

parallel to the input of the LNA, and as long as their impedance is much

higher than the input impedance of the LNA, they do not introduce any

significant effects to the input impedance of the whole circuit. In our case

assuming practical value of 150 fF for Cpad and frequency of 2 GHz the

impedance of the pad can be neglected in comparison with required 50 Ω.

However, if the influence of Cpad can not be neglected only the imaginary

part of Zin is affected.

The use of inductive degeneration results in no additional noise generation

since the real part of the input impedance does not correspond to a physical

resistor [80]. The source inductor Ls generates a resistive term in the input

impedance

Zin =
gmLs

Cgs

+ j

(

ω2(Lg + Ls)Cgs − 1

ωCgs

)

, (6.1)

where Ls and Lg are source and gate inductors, respectively and gm and

Cgs denote small signal parameters of transistor M1 (Cgd, gds and Cpad are

neglected).
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M1

M2

L C

Zin

Lg

Lg

Ls
Ls

Fig. 6.2. Input matching on Z plane

The inductor Lg series connected with the gate cancels out the admittance

due to the gate-source capacitor. Here, it is assumed that the tuned load (L,

C) is in resonance at angular frequency ω0 and therefore appears to be a

pure resistive load RL.

The input matching principle is shown in Fig. 6.2. To obtain a pure

resistive term at the input, the capacitive part of input impedance introduced

by the capacitance Cgs should be compensated by inductances. To achieve

this cancellation and input matching, the source and gate inductances should

be set to

Ls =
RsCgs

gm

, Lg =
1 − ω2

0LsCgs

ω2
0Cgs

(6.2)

where Rs is the required input resistance, normally 50 Ω.

The noise figure of the whole amplifier with noise contribution of transis-

tor M2 neglected can be given as [81]

F = 1 +
γ

α

1

Q

(

ω0

ωT

)

[

1 +
δα2

kγ
(1 + Q2) + 2|c|

√

δα2

kγ

]

(6.3)

where

α ≡ gm

gd0

, (6.4)



70 Chapter 6. Low Noise Amplifier Design

δ, γ, c, k are bias dependent transistor parameters and Q = 1/(ω0CgsRs) is

the quality factor of the input circuit. It can be seen that noise figure is im-

proved by the factor (ωT /ω0)
2 [81]. Note, that for currently used sub-micron

MOS-technologies ωT is in the order of 100 GHz. The noise figure of the LNA

can be also expressed in simplified form with induced gate noise neglected,

however, easier for first order analysis

F ≈ 1 +
κgmRs

(ωT /ω0)2
(6.5)

where κ is bias dependent constant and Rs is source resistance. Although on a

first sight (6.5) suggests low transconductance gm for low noise figure, taking

into account that ωT ≈ gm/Cgs one can see that it is not true. Increasing

of gm lowers the noise figure but at the cost of higher power consumption.

Since Cgs contributes to the (ωT /ω0)
2 factor, lowering this capacitance leads

to improved noise. The last possibility of noise reduction is reducing the

signal source resistance Rs. However, this resistance is fixed, normally.

Decreasing the Cgs capacitance is done by reducing the size of the tran-

sistor. This has also impact on the linearity of the amplifier, and according

to input matching requirements (6.2), very large inductors Lg should be used

that can not be longer placed on chip. Because of this reason the inductor

Lg is placed off-chip. Between the inductor and the amplifier the on chip

pad capacitance Cpad is located as it is shown on Fig. 6.1b. It consists of

the pad structure itself and the on chip capacitance of ESD structure and

signal wiring. In this case pad capacitance and Cgs are in similar order.

Therefore, the pad has to be treated as a part of an amplifier and then taken

into account in the design process.

It should be noted, that particularly input pads (see section 3.4) need

special consideration. It has been proven [55], [82] that shielded pads have

ideally no resistive component, and so they neither consume signal power nor

generate noise. They consist of two metal plates drawn on the top and bottom

metals to reduce the pad capacitance value down to 50 fF. Unfortunately, it

is not the whole capacitance, which should be taken into account. One has

to realize that all connections to the pad increase this value.

The input matching circuit is very important for low noise performance

of the LNA. In [83] low noise cascode amplifiers using different approaches

for input impedance matching have been analyzed and compared in terms

of noise figure performance for bipolar technology. The effect of noise filter-

ing caused by the matching network has been pointed out. Furthermore, a
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parallel-series matching network has been proposed, which allows dominant

noise contributions to be reduced. A very low noise figure can be achieved by

this way. This matching consists of series inductance and parallel capacitance

connected between base and emitter of the common source transistor.

The input matching presented in Fig. 6.1b is quite similar to this pre-

sented in [83] for bipolar amplifier. Here, instead of base emitter capacitance

pad capacitance is used. It can be expected, that taking pad capacitance

as a part of input matching can lower the noise figure of a FET LNA. In-

deed, as shown in recent publications e.g., [74], [82], [84], [85], [86], [87], [88]

RF-CMOS LNAs have achieved lowest noise values if pad capacitance was

taken into consideration. The reason for this behavior has not been discussed

enough, so far.

In the amplifier from Fig. 6.1b Cpad is connected parallel to the Cgs of the

transistor M1. Since the small transistors are interesting for low noise low

current amplifier, these two capacitances are in the similar order, as already

written. Thus, Cpad can not be neglected in this case. The input impedance

of such an amplifier can be expressed as

Zin =
gmLsCgs

(Cpad + Cgs)2 + ω2LsCpadC2
gs(ω

2CpadLs − 2) + ω2C2
padLs(g2

mLs − 2)

+ j
ω2(Lg + Ls)C

2
gs − Cgs + Cpad(g

2
mLsω

2(ω2LgCpad − 1) − (ω2LsCgs − 1)2)

ω((Cpad + Cgs)2 + ω2LsCpadC2
gs(ω

2CpadLs − 2) + ω2C2
padLs(g2

mLs − 2))

+ j
Cpad(ω

4C2
gsLsLg(ω

2LsCpad − 2) + 2ω2LgCgs(1 − ω2LsCpad) + ω2LgCpad)

ω((Cpad + Cgs)2 + ω2LsCpadC2
gs(ω

2CpadLs − 2) + ω2C2
padLs(g2

mLs − 2))
.

(6.6)

From (6.6), the real part of the input impedance can be approximated as

ℜ(Zin) ≈ gmLsCgs

(Cpad + Cgs)2
, (6.7)

and the imaginary part, if Cgs is at least 2 times larger than Cpad, can be

approximated as

ℑ(Zin) ≈ Cgs(ω
2LsCgs − 1 + ω2LgCgs)

ω(Cpad + Cgs)2
. (6.8)

Contrary to the previous case either the real or imaginary part of input

impedance is affected. The real part of input impedance decreases. This

decrease requires higher values of inductance Ls. It is rather negative, first

and foremost because of lowering the gain, but also because of introducing

stability issues and generating noise.
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The value of inductance Lg required for matching decreases. In turn, this

is positive, since this inductor occupies a large area, particularly when the

transistor M1 (and Cgs value) is small. Besides of the area the noise contri-

bution of Lg is limited, because smaller inductor has also lower resistance.

It can be concluded from (6.6), that for large FET sizes with large values

of Cgs capacitance Cpad can be neglected. However, large transistors consume

more power than small ones, even for small bias voltages. Moreover, later

in this text it is shown that Cpad can have also positive influence on noise

performance of the low noise amplifier.

6.1. Impact of Channel and Gate Resistance on LNA

Performance

If in the circuit shown in Fig. 6.2 channel Ri and gate Rg resistance are

taken into account, then the input impedance at the resonant frequency

ω0 =
1

√

CgsLsRigm + (Ls + Lg)Cgs

(6.9)

is resistive:

Rin = Rg + Ri +
gmLs

Cgs

. (6.10)

Neglecting the both resistances, particularly Ri introduces errors in input

resistance and resonant frequency. Moreover, the channel resistance impacts

also the noise figure. According to [68] an improved noise figure expression

for the schematic shown in Fig. 6.2 can be derived as

F = 1 +
Rg

Rs

+

(

ω0

ωT

)

γ
gd0

Rs

{

[

R2
s + (Lg + Ls)

2
] δα2

5γ
+ (Rs + Ri)

2+

+2Rs(Rs + Ri)c

√

δα2

5γ

}

(6.11)

where parameters: α, δ, γ, c and Q have been already defined. Additional

consideration on gate and channel resistance can be found in Chapter 4.

6.2. Choosing Transistor Width and Bias Conditions

One of the major problem during the design process is the selection of the

proper widths of transistors M1 and M2. For this issue power-constrained
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noise optimization [52] has been often used. After reformulating the expres-

sion for noise figure in terms of power consumption, and with some additional

assumptions taken from long-channel theory the width of the optimum device

(M1) is given as:

WoptM1
≈ 1

3ω0LeffCoxRs

(6.12)

where Leff is the effective transistor length and Cox is the oxide capacitance

of the transistor. The (6.12) gives a definite width of the transistor, but for

short channel devices like 0.13 µm CMOS leads to very large transistors.

With respect to the selection criterion of the gate width there are also

other publications [89], [90], [91]. Unfortunately, they do not lead to best

results, because not only the transistor has to be optimized.

As discussed earlier, the best results are achieved when pad capacitance is

taken into account during design consideration. Currently best noise figures

in 1 GHz range were reported in [74] and [84] and are in the order of 0.8 dB.

Very good results for the 7 GHz band were reported in [82]. The achievements

of this work and other recently reported achievements are shown in the next

chapter.

For selection of the width of the cascode transistor M2 two competing con-

siderations should be made. The Miller capacitance of M1 can reduce the gate

and drain impedance of M1 considerably, degrading both noise performance

and input match. This behavior can be compensated by a large cascode

device (CG device), which reduces the gain of the CS device. However, the

parasitic source capacitance associated with a large CG device increases the

amplification of the CG device. In recent publication, the ratio between

CS and CG transistor widths varies from 0.5 [71] up to 3 [74], based on

simulations. Note, the M2 introduces noise in the amplifier, too, and the

size of this transistor should be also constrained by the noise figure of the

amplifier [92].

Another important issue is the current consumption. In [71], [82] the

current consumption is about 5 - 6 mA for the single ended structure shown

in Fig. 6.1. The current consumption is a key criterion for selecting the

transistor width, since with known supply voltage and power budget a supply

current can be derived.

The current consumption with given transistor size depends on gate to

source voltage of the transistor M1, and increases with increasing the over-

drive voltage Vod defined as a difference between gate source voltage and
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threshold voltage. It is well known, that increasing Vod improves the linear-

ity of the amplifier, and Vod around 200 mV or even less is a reasonable value

for a 130 nm MOS technology [93]. However, in the design considerations

presented in this chapter such an assumption is not made, and the whole

region of Vod voltage is analyzed.

Except low noise figure the LNA has to posses high gain and linearity.

To find the best transistor size, bias condition and passive elements values

simulations can be performed. During such simulations needed parameters

can be swept. However, not all simulations are easy to done. For example

the P1dB or IIP3 simulations with transistor size and bias condition swept. In

such a simulation, to obtain reasonable results the amplifier has to be always

matched either on the input or in the output. It is easy to note, according to

e.g., (6.6) that it is not an easy task, since transistor size and bias condition

influence the input and output impedances.

A solution for that problem is the design flow that based on parameter

simulation independent on additional elements. Such parameters are four

noise parameters, DC current and its derivative.

Firstly, the impact of transistor fingers has to be found using the

schematic shown in Fig. 6.1. For this reason the total width of the tran-

sistors are fixed and the number of fingers is swept. For simulations, both

transistors have the same width, which is not an optimum, but shows some

important issues. The gate bias voltage of the transistor M1 is set to 0.6 V

(VT ≈ 0.45 V), and the Vdd voltage is set to 1.2 V. The LC tank has a resonant

frequency of 2.14 GHz (middle of the UMTS band), and both inductors Ls

and Lg are shortened, so their inductances are equal to zero. Additionally,

Cpad is also removed.

The results of such a simulation are shown in Fig. 6.3, Fig. 6.4 and Fig. 6.5.

The supply current Idd, the noise figure minimum and equivalent noise resis-

tance against number of fingers are presented for two transistor widths, 50

and 100 µm, respectively. It can be seen in Fig. 6.3 that the current is not

constant, although the the total width of the transistor is constant. How-

ever, for number of finger larger than 10 the current shows almost constant

behavior.

It is shown in Fig. 6.4, that NFmin decreases when the number of fingers

increases. These considerations lead on a first sight to the conclusion that

more fingers lead to a better noise performance of the amplifier. Unfortu-

nately this is not the fact, since a too short finger width with too many fingers,
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Fig. 6.3. Idd current versus finger number for two different transistor widths

with Vgs at M1 set to 0.6 V.

although decreases the noise resistance (see section 4.3.2) increases the Cgb

and reduces fT of a transistor [94], [95]. The equivalent noise resistance show

in Fig. 6.5 also decreases when the number of fingers increases, but finger

numbers larger than 10 do not introduce significant improvements any more.

However, to find the most suitable transistor topology (number of fingers

and width of each finger) for an assumed current another analysis can be

performed. The conditions are the same as in the previous case except Vgs

voltage that is varied to keep the supply current constant.

The minimum noise figure NFmin and transconductance gm is observed.

To combine these both quantities the figure of merit (FoM) defined as a ratio

between gm and NFmin is introduced.

Fig. 6.6 shows the best transistor topology (number of fingers and width

of each finger) for 1 mA supply current. It is easy to see that for 1 mA

current the best total transistor width for 20, 15 and 10 fingers is around

30 µm (the width of each finger 1.5, 2, and 3 µm, respectively). For only 5

fingers the optimum total transistor width is around 20 µm.

Fig. 6.7 shows the best transistor topology for 2 mA supply current. For

this current the best total transistor width for 20, 15 and 10 fingers is around
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Fig. 6.4. Noise figure minimum at 2.14 GHz versus finger number for two

different transistor widths with Vgs at M1 set to 0.6 V

35 µm (the width of each finger 2, 2.5, and 3.5 µm, respectively). For only 5

fingers the optimum total transistor width is around 30 µm.

Fig. 6.8 shows the best transistor topology for 5 mA supply current. In

this case the best total transistor width for 20, 15 and 10 fingers is around

60 µm (the width of each finger 3.5, 4, and 5 µm, respectively). For only 5

fingers the optimum total transistor width is around 40 µm.

Two important facts stem from this analysis. In each analysis the best

performance in respect to FoM show topologies with maximum analyzed

finger number. Secondly, lowering supply currents leads to decreasing the

overall transistor width. The latter conclusion, in an agreement with previous

statements, leads to conclusion, that the transistor width should be kept low,

to achieve the best noise performance.

In the next analysis step the influence on transistor width and biasing

is under consideration. This time, number of fingers is fixed to 20 and sim-

ulations show the dependencies of the four noise parameters at 2.14 GHz

on supply current Idd, transistor width W and gate source bias voltage of

M1 (see Fig. 6.1). The simulations have been performed using the same

conditions as in the both previous cases.
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Fig. 6.5. Equivalent noise resistance at 2.14 GHz versus finger number for

two different transistor widths with Vgs at M1 set to 0.6 V
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Fig. 6.6. NFmin, gm and figure of merit FoM for various transistor topolo-

gies. Analysis frequency is 2.14 GHz and power consumption Idd = 1 mA,

Vdd = 1.2 V.
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Fig. 6.7. NFmin, gm and figure of merit FoM for various transistor topolo-

gies. Analysis frequency is 2.14 GHz and power consumption Idd = 2 mA,

Vdd = 1.2 V.
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Fig. 6.8. NFmin, gm and figure of merit FoM for various transistor topolo-

gies. Analysis frequency is 2.14 GHz and power consumption Idd = 5 mA,

Vdd = 1.2 V.
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Fig. 6.9. Supply current versus transistor width W and bias voltage
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Fig. 6.10. Noise figure minimum versus supply current for various gate source

voltages and transistor widths. Gate source voltages are in the range from

0.5 up to 1.2 V, and the transistor widths are between 20 and 100 µm with

10 µm step.

Simulation results shown in Fig. 6.10 – Fig. 6.13 are helpful for choosing

the optimum transistor width and bias condition for low noise operation. A

transistor width should be chosen that minimizes noise figure minimum and

noise resistance. However, these simulation results do not show the optimum

values for others amplifiers elements.
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Fig. 6.11. Equivalent noise resistance versus supply current for various gate

source voltages and transistor widths. Gate source voltages are in the range

from 0.5 up to 1.2 V, and the transistor widths are between 20 and 100 µm

with 10 µm step.
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Fig. 6.12. Optimum source reactance versus supply current for various gate

source voltages and transistor widths. Gate source voltages are in the range

from 0.5 up to 1.2 V, and the transistor widths are between 20 and 100 µm

with 10 µm step.

Therefore, in the following section the optimum choice of amplifiers com-

ponents like Ls, Lg and Cpad is considered.
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Fig. 6.13. Optimum source susceptance versus supply current for various

gate source voltages and transistor widths. Gate source voltages are in the

range from 0.5 up to 1.2 V, and the transistor widths are between 20 and

100 µm with 10 µm step.

6.3. Two-port Noise Theory in LNA Design

In this section it is shown, how the theory of noisy two-ports can be

applied in design of the LNA. The analyzed amplifier consists always of

two different two-ports: A and B. The noise parameters of two-port A are

known, shown in Fig. 6.10 – Fig. 6.13 with some assumptions, however. The

contribution of transistor M2 to the overall noise figure is neglected. In

case of cascode amplifiers, neglecting the noise contribution of M2 leads to

a small underestimate of the noise figure. However, having the optimum

width of transistor M1, the width of transistor M2 can be found by further

optimization.

In the following subsections influence of source degeneration and two

different matching principles on overall noise performance is investigated.

6.3.1. Influence of source degeneration

Only in this case, according to section 5.5 an electrical matrix of cascode

connection is needed. The electrical admittance representation matrix of

transistor cascode connection is shown in (B.7) – (B.10) (B). According to
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Ls

Vdd

M1

M2

LC

A

B

Vout

Fig. 6.14. Circuit diagram for source degeneration analysis

the assumptions made the electrical admittance representation of a cascode

connection of FETs M1 and M2 is equal to

Y =

[

jωCgs 0

gm 0

]

, (6.13)

and the noise correlation matrix in chain representation is given by (5.15).

Firstly, the source degeneration is analyzed according to schematic shown

in Fig. 6.14. Since the inductor Ls is in series with the transistor, the

impedance representations of both matrices (correlation and electrical) have

to be added [77], to obtain the resulting matrices. For this reason, the

admittance matrix of the transistor has to be translated into impedance

representation.

The impedance representation of the electrical matrix of the inductor Ls

(two-port B) can be expressed as

ZB =

[

jωLs −jωLs

−jωLs jωLs

]

(6.14)

and the total electrical representation of the two series connected two-ports

is given by

Ztot = ZA + ZB (6.15)
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where ZA is the impedance matrix of the transistor transformed from YA

given in (6.13).

Similar consideration has to be made for the correlation matrices. It is

assumed that Ls is ideal and has no real terms in the impedance matrix

(6.14), thus the correlation matrix of this inductor is a zero matrix, accord-

ing to (5.16). In the case of the transistor, its correlation matrix should be

converted from the chain to impedance representation. If the impedance elec-

trical and correlation matrix are calculated, the latter can be transformed to

the chain representation, because of easier analysis. Next, using (5.19)-(5.27)

the noise parameters of the new two-port (two-port A with inductor Ls (B)

shown in Fig. 6.14) can be expressed in terms of two-port A noise parameters

and inductance Ls as follows:

R′
n = dRn (6.16)

B′
opt =

Bopt + ωLs|Yopt|2
d

(6.17)

G′
opt =

Gopt

d
(6.18)

F ′
min = Fmin (6.19)

d = 1 + 2ωLsBopt + ω2L2
s|Yopt|2 (6.20)

It is easy to see, that all noise parameters except Fmin are dependent on

Ls and Yopt values and Fmin is independent on the value of Ls.

However, in this analysis one important problem is omitted. In (6.13) Cgd

and gds of the transistor M1 and M2 are neglected. For this reason, although

(6.20) suggests that noise figure can be lowered by proper choice of Ls it is

not always the truth. It is only valid for low operating frequency, or in other

words only if Cgd can be neglected.

Simulations performed on 0.13 µm CMOS transistor show, that at 2 GHz,

our lowest frequency of interest, neglecting Cgd and gds leads to erroneous

results (Fmin does depend on the value of Ls). However, some previous

statements are still valid, foremost the value of Ls should be kept low to

limit noise and stability issues and maximizes gain of the LNA.

6.3.2. Influence of Pad Capacitance with On-chip Inductance

This configuration is shown in Fig. 6.15. As written before, this archi-

tecture can be used for rather high frequency and large transistors, when

inductor Lg has small values.
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Let us assume, that the circuit consists of transistors together with induc-

tor Ls, L and capacitor C (two-port A) can be characterized with four noise

parameters Rn, Bopt, Gopt, Fmin and they are known. Note Yopt = Gopt+jBopt,

Bopt is negative and |Gopt| < |Bopt| for CMOS transistors. We look for the

new four noise parameters R′
n, B′

opt, G′
opt, F ′

min of the circuits from Fig. 6.15

in relation with elements Lg and Cpad.

Ls

Lg

Vdd

Cpad

M1

M2

LC

AB

Vout

Vin

Fig. 6.15. Circuit for analysis pad capacitance with on-chip inductance

The inductor Ls is treated as an internal component of two-port A. In this

case both two-ports A and B are connected in cascade and no information

about the electrical matrix of two-port B is needed. The electrical matrix

in chain representation of the two-port B, which consists of pad capacitance

Cpad and on-chip inductance Lg can be expressed as

AB =

[

1 jωLg

jωCpad 1 − ω2LgCpad

]

(6.21)

The admittance representation of (6.21) has no real part, thus the noise

correlation matrix CB of this two-port is a zero matrix.

To obtain the chain representation of the noise correlation matrix of the

new two-port, which consists of transistor two-ports A and B the formula

CAtot
= AB · CA · AB

+ + CB (6.22)
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is used. AA and CA are the chain representations of electrical and noise

matrices of two-port A, respectively, and CB is the noise correlation matrix

of two-port B.

Then, the noise parameters of the resulting two-port can be written as:

R′
n = dRn (6.23)

B′
opt =

Bopt(1 − 2ω2LgCpad) + ωLg|Yopt|2 − ωCpad(1 − ω2L2
g|Yopt|2)

d
(6.24)

G′
opt =

Gopt

d
(6.25)

F ′
min = Fmin (6.26)

d = (ωLgBopt)
2 + 2ωLgBopt + (ωLgGopt)

2 + 1 (6.27)

Solving (6.27) for Lg, the minimum achievable d factor is

dmin =
G2

opt

G2
opt + B2

opt

(6.28)

It is easy to notice, that for d factor lower than one the equivalent noise

resistance and thus the noise figure can be minimized. As shown in (6.27)

and (6.28) the value of Lg has to be matched to the proper transistor di-

mensions and biasing since Bopt and Gopt according to (4.45) and (4.44)

are the functions of transistor widths and bias conditions. In this case Rn

and optimum source conductance Gopt are independent on the value of pad

capacitance Cpad.

6.3.3. Influence of Pad Capacitance and Off-chip Inductance

The configuration for following analysis is shown in Fig. 6.16. Similar as

in the previous case two-ports A and B are connected in cascade and inductor

Ls is treated as an internal component of two-port A. The electrical matrix

of the two-port B in chain representation, which consists of pad capacitance

Cpad and off-chip inductance Lg can be expressed as

AB =

[

1 − ω2LgCpad jωLg

jωCpad 1

]

(6.29)

Since the admittance representation of (6.29) has no real part, the noise

correlation matrix CA of this two-port is a zero matrix. To obtain the noise

correlation matrix in chain representation of a new two-port consisting of

two-ports A and B, the formula (6.22) is used [96].
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Fig. 6.16. Circuit for analysis of pad capacitance with off-chip inductance

Then, similarly to the previous case, the noise parameters of the new

two-port can be expressed in terms of noise parameters of the already opti-

mized two-port B as follows:

R′
n = dRn (6.30)

B′
opt =

Bopt(1 − 2ω2LgCpad) + ωLg|Yopt|2 − ωCpad(1 − ω2LgCpad)

d
(6.31)

G′
opt =

Gopt

d
(6.32)

F ′
min = Fmin (6.33)

d = (ωLgBopt)
2 − 2(ω2LgCpad − 1)ωLgBopt + (ωLgGopt)

2 + (ω2LgCpad − 1)2

(6.34)

Solving (6.34) for Lg yields to the minimum achievable factor d that can

be written as

dmin =
G2

opt

G2
opt + B2

opt + ωCpad(ωCpad − 2Bopt)
(6.35)

All noise parameters except Fmin are dependent on Lg, Cpad and Yopt

values. Additionally, decreasing the d value improves the noise figure, as

well.
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In practice, the pad capacitance is given and designer has no freedom to

change it. For this reason, the optimum values of Lg can be expressed as

Lgopt
=

−Bopt + ωCpad

ω(ω2C2
pad − 2ωBoptCpad + G2

opt + B2
opt)

(6.36)

Analysis of optimum value of Lg leads to the conclusion, that optimum

Lg value is lower for large transistor sizes than for small ones. Generally, the

optimum value of Lg is independent on the supply current.

It can be also observed, that increasing Cpad lowers the values of Lgopt
. For

small transistor sizes, it is even easier to notice. These considerations are very

significant, since they prove that shielded pads not only do not deteriorate

noise performance [97], but can be used to improve the noise performance.

6.3.4. Comparison of two input matching principle

In previous analysis has been shown that pad capacitance improve the

noise performance. Comparison of (6.28) and (6.35) leads to a conclusion

that pad capacitance Cpad in the amplifier shown in Fig. 6.1b reduce the

factor d. Thus, this amplifier shows better noise performance because of

reduced R′
n. Interestingly, Cpad is mostly treated as a parasitic component

that has negative influence on the performance of the amplifier, especially on

the noise performance [98].

To prove the mathematical investigations simulation have been per-

formed [99]. Noise parameters for three different cases have been calculated:

1. cascode circuit without Cpad, Lg and Ls (two-port B in previous analysis).

2. cascode circuit with Cpad, Lg on-chip, 50 Ω matched (the LNA

from Fig. 6.1a)

3. cascode circuit with Cpad, Lg off-chip, 50 Ω matched (the LNA

from Fig. 6.1b).

The results for these three cases for 2 mA supply current are summarized

in Tab. 6.1. Capacitance Cpad is 70 fF and the transistor widths are 48 and

96 µm for M1 and M2, respectively. The inductors Ls and Lg are ideal and

are chosen according to (6.7) and (6.8) to fulfill input matching condition.

The off-chip solution for Lg (case 3) shows the following advantages:

1. The 50 Ω noise figure (NF50) is about 0.6 dB lower as in the case of

on-chip Lg.

2. Lg is much lower as in the on-chip case. This means less chip area and

less losses.
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Tab. 6.1. Summary of noise analysis

Rn NFmin Bopt Gopt NF50 Ls Lg

Case [Ω] [dB] [mS] [mS] [dB] [nH] [nH]

1 63.5 0.22 -0.86 0.4 3.6 — —

2 12.4 0.25 -0.85 2.0 1.0 0.3 75

3 3.53 0.33 -0.12 9.0 0.4 1.2 39

3. The equivalent noise resistance Rn achieves the lowest value. This means

a very flat noise paraboloid and insensitivity against noise mismatch.

4. The real part of Gopt is closest to 50 Ω matching (Gopt = 9 mS).

To show how the width of the transistors impacts the noise behaviour

another analysis has been performed. Both transistors M1 and M2 have

the same widths, supply current is constant and equal 2 mA and analysis

frequency is 2.14 GHz. Transistors length is 0.13 µm and Cpad value is set to

70 fF. Simulation results are summarized in Tab. 6.2.

Tab. 6.2. Simulation results of amplifiers from Fig. 6.1a and Fig. 6.1b

at 2.14 GHz for 2 mA supply current and different transistor sizes.

transistor width 24 µm 48 µm 96 µm

Lg on chip off-chip on chip off-chip on chip off-chip

NF [dB] 1.04 0.25 0.92 0.34 0.54 0.35

Gain [dB] 25.42 15.71 23.08 16.67 19.39 15.69

M (noise measure) 0.27 0.06 0.24 0.08 0.13 0.09

The amplifier with capacitance near the transistor’s gate shows better

results (noise measure M) in all cases. But for 96 µm the difference is not

so significant. However, a supply current of 2 mA is too low for such a large

transistors and this amplifier exhibit linearity issues.

Similar investigations with comparable results have been performed also

for 1 and 5 mA supply current. Although absolute values of parameters are

different, the trend observed for 2 mA is still valid. Since the analysis show

that the LNA from Fig. 6.1b shown better performance, such an amplifier is

designed and described later in this chapter.

6.3.5. Influence of On-chip Enhanced Inductance

Large inductor Lg in the LNA shown in Fig. 6.1a can be avoided. A

small capacitor can be placed in parallel with an on-chip inductor to achieve
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a larger inductance [100]. A simplified inductor model (see section 3.1) is

used for analysis, shown in Fig. 6.17(a): R is the total series resistance, Cox

is the total capacitance to the substrate and L is the inductance. As shown

in Fig. 6.17(b), the equivalent inductor is obtained after placing a capacitor

Cg in parallel.

L

Cox
2

Cox
2

R

(a) Simplified inductor model

L

Cox
2

Cox
2

R

Cg

Leff Reff

(b) equivalent circuit with a parallel capacitor

Fig. 6.17. Increasing the equivalent inductance by parallel connection of a

small capacitance Cg

The equivalent output impedance of this LC tank Zeff is

Zeff =
(jωL + R) 1

jω(Cg + Cox)

jωL + R + 1
jω(Cg + Cox)

= Reff + jωLeff , (6.37)

where

Reff =
R

1 − 2ω2L(Cg + Cox) + ω2(ω2L2 + R2)(Cg + Cox)2
, (6.38)
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Leff =
L − (ω2L2 + R2)(Cg + Cox)

1 − 2ω2L(Cg + Cox) + ω2(ω2L2 + R2)(Cg + Cox)2
(6.39)

Qeff =
ω(L − (ω2L2 + R2)(Cg + Cox))

R
(6.40)

Here Reff , Leff and Qeff are the effective series resistance, effective in-

ductance and quality factor, respectively. As one can expected for small Cg

values, Reff and Leff increase while Qeff decreases.

If the gate inductor Lg is implemented by this way, more than doubling of

Lg value is possible. However, such an inductor has a lower Q [100]. Another

problem that has to be taken into consideration is, that the equivalent series

resistance of the gate inductor can not longer be neglected. This means, that

Reff contributes to the input impedance as well as the source inductor Ls,

but in contrast to the Ls, introduces noise into the circuit.

6.4. Design Flow

Very briefly, the design starts with optimum transistor width, finger num-

ber and operating point, which have to be defined based on simulations for

given power consumption. Noise parameter dependencies on transistor width

and supply current result from these investigations. Next, a transistor is

needed, whose impedance data at the gate together with the pad capaci-

tance lead to the required real part of the input impedance. Finally, the

external inductor at the gate together with the bonding-wire should be cho-

sen so, that the imaginary part of the input impedance is cancelled. Linearity

considerations finish the design.

Below the design procedure is explained in a more detailed way.

1. Design LC tank for wanted frequency.

2. Calculate the pad capacitance, take into account ESD structure and

wiring.

3. Make transistor M2 and M1 equal to each other, as a first approximation.

4. Additionally choose the proper number of fingers in transistors.

5. Knowing pad capacitance find such a transistor size W that together with

Ls give the wanted real impedance part. Choose the proper Vod value and

check current consumption.

6. Design the Lg inductor to make full input matching, take the bonding

wire into account.
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7. Make the output matching, a properly chosen series blocking capacitor,

together with a pad and a bonding wire are enough.

8. Check the gain of the amplifier and bandwidth, change the LC tank

values if needed, (higher L means higher gain, but lowers the bandwidth).

Change Ls if needed and go to point 3.

9. Simulate nonlinearities. P1dB is improved by larger transistor, while larger

Vod improves small signal nonlinearity (IIP3).

10. Change the size of the second transistor, taking into account gain, noise

and linearity. The size of M2 is negligible for input and output matching.

11. The design is finished.

Of course, like in all engineering problems an experience is needed for a

fast and successful design.

The design flow presented here has been used for the design of an UMTS

LNA. The layout of the amplifier is shown in Fig. 6.18. The presented

structure consists of two independent amplifiers. However, they can be used

together as a differential amplifier.

Fig. 6.18. Layout of the designed LNA

A balanced UMTS LNA has been designed by doubling the circuit shown

in Fig. 6.1 and using the methodology of reducing the noise equivalent re-
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sistance described in this chapter. The amplifier is designed for the 0.13 µm

HCMOS process from STMicroelectronics.

The width of the transistors is 36 and 72 µm for M1 and M2, respectively.

Both transistors are segmented into 4 µm-long gate fingers, and both ends

of each finger are connected.

During the design process, there were two sources of information concern-

ing the pad capacitance: a model of a pad and parasitic extraction process.

Information taken from these sources was inconsistent. Therefore an as-

sumption about Cpad was made, based on the parasitic extraction process.

Furthermore, special design consideration was made using the parasitic ex-

traction process, since the Cpad stands not only for the pad capacitance alone,

but includes also wiring.

The both inductors Ls, and L has been taken from the library and have

values of 1.6 and 3.8 nH, respectively. The Lg inductor, about 30 nH is

placed off-chip. Post layout simulations of the single ended structure with

all parasitic extracted show, that the simulated noise figure of the amplifier

is only 0.1 dB larger then NFmin, while the gain is around 15 dB for 3.1 mA

of the Ids current.

The chip has no fixed gate bias voltage because of two well known facts:

Even small changes of Vgs and Vth voltage change the Idd current considerably.

Furthermore the amplifier was designed for demonstrator reasons. For this

purpose, external voltage supplies offers more experimental flexibility, too.
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LNA Measurements

In the first step, fabricated chips were pre-characterized on-wafer. Al-

though they are differential structures they can be measured as single

ended structures, since they do not posses any common current source. This

was done because of much less expense compared to the differential case.

When the S-parameter of the chip were known, the test board with input

and output matching circuits was designed and fabricated. In the last step

the wire bonding between amplifier pads and the test board was performed.

Unfortunately, the total pad capacitance of the chip is larger than ex-

pected. Moreover, the transistor models used in simulation were not in good

agreement with the measured behavior. To compensate the larger pad ca-

pacitance a more complicated input matching circuit, having more than one

series inductance, is needed. This complicated input matching circuit, makes

the comparison between simulated and measured results difficult. Therefore,

only a series inductance was used for the input matching. Its value was chosen

in this way, that the imaginary part of the input impedance is cancelled. As

was already mentioned, because of larger pad capacitance the real part of

input impedance is lower than 50 Ω. Although, it increases with rising the

supply current of the amplifier, S11 values in the order of around 7 dB were

achieved.

For this reason the measured gain is lower than the simulated one, and

measured P1dB is higher than simulated. Noise figure measurements and

simulation are in good agreement.

In the following subsections the measurements are described in detail.

7.1. Measurement Test Bench

As already mentioned, all simulations and measurements presented in this

thesis has been done for a single ended structure. Such measurements can be
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easily transformed to differential measurements. For the same noise figure

value the current has to be two times higher and the input referred P1dB is

3 dB higher, too. Others parameters of the amplifier are unchanged.

The schematic of the test board is shown in Fig. 7.1. Elements TL1 – TL4

denote transmission lines, L1, L2 are inductors and bond is a bonding wire.

The depicted test board contains input and output matching circuits.

Input matching circuits consists of a bonding wire modelled as an in-

ductor, very narrow transmission line (TL2), the inductor L1=12 nH from

Coilcraft and a 50 Ω microstrip line (TL1), which is only for mechanical pur-

poses. In the simulations, the S-parameter model from Coilcraft has been

used for the inductor rather than pure, ideal inductor. Because the gate bias

is applied the input matching circuit is DC coupled. Similarly to the input

matching circuits the bonding wire was also taken into account in the output

matching circuit and the S-parameter model for L2 from Coilcraft has been

used, too.

TL1 TL2 TL3 TL4
Chip

Vdd

Gate bias

bondbond

input output
RFin RFout

L1 L2

Fig. 7.1. Schematic of the test board used for the chip characterization

The layout of the test board is shown in Fig. 7.2. It consists of a chip

structure facilitating bonding, input and output matching circuits and power

supply structure. The board is fabricated using Rogers 4003 material (ǫr=3.4

and thickness equals to 0.51 mm). Board dimensions are 40 x 100 mm. The

board was prepared for characterization by using a microstrip test fixture.

Similarly to the simulations presented in the previous chapter Vdd voltage

is constant and set to 1.2 V for all measurements. The gate bias voltage Vgs

is varied during the characterization.
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Fig. 7.2. The test board used for chip measurements

7.2. DC Measurements

Results of DC measurements are shown in Fig. 7.3 and Fig. 7.4. Fig. 7.3

shows the Idd current versus gate bias voltage Vgs. A Vgs shift of around

30 mV between simulation and measurements can be noticed in linear region.
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Fig. 7.3. Supply current Idd versus Vgs voltage
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This leads to a considerable transconductance difference at small Vgs bias

voltage. This discrepancy vanishes with increasing Vgs more and more.

For small signal nonlinearity (IIP2, IIP3) of the amplifier the derivatives

of the transconductance are important. Unfortunately, a reliable experimen-

tal determination of Idd current was impossible because of too strong current

fluctuations introduced by the oxidation of the pad contacts.
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Fig. 7.4. Measured and simulated transconductance versus Vgs voltage

7.3. S-parameter Measurements

Results of S-parameter measurements for different drain source currents

are shown in Fig. 7.5 – Fig. 7.8. In Tab. 7.1 results of S-parameters simulation

Tab. 7.1. Simulated S-parameters at 2.14 GHz

Current S11 S12 S21 S22

[mA] [dB] [dB] [dB] [dB]

1 -17 -43 14.0 -36

1.7 -23 -43 15.7 -33

2.5 -32 -43 16.7 -31

3.5 -33 -43 17.2 -29

4.6 -29 -43 17.4 -28
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at 2.14 GHz are collected. Particularly measured S11 differs from simulated

one. As written, it is the reason of too large pad capacitance.

Frequency [GHz]
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Fig. 7.5. Measured S11 versus frequency for various currents Idd
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Fig. 7.6. Measured S12 versus frequency for various currents Idd

Output matching (Fig. 7.8) and reverse transmission (Fig. 7.6) show

rather small dependence on the drain source current. This is because these
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parameters dependent only on the passive components of the amplifier. Ex-

cellent performance has been achieved for the output matching, too. Input

return loss and gain are bias dependent. Higher currents increase the gain

and improve the input matching. This is because the transconductance is

higher and the input impedance is closer to 50 Ω.

7.4. Noise Figure Measurements

The results of the amplifier noise measurements are shown

in Fig. 7.9 – Fig. 7.13. The measured and simulated noise figure of

the amplifier is compared for five different drain supply currents Idd. The

measured characteristics differ considerably from measured ones. For this

behaviour some reasons can be enumerate.

Firstly, working DECT telephony introduces peaks visible in all measure-

ments in the frequency band of around 1.8 GHz. Such disturbing peaks are

also visible in the UMTS frequency range (2.11 – 2.17 GHz), since the UMTS

base stations works near the laboratory.
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Fig. 7.9. Measured and simulated noise figure versus frequency for supply

current Idd = 1 mA

Except the peaks, in the band of interest there is also a bump of noise

figure values. One of the possible explanation of this behaviour is the working
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UMTS standard, which introduce errors (in the shape of this bump) in mea-

surements. The LNA is designed to work in the UMTS frequency range by its

input and output matching and a narrow bandwidth of gain characteristics.

Additionally, it can be assumed, that the UMTS signal present in laboratory

has a constant power in the whole frequency range, except the peaks men-

tioned above. For these reasons the shape of the gain characteristic appears

in the noise figure measurements. To avoid this effect, the measurements in

electromagnetic chamber could be helpful.

However, the suboptimum design can both deepened or even caused this

problem. As written, pad capacitance affects both input power match and

noise performance of the LNA. Since the pad capacitance is larger than as-

sumed, it could be also the reason of the hill in the measured noise charac-

teristic. At last but not least, a similar hill in the band of interest can bee

seen in other publications e.g., [84], [101].

The minimum value of the noise figure as a dependency of the supply

current is shown in Fig. 7.14. This figure shows, that with increasing current

Idd the noise figure drops. This lead to a trade-off situation between current

consumption and noise figure [102].
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Fig. 7.10. Measured and simulated noise figure versus frequency for supply

current Idd = 1.7 mA
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Fig. 7.11. Measured and simulated noise figure versus frequency for supply

current Idd = 2.5 mA
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Fig. 7.12. Measured and simulated noise figure versus frequency for supply

current Idd = 3.5 mA
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Fig. 7.13. Measured and simulated noise figure versus frequency for supply

current Idd = 4.6 mA
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7.5. Compression Measurements

The gain compression behavior of the amplifier is shown in Fig. 7.15.

The amplifier gain versus input power for different supply currents Idd is

presented. The compression points P1dB are shown as small circles. As

already mentioned measured values are higher than simulated ones. However,

the differences between them vary.

Compression measurement for 1 mA supply current needs an explanation.

Although largest value of P1dB has been achieved, the amplifier work in

nonlinear range, because its gain versus input power is not constant, and

even increases with increasing input power.

Additionally small signal nonlinearities IIP3 has been measured. The

results are shown in Tab. 7.2 in the next subsection.
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Fig. 7.15. Measured input referred P1dB

7.6. Comparison with State-of-the-art Amplifiers

The measured results of the designed LNA are collected in Tab. 7.2. The

most important amplifier characteristics like the input and output matching,

noise figure and gain are shown for various supply currents.

This table can be used for choosing the best operating point of this am-

plifier with respect to all parameters collected in this table. For further
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Tab. 7.2. Summary of measurements

Current S11 Gain S22 NF Input P1dB IIP3

[mA] [dB] [dB] [dB] [dB] [dBm] [dBm]

1 -5 7.5 -23 1.1 -4.5 -1.9

1.7 -5.5 9.5 -23 0.85 -9 -3.7

2.5 -6 11 -23 0.8 -13 -3.5

3.5 -6.5 12 -24 0.76 -14 -2.5

4.6 -6.8 12.5 -24 0.72 -13 -1.7

comparison with state-of-the-art amplifiers supply current equals to 3.5 mA

is chosen.

In [83], [103], [104], [84] there are also very good results achieved con-

cerning the noise figure and current consumptions. All these designs have

the pad or ESD structure capacitance connected between gate and source

or ground (base and emitter in bipolar technology), as it is analyzed in sec-

tion 6.3.3. Although in publications mentioned above other types of analysis

are performed the conclusions are similar to these addressed in this thesis.

Tab. 7.3. Comparison with other publications

Freq. Pdc S11 Gain S22 NF Input P1dB IIP3 Ref.

[GHz] [mW] [dB] [dB] [dB] [dB] [dBm] [dBm]

1.22 9 -11 20 -11 0.8 n.a -11 [84]

5.75 16 n.a. 14.2 -8 0.9 -17 0.9 [101]

0.9 17.6 -10 15 -27 0.85 n.a. 1 [104]

2 10.8 -12 15 -22 0.7 -9.5 6 [105]

1.5 30 -7 22 n.a 3.5 -22 -10 [90]

2.1 50 -8 14 n.a 2.1 -13 n.a. [106]

2.45 10 -25 14 n.a. 2.3 -8.5 0 [107]

1.9 9 n.a. 17.5 n.a 1.6 n.a. -6.8 [71]

5.8 n.a. n.a. 12 n.a. 4 n.a. n.a. [87]

2.1 4.2 -6.5 12 -24 0.76 -14 -2.5 This work

The technology comparison presented in [105] shows that achieved results

concerning the noise figure, gain and current consumption are in the best of

achievable values. In Tab. 7.3 some recently published LNAs are presented.

This comparison proves also, that designed amplifier belongs to the best

reported.
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Conclusion

The focus of this thesis is CMOS low noise amplifier design for a reconfig-

urable mobile system. The LNA is not reconfigurable itself. However,

designed amplifier can be use improved with on-off function by connecting

the gate of the transistor M2 through a switch to the Vdd or ground. The

thesis addresses also issues in range from high level system simulation down

to the circuit physics.

In scope of this work the multistandard, reconfigurable terminal is con-

sidered that supports, however not simultaneously, the OFDM based WLAN

standards (IEEE802.11 and Hiperlan/2) and CDMA based UMTS FDD stan-

dard. Special investigation has been made on the receiver of this terminal.

After defining the obvious need of reconfigurability, general information

on reconfigurable transceivers is given. Further the inspection of the sup-

ported standards is shown and receiver requirements for each standard are

derived.

Reconfigurable RF receiver architecture is also one of the main topic in

this work. In the ideal case, in the software defined radio approach only

the antenna and a wide band low noise amplifier is needed. Many obstacles,

however, make this approach impossible at least at the time being. There

is a tendency to reduce the number of conversion stages in the transceiver,

thus the direct conversion principle is applied more and more. On the other

hand, there is also a tendency to reuse the functional blocks in multistandard

transceivers, rather than using many parallel switchable transceivers. Based

on this consideration, a reconfigurable hybrid architecture has been devel-

oped. Although, not fully integrated on chip, this architecture is a good

solution for multistandard systems, which operates at different frequency

bands.

Additionally to the investigation of hybrid architectures, the study on

RF impairments is given. Most important RF impairments are described in



106 Chapter 8. Conclusion

detail, very often accomplished with baseband signal model for use in high

level system simulations. The RF impairments can be divided into three

groups. The first group of impairments (e.g., nonlinearity) can be reduced

only in the baseband. The impairments belonging to the second group can be

reduced only in the frontend, just at that place where they come from. The

last group of impairments (e.g., DC offset, I/Q imbalance), can be reduced

by using signal path optimization techniques in the frontend and baseband,

as well. In signal path optimization approach, RF impairments are evaluated

in the baseband and on this base the correction signals are generated, which

control various frontend blocks.

The second part of this work describes RF-MOS devices and low noise

amplifier design for reconfigurable receivers. Firstly, the noise performance

of a transistor is under consideration, e.g., transistor parasitic elements that

lowers the available noise figure.

Small FET devices of state of the art sub-micron RF-MOS-technologies

have low capacitance values, thus large inductors are needed for matching.

Because of their large dimensions they have to be placed off-chip. For this

reason, the pad capacitance can not be longer neglected in the design process.

Based on the two-port noise theory it is shown, that the pad capacitance,

although very often treated as a parasitic capacitance, is very important

for noise performance. This fact has been already reported so far, but the

extensive study presented in this thesis is novel. It is shown for a cascode

amplifier, that the consideration of the pad capacitance into the optimization

process can lead to a decreased noise figure because of a reduced equivalent

noise resistance. In other words, the noise figure of low-noise amplifiers can

be improved considerably by taking into consideration all passive compo-

nents very carefully. The design methodology is introduced, which reduces

the equivalent noise resistance and thus excellent noise performance can be

achieved in spite of rather poor noise matching.

The characterization of the amplifier, with respect to the noise perfor-

mance and power consumption, confirms the simulations with good agree-

ment. The designed amplifier shows 0.76 dB noise figure and 12 dB gain at

2.14 GHz for 3.5 mA supply current and 1.2 V supply voltage. This results

belong to the knowledge of the author to the best ever reported.
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Cascode Amplifier

The schematic of a cascode LNA is typically quite different from its real

structure. Because of the physical properties of the transistor layout,

wiring and physical process constrain parasitic elements like inductors, resis-

tors, capacitors and even transistors and diodes appear in the circuit.

The designer can decrease the parasitic elements by proper layout tech-

niques as discussed in 4.3.2, but parasitics (even very small) are unavoidable.

Thus, additional elements are needed that can compensate parasitic elements.

The schematic of a layouted cascode LNA, which includes the most im-

portant parasitics and compensation components is presented in Fig. A.1.

The parasitic elements are: Lbond, Lp, Csb and Cp. Cascode amplifiers, while

having good isolation S21, are prone to oscillate if some precautions are not

taken.

First, the gate of the cascode transistor (M2) has to be connected to

Vdd by a resistor R. Actually, the gate-drain capacitance of the cascode

transistor in series with the equivalent inductor Lp of the Vdd connection and

the bondwire Lbond create an LC resonator, which can create a low impedance

path to ground (from the drain of M2). The inductor at the gate of a common

gate transistor can implement an oscillator (inductive feedback).

Secondly, the transistor M1 presents a capacity to the source of the cas-

code transistor. This is together with its own gate-source capacitance a

capacitive degeneration of M2. A capacitive degeneration can create a neg-

ative input impedance at the gate of M2, which degrades the stability. The

gate should be tied to ground trough a capacitor that acts as an AC short

for high frequencies. Moreover, a resistor of 2k - 5k parallel to Cb may be

added between gate of M2 and ground.

Besides of this issues other problems exist that are related to source de-

generation itself. In scope of this work, we assume that source degeneration is

solely inductive. Actually, the parasitic capacitance Csb is physically present
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Fig. A.1. Parasitic components in the cascode amplifier

and impedance of the source degeneration Zs = jωLs becomes more compli-

cated

Zs =
jωLs

1 − ω2LsCsb

. (A.1)

Note, for ω2LsCsb > 1 the effective inductance becomes negative. Since

the real part of input impedance ((gmLs)/Cgs) is proportional to Ls, the real

part of input impedance becomes negative and the circuit oscillates.
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Electrical Chain Matrix of Cascode

Amplifier

In a cascode amplifier there is a cascade connection of the common source

and common gate amplifier. For the noise analysis the electrical matrix

of this connection is needed.

The electrical admittance matrix of the MOSFET in common-source con-

figuration is

Ycs =

[

jω(Cgs + Cgd) −jωCgd

gm − jωCgd gds + jωCgd

]

(B.1)

In turn, the electrical admittance matrix of a MOSFET in common-gate

configuration is

Ycg =

[

−jωCgs − gm − gds −gds

gm − gds gds + jωCgd

]

(B.2)

To calculate resulting Y matrix of the cascode amplifier, both Ycs and

Ycg should be converted to the chain representation and then multiplied.

Assumed that both transistors have the same small signal parameters, after

back conversion from chain to admittance matrix, the resulting admittance

parameters of the cascode stage is:

Y11 = −
ω(−2jCgsgds + 2ωCgsCgd − 2jCgdgds + ωC2

gs + jCgsgm)

jω(Cgd + Cgs) + 2gds − gm

(B.3)

Y12 =
jωgdsCgd

jω(Cgd + Cgs) + 2gds − gm

(B.4)

Y21 =
(−gm + jωCgd)(gm − gds)

jω(Cgd + Cgs) + 2gds − gm

(B.5)

Y22 =
−g2

ds − 3jωCgdgds + ω2C2
gd − jωCgsgds + ω2CgsCgd + jωCgdgm

jω(Cgd + Cgs) + 2gds − gm

. (B.6)

It can bee seen, that even with the assumption of identity of the small sig-

nal parameters of both transistor the equations (B.3)-(B.6) are complicated

and their use for noise analysis is difficult. However, further assumptions can
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be done concerning the Cgd capacitance and gds value. With the Cgd equals

to zero and gm >> gds the admittance parameters of cascode transistor

connection can be simplified to:

Y11 =jωCgs (B.7)

Y12 =0 (B.8)

Y21 = − gm(gm − gds)

2gds + jωCgs − gm

≈ − g2
m

jωCgs − gm

(B.9)

Y22 =
gds(gds + jωCgs)

2gds + jωCgs − gm

≈ gds(gds + jωCgs)

jωCgs − gm

. (B.10)
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Simultaneously Power and Noise

Matching in LNA

For the sake of simplicity, induced gate noise is very often neglected in

LNA design. In this chapter, based on two-port theory it is shown, that

such an assumption leads to errors, particularly for low frequencies.

According to (4.44) and (4.45) the optimum source conductance and re-

actance can be written as:

Bopt ≈ −αωCgs (C.1)

Gopt ≈ βωCgs (C.2)

where α and β are bias and technology dependent constants.

If we connect the source inductance Ls the optimum source conductance

and reactance according to (6.16) - (6.20) can be written as:

Bopt =
ωCgs(ω

2LsCgs(α
2 + β2) − α)

dLs

(C.3)

Gopt =
βωCgs

dLs

(C.4)

where

dLs = 1 − 2αω2LsCgs + ω4L2
sC

2
gs(α

2 + β2) (C.5)

After connecting the inductance Lg to the two-port and by neglecting the

pad capacitance Cpad according to (6.34), the d term can be found as follows:

dLg =
ω4L2

sC
2
gs(α

2 + β2) + ω4L2
gC

2
gs(α

2 + β2)

1 − 2αω2LsCgs + ω4L2
sC

2
gs(α

2 + β2)

+
2ω4LgLsC

2
gs(α

2 + β2) − 2αω2Cgs(Ls + Lg)

1 − 2αω2LsCgs + ω4L2
sC

2
gs(α

2 + β2)
(C.6)

It can be found that the minimum value of dLg depends on the inductances

Ls and Lg. However, although an optimum value of Ls exists, this does not

lead to the useful practical results, since neither gm nor source resistance
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Rs are taken into account. For this reason only the optimum value of the

inductance Lg can be found.

It is easy to verify, that the inductance Lg, which minimizes the factor

dLg is

Lg =
α − ω2LsCgs(α

2 + β2)

ω2Cgs(α2 + β2)
(C.7)

The Lg value, that is needed for input matching at angular frequency ω0

according to (6.2) is

Lg =
1 − ω2

0LsCgs

ω2
0Cgs

(C.8)

A comparison of equations (C.8) and (C.7) shows that they do not lead

to the same result.

Some assumption for the bias dependent parameters α and β are made

now. If the long channel theory is taken into account, gm = gd0, δ = 4/3,

γ = 2/3, ζ = 1/5 and thus α ≈ 0.75 and β ≈ 0.58. With this numbers the

difference between Lg values calculated from (C.7) and (C.8) is around 17%.

Since the inductor Lg is rather large (about 25 nH or even more for 2 GHz)

noise and power matching can not be obtained simultaneously. Because

the needed value of inductor Lg decreases with frequency, noise and power

matching is easier to obtain at higher frequencies, However, with increasing

frequency the noise performance automatically worsens.

The induced gate noise is very often neglected in LNA design (e.g. [107]).

With this assumption (α = 1 and β = 0) Lg values calculated from (C.7)

and (C.8) are the same. It proves the fact the power and noise matching can

be achieved simultaneously only with the induced gate noise neglected. This

conclusion can be also found in [108].
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