

Specification guidelines to avoid the state space explosion
problem
Citation for published version (APA):
Groote, J. F., Kouters, T. W. D. M., & Osaiweran, A. (2015). Specification guidelines to avoid the state space
explosion problem. Software Testing, Verification and Reliability, 25(1), 4-33. Article 1.
https://doi.org/10.1002/stvr.1536

DOI:
10.1002/stvr.1536

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1002/stvr.1536
https://doi.org/10.1002/stvr.1536
https://research.tue.nl/en/publications/97840eac-515c-4c29-83af-a03bac258c97

SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2015; 25:4–33
Published online 12 May 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.1536

Specification guidelines to avoid the state space explosion problem

Jan Friso Groote*,†, Tim W.D.M. Kouters and Ammar Osaiweran

Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, 5600 MB
Eindhoven, The Netherlands

SUMMARY

During the last two decades, we modelled the behaviour of a large number of systems. We noted that different
styles of modelling had quite an effect on the size of the state spaces of the modelled systems. The differences
were so substantial that some specification styles led to far too many states to verify the correctness of the
model, whereas with other styles, the number of states was so small that verification was a straightforward
activity. In this article, we summarize our experience by providing seven specification guidelines to keep
state spaces small. For each guideline, we provide an application, generally from the realm of traffic light
controllers, for which we provide a ‘bad’ model with a large state space, and a ‘good’ model with a small
state space. The good and bad models are both suitable for their purpose but are not behaviourally equivalent.
For all guidelines, we discuss circumstances under which it is reasonable to apply the guidelines. Copyright
© 2014 John Wiley & Sons, Ltd.

Received 9 July 2012; Revised 13 March 2014; Accepted 7 April 2014

KEY WORDS: design for verifications; specification guidelines; state space explosion; model checking

1. INTRODUCTION

Behavioural specification of computer systems, distributed algorithms, communication protocols,
business processes, and so on is gaining popularity. Behavioural specification refers here to discrete
behaviour, such as the exchange of messages, reading digital sensors and switching lights on and off.
Specifying the discrete behaviour of systems before construction helps focussing on the behaviour,
without simultaneously being bothered with programming or other implementation details. This
allows for clearer specification of systems, both increasing usability and reducing flaws in the code.
Very importantly, it also helps to provide adequate documentation.

These days, we and others have ample experience in system design through behavioural speci-
fication. There are for instance well-established workshops and journals on this topic [1, 2]. The
primary lesson is that, although behavioural specification is extremely helpful, it is not enough. We
need to verify that the designed behaviour is correct, in the sense that it either satisfies certain be-
havioural requirements or that it matches a compact external description. It turns out that discrete
behaviour is so complex, that a flawless design without verification is virtually impossible.

As most systems are constructed without using any behavioural verification, it is often the case
that the behaviour of existing systems is problematic and not well understood. This provides the
second use of behavioural specification, namely to model existing systems to obtain a better un-
derstanding of what they are doing. The model can be investigated to prove that the system always
satisfies certain requirements. There are no other ways to obtain such insight. For instance, exhaus-
tive testing can increase the confidence that a system satisfies a certain requirement, but it will never
provide certainty.

*Correspondence to: Jan Friso Groote, Department of Computer Science, Eindhoven University of Technology, PO Box
513, 5600 MB Eindhoven, The Netherlands.

†E-mail: J.F.Groote@tue.nl

Copyright © 2014 John Wiley & Sons, Ltd.

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 5

Behavioural verification usually employs the generation of a state/transition diagram, generally
called the state space in one or another form. A problem of these state spaces is that they often
become too large to be verified even when using clever verification algorithms and very powerful
computers. This problem is called the state space explosion problem. It receives lots of attention
in the literature, generally from the perspective of semantics-preserving and property-preserving
reductions, or smart compression techniques. Although these techniques are absolutely powerful and
often very ingenious, they do not provide the means to overcome the state space explosion problem.

We believe that the state space explosion problem must also be dealt with in another way, namely
by designing models such that their behaviour can be verified. We call this design for verifiability or
modelling for verifiability. This is comparable with ‘design for testability’, which is mainly used in
especially microelectronics to allow to test a product for production flaws [3], and which is slowly
finding its way into software engineering [4].

What we propose is that systems are designed such that the state spaces of their behavioural
models are small. For instance, if the situation allows it, it is generally a good idea to avoid parallel
behaviour in favour of the sequential execution of various tasks because the state space of the latter
is often much smaller. But note that these two behaviours can be very different from a behavioural
perspective. They are in general certainly not bisimilar or trace equivalent. But they may both serve
the intended purpose equally well. This could for instance be formalized by saying that certain
modal formulas must be valid. In this article, we leave the adequacy of the models to the judgement
of the designer of the behaviour and primarily make the point that different styles of modelling
can make a huge difference in the number of states of a system, and therefore its analysability. A
designer of behaviour generally has lots of freedom to shape his artefact while meeting all desires
and constraints on the design. We only state that keeping the state space as small as possible is one
of the desires he should have, to allow formal analysis of his design, which is always beneficial.

Compared with the development of state space reduction techniques that preserve a given equiva-
lence, design for verifiability is a rather novel concept because the validity of the reduction is in the
hand of the designer. The best we could find is [5], but it primarily addresses improvements in veri-
fication technology, too. A recent plea similar to ours is [6], where it is argued that systems must be
programmed such that analysis of those systems becomes much simpler. Specification styles from
the perspective of expressiveness have been addressed [7], but verifiability is also not really an issue
here. There are many papers treating state space reductions of systems preserving a given equiva-
lence, for example, [8, 9], but the reductions obtainable in that way appear far less effective than
those obtainable by the primary designer of the behaviour of a system.

In this article, we provide seven specification guidelines that we learned by specifying complex
realistic systems (e.g. traffic control systems, medical equipment, domestic appliances, communica-
tion protocols). For each specification guideline, we provide an application taken from the domain
of traffic light controllers (TLCs), except for guidelines II, which uses simple message passing, and
guideline VII, where an example to monitor devices is used.

For each guideline, we give pairs of examples. The first one does not take the guideline into ac-
count and the second does. Generally, the first specification is very natural but leads to a large state
space. Then, we provide a second specification that uses the guideline. We show by a transition
system or a table that the state space that is using the guideline is much smaller. The ‘bad’ and
the ‘good’ specification are in general not behaviourally equivalent (for instance, in the sense of
branching bisimulation), but as we will see, they both capture the application’s intent. All specifi-
cations are written in mCRL2, which is a process specification formalism based on process algebra
[10, 11]. However, none of the guidelines are very specific for process algebras and can be applied
quite generally, provided the relevant language concepts exist. For instance, for ‘global synchronous
communication’, it is required that multiparty communication is available.

The guidelines are the result of our experience of designing and verifying a number of real in-
dustrial cases, developed under the control of various formal techniques [12–16]. Moreover, the
guidelines were applied to design and verify an industrial case developed at Philips Healthcare [12],
and hence, the guidelines could provide an effective framework to design verifiable components.
What we see is that formal verification techniques assist in delivering systems of high quality, but

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

6 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

developers frequently run into the pitfalls caused by the state space explosion problem, and we hope
that the guidelines in this article will help to avoid these.

This paper extends the guidelines of [17] with two key guidelines, namely ‘confluence and de-
terminacy’ and ‘compositional design and reduction’. Additionally, the other guidelines are more
extensively presented, supported by a number of examples and design cases. This paper also includes
a concise introduction to the mCRL2 language that we use in this work.

In hindsight, we can say that it is quite self evident why most guidelines have a beneficial effect
on the size of the state spaces. Some of the guidelines are already quite commonly used, such
as reordering information in buffers, when the ordering is not important. The use of synchronous
communication, although less commonly used, also falls in this category. Other guidelines such as
information polling are not really surprising, but designers appear to have a natural tendency to use
information pushing instead. The use of ‘confluence and determinacy’ and ‘external specifications’
may be foreign to most behavioural designers.

Although we provide a number of guidelines that we believe are really important for the be-
havioural modellist, we do not claim completeness. Without doubt, we have overlooked a number of
specification strategies that are helpful in keeping state spaces small. Hopefully, this document will
be an inspiration to investigate state space reduction from this perspective, which ultimately can be
accumulated in effective teaching material, helping both students and working practitioners to avoid
the pitfalls of state space explosion.

2. A SHORT INTRODUCTION INTO mCRL2

Before getting to the design guidelines for avoiding state space explosion, we give a short exposition
of the specification language mCRL2. We only restrict ourselves to those parts of the language that
we need in this paper. Further information can be obtained from various sources, but good places to
start are [10, 11]. Especially, at the website www.mcrl2.org, the toolset for mCRL2 is available,
as well as lots of documentation and examples.

The abbreviation mCRL2 stands for micro Common Representation Language 2. It is a specifi-
cation language that can be used to specify and analyse the behaviour of distributed systems and
protocols. mCRL2 is based on the Algebra of Communicating Processes [18], which is extended to
include data and time.

We first describe the data types. Data types consist of sorts and functions working upon these
sorts. There are standard data types such as the booleans (B), the positive numbers (NC) and the
natural numbers (N). All sorts represent their mathematical counterpart. For example, the number
of natural numbers is unbounded.

All common operators on the standard data sorts are available. We use � for equality between
elements of a data type to avoid confusion withD, which we use as equality between processes. We
also use if .c; t; u/ representing the term t if the condition c holds, and u if c is not valid.

For any sort D, the sorts List.D/ and Set.D/ contain the lists and sets over domain D. Prepend-
ing an element d to a list l is denoted by dFl . Getting the last element of a list is denoted as
rhead.l/. The remainder of the list after removing the last element is denoted as rtail.l/. The
length of a list is denoted by #.l/. Testing whether an element d is in a set s is denoted as d2s.
The set with only element d is denoted by ¹dº. Set union is written as s1[s2 and set difference
as s1ns2.

Given two sortsD1 andD2, the sortD1!D2 contains all functions from the elements fromD1 to
elements ofD2. We use standard lambda notation to represent functions. For example, �xWN:xC1 is
the function that adds 1 to its argument. For a function f , we use the notation f Œt!u� to represent
the function f , except that if f Œt!u� is applied to t , the value u is returned. We call f Œt!u� a
function update.

Besides using standard types and type constructors such as List and Set, users can define their
own sorts. In this paper, we most often use user defined sorts with a finite number of elements. A
typical example is the declaration of a sort containing the three aspects green, yellow and red of a
traffic light.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 7

sort Aspect D struct green j yellow j redI

A more complex user-defined sort that we use is a message containing a number that can either be
active or passive, for example, typical messages are active.6/ and passive.234/. The number in each
message can be obtained by applying the function get_number to a message. The function is_active
is true when applied to a message of the form active.n/ and false otherwise. Such a datatype can be
defined in the following way.

sort Message D struct active.get_numberWN/‹is_active j passive.get_numberWN/I

Additional elements of data domains can be declared using the keyword map. By introducing
an equation, the element can be declared equal to some expression. An example of its use is the
following: constant n is declared to be equal to 3 and f is equal to the function that returns false for
any natural number.

map n W NI
f W N ! BI

eqn n D 3I
f D �xWN:falseI

This concise explanation of data types is enough to understand the paper.
The use of data is the primary source why state spaces grow out of hand. A system with only two

32 bit integers has 1:8 1019 states, which for quite some time to come will not fit into the memory of
any computer (unless compression techniques are used). This emphasizes the importance to restrict
the possible values data types can have. Often, it is wise to model data domains in abstract categories.
For example, instead of using a height in millimetres, one can abstract this to the three values low,
middle and high.

The behaviour of systems is characterized by atomic actions. Actions can represent any elemen-
tary activity. Here, they typically represent setting a traffic light to a particular colour, getting a
signal from a sensor or communicating among components. Actions can carry data parameters. For
example, trig(id, false) could typically represent that the sensor with identifier id was not triggered
(indicated by the boolean false).

In an mCRL2 specification, actions must be declared as indicated in the succeeding text, where the
types indicate the sorts of the data arguments that they carry. Note that my_turn has no arguments.

act trig W N � BI
send W MessageI
my_turnI

In the examples in this article, we have omitted these declarations as they are clear from the context.
If two actions a and b happen at the same time, then this is called a multi-action, which is denoted

as ajb. The operator ‘j’ is called the multi-action composition operator. Any number of actions can
be combined into a multi-action. The order in which the actions occur has no significance. So, ajbjc
is the same multi-action as cjajb. The empty multi-action is written as � . It is an action that can
happen, but which cannot directly be observed. It is also called the hidden or internal action. The
use of multi-actions can be quite helpful in reducing the state space, as indicated in guideline II in
Section 5.

Actions and multi-actions can be composed to form processes. The choice operator, used as p C
q for processes p and q, allows the process to choose between two processes. The first action
that is carried out determines the choice. The sequential operator, denoted by a dot (‘�’), puts two
behaviours in sequence. So, the process a�b C c�d can either perform action a followed by b, or c
followed by d .

The if -then-else operator, cond ! p ˘ q, allows the condition cond to determine whether the
process p or q is selected. The else part can always be omitted. We then obtain the conditional

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

8 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

operator of the form cond ! p. If cond is not valid, this process cannot perform an action. It
deadlocks. This does not need to be a problem as using theC operator alternative behaviour may be
possible.

The following example shows how to specify a simple recursive process. It is declared using the
keyword proc. It is a timer that cyclically counts up till four using the action tick, and can be reset
at any time. Note that the name of a process, in this case Counter, can carry data parameters. The
initial state of the process is Counter.0/, that is, the counter starting with argument 0. Initial states
are declared using the keyword init. As explained in the succeeding text, we underline actions, if
they are not involved in communication between processes.

proc Counter.nWN/
D .n<4/! tick�Counter.nC1/ ˘ tick�Counter.0/
C reset�Counter.0/I

init Counter.0/I

In Figure 1, the transition system of the counter is depicted. It consists of five states and ten tran-
sitions. By following the transitions from state to state, a run through the system can be made.
Note that many different runs are possible. A transition system represents all possible behaviours
of the system, rather than one or a few single runs. The initial state is state 0, which has a small
incoming arrow to indicate this. The precise mapping from algebraic processes is given by the op-
erational semantics described in [19]. We will not go into this precise mapping, because it is quite
straightforward. The transition systems referred to in this article are all generated using the mCRL2
toolset [11].

Sometimes, it is required to allow a choice in behaviour, depending on the data. For example, for
the counter, it can be convenient to allow to set it to any value larger than zero and smaller than five.
Using the choice operator, this can be written as

set.1/�Counter.1/C set.2/�Counter.2/C set.3/�Counter.3/C set.4/�Counter.4/

Especially for larger values, this is inconvenient. Therefore, the sum operator has been introduced.
It is written as

P
xWN p.x/, and it represents a choice among all processes p.x/ for any value of x.

The sort N is just provided here as an example but can be any arbitrary sort. Note that the sort in the
sum operator can be infinite. To generate a finite state space, this infinite range must be restricted,
for instance by a condition. The aforementioned example uses such a restriction and becomes

X

xWN

.0<x ^ x<5/! set.x/�Counter.x/

Just for the sake of completeness, we formulate the example of the counter again, but now with this
additional option to set the counter, which can only take place if n equals 0. This example is a very

Figure 1. The transition system of the process Counter.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 9

Figure 2. The Counter extended with set transitions.

typical sequential process (sequential in the meaning of not parallel). In Figure 2, we provide the
state space of the extended counter.

proc Counter.nWN/
D .n<4/! tick�Counter.nC1/ ˘ tick�Counter.0/
C
P
xWN.n�0 ^ 0<x ^ x<5/! set.x/�Counter.x/

C reset�Counter.0/I
init Counter.0/I

Processes can be put in parallel with the parallel operator k to model a concurrent system. The
behaviour of p k q represents that the behaviour of p and q is parallel. It is an interleaving of the
actions of p and q where it is also possible that the actions of p and q happen at the same time
in which case a multi-action occurs. So, a k b represents that the actions a and b are executed in
parallel. This behaviour is equal to a�b C b�aC ajb.

Parallel behaviour is the second main source of a state space explosion. The number of states of
p k q is the product of the number of states of p and q. The state space of n parallel processes that
each have m states is mn. For n and m larger than 10, this is too big to be stored in the memory of
almost any computer in an uncompressed way. Using the allow operator, which is introduced in the
next paragraph, the number of reachable states can be reduced substantially. But without care, the
number of states of parallel systems can easily grow out of control.

To let two parallel components communicate, the communication operator �C and the allow op-
erator rV are used where C is a set of communications and V is a set of data free multi-actions.
The idea behind communication is that if two actions happen at the same time, and carry the same
data parameters, they can communicate to one action. In this article, we use the convention that ac-
tions with a subscript r (from receive) communicate to actions with a subscript s (from send) into
an action with subscript c (from communicate). Typically, we write �¹ar jas!acº.p k q/ to allow
action ar to communicate with as resulting in ac in a process p k q. To make the distinction be-
tween internal communicating actions and external actions clearer, we underline all external actions
in specifications (but not in the text or in the diagrams). External actions are those actions commu-
nicating with entities outside the described system, whereas internal actions happen internally in
components of the system or are communications among those components.

To enforce communication, we must also express that actions as and ar cannot happen on their
own. The allow operator explicitly allows certain multi-actions to happen, and blocks all others. So,
in the example from the previous paragraph, we must add r¹acº to block ar and as enforcing them
to communicate into ac . So, a typical expression putting behaviours p and q in parallel, letting them
communicate via action a, is

r¹acº.�¹ar jas!acº.p k q//

We provide a simple example of two parallel processes X1 and X2 of which the first reads a num-
ber, forwards it to the second and the second accepts it and sends it to the output. Both processes
are single place buffers, and their parallel combination constitutes a two place buffer. There are five
actions, two for the input and output of the first and second process (input, output), and three to

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

10 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

arrange handing data over between the processes (hoc , hos and hor). The actions hos and hor repre-
sent sending a number and reading a number between the two processes. By using a communication
operator �¹hos jhor!hocº, it is expressed that actions hos and hor can synchronize to hoc . By using
the allow operator r¹hocº, it is expressed that only action hoc can happen, forcing hos and hor to
communicate into hoc . The whole system is described by the following three equations:

proc X1 D
P
nWN input.n/�hos.n/�X1I

X2 D
P
mWN hor.m/�output.m/�X2I

init r¹hocº.�¹hos jhor!hocº.X1 k X2//I

Of course, more processes can be put in parallel, and more actions can be allowed to communicate.
Actions that are the result of a communication are in general internal actions in the sense that

they take place between components of the system and do not communicate with the outside world.
Using the hiding operator �I , actions can be made invisible, which is carried out by simply replacing
each action in the set I of actions by the internal action � . So, for a process that consists of a single
action a, �¹aº.a/ is the internal action � , an action that does happen, but which cannot directly be
observed. In the aforementioned example, hiding hoc would look like

init �¹hocº.r¹hocº.�¹hos jhor!hocº.X1 k X2///I

If a system has internal actions, then the behaviour can be reduced. For instance, in the process
a�� �p; it is impossible to observe the � , and this behaviour is equivalent to a�p. The most common
behavioural reductions are weak bisimulation and branching bisimulation [20, 21]. We will not
explain these equivalences here in detail. It suffices to know that they reduce the behaviour of a
system to a unique minimal transition system preserving the essence of the external behaviour. This
result is called the transition system modulo weak/branching bisimulation. This reduction is often
substantial.

3. OVERVIEW OF DESIGN GUIDELINES

In this section, we give a short description of the seven guidelines that we present in this paper.
Each guideline is elaborated in its own section with one or more illustrative systems for which a
behaviour must be designed. For each system, a behaviour is provided where the guideline is not
used, and subsequently, a description is given where the guideline is used and that is also adequate
for the system in the example. We provide information on the resulting state spaces, showing why
the use of the guideline is advantageous.

I Information polling. This guideline advises to let processes ask for information, whenever
it is required. The alternative is to share information with other components, whenever the
information becomes available. Although this latter strategy clearly increases the number of
states of a system, it appears to prevail over information polling in most specifications that we
have seen.

II Global synchronous communication. If more parties communicate with each other, it can be
that component 1 communicates with component 2, and subsequently, component 2 informs
component 3. This requires two consecutive communications and therefore two state transi-
tions. By using multi-actions, it is possible to let component 1 communicate with component
2 that synchronously communicates with component 3. This only requires one transition. By
synchronizing communication over different components, the number of states of the overall
system can be substantially reduced.

III Avoid parallelism among components. If components operate in parallel, the state space
grows exponentially in the number of components. By sequentialising the behaviour of these
components, the size of the total state space is only the sum of the sizes of the state spaces
of the individual components. In this latter case, state spaces are small and easy to analyse,
whereas in the former, case analysis might be quite hard. Sequentialising the behaviour can for

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 11

instance be carried out by introducing an arbiter, or by letting a process higher up in the process
hierarchy allow only one of its sub-processes to operate at any time while putting the others
temporarily to a halt.

IV Confluence and determinacy. When parallel behaviour cannot be avoided, it is useful to
model such that the behaviour is � -confluent [9]. Behaviour is � -confluent if whenever an in-
ternal � -action and an action a can happen in a state, then it does not matter in which order
they are executed. The notion of � -confluency is strongly related to partial order reduction. If
a system is � -confluent, always a � -action can be taken ignoring the other actions, while the
resulting transition system is still branching bisimilar to the original, obtaining a substantially
reduced state space. Modelling a system such that it is � -confluent is not easy. A good strategy
is to strive for determinacy of behaviour. This means that the ‘output’ behaviour of a system
must completely be determined by the ‘input’. This is guaranteed whenever an internal action
(e.g. receiving or sending a message from/to another component) can be done in a state of a
single component, then no other action can be done in that state.

V Restrict the use of data. The use of data in a specification is a main cause for state-space
explosion. Therefore, it is advisable to avoid using data whenever possible. If data is essential,
try to categorize it and only store the categories. For example, instead of storing a height in
millimetres, store too_low, right_height and too_high. Avoid buffers and queues getting filled,
and if not avoidable try to apply confluence and � -prioritization. Finally, take care that data is
only stored in one way. For example, storing the names of the files that are open in an unordered
buffer is a waste. The buffer can be ordered without losing information, substantially reducing
the state footprint.

VI Compositional design and reduction. If a system is composed out of more components, it can
be fruitful to combine them in a stepwise manner, and reduce each set of composed components
using an appropriate behavioural equivalence. This works well if the composed components do
not have different interfaces that communicate via not yet composed components. So typically,
this method does not work when the components communicate in a ring topology, but it works
very nicely when the components are organized as a tree.

VII Specify the external behaviour of sets of sub-components. If the behaviour of sets of com-
ponents are composed, the external behaviour tends to be overly complex. In particular, the
state space is often larger than needed. A technique to keep this behaviour small is to separately
specify the expected external behaviour first. Subsequently, the behaviours of the components
are designed such that they meet this external behaviour.

4. GUIDELINE I: INFORMATION POLLING

One of the primary sources of many states is the occurrence of data in a system. A good strategy
is to only read data when it is needed and to decide upon this data, after which the data is directly
forgotten. In this strategy, data are polled when required, instead of pushed to those that might
potentially need it. An obvious disadvantage of polling is that much more communication is needed.
This might be problematic for a real system, but for verification purposes, it is attractive, as the
number of states in a system becomes smaller when using polling.

Currently, it appears that most behavioural specifications use information pushing, rather than
information polling. For example, whenever some event happens, this information is immediately
shared with neighbouring processes.

Furthermore, we note that there is also a discussion of information pulling versus information
pushing in distributed system design from a completely different perspective [22]. Here, the goal is
to minimize response times of distributed systems. If information when needed must be requested
(=pulled) from other processes in a system, the system can become sluggish. But on the other hand,
if all processes inform all other processes about every potentially interesting event, communication
networks can be overloaded, also leading to insufficient responsiveness. Note that we prefer the verb
‘to poll’ over ‘to pull’, because it describes better that information is repeatedly requested.

To illustrate the advantage of information polling, we provide two specifications. The first one is
‘bad’ in the sense that there are more states than in the second specification. We are now interested

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

12 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

Figure 3. A simple traffic light with two sensors.

in a system that can be triggered by two sensors trig1 and trig2. After both sensors fire a trigger, a
traffic light must switch from red to green, from green to yellow and subsequently back to red again.
For setting the aspect of the traffic light, the action set is used. One can imagine that the sensors are
proximity sensors that measure whether cars are waiting for the traffic light. Note that it can be that
a car activates the sensors, while the traffic light shows another colour than red. In Figure 3, this
system is drawn.

First, we define a data type Aspect, which contains the three aspects of a traffic light.

sort Aspect D struct green j yellow j redI

The pushing controller is very straightforward. The occurrence of trig1 and trig2 indicate that the
respective sensors have been triggered. In the pushing strategy, the controller must be able to always
deal with incoming signals and store their occurrence for later use. In the succeeding text, the push-
ing process has two booleans b1 and b2 for this purpose. Initially, these booleans are false, and the
traffic light is assumed to be red. The booleans become true if a trigger is received and are set to
false, when the traffic light starts with a green, yellow and red cycle.

proc Push.b1; b2WB; cWAspect/
D trig1�Push.true; b2; c/
C trig2�Push.b1; true; c/
C .b1^b2^c�red/!set.green/�Push.false; false; green/
C .c�green/!set.yellow/�Push.b1; b2; yellow/
C .c�yellow/!set.red/�Push.b1; b2; red/I

init Push.false; false; red/I

The polling controller differs from the pushing controller in the sense that the actions trig1 and
trig2 now have a parameter. It only checks whether the sensors have been triggered using the actions
trig1.b/ and trig2.b/ when it needs the information. The boolean b indicates whether the sensor has
been triggered (true: triggered, false: not triggered). In Poll, sensor trig1 is repeatedly polled, and
when it indicates by a true that it has been triggered, the process goes to Poll1. In Poll1, sensor trig2
is polled, and when both sensors have been triggered, Poll2 is invoked. In Poll2, the traffic light goes
through a colour cycle and back to Poll.

proc Poll D trig1.false/�PollC trig1.true/�Poll1I
Poll1 D trig2.false/�Poll1 C trig2.true/�Poll2I
Poll2 D set.green/�set.yellow/�set.red/�PollI

init PollI

The transition systems of both systems are drawn in Figure 4. At the left, the diagram for the pushing
system is drawn, and at the right, the behaviour of the polling TLC is depicted. The diagram at
the left has 12 states and allows a trig1 and a trig2 in every state. The diagram at the right has 5,
showing that even for this very simple system polling leads to a smaller state space. In the diagram
at the right, the actions trig1.b/ and trig2.b/ only happen when the controller needs to know what
the status of the sensor is. Note that not all traces at the left are possible at the right. For instance,
the trig2 action is possible in the initial state at the left, but not at the right. Still, both designs for
the TLC serve the purpose equally well.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 13

Figure 4. Transition systems of push/poll processes.

Whether information polling can be used very much depends on the system. The sensors should
be able to keep the information that they are triggered until this information is requested. Commu-
nication should be sufficiently fast, as otherwise the system can become slow and the bandwidth of
the communication channel must support a potentially huge number of polling messages.

5. GUIDELINE II: USE GLOBAL SYNCHRONOUS COMMUNICATION

Communication along different components can sometimes be modelled by synchronizing the
communication over all these components. For instance, instead of modelling that a message is
forwarded in a stepwise manner through a number of components, all components engage in one
big action that says that the message travels through all components at once. In the first case,
there is a new state required for every time the message is forwarded. In the second case, the total
communication only requires one extra state.

Several formalisms use global synchronous interactions as a way to keep the state space of a
system small. The coordination language REO uses the concept very explicitly [23]. A derived form
can be found in Uppaal, which uses committed locations [24].

To illustrate the effectiveness of global synchronous communication, we provide the system in
Figure 5. A trigger signal enters at a and is non-deterministically forwarded via bc or cc to one
of the two components at the right. Non-deterministic forwarding is used to make the application

Figure 5. Synchronous/asynchronous message passing.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

14 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

Figure 6. Transition systems of a synchronous and an asynchronous process.

of confluence impossible (see guideline IV). One might for instance think that there is a complex
algorithm that determines whether the information is forwarded via bc or cc , but we do not want to
model the details of this algorithm. After being passed via bc or cc , the message is forwarded to the
outside world via d or e. To illustrate the effect on state spaces, it is not necessary that we pass an
actual message, and therefore, it is left out.

The asynchronous variant is described in the succeeding text. Process C1 performs a, and subse-
quently performs bs or cs , that is, sending via b or c. The process C2 reads via b by br , and then
performs a d . The behaviour of C3 is similar. The whole system consists of the processes C1, C2
and C3, where br and bs synchronize to become bc and cr and cs become cc . The behaviour of this
system contains eight states and is depicted in Figure 6 at the left.

proc C1 D a�.bs C cs/�C1I
C2 D br �d �C2I
C3 D cr �e�C3I

init r¹a;bc ;cc ;d ;eº.�¹br jbs!bc ;cr jcs!ccº.C1jjC2jjC3//I

The synchronous behaviour of this system can be characterized by the following mCRL2 specifi-
cation. Process C1 can perform a multi-action ajbs (i.e. action a and bs happen exactly at the same
time) or a multi-action ajcs . This represents the instantaneous receiving and forwarding of a mes-
sage. Similarly, C2 and C3 read and forward the message instantaneously. The effect is that the state
space only consists of one state as depicted in Figure 6 at the right.

proc C1 D ajbs �C1 C ajcs �C1I
C2 D br jd �C2I
C3 D cr je�C3I

init r¹ajcc je;ajbc jdº.�¹br jbs!bc ;cr jcs!ccº.C1jjC2jjC3//I

The operator r¹ajcc je;ajbc jdº allows the two multi-actions ajcc je and ajbc jd , enforcing in this way
that in both cases, these three actions must happen simultaneously.

There are various justifications of the use of global synchronous communication. The communi-
cations modelled by global synchronous communication can be much faster than the other activities
of the components. Or these communications can be insignificant relative to the other activities.
Of course, those interactions in a system that are the primary object of study in a model are bad
candidates to be modelled as global synchronous communications.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 15

6. GUIDELINE III: AVOID PARALLELISM AMONG COMPONENTS

When models have many concurrent components that can independently perform activity, the state
space of the given model can be reduced by limiting the number of components that can simultane-
ously perform their actions. Ideally, only one component can perform activity at any time. This can
for instance be achieved by one central component that allows the other components to do an action
in a round robin fashion.

In some specification languages, explicit avoidance of parallel behaviour between components
has been used. For instance, Esterel [25] uses micro steps that can be calculated per component.
In Promela, there is an explicit atomicity command, grouping behaviour in one component that is
executed without interleaving of actions of other components [26].

As an example, we consider M traffic lights guarding the same number of entrances of a parking
lot. See Figure 7 for a diagrammatic representation where MD 3. A sensor detects that a car arrives
at an entrance. If there is space in the garage, the traffic light shows green for some time interval.
There is a detector at the exit, which indicates that a car is leaving. The number of cars in the garage
cannot exceed N .

The first model is very simple but has a large state space. Each TLC waits for a trigger of its
sensor, indicating that a car is waiting. Using the enters action, it asks the Coordinator for admission
to the garage. If a car can enter, this action is allowed by the coordinator and a traffic light cycle
starts. Otherwise, the enters action is blocked. The Coordinator has an internal counter, counting
the number of cars. When a leave action takes place, the counter is decreased. When a car is allowed
to enter (via enterr), the counter is increased.

proc Coordinator.countWN/
D .count>0/!leave � Coordinator.count�1/
C .count<N/!enterr �Coordinator.countC1/I

TLC.idWNC/
D trig.id/�enters �show.id; green/�show.id; red/�TLC.id/I

init r¹trig;show;enterc ;leaveº.�¹enters jenterr!entercº.Coordinator.0/kTLC.1/kTLC.2/k
TLC.3///I

The state space of this control system grows exponentially with the number of TLCs. In columns
2 and 4 of Table I, the sizes of the state spaces for different M are shown. It is also clear that the
number of parking places N only contributes linearly to the state space.

Following the guideline, we try to limit the amount of parallel behaviour in the TLCs. So, we put
the initiative in the hands of the coordinator in the second model. It assigns the task of monitoring a
sensor to one of the TLCs at a time. The traffic controller will poll the sensor, and only if it has been
triggered, it switches the traffic light to green. After it has done its task, the TLC will return control

Figure 7. A parking lot with three entrances.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

16 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

Table I. State space sizes of parking lot controllers.

M Parallel (N D 10) Restricted (N D 10) Parallel (N D 100) Restricted (N D 100)

1 44 61 404 601
2 176 122 1,616 1,202
3 704 183 6,464 1,803
4 2,816 244 25,856 2,404
5 11,264 305 103,424 3,005
6 45,056 366 413,696 3,606
10 11:5 106 610 106 106 6,010

N , no. of traffic lights; M , no. of parking places.

to the co-ordinator. Of course, if the parking lot is full, the TLCs are not activated. Note that in this
second example, only one traffic light can show green at any time, which might not be desirable.

proc Coordinator.countWN; active_idWNC/
D .count>0/!leave�Coordinator.count�1; active_id/
C .count<N/!enters.active_id/�

P
bWB enterr.b/�

Coordinator.countCif.b; 1; 0/; if.active_id�M;1; active_idC1//I

TLC.idWNC/
D enterr.id/�
. trig.id; true/�show.id; green/�show.id; red/�enters.true/C

trig.id; false/�enters.false/
/�
TLC.id/I

init r¹trig;show;enterc ;leaveº.�¹enters jenterr!entercº
.Coordinator.0; 1/jjTLC.1/jjTLC.2/jjTLC.3///I

As can be seen in Table I, the state space of the second model only grows linearly with the number
of traffic lights.

It very much depends on the nature of the system whether it is allowed to sequentialise parallel
behaviour. If the primary purpose of a system is the calculation of values, sequentialising appears
to be defendable. If the parallel tasks are relatively small or when a system is not very interactive, it
also appears defendable to eliminate parallel behaviour. On the other hand, if the sub-components
are controlling all kinds of devices, especially in real time, then the parallel behaviour of the sub-
components might be the primary purpose of the system, and sequentialisation cannot be used.

7. GUIDELINE IV: CONFLUENCE AND DETERMINACY

In [9, 21], it is described how � -confluence and determinacy can be used to assist process verifica-
tion. By modelling such that a system is � -confluent, verification can become substantially easier.
The formulations in [9, 21] are slightly different; we use the formulation from [9] because it is more
suitable for verification purposes.

A transition system is � -confluent if for every state s that has an outgoing � -transition and an
outgoing a-transition, s

�
�! s0 and s

a
�! s00, respectively, there is a state s000 such that s0

a
�! s000 and

s00
�
�! s000. This is depicted in Figure 8. Note that a can also be a � , but then the states s0 and s00 must

be different. It is useful to know that it can be determined on the basis of a behavioural description
whether a transition system is � -confluent without generating the transition system explicitly [9].

When generating a state space of a � -confluent transition system, it is allowed to ignore all
outgoing transitions from a state that has at least one outgoing � -transition, except one outgoing
� -transition. This operation is called � -prioritization. It preserves branching bisimulation equiva-

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 17

Figure 8. Conf luent case.

Figure 9. The effect of �-prioritization and branching bisimulation compression.

lence [20] and therefore almost all behaviourally interesting properties of the state space. There is
one snag, namely that if the resulting � transitions form a loop, then the outgoing transitions of one
of the states on the loop must be preserved. The first algorithm to generate a state space while ap-
plying � -prioritization is described in [27]. When � -prioritization has been applied to a transition
system, large parts of the ‘full’ state space have become unreachable. Of the remaining reachable
states, many have a single outgoing � -transition s

�
�! s0. The states s and s0 are branching bisimilar

and can be mapped onto each other, effectively removing one more state. Furthermore, all states on
a � -loop are branching bisimilar and can therefore be merged into one state, too.

If a state space is � -confluent, then � -prioritization can have a quite dramatic reduction of the
size of the state space. This technique allows to generate the prioritized state space of highly
parallel systems with thousands of components. In Figure 9, a � -confluent transition system is
depicted before and after application of � -prioritization, and the subsequent merging of branching
bisimilar states.

To employ � -prioritization, a system must be defined such that it is � -confluent. The main rule
of thumb is to take care that if an internal action can be performed in a state of a component,
no other action can be done in that state. These internal actions include sending information to
other components. If data is received, it must be received from only one component. A selection
among different components offering data is virtually always non-confluent. Note that in particular
pushing information generally destroys confluence. Pushed information must always be received,
so, in particular, it must be received while internal choices are made and information is forwarded.

We model a simple crossing system that contains two traffic lights. First, we are not bothered
about confluence. Each traffic light has a sensor indicating that traffic is waiting. We use a control
system with six components (see Figure 10).

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

18 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

Figure 10. A simple traffic light with two triggers.

For each traffic light, we have a sensor controller SensorC, a crossing controller CrossingC and
a TLC LightC. The responsibility of the first is to detect whether the sensor is triggered, using the
action trig, and forward its occurrence using the action sens to CrossingC. The crossing controller
takes care that after receiving a sens message, it negotiates with the other crossing controller whether
it can turn the traffic light to green (using the turn action), and informs LightC using the action cycle
to set the traffic light to green. The light controller will switch the traffic light to green, yellow and
red and subsequently informs the crossing controller that it has finished (by sending a cycle message
back).

In the succeeding text, a straightforward model of this system is provided. The sensor controller
SensorC gets a trigger via the action trig and forwards it using senss . The TLC is equally simple.
After a trigger (via cycler), it cycles through the colours and indicates through a cycles message that
it finished.

The crossing controller CrossingC is a little more involved. It has four parameters. The first one
is id, which holds an identifier for this controller (i.e. 1 or 2). The second parameter my_turn in-
dicates whether this controller has the right to set the traffic light to green. The third parameter is
sensor_triggered, which stores whether a sensor trigger has arrived. The fourth one is cycle indi-
cating whether the TLC is currently going through a traffic light cycle. The most critical actions
are allowing the traffic light to become green (cycles) and giving ‘my turn’ to the other crossing
controller (turns). Both can only be done if no traffic light cycle is going on and it is ‘my turn’.

Note that at the init clause, all components are put in parallel, and using the communication
operator � and allow operator r; it is indicated how these components must communicate.

proc SensorC.idWNC/ D trig.id/�senss.id/�SensorC.id/I

LightC.idWNC/
D cycler.id/�

show.id; green/�
show.id; yellow/�
show.id; red/�
cycles.id/�
LightC.id/I

CrossingC.idWNC;my_turn; sensor_triggered; cycleWB/
D sensr.id/�CrossingC.id;my_turn; true; cycle/
C .sensor_triggered^my_turn^:cycle/! cycles.id/�

CrossingC.id;my_turn; false; true/
C cycler.id/�CrossingC.id;my_turn; sensor_triggered; false/
C turnr �CrossingC.id; true; sensor_triggered; cycle/
C .:sensor_triggered^my_turn^:cycle/!turns �

CrossingC.id; false; sensor_triggered; cycle/I

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 19

Table II. The number of states of the transitions systems for a simple crossing.

No reduction After � -prioritization Mod branch bis

Non-confluent controller 160 128 124
Simple confluent controller 20 8 8
Complex confluent controller 310 56 56

init r¹trig;show;sensc ;cyclec ;turncº

.�¹sensr jsenss!sensc ;cycler jcycles!cyclec ;turnr jturns!turncº

.SensorC.1/jjSensorC.2/jj
CrossingC.1; true; false; false/jjCrossingC.2; false; false; false/jj
LightC.1/jjLightC.2///I

This straightforward system description has a state space of 160 states. We are interested in the
behaviour of the system where trig and show are visible, and the other actions are hidden. We can
do this by applying the hiding operator �¹sensc ;cyclec ;turncº to the process. The system is confluent with
respect to the hidden cyclec action. The hidden sensc and turnc actions are not contributing to the
confluence of the system. The reason for this is that handing over a turn and triggering a sensor are
possible in the same state, and they can take place in any order. But the exact order in which they
happen causes a different traffic light go to green.

In the uppermost row of Table II, the sizes of the state space are given: of the full state space,
after applying tau-prioritization and after applying branching bisimulation reduction.

To employ the effect of confluence, we must make the hidden actions turnc and sensec confluent,
too. We can do this by making the behaviour of the crossing controller CrossingC deterministic.
A very simple way of doing this is given in the succeeding text. We only provide the definition of
SensorC and CrossingC as LightC remains the same and the init line is almost identical. The idea of
the specification in the succeeding text is that the controllers CrossingC are in charge of the sensor
and light controllers. When the crossing controller has the turn, it polls the sensor. And only if it has
been triggered, it initiates a traffic light cycle. In both cases, it gives the turn to the other crossing
controller.

proc SensorC.idWNC/ D sensr .id/�
P
bWB trig.id; b/�senss.id; b/�SensorC.id/I

CrossingC.idWNC;my_turnWB/ D
my_turn
! senss.id/�
.sensr .id; true/�

cycles.id/�
cycler .id/
C
sensr .id; false/
/�
turns �
CrossingC.id; false/
˘ turnr �

CrossingC.id; true/I

The state space of this system turns out to be small, namely 20 states (see Table II, second row).
It is even smaller after applying � -prioritization, namely eight states and this is also the size of the
state space after branching bisimulation minimisation. This is remarkable, as in general, the state
space generated using � -priorisation can be further reduced by applying branching bisimulation.

As the state space is small, it is possible to inspect the state space in full (see Figure 11). An
important property of this system is that the relative ordering in which the triggers at sensors 1 and
2 are polled does not influence the ordering in which the traffic lights go to green. This sequence is
only determined by the booleans that indicate whether the sensor is triggered or not. This effect is
not very clear here, because the sensors are polled in strict alternation. But in the next example, we

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

20 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

Figure 11. The state space of a simple confluent traffic light controller.

see that this property also holds for more complex controllers, where the polling order is not strictly
predetermined.

The previous solution can be too simple for certain purposes. We show that the deterministic spec-
ification style can still be used for more complex systems, and that the state space that is generated
using � -prioritization is still much smaller than state spaces generated without the use of confluence.

So, for the sake of the example, we assume that it is desired to check the sensors while a traffic
light cycle is in progress. Both crossing controllers continuously request the sensors to find out
whether they have been triggered. If none is triggered, the TLCs inform each other that the turn does
not have to switch side. If the crossing controller that has the turn gets the signal that its sensor has
been triggered, it awaits the end of the current traffic light cycle (cycler.id/) and simply starts a new
cycle (cycles.id//. If the sensor of the crossing controller that does not have the turn is triggered,
this controller indicates using turns.true/ that it wants to get the turn. It receives the turn by turnr .
Subsequently, it starts its own traffic light cycle.

The structure of the system is the same as in the non-confluent traffic light cycle, and therefore,
the init part is not provided in the succeeding specification.

proc SensorC.idWNC/ D sensr .id/�
P
bWB trig.id; b/�senss.id; b/�SensorC.id/I

CrossingC.idWNC;my_turnWB/ D
senss.id/�
. sensr .id; true/�
.my_turn!cycler .id/˘turns.true/�turnr /�
cycles.id/�
CrossingC.id; true/
C
sensr .id; false/�
. my_turn
! . turnr .true/�

cycler .id/�
turns �
CrossingC.id; false/
C
turnr .false/�
CrossingC.id; true/
/

˘ turns.false/�
CrossingC.id; false/

/
/I

LightC.idWNC; activeWB/ D
active
! cycles.id/�LightC.id; false/
˘ cycler .id/�show.id; green/�show.id; yellow/�show.id; red/�LightC.id; true/I

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 21

Figure 12. The sensor polling pattern of a more complex confluent controller.

This more complex TLC has a substantially larger state space of 310 states. However, when the
state space is generated with � -prioritization, it has shrunk to 56 states, which is also its minimal
size modulo branching bisimulation or even weak trace equivalence.

The complexity of the system is in the way the sensors are polled. Figure 12 depicts the behaviour
where showing the aspects of the traffic lights is hidden. As in the simple confluent controller,
the relative ordering of the incoming triggers does not matter for the state the system ends up in.
For example, executing sequences trig.2; false/ trig.1; true/ and trig.1; true/ trig.2; false/ from the
initial state lead to the lowest state in the diagram. This holds in general. Any allowed reorder-
ing of the triggers from sensor 1 and 2 with respect to each other will bring one to the same
state.

8. GUIDELINE V: RESTRICT THE USE OF DATA

The use of data in behavioural models can quickly blow up a state space. Therefore, data should
always be looked at with extra care, and if its use can be avoided, this should be done. If data is
essential (and it almost always is), then there are several methods to reduce its footprint. In the
succeeding text, we give three examples, one where data is categorized, one where the content of
queues is reduced and one where buffers are ordered.

To reduce the state space of a behavioural model, it sometimes helps to group the data in cate-
gories and formulate the model in terms of these categories, instead of individual values. From the
perspective of verification, this technique is a simple form of abstract interpretation [28, 29]. A given
data domain is interpreted in categories where all data elements in one category behave the same.
So, the verification only has to be carried out for one value in each category. Generally, a modeller
who understands the intended purpose of a model is generally quite capable to define appropriate
categories. Our experience is that a tool that employs abstract interpretation is hardly capable to beat
the modeller, and only very rarely abstract interpretation tools are capable of categorizing data that
a modeller failed to think of.

Consider for example an intelligent approach controller, which measures the distance of an ap-
proaching car as depicted in Figure 13. If the car is expected to pass distance 0 before the next
measurement, a trigger signal is forwarded. The farthest distance the approach controller can ob-
serve is M . A quite straightforward description of this system is given in the succeeding text.
Using the action dist, the distance to a car is measured, and the action trig models the trigger
signal.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

22 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

Figure 13. An intelligent approach controller.

map M W NI
eqn M D 100I
proc AC.dprevWN/ D

P
d WN.d<M/!.dist.d/�.2d<dprev/!trig�AC.M/˘AC.d//I

init AC.M/I

The state space of this system is a staggering M 2C1 states big, or more concretely 10 001 states.
This is of course because the values of d and dprev must be stored in the state space to enable
the evaluation of the condition 2d<dprev. But only the information needs to be recalled whether
this condition holds, instead of both values of d and dprev. So, a first improvement is to move the
condition backward as is done next, leading to a required MC1 states, or 101 states in this concrete
case.

proc AC1.dprevWN/ D
P
d WN.d<M/!..2d<dprev/!dist.d/�trig�AC1.M/˘dist.d/�AC1.d//I

init AC1.M/I

But we can go much further, provided it is possible to abstract from the concrete distances. Let us
assume that the only relevant information that we obtain from the individual distances is whether
the car is far from the sensor or nearby. Note that we abstract from the concrete speed of the car.
The specification of this abstract approach controller AAC is given by:

sort Distance D struct near j farI
proc AAC D

P
d WDistance dist.d/�..d�near/!trig�AAC˘AAC/I

init AAC I

Note that M does not occur anymore in this specification. The state space is now reduced to two
states.

We now provide an example showing how to reduce the usage of buffers and queues. Polling
and � -confluence are used, to achieve the reduction. We model a system with autonomous TLCs.
Each controller has one sensor and controls one traffic light that can be red or green. If a sensor is
triggered, the traffic light must show green. At most, one traffic light can show green at any time. The
controllers are organized in a ring, where each controller can send messages to its right neighbour
and receive messages from its left neighbour. For reasons of efficiency, we desire that there are
unbounded queues between the controllers, such that no controller is ever hampered in forwarding
messages to its neighbour. The situation is depicted in Figure 14.

We make a straightforward protocol, where we do not look into efficiency. Whenever a TLC re-
ceives a trigger, it wants to know from the other controllers that they are not showing green. For this
reason, it sends its sequence number with an ‘active’ tag around. If it makes a full round without
altering the ‘active’ tag, it switches its own traffic light to green. Otherwise, if the tag is switched
to ‘passive’, it retries sending the message around. A formal description is given by the following
specification. The process Queue.id; q/ describes an infinite queue between the processes with iden-
tifiers id and idC1 (modulo the number of processes). The parameter q contains the content of the
queue. The process TLC.id; triggered; started/ is the process with id id where triggered indicates
that it has been triggered to show green, and started indicates that it has started with the protocol
described earlier. In the initialisation, we describe the situation where there are two processes and
two queues, but the protocol is suited for any number of processes and an equal number of queues.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 23

Figure 14. Process communication via unbounded queues.

sort Aspect D struct green j redI
Message D struct active.get_number W N/‹is_active j passive.get_number W N/I

map N W NCI
eqn N D 2I
proc Queue.idWN; qWList.Message// DP

mWMessage qinr .id; m/�Queue.id; mFq/C
.#q>0/!qouts ..idC1/modN; rhead.q//�Queue.id; rtail.q//I

TLC.idWN; triggered; startedWB/ D
trig.id/�TLC.id; true; started/C
.triggered^:started/
!qins .id; active.id//�TLC.id; false; true/CP
mWMessage qoutr .id; m/�
..started^is_active.m/^get_number.m/6�id/
!qins .id; passive.get_number.m///�TLC.id; triggered; started/
˘..started^get_number.m/�id/
!.is_active.m/!show.id; green/�show.id; red/�TLC.id; triggered; false/

˘TLC.id; true; false/
/

˘qins .id; m/�TLC.id; triggered; started/
//I

init �¹qinc ;qoutc º
.r¹trig;show;qinc ;qoutc º

.�¹qinr jqins!qinc ;qoutr jqouts!qoutc º
.

TLC.0; false; false/jjTLC.1; false; false/jjQueue.0; Œ�/jjQueue.1; Œ�////I

Note that the state space of this system is growing very dramatically with the number of processes.
See the second column in Table III. In the third column, the state space is given after a branching
bisimulation reduction, where only the actions show and trig are visible. Even the state space after
branching bisimulation reduction is quite large. A dash indicates that the mCRL2 toolset failed to
calculate the state space or the reduction thereof (running out of space on a 1 terabyte main memory
linux machine).

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

24 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

Table III. Traffic lights connected with queues.

N Non-confluent After branching bis Confluent With � -prioritization After branching bis

2 116 58 10 6 6
3 3:2 103 434 15 9 9
4 122 103 3 103 20 12 12
5 5:9 106 21 103 25 15 15
6 357 106 — 30 18 18
20 — — 100 60 60

We will reduce the number of states by making the system confluent. We replace data pushing
by polling. The structure of the protocol becomes quite different. Each process must first obtain a
mutually exclusive ‘token’, then polls whether a trigger has arrived, and if so, switches the traffic
light to green. Subsequently, it hands the token over to the next process. The specification is given
next for two processes. The specification of the queue is omitted, as it is exactly the same as the one
of the previous specification

sort Aspect D struct green j redI
Message D struct tokenI

map N W NCI
eqn N D 2I

proc TLC.idWN; activeWB/ D
active!.trig.id; true/�show.id; green/�show.id; red/C trig.id; false//�

qins .id; token/�TLC.id; false/
˘ qoutr .id; token/�TLC.id; true/I

init �¹qinc ;qoutc º
.r¹trig;show;qinc ;qoutc º

.�¹qinr jqins!qinc ;qoutr jqouts!qoutc º
.

TLC.0; true/jjTLC.1; false/jjQueue.0; Œ�/jjQueue.1; Œ�////I

The number of states of the state space for different number of processes are given in the fourth
column of Table III. In the fifth and sixth columns, the number of states after � -prioritization and
branching bisimulation reduction are given. Note that the number of states after � -prioritization is
equal to the number of states after applying branching bisimulation. Note also that the differences
in the sizes of the state spaces are quite striking.

As a last example, we show the effect of ordering buffers. With queues and buffers, different
contents can represent the same data. If a buffer is used as a set, the ordering in which the elements
are put into the buffer is irrelevant. In such cases, it helps to maintain an order on the data structure.
As an example, we provide a simple process that reads arbitrary natural numbers smaller than N
and puts them in a set. The process doing so is given in the succeeding text.

map N W NI
insert; ordered_insert W N � List.N/! List.N/I

var n; n0 W NI b W List.N/I
eqn insert.n; b/ D if .n 2 b; b; nFb/I

ordered_insert.n; Œ�/ D Œn�I
ordered_insert.n; n0Fb/ D if .n<n0; nFn0Fb; if .n�n0; n0Fb; n0Fordered_insert.n; b///I
N D 10I

proc B.bufferWList.N// D
P
nWN.n<N/!read.n/�B.insert.n; buffer//I

init B.Œ�/I

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 25

Table IV. Number of states of an non-ordered/ordered
buffer with max. N elements.

N Non-ordered Ordered

1 2 2
2 5 4
3 16 8
4 65 16
5 326 32
6 2:0 103 64
7 14 103 128
8 110 103 256
9 986 103 512
10 9:9 106 1:02 103

11 109 106 2:05 103

12 1:30 109 4:10 103

If the function insert is used, the elements are put into a set in an arbitrary order (more precisely,
the elements are prepended). If the function ordered_insert is used instead of insert, the elements
occur in ascending order in the buffer. In Table IV, the effect of ordering is shown. Although the
state spaces with ordering also grow exponentially, the beneficial effect of ordering does not need
further discussion.

There are hardly any rules on whether or not it is allowed to reduce data in designs. An obvious
statement is that reduction is possible when the particular data is not important. But sometimes, if
state spaces are too big, and after all applicable state space reduction guidelines have been applied,
it can pay off to overabstract. Of course, any conclusion that can be drawn about the overreduced
state space is not valid and should be treated with caution. But despite being possibly invalid, such
analysis results may provide insight, more insight at least than no analysis results at all.

9. GUIDELINE VI: COMPOSITIONAL DESIGN AND REDUCTION

When a design of a system is decomposed in several components, it can be wise to organize these
components in such a way that stepwise composition and reduction are possible. The idea is depicted
in Figure 15. At the left hand side of Figure 15, a set of communicating components C1; : : : ; C5 is
depicted. In the middle, the interfaces I1; : : : ; I7 are also shown. At the right, the system has a tree
structure.

When calculating the behaviour of the whole system, a characterization of the simultaneous be-
haviour at the interfaces I1, I6 and I7 is required where all communication at the other interfaces is
hidden. Unfortunately, calculating the whole behaviour before hiding internal communication may
not work, because the whole behaviour may have too many states. An alternative is to combine

(a) (b) (c)

Figure 15. The compositional design and verification steps.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

26 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

and hide in an alternating fashion. After each hiding step a behavioural reduction is applied, which
results in a reduced transition system.

For instance, the interface behaviour at I2, I5 and I6 can be calculated from the behaviour of
C2 and C4 by hiding the behaviour at I4. Subsequently, C3 and C5 can be added, after which the
communication at I5 can be hidden. At last, adding C1 and hiding the actions at the interfaces I2
and I3 finishes the calculation of the behaviour. This alternation of composing behaviour and hiding
actions is quite commonly known, and some toolsets even developed a script language to allow for
an optimal stepwise composition of the whole state space [30].

To optimally employ this stepwise sequence of composition, hiding and reduction, it is desired
that as much communication as possible can be hidden to allow for a maximal reduction of be-
haviour. But there is something even more important. If a subset of components has more interfaces
that will be closed off by adding more components later, it is very likely that there is some rela-
tionship between the interactions at these interfaces. As long as the set of components has not been
closed, the interactions at these interfaces are unrelated, often leading to a severe growth in the state
space of the behaviour of this set of sub-components. When closing the dependent interfaces, the
state space is brought to a smaller size. If such dependent but unrestricted interfaces occur, the use
of stepwise composition and reduction is generally ineffective.

As an example, consider Figure 15 again. If C2, C3, C4 and C5 have been composed, the system
has interactions at interfaces I2 and I3 that can happen independently. Adding C1 restricts the
behaviour at these interfaces. For instance, C1 can strictly alternate between sending data via I2 and
I3, but without C1, any conceivable order must be present in the behaviour of C2, C3, C4 and C5.

Dependent but unrestricted interfaces can be avoided by using a tree topology. See Figure 15
(c) where the dependency at interfaces I2 and I3 has been removed by duplicating component C5.
If a tree topology is not possible, then it is advisable to restrict the behaviour at dependent but
unrestricted interfaces as much as possible.

As an example, we provide yet another distributed traffic controller (see Figure 16). There are
a certain number N of traffic lights. At the central component (the TopController), requests arrive
using a set.m/ action to switch traffic light m to green. This request is forwarded via intermediate
components (called Controllers) to TLCs. If a traffic light has been set to green and subsequently
to red again, an action ready.n/ indicates that the task has been accomplished. The system must

Figure 16. Distribution of system components.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 27

guarantee that one traffic light can be green at any time, but the order in which this happens is not
prescribed.

We start presenting a solution that does not have a tree topology. Using the principle of separation
of concerns, we let the TLCs be responsible for taking care that no two traffic lights are showing
green at the same time. The top and other controllers have as task to inform the TLCs that they must
set the light to green, and they transport the ready messages back to the central controller.

The TLCs use a simple protocol as described in the queue example in Section 8. They contin-
uously exchange a token. The owner of the token is allowed to set the traffic light to green. The
parameter id is the identifier of the traffic light. The parameter level indicates the level of the TLCs.
The top controller has level 0. In Figure 16, the level of the TLCs is 2. Furthermore, has_token in-
dicates that this TLC owns the token, and busy indicates that it must let the traffic light go through
a green-red cycle.

The controllers and the top controller are more straightforward. They pass set commands from
top to bottom and send ready signals from bottom to top. The parameters idlow and idhigh indicate the
range of traffic lights over which this controller has control. The succeeding description describes a
system with four TLCs.

sort Aspect D struct green j redI
proc ControllerTop.idlow; idhighWN/ DP

nWN.idlow�n ^ n�idhigh/!.set.n/�sets.n; 1/Creadyr.n; 1/�ready.n//�
ControllerTop.idlow; idhigh/I

Controller.idlow; idhigh; levelWN/ DP
nWN.idlow�n ^ n�idhigh/!
.setr.n; level/�sets.n; levelC1/�Controller.idlow; idhigh; level/C
readyr.n; levelC1/�readys.n; level//�Controller.idlow; idhigh; level/I

TLC.id; levelWN; has_token; busyWB/ D
setr.id; level/�TLC.id; level; has_token; true/C
.has_token^busy/!show.id; green/�show.id; red/�readys.id; level/�

TLC.id; level; has_token; false/C
.has_token^:busy/!tokens..idC1/mod 4/�TLC.id; level; false; busy/C
.:has_token/!tokenr.id/�TLC.id; level; true; busy/I

init r¹setc ;readyc ;tokenc ;show;set;readyº.

�¹setr jsets!setc ;readyr jreadys!readyc ;tokenr jtokens!tokencº.

ControllerTop.0; 3/jjController.0; 1; 1/jjController.2; 3; 1/jj
TLC.0; 2; true; false/jjTLC.1; 2; false; false/jj
TLC.2; 2; false; false/jjTLC.3; 2; false; false///I

To understand the state space of components and sets of sub-components, we look at the size of
the whole state space, the size of the state space without the top controller and the size of half the
system with one controller and two TLCs. The results are listed in Table V for a system with four
and eight TLCs. In case of four traffic lights, a half system has two traffic lights and one controller.
In case of eight traffic lights, a half system has four traffic lights and three controllers. The results of

Table V. State space sizes for a hierarchical traffic light controller.

Bottom control Bottom and top control Top control

4 nodes 8 nodes 4 nodes 8 nodes 4 nodes 8 nodes

Total system 10:0 103 236 106 1:09 103 96:3 103 368 15:6 103

Mod branch. bis. 3:84 103 39:8 106 236 7:42 103 236 7:42 103

Without top controller 1:80 103 25:3 106 1:80 103 25:3 106 — —
Mod branch. bis. 983 5:9 106 983 5:9 106 — —

Half system 131 93:9 103 131 93:9 103 56 16:8 103

Mod branch. bis. 107 44:1 103 107 44:1 103 33 3:06 103

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

28 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

the sizes of the state spaces are given in the columns under the header ‘bottom control’. In all cases,
the size of the state space modulo branching bisimulation is also given. Here, all internal actions are
hidden and the external actions show, set and ready are visible.

What we note is that the sizes of the state spaces are large. In particular the size of the state space
modulo branching bisimulation of the system without the top controller multiplied with the size of
the top controller is almost as large as the size of the total state space. The state space of the top
controller for four traffic lights has 9 states and the one for eight traffic lights has 17 states. It makes
little sense to use compositional verification in this case, but the fact that the top controller hardly
restricts the behaviour of the rest of the system saves the day. If the top controller is more restrictive
compositional verification makes no sense at all.

If we analyse the large state space of this system, we see that the independent behaviour of the
controllers substantially adds to the size of the state space. We can restrict this by giving more
control to the top controller. Whenever it receives a request to set a traffic light to green, it stores it
in a set called requests. Whenever a traffic light is allowed to go to green, indicated by busy equals
false, the top controller non-deterministically selects an index of a traffic light from requests and
instruct it to go to green. The specification of the new top controller is given next.

proc ControllerTop.idlow; idhighWN/ D ControllerTop.idlow; idhigh;;; false/I

ControllerTop.idlow; idhighWN; requestsWSet.N/; busyWBool/ DP
nWN.idlow�n ^ n�idhigh ^ n…requests/!

set.n/�ControllerTop.idlow; idhigh; requests[¹nº; busy/CP
nWN.idlow�n ^ n�idhigh ^ n2requests ^ :busy/!

sets.n; 1/�ControllerTop.idlow; idhigh; requests n ¹nº; true/CP
nWN.idlow�n ^ n�idhigh ^ n2requests/!

readyr.n; 1/�ready.n/�ControllerTop.idlow; idhigh; requests; false/I

The resulting state spaces are given in Table V under the header ‘bottom and top control’. The
first observation is that the sizes of the state spaces without top control and of a half system have
not changed. This is self evident, as only the top controller has been replaced. It is important to note
that the sizes of the state space modulo branching bisimulation of the system without top controller
is almost as large as the unreduced state space of the full system for four traffic lights. For eight
traffic lights, the intermediate reduced state space is much larger than the unreduced system of the
full state space.

We can remove the exchange of the token as low level control is not needed anymore. This is
possible because the top controller now guarantees that at most one traffic light shows green. This is
carried out by replacing the specification of the TLC by the simple succeeding specification. Note
that the communication topology of the system now has a tree structure.

proc TLC.id; levelWN/ D
setr.id; level/�show.id; green/�show.id; red/�readys.id; level/�TLC.id; level/I

We are not interested anymore in the behaviour of the system with all the TLCs and no top controller.
We only need to look at the sizes of the half systems which can be reduced and both half systems
can directly be combined with the top controller. Note that in this way we circumvent the blow-up
of intermediate processes. Note also that the resulting state spaces modulo branching bisimulation
for the system with ‘top control’ are the same as those for ‘bottom and top control’. This shows that
the token exchange is really immaterial when the top controller guarantees that at most one traffic
light goes to green. Finally, note that the half systems with bottom control are only slightly bigger
than the half systems with top control. From this we can conclude that token exchange by itself does
not contribute substantially to the size of the state space.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 29

Designing tree like communication topologies is very helpful when the state space is constructed
in a stepwise manner. But such a hierarchical structure can not always be used, not only because a
system has a ring or mesh topology, but also because a complex system receives information from
a few sensor and controls a few actuators.

10. GUIDELINE VII: SPECIFY EXTERNAL BEHAVIOUR OF SETS
OF SUB-COMPONENTS

In the previous section, we mentioned that stepwise composition and reduction might be a way to
avoid a blow-up of the state space. But we observed that sometimes, the composed behaviour of sets
of components is overly complex and contains far too many states, even after applying a behavioural
reduction.

To keep the behaviour of such sets of components small, it is useful to first design the desired
external behaviour of this set of components, and to subsequently design the behaviour of the com-
ponents such that they meet this external behaviour. The situation is quite comparable with the
implementation of software. If the behaviour is governed by the implementation, a system is of-
ten far less understandable and usable, than when a precise specification of the software has been
provided first, and the software has been designed to implement exactly the specified behaviour.

The use of external behaviour for various purposes was most notably defended in the realm of
protocol specification [31], although keeping the state space small was not one of these purposes.
The word ‘service’ was commonly used in this setting for the external behaviour. More recently, the
ASD development method has been proposed, where a system is to be defined by first specifying
the external behaviour of a system, which is subsequently implemented [32]. The purpose here is
primarily to allow a designer to keep in control over his system.

To illustrate how specifications can be used to keep external behaviour small, we provide a simple
example and show how a small difference in the behaviour of the components has a distinctive effect
on the complexity in terms of states. From the perspective of the task that the components must
perform, the difference in the description looks relatively minor. The example is inspired by the
third sliding window protocol in [33], which is a fine example of a set of components that provides
the intended task but has a virtually incomprehensible external behaviour.

Our system is depicted in Figure 17. The first specification has a complex external behaviour,
whereas the external behaviour of the second is straightforward. The system consists of a device
monitor and a controller that can be started (start) or stopped (stop) by an external source. The
device monitor observes the status of a number of devices and sends the defected device number
to the controller via the action broken. The controller comprises a buffer that stores the status of
the devices.

The first specification can be described as follows. The device monitor is straightforward in the
sense that it continuously performs actions brokens.n/ for numbers n<M . The parameter buff rep-
resents the buffer by a function from natural numbers to booleans. If buff .i/ is true, it indicates
that a fault report has been received for device i . The boolean parameter bool indicates whether the
controller is switched on or off and the natural number i is the current position in the buffer, which
the controller uses to cycle through the buffer elements. It sends an action out whenever it encoun-
ters an element that is set to true. The internal action int takes place when the controller moves to
investigate the next buffer place.

Figure 17. A system comprises a controller and a device monitor.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

30 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

map M WNCI
eqn MD2I
map buff 0WN!BI
eqn buff 0 D �nWN:falseI
proc DeviceMonitor D

P
nWN.n<M/!brokens.n/:DeviceMonitorI

Controller.buff WN!B; bool WB; i WN/
D

P
nWN brokenr.n/�Controller.buff Œn!true�; bool; i/

C .:buff .i/^bool/!stop�Controller.buff ; false; i/
C .:bool/!start�Controller.buff ; true; i/
C .buff .i/^bool/!out�Controller.buff Œi!false�; bool; .iC1/modM/

C .:buff .i/^bool/!int�Controller.buff ; bool; .iC1/modM/

init �¹brokenc ;intº.r¹brokenc ;out;start;stop;intº.�¹brokenr jbrokens!brokencº.

Controller.buff 0; false; 0/jjDeviceMonitor///I

The total number of devices is denoted by M . All positions of buff are initially set to false as
indicated by the lambda expression �nWN:false. In this specification, the controller blocks the stop
request if there is a defected device at index i of the buffer forming a dependency between external
and internal behaviour. If we calculate the state space of the external behaviour of this system with
M D 2 and apply a branching bisimulation reduction [20], we obtain the state space depicted in
Figure 18 at the left. Note that the behaviour is remarkably complex. In particular, a number of
� -transitions complicate the transition system. But they cannot be removed as they are essential for
the perceived external behaviour of the system. Table VI provides the number of states produced as
a function of the number of devices monitored in the system. The table shows that the state space
of the original system and the state space capturing the external behaviour are comparable. This
indicates a complex external behaviour that might complicate verification with external parties and

Figure 18. The system external behaviour.

Table VI. Sizes of the original and external state
space of the monitor controllers.

M No. of original states No. of external states

1st spec 2nd spec 1st spec 2nd spec

1 4 4 2 2
2 16 16 8 2
3 48 48 16 2
4 128 128 32 2
5 320 320 64 2
6 768 768 128 2
10 20:5 103 20:5 103 2:48 103 2

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 31

makes understanding the behaviour quite difficult. It might come as a surprise that the external state
space of the system is large. Actual expectation is that it should be small, matching the succeeding
specification, depicted in the transition system in Figure 18 at the right.

proc Stopped D start �StartedI
Started D out �StartedC stop�StoppedI

init StoppedI

Investigation of the cause of the difference between the actual and the expected sizes of the transition
systems leads to the conclusion that blocking the stop action when buff .i/ is true is the cause of the
problem. If we remove this from the condition of the stop action, we obtain the mCRL2 specification
of the DeviceMonitor process. In this specification, the stop request is processed independently from
the rest of the behaviour.

proc DeviceMonitor D
P
nWN.n<M/!brokens.n/:DeviceMonitorI

Controller.buff WN!B; bool WB; i WN/
D

P
nWN brokenr.n/�Controller.buff Œn!true�; bool; i/

C bool!stop�Controller.buff ; false; i/
C .:bool/!start�Controller.buff ; true; i/
C .buff .i/^bool/!out�Controller.buff Œi!false�; bool; .iC1/modM/

C .:buff .i/^bool/!int�Controller.buff ; bool; .iC1/modM/

As can be seen from Table VI, the number of states of the non-reduced model remains the same.
However, the reduced behaviour is exactly the one depicted in Figure 18 at the right for any
constant M .

We feel that people hardly realize how small changes in an implementation have a far reaching
influence on the complexity of the external behaviour of a system. But it is always possible to make
an explicit description of the external behaviour of a system, and by doing so the understanding
and awareness of this external behaviour grows. Comparing the external behaviour with an imple-
mentation using branching bisimulation quickly reveals where they differ. It depends on the actual
application whether an implementation can be adapted such that its behaviour becomes branching
bisimilar to the external behaviour. But if this would be done systematically, this would not only
yield smaller state spaces for external behaviour, it would also lead to far less intricate behaviour of
some systems.

11. CONCLUSION

We have shown that different specification styles can substantially influence the number of states of
a system. We believe that an essential skill of a behavioural modellist is to make models such that
the insights in the models that are required can be obtained. If a system is to be designed such that
it provably satisfies a number of behavioural requirements, then the behaviour must be sufficiently
small to be verified. If an existing system is modelled to obtain insight in its behaviour, then on
the one hand the model should reflect the existing system sufficiently well, but on the other hand the
model of the system should be sufficiently simple to allow to answer relevant questions about the
behaviour of the system.

As far as we can see hardly any attention has been paid to the question how to make behavioural
models such that they can be analysed. All attention appears to be directed to the question of how
to analyse given models better. But it is noteworthy that it is very common in other modelling
disciplines to let models be simpler than reality. For instance in electrical engineering models are
as much as possible reduced to sets of linear differential equations, and components such as coils
and capacitors are made to fit the linearity of the models. In queueing theory, only a few queueing
models can be studied analytically, and therefore, it is necessary to reduce systems to these standard
models if analytical results are to be obtained.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

32 J. F. GROOTE, T. W. D. M. KOUTERS AND A. OSAIWERAN

We provided seven guidelines, based on our experience with building models of various systems.
Although we illustrated the guidelines with process algebraic models in mCRL2, this does not mean
that they are only applicable in a process algebraic context. On the contrary, the guidelines are
applicable in any behavioural modelling context, as long as this context provides sufficiently strong
language primitives.

There is no claim that our set of guidelines is complete, or even that these seven guidelines are
the most important model reduction techniques. It might even be that some of the guidelines may
have an adverse effect in combination with certain verification techniques, for example, avoiding
parallelism may combine badly with symbolic state space representations. What we hope is that
this paper will induce research such that more reduction techniques will be uncovered, described,
classified and subsequently become a standard ingredient in teaching behavioural modelling and
designing the behaviour of systems of which the behavioural properties can be formally analysed.

ACKNOWLEDGEMENTS

We thank Sjoerd Cranen, Helle Hansen, Jeroen Keiren, Matthias Raffelsieper, Frank Stappers, Ron Swinkels,
Marco van der Wijst, and Tim Willemse for their useful comments on the text.

REFERENCES

1. Formal methods for industrial critical systems. Conference Proceedings; 1996–2014.
2. Formal Methods in System Design. Journal, vol. 1–44, Springer Verlag,1992–2014.
3. Wang L-T, Wu C-W, Wen X. Design for Testability. VLSI Test Principles and Architectures. Morgan Kaufmann

Publishers: San Francisco, California, 2006.
4. Voas JM, Miller KW. Software testability: the new verification. IEEE Software 1995; 12(3):17–28. DOI:

10.1109/52.382180.
5. Lin FJ, Chu PM, Liu MT. Protocol verification using reachability analysis: The state space explosion prob-

lem and relief strategies. ACM SIGCOMM Computer Communication Review 1987; 17(5):126–135. DOI:
10.1145/55483.55496.

6. Holzmann GJ. Reliable software development: analysis-aware design. In Proceedings of TACAS 2011, Abdulla PA,
Leino KRM (eds), LNCS 6605. Springer Verlag: Berlin, 2011; 1–2. DOI: 10.1007/978-3-642-19835-9_1.

7. Vissers CA, Scollo G, van Sinderen M, Brinksma E. Specification styles in distributed systems design and
verification. Theoretical Computer Science 1991; 89:179–206. DOI: 10.1016/0304-3975(90)90111-T.

8. Baumgartner J, Mony H. Scalable liveness checking via property-preserving transformations. In Proceedings of
Design, Automation and Test in Europe, Nice. IEEE: France, 2009; 1680–1685. DOI 10.1109/DATE.2009.5090933.

9. Groote JF, Sellink MPA. Confluence for process verification. Theoretical Computer Science 1996; 170(1-2):47–81.
DOI: 10.1016/S0304-3975(96)80702-X.

10. Groote JF, Mathijssen AHJ, Reniers MA, Usenko YS, van Weerdenburg MJ. Analysis of distributed systems with
mCRL2. In Process Algebra for Parallel and Distributed Processing, Alexander M, Gardner W (eds). Chapman Hall:
London, 2009; 99–128. DOI: 10.1007/978-3-642-36742-7_15.

11. MCRL2 homepage. 2014. Available from: www.mcrl2.org. [10 March 2014].
12. Groote JF, Osaiweran A, Schuts MTW, Wesselius JH. Investigating the effects of designing industrial control

software using push and poll strategies. Computer Science Report 11-16, Eindhoven University of Techology, 2011.
13. Groote JF, Osaiweran A, Wesselius JH. Analyzing a controller of a power distribution unit using formal meth-

ods. In Proceedings of ICST2012 (Montreal, Canada). IEEE: Los Alamitos, CA, USA, 2012; 420–428. DOI:
10.1016/j.entcs.2013.04.005.

14. Groote JF, Osaiweran A, Wesselius JH. Experience report on developing the Front-end client unit under the control
of formal methods. In SAC2012 (Software Engineering Track). ACM: Riva del Garda, Italy, 2012; 1183–1190. DOI:
10.1145/2245276.2231962.

15. Groote JF, Osaiweran A, Wesselius JH. Analyzing the effects of formal methods on the development of industrial
control software. In Proceedings of ICSM2012. IEEE: Williamsburg, VA, 2011; 467–472. DOI: 10.1109/ICSM.
2011.6081983.

16. Osaiweran A, Fransen T, Groote JF, van Rijnsoever BJ. Experience report on designing and developing control
components using formal methods. In Proceedings of Formal Methods, Giannakopoulou D, Mery D (eds), LNCS
7436. Springer-Verlag: Berlin, 2012; 341–355. DOI: 10.1007/978-3-642-32759-9_29.

17. Groote JF, Kouters TWDM, Osaiweran AAH. Specification guidelines to avoid the state space explosion problem. In
Proceedings of the 4th International Conference on Fundamentals of Software Engineering (FSEN 2011), vol. 7141,
Lecture Notes in Computer Science. Springer Verlag: Berlin, 2012; 112–127. DOI: 10.1007/978-3-642-29320-7_8.

18. Baeten JCM, Weijland WP. Process algebra. Cambridge Tracts in Theoretical Computer Science, Cambridge
University Press: Cambridge, 1990; 18.

19. Groote JF, Mousavi MR. Modeling and Analysis of Communicating Systems. MIT-press. 2014.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2015; 25:4–33
DOI: 10.1002/stvr

www.mcrl2.org

SPECIFICATION GUIDELINES TO AVOID THE STATE SPACE EXPLOSION PROBLEM 33

20. van Glabbeek RJ, Weijland WP. Branching time and abstraction in bisimulation semantics. Journal of the ACM 1996;
43(3):555–600. DOI: 10.1145/233551.233556.

21. Milner R. A Calculus of communicating systems, Lecture Notes in Computer Science, vol. 92. Springer Verlag:
Berlin, 1980.

22. Acharya S, Franklin M, Zdonik S. Balancing push and pull for data broadcast. Proceedings of the
1997 ACM SIGMOD International Conference on Management of Data, Tucson, Arizona, 1997:183–194.
DOI: 10.1145/253262.253293.

23. Arbab F. Reo: A Channel-based coordination model for component composition. Mathematical Structures in
Computer Science; Cambridge University Press 2004; 14(3):329–366. DOI: 10.1017/S0960129504004153.

24. Larsen KG, Pettersson P, Yi W. Uppaal in a nutshell. International Journal on Software Tools for Technology Transfer
1997; 1(12):134–152. DOI: 10.1007/s100090050010.

25. Berry G, Gonthier G. The ESTEREL synchronous programming language: design, semantics, implementation.
Science of Computer Programming 1992; 19:87–152. DOI: 10.1016/0167-6423(92)90005-V.

26. Holzmann GJ. The SPIN Model Checker. Primer and Reference Manual. Addison-Wesley: Boston, 2003.
27. Blom SCC, van de Pol JC. State space reduction by proving confluence. In Proceedings of 14th International Confer-

ence on Computer Aided Verification (CAV’02), vol. 2404, Brinksma E, Larsen KG (eds), Lecture Notes in Computer
Science. Springer Verlag, 2002; 596–609.

28. Cousot P, Cousot R. Abstract interpretation: a unified lattice model for static analysis of programs by constrction
or approximation of fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM Press: New York, 1977; 238–252. DOI: 10.1145/512950.512973.

29. Dams D, Gerth R, Grumberg O. Abstract interpretation of reactive systems. ACM Transactions on Programming
Languages and Systems (TOPLAS) 1997; 19(2):253–291. DOI: 10.1145/244795.244800.

30. Garavel H, Lang F, Mateescu R, Serwe W. CADP 2006: A toolbox for the onstruction and analysis of dis-
tributed processes. In Proceedings of the 19th International Conference on Computer Aided Verification (CAV’2007,
Berlin, Germany), vol. 4590, Lecture Notes in Computer Science. Springer Verlag; Berlin, 2007; 158–163. DOI:
10.1007/978-3-540-73368-3_18.

31. Vissers CA, Logrippo L. The importance of the service concept in the design of data communications protocols. In
Protocol Specification, Testing and Verification (Proceedings of the IFIP WG 6.1 Fifth International Workshop on
Protocol Sepcification, Testing and Verification), Diaz M (ed.) Elsevier: North Holland, 1986; 3–17.

32. Broadfoot GH. ASD case notes: costs and benefits of applying formal methods to industrial control software. In
Proceedings of Formal Methods Conference (FM 2005), LNCS 3582. Springer Verlag: Berlin, 2005; 548–551. DOI:
10.1007/11526841_39.

33. Tanenbaum AS. Computer Networks, Second edition. Prentice Hall, 1988.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 201 ; 25:4–33
DOI: 10.1002/stvr

5

	Specification guidelines to avoid the state space explosion problem
	Summary
	INTRODUCTION
	A SHORT INTRODUCTION INTO mCRL2
	OVERVIEW OF DESIGN GUIDELINES
	GUIDELINE I: INFORMATION POLLING
	GUIDELINE II: USE GLOBAL SYNCHRONOUS COMMUNICATION
	GUIDELINE III: AVOID PARALLELISM AMONG COMPONENTS
	GUIDELINE IV: CONFLUENCE AND DETERMINACY
	GUIDELINE V: RESTRICT THE USE OF DATA
	GUIDELINE VI: COMPOSITIONAL DESIGN AND REDUCTION
	GUIDELINE VII: SPECIFY EXTERNAL BEHAVIOUR OF SETS OF SUB-COMPONENTS
	CONCLUSION
	References

