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In a previous contribution to this journal [H. P. Stormberg, J. Appl. Phys. 51(4), 1963 (1980)],

Stormberg presented an analytical expression for the convolution of Lorentz and Levy line profiles,

which models atomic radiative transitions in high pressure plasmas. Unfortunately, the derivations

are flawed with errors and the final expression, while correct, is accompanied by misguiding

comments about the meaning of the symbols used therein, in particular the “complex error

function.” In this paper, we discuss the broadening mechanisms that give rise to Stormberg’s

model and present a correct derivation of his final result. We will also provide an alternative

expression, based on the Faddeeva function, which has decisive computational advantages and

emphasizes the real-valuedness of the result. The MATLAB/Octave scripts of our implementation

have been made available on the publisher’s website for future reference. VC 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4829916]

I. INTRODUCTION

Modelling and numerical simulation have been widely

used to aid the understanding and guide the development of

High-Intensity Discharge (HID) lamps. An important aspect

of such models is the transport of energy via radiation, which

depends critically on broadening mechanisms. When multi-

ple statistically independent broadening mechanisms are

present, the resulting line profile is obtained as the convolu-

tion product of the individual line profiles (see Ref. 1, p. 56).

A well-known example is the Voigt profile, which is

obtained by convolving the Gaussian and Lorentzian profiles

that result from Doppler and Resonance or Stark broadening,

respectively. The Voigt profile2–4 can be expressed as

PV zð Þ ¼
ffiffiffiffiffiffiffi
ln2
p R w zð Þ½ �ffiffiffi

p
p

cG

; (1)

where z ¼
ffiffiffiffiffiffiffi
ln2
p

���0þicL

cG
, cG and cL represent the Gaussian

and Lorentzian half widths at half maxima (HWHM), � is

the frequency, �0 is the unperturbed frequency, and the

Faddeeva function w(z) is given by

w zð Þ ¼ expð�z2ÞErfc �izð Þ: (2)

The function Erfc is the complementary error function,

which is given by

Erfc zð Þ ¼
2ffiffiffi
p
p
ð1

z

e�t2 dt ¼ 1� Erf zð Þ; (3)

where the error function is given by

Erf zð Þ ¼ 2ffiffiffi
p
p
ðz

0

e�t2 dt: (4)

Stormberg5 derived an analytical expression for the case

that the centre of the spectral line can be described by a

Lorentzian profile and the red wing by a van der Waals pro-

file. This case is particularly relevant for atomic transitions

in high-pressure plasmas. He showed that the resulting line

profile is given by

P Dkð Þ ¼ 1

pDk1=2 1þ a2ð Þ

� icp
2

Z1:5
1 exp Z1bð ÞErfc

ffiffiffiffiffiffiffi
Z1b

p� �h

� Z1:5
2 exp Z2bð ÞErfc

ffiffiffiffiffiffiffi
Z2b

p� ��
; (5)

where Dk1=2 represents the full width at half maximum

(FWHM) of the Lorentzian profile and Dk0 the characteristic

width of the van der Waals (also called Levy) profile. The

auxiliary parameters a, b, c, and Z1,2 are given by

a ¼ Dk
Dk1=2

; (6)

b ¼ pDk0

4Dk1=2

; (7)

c ¼
ffiffiffiffiffiffiffiffi
Dk0

p

2p Dk1=2

� �3=2
¼

ffiffiffi
b
p

p3=2Dk1=2

; (8)

Z1;2 ¼
�a7i

1þ a2
: (9)

Stormberg creates some confusion about the meaning of

Erfc by mentioning a method for calculating the complex
error function in the accompanying text, probably referring

the evaluation of the error function for complex arguments
instead.6,7 But more commonly the term “complex error

function” refers to the Faddeeva function.2,4,7

Most authors who cite Stormberg’s article5 merely indi-

cate that they used his expression, without any further

0021-8979/2013/114(18)/183301/6/$30.00 VC 2013 AIP Publishing LLC114, 183301-1
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remarks on the mistakes in Stormberg’s paper or the mean-

ing of Erfc. Only two articles known to the authors discuss

Stormberg’s expression any further. Weiß et al.8 mention

that they calculate a Faddeeva function, but do not even pro-

vide an expression in which that function occurs. Hartel

et al.9 present an interesting alternative form of Stormberg’s

expression that avoids the need to subtract two terms involv-

ing the complementary error function, the result is

P Dkð Þ ¼ 1

pDk1=2 1þ a2ð Þ þ pc exp
�ab

1þ a2

� 	

� I Z3=2exp
�ib

1þ a2

� 	
Erfc

ffiffiffiffiffiffi
Zb
p� �
 �

; (10)

with Z¼Z1 and I denoting the imaginary part.

Unfortunately, they also use the confusing term “complex

error function” to refer to the complementary error function

and do not provide a derivation of their result, or discuss its

advantages.

In this paper, we will first provide a short introduction to

the theory of line broadening that is relevant for the present

discussion. We continue the text with a complete and cor-

rected derivation of Stormberg’s and Hartel’s result, which

shows that indeed Erfc represents the complementary error

function in all expressions. We will then derive a novel

expression for Stormberg’s result that employs the Faddeeva

function. This expression has decisive analytical and

computational advantages: it highlights the real-valuedness

of the result and avoids the subtraction of two possibly

(nearly-)equal terms. The MATLAB/Octave source code

that has been used in our tests has been made available on

the publisher’s website for future reference.

II. LINE BROADENING

The most important broadening mechanisms in high

pressure plasmas are resonance, van der Waals, and Stark

broadening. Resonance, Stark, and van der Waals broaden-

ing can be calculated in the impact approximation, which is

valid when the collision time is much shorter than the time

between collisions,10,11 or k� k0 ¼ Dk < DkL, with

DkL ¼
hvik2

2pcqW

: (11)

Here k0 is the wavelength of the unperturbed transition and

hvi the average thermal velocity of the interacting particles.

The potential of the perturbation is assumed to be of the

form

V ¼ h
Cn

rn
; (12)

where h is Planck’s constant and Cn is the broadening con-

stant with dimensions mn s�1. For such a potential, the

Weißkopf radius is given by

qW ¼
anCn

hvi

� 	 1
n�1

; (13)

with

an ¼
ffiffiffi
p
p C

n� 1

2

� 	

C
n

2

� 	 ; (14)

and C is the gamma function. This results in a Lorentzian

line profile,

PLorentz Dkð Þ ¼
Dk1=2

p Dk2
1=2 þ Dk2

� � ; (15)

with Dk1=2 the Lorentzian HWHM. The convolution of two

Lorentzian profiles is again a Lorentzian profile with a

HWHM that is equal to the sum of the HWHM of the indi-

vidual profiles. In other words, the HWHM’s are additive for

all statistically independent mechanisms that result in a

Lorentzian profile.

For resonance broadening in the impact approximation,

the HWHM is given by

Dkres ¼
X

i

X
j

CR;jini ¼
X

i

X
j

k2

2c0

pC3;jini; (16)

where CR,ji and C3,ji are resonance broadening constants for

exchange of excitation energy (see Ref. 1, pp. 101–103)

between states j and i, ni is the density of the radiating parti-

cle in state i, and c0 is the speed of light in vacuum. Laux

et al.12 note that the following perturbations in general are

sufficient

Dkres ¼
k2

ulp
2c0

C3;lgng þ C3;ugng þ C3;ulnlð Þ; (17)

where the indices l, u, and g refer to the lower state, upper

state, and ground state of the radiating particle. The reso-

nance broadening constant is given by

C3;ji ¼ kJj;Ji

1

64p3

gj

gi

� 	
Ajik

3
ji; (18)

with kJj;Ji a constant which depends on the total angular mo-

mentum quantum numbers Jj and Ji. Corney (Ref. 13, p. 263)

reports the value k1,0¼ 1.53 for the case Jj¼ 1, Ji¼ 0. This

value is in good agreement with experiments in helium

where the transition probability is accurately known for the
1P1–1S0 resonance line. An expression often used for the res-

onance broadening constant is the value from Griem,1,8,14,15

which is given by

C3;ji ¼
1

8p4

ffiffiffiffi
gj

gi

r
Ajik

3
ji: (19)

Although this expression is not as accurate as Corney’s

expression it has the advantage that it doesn’t rely on the

constant kJj;Ji
. In case of resonance broadening by a 1P1–1S0

line, the ratio of Griem’s expression to Corney’s expression

183301-2 Janssen et al. J. Appl. Phys. 114, 183301 (2013)
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is only 0.961. It is also interesting to note that Lawler16 states

that the linear relation between density and resonance line

width in Hg is valid at least up to 4� 1025 m�3. This density

is outside the validity of the impact approximation. Lawler

additionally claims that the Lorentzian line profile may also

be valid to line offsets that are significantly larger than sug-

gested by the validity of the impact theory.

In the impact approximation, the HWHM due to Stark

broadening is calculated with various degrees of sophistica-

tion. Stormberg17 uses a HWHM given by

DkStark ¼ CSne; (20)

while Refs. 8, 14, and 15 use the model

DkStark ¼
k2

4pc0

11:37C
2=3
4 v1=3

e ne; (21)

with CS and C4 the Stark broadening constants, ve the ther-

mal velocity of the electrons, and ne the electron density.

The second relation features a weak temperature depend-

ency, which is not present in the first relation. Another

expression for the HWHM of Stark broadening is found in

Griem10,18

DkStark ¼ 1þ 1:75a 1� 0:75rð Þ½ �x; (22)

with r the ratio of the mean distance between ions qm and the

Debye length qD,

r ¼ qm

qD

¼

4pni

3

� 	�1=3

�0kBT

e2ne

� 	1=2
; (23)

where ni is the ion density and a and x are tabulated Stark

broadening parameters by Griem.18 Since all of these meth-

ods rely on input data, it is recommended to use the method

that has the most accurate tabulations.

The contribution of van der Waals broadening in the

impact approximation8,14,15 is given by

DkvdW ¼
k2

2pc0

4:04
8kBT

p

� 	3=10X
i

C
2=5
6;i

ni

l3=10
i

; (24)

with C6 the van der Waals broadening constant, ni the den-

sity of the perturbing particle, and l the reduced mass calcu-

lated for the radiating and the perturbing particle. The van

der Waals broadening constant can be estimated based on a

hydrogen like approximation as14

C6 ¼
1

2h�0

e2apertjhr2
ui � hr2

l ij; (25)

with apert the polarizability of the perturbing particle and

hr2
i i the mean square radius of the atoms in state i, which is

given by

hr2
i i ¼ a2

0

n�ið Þ2

2
h5 n�i
� �2 þ 1� 3li li þ 1ð Þi: (26)

Here a0 is the Bohr radius, li is the orbital quantum number

of state i, and hn�i i
2

is the effective quantum number

hn�i i
2 ¼ EH

Eion � Ei
; (27)

with EH the ionization energy of hydrogen, Eion the ioniza-

tion energy of the radiating species, and Ei the energy of

state i.
The van der Waals interaction can also be calculated in

the quasistatic approximation. This approximation assumes

that the radiating particles are perturbed by a slowly varying

potential field which can be considered quasistatic. This

approximation results in a Levy profile,10,14

P Dkð Þ ¼

ffiffiffiffiffiffiffiffi
Dk0

p

2 Dkð Þ3=2
exp �pDk0

4Dk

� 	
Dk > 0

0 Dk � 0;

8><
>: (28)

with Dk0 given by

Dk0 ¼
X
pert

CW;pertn
2
pert; (29)

¼
X
pert

k2

2pc0

C6;pert
4

3
pnpert

� 	2

; (30)

with CW and C6 van der Waals broadening constants and

npert the perturber density.

III. STORMBERG’S EXPRESSION

A comparison with experiments shows that the Lorentz

profile describes the centre of the line profile accurately

while the Levy profile is an accurate estimate of the red

wing. Stormberg determines the total line profile by taking

the convolution of the Lorentz and the Levy profile. In this

section, we present a corrected derivation of Stormberg’s

expression, derive Hartel’s result, and provide a numerically

superior expression, based on the Faddeeva function. The

starting point is the convolution integral

P Dkð Þ ¼
ð1
�1

PLevy Dkð ÞPLorentz �� Dkð Þd�: (31)

Substitution of Eqs. (15) and (28) yields

PðDkÞ ¼
ffiffiffiffiffiffiffiffi
Dk0

p

2pðDk1=2Þ3=2

ffiffiffiffiffiffiffiffiffiffiffi
Dk1=2

q

�
ð1

0

1

ð�Þ1:5
exp � pDk0

4Dk1=2

Dk1=2

�

 !
1

1þ Dk� �
Dk1=2

 !2
d�;

(32)

and by changing to the integration variable

y ¼
Dk1=2

�
; (33)

183301-3 Janssen et al. J. Appl. Phys. 114, 183301 (2013)
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and using the definitions (6) and (7) one obtains

P Dkð Þ ¼ c

ð1
0

ffiffiffi
y
p y

y2 þ ðya� 1Þ2
expð�byÞdy: (34)

Using definition (9), one gets

y

y2 þ ya� 1ð Þ2
¼ �i

2 1þ a2ð Þ
aþ i

yþ Z1

þ�aþ i

yþ Z2

� 	
; (35)

which allows us to write Eq. (34) as

P Dkð Þ ¼ ic

2 1þ a2ð Þ

�
ð1

0

�a� ið Þ ffiffiffiyp
yþ Z1

expð�byÞ
"

�
�aþ ið Þ ffiffiffiyp

yþ Z2

expð�byÞ
�

dy: (36)

This equation has the form of a (unilateral) Laplace

transform,

L f tð Þ
� �

¼
ð1

0

f tð Þexp �stð Þdt; (37)

and in a book of Laplace tables like19 one finds thatð1
0

ffiffiffi
y
p

yþ Z
exp �byð Þdy ¼

ffiffiffi
p
b

r
� p

ffiffiffi
Z
p

exp Zbð ÞErfc
ffiffiffiffiffiffi
Zb
p� �

;

(38)

where Erfc is the complementary error function. This result

is valid under the conditions that

RðbÞ ¼ R pDk0

4Dk1=2

 !
> 0; (39)

jarg Zð Þj ¼
arg

�a7i

1þ a2

� 	 < p; (40)

which are always met because of the definitions of b and

Z1,2. Note that R is used to refer to the real part of an expres-

sion. By substituting Eq. (38) in Eq. (36) Stormberg’s origi-

nal expression (5) can be obtained, with the observation that

Erfc is the complementary error function.

In the remaining part of this section, an alternative

expression will be derived that is based on the Faddeeva

function. We start by rearranging the Laplace transform asffiffiffi
p
b

r
� p

ffiffiffi
Z
p

exp Zbð ÞErfc
ffiffiffiffiffiffi
Zb
p� �

¼
ffiffiffi
p
b

r
1�

ffiffiffi
p
p ffiffiffiffiffiffi

Zb
p

exp Zbð ÞErfc
ffiffiffiffiffiffi
Zb
p� �� �

: (41)

Using ffiffiffiffiffiffi
Zb
p

¼ �i2
ffiffiffiffiffiffi
Zb
p

¼ �id; (42)

with d ¼ i
ffiffiffiffiffiffi
Zb
p

, the Laplace transform can be expressed in

terms of d as ffiffiffi
p
b

r
1þ i

ffiffiffi
p
p

d exp �d2ð ÞErfc �idð Þ
� �
¼

ffiffiffi
p
b

r
1þ i

ffiffiffi
p
p

dw dð Þ
� �

;

(43)

where we have introduced the Faddeeva function Eq. (2).

The final line profile can then be rewritten as

P Dkð Þ
PLor Dkð Þ ¼

�i þaþ ið Þ
2

1þ i
ffiffiffi
p
p

d1w d1ð Þ
� �

þ�i �aþ ið Þ
2

1þ i
ffiffiffi
p
p

d2w d2ð Þ
� �

¼ 1

� i 1þ a2ð Þd2
1

2b
i
ffiffiffi
p
p

d1w d1ð Þ

þ i 1þ a2ð Þd2
2

2b
i
ffiffiffi
p
p

d2w d2ð Þ

¼ 1þ 1þ a2ð Þ ffiffiffipp
2b

d3
1w d1ð Þ � d3

2w d2ð Þ
� �

: (44)

The term d3
1w d1ð Þ can be related to d3

2w d2ð Þ by noting that

d1 ¼ i
ffiffiffiffiffiffiffi
Z1b

p
¼ �i

ffiffiffiffiffiffiffiffi
Z1b

p
¼ �i

ffiffiffiffiffiffiffi
Z2b

p
¼ �d2; (45)

as a result of which

d3
1w d1ð Þ ¼ d3

1 w d1ð Þ ¼ d1
3
w �d1

� �
¼ �d3

2w d2ð Þ: (46)

In the last step, we have used w �zð Þ ¼ w �zð Þ (see Ref. 20,

Eq. 7.1.12). Then the final expression can be simplified to

P Dkð Þ
PLor Dkð Þ ¼ 1þ 1þ a2ð Þ ffiffiffipp

b
R d3

1w d1ð Þ
� �
 �

: (47)

When the Faddeeva function is expressed in terms of the

complementary error function this yields Hartel’s expression.

Equation (47) has decisive analytical and computational

advantages, compared with Stormberg’s and Hartel’s expres-

sions. It is more compact, emphasizes that the line profile is

real-valued, and avoids the subtraction of possibly (nearly)

equal terms. Moreover, there is no need to evaluate the prod-

uct of a complex exponent and an error function, since speci-

alized algorithms exist for the numerically stable evaluation

of the Faddeeva function itself.21

Before discussing the numerical stability further, it is in-

structive to explore the limiting cases in which one of the

broadening mechanisms is absent. The Lorentzian profile

can be retrieved trivially by using

lim
Dk0#0

b ¼ pDk0

4Dk1=2

¼ 0; (48)

which implies that

lim
Dk0#0

d3
1;2

b
¼ lim

Dk0#0

i �a7ið Þb½ �3

1þ a2ð Þ3=2
b
¼ 0: (49)

183301-4 Janssen et al. J. Appl. Phys. 114, 183301 (2013)
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Recovering the Levy profile is more tricky, since

limDk1=2#0 a ¼ 1; limDk1=2#0 b ¼ 1 and limDk1=2#0 c ¼ 1. But

since

lim
Dk1=2#0

a

b
¼ 4Dk

pDk0

; (50)

is constant, for Dk1=2 # 0 we can easily derive that

P Dkð Þ ¼ 4

p2Dk0

b

a

� 	1:5

�
ffiffiffi
p
p

2
w

ffiffiffi
b

a

r !
þ w �

ffiffiffi
b

a

r !( )" #
: (51)

Using w zð Þ þ w �zð Þ ¼ 2 exp �z2ð Þ (see Ref. 20, Eq. 7.1.11)

and the definitions of a and b, we arrive at the expression for

the Levy profile.

IV. NUMERICAL STABILITY

The line profile calculated with Eq. (5) shows oscilla-

tions for large values of b. First, an example is given of a

physical situation where these high values of b can occur.

After that an implementation of Eq. (47) in MATLAB and

its numerical stability are discussed.

The line profile can be characterized with the variables

Dk1=2 and Dk0. A more insightful description is given by the

parameter b which contains the ratio of the impact and quasi-

static linewidths. By only taking into account resonance

broadening in the impact limit and van der Waals broadening

in the quasistatic limit, this ratio can be expressed in terms

of the broadening constants as

b ¼ p
4

16C6n2
p

9C3nr
; (52)

with nr the density of radiating species and np the density of

perturbing species. In a situation where the radiating par-

ticles are not the same as the perturbing particles a high

value of b can occur. For example in a high pressure mercury

discharge containing sodium iodide, the ratio can become

large at lower temperatures were the sodium is bound in mol-

ecules. In methods like raytracing,22 a correct calculation of

the line profile at lower temperatures is also required to

account for the absorption accurately.

The calculation of the line profile21 according to Eq. (5)

in MATLAB requires an implementation of the error func-

tion. Since this is not a built-in function, we used the

FIG. 1. For b¼ 50, the line profile can become numerically unstable when

Stormberg’s original expression (5) is used (solid line). The new expression

(47) is stable for all b values (dashed line).

FIG. 2. The function P(Dk)/c for vari-

ous values of b.
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implementation from Leutenegger21 for our tests. For b> 50,

these revealed numerical artifacts in the line shape that can

be attributed to inaccuracies in Leutenegger’s implementa-

tion. Our new expression (47) that was tested with the imple-

mented Faddeeva function of Ikuma21 did not have such

problems.

These results are shown in Figure 1. Since the line profiles

are proportional to c, we have plotted P(Dk)/c in these graphs.

The figure clearly shows the oscillations for b¼ 50 when

Stormberg’s original expression is used with Leutenegger’s

algorithm for calculating the error function; the noise rapidly

increases in magnitude and width when b is increased further.

For a few values of b, the resulting line profiles are

shown in Figure 2. These figures show that the oscillations

which start to occur around b¼ 50 arise when the line profile

is dominated by the Levy contribution. Wharmby23 already

mentioned that impact and quasistatic theory have their limi-

tations and that for high densities the Levy profile can cause

unrealistically large red wings. He was still able to obtain

accurate results by convolving again with a Gaussian profile

to artificially limit these wings. A correct calculation of the

line profile requires to take into account accurate potential

curves of the interacting species. Such curves are not always

available and in some cases a more simple calculation of the

line profile is preferred. For these cases, Stormberg’s line

profile can be used as a first order approximation.

V. CONCLUSION

We have evaluated the dominant broadening mecha-

nisms of atomic lines in high pressure plasma. We have

shown that when Stormberg’s original expression is used in

conjunction with a popular implementation of the error func-

tion in MATLAB/Octave, intolerable numerical errors are

observed when the broadening is dominated by the Levy

contribution. We have presented a novel expression that is

based on the Faddeeva function, which is more elegant, com-

putationally efficient and accurate under all circumstances.

The MATLAB/Octave scripts of our implementation have

been made available on the publisher’s website for future

reference.21
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