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ABSTRACT

Graphics processing units (GPUs) are becoming increasingly
popular for compute workloads, mainly because of their large
number of processing elements and high-bandwidth to off-
chip memory. The roofline model captures the ratio between
the two (the compute-memory ratio), an important architec-
tural parameter. This work proposes to change the compute-
memory ratio dynamically, scaling the voltage and frequency
(DVFS) of 1) memory for compute-intensive workloads and
2) processing elements for memory-intensive workloads. The
result is an adaptive roofline-aware GPU that increases en-
ergy efficiency (up to 58%) while maintaining performance.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]: Parallel Architectures;
C.4 [Performance of Systems]: Modeling Techniques

General Terms

Performance

Keywords

Parallel Computing, GPU, DVFS, The Roofline Model

1. INTRODUCTION
In the past decade, graphics processing units (GPUs) have

emerged as a popular platform for non-graphics computa-
tions: programmers now use these massively parallel acceler-
ators for computational problems in domains such as image
processing and molecular science. In particular, GPUs are
well-suited for throughput-oriented applications, because of
their large number of processing elements and their high off-
chip memory bandwidth [3]. While the first enables a high
instruction throughput, typically measured in floating point
operations per second (FLOPS), the second enables a high
data throughput, measured in bytes per second (B/s).

The ratio between the instruction and data throughput is
the compute-memory ratio, an important design parameter
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for GPUs. This is visualised in the roofline model [9], an
abstract analytical model based on a kernel’s operational

intensity. This metric (measured in operations per byte),
determines which of the two limits apply: kernels can either
be compute-bound (limited by the processing elements) or
memory-bound (limited by memory bandwidth).
This work explores adapting the compute-memory ratio

of GPUs for a specific workload. Dynamic voltage and fre-
quency scaling (DVFS) is applied to either the GPU core or
its memory, saving power while maintaining performance.
This idea was proposed as part of earlier work [8], but is now
also validated experimentally. Although DVFS for GPUs is
not new [4, 5, 7], this is the first work to combine it with
the roofline model and the operational intensity metric.

2. ROOFLINE-AWARE DVFS
The concept of this work is illustrated by the roofline

model. Figure 3 gives an example roofline model of a GeForce
GTX470 GPU (Fermi architecture) with a single-precision
peak instruction throughput of 538 GFLOPS (counting fmad
as one operation) and an off-chip memory throughput of
144GB/s. On the left hand side, a memory-intensive GPU
kernel is shown: it accesses an average of one off-chip byte
per instruction. According to the roofline model abstrac-
tions, the instruction throughput can now be halved (or
more) without loosing performance. The right hand side
shows the dual: a compute-intensive kernel that allows mem-
ory throughput to be reduced while maintaining performance.
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Figure 3: A roofline model for a GTX470 GPU, illus-
trating the scaling of core performance for memory-
intensive workloads (left) and memory scaling for
compute-intensive workloads (right).

Two techniques can be applied to obtain a scaling of core
and memory performance on a per-kernel basis: 1) dynamic
frequency scaling (DFS) of the core or memory clock, or 2)
dynamic disabling of processing elements or memory banks.
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Figure 1: Normalised performance (left), normalised dynamic and total power (middle), and energy efficiency
(right) for a memory-intensive (BW-mb) and a compute-intensive micro-benchmark (PE-mb).
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Figure 2: Sorted results for benchmarks with a low core scaling sensitivity (left) and a high core scaling
sensitivity (right). The legends show the simulated operational intensities in operations per off-chip byte.

The latter technique reduces static (leakage) and dynamic
power linearly, but complicates data storage due to powered
down memory banks. DFS only reduces dynamic power lin-
early, but can be extended with voltage scaling (DVFS) to
obtain better scaling of dynamic power (P = α·f ·C ·V 2) and
additional scaling of static power. We therefore propose to
apply DVFS based on a kernel’s operational intensity, thus
obtaining a roofline-aware GPU.

Earlier work [2, 6] focused on phases: portions of the ex-
ecution in which specific properties (e.g. the operational
intensity) remain constant. Although such phases might ex-
ist, it is typically valid to consider the average operational
intensity: GPUs execute many threads independently on
multiple cores, averaging work from different phases.

3. EXPERIMENTAL RESULTS
To quantify the potential of roofline-aware DVFS, exper-

iments are performed on 1) two micro-benchmarks, and 2)
the Parboil and PolyBench/GPU benchmark suites. We
use version 3.2.1 of GPGPU-Sim [1] and the GPUWattch
power model [6]. The simulator is configured to match a
GTX470 with (rounded) nominal frequencies of 1200MHz
and 900MHz for the core and memory (quad-pumped) re-
spectively. The frequencies are halved in steps: 1200–1000–
800–600MHz (core) and 900–750–600–450MHz (memory) for
a total of 1 nominal and 6 scaled operating points. The
amount of voltage scaling applied in three steps for both core
and memory is 0.92, 0.82 and 0.72 [6]. The estimated leak-
age power is 55W based on GTX480 data ( 14cores

15cores
· 59W [6])

and scales with core voltage but not with frequency. The
configuration files, the benchmarks, and the full results are

available at http://github.com/cnugteren/rooflineDVFS.
Figure 1 shows the micro-benchmark results, constructed

to be either memory-intensive (BW-mb) or compute-intensive
(PE-mb). The results are as expected: core scaling halves
the performance (and reduces the power) for the compute-
intensive benchmark but maintains nominal performance for
the memory-intensive benchmark. Vice versa for memory
scaling. At nominal performance, energy savings are 58% for
BW-mb (core scaling to 1

2
) and 2% for PE-mb (memory scaling

to 1

2
). The reason the compute-intensive benchmark does

not benefit is the relatively low memory power compared to
the GPU core, in particular when it is idle most of the time.
Figure 2 shows results for the benchmarks grouped by

their sensitivity to core scaling. The two left graphs show re-
sults with a low operational intensity and significant energy
gains for core scaling. Although performance is affected in
most cases, it does not drop linearly with the core frequency.
The benchmarks sensitive to core scaling (right hand side of
figure 2) show almost no change in performance nor energy
efficiency for memory scaling. Most of these have a high
operational intensity, although there are exceptions.

4. CONCLUSIONS
This work has shown the potential of roofline-aware DVFS

for GPUs. The theory of scaling the roofline model based on
the operational intensity is valid in practice for the micro-
benchmarks, although memory scaling does not achieve as
much energy gains as core scaling. Real benchmarks show
promising results for core scaling, although further work and
experiments are required to take advantage of the potential.
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