

Roofline-aware DVFS for GPUs

Citation for published version (APA):
Nugteren, C., Braak, van den, G. J. W., & Corporaal, H. (2014). Roofline-aware DVFS for GPUs. In C. Dubach,
& G. Fursin (Eds.), Proceedings of International Workshop on Adaptive Self-tuning Computing Systems (ADAPT
'14), 22 January 2014, Vienna, Austria (pp. 8-10). Association for Computing Machinery, Inc.
https://doi.org/10.1145/2553062.2553067

DOI:
10.1145/2553062.2553067

Document status and date:
Published: 01/01/2014

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1145/2553062.2553067
https://doi.org/10.1145/2553062.2553067
https://research.tue.nl/en/publications/a35b6f98-3d8e-458f-a273-209df3e1fe8e

Roofline-aware DVFS for GPUs

Cedric Nugteren Gert-Jan van den Braak Henk Corporaal
Eindhoven University of Technology, The Netherlands

{c.nugteren, g.j.w.v.d.braak, h.corporaal}@tue.nl

ABSTRACT

Graphics processing units (GPUs) are becoming increasingly
popular for compute workloads, mainly because of their large
number of processing elements and high-bandwidth to off-
chip memory. The roofline model captures the ratio between
the two (the compute-memory ratio), an important architec-
tural parameter. This work proposes to change the compute-
memory ratio dynamically, scaling the voltage and frequency
(DVFS) of 1) memory for compute-intensive workloads and
2) processing elements for memory-intensive workloads. The
result is an adaptive roofline-aware GPU that increases en-
ergy efficiency (up to 58%) while maintaining performance.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]: Parallel Architectures;
C.4 [Performance of Systems]: Modeling Techniques

General Terms

Performance

Keywords

Parallel Computing, GPU, DVFS, The Roofline Model

1. INTRODUCTION
In the past decade, graphics processing units (GPUs) have

emerged as a popular platform for non-graphics computa-
tions: programmers now use these massively parallel acceler-
ators for computational problems in domains such as image
processing and molecular science. In particular, GPUs are
well-suited for throughput-oriented applications, because of
their large number of processing elements and their high off-
chip memory bandwidth [3]. While the first enables a high
instruction throughput, typically measured in floating point
operations per second (FLOPS), the second enables a high
data throughput, measured in bytes per second (B/s).

The ratio between the instruction and data throughput is
the compute-memory ratio, an important design parameter

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ADAPT ’14, Jan 22, 2014, Vienna, Austria.
Copyright 2014 ACM 978-1-4503-2514-1/14/01 ...$15.00.

for GPUs. This is visualised in the roofline model [9], an
abstract analytical model based on a kernel’s operational

intensity. This metric (measured in operations per byte),
determines which of the two limits apply: kernels can either
be compute-bound (limited by the processing elements) or
memory-bound (limited by memory bandwidth).
This work explores adapting the compute-memory ratio

of GPUs for a specific workload. Dynamic voltage and fre-
quency scaling (DVFS) is applied to either the GPU core or
its memory, saving power while maintaining performance.
This idea was proposed as part of earlier work [8], but is now
also validated experimentally. Although DVFS for GPUs is
not new [4, 5, 7], this is the first work to combine it with
the roofline model and the operational intensity metric.

2. ROOFLINE-AWARE DVFS
The concept of this work is illustrated by the roofline

model. Figure 3 gives an example roofline model of a GeForce
GTX470 GPU (Fermi architecture) with a single-precision
peak instruction throughput of 538 GFLOPS (counting fmad
as one operation) and an off-chip memory throughput of
144GB/s. On the left hand side, a memory-intensive GPU
kernel is shown: it accesses an average of one off-chip byte
per instruction. According to the roofline model abstrac-
tions, the instruction throughput can now be halved (or
more) without loosing performance. The right hand side
shows the dual: a compute-intensive kernel that allows mem-
ory throughput to be reduced while maintaining performance.

core scaling

operational int. [ops/byte]

p
e
rf

o
rm

a
n
c
e
 [
G

F
L
O

P
S

]

0.25 1 4 16 64

1
0

1
0
0

1
0
0
0

memory
intensive
kernel

538 GFLOPS

269 GFLOPS

memory scaling

operational int. [ops/byte]

p
e
rf

o
rm

a
n
c
e
 [
G

F
L
O

P
S

]

0.25 1 4 16 64

1
0

1
0
0

1
0
0
0

compute
intensive

kernel

14
4

G
B/s

72
 G

B/s

Figure 3: A roofline model for a GTX470 GPU, illus-
trating the scaling of core performance for memory-
intensive workloads (left) and memory scaling for
compute-intensive workloads (right).

Two techniques can be applied to obtain a scaling of core
and memory performance on a per-kernel basis: 1) dynamic
frequency scaling (DFS) of the core or memory clock, or 2)
dynamic disabling of processing elements or memory banks.

norm. performance

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1/2 2/3 5/6 1 5/6 2/3 1/2

core scaling memory scaling

BW−mb
PE−mb

norm. dynamic power

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1/2 2/3 5/6 1 5/6 2/3 1/2

core scaling memory scaling

BW−mb (61W)
PE−mb (69W)

norm. total power

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1/2 2/3 5/6 1 5/6 2/3 1/2

core scaling memory scaling

BW−mb (116W)
PE−mb (124W)

energy efficiency

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1/2 2/3 5/6 1 5/6 2/3 1/2

core scaling memory scaling

BW−mb
PE−mb

58%

2%

Figure 1: Normalised performance (left), normalised dynamic and total power (middle), and energy efficiency
(right) for a memory-intensive (BW-mb) and a compute-intensive micro-benchmark (PE-mb).

norm. performance

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1/2 2/3 5/6 1 5/6 2/3 1/2

core scaling memory scaling

●
●

● ●

●

●

●

●

●
● ●

●

●

●

energy efficiency

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1/2 2/3 5/6 1 5/6 2/3 1/2

core scaling memory scaling

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

convolution2d (4.03)
correlation1 (0.58)
correlation2 (0.71)
fdtd2d1 (2.52)
fdtd2d3 (2.13)

gemm (2.5)
histo2 (0.87)
histo4 (1.99)
lbm1 (0.11)
stencil1 (4.63)

norm. performance

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1/2 2/3 5/6 1 5/6 2/3 1/2

core scaling memory scaling

●

●

●

● ● ●

●

●

●

●

● ● ●

●

energy efficiency

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1/2 2/3 5/6 1 5/6 2/3 1/2

core scaling memory scaling

●

●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

convolution3d (2.12)
cutcp1 (120.66)
cutcp2 (134.49)
fdtd2d2 (2.19)

histo3 (2.13)
mriq2 (4288.8)
mriq3 (205.01)
spmv1 (0.74)

Figure 2: Sorted results for benchmarks with a low core scaling sensitivity (left) and a high core scaling
sensitivity (right). The legends show the simulated operational intensities in operations per off-chip byte.

The latter technique reduces static (leakage) and dynamic
power linearly, but complicates data storage due to powered
down memory banks. DFS only reduces dynamic power lin-
early, but can be extended with voltage scaling (DVFS) to
obtain better scaling of dynamic power (P = α·f ·C ·V 2) and
additional scaling of static power. We therefore propose to
apply DVFS based on a kernel’s operational intensity, thus
obtaining a roofline-aware GPU.

Earlier work [2, 6] focused on phases: portions of the ex-
ecution in which specific properties (e.g. the operational
intensity) remain constant. Although such phases might ex-
ist, it is typically valid to consider the average operational
intensity: GPUs execute many threads independently on
multiple cores, averaging work from different phases.

3. EXPERIMENTAL RESULTS
To quantify the potential of roofline-aware DVFS, exper-

iments are performed on 1) two micro-benchmarks, and 2)
the Parboil and PolyBench/GPU benchmark suites. We
use version 3.2.1 of GPGPU-Sim [1] and the GPUWattch
power model [6]. The simulator is configured to match a
GTX470 with (rounded) nominal frequencies of 1200MHz
and 900MHz for the core and memory (quad-pumped) re-
spectively. The frequencies are halved in steps: 1200–1000–
800–600MHz (core) and 900–750–600–450MHz (memory) for
a total of 1 nominal and 6 scaled operating points. The
amount of voltage scaling applied in three steps for both core
and memory is 0.92, 0.82 and 0.72 [6]. The estimated leak-
age power is 55W based on GTX480 data (14cores

15cores
· 59W [6])

and scales with core voltage but not with frequency. The
configuration files, the benchmarks, and the full results are

available at http://github.com/cnugteren/rooflineDVFS.
Figure 1 shows the micro-benchmark results, constructed

to be either memory-intensive (BW-mb) or compute-intensive
(PE-mb). The results are as expected: core scaling halves
the performance (and reduces the power) for the compute-
intensive benchmark but maintains nominal performance for
the memory-intensive benchmark. Vice versa for memory
scaling. At nominal performance, energy savings are 58% for
BW-mb (core scaling to 1

2
) and 2% for PE-mb (memory scaling

to 1

2
). The reason the compute-intensive benchmark does

not benefit is the relatively low memory power compared to
the GPU core, in particular when it is idle most of the time.
Figure 2 shows results for the benchmarks grouped by

their sensitivity to core scaling. The two left graphs show re-
sults with a low operational intensity and significant energy
gains for core scaling. Although performance is affected in
most cases, it does not drop linearly with the core frequency.
The benchmarks sensitive to core scaling (right hand side of
figure 2) show almost no change in performance nor energy
efficiency for memory scaling. Most of these have a high
operational intensity, although there are exceptions.

4. CONCLUSIONS
This work has shown the potential of roofline-aware DVFS

for GPUs. The theory of scaling the roofline model based on
the operational intensity is valid in practice for the micro-
benchmarks, although memory scaling does not achieve as
much energy gains as core scaling. Real benchmarks show
promising results for core scaling, although further work and
experiments are required to take advantage of the potential.

5. REFERENCES
[1] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and

T. Aamodt. Analyzing CUDA Workloads using a
Detailed GPU Simulator. In ISPASS: International

Symposium on Performance Analysis of Systems and

Software. IEEE, 2009.

[2] K. Berry, F. Navarro, and C. Liu. Application-level
Voltage and Frequency Tuning of Multi-Phase Program
on the SCC. In ADAPT-3: International Workshop on

Adaptive Self-Tuning Computing Systems. ACM, 2013.

[3] S. Fuller and L. Millett. Computing Performance:
Game Over or Next Level? IEEE Computer, 44, 2011.

[4] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher,
and Z. Zong. Effects of Dynamic Voltage and
Frequency Scaling on a K20 GPU. In PASA-2:

Workshop on Power-aware Algorithms, Systems, and

Architectures, 2013.

[5] J. Lee, V. Sathisha, M. Schulte, K. Compton, and N. S.
Kim. Improving Throughput of Power-Constrained
GPUs Using Dynamic Voltage/Frequency and Core
Scaling. In PACT-20: International Conference on

Parallel Architectures and Compilation Techniques.
IEEE, 2011.

[6] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani,
N. Kim, T. Aamodt, and V. Reddi. GPUWattch:
Enabling Energy Optimizations in GPGPUs. In
ISCA-40: International Symposium on Computer

Architecture. ACM, 2013.

[7] X. Mei, L. S. Yung, K. Zhao, and X. Chu. A
Measurement Study of GPU DVFS on Energy
Conservation. In HotPower: Workshop on

Power-Aware Computing and Systems. ACM, 2013.

[8] C. Nugteren, G.-J. v. d. Braak, and H. Corporaal.
Future of GPGPU Micro-Architectural Parameters. In
DATE: Design Automation and Test in Europe, 2013.

[9] S. Williams, A. Waterman, and D. Patterson. Roofline:
An Insightful Visual Performance Model for Multicore
Architectures. Communications of the ACM, 52:65–76,
Apr 2009.

