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REGULARIZATION PARAMETER DETERMINATION
FOR DISCRETE ILL-POSED PROBLEMS∗

M. E. HOCHSTENBACH† , L. REICHEL‡ , AND G. RODRIGUEZ§

Abstract. Straightforward solution of discrete ill-posed linear systems of equations or least-
squares problems with error-contaminated data does not, in general, give meaningful results, because
propagated error destroys the computed solution. The problems have to be modified to reduce their
sensitivity to the error in the data. The amount of modification is determined by a regularization
parameter. It can be difficult to determine a suitable value of the regularization parameter when no
knowledge of the norm of error in the data is available. This paper proposes a new simple technique for
determining a value of the regularization parameter that can be applied in this situation. It is based on
comparing computed solutions determined by Tikhonov regularization and truncated singular value
decomposition. Analogous comparisons are proposed for large-scale problems. The technique for
determining the regularization parameter implicity provides an estimate for the norm of the error in
the data.

Key words. Ill-posed problem, regularization, noise-level estimation, TSVD, Golub–Kahan bidi-
agonalization, Tikhonov regularization, heuristic parameter choice rule.

AMS subject classifications. 65F10, 65F22, 65R30.

1. Introduction. We are concerned with the solution of least-squares problems

(1.1) min
x∈Rn

‖Ax− b‖

with a matrix A ∈ Rm×n whose singular values “cluster” at the origin. Thus, A is
severely ill-conditioned and may be singular. Least-squares problems of this kind are
commonly referred to as discrete ill-posed problems. They arise from the discretization
of ill-posed problems, but may also originate in discrete form, for instance, in image
deblurring problems. For notational convenience, we will assume that m ≥ n, but this
restriction easily can be removed. Throughout this paper ‖ · ‖ denotes the Euclidean
vector norm or the associated induced matrix norm.

The vector b ∈ Rm in (1.1) represents available data and is assumed to be con-
taminated by white Gaussian noise e ∈ Rm caused by measurement inaccuracies.
Thus,

(1.2) b = b̂ + e,

where b̂ denotes the unknown error-free vector associated with b. We refer to the
relative error ν = ‖e‖/‖b̂‖ as the noise-level.

Introduce the (unknown) error-free least-squares problem associated with (1.1),

(1.3) min
x∈Rn

‖Ax− b̂‖.
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We are interested in computing an accurate approximation of the solution of minimal
Euclidean norm of (1.3). It is given by x̂ = A†b̂, where A† denotes the Moore–Penrose
pseudoinverse of A. Note that due to the error e in b and the severe ill-conditioning
of A, the solution of minimal Euclidean norm of (1.1), given by

x = A†b = x̂ +A†e,

generally is not a meaningful approximation of x̂ due to a large propagated error A†e.
This difficulty is commonly remedied by replacing the least-squares problem (1.1)

by a nearby problem, whose solution is less sensitive to the error e, and solving the
latter problem. This replacement is known as regularization. Commonly used reg-
ularization methods include Tikhonov regularization and truncated singular value
decomposition (TSVD). The simplest form of Tikhonov regularization replaces the
minimization problem (1.1) by the penalized least-squares problem

(1.4) min
x∈Rn
{‖Ax− b‖2 + µ2 ‖x‖2},

where µ > 0 is a regularization parameter. The solution of (1.4) is given by

(1.5) xµ = (ATA+ µ2I)−1ATb,

where the superscript T denotes transposition. The value of the regularization param-
eter µ determines how well xµ approximates x̂ and how sensitive xµ is to the error e
in the available data b.

When an accurate estimate ε of the error norm ‖e‖ is available, the regularization
parameter µ > 0 often is chosen to satisfy the discrepancy principle, i.e., µ > 0 is
determined so that

(1.6) ‖Axµ − b‖ = τε,

where τ > 1 is a user-specified constant independent of ε; see [10, 14] for discussions
on this parameter choice rule.

We are interested in the situation when no accurate estimate of ‖e‖ is available.
Regularization parameter choice rules for this situation are commonly referred to as
heuristic, because they may fail in certain situations. A large number of heuristic
parameter choice rules have been developed, because of the importance of being able to
determine a suitable value of the regularization parameter µ when no accurate estimate
of ‖e‖ is known. The most well-known of these rules include the L-curve criterion,
generalized cross validation, error estimation methods based on extrapolation, the
quasi-optimality principle, and Regińska’s method; see [3, 5, 10, 14, 23, 24, 25] for
discussions and comparisons of the performance of these and several other heuristic
parameter choice rules and [19] for an analysis. This paper presents a new heuristic
method for choosing the parameter and compares it with several available heuristic
rules as well as with the discrepancy principle.

TSVD is another popular regularization method for the solution of discrete ill-
posed problems of the form (1.1). Introduce the singular value decomposition (SVD)

A = UΣV T ,

where the matrices

U = [u1,u2, . . . ,un] ∈ Rm×n, V = [v1,v2, . . . ,vn] ∈ Rn×n
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have orthonormal columns. The nontrivial entries of

Σ = diag[σ1, σ2, . . . , σn] ∈ Rn×n

are the singular values of A. They are ordered according to

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0,

where the parameter r is the rank of A. Let the matrix Σk ∈ Rn×n be obtained by
setting the last n − k diagonal entries σk+1, σk+2, . . . , σn of Σ to zero, and introduce
the matrix

Ak = UΣkV
T

of rank at most k. The TSVD method determines the approximate solutions

(1.7) xk = A†kb =

k∑
j=1

uTj b

σj
vj , k = 1, 2, . . . , r.

The parameter k is a regularization parameter. It is easy to see that the solution norm
‖xk‖ is monotonically increasing with k, while the associated residual norm ‖b−Axk‖
is a monotonically decreasing function of k.

The discrepancy principle prescribes that x̂ be approximated by the TSVD solution
xk, where k is the smallest integer such that

(1.8) ‖Axk − b‖ ≤ τε;

cf. (1.6). An analysis of this parameter choice rule can be found in [10].

Let the TSVD solution xk and the Tikhonov solution xµ satisfy the discrepancy
principle. Then numerous numerical experiments suggest that xk and xµ approximate
the desired solution x̂ roughly equally well; see also Varah [27] for a discussion on this.
We will make use of this observation to estimate the norm of the noise e in situations
when no accurate estimate is known. The computed estimate of ‖e‖ allows us to apply
the discrepancy principle to determine an approximate solution of (1.1).

The remainder of this paper is organized as follows. Section 2 describes our ap-
proach to comparing approximate solutions given by the TSVD and Tikhonov meth-
ods. These comparisons implicitly provide an estimate of the noise level in b. How
to handle large-scale problems is discussed in Section 3. Numerical experiments are
presented in Sections 4 and 5, and concluding remarks can be found in Section 6.

2. Comparison of Tikhonov and TSVD approximate solutions. We de-
scribe a procedure for comparing Tikhonov solutions (1.5) to TSVD solutions (1.7)
and in this manner determine suitable regularization parameters for these methods.
To every TSVD solution xk, we may associate a Tikhonov solution xµ as follows. Let

(2.1) ρk = ‖b−Axk‖

be the residual norm corresponding to the TSVD solution xk. We will compute the
Tikhonov solution that gives the same residual norm. The following result shows that
this is possible for most problems.
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Proposition 2.1. Introduce the function

(2.2) ϕ(µ) = ‖b−Axµ‖2,

where xµ is defined by (1.5), and assume that ATb 6= 0. Then ϕ can be expressed as

ϕ(µ) = bT (µ−2AAT + I)−2 b,

which shows that ϕ is a strictly increasing function of µ > 0. Moreover, the equation

ϕ(µ) = γ

has a unique solution µ, such that 0 < µ < ∞, for any choice of γ that satisfies
‖b0‖2 < γ < ‖b‖2, where b0 denotes the orthogonal projection of b onto the null
space of AT .

Proof. The result follows by substituting the SVD of A into (2.2) and (1.5).
Corollary 2.2. For each 1 ≤ k < r, there is a Tikhonov regularization parameter

µ = µk such that

(2.3) ‖b−Axµk‖ = ρk,

where ρk is defined by (2.1).
Proof. The corollary follows from Proposition 2.1.
The value of the regularization parameter µk in (2.3) can be determined, e.g., by

a Newton method. This amounts to computing the limit λ of the sequence

λ`+1 = λ` +
1

2

 n∑
j=1

(uTj b)2

(σ2jλ` + 1)2
− ρ̄

 ·
 n∑
j=1

(uTj b)2σ2j
(σ2jλ` + 1)3

−1 ,
where ρ̄ = ρ2k − ‖(I − UUT )b‖2. The value of the regularization parameter then is
given by µk = λ−1/2. This form of Newton’s method is designed to perform well also
when the noise-free least-squares problem (1.3) is inconsistent.

Let kmin be the integer for which the difference norm

(2.4) δk = ‖xµk − xk‖

has its first local minimum as k increases, starting with k = 1. We choose µ = µkmin

as the Tikhonov regularization parameter. This choice or regularization parameter is
in agreement with the discrepancy principle if the noise in b is of the order ρkmin

. We
therefore may use ρkmin

as an estimate for the norm of the noise in b. Algorithm 1
below implements the determination of µkmin

and ρkmin
. The computations of the

algorithm are simple and inexpensive when the SVD of A is available. For instance,
the Tikhonov solution is given by

xµ =

r∑
j=1

σj
σ2j + µ2

(uTj b)vj .

The following discussion sheds some light on why choosing the index k as described
may be appropriate. Assume for the moment that ‖xµk − x̂‖ = ‖xk − x̂‖. Then

‖xµk − xk‖ ≤ ‖xµk − x̂‖+ ‖xk − x̂‖ = 2 ‖xk − x̂‖.
4
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Fig. 2.1. δk = ‖xµk −xk‖, for k = 1, 2, . . . , 20, for deriv2-1 (left-hand side) and baart (right-hand
side) of size 100× 100 with relative error ν = 10−2 in b.

Thus, the proposed choice of k is the first local minimum of a lower bound for the
error norm ‖xk − x̂‖. To investigate whether in actual computations the inequality

(2.5) ‖xµk − xk‖ ≤ 2 ‖xk − x̂‖

typically holds, we solved 2400 linear discrete ill-posed problems of different kinds and
sizes from Hansen’s Regularization Tools [15] with relative errors ν = 10−3, 10−2, and
10−1 in the vector b; see (4.1) in Section 4. We found the inequality (2.5) to hold in
99.6% of all the examples. Further discussion on why the proposed choice of k may
perform well is provided below.

Algorithm 1 Determination of regularization parameters

Input: Matrix A ∈ Rm×n and data vector b ∈ Rm
Output: Tikhonov regularization parameter, TSVD truncation index, regularized

solutions, and estimate of noise-level
1: Compute SVD A = UΣV T

2: δ0 =∞, x0 = 0, k = 0
3: repeat
4: k = k + 1
5: Compute TSVD solution xk = xk−1 + σ−1k (uTk b)vk

6: Compute residual norm ρk = ‖b−Axk‖
7: Compute Tikhonov regularization parameter µk and solution

xµk =
∑r

j=1
σj

σ2
j+µ

2
k

(uTj b)vj such that ‖b−Axµk‖ = ρk

8: Compute δk = ‖xµk − xk‖
9: until δk > δk−1 or k = n

10: The TSVD truncation index is kmin = k − 1, the noise-level is approximately
ρkmin

/‖b‖, the Tikhonov regularization parameter is µkmin
.

Algorithm 1 summarizes the computations required to determine the desired value
of the regularization parameter k for TSVD, the associated ρk, and the corresponding
value µk of the regularization parameter for Tikhonov regularization. We illustrate
the performance of the algorithm with two experiments displayed in Figure 2.1. The
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linear discrete ill-posed problem deriv2-1 from [15] (i.e., the MATLAB code deriv2 with
the parameter example set to 1) is used to determine a matrix A ∈ R100×100 that is
the discretization of an integral equation of the first kind; the integral equation is
discussed in [9, p. 315]. The function deriv2 generates both A and the solution x̂,
from which we compute b̂ = Ax̂ and add 1% white Gaussian noise to obtain the
noise-contaminated vector b, see (4.1), where we put ν = 10−2. Figure 2.1 (left-hand
side) displays the differences ‖xµk − xk‖ for k = 1, 2, . . . , 20. Algorithm 1 does not
compute all of these values for efficiency reasons, but stops when the difference δk
increases with k. Thus, the algorithm computes δ1, δ2, . . . , δ7 and then suggests the
noise-level to be ρ6/‖b‖ = 1.03 · 10−2. This is very close to the actual value, 10−2, of
the noise-level.

Figure 2.1 (right-hand side plot) displays the result of a similar experiment for
the baart test example with a matrix A ∈ R100×100 and the data vector b ∈ R100

contaminated by 1% white Gaussian noise. This example is also from [15]; details
about this problem are described in [1]. The suggested value k = 3 (after computation
of the four values δ1, δ2, δ3, δ4) gives an accurate estimate ρ3/‖b‖ ≈ 9.4 · 10−3 of
the norm of the relative error in b. Note the logarithmic scale on the vertical axis.
Additional examples can be found in Section 4.

We conclude this section with further comments on why the scheme implemented
by Algorithm 1 is likely to yield a fairly accurate estimate of the noise-level. Let

γj = uTj b, 1 ≤ j ≤ r.

In view of (1.2), we have

x̂ =

r∑
j=1

σ−1j vj (uTj b̂) =

r∑
j=1

σ−1j vj (γj − uTj e).

Writing xk − xµk as a linear combination of right singular vectors yields

xk − xµk =
r∑
j=1

η
(k)
j vj ,

and it follows from (1.5) and (1.7) that

η
(k)
j =


γj

(
1

σj
− σj
σ2j + µ2k

)
=
µ2k
σ2j
· γjσj
σ2j + µ2k

, 1 ≤ j ≤ k,

− γjσj
σ2j + µ2k

, k + 1 ≤ j ≤ r,

and, therefore,

(2.6) ‖xk − xµk‖
2 =

r∑
j=1

(
η
(k)
j

)2
=

k∑
j=1

(
µk
σj

)4

·

(
γjσj

σ2j + µ2k

)2

+

r∑
j=k+1

(
γjσj

σ2j + µ2k

)2

.

We turn to the choice of µk. We have by (2.1) that

(2.7) ρ2k = ‖b−Axk‖2 =
m∑

j=k+1

γ2j

6
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Fig. 2.2. The sums in the right-hand side of (2.6) as a function of k. The continuous (blue)
graph labeled “sum 1” depicts the first sum in the right-hand side of (2.6), the dashed (green) graph
labeled “sum 2” the second sum. The graphs are for the problems deriv2-1 (left-hand side figure) and
baart (right-hand side figure) with matrices of size 100× 100 and with relative error ν = 10−2 in the
data vector b.

and determine µk > 0 so that

(2.8) ρ2k = ‖b−Axµk‖
2 =

r∑
j=1

(
1 +

σ2j
µ2k

)−2
γ2j +

m∑
j=r+1

γ2j .

Figure 2.2 shows the sums in the right-hand side of (2.6) as a function of k. The
first sum in the right-hand side of (2.6) is shown by the continuous (blue) graph labeled
“sum 1”; the second sum is depicted by the dashed (green) graph labeled “sum 2”.
The left-hand side figure is for the problem deriv2-1 and the right-hand side figure for
the problem baart from [15]; see Section 4 for further comments on these problems.
They define matrices of size 100× 100. The data vector b has relative error ν = 10−2.
Graphs for the square root of the left-hand side of (2.6) are shown in Figure 2.1. The
sums in Figure 2.2 have unique local minima for k ≥ 2. Figure 2.1 shows that the sum
of the sums for each problem has a unique local minimum for k ≥ 1.

Recall that Algorithm 1 determines the first local minimum kmin of k 7→ ‖xk−xµk‖
for k = 1, 2, 3, . . . . For many discrete ill-posed problems (1.1) this is also the global
minimum, which typically is small; cf. the discussion in Section 1. We therefore may
assume that xkmin

≈ xµkmin
, which implies that expansions of xkmin

and xµkmin
in terms

of the left singular vectors vj of A have about the same coefficients. In view of this,
a comparison of the sums (2.7) and (2.8) suggests that

µ2kmin

σ2j
� 1, 1 ≤ j ≤ kmin,(2.9)

µ2kmin

σ2j
� 1, kmin < j ≤ r.(2.10)

Assume that ‖b̂‖ = O(1) and let ε = ‖e‖. Then ‖x̂‖ ≈ σ−11 . Since e represents white
Gaussian noise, we obtain the “first-order approximations”

(2.11) |γj | ≈ max

{
σj
σ1
, ε

}
, j = 1, 2, . . . , r,

7



where we have ignored factors involving
√
m, because they are not important for our

discussion. Let k < r be determined by

(2.12)
σk
σ1

> ε ≥ σk+1

σ1
.

We now consider an expression that is related to (2.6), but is simpler to analyze, in
order to gain insight into properties of the index k = kmin determined by Algorithm 1.
Substituting (2.11) into (2.6) with µk = µkmin

yields

(2.13)

‖xk−xµkmin
‖2 ≈ σ−21

 k∑
j=1

(
µkmin

σj

)4

·

(
1 +

µ2kmin

σ2j

)−2
+ ε2

r∑
j=k+1

(
σj

σ2j + µ2kmin

)2
 .

The right-hand side provides some insight into properties of the index k = kmin de-
termined by Algorithm 1. Consider the first sum on the right-hand side of (2.13). Its
terms are determined by the function

h1(t) =
t4

(1 + t2)2
, t ≥ 0,

which is monotonically increasing with h1(0) = 0 and limt→∞ h1(t) = 1. It follows
from (2.9) and (2.10) that the sum is much smaller when k ≤ kmin than when k > kmin.

We turn to the second sum on the right-hand side of (2.13). Its terms are deter-
mined by the function

h2(t) =
t

t2 + µ2kmin

, t ≥ 0,

with µkmin
> 0. This function is increasing for 0 ≤ t ≤ µkmin

and decreasing for
t ≥ µkmin

. We have h2(0) = limt→∞ h2(t) = 0. The maximum h2(µkmin
) = (2µkmin

)−1

is large when µkmin
is small. The inequality (2.10) indicates that h2(σj) is not very

large for j > kmin; however, h2(σj) may be large when j ≤ kmin and µkmin
> 0 is small.

It follows that the second sum on the right-hand side of (2.13) is not very large when
k ≥ kmin, but may be large when µkmin

is small and k < kmin.
The above discussion indicates that to a “first-order approximation” both sums in

the right-hand side of (2.13) are fairly small when k = kmin, i.e., when (2.12) holds for
k = kmin, where kmin is determined by Algorithm 1. Thus, kmin is the smallest index
k such that (2.6) has a local minimum. The left-hand sides of (2.6) and (2.13) differ,
but they are close when k is close to kmin. Our analysis suggests that to “first-order
approximation” σkmin

/σ1 ≈ ε; i.e., σkmin
/σ1 is roughly of the order of the relative error

in the data b. Table 2.1 illustrate that this is indeed the case for several linear discrete
ill-posed problems from [15]. The problems have matrices of size 100×100 and relative
errors 10−3, 10−2, and 10−1 in b. The table also depicts the best possible truncation
index kbest for TSVD. It satisfies

‖xkbest − x̂‖ = min
j≥1
‖xj − x̂‖.

In case of non-uniqueness, the smallest such index is shown. Let kσ denote the index k
that satisfies (2.12). Table 2.1 shows that for many problems and several noise-levels,

8



Table 2.1
Three truncation indices for TSVD for several linear discrete ill-posed problems and three noise-

levels.

10−3 10−2 10−1

Method kbest kmin kσ kbest kmin kσ kbest kmin kσ
baart 4 4 4 3 3 3 3 2 2
foxgood 3 3 4 2 2 2 2 2 2
hilbert 6 5 5 4 5 4 4 3 3
ilaplace(3) 1 1 1 1 1 1 1 1 1
lotkin 5 4 5 4 3 3 3 2 2
shaw 7 7 8 7 4 6 5 4 4

kσ is an accurate approximation of kbest. In fact, for a few of the problems shown,
kσ is closer to kbest than to kmin. We remark that kσ is introduced to illustrate the
performance of Algorithm 1, but cannot be used to determine a truncation index when
the noise-level ε is not known, because the computation of kσ requires knowledge of
ε.

Fig. 2.3. |η(k)j |-factors for j = 1, 2, . . . , 10 for the solutions for which k = 1 (asterisks), k = 3

(diamonds), and k = 5 (squares) for baart of size 100× 100 with relative error ν = 10−2 in b.

We now discuss another aspect of how Algorithm 1 determines the index k = kmin.
Consider the example on the right-hand side of Figure 2.1. The figure shows the index
k = 1 to be too small, the index k = 5 to be too large, and the index k = 3 to
be optimal. When k is too small, the residual b − Axk is too large, which implies
that the regularization parameter µ = µk is large. This indicates that the first few

coefficients η
(k)
j typically are of fairly large magnitude, since for the first few indices

σ−1j generally will be clearly larger than
σj

σ2
j+µ

2
k
. This is illustrated by the asterisks in

Figure 2.3. Conversely, if k is too large, then the residual error b−Axk is too small.
This situation is depicted by the squares in Figure 2.3. For the optimal value of k,

the maximal value of |η(k)j | tends to be smaller than when k is either too large or too
small; see the diamonds in Figure 2.3.

As long as j ≤ k, we have in view of (2.11) that, roughly,

|η(k)j | =
|γj |µ2k

σj (σ2j + µ2k)
≈

µ2k
σ2j + µ2k

.

Therefore, we expect the |η(k)j | to be increasing with j for j ≤ k. If instead j > k and
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σj > ε, then we have approximately

|η(k)j | =
|γj |σj
σ2j + µ2k

≈
σ2j

σ2j + µ2k
,

which is a decreasing function of j. This discussion suggests that |η(k)j |may be maximal

for some j ≈ k. Indeed, j → |η(k)j | is maximal for j = k + 1 for all three graphs of
Figure 2.3.

3. Large-scale problems. Algorithm 1 computes an SVD of the matrix A. This
is not practical for large-scale problems. Instead, we reduce large-scale least-squares
problems (1.1) to small size by carrying out a few steps of Golub–Kahan bidiagonal-
ization. Application of k steps of Golub–Kahan bidiagonalization to A with initial
vector b yields the decompositions

(3.1) AṼk = Ũk+1Ck, AT Ũk = ṼkCk,

where Ũk+1 = [ũ1, ũ2, . . . , ũk+1] ∈ Rm×(k+1) and Ṽk = [ṽ1, ṽ2, . . . , ṽk] ∈ Rn×k have
orthonormal columns with ũ1 = b/‖b‖, Ũk ∈ Rm×k consists of the first k columns of
Ũk+1,

(3.2) Ck =


α1

β2 α2

. . .
. . .

βk αk
βk+1

 ∈ R(k+1)×k

is lower bidiagonal, and Ck is the leading k × k submatrix of Ck. Moreover, the
columns of Ṽk span the Krylov subspace

(3.3) Kk(ATA,ATb) = span{ATb, (ATA)ATb, . . . , (ATA)k−1ATb};

see, e.g., [11, 21] for details. We will assume that the nontrivial entries of the bidiagonal
matrices (3.2) are positive for all k. This is the generic situation.

LSQR [21] is an iterative method based on the decomposition (3.1). Let the initial
iterate be x0 = 0. The kth iterate xk determined by the LSQR satisfies

(3.4) ‖Axk − b‖ = min
x∈Kk(ATA,ATb)

‖Ax− b‖, xk ∈ Kk(ATA,ATb).

This shows that LSQR is a so-called minimal residual method: the iterate xk minimizes
the residual error over the Krylov subspace (3.3). Substituting x = Ṽky into the right-
hand side of (3.4) and using the decompositions (3.1) shows that the kth iterate can
be expressed as xk = Ṽk yk, where yk is the solution of the reduced problem

min
y∈Rk

∥∥Cky − β1e1∥∥ , β1 = ‖b‖.

We have

(3.5) ρk = ‖Ckyk − β1e1‖ = ‖Axk − b‖.
10



Assume that we have carried out ` ≥ k Golub–Kahan bidiagonalization steps and have
available decompositions (3.1) with k replaced by `. Substituting these decompositions
into (1.4) yields the reduced Tikhonov minimization problem

(3.6) min
y∈R`

∥∥∥∥[C`µI`
]
y − β1e1

∥∥∥∥ .
It has a unique solution yµ,` for any µ > 0. An approximation of the solution (1.5) of

(1.4) is furnished by xµ,` = Ṽ`yµ,`. This vector satisfies a Galerkin equation determined

by the normal equations associated with (1.4) and the space range(Ṽ`); see, e.g., [6]
for details. The following result is analogous to Proposition 2.1.

Proposition 3.1. Introduce the function

ϕ`(µ) = ‖b−Axµ,`‖2, µ > 0,

where xµ,` = Ṽ`yµ,` and yµ,` solves (3.6). Then ϕ`(µ) is a strictly increasing function
of µ. Moreover, the equation

(3.7) ϕ`(µ) = γ

has a unique solution µ, such that 0 < µ <∞, for any 0 < γ < ‖b‖2.
Proof. Similarly as in the proof of Proposition 2.1, we can write ϕ`(µ) in the form

ϕ`(µ) = ‖b‖2eT1 (µ−2C`C
T
` + I`)

−2e1.

This representation shows that ϕ` is a strictly increasing function of µ > 0. The stated
properties of the equation (3.7) follow from the observation that the matrix C` is of
full rank.

We would like to determine a solution yµ,` of the reduced problem (3.6) that
achieves the same residual error norm as the LSQR solution xk, i.e., we determine the
regularization parameter µ = µk in (3.6) so that

(3.8) ‖C`yµk,` − β1e1‖ = ρk,

where ρk is defined by (3.5). Since the LSQR solution xk minimizes the norm of the
residual error over the Krylov subspace (3.3), we have to choose ` > k in order to be
able to satisfy (3.8) for some µ = µk > 0. We increase ` until two consecutive solutions
yµ,`−1 and yµ,` of reduced Tikhonov minimization problems are sufficiently close. The

approximate solution of (1.4) corresponding to yµk,` is given by xµk,` = Ṽ` yµk,`.
The computations are described by Algorithms 2 and 3. The former algorithm

initializes the method and the latter contains the main loop. The index k in the loop
corresponds to the LSQR solution, while the index ` counts the number of Golub–
Kahan bidiagonalization steps required for computing the Tikhonov solution. We
increase k (and also `) until a local minimum of the differences

δk = ‖xk − xµk,`‖ = ‖yk − yµk,`‖

has been found. To avoid the effect of small fluctuations near the minimum that
occur in some examples due to rounding errors, we terminate the iterations when 4
consecutive increasing values of δk are detected. The regularization parameter µ is

11



Algorithm 2 Large-scale computation, part 1: initialization

Input: Matrix A and data vector b, τ(= 10−4), Nmax(= 50)
Output: Regularization parameter p, LSQR solution x, estimate of noise-level s

1: β1 = ‖b‖
2: Perform the first bidiagonalization step: compute v1, u1, u2, α1, β2, C1

3: Solve miny∈R2 ‖C1y − β1e1‖ for y1 {Compute the first LSQR solution}
4: ρ1 = ‖C1y1 − β1e1‖ {Compute the first residual}
5: ` = 1, µ = 1

6: Solve min
y∈R2

∥∥∥∥[C1

µ

]
y − β1e1

∥∥∥∥ for yµ

7: repeat
8: ` = `+ 1

9: yold =

[
yµ
0

]
10: Perform the `th bidiagonalization step: compute v`, u`+1, α`, β`+1, C`

11: Solve min
y∈R`

∥∥∥∥[C`µI`
]
y − β1e1

∥∥∥∥ for yµ

12: until ‖yold − yµ‖ < τ ‖yµ‖ or ` > Nmax

13: Find µ and yµ such that

∥∥∥∥[C`µI`
]
yµ − β1e1

∥∥∥∥ = ρ1

14: δ1 = ‖ỹ1 − yµ‖ {ỹ1 is zero-padded to the size of yµ}

determined by Newton’s method in lines 13 and 34. Note that the determination of
µk and δk is performed in low-dimensional setting.

We illustrate the performance of Algorithms 2–3 in Section 4. Other approaches
to reduce large problems to small ones for which the regularization parameters can be
determined in an analogous manner as described can be devised. Experiments with
small to medium-sized discrete ill-posed problems with Algorithm 1 indicate that typ-
ically only few singular triplets are required to determine an approximate solution.
This suggests alternative approaches to Algorithms 2–3 for large-scale problems. For
instance, it may be attractive to compute a partial singular value decomposition in-
volving the largest singular values of A. Such a decomposition can be determined by
repeatedly computing a partial Golub–Kahan bidiagonalization of A as described in
[2].

4. Numerical examples. This and the following sections present several nu-
merical experiments that show the performance of the proposed methods to deter-
mine suitable regularization parameters. In this section, we first compute solutions
of the linear discrete ill-posed problems listed in Table 4.1. These problems are from
Hansen’s Regularization Tools [15] and from the gallery function of MATLAB. Each
problem from [15] comes with a solution x̂; for the gallery examples, we use the solution
of the problem shaw from [15]. We determine the noise-free data vector as b̂ = Ax̂;
the associated perturbed data vector b is obtained by adding a “noise-vector” e to b̂;
cf. (1.2). Specifically, let the vector w have normally distributed entries with mean
zero and variance one, and compute

(4.1) b = b̂ + w ‖b̂‖ ν√
n
.
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Algorithm 3 Large-scale computation, part 2: main loop

15: k = 1
16: repeat
17: k = k + 1
18: if k > ` then
19: ` = `+ 1
20: Perform the `th bidiagonalization step: compute v`, u`+1, α`, β`+1, C`
21: end if
22: Compute QR factorization Ck = QR
23: c = β1Q

Te1
24: Solve R1:k,1:kyk = c1:k {Compute the kth LSQR solution}
25: ρk = |ck+1| {Compute the kth residual}

26: Solve min
y∈R`−1

∥∥∥∥[C`−1µI`−1

]
y − β1e1

∥∥∥∥ for yµ, yold =

[
yµ
0

]
27: Solve min

y∈R`

∥∥∥∥[C`µI`
]
y − β1e1

∥∥∥∥ for yµ

28: while ‖yold − yµ‖ ≥ τ‖yµ‖ and ` < k +Nmax do
29: ` = `+ 1

30: yold =

[
yµ
0

]
31: Perform the `th bidiagonalization step: compute v`, u`+1, α`, β`+1, C`

32: Solve min
y∈R`

∥∥∥∥[C`µI`
]
y − β1e1

∥∥∥∥ for yµ

33: end while

34: Find µ and yµ such that

∥∥∥∥[C`µI`
]
yµ − β1e1

∥∥∥∥ = ρk

35: δk = ‖ỹk − yµ‖ {ỹk is zero-padded to the size of yµ}
36: {Iteration stops when 4 increasing δk are found}
37: if δk > δk−1 then m = m+ 1 else m = 0 endif
38: until m ≥ 4 or k > Nmax

39: p = arg min δk, s = ρp/‖b‖
40: x = V:,1:p yp

Then

‖b− b̂‖
‖b̂‖

≈ ν.

In the computed examples we use the noise-levels ν = 10−3, ν = 10−2, and ν = 10−1,
which are compatible with real world applications. Algorithm 1 and Algorithms 2–3
have been implemented in MATLAB; code is available from the authors upon request.

Experiment 4.1. The aim of this example is to illustrate the performance of
Algorithm 1. We consider the linear discrete ill-posed problems listed in Table 4.1.
Each problem is discretized to give two examples, one with a matrix of size 40×40 and
one with a matrix of size 100 × 100. We generate 10 realizations of the noise-vector
e for each of the three noise-levels and each matrix. This gives 600 linear discrete

13



ill-posed problems. Table 4.1 displays noise-level ratios

(4.2)
estimated noise-level

true noise-level
=

ρk
ν ‖b‖

,

where k is the index that yields the first local minimum of (2.4). Each reported
ratio is the average over 20 tests; 10 for each matrix size. In an ideal situation, this
ratio is one. The ratios reported in Table 4.1 are between 0.735 and 1.344, but the
vast majority of them are very close to one. Table 4.1 shows that ρk determined by
Algorithm 1 is a quite reliable noise-level estimator. The computations required to
evaluate this estimator are negligible in comparison with the evaluation of the SVD
of the matrix.

Table 4.1
Noise-level ratios obtained by estimating the TSVD truncation parameter by the method of the

present paper for 10 examples and noise-levels 10−3, 10−2, 10−1.

Problem 10−3 10−2 10−1

baart 1.008 1.005 1.005
deriv2(2) 1.117 1.190 1.069
foxgood 1.010 1.015 1.006
gravity 0.964 0.996 0.991
heat(1) 0.735 0.981 1.344
hilbert 0.995 1.006 1.006
ilaplace(3) 0.994 1.219 0.997
lotkin 1.041 1.007 1.002
phillips 0.972 0.966 0.979
shaw 0.973 1.039 0.999

Any parameter estimation criterion may be considered a method for estimating
the noise-level in the available data, with the norm of residual error furnishing an
estimate of the norm of the noise. We therefore provide tables analogous to Table 4.1
for popular methods for determining a suitable value of the regularization parameter.
Table 4.2 reports results obtained by determining the TSVD truncation parameter by
the L-corner algorithm discussed in [17] (columns 2 to 4) and by the quasi-optimality
criterion (columns 5 to 7). The latter criterion is discussed in, e.g., [10, 14, 19, 24]. In
both cases the regularization parameter was computed with an appropriate MATLAB
function from [15]. Having determined the regularization parameter k and the asso-
ciated approximate solution xk of (1.1), we compute the norm of the residual error
‖Axk − b‖ and use it to evaluate the noise-level ratio (4.2). Table 4.2 displays these
ratios. Table 4.3 considers Tikhonov regularization and determines the regularization
parameter µ by the L-curve method, using the MATLAB function l curve from [15].
Let xµ denote the associated approximate solution of (1.1). Then ‖Axµ−b‖ provides
an estimate for the norm of the noise. Columns 2–4 tabulate the noise-level ratios (4.2)
determined in this manner. The three right-most columns of Table 4.2 are obtained
by using the quasi-optimality criterion.

These tables indicate that the method for determining regularization parameters
of this paper is more a trustworthy noise-level estimator than the other methods
for determining the regularization parameter in our comparison. This is confirmed
by Table 4.4, which displays the standard deviation of the ratios obtained by each
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method with respect to the expected value one. In this and in the following tables the
method of this paper is referred to as COSE (comparison of solutions estimator).

Table 4.2
Noise-level ratios for 10 examples and noise-levels 10−3, 10−2, 10−1, determined by estimating the

TSVD truncation parameter by the L-corner method (columns 2–4) and the quasi-optimality criterion
(columns 5–7).

Problem 10−3 10−2 10−1 10−3 10−2 10−1

baart 0.994 1.005 1.006 1.027 1.267 1.138
deriv2(2) 0.737 0.944 1.005 0.740 0.903 0.976
foxgood 0.998 1.015 1.006 1.022 1.008 1.054
gravity 0.918 0.952 0.986 0.975 0.993 0.993
heat(1) 0.432 0.549 0.925 0.717 3.454 0.960
hilbert 0.990 0.998 1.030 0.999 1.018 1.475
ilaplace(3) 0.923 0.937 0.935 4.165 1.330 0.996
lotkin 1.000 1.005 1.002 1.304 1.019 1.026
phillips 0.779 0.926 0.971 362.4 36.27 3.601
shaw 0.960 0.977 0.999 1.370 0.995 1.329

Table 4.3
Noise-level ratios for 10 examples and noise-levels 10−3, 10−2, 10−1, determined by estimating

the optimal Tikhonov regularization parameter by the L-curve method (columns 2–4) and the quasi-
optimality criterion (columns 5–7).

Problem 10−3 10−2 10−1 10−3 10−2 10−1

baart 0.995 1.006 1.007 1.032 1.043 1.009
deriv2(2) 0.729 0.920 1.005 1.195 1.214 1.147
foxgood 0.998 1.008 1.010 1.116 1.026 1.018
gravity 0.911 0.949 0.982 1.037 1.057 1.013
heat(1) 0.425 0.540 0.419 0.161 0.161 0.161
hilbert 0.989 0.997 1.010 1.003 1.020 1.261
ilaplace(3) 0.978 0.993 0.995 1.007 1.373 1.002
lotkin 0.999 1.004 1.006 1.117 1.012 1.038
phillips 0.774 0.907 0.962 1.442 1.053 1.006
shaw 0.956 0.977 1.000 1.177 1.119 1.009

Table 4.4
Standard deviations of noise-level estimates reported in Tables 4.1, 4.2, and 4.3.

COSE TSVD/L-corner TSVD/Quasiopt Tikh/L-curve Tikh/Quasiopt

0.099 0.136 66.009 0.168 0.305

An alternative to letting k be the first local minimum of (2.4) when increasing k
from k = 1 is to consider the first local minimum of the weighted difference

(4.3) δ̃k = ‖xµk − xk‖ / ‖xk‖.

For some problems δ̃k has a deeper first local minimum than δk, but also may be
a more oscillatory function of k. Nevertheless, on average we obtain slightly better
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noise-level estimates using (4.3) than (2.4). This is illustrated by Table 4.5. The
analog of the entry COSE of Table 4.4 is 0.080.

Table 4.5
Noise-level ratios obtained by estimating the TSVD truncation parameter. The table is analogous

to Table 4.1. The truncation parameter k is the first local minimum of (4.3), while it is the first local
minimum of (2.4) in Table 4.1.

Problem 10−3 10−2 10−1

baart 1.008 1.005 0.994
deriv2(2) 1.109 1.154 1.053
foxgood 1.010 1.015 1.006
gravity 0.964 0.996 0.991
heat(1) 0.735 0.928 1.225
hilbert 0.995 1.006 0.996
ilaplace(3) 0.994 1.115 0.974
lotkin 1.041 1.007 1.001
phillips 0.972 0.966 0.979
shaw 0.973 1.039 0.999

Table 4.6 compares COSE with several methods for determining the truncation
index in TSVD. The latter methods are described in detail in [24]. They include
the methods L-corner [17], Res L-curve [26], Cond L-curve [7], Regińska [23], and
ResReg [24], all of which are related to the L-curve criterion [13]. Other methods in
our comparison are the quasi-optimality criterion, generalized cross validation (GCV)
[14], extrapolation [5], and the discrepancy principle (1.8) with τ = 1.3. While the
focus of this paper is on heuristic parameter choice rules, it is interesting to compare
these rules with the discrepancy principle. Tables 4.6 and 4.7 show that the COSE
method on average performs better than the discrepancy principle. Thus, it may
be worthwhile to determine the regularization parameter with COSE, also when an
estimate for the error in the data vector b is known.

Let kbest denote the truncation index that yields the smallest error, i.e.,

‖xkbest − x̂‖ = min
j
‖xj − x̂‖.

The first entries in the second to fifth columns of Table 4.6 show the percentage of
experiments that produced an approximate solution xk with

(4.4) ‖xk − x̂‖ > 2 ‖xkbest − x̂‖;

the second entries (in parentheses) display the percentage of experiments that pro-
duced an approximate solution xk with

(4.5) ‖xk − x̂‖ > 5 ‖xkbest − x̂‖.

The results concerning the above set of 600 square linear systems are reported in the
second column of Table 4.6. The last three columns are obtained when solving the
same number of overdetermined least-squares problems with a matrix A ∈ R2n×n for
n = 40 and n = 100. These problems are either consistent (ξ = 0) or inconsistent
(ξ = 1 or 10). To make a least-squares problem inconsistent, we add to the exact data
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Table 4.6
Parameter choice rules for TSVD; factors 2 and 5.

Square Overdetermined systems
Method systems ξ = 0 ξ = 1 ξ = 10

COSE 6% ( 0%) 7% ( 1%) 7% ( 1%) 8% ( 1%)
L-corner 24% (12%) 23% (10%) 36% (10%) 63% (40%)
Res L-curve 26% ( 6%) 35% ( 1%) 61% (32%) 71% (47%)
Cond L-curve 40% ( 5%) 50% (11%) 69% (46%) 67% (49%)
Regińska 25% (10%) 30% (11%) 58% (35%) 76% (51%)
ResReg 24% ( 8%) 30% (11%) 58% (35%) 76% (51%)
Quasiopt 31% (14%) 31% (14%) 31% (14%) 28% (12%)
GCV 29% (22%) 17% (10%) 40% (18%) 67% (36%)
Extrapolation 62% (14%) 76% (34%) 83% (62%) 76% (52%)
Discrepancy 17% ( 1%) 38% ( 4%) 62% (37%) 71% (51%)

Table 4.7
Parameter choice rules for TSVD; factors 10 and 100.

Square Overdetermined systems
Method systems ξ = 0 ξ = 1 ξ = 10

COSE 0% ( 0%) 0% (0%) 0% ( 0%) 0% ( 0%)
L-corner 7% ( 0%) 4% (0%) 5% ( 1%) 27% (11%)
Res L-curve 3% ( 1%) 1% (0%) 18% ( 5%) 34% (18%)
Cond L-curve 3% ( 2%) 7% (5%) 32% (18%) 38% (23%)
Regińska 4% ( 0%) 2% (0%) 13% ( 0%) 24% ( 1%)
ResReg 3% ( 0%) 2% (0%) 13% ( 0%) 24% ( 1%)
Quasiopt 9% ( 1%) 6% (1%) 6% ( 1%) 5% ( 1%)
GCV 20% (16%) 8% (4%) 8% ( 0%) 11% ( 0%)
Extrapolation 5% ( 1%) 9% (0%) 35% ( 0%) 25% ( 1%)
Discrepancy 0% ( 0%) 0% (0%) 31% (31%) 41% (40%)

vector b̂ a multiple ξ of a unit vector q ∈ R2n that is orthogonal to the range of A, so
that

min
x∈Rn

‖Ax− (b̂ + ξq)‖ = ξ.

Tables 4.6 and 4.7 (where the factors 2 and 5 in (4.4) and (4.5) are replaced by 10 and
100, respectively) show that COSE produces very good results, failing to determine
the best possible solution in only a small number of tests. In particular, the method
is effective also for inconsistent problems. To the best of our knowledge, no other
available method gives comparable results for such problems.

We note that the measurements ascribed to the discrepancy principle are obtained
by selecting the smallest integer k such that

‖Axk − b‖2 ≤ (1.3 ν ‖b‖)2 + ξ2.

We also remark that the results in Table 4.6 do not imply that we are obtaining very
accurate approximations of the desired solution x̂ for all the least-squares problems,
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but rather that Algorithm 1 computes optimal or nearly optimal approximations of x̂,
i.e., the algorithm determines approximations of x̂ that are the best possible or close
to the best possible that can be computed with the TSVD method.

Table 4.8
Average number of LSQR iterations required by our method and average number of Golub–Kahan

bidiagonalization steps performed when solving 10 examples for different noise-levels (10−3, 10−2,
10−1).

Problem 10−3 10−2 10−1

baart 4/9 3/8 3/8
deriv2(2) 12/26 7/18 3/14
foxgood 3/9 3/9 2/9
gravity 9/17 7/16 5/14
heat(1) 24/39 16/30 10/23
hilbert 7/13 6/13 5/12
ilaplace(3) 11/19 9/17 6/15
lotkin 4/11 4/11 2/9
phillips 6/22 4/22 5/16
shaw 8/14 7/13 4/12

Experiment 4.2. We turn to the solution of large-scale problems using Algo-
rithms 2 and 3. Table 4.8 shows the truncation index, k, for LSQR, as well as the
total number of bidiagonalization steps, `, required by Algorithms 2 and 3. Each value
is the rounded average over 20 test problems: 10 problems with different error vectors
e that model white Gaussian noise for each one of the matrices A ∈ R500×500 and
A ∈ R1000×1000. By the design of the Algorithms 2 and 3, we have ` ≥ k+ 4; however,
` may be larger. Table 4.8 indicates that ` typically is not much larger than k.

Table 4.9 is analogous to Table 4.6 and uses the factors 2 and 5 in formulas similar
to (4.4) and (4.5). Square matrices A ∈ Rn×n and rectangular matrices A ∈ R2n×n,
with n = 500 or n = 1000, are used for each problem type. Every linear system
of equations is solved for 10 different noise-vectors e. Our comparison includes the
L-triangle method [8] associated with an L-curve approach, the Quadrature method
described in [18], and the Ratio method introduced in [24].

COSE produces very good results for consistent linear systems, both square and
rectangular ones. The results are less impressive for inconsistent problems. Neverthe-
less, only the quasi-optimality criterion exhibits a better performance for inconsistent
least-squares problems.

Our next example is very large and very ill-conditioned. The matrix A ∈ Rn×n is
the prolate matrix described in [28] with n = 100, 000. This is a Toeplitz matrix with
entries

aii = 2ω, aij =
sin(2π |i− j|ω)

π |i− j|
for i 6= j,

with ω = 1/4. The condition number estimator in MATLAB yields that the condition
number ‖A‖ ‖A†‖ of A is approximately 1017 when n = 100. We use the MATLAB
toolbox smt [22] for handling A. This toolbox stores A in an optimized format and
provides fast algorithms for matrix operations. Matrix-vector products are evaluated
with the aid of the fast Fourier transform.
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Table 4.9
Parameter choice rules for LSQR.

Square Overdetermined systems
Method systems ξ = 0 ξ = 1 ξ = 10

COSE 3% ( 0%) 3% ( 0%) 24% ( 5%) 46% (28%)
L-corner 17% ( 4%) 19% ( 3%) 41% (22%) 68% (49%)
L-triangle 24% ( 9%) 20% ( 5%) 53% (28%) 77% (58%)
Res L-curve 51% (13%) 61% (16%) 77% (48%) 89% (73%)
Cond L-curve 63% (11%) 65% (28%) 74% (47%) 77% (58%)
Regińska 22% ( 5%) 33% ( 8%) 70% (36%) 82% (62%)
ResReg 22% ( 5%) 33% ( 8%) 70% (36%) 82% (61%)
Quasiopt 14% ( 2%) 14% ( 2%) 14% ( 2%) 18% ( 6%)
Extrapolation 71% (25%) 87% (56%) 91% (73%) 89% (71%)
Quadrature 54% (11%) 70% (22%) 88% (52%) 89% (68%)
Ratio 21% ( 0%) 28% ( 1%) 67% (31%) 80% (49%)
Discrepancy 48% ( 5%) 61% (12%) 71% (30%) 75% (42%)

Table 4.10
A very large scale example: prolate matrix of dimension n = 100, 000.

Noise level kbest Error kest Error Time

10−4 15 7.47 · 10−5 16 7.47 · 10−5 3.21
10−3 8 7.09 · 10−4 10 7.09 · 10−4 4.27
10−2 6 7.07 · 10−3 5 7.07 · 10−3 2.23
10−1 1 7.06 · 10−2 1 7.06 · 10−2 2.86

The second and third columns of Table 4.10 report the LSQR iteration kbest,
which yields the iterate closet to x̂ in the Euclidean norm, as well as the relative
error ‖xkbest − x̂‖/‖xkbest‖, for four noise-levels. Columns four and five display the
termination index, kest, determined by Algorithms 2–3, and the relative error ‖xkest −
x̂‖/‖xkest‖. Comparing columns two and four shows kest to be very close to kbest for
all noise-levels. Moreover, xkest is seen to approximate x̂ as well as xkbest for all noise-
levels. The last column contains the execution time in seconds required by our method
on an Intel Core i7-860 computer, with 8 Gb RAM, running Linux and MATLAB
version 8.1. The regularized approximate solutions determined for the noise-levels
ν = 10−2 and ν = 10−1 are displayed in Figure 4.1 together with the exact solution
x̂. Our method is able to determine the LSQR truncation parameter accurately and
fairly quickly.

5. Two case studies. To ascertain the effectiveness of our method when applied
to the solution of real-world linear discrete ill-posed problems, we consider two ap-
plications, image deblurring and an inverse problem in geophysics, starting with the
former. Consider the test images depicted in Figure 5.1. The blurred image b = [bi1,i2 ],
i1, i2 = 1, . . . , n, is obtained by the convolution

bi1,i2 =

n∑
j1,j2=1

ai1−j1,i2−j2xj1,j2 ,
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Fig. 4.1. A very large scale example: prolate matrix of dimension n = 100, 000. On the left-hand
side is the approximate solution obtained with noise-level ν = 10−2, the right-hand side shows the
approximate solution for noise-level 10−1. The dashed graph depicts x̂.

Fig. 5.1. Test images: barbara on the left and spacestat on the right.

where x = [xj1,j2 ] represents the original unblurred image and A = [ak1,k2 ] is the
so-called point spread function (PSF). The latter is defined by Gaussian blur, i.e., the
entries are of the form

ak1,k2 =

√
det(Σ)

2π
· exp

(
−kTΣk

2

)
, k = [k1, k2]

T ,

where

Σ =

[
ρ1 θ
θ ρ2

]
is a positive definite parameter matrix. In our tests ρ1 = ρ2 = 0.4, 0.2, 0.1 and
θ = 0. The linear system Ax = b obtained after reordering the entries of the images
columnwise has a coefficient matrix which is symmetric positive definite and block
Toeplitz with Toeplitz blocks. This kind of matrices are of great importance in image
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Table 5.1
Results obtained by deblurring the barbara and spacestat test images: ρ1 is the blur parameter,

ν the noise level, kbest the LSQR iteration which produces the smallest 2-norm error, while kest and
klc are the iterations identified by COSE and L-corner, respectively. Each value of k is followed by the
corresponding error.

Image ρ1 ν kbest Error kest Error klc Error

barbara 0.4 10−2 15 1.15 · 101 26 1.22 · 101 45 1.58 · 101

10−1 3 1.50 · 101 8 2.45 · 101 9 2.75 · 101

0.2 10−2 22 1.27 · 101 34 1.31 · 101 53 1.49 · 101

10−1 4 1.60 · 101 9 2.04 · 101 8 1.89 · 101

0.1 10−2 36 1.43 · 101 41 1.43 · 101 60 1.50 · 101

10−1 6 1.76 · 101 12 2.10 · 101 8 1.81 · 101

spacestat 0.4 10−2 15 1.23 · 101 28 1.37 · 101 45 1.87 · 101

10−1 3 1.77 · 101 7 2.74 · 101 9 3.52 · 101

0.2 10−2 22 1.50 · 101 33 1.54 · 101 52 1.80 · 101

10−1 4 1.90 · 101 9 2.62 · 101 8 2.40 · 101

0.1 10−2 30 1.68 · 101 40 1.70 · 101 59 1.82 · 101

10−1 6 2.10 · 101 12 2.56 · 101 8 2.17 · 101

restoration, because they are often used to model atmospheric blurring [16]. The size
of our test images is n = 256, so the dimension of the system is n2 = 65536.

It is straightforward to prove that, under the above assumption of θ = 0, the
block matrix A can be expressed as the tensor product of two Toeplitz matrices of size
n. This allows to perform the matrix-vector product Az, where z is the lexicograph-
ically reordered image, by multiplying the original image by the two tensor factors
of A, which requires a smaller complexity. To handle the Toeplitz matrices and to
perform fast matrix products we use the MATLAB toolbox smt [22]. After applying
the Gaussian blur to each test image, we contaminate it with noise as in (4.1), with
ν = 10−2, 10−1.

Table 5.1 shows results obtained when applying Algorithm 2–3 to the deblurring
problem. The LSQR iterate selected by COSE is denoted by kest, while the iterate
kbest has the smallest error in the Euclidean norm, and the iterate klc is selected by
the L-corner method [17]. In each row of the table, the iteration number is followed
by the corresponding error of the iterate in the Euclidean norm.

Figures 5.2 and 5.3 show the two blurred and noisy images obtained by setting
ρ1 = ρ2 = 0.2. The noise-level is ν = 10−2. The figures also show the restorations
determined by COSE and the L-corner method, as well as the images corresponding
to the iterates with the smallest Euclidean norm.

The L-corner method performs very well. COSE determines images that generally
are of the same quality as those determined by the L-corner method, and sometimes
yields images of slighty higher quality. An advantage of Algorithm 2–3 is that it
requires only four additional iterations to stop after locating a local minimum, while
the L-corner method generally needs a larger number of iterations to correctly identify
the “corner” of an L-curve. We remark that, while the generalized cross validation
(GCV) method [14] is a popular method for determining the regularization parameter,
its application to large-scale problem is fairly complicated; see [12] for a discussion.
We therefore do not compare with the performance of GCV for the present example.
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observed image best error, k=22

COSE, k=34 L−corner, k=52

Fig. 5.2. Deblurring of the barbara test image with ρ1 = 0.2, ν = 10−2: blurred image (top
left), minimum 2-norm error (top right), COSE method (bottom left), and L-corner method (bottom
right).

We turn to our second application. A ground conductivity meter is a device
used for electromagnetic sounding. It is composed by two coils (a transmitter and
a receiver) placed at the end points of a bar. The transmitter produces a primary
magnetic field which induces small currents in the ground. These currents produce a
secondary magnetic field that is sensed by the receiver coil. The device has two op-
erating positions, which produce different measures, corresponding to the orientation
(vertical or horizontal) of the electric dipole associated with the transmitter coil. The
measurements can be taken at different heights above the ground and are influenced
by the electrical conductivity of the underground layers.

A linear model for this device has been proposed in [20]. It is valid when the
ground does not include substances with very large electrical conductivity and/or
moderately large magnetic permeability. The model consists of the following pair of
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observed image best error, k=22

COSE, k=33 L−corner, k=52

Fig. 5.3. Deblurring of the spacestat test image with ρ1 = 0.2, ν = 10−2: blurred image (top
left), minimum 2-norm error (top right), COSE method (bottom left), and L-corner method (bottom
right).

integral equations

mV (h) =

∫ ∞
0

φV (h+ z)σ(z) dz,

mH(h) =

∫ ∞
0

φH(h+ z)σ(z) dz,

which correspond to the vertical and horizontal position of the device, respectively,
where

φV (z) =
4z

(4z2 + 1)3/2
, φH(z) = 2− 4z

(4z2 + 1)1/2
.

The two equations relate the apparent conductivity m(h), measured at height h over
the ground, to the real conductivity σ(z), with z being the ratio between the depth
and the inter-coil distance. The conductivities are measured in millisiemens per meter
(mS/m).

Following [4], we discretize the integral equations by a simple Galerkin method,
which approximates the function σ(z) by a linear combination of piecewise constant
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Fig. 5.4. Solution of the ground conductivity problem with two different noise realizations: exact
solution (dashed line), COSE solution (continuous line), and GCV solution (dotted line). The COSE
method selected the TSVD solution with k = 3 in both tests; this value of k produces also the minimal
2-norm error. GCV selected k = 4 in the left graph and k = 39 in the right one.

functions. This amounts to considering n layers of width δ below the surface of the
ground, each characterized by constant electrical conductivity; we let δ = 0.1 meters.
The measurement heights were chosen to be hi = iδ, i = 0, 1, . . . ,m− 1. The matrix
of the resulting linear system of equations Kσ = b is of size 2m × n; the solution
vector contains the value of the conductivity in each layer.

It has been observed experimentally that the noise level in the horizontal measure-
ment position is different from the noise level in the vertical measurement position. We
first compute the right-hand side b corresponding to a test solution and then perturb
its first m components by (4.1) corresponding to 1% error and the remaining m com-
ponents corresponding to 10% error. We let m = 20 and n = 40 in our computations.
These values of the parameters are compatible with real data sets.

We applied Algorithm 1 to this problem and carried out 40 tests with different noise
realizations. The COSE method identified the optimal solution, obtained for k = 3,
34 times. This solution localizes rather accurately the position of the maximum, a
property of importance in this application, because it indicates the presence of a high
conductive material at a certain depth. In 6 tests the COSE method produced an
over-regularized solution, with k = 1, presenting only one relative maximum at a
smaller depth.

The GCV method is less effective for this problem, probably because the noise is
not equally distributed. GCV identified the optimal solution only 27 times (of 40),
and in the remaining 13 experiments, GCV produced under-regularized solutions that
are quickly oscillating. They cannot be used to identify the position of the maximum.
Figure 5.4 shows two of the tests in which this behavior is particularly evident.

6. Conclusions. This paper describes a new simple approach to determine suit-
able values of the regularization parameters for Tikhonov regularization and TSVD
when no estimate the norm of the noise in the data is available. An extension suit-
able to use with the LSQR method also is presented. The method also yields an
estimate of the norm of the noise in the data. The numerical examples show the
method to be competitive with other data-driven methods for determining regulariza-
tion parameters. Moreover, the method typically yields a quite accurate estimate of
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the noise-level.
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