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Chapter 1

Introduction

In controlled nuclear fusion hydrogen isotopes are fused in a reactor with the view
to produce significant amounts of energy. The efficiency of the reactor depends
on the thermal transport. Several actuators influence the thermal transport
and need to be (actively) controlled. This requires an accurate measurement of
thermal transport and, in particular, the coefficients with which this transport
is modeled. Therefore, it is important to think about estimation methods which
are fast and have high accuracy (minimum variance).

In this thesis, methodologies to estimate the transport coefficients based on
perturbative experiments in fusion plasmas are developed. Special attention is
paid to the inclusion of measurement uncertainty and to the estimation of the
coefficients on local domains. Note that the focus lies on the estimation methods
and thus not on the interpretation and comparison of transport coefficients for
various fusion reactors.

1.1 Fusion

In controlled nuclear fusion, conditions are set-up in which the hydrogen iso-
topes (H), deuterium and tritium, react to form helium (He) and a neutron (n)
with the view to release significant amounts of energy per fusion reaction, i.e.,
[McCracken, 2005]

2
1H + 3

1H→ 4
2He (3.5 MeV) + 1

0n(14.1 MeV). (1.1)

Deuterium occurs naturally in seawater and is virtually inexhaustible on earth.
On the other hand, tritium is rare on earth due to its short half-life time [Kauf-
man, 1954]. Tritium can be produced by neutron-irradiation of lithium (Li). It is
conceivable that in the future, the produced neutrons in the fusion process could
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be used to neutron-irradiate lithium to produce tritium in significant amounts
needed for sustainable controlled nuclear fusion [Roux, 1998].

The figure of merit for fusion reactors is the triple product of density n,
confinement time τe, and temperature T . This triple product should exceed
a certain critical value to produce more energy than necessary to create and
sustain the fusion process.

For the reaction in (1.1) this critical value should exceed

nTτe > 5 · 1021 keV m3/s, (1.2)

which holds for fusion optimal temperatures, i.e., T ∼ 108◦C [Wesson, 2011].
Moreover, in magnetic confinement reactors the density cannot be increased be-
yond certain limits [Giannone, 2000; Greenwald, 2002]. Therefore, the confine-
ment time τe needs to be optimized. This τe is a measure for the loss processes
in fusion reactors and is closely related to the local transport coefficients, for
which estimation methodologies are developed in this thesis.

1.1.1 Magnetic confinement

At the high temperatures required for fusion, the hydrogen gas consisting of
deuterium and tritium is fully ionized resulting in a state known as plasma.
Plasma can be confined using magnetic fields, i.e., as a result of the Lorentz
forces, the charged particles gyrate around the magnetic field lines in a so-called
gyro-motion. The plasma particles are free to move along the magnetic field lines
[Wesson, 2011]. Hence, the presence of a magnetic field significantly reduces the
transport of energy and particles in the direction perpendicular to the magnetic
field. This concept is known as magnetic confinement.

Generally, a toroidal magnetic field is used to confine the plasma as it provides
a closed volume without end-losses. This results in a torus shaped plasma,
which forms the basis for the most common magnetic confinement fusion reactor
designs; the tokamak and the stellarator [Freidberg, 2007].

Applying only a toroidal field would introduce charge separation, which
would result in an overall outward radial movement of the plasma [Wesson,
2011]. Therefore, a poloidal field is used to prevent this outward radial move-
ment. The superposition of the toroidal and poloidal fields results in a helical
field.

In a tokamak, the toroidal field is generated by toroidal field coils, while the
poloidal field is generated by driving a toroidal current in the plasma in addition
to dedicated coils for the shaping, positioning, and exhaust of the plasma. In
stellarators, the helical field is generated with a set of complex external coils.
The toroidal and poloidal field coils and the resulting currents and magnetic
fields for a tokamak are presented in Figure 1.1.
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Figure 1.1. Schematic representation of a tokamak showing the field coils
and the resulting magnetic fields. This figure is taken from [Eurofusion,
2015].

1.1.2 Magnetic equilibrium

The magnetic field lines span nested surfaces or torii, which are called magnetic
flux surfaces. These are surfaces of constant pressure in which the magnetic
field lines and the field lines for the current density are embedded. The toroidal
and poloidal magnetic flux are constant on these surfaces. The flux surfaces are
labeled with the dimensionless radius ρ. The magnetic axis, i.e., the center of
the plasma, corresponds to ρ = 0 and the last-closed flux surface, i.e., the edge
of the plasma, corresponds to ρ = 1 [Wesson, 2011]. As particles can move freely
along field lines, the transport along the flux surfaces is significantly larger than
perpendicular to the flux surfaces. Consequently, the electron temperatures can
be considered constant over the flux surfaces. In cases of low centrifugal forces
(low plasma rotation) on a flux surface also other thermodynamic quantities,
e.g, the electron density can be assumed constant [Freidberg, 2007].

The overall energy confinement time τe is the result of the transport perpen-
dicular to the flux surfaces [Wesson, 2011], which can be shown to be significantly
smaller than the parallel transport. This forms the basis for magnetic confine-
ment and motivates a one-dimensional description of the transport physics as a
function of the flux label ρ only.

1.1.3 Classical and neo-classical transport

Classical transport theory describes the transport in a fusion plasma assuming
Coulomb collisions of the particles in a cylindrical plasma. In such a plasma
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Figure 1.2. Schematic representation of the banana orbits of the particle.
This figure is taken from [Eurofusion, 2015].

the transport is small as particles can only move from one magnetic surface
to another in a random walk fashion with typical step size the gyro-radius.
However, in a tokamak the magnetic field is not cylindrical but toroidal.

Transport due to Coulomb collisions in a toroidal plasma is described by
neo-classical transport. In a toroidal confined plasma the magnetic field on
the inboard side of the torus is higher (high-field side) than the magnetic field
on the outboard side (low-field side). Consequently, a fraction of the particles
starts carrying-out a banana orbit: the particles bounce at the high-field side
and as such they alternate upwards and downwards movements. A schematic
representation of such orbits is shown in Figure 1.2. The poloidal projection of
the particle orbit resembles the banana, hence its name (see Figure 1.2). An
important consequence of the banana orbit is that the step size is no longer the
gyro-radius, but the width of the banana orbit. Consequently, perpendicular
transport is larger than predicted by classical transport theory. This can also
be expressed in terms of the particle diffusion coefficient (D) and the electron
thermal diffusivity (χ), which are of the order [Balescu, 2005]

χ ≈ D = O
(
10−2

)
m2/s.

Extensive comparison between the neo-classical transport coefficients and the
experimentally observed transport coefficients has been carried out. In most
cases, the experimentally observed transport coefficients exceed the neo-classical
predictions by a few orders of magnitude [Wagner, 1993].

1.1.4 Turbulent transport

The observation that transport is much larger than predicted by neo-classical
transport theory, implies that the transport in tokamaks is not only due to
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Coulomb collisions, but also due to collective motion or plasma turbulence. The
most likely candidate-instabilities for this collective behavior are the so-called
micro-instabilities [Freidberg, 2007]. These micro-instabilities are driven un-
stable by gradients in the temperature and density distributions [Jenko, 2000].
Various micro-instabilities can correlate and together form coherent structures
with significant radial extensions. These structures effectively drive the trans-
port, and affect the distribution of angular momentum in the plasma [Ryter,
2010]. In turn the change in angular momentum influences the coherent struc-
tures [Diamond, 2005].

The interactions between the turbulent structures result in a variety of effects,
which imply that transport is non-linear [Ryter, 2010]. These non-linearities are,
for instance, included using a dependence on Tα and (−∇T ) β in the heat flux
with scalar values α and β [Ida, 2006; Peters, 1996]. Moreover, it is observed
that under certain conditions the gradients in the temperature profiles become
virtually independent of the applied heat flux, which is known as profile stiffness
[Garbet, 2004]. Other models for the heat flux also exist see, e.g., [Inagaki, 2013;
Lopes Cardozo, 1995; Peters, 1996]. As in this thesis only linearized models are
considered in the analysis, the heat flux will not be further analyzed.

Experimental evidence also suggests that the distributions of angular mo-
mentum and the current density inside the plasma can be manipulated using
various actuators, with the view of suppressing the turbulence [Angioni, 2009;
deGrassie, 2009; Lin, 1998; Terry, 2000]. This could significantly increase the
performance of fusion reactors [Citrin, 2010]. The study of the effect of various
actuators on the thermal transport requires modeling and accurate estimation
of the transport coefficients. The latter is the subject of this thesis.

1.2 Measuring transport

1.2.1 Steady-state and perturbative transport analysis

Transport can be analyzed either in steady-state (∂/∂t = 0) or by perturbing the
transport quantities. In case the temperature is perturbed this is also known
as heat pulse propagation. If the perturbation is small enough, the measure-
ments are described by a linear model which is the result of the linearization
of the transport equations around an operating point. This linearization can
be performed for different transport channels such as the particle transport,
ion thermal transport, and electron thermal transport, which all result in the
following basic form in the review article [Lopes Cardozo, 1995]

∂u

∂t
= A∇2u +B∇u + Cu + S. (1.3)

Here, u is the vector of the perturbed observables, e.g., density and temper-
ature. The source terms S can be time dependent. The matrices A, B, C
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contain many different terms including the values at the operating point of the
observables and their derivatives [Gentle, 1988]. Note that (1.3) is the result-
ing Partial Differential Equation after linearization for many different non-linear
model dependencies, e.g., the heat flux, and only holds for sufficiently small per-
turbations. Generally, only one transport channel is studied. However, there
are some exceptions such as the study of the combination of heat and particle
transport to determine A in (1.3) using both density and heat perturbations
induced by the sawtooth instability [Hogeweij, 1992].

In this thesis, the analysis is restricted to one transport channel in cylindrical
geometry, then (1.3) simplifies to

∂u

∂t
=

1

ρ

∂

∂ρ

(
ρχ (ρ)

∂u

∂ρ
+ ρV (ρ)u

)
− 1

τ (ρ)
u+ S, (1.4)

which gives the standard form of the Partial Differential Equation used in this
thesis. This form also considers the transport coefficients to be estimated, i.e.,
the diffusivity χ, convectivity V , and damping τ (τ > 0). The source term
is denoted by S, and u is the perturbed transport species, e.g., the electron
temperature. Here, the convectivity and damping are not actual physical quan-
tities, but are the resulting combination of the different other contributions to
the transport [Gentle, 1988]. In addition, as (1.4) can also be interpreted as the
linearization around an operating point, the convectivity and damping can also
be the result of, for instance, the earlier mentioned non-linear dependencies of
the heat flux on Tα and (∇T ) β .

The classic approach to quantify these non-diffusive terms is to compare the
calculated diffusivity in steady-state to the perturbative diffusivity. It can be
shown, see Chapter 2, that by modulating with a sufficiently high frequency,
the effect of V and 1/τ is negligible. As such it is possible to determine the
“pure” diffusivity χ in (1.4), which is called the incremental diffusivity χinc for
a general transport channel or in case of the electron temperature, the heat pulse
diffusivity χHP .

Alternatively, χ can be determined in steady-state (∂/∂t = 0) by assuming
V = 1/τ = 0 and taking all the sources and sinks into account. This results in
the so-called χPB (power balance). If V and 1/τ are negligible, than χinc ≈ χPB
under the assumption that the perturbation is small enough such that non-linear
dependencies can be neglected. On the other hand, if the non-diffusive terms V
and 1/τ are not negligible χHP 6= χPB . Therefore, the comparison of χinc and
χPB gives a measure for the non-diffusive terms, which is extensively analyzed
in the literature for different transport channels.

1.2.2 Overview of perturbative experiments

The perturbative transport analysis is used for the study of various transport
mechanisms using various actuators [Lopes Cardozo, 1995; Ryter, 2010]. Exam-
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ples are the electron heat transport using Electron Cyclotron Resonance Heating
(ECRH) [Inagaki, 2011; Ryter, 2003]; the momentum transport using modulated
Neutral Beam Injection to modulate the torque [Mantica, 2010; Tala, 2009; Tar-
dini, 2009]; the ion heat transport using Ion Cyclotron Resonance Heating [Man-
tica, 2009]; and the analysis of impurity transport [Hangyu, 2014; Howard, 2012;
Zurro, 2011]. More recently perturbative experiments were used to determine
the diffusivity inside magnetic islands [Hölzl, 2009; Spakman, 2008]. The stan-
dard techniques to determine the transport coefficients have been used in various
tokamaks like JET [Gambier, 1990; Hogeweij, 1991; Lopes Cardozo, 1990], RTP
[Mantica, 1996, 2000], ASDEX Upgrade [Ryter, 2003, 2005], DIII-D [DeBoo,
2005, 2012], and TFTR [Fredrickson, 2000]; and in stellarators like W7-AS [Gi-
annone, 1992] and LHD [Inagaki, 2006].

1.2.3 Perturbative experiments: actuator and sensor

In this thesis, we focus on electron thermal transport. Therefore, briefly the con-
cepts of Electron Cyclotron Resonance Heating (ECRH) and Electron Cyclotron
Emission (ECE) are introduced. ECRH is used to locally heat the plasma and
ECE is used to measure the electron temperature fluctuations.

This section is by no means exhaustive in its description of ECRH and ECE,
but aims to describe the characteristics of ECRH and ECE necessary to under-
stand the work presented in this thesis. Consequently, many important details
are not discussed here, e.g., optical thickness, resonance broadening, for which
the reader is referred to a number of review articles [Bornatici, 1983; Hartfuss,
1997; Hutchinson, 2002] and the references therein.

Electrons gyrate around magnetic field lines with an Electron Cyclotron (EC)
frequency which is proportional to the local magnetic field amplitude B and has
a frequency of 28 GHz per Tesla. Hence, the local EC frequency is constant on
curves with constant magnetic field strength. The magnetic field is stronger on
the high field side of the tokamak than it is on the low field side. As a result the
EC frequency depends on the distance from the center of the tokamak.

Microwave radiation with a predefined frequency is generated and aimed at
the plasma using a steerable launcher (mirror). The microwave radiation trans-
fers its energy at the location where the generated frequency is resonant with
a multiple of the local EC frequency, leading to ECRH [Prater, 2004]. The
absorption location depends on the local EC frequency which in turn depends
on the distance from the center of the tokamak. The absorption location can
also be expressed in terms of the magnetic flux surface labeled by its coordi-
nate ρ. Due to the fast transport on flux surfaces, heating a point on the flux
surface is practically equivalent to heating the entire flux surface. By changing
the launcher angle the absorption location of ECRH can be changed such that
microwave radiation is absorbed at a different flux surface ρ. This is shown in
green in Figure 1.3.
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Figure 1.3. Schematic representation of ECRH (green), ECE (purple),
and the magnetic equilibrium in a tokamak. The white ellipsoids are de-
termined by the magnetic equilibrium and correspond to a certain ρ. The
blue lines represent the locations in the plasma with constant magnetic
field B. As the ECRH beam (the green and green dashed lines) is reso-
nant with a certain local magnetic field, a tilt-able launcher can be used
to change the deposition location in terms of ρ, as indicated by the green
circles. In addition, the plasma emits ECE, the frequency of which de-
pends on the local magnetic field and can be used for local temperature
measurements (purple circles). The ECE locations and the surfaces of
constant B are presented for didactic purposes only. In practice these de-
pend in detail on the specific conditions, e.g., optical thickness, the chosen
harmonics and their overlap.
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Electrons also emit microwave radiation known as Electron Cyclotron Emis-
sion (ECE) due to their gyration at the EC frequency. This radiation can be
measured by a heterodyne radiometer, which collects microwave radiation via
an antenna [Hartfuss, 1997]. Along a specific line of sight the emission in a small
frequency band stems from a small region in the fusion plasma while the inten-
sity of this radiation is proportional to the local temperature (provided that the
optical thickness is sufficient and a Maxwell-Boltzmann distribution holds for
the electrons) [Bornatici, 1983]. This emission region could also be expressed in
terms of the magnetic flux surface labeled by its coordinate ρ. This is shown in
purple in Figure 1.3.

In principle ECE can be calibrated independently, but in practice it is more
common to carry out a cross-calibration against Thomson scattering. This diag-
nostic uses a laser pulse to scatter photons from the electrons. These photons are
collected by the diagnostic. The total number of collected photons is a measure
for the electron density and the Doppler broadening of the scattered light is a
measure for the electron temperature [Hutchinson, 2002].

To relate emission and absorption positions to the magnetic flux surfaces in
terms of ρ, the magnetic equilibrium needs to be known. Typically the equi-
librium is determined by solving the Grad-Shafranov equation under a set of
constrains [Wesson, 2011]. A variety of codes is used for this purpose, the imple-
mentation of which is adapted to the particular experiment [Lao, 1990; Moret,
2015]. In this thesis we assume that the magnetic equilibrium is fixed and hence
the impact of temperature and density fluctuations on the equilibrium is negli-
gible.

The here introduced diagnostics and actuator are used to perform pertur-
bative experiments in fusion reactors. A typical measurement during such an
experiment is shown in Figure 1.4 for the RTP-tokamak. This figure shows the
measurement of the ECRH power modulation, which is generally binary, and
the resulting temperature fluctuations. By decomposing the temperature fluc-
tuations in its sinusoidal components in terms of amplitude and phase (Fourier
transform), and studying the amplitude and phase difference between different
locations ρ, the transport coefficients can be determined.

1.3 Methods for estimating transport coefficients

Perturbative analysis of thermal transport in magnetically confined plasmas
started in the 1970s, using natural heat waves that originated from the saw-
tooth instability [Jahns, 1978; Soler, 1979]. The first methodologies to analyze
the perturbed transport were also derived in this period, e.g., [Callen, 1977].
These were extended in the 1980s [Fredrickson, 1986; Lopes Cardozo, 1988] and
the 1990s [Jacchia, 1991]. All these methodologies use the spatial derivatives
of the harmonic components, i.e., the amplitude and phase, of the temperature
perturbations at different radial locations to determine the perturbative electron
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Figure 1.4. Local electron temperature measurements Te (ρ), measured
using ECE, during a heat pulse propagation experiment using modulated
ECRH, Pecrh, in the RTP-tokamak.

diffusivity χ. These methodologies, referred to as approximations in this the-
sis, are now commonly used to analyze transport [DeBoo, 2012; Inagaki, 2006;
Lopes Cardozo, 1995; Mantica, 2006a; Ryter, 2010]. These approximations con-
sider mainly the diffusivity and some are extended to contain also the effect of
damping. Therefore, as explained earlier, the standard approach is to use high
frequency modulation to suppress the non-diffusive terms, i.e., convectivity (and
damping), such that it is possible to estimate the diffusivity. Also the convectiv-
ity can be analyzed indirectly by comparing the spatial decay rates of amplitude
and phase [Lopes Cardozo, 1995; Luce, 1992].

Recently, two new methods have been introduced to estimate the transport
coefficients in [Escande, 2012; Mechhoud, 2015]. In [Mechhoud, 2015] a Kalman
filtering approach is introduced based on a model with only diffusivity, hence,
taking noise properties and an unknown source term into account. In [Escande,
2012] this model is extended to also contain a convectivity term, but in contrast
to the previous method, it does not consider noise and the source term is con-
sidered to be known. This method is based on calculating also the profiles of
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the derivatives of amplitude and phase from the measured amplitude and phase
profiles. Initially, the method in [Escande, 2012] was designed for the particle
transport, but very recently it is also applied to the problem of electron heat
transport [Sattin, 2014]. The latter two methods distinguish themselves from
the other methods discussed here, in that they no longer use the standard as-
sumption of semi-infinite domains and constant spatial parameter dependencies.

1.4 Objectives and contributions of this thesis

The literature overview in Section 1.3 shows a renewed interest in estimation
methods for the transport coefficients. This is due to the search for better con-
finement regimes by using various actuators and due to a better understanding
and more accurate modeling of turbulent transport, which needs to be compared
to the estimated transport coefficients. Therefore, this thesis has following ob-
jective

Develop practical methods to reduce the uncertainty of the estimated trans-
port coefficients allowing for the validation of the chosen transport model.
These methods should not restrict the modulation of the source, such that
optimal excitations can be applied.

We attempt to achieve this objective by combining methods and models familiar
to the fusion community with system identification techniques. Thereby, we aim
not only to improve the estimation methodologies, but also to link these to the
fields of system identification and distributed parameter systems in which many
tools are readily available.

1.4.1 Activities and layout

In Chapter 2 the modeling and a number of approximations to determine the dif-
fusivity are reviewed specifically in terms of the mathematical concepts used in
system identification. Then, a large number of new approximations are derived
to determine the transport coefficients inline with the fusion literature (Chap-
ters 3-5). These methods are explicit and as such easy to implement. However,
one of the important issues is that they rely on the spatial derivatives of am-
plitude and phase instead of directly the Fourier coefficients to calculate the
transport coefficients. Therefore, the derivatives are approximated using fits of
the spatial amplitude and phase profiles. This can lead often to many undesired
effects such as a bias and errors due to noise, i.e., the variance-bias trade off
[Hall, 2010]. Another common problem of the explicit methods is that the num-
ber of unknown transport coefficients exactly matches the number of amplitudes
and phases necessary. For example, for one harmonic, the amplitude and phase
exactly match to the pair of diffusivity and convectivity or diffusivity and damp-
ing. Generally, in practice more harmonics are present, hence, these harmonics
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need to be combined to give an overall estimate of the diffusivity, the convec-
tivity, and the damping. However, as not every harmonic component has the
same Signal to Noise Ratio (SNR), the effect of measurement uncertainty needs
to be considered. Taking simply the average of the estimated diffusivities results
in a biased estimate of the overall transport coefficient. The estimate of the
overall diffusivity can be improved by introducing a different averaging method,
which reduces the bias and uncertainty significantly. For the methodologies pro-
posed in [Jahns, 1978; Soler, 1979] this approach is sufficient. However, for the
methodologies in [Jacchia, 1991] and the newly presented methodologies, which
also include damping and convectivity, such averaging methods are less applica-
ble. This is described and derived in detail in Chapter 6 and as such it forms
the link between methodologies used in fusion and system identification.

Chapter 7 introduces a new approach based on sample Maximum Likelihood
Estimation in the frequency domain. This method is used to determine also
the convectivity and damping using multiple harmonics considering also their
uncertainty in terms of variances. The resulting estimates using this method are
consistent, which means that if more frequency lines are added they converge
to the true values, and have a variance close to the theoretical lower bound.
In addition, validation tests are introduced, which allow for the validation of
the assumed transport and noise model in relation to the measurement data.
Moreover, the whole step of approximating the derivatives is avoided by using
directly the Fourier coefficients and their (co-)variances. A disadvantage of this
method is that the optimization problem is non-convex and that it still relies on
the assumption of constant parameter dependencies between three measurement
points

1.4.2 Specific contributions

• Extensions to improve accuracy of approximations and inclusion of con-
vectivity (Chapters 3 and 4 or [van Berkel, 2014a,b]): A large number of
new approximations are derived. These extend the known methods to cal-
culate the diffusivity, in terms of accuracy, by the inclusion of convectivity,
and the inclusion of damping. By including the convectivity and damp-
ing lower modulation frequencies can be chosen such that a better SNR
can be achieved. These approximations are found using the logarithmic
temperature derivatives in terms of Bessel functions and Confluent Hy-
pergeometric Functions, which then can be approximated using continued
fractions [Cuyt, 2008; Jones, 1980] and asymptotic expansions [Erdélyi,
1956; Slater, 1960]. Interestingly, using this new methodology also a num-
ber of the approximations in the literature are derived.

• Inward heat wave propagation (Chapter 5 or [van Berkel, 2014c]): There
is a profound difference between heat waves propagating towards the edge
and towards the center. This difference is largely ignored in the literature,
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hence, only approximations have been derived on the basis of semi-infinite
domains. In this thesis next to investigating the usefulness of the approxi-
mations based on semi-infinite domains, a number of new approximations
are derived. These approximations, based on a symmetric domain, perform
better in strong cylindrical geometry when inward heat wave propagating
is considered, for example, in case of off-axis heating.

• Modeling and implications (Chapters 2, 3, and 4 or [van Berkel, 2014a,b,c])
Errors introduced by a semi-infinite boundary condition are discussed in
the literature [Goedheer, 1986]. On the other hand, the underlying assump-
tion of constant transport coefficients from the measurement point up till
infinity (or the center) is not so well known in the literature. Therefore,
this thesis includes a more thorough analysis and gives a more structured
overview of the underlying assumptions and derivations. This analysis
shows that even if the diffusivity is spatially varying, it can often still be
estimated using the approaches used in this thesis. On the other hand, this
often does not hold for the convectivity and certainly not for the damping.
In addition, this structured approach also allows to clarify the relationship
between the amplitude and phase and its spatial (logarithmic) derivatives.

• Multiple harmonics, measurement uncertainty, and distribution of diffu-
sivity (Chapter 6 or [van Berkel, 2014d]): In most experiments multiple
harmonics can be used for the estimation of the diffusivity, which are com-
pared qualitatively. However, to truly combine and compare multiple har-
monics also the uncertainty needs to be taken into account. Therefore, in
this thesis the distribution functions of the harmonics are determined based
on measurements and assumptions. By taking the distribution functions
into account, more accurate estimates of the diffusivity can be acquired.
Consequently, a new method is introduced to combine and analyze dif-
ferent harmonics in terms of amplitude and phase. The analysis is based
on the assumption that the Fourier coefficients are distributed according
to a Circular Complex Normal Distribution (CCND) distribution func-
tion. This often results in an inverse non-central chi-squared distribution
function for the diffusivity. The diffusivity that is found by sampling this
inverse non-central chi-squared distribution will always be biased and av-
eraging of multiple estimated diffusivities will not necessarily improve the
estimation. Nevertheless, this distribution allows for the construction of
confidence bounds to illustrate the uncertainty in the diffusivity for sev-
eral of the slab geometry relationships. Moreover, a different method of
averaging is introduced based on the knowledge of the distribution func-
tions, that reduces the uncertainty significantly. The methodology is also
extended to the case where damping is included.
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• Maximum Likelihood: near minimum variance, validation tests, and ex-
tended models (Chapter 7 or [van Berkel, 2013, 2014e]): In this thesis a
new methodology is developed to estimate the transport coefficients us-
ing a sample Maximum Likelihood Estimator (SMLE) in the frequency
domain. This method is used because only measurements are considered
(Errors-In-Variables problem) such that the transport coefficients can be
estimated with near minimum variance. In addition, it optimally takes
into account multiple harmonics by weighting them with their certainty.
Moreover, as this method is implicit, i.e., it is based on the minimization
of a cost function, it not only allows to use the standard modeling used
in the literature, but also the use of more complicated models. In this
case, a new modeling is introduced based on three measurements points.
Two measurement points replace the boundary conditions such that true
local estimates can be achieved, excluding the influence of neighboring do-
mains. Finally, a test is introduced to validate the assumed model based
on statistics.

1.5 Outline of this thesis

This thesis is organized as follows. Chapter 2 gives an overview of the relevant
heat transport models, simplifications, and assumptions. It also introduces the
relationships to determine the transport coefficients as found in the standard
fusion literature. As such it forms the basis for the rest of this thesis. Then, in
Chapter 3 new relationships to determine explicitly the transport coefficients in
a cylindrical geometry based on slab geometry are derived. More, importantly
Chapter 3 also contains a discussion on errors introduced by the simplifying as-
sumptions. Then, in Chapter 4 new explicit approximations are derived, based
directly on the semi-infinite cylindrical domain. These are compared to the
relationships in the literature for different parameter ranges of the transport
coefficients. In contrast to Chapter 4, Chapter 5 introduces new explicit ap-
proximations to determine the transport coefficients for heat waves propagating
towards the center.

The explicit relationships introduced in Chapters 2-5 do not consider the
uncertainty in the measurements. Therefore, in Chapter 6 measurement un-
certainty is introduced to determine the transport coefficients with their confi-
dence bounds. This is based on the assumption of a CCND and estimates of
the variance of the Fourier coefficients such that the distribution functions of
the amplitude and phase, and the diffusivity can be determined. The analysis is
performed using ASDEX Upgrade measurement data for the classic relationships
introduced in Chapter 2. This already shows that although the estimation of
the diffusivity can be improved, the resulting diffusivity estimate is sub-optimal
and that the complexity that will be encountered for the relationships in Chap-
ters 2-5 makes it impractical to use such an analysis. As such Chapter 6 also
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forms the basis for Chapter 7, which introduces an implicit method, i.e., sample
Maximum Likelihood Estimation, to determine the transport coefficients. The
method allows to use both the standard modeling on which the approximations
in Chapters 2-5 are based and more complex modeling. Thus it avoids errors
introduced due the assumptions on the boundary conditions. In addition, Chap-
ter 7 also introduces a method to validate the estimated model with respect to
the measurements using the estimates of the variances of the Fourier coefficients.
Hereafter, in Chapter 8, the conclusions and a number of recommendations are
presented.





Chapter 2

Mathematical modeling of heat
transport in tokamaks and

stellarators

This chapter introduces transport models, which are often used to determine
and analyze the electron heat transport in fusion devices.

The thermal and particle transport are briefly introduced in the first sec-
tion. Transport in fusion devices is often modeled using cylindrical geometry
in terms of Partial Differential Equations (PDE) with spatial dependent trans-
port coefficients. This cylindrical geometry can also be approximated for larger
radii using slab geometry, which simplifies the calculations significantly. Both in
slab geometry and cylindrical geometry, the PDEs need to be further simplified
such that they can be solved analytically in the Laplace domain. Therefore, a
number of standard assumptions are discussed. These analytical solutions in the
Laplace domain can be further simplified by eliminating or choosing the bound-
ary conditions in a mathematically convenient way. This allows for the deriva-
tion of relationships which directly express the unknown diffusivity in terms
of the spatial derivatives of amplitude and phase, which is often used in the

This chapter is based on the following articles:
van Berkel, M., et al. [2014]. Explicit approximations to estimate the perturbative diffusivity
in the presence of convectivity and damping I Semi-infinite slab approximations, Phys. Plas-
mas 21: 112507.
van Berkel, M., et al. [2014]. Explicit approximations to estimate the perturbative diffusiv-
ity in the presence of convectivity and damping II Semi-infinite cylindrical approximations,
Phys. Plasmas 21: 112508.
van Berkel, M., et al. [2014]. Explicit approximations to estimate the perturbative diffusivity
in the presence of convectivity and damping III Cylindrical approximations for heat waves
traveling inwards, Phys. Plasmas 21: 112509.
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fusion literature. A disadvantage of using spatial derivatives is that the relation-
ship between the actual amplitude and phase and their derivatives is unknown.
Therefore, transfer functions are introduced to re-establish this relationship and
to give a description that directly uses the Fourier coefficients without the need
for approximating the derivatives. Moreover, a different approach is discussed
given in the literature based on eliminating double derivatives of amplitude and
phase. Finally, the influence of directionality of the propagation of the heat
waves on the modeling is discussed.

2.1 Transport modeling

This section considers the coupled equations of conservation of energy and parti-
cles for the electrons, which is briefly introduced here. These coupled equations
are used to derive the one-dimensional PDEs in cylindrical and slab geometry
containing the transport coefficients we wish to determine.

2.1.1 Conservation of energy and particles

This thesis focuses on the analysis of the electron heat transport. As only a
periodically modulated electron heating source (Pmod) will be used, which dom-
inates over other possible fluctuations in time, it is reasonable to consider only
the coupled equations of conservation of energy and particles defined in [Bishop,
1990; De Haas, 1991; Gentle, 1988; Lopes Cardozo, 1995]

∂n

∂t
= −∇Γ + Sp, (2.1)
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T Γ
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n
Γ∇ (nT ) + Sh, (2.2)

where q denotes the heat flux, Γ the particle flux, T the electron temperature, n
the density, and Sp the particle sources. Based on [Freidberg, 2007] the source
term Sh can include the external heating power density Sf contributing to the
energy balance, Sr the radiation losses due to Bremsstrahlung, Sohm ohmic
heating power, and Pmod. This leads to

Sh = Sf + Sohm − Sr + Pmod. (2.3)

In this thesis, it is assumed that all source terms except Pmod in Sh are static
(do not depend on time). Therefore, their variation in time should be negligible
compared to the perturbation induced by Pmod. Usually Pmod will be modu-
lated Electron Cyclotron Resonance Heating. However, in principle any localized
electron heating could be used, for instance, Ion Cyclotron Heating in a suit-
able minority heating scheme. Density fluctuations are assumed to be negligible,
hence, are not considered, i.e., ∂n/∂t = 0. The exact descriptions for the heat
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flux q and particle flux Γ are unknown. However, classically they are modeled
by the laws of Fick [De Haas, 1991]

Γ = −D∇n (2.4)

and Fourier
q = −nχ∇T, (2.5)

with D the particle diffusion coefficient and χ the electron diffusivity. Variations
of these laws exist, for instance by considering a convective velocity term U in q
[Lopes Cardozo, 1995]

q = −nχ∇T − nUT. (2.6)

Based on these equations it is possible to derive a one-dimensional PDE, which
can be used to identify the electron diffusivity χ.

2.1.2 Perturbative transport analysis

Thermal transport inside a fusion reactor is modeled as radial one-dimensional
transport in a cylinder due to the magnetic confined plasma topology [Lopes Car-
dozo, 1995]. This allows to rewrite (2.2), using (2.6), in terms of partial deriva-
tives with respect to the dimensionless radius ρ
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where the dependencies on ρ have been omitted. Although non-linear dependen-
cies exist, e.g., on T and ∇T , it is assumed that the temperature perturbation in
Sh used to analyze the transport is small enough to assume linearity around the
equilibrium temperature. Then, the simplified PDEs given in (2.7) must be seen
as the result of a linearization of transport equations [Gentle, 1988; Lopes Car-
dozo, 1995]. In such a linearization, other effects can also be captured in the
diffusivity, convectivity, and a damping term, e.g., the electron-ion heat equipar-
tition can be adequately captured in a damping term. In addition, non-linear
dependencies of for instance χ on T and ∇T is then partly accounted for in
the convective term and/or damping. Therefore, the one-dimensional parabolic
PDE in cylindrical geometry is generally expressed in a simplified form
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where V and τinv denote the convectivity and damping in cylindrical geometry.

Based on (2.7) V = U + 7
2

Γ
n and τinv = 2

3
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n

(
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n Γ
)

. The prime, in e.g., n′,
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denotes the spatial derivative with respect to ρ. In contrast to the literature here
is chosen to denote the damping by its inverse, i.e., τinv ≡ τ−1, because τinv is
bounded contrary to τ . The diffusivity χ (ρ), the (effective) convectivity V (ρ),
and the (inverse) damping τinv (ρ) in front of T , T ′, and T ′′ can be identified by
only considering electron temperature perturbations.

Unfortunately, (2.9) is difficult to use in practice for the estimation of χ
from measurements. Therefore, a number of standard simplifications are applied
[Jacchia, 1991]. Only measurements are considered for which the transients due
to the initial conditions can be neglected. It is assumed that the parameters are
constant with respect to time and space. Thus the parameters are assumed to be
homogenous or uniform [Jacchia, 1991; Lopes Cardozo, 1995]. In addition, only
spatial regions are considered where Pmod = 0, i.e., outside the region where
the heating is deposited to perturb the plasma. An important argument for this
choice is that the exact deposition power and profile are often not known. These
assumptions result in a simplification of (2.9), i.e.,
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2
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This equation is often used in the literature [Jacchia, 1991; Lopes Cardozo, 1995]
to analyze heat wave propagation in a cylindrical geometry. Alternatively, the
slab geometry representation of (2.9) is used to analyze transport in a cylindrical
geometry as it gives a good approximation of the transport coefficients for large
ρ [Jacchia, 1991; Lopes Cardozo, 1988, 1995].

2.1.3 Slab geometry representation and its relationship to
cylindrical geometry

In slab geometry the following representation is used to determine χ explicitly
[Lopes Cardozo, 1995]
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where the diffusivity χ, the convectivity in slab geometry Vs, and the inverse
damping in slab geometry τinvs are independent of ρ. It is important to realize
that the effective convectivity V 6= Vs and the inverse damping τinv 6= τinvs
represent something different in (2.10) and (2.9). This can be investigated by
transforming (2.9) assuming n′ = 0:
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This means that only when ρ → ∞, V = Vs and τinv = τinvs. Hence, (2.10)
will be a proper approximation of (2.9) when n′ is negligible and the variations
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χ/ρ and V/ρ are small with respect to V and τinv, respectively. The diffusivity
term χ in front of T ′′ is unaffected by this change of geometry. On the other
hand, the diffusivity term in cylindrical geometry now also appears as a pseudo
convectivity χ/ρ in slab geometry.

The next section will derive direct expressions for χ, based on (2.10) to
analyze the transport coefficients in a cylindrical geometry.

2.2 Analytical solutions in the Laplace domain

A standard method for solving PDEs is to transform them into the Laplace or
frequency domain such that the PDE can be reduced to a complex valued ODE,
which can be solved analytically [Haberman, 1983]. Both (2.10) and (2.11)
are solved analytically to enable the derivation of an explicit expression of the
diffusivity χ in terms of amplitude and phase based on the Fourier transformed
measurements of the temperature.

2.2.1 Slab geometry

The Laplace transform of (2.10) results in

3

2
sΘ = χ

d2Θ

dρ2
+ Vs

dΘ

dρ
− 3

2
τinvs Θ, (2.12)

where s is the Laplace variable and Θ (ρ, s) is the Laplace transform of T (ρ, t)
[Curtain, 1995]. The Laplace variable can in practice only be measured on the
imaginary axis, thus s = iω, where i =

√
−1 and ω is the frequency. The general

solution of (2.12) is given by [Polyanin, 2003]

Θ (ρ, s) = C1 (s) exp (λs1ρ) + C2 (s) exp (λs2ρ)

with λs1,2 = − Vs
2χ
∓

√(
Vs
2χ

)2

+
3

2

s+ τinvs
χ

. (2.13)

The quantities λs1,2 play an important role in both slab and cylindrical geometry.
However, in slab geometry λs1,2 depends on Vs and τinvs whereas in cylindrical
geometry λ1,2 depends on V and τinv, hence, the superscript s in slab geom-
etry. The boundary constants C1 (s) and C2 (s), which are independent of ρ,
are determined by the choice of the boundary conditions, which is discussed in
Section 2.3.
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2.2.2 Cylindrical geometry

In cylindrical geometry the PDE (2.11) can also be transformed into the Laplace
domain yielding

3

2
(s+ τinv) Θ (ρ, s) =

1

ρ

d

dρ

(
ρχ
∂Θ (ρ, s)

∂ρ
+ ρVΘ (ρ, s)

)
, (2.14)

where again Θ (ρ, s) is the Laplace transform of T (ρ, t). This complex valued Or-
dinary Differential Equation (ODE) can be solved analytically (see Section A.4.1
or [Polyanin, 2003; von Kamke, 1959])

Θ (ρ, s) = eλ1ρD1 (s) Ψ

(
λ2

λ2 − λ1
, 1, (λ2 − λ1) ρ

)
+ eλ1ρD2 (s) Φ

(
λ2

λ2 − λ1
, 1, (λ2 − λ1) ρ

)

with λ1,2 = − V
2χ
∓

√(
V

2χ

)2

+
3

2

s+ τinv
χ

. (2.15)

The functions Φ (ρ, s) and Ψ (ρ, s) denote the Confluent Hypergeometric Func-
tions of the first and the second kind, respectively. These functions are also often
denoted as 1F1 and U , and are extensively described in [Bateman, 1953; Luke,
1969; Slater, 1960]. The boundary constants are denoted by D1 (s) and D2 (s).
This solution in terms of Confluent Hypergeometric Functions may not be so
familiar, but if simplified by assuming V = 0, the well-known solutions in terms
of the modified Bessel functions of the first kind Iν and the second kind Kν of
order ν are found. In particular, if V = 0, then λ1 = −λ2, λ2/ (λ2 − λ1) = 1/2,
such that Φ (ρ, s) and Ψ (ρ, s) result in [Bateman, 1953]

Φ

(
1

2
, 1, (λ2 − λ1) ρ

)
= exp

(
1

2
(λ2 − λ1) ρ

)
I0

(
1

2
(λ2 − λ1) ρ

)
(2.16)

and

Ψ

(
1

2
, 1, (λ2 − λ1) ρ

)
= exp

(
1

2
(λ2 − λ1) ρ

)
K0

(
1
2 (λ2 − λ1) ρ

)
√
π

, (2.17)

respectively. Consequently, (2.15) simplifies to

Θ (ρ, s) =
D1 (s)√

π
K0

(
1

2
(λ2 − λ1) ρ

)
+D2 (s) I0

(
1

2
(λ2 − λ1) ρ

)
. (2.18)

This solution is well known and is studied and referenced in for instance [Carslaw,
1959; Polyanin, 2003]. As the Bessel functions and Confluent Hypergeometric
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Functions may not be so familiar a brief overview on the derivation and cal-
culation of these functions in relation to the PDEs presented here is given in
Appendix A.

The analytical solutions presented in this section are used to derive hands-on
models, which can be used to derive explicit approximations of χ.

2.3 Logarithmic derivative and transfer function

The PDEs (2.9) and (2.10) are typically used to describe electron transport.
These PDEs are reduced to complex valued ODEs by means of the Laplace
transform. However, to be able to find practical models that can be used to de-
termine χ, the boundary constants need to be either determined or eliminated.
The following three approaches are commonly used: (1) the logarithmic temper-
ature derivative, i.e., (∂Θ/∂ρ) /Θ = ∂ (ln (Θ)) /∂ρ, in which only one boundary
constant is determined and where the solution is expressed in terms of the spatial
derivatives of the amplitude and phase (Section 2.3.1); (2) transfer functions, in
which both C1 (s) and C2 (s) are determined (Section 2.3.2); (3) An approach in
which fixing C1 (s) and C2 (s) explicitly are avoided by introducing double spa-
tial derivatives to amplitude and phase (Section 2.3.3). However, as a solution
of a second order PDE is only defined by two boundary conditions, there must
be a clear relationship between these three approaches. In this section we show
how amplitude and phase are related to their spatial derivatives typically used
to calculate the diffusivity.

2.3.1 Semi-infinite domain and logarithmic temperature
derivative

The choice for a semi-infinite domain and the use of a logarithmic temperature
derivative is commonly used in the literature [Jacchia, 1991; Lopes Cardozo,
1995] as it simplifies the solution significantly. This allows for the elimination
of one eigenfunction and one boundary condition such that approximations for
χ can be derived.

The first step is to eliminate one eigenfunction as it is difficult to derive
explicit relationship for χ on the basis of two eigenfunctions, i.e., exp (λs1ρ) and
exp (λs2ρ) in (2.13) or eλ1ρΦ (ρ, s) and eλ1ρΨ (ρ, s) in (2.15). One eigenfunction
can be eliminated by assuming a semi-infinite domain, which is defined as follows,
if ρ → ∞, then Θ → 0. This means that at ρ = ∞ all perturbations need to
have vanished. Since, we follow the standard convention that for z ∈ C, arg (z) ∈
(−π, π] and arg (

√
z) = 1

2 arg (z), the two eigenfunctions in slab geometry, i.e.,
(2.13), satisfy exp (λ1ρ)→ 0 and |exp (λ2ρ)| → ∞ for ρ→∞. Hence, C2 (s) = 0,
otherwise the solution (2.13) would not converge to zero at large ρ. In cylindrical
geometry for (2.15), this is more difficult to prove analytically. However, in case
V = 0 for the semi-infinite domain it is known that D2 (s) = 0 in (2.15) [Carslaw,
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1959]. This indicates that also D2 (s) = 0 in (2.15) when V 6= 0. Therefore,
it is numerically verified that D2 (s) = 0 in (2.15) by comparing it to finite
difference simulations with boundary condition T (ρ� 1) = 0. This shows that
the error between the analytic and numerical simulations are small and that the
error is decreasing with increasing density of the discretization grid. In addition,
the functions Φ and Ψ are numerically evaluated to study the behavior close to
ρ =∞, indicating again that this is the correct choice. This means that in slab
geometry, (2.13) simplifies to

Θ (ρ, s) = C1 (s) exp (λs1ρ) (2.19)

and in a cylindrical geometry, (2.15) simplifies to

Θ (ρ, s) = D1 (s) eλ1ρΨ

(
λ2

λ2 − λ1
, 1, (λ2 − λ1) ρ

)
. (2.20)

In principle, C1 (s) and D1 (s) need to be determined by assuming a second
boundary condition. However, in the literature it is common practice to express
the solution in terms of the spatial derivatives, thereby eliminating C1 (s) and
D1 (s). These boundaries can be eliminated systematically by introducing the
logarithmic temperature derivative. Taking the logarithmic derivative of the
right hand side of (2.19) and (2.20) results in

Θ′

Θ
= λs1 (2.21)

and

Θ′

Θ
= λ1 − λ2

Ψ
(

1 + λ2

λ2−λ1
, 2, (λ2 − λ1) ρ

)
Ψ
(

λ2

λ2−λ1
, 1, (λ2 − λ1) ρ

) , (2.22)

respectively (see [Slater, 1960] for the derivative of Ψ). If V = 0, then (2.22) can
be further simplified to

Θ′

Θ
= −zK1 (zρ)

K0 (zρ)
, (2.23)

where

z =

√
3

2

iω + τinv
χ

. (2.24)

If the temperature Θ is written in terms of its harmonic components, i.e., Θ =
A exp (iφ). Then the spatial derivative of the temperature is given by Θ′ =
A′ exp (iφ) + iφ′A exp (iφ) such that the left-hand side of (2.21), (2.22), and
(2.23) results in

Θ′

Θ
=
A′

A
+ iφ′. (2.25)
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The idea of this representation is that the continuous profiles A′ and φ′ can be
calculated from the experimental data using an approximation of the derivatives
of amplitude and phase [Escande, 2012]. This means that if χ can be re-expressed

in terms of ρ, A
′

A , and φ′ using (2.26), the diffusivity can be explicitly calculated
using the approximations of the derivatives. For example, if Vs = 0, (2.21)
simplifies to

A′

A
+ iφ′ = −

√
3

2

iω + τinvs
χ

, (2.26)

such that the square of (2.21) becomes(
A′

A

)2

+ 2
A′

A
φ′i− (φ′)

2
=

3

2

ωi+ τinvs
χ

. (2.27)

If also τinvs = 0, then this results in the following two standard relationships to
calculate the diffusivity χ from experimental data [Fredrickson, 1986]

χs1 =
3

4

ω

(φ′)
2 , (2.28)

and [Callen, 1977; Soler, 1979]

χs2 =
3

4

ω

(A′/A)
2 . (2.29)

These can also be combined to find

χs3 =
3ω

(A′/A+ φ′)
2 . (2.30)

Note that in this thesis a large number of explicit relationships (approximations)
to calculate the transport coefficients, e.g., χ, are derived. Hence, to distinguish
them, they all have been indexed, in this case with s1, with s for slab.

If also the damping τinvs is considered, then χ can be calculated by consid-
ering only the imaginary part of (2.21), [Jacchia, 1991; Lopes Cardozo, 1988]

χs4 =
3

4

ω
A′

A φ
′ . (2.31)

Sometimes, if τinvs = 0, (2.31) is rewritten in terms of χs1 and χs2 to calculate
the combined diffusivity of amplitude and phase [Ryter, 2010]

χn =
√
χs1χs2. (2.32)

The damping τinvs can also be calculated by considering also the real part of
(2.27)

τs4 =
ω

2

(
A′/A

φ′
− φ′

A′/A

)
. (2.33)
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This concludes the known slab relationships for χ in the literature.

In case Vs 6= 0, there are three unknowns χ, Vs, and τinvs and two known
variables φ′ and A′/A. This means that in principle two harmonics are necessary
to calculate the diffusivity χ under the influence of the convectivity and the
damping, which is the subject of Chapter 3.

In case of the cylindrical geometry the right-hand sides of (2.22) and (2.23)
cannot be inverted analytically. Therefore, an alternative method is developed
to calculate χ explicitly, which is explained in Chapter 4.

A common problem using the representations presented here is how to calcu-
late the spatial derivatives A′/A and φ′ from the measured A and φ. This can be
avoided by making reasonable assumptions for the second boundary condition,
which results in a transfer function representation.

2.3.2 Transfer function and spatial derivatives

The transfer function approach may be less familiar in the fusion literature
[Dudok de Wit, 1991; Moret, 1993; Witvoet, 2011], but it is extensively used
in the field of system identification, system theory, and control [Ljung, 1999;
Pintelon, 2012]. From the available fusion literature on transfer functions it may
seem that only rational functions based on measurement data are applicable.
However, as will be shown here, transfer functions can also be used to describe
simplified models for PDEs [Curtain, 2009], which are of non-rational form.

The most important advantage of this technique over the other two tech-
niques is that it only depends on the measurements and not the derivatives of
the measurements. Hence, it is no longer required to approximate the spatial
derivative of phase and the spatial logarithmic amplitude derivative. This can
be derived based on (2.19)

Θ (ρ, s) = C1 (s) exp (λs1ρ) .

A logical choice for the other boundary condition is to chose the temperature at
a second spatial location ρ1, i.e., Θ (ρ, s) = Θ (ρ1, s), which in contrast to the
assumption of a semi-infinite domain, is only a weak assumption. In addition,
as (2.19) is the solution to the homogeneous PDE, the domain considered for
the analysis cannot contain a source term (see Section 2.1.2). Hence, Θ (ρ1, s) is
used, which is a measured quantity and bounds the domain such that the source
term is outside the considered domain. The boundary constant is then given by

C1 (s) = exp (−λs1ρ1) Θ (ρ1, s) . (2.34)

This determines the solution of (2.13), Θ (ρ, s), such that

Θ (ρ, s) = exp (λs1 (ρ− ρ1)) Θ (ρ1, s) . (2.35)
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The solution at a second measurement point ρ2 > ρ1 is denoted by Θ (ρ2). Then
(2.35) can be re-expressed as

Θ (ρ2, s)

Θ (ρ1, s)
= exp (λs1 (ρ2 − ρ1)) . (2.36)

The left hand-side is built from the measured complex valued Fourier coeffi-
cients at measurement locations ρ1 and ρ2 and the right-hand side contains the
unknown transport coefficients. As such this representation can also be used
to check if the estimated transport coefficients match the measurements on the
left-hand side over the different ω in s = iω.

Similarly, the transfer functions for a cylindrical domain can be derived

Θ (ρ2, s)

Θ (ρ1, s)
= eλ1(ρ2−ρ1)

Ψ
(

λ2

λ2−λ1
, 1, (λ2 − λ1) ρ2

)
Ψ
(

λ2

λ2−λ1
, 1, (λ2 − λ1) ρ1

) (2.37)

and if V = 0

Θ (ρ2, s)

Θ (ρ1, s)
=
K0 (zρ2)

K0 (zρ1)
. (2.38)

In principle, we want to invert these transfer functions to find explicit rela-
tionships for χ, but now in terms of two measurements Θ (ρ1, s) and Θ (ρ2, s).
Therefore, consider again a simplified case of (2.36) in which Vs = 0 and only
one harmonic is used, i.e., s = iω. Thus, the temperatures at fixed ω at two
spatial locations can be expressed as Θ (ρ1) = A1e

iφ1 and Θ (ρ2) = A2e
iφ2 such

that the transfer function (2.36) can be rewritten as

A2e
iφ2

A1eiφ1
= exp

(
−

√
3

2

iω + τinvs
χ

∆ρ

)
, (2.39)

where ∆ρ = ρ2 − ρ1. Applying the natural logarithm and taking the square of
(2.39) results in

ln

(
A2

A1

)2

− (φ2 − φ1)
2

+ 2 ln

(
A2

A1

)
i (φ2 − φ1) =

3

2

iω + τinvs
χ

∆ρ2. (2.40)

The relationship for χ can be calculated by considering the imaginary part of
(2.40)

χs4 =
3

4

ω
ln(A2)−ln(A1)

∆ρ

(
φ2−φ1

∆ρ

) . (2.41)

The diffusivity χ can only be calculated properly if the phases φ1 and φ2 are
unwrapped, which means that possible additional 2π rotations between ρ2 and
ρ1 need to be accounted for.
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If (2.41) is compared to the relationship in (2.31), it is immediately clear
that the derivatives A′/A and φ′ in slab geometry are constant and defined as

A′

A
=

d

dρ
(ln (A)) ≡ ln (A2/A1)

∆ρ
, φ′ ≡ φ2 − φ1

∆ρ
. (2.42)

This could also have been derived directly from (2.21) and (2.25) by taking its
spatial derivative, which results in

d

dρ

(
A′

A

)
+ iφ′′ = 0. (2.43)

This also means that from a mathematical point of view if an assumption is
made on the boundary conditions and the parameter dependence (here that the
transport coefficients are independent of ρ, see Section 2.1.2), then the definition
of the spatial derivatives A′ and φ′ as function of A and φ follows automatically.
On the other hand, if one makes a choice for the approximation of the derivatives,
then the spatial dependence on the parameters and boundary condition follows.
As such, fitting φ′ and A′ differently from (2.42) is a direct violation of the
assumption that the parameters are independent of ρ. On the other hand, if more
complicated relationships are used, e.g., cylindrical geometry, the derivatives
A′/A and φ′ are not so easily expressed in terms of A2, A1, φ1, and φ2. This
can also be shown by considering (2.23) where V = 0

Θ′

Θ
= −zK1 (zρ)

K0 (zρ)
, (2.44)

which results in the following spatial logarithmic amplitude derivative and spatial
phase derivative

A′

A
= <

(
−zK1 (zρ)

K0 (zρ)

)
, φ′ = =

(
−zK1 (zρ)

K0 (zρ)

)
, (2.45)

where < and = denote the real and imaginary part. These relationships show
the complexity of the spatial logarithmic amplitude derivative and the spatial
phase derivative in cylindrical geometry. The transfer function description avoids
this ambiguity of how to determine A′/A and φ′. However, from the transfer
function description in cylindrical geometry it was not possible to derive explicit
relationships for χ. This requires an implicit method, which is discussed in
Chapter 7. A third option suggested in the literature is to directly substitute
Θ = A exp (iφ) into (2.7), which is explained next.

2.3.3 Double spatial derivatives of A and φ

It is also possible to use only spatial derivatives of A and φ to calculate χ.
The expression for χ will then also include the double spatial derivatives A′′
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and φ′′ because a second order PDE is considered. This expression for χ is
found by substituting Θ = A exp (iφ), Θ′ = A′ exp (iφ) + iφ′A exp (iφ), and

Θ′′ = A′′ exp (iφ)+iφ′A′ exp (iφ)+iA′φ′ exp (iφ)−(φ′)
2
A exp (iφ)+iAφ′′ exp (iφ)

in (2.12) and by dividing by A exp (iφ).
In slab geometry, φ′′ and d (A′/A) /dρ are equal to zero, hence, this substitu-

tion is not useful to derive new approximations if the transport coefficients are
independent of ρ. On the other hand, expressing (2.12) in terms of double spa-
tial derivatives again shows that the three approaches are equivalent and that
the boundary conditions and spatial dependencies are again contained within
the spatial derivatives.

Θ′ and Θ′′ can be substituted in the PDE in cylindrical geometry, i.e., (2.7)
without a source. This results for the imaginary part in [Jacchia, 1991]

χ (ρ) =
1.5ω −

(
2.5Γ

n + Γ
)
φ′

φ′′ +
(

2A
′

A + 1
ρ + n′

n + χ′

χ + U(ρ)
χ

)
φ′
. (2.46)

Note that in this representation Γ and n and its gradient n′ have been included,
which would allow to take density gradients into account. However, in this thesis
we assume n′ = 0 unless stated otherwise. To be able to use (2.46) to calculate
χ, again χ needs to be assumed constant such that χ′/χ = 0 and the convective
velocity needs to be assumed zero, i.e., U (ρ) = 0. More importantly, the double
derivatives are difficult to approximate in practice due to noise and the spacing
between measurement channels. Therefore, φ′′ is assumed to be zero, which is
acceptable in slab like geometry (large radii), to arrive at a feasible expression
for χ [Jacchia, 1991] and χ can be calculated using the simplified form of (2.46),
i.e.,

χc =
3

4

ω(
A′

A + 1
2ρ

)
φ′
. (2.47)

The assumption of φ′′ = 0 means that φ′ is assumed constant as was the case
in slab geometry. On the other hand, in cylindrical geometry φ′′ 6= 0, see
(2.45), as such (2.47) is not a true cylindrical expression, but an approximation.
This approximation (2.47), together with those based on slab geometry (2.28),
(2.29), (2.30), and (2.31) are the standard relationships used in the literature to
calculate χ.

2.4 Directionality of heat waves

Section 2.3 discussed semi-infinite domains, implying that perturbations gener-
ated at a certain location should vanish at infinity. This also implies that heat
waves are propagating outwards. Hence, the semi-infinite domain is less suitable
for heat waves propagating inwards. This will be discussed in detail in Chap-
ter 5. A natural choice in a cylindrical geometry is a symmetric domain, i.e.,
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using a Neumann boundary condition at ρ = 0

∂Θ

∂ρ
(ρ = 0) = 0. (2.48)

An advantage of using (2.48) is that D1 (s) = 0 in (2.15). This is again not
easily proven analytically. However, if V = 0, then D1 (s) = 0 [Carslaw, 1959].
This suggests that also D1 (s) = 0 in (2.15) when V 6= 0. This again has been
numerically verified in (2.15) by comparing it to finite difference simulations
using the boundary condition given in (2.48). This shows that the error between
the analytic and numerical simulations are small and that the error is decreasing
with increasing density of the discretization grid. Hence, it is concluded that
D1 (s) = 0 for a Neumann boundary condition in (2.15) such that (2.15) reduces
to

Θ (ρ, s) = D2 (s) eλ1ρΦ

(
λ2

λ2 − λ1
, 1, (λ2 − λ1) ρ

)
. (2.49)

Again, there are two possibilities to handle the unknown D2 (s) when s = iω.
One possibility is to use the logarithmic temperature derivative to eliminate
D2 (s) resulting in (see [Slater, 1960] for the definition of the derivative of Φ)

Θ′

Θ
= λ1 + λ2

Φ (a+ 1, 2, (λ2 − λ1) ρ)

Φ (a, 1, (λ2 − λ1) ρ)
. (2.50)

In this relationship V is assumed constant. However, at ρ = 0, V = 0 this
means that this relationship can only be used as an approximation of the under-
lying PDE at some distance from ρ = 0. Another important aspect is that the
derivatives are defined in terms of ρ and not in terms of distance to the source.
Hence, the derivatives are defined positively for heat waves propagating towards
the center. If V = 0, (2.50) simplifies to

Θ′

Θ
= z

I1 (zρ)

I0 (zρ)
, (2.51)

where z is defined according to (2.24). This last relationship is well known in
the literature [Carslaw, 1959; Jacchia, 1991]. Alternatively, the transfer function
representation can be used. In that case D2 (s) needs to be determined by
a second boundary condition. The most logical choice for a second boundary
condition is Θ (ρ, s) = Θ (ρ1, s). The transfer function using (2.49) then becomes

Θ (ρ2, s)

Θ (ρ1, s)
= eλ1∆ρ

Φ
(

λ2

λ2−λ1
a, 1, (λ2 − λ1) ρ2

)
Φ
(

λ2

λ2−λ1
, 1, (λ2 − λ1) ρ1

) , (2.52)

or when V = 0
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Θ (ρ2, s)

Θ (ρ1, s)
=
I0 (zρ2)

I0 (zρ1)
, (2.53)

where the solutions at a second measurement point ρ1 > ρ2 is used as resulting
temperature Θ (ρ2). However, using the transfer function it was not possible
to derive explicit relationships for χ, V , and τinv using this relationship. This
also holds for a number of other choices of boundary conditions as these choices
would result in a combination of two eigenfunctions, which are difficult to invert
to express χ explicitly in terms of amplitude and phase. For instance, a logic
choice for the boundary condition at the edge of the plasma would be a Robin
boundary condition of the form ∂Θ (ρedge) /∂ρ = qloss ·Θ (ρedge), where the heat
flux qloss describes a steady heat loss. Another option is to bound (2.14) by two
measurement points, instead of only one as was described here. These options
are also possible, but in these cases an implicit scheme, such as the one used in
Chapter 7, is necessary.

2.5 Conclusion and summary

In this chapter, PDEs have been introduced to describe heat transport in toka-
maks and stellarators. A number of assumptions have been introduced, which
allow to calculate the analytic solutions of the PDEs in terms of transfer func-
tions and logarithmic temperature derivatives. This clarified the relationship
between the amplitude and phase and its spatial derivatives, in case a homoge-
nous domain is assumed.

Based on the logarithmic temperature derivative and transfer function in
slab geometry, the diffusivity can be directly expressed in terms of the spa-
tial derivatives of amplitude and phase when the convectivity is assumed zero.
However, ideally the convectivity should also be considered, which is shown in
Section 2.1.2. This also holds for the approximation in cylindrical geometry
described in Section 2.3.3. Moreover, it has been shown that slab geometry
and (2.47) only give an approximation of the diffusivity in cylindrical geome-
try. Therefore, in the next three chapters the quality of the approximations
presented here and new approximations to calculate the diffusivity, convectivity,
and damping in a cylindrical geometry are derived. The proposed method takes
the convectivity and cylindrical geometry better into account. These derivations
are based on the logarithmic temperature derivative in line with the fusion lit-
erature. More specifically, Chapter 3 takes the convectivity into account in slab
geometry giving a relationship, which also gives a better approximation of the
transport coefficients in cylindrical geometry. Additionally, the influence of a
number of simplifying assumptions made in this chapter are also discussed in
Chapter 3. Then, in Chapter 4 new approximations are calculated based on the
semi-infinite domain assumption for heat waves propagating towards the edge.
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In Chapter 5 the symmetry boundary condition is used to derive approxima-
tions for heat waves propagating towards the center. The subsequent chapters
will use the introduced modeling techniques in combination with statistics to
take measurement uncertainties into account.



Chapter 3

Estimation of the transport
coefficients using slab geometry

(semi-infinite)

This chapter deals with semi-infinite slab geometry approximations to calcu-
late the transport coefficients using the amplitude and phase of temperature
fluctuations induced by a periodic perturbation. The relationships given in the
literature, which are described in Section 2.3.1 and Section 2.3.3 do not consider
a convective term. However, the modeling in Section 2.1.1 suggests that a con-
vective term should be included. This especially holds for approximations of χ
that are derived in slab geometry since this introduces a pseudo convective term
χ/ρ in (2.11). This chapter derives new relations based on slab geometry, which
also includes both convectivity and damping. However, if both a convective and
a damping term need to be considered, it is necessary to consider at least two
harmonics instead of one, as is often considered in fusion research. The new
relationships are derived using the logarithmic derivative and modeling intro-
duced in Chapter 2 and these are compared to the standard relationships in the
literature using the analytical solutions for cylindrical geometry. The diffusivity
in cylindrical geometry is not affected directly by the cylindrical geometry, but
the calculation of the convectivity and damping are. Therefore, a compensation
is suggested to calculate the convectivity and damping in cylindrical geometry
using the slab geometry relationships. Finally, the consequences of the assump-
tions used to simplify the PDEs on the calculation of the transport coefficients
are studied through an example.

This chapter is based on the following article: van Berkel, M., et al. [2014]. Explicit
approximations to estimate the perturbative diffusivity in the presence of convectivity and
damping I Semi-infinite slab approximations, Phys. Plasmas 21: 112507.
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3.1 Derivation of explicit approximations based
on slab geometry

New approximations for determining the χ, V , and τinv in cylindrical geometry
are introduced based on slab geometry, which use one or two harmonics. First,
a new approximation for χ is derived using only the phase of two harmonics.
Then, approximations for Vs and τinvs are derived and finally approximations
are derived assuming τinvs = 0.

3.1.1 Approximations for χ in the presence V and τinv

In principle, every harmonic fixes two degrees of freedom, which means in prac-
tice that either χ and τinv or χ and V can be estimated if only one harmonic is
used. The estimation of χ, V and τinv together, requires at least two harmonics.
Therefore, consider the semi-infinite slab geometry solution in (2.21)

A′

A
+ iφ′ = λs1. (3.1)

where the spatial derivatives are defined according to (2.42). The principal
square root in λs1 can be split in its real and imaginary parts using, see (2.13)

λs1 = − Vs
2χ
− (α+ βi) , (3.2)

where

(α+ βi)
2

=

(
Vs
2χ

)2

+
3

2

(τinvs + iω)

χ
, (3.3)

with

α2 − β2 =

(
Vs
2χ

)2

+
3

2

τinvs
χ

(3.4)

and

2αβ =
3

2

ω

χ
. (3.5)

The coefficients α and β can also be used to express A′/A and φ′ defined accord-
ing to (2.42), by taking the real and imaginary part of λs1 using (2.21), (3.2),
and (2.25), i.e.,

A′

A
= −

(
Vs
2χ

+ α

)
and φ′ = −β. (3.6)

The constants α and β are determined by rewriting (3.4) and (3.5) to

4χ2α4 − CV α2 =
9

4
ω2, (3.7)
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4χ2β4 + CV β
2 =

9

4
ω2. (3.8)

where CV = V 2
s + 6χτinvs. Both (3.7) and (3.8) are fourth order equations

yielding four solutions for α and four for β. Fortunately, not all of these solutions
are feasible because under natural assumptions, ω > 0, χ > 0, and in a semi-
infinite domain φ′ is negative. This means that according to (3.6), β > 0. In
addition, following the definition in (3.5), the product of α and β is always
positive, hence α > 0.

There are three degrees of freedom (unknowns) in (3.3), which means that
at least two harmonics ω1 and ω2 must be used. Consequently, one derivative is
unnecessary, e.g., φ′ (ω1) or A′ (ω2) /A (ω2). However, χ can be determined by
only using φ′ (ω1) and φ′ (ω2) because (3.8) only contains two unknowns, χ and
CV , such that

χφ =
3

4

√√√√(ω1φ′ω2

)2 − (ω2φ′ω1

)2
φ′2ω1

φ′2ω2

(
φ′2ω1
− φ′2ω2

) , (3.9)

using the notations φ′ω1
= φ′ (ω1) and φ′ω2

= φ′ (ω1) and to differentiate between
approximations the notation χφ is used instead of χ. The definition of the spatial
phase derivatives in (3.9) is given by (2.42). The advantage of using only phase
is that the estimate of χ is less insensitive to calibration errors. On the other
hand, useful amplitude information is ignored, which can reduce the accuracy of
the estimate significantly.

3.1.2 Approximations for V and τinv

The convectivity Vs denoted for this specific approximation by Vφ is found by
solving for α in (3.7) and substituting it into (3.6) such that

Vφ = −2χφ
A′

A
−

√√√√CV +
√
C2
V + 36χ2

φω
2

2
, (3.10)

where CV can be calculated in terms of χφ based on (3.8)

CV =
9

4
ω2 (φ′)

−2 − 4χ2
φ (φ′)

2
. (3.11)

The damping τinvs, denoted as τφ, is calculated from the definition of CV

τφ =
CV − V 2

φ

6χφ
. (3.12)

It is not possible to calculate the convectivity or damping from the phase only,
unless either the damping or convectivity is considered negligible. In the noiseless
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slab geometry case, it does not matter if ω1 or ω2 is used for ω in A′/A and φ′.
Here, only one variation has been given to calculate χ, Vs, and τinvs using mainly
the phase. There exists a number of other variations using also A′ (ω1) /A (ω1)
and A′ (ω2) /A (ω2).

3.1.3 Approximations assuming τinv = 0

In the special case that τinvs is assumed zero, a single harmonic suffices to
estimate both χ and Vs. This can be derived from (3.4) and (3.5), which results
in

χV =
3

2

ωA
′

A((
A′

A

)2
+ (φ′)

2
)
φ′

(3.13)

and

VV =
3

2

ω

(
(φ′)

2 −
(
A′

A

)2
)

((
A′

A

)2
+ (φ′)

2
)
φ′
. (3.14)

These approximations together with the well known relationships in the litera-
ture will be used to approximate χ, V , and τinv in cylindrical geometry.
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3.2 Estimating χ under influence of V and τinv

In this section, the explicit approximations for χ, i.e., (2.28), (2.29), (2.30),
(2.41), (3.9), and (2.47) are compared for different values of ρ, ω, χ, V , and τinv.
For the comparison, the true values of A′/A and φ′ in a semi-infinite cylindrical
geometry are used based on the analytical solution in (2.22) to generate A′/A
and φ′ for ρ and specific transport coefficients. This section consists of three
parts: a presentation and discussion on the selection of the best approximations
when only χ is considered; a similar discussion when χ and τinv are considered
(V = 0); and when χ, V , and τinv are considered.

It is cumbersome to make a comparison of the different approximations for
five parameters (ρ, ω, χ, V , and τinv). Therefore, the transport coefficients are
normalized with ω by dividing (2.14) by ω resulting in

3

2
iΘ (ρ, s) =

1

ρ

d

dρ

(
ρ
χ

ω

∂Θ (ρ, s)

∂ρ
+ ρ

V

ω
Θ (ρ, s)

)
− 3

2

τinv
ω

Θ (ρ, s) . (3.15)

Consequently, the normalized transport coefficients in a cylindrical geometry are
given by χ̄ = χ/ω, V̄ = V/ω, and τ̄inv = τinv/ω such that the heat-equation and
its solutions no longer depend on ω explicitly. In case two harmonics are neces-
sary, φ′ (ω1) and φ′ (ω2) are calculated using ω1 = ω and ω2 = 2ω corresponding
to the first and second harmonic.

3.2.1 Diffusivity only

The comparison for χ only (V = 0 and τinv = 0) is made based on a large number
of possibilities of χ, ω, and ρ in terms of the normalized χ̄. The approximations
are shown in Figure 3.1 in terms of the relative error with respect to the true
diffusivity χ.

All the approximations perform well in a slab-like geometry, i.e., they ap-
proximate χ well if the ratio ρ/χ̄ � 0. In χc large relative errors are observed
for small ρ/χ̄, which can be understood by considering χc in (2.47). The large
error is caused by ρ−1 term in χc, which overcompensates resulting in a higher
estimated diffusivity [Jacchia, 1991]. The A′/A and φ′ are negative quantities
for heat waves propagating outwards. Hence, the sum of ρ−1 and A′/A results
in zero at the center of the dark red area. On the other hand, it is also clear that
compared to the other slab geometry approximations χc and χφ perform better.
The approximation χφ is more accurate in a slightly larger region then the ap-
proximation χc. However, it is also important to note again that χφ is based on
the phase of two harmonics instead of amplitude and phase of one harmonic as
is the case for χc making it less comparable to the other relationships.
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Figure 3.1. Comparison between the different relative errors of the χ
estimates for a large range of χ̄ = χ/ω and ρ. The relative error is

defined as εrel = 100 × |χ−χest|χ [%], where χest is one of the possible

approximations. Note, that V = τinv = 0 is the same as V̄ = τ̄inv = 0.
In this case χs3 and χs4 were almost exactly the same in terms of their
error. This comparison is based on a cylindrical geometry using an infinite
domain boundary condition assuming χ independent of ρ and V = τinv =
0, where the heat waves travel outwards. The darkest blue represents
εrel < 1% and the darkest red represents all εrel > 150%.

3.2.2 Diffusivity and damping

Only three approximations are available to estimate χ under the influence of
the damping τinv, i.e., χs4 in (2.41), χφ in (3.9), and χc in (2.47). The approx-
imations are presented at a limited number of spatial locations ρ. In order to
have significant impact on the heat pulse propagation, τ should be of the order
of the energy confinement time (τe), i.e., 1 s for JET or ITER. Therefore, the
range of τ is chosen such that 0.5 < τ <∞ (τ =∞ meaning no damping), i.e.,
0 6 τinv 6 2. This range is the same for the normalized τ̄inv as the applicable
range of ω is ω > 1 [rad/s].

In general the effect of damping τinv is not directly influenced by the cylin-
drical geometry (V = 0), which can be understood by comparing (2.10) and
(2.11). In addition, τinv acts as a shift parameter in (2.10), which basically
shifts the solution in ρ. This means that for large τinv, the regions in which
χ are approximated well is extended for increasing τinv. However, these effects
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Figure 3.2. Comparison between the relative errors of the χ estimates
using χs4, χφ, and χc for a large range of χ̄ = χ/ω, τ̄inv and ρ. This
comparison is based on a cylindrical geometry using an infinite domain
boundary condition assuming constant spatial dependencies of χ and τinv.
The darkest blue represents εrel < 1% and the darkest red represents all
εrel > 150%.

are also influenced by the approximation error in χ and V . Therefore, it is not
a one-to-one relationship. This can also be seen in Figure 3.2 where with in-
creasing τinv also the approximation region increases for all approximations. All
approximations under the influence of damping behave similar to the case of χ
only.

3.2.3 Diffusivity, convectivity, and damping

At least two harmonics are necessary if three parameters , i.e., χ, V , and τinv,
need to be estimated. This also means that it is no longer possible to estimate χ
with χc as is illustrated in Figure 3.3, which is also well known in the literature
[Jacchia, 1991]. On the other hand, χ can be estimated using χφ for a large
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Figure 3.3. The relative errors of the χc estimates as function of χ̄ =
χ/ω, V and ρ. These errors are based on a cylindrical geometry using
an infinite domain boundary condition where χ, V , and τinv = 2 are
independent of ρ. The heat waves travel outwards. The darkest blue
represents εrel < 1% and the darkest red represents all εrel > 150%.

range of parameters as is shown in Figure 3.4 on page 41. It is unclear what a
good range is for the parameter V̄ = V/ω. Therefore, an arbitrary choice for this
range is made −100 6 V̄ 6 100. In general χ can be approximated well for large
ρ as it than behaves more slab-like. On the other hand, for large χ̄ and small
ρ the cylindrical effects are stronger, thus the errors are large. The effect of the
damping coefficients is not shown here as it is rather small. The approximation
χV can also be used when τinv = 0 and performs well, but only for positive V .
In the next section, it is discussed how to estimate the convectivity and damping
and their common errors.
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Figure 3.4. The relative errors of the χφ estimates as function of χ̄ =
χ/ω, V̄ and ρ. The errors are based on a cylindrical geometry using
an infinite domain boundary condition where χ, V , and τ̄inv = 2 are
independent of ρ. The heat waves travel outwards. The darkest blue
represents εrel < 1% and the darkest red represents all εrel > 150%.

3.3 Estimating the convectivity and damping

In this section, the possibility of estimating the convectivity V and damping τinv
in a semi-infinite cylindrical domain is investigated based on the slab geometry
estimates Vφ and τφ. Then, the effect of model errors arising from idealized
assumptions are studied. A slab geometry example is used avoid errors aris-
ing from the idealized assumptions are being mixed up by errors arising from
cylindrical geometry.

3.3.1 Estimation of V and τinv in a semi-infinite cylindrical
geometry

The only possibility to estimate χ in a cylindrical geometry under the influence of
V and τinv presented here is by using χφ in (3.9). The accompanying Vφ in (3.10)
and τφ in (3.12) give the slab estimates Vs and τinvs and not the cylindrical V
and τinv. This is explained in Section 2.1.3. The quality of these estimates using
Vs and τinvs is investigated on the basis of a semi-infinite cylindrical geometry
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Figure 3.5. The relative error of the estimates of V and τinv using
the approximations Vφ, V compφ , and τ compφ for a large range of χ̄, V̄ , and
ρ. This comparison is based on a cylindrical geometry using a semi-
infinite domain, where the heat waves travel outwards. The darkest blue
represents εrel < 1% and the darkest red represents all εrel > 150%.

and is presented in Figure 3.5.
The slab approximation Vφ still gives a good estimate of the cylindrical ge-

ometry because the damping takes part of the model errors into account (see
(2.11)). However, this also means that the estimates of τinv in a cylindrical
geometry are poorly approximated by τφ (not shown here). As an alternative,
it is also possible to compensate for the model errors based on (2.11), i.e.,

V compφ = Vφ −
χφ
ρ
, and τ compφ = τφ +

2

3

Vφ
ρ
. (3.16)

The compensated V compφ improves the estimate of V in some regions, but de-

creases it in other regions. This can be understood by comparing V compφ to χ

in Figure 3.4. The region where V compφ approximates V well is almost an exact
copy of the region where χφ approximates χ well in Figure 3.4. In (3.16), it also
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becomes clear that there is a clear relationship between the chosen base geom-
etry (slab, cylindrical) and the spatial variation of the transport coefficients. If
one allows the transport coefficients Vs and τinvs to be spatial dependent, then
it is possible to transform a cylindrical geometry into a slab geometry.

The damping can only be estimated by the use of τ compφ in a limited re-

gion. One might expect that by replacing Vφ by V compφ to calculate τ compφ might
increase the approximation region, but the differences are rather small.

It is clear that the slab approximations with or without compensation can
approximate the convectivity and damping in a semi-infinite cylindrical geom-
etry with constant parameters in certain parameter ranges of χ̄, V̄ , τ̄inv, and
ρ. However, in reality the profiles can vary spatially and a different boundary
condition is present than the infinite domain. The effect of these varying pro-
files and different boundary conditions on the estimates of χ, V , and τinv is
investigated next.

3.3.2 The effect of boundary conditions and radial depen-
dent profiles

Errors originating from (varying) spatial dependent profiles and boundary con-
ditions different from the ones assumed used here are important in practice. It
has been shown that using slab geometry approximations to estimate the trans-
port coefficients in a cylindrical geometry also introduces errors. Therefore, a
slab geometry simulation is used here to distinguish between errors originating
from varying profiles/boundary conditions and cylindrical geometry. Although
only the errors for (3.9), (3.10), and (3.12) are shown, these errors occur for
all approximations based on semi-infinite domains, including the ones from the
literature, as they are based on the same assumptions. This also holds for the
ones based on symmetry boundary conditions discussed in Section 2.4.

The choice of an infinite domain description allows the derivation of explicit
equations, which is an important advantage over other choices of the boundary
conditions. However, the disadvantages are generally not so clear, but should
also be considered:

1. It is assumed that the parameters are independent of ρ from [ρi,∞), so
even spatial variations far from the used A′/A and φ′ will introduce an
error on the estimated diffusivity, even if the domain on which A′/A and
φ′ are calculated are constant in space.

2. There is a difference between the modeled and the real boundary, i.e.,
estimates close to the real boundary will show a significant bias (errors).
This was already shown in [Goedheer, 1986] using analytic expansions.

The introduced bias due to mismodeling is partly suppressed in practice because
(2.10) acts as a low-pass filter, suppressing high-frequency errors more strongly
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than low-frequency information. The amount of suppression also depends on
the distance to the boundary, on the variation of the parameters, and on the
distance of this variation to the location ρ. However, as τinv and V are influenced
by low-frequency information, they are affected more strongly by these errors,
making it often impossible to find the correct τinv and V . These effects can be
demonstrated through an example.

Consider as an example a heat-transport model in slab geometry (2.10)
is discretized using finite difference and simulated with boundary conditions
∂T/∂ρ (ρ = 0) = 0 and T (ρ = 2.2) = 0 with a (point) source term at ρ = 0.0025.
Heat waves are studied propagating towards edge at ρ = 2.2. The choice for slab
geometry and heat waves towards the edge is made since χφ, Vφ, and τφ, us-
ing (3.9), (3.10), and (3.12), determine χ, Vs, and τinvs exactly under these
assumptions. Hence, only the effect of varying profiles and boundary conditions
influence the result. The finite difference simulation is uses 2000 measurement
(spatial grid) points, which are equidistant with ∆ρ = 0.0011. The phase and
amplitude as function of ρ are calculated from this finite difference simulation.
The corresponding A′/A and φ′ are calculated using (2.42), because this is the
correct way to calculate A′/A and φ′ in the case of slab geometry. In addition,
as the distance between two points, ∆ρ, is small, the errors in A′/A and φ′

are negligible. The dimensionless radius ρ has been extended here to ρ = 2 to
show the errors originating from varying profiles and boundary conditions more
clearly. The result is shown in Figure 3.6 on page 46, where a varying profile of
χ and Vs in terms of steps are shown.

It is clear that the estimates of χφ feel the step in χ (ρ) before it occurs, which
is, as explained, a direct consequence of choosing infinite domains. However,
interestingly at the step in χ (ρ) (ρ = 0.5) the estimates χφ and Vφ are close to
the true values. The small difference at the step in χ (ρ) at ρ = 0.5 is caused
by the step in Vs (ρ) at ρ = 1.25, which influences the estimates at ρ = 0.5.
The same phenomenon can be observed at the step in Vs (ρ) where both the
estimates χφ and Vφ are exact. Due to (2.35) the estimates are insensitive to
what happens before φ1 = φ (ρ1). However, in principle, they are sensitive to
what happens at ρ > ρ1, hence τinv is not exact at the steps. The estimates
that come close to the boundary condition will also show errors, as was already
discussed in [Goedheer, 1986].

A different aspect is the magnitude of variation in the estimates due to vari-
ations in the profiles and boundary conditions. Therefore, it is important to
consider the y-scales in Figure 3.6 on page 46. The variations in the profiles
influence χ to a lesser extend, but are disastrous for the estimates of Vs and
τinvs. Moreover, a step in χ (ρ) has a large influence on the estimates Vφ and
τφ, but a step in Vs (ρ) and τinvs (ρ) (not shown here) influences χφ to a lesser
extent. Note that the step in Vs (ρ) is 10 times larger than the step in χ (ρ).

The errors introduced by the boundary errors show a similar behavior, which
are significantly larger for Vφ and τφ. The main reason why the errors are
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significantly larger for τφ and to a lesser extent Vφ is that errors propagate
further at low frequencies. Both, Vs (ρ) and τinvs (ρ) are only important at low
frequencies, see (2.13). This also explains why the estimate of χ using 25 Hz
show larger errors than the estimate based on 100 Hz.

We refrain here from making statements about direction and absolute values
of errors as this depends on too many factors such as the boundary conditions,
the absolute values and the variation of profiles, frequency, how A′/A and φ′

are approximated, etc. Therefore, only the qualitative behavior is shown, which
also led us to the conclusion that Vs and τinvs will be very difficult to study in
practice using semi-infinite domains. This also holds for the estimates of the
cylindrical V and τinv. On the other hand, a step in a profile is also the most
extreme case. This means that it is not always impossible to estimate Vs and
τinvs or V and τinv in practice, but great care should be taken and different
approximation methods for V and τinv may be necessary.

The argument could be made that these errors are suppressed by increasing
the frequency of the perturbation source, but that will lead to noisy measure-
ments due to the low-pass characteristic of the heat-transport, e.g., (2.36). A
better solution is to use implicit methods discussed in Chapter 7, which allow
the use of more complex models without many of the problems encountered by
semi-infinite domains. In that case the approximations presented in this chapter
form a tool for finding starting values for such implicit methods and to have a
rough idea of the values of χ (ρ).

3.4 Summary

In this chapter, the problem of determining the diffusivity in cylindrical geometry
using slab geometry relationships based on temperature fluctuations has been
revisited. A number of new approximations have been introduced to estimate
χ, V , and τinv directly from A′/A and φ′ for different combinations of χ, V ,
and τinv. The approximations are based on semi-infinite slab geometry using
standard assumptions in the literature.

The main result is the approximation of χ, under the influence of V and
τ , based on the phases of two harmonics, which cannot be found in the fusion
literature. The new approximation extends the region in which χ can be approx-
imated compared to the well known relationship in [Jacchia, 1991] for cylindrical
geometry even if V = 0. However, it should be noted that unlike the relation-
ship in [Jacchia, 1991], the new approximation does not take density gradients
into account and is based on the phase of two harmonics instead of amplitude
and phase of one harmonic. This approximation performs well in a large region
when convectivity is present for which this is the first direct expression in the
literature. Here, the use of two harmonics cannot be seen as a deficit as at least
two harmonics will be necessary.



46 Chapter 3. Estimation of the transport coefficients using slab geometry

0
.5

1
1
.5

2

4 6 8

1
0

1
2

1
4

ρ

χ

 

 

χ
s

χ
φ (1

0
0
H

z
)

χ
φ (2

5
H

z
)

0
.5

1
  

1
.5

2
  

−
7
0

−
6
0

−
5
0

−
4
0

−
3
0

−
2
0

−
1
0 0

1
0

2
0

V
s

ρ

 

 

V
s

V
φ (1

0
0
H

z
)

V
φ (2

5
H

z
)

0
.5

1
1
.5

2
−

1
0
0

−
8
0

−
6
0

−
4
0

−
2
0 0

2
0

4
0

6
0

8
0

1
0
0

ρ

τ
invs

B
C

: T
(ρ

 =
 2

.2
) =

 0

 

 

τ
in

v
s

τ
φ (1

0
0
H

z
)

τ
φ (2

5
H

z
)

F
ig

u
re

3
.6

.
C

om
p

arison
b

etw
een

tw
o

estim
ated

p
rofi

les
w

ith
a

step
in

th
e
χ

(ρ
)

p
ro

fi
le

a
t
ρ

=
0.5

an
d

in
th

e
V
s

(ρ
)

at
ρ

=
1
.25.

In
ad

d
ition

,
follow

in
g

b
ou

n
d

ary
con

d
ition

T
(ρ

=
2.2

)
=

0
is

a
p

p
lied

.
T

w
o

estim
ates

of
χ

,
V
s ,

an
d
τ
in
v
s

ex
p

ressed
as,

χ
φ
,
V
φ
,

an
d
τ
φ
,

are
p

resen
ted

w
h

en
u

sin
g

th
e

fi
rst

tw
o

h
a
rm

o
n

ics
(ω

2
=

2ω
1 )

for
a

b
ase

freq
u

en
cy

2
5

H
z

an
d

100
H

z,
i.e.,

th
e

fi
rst

tw
o

h
arm

on
ics

are
u

sed
.



3.4 Summary 47

The use of semi-infinite domains necessary to arrive at explicit approxima-
tions introduces errors, which are related to varying profiles and boundary con-
ditions at finite length. Moreover, these errors influence the convectivity and
damping significantly, making the estimated V and τinv often erroneous. On the
other hand, it is important to still estimate V and τinv as they can be used to
select the proper approximation and to verify if the estimates of χ in the pres-
ence of V and τinv are correct. This will be explained in the next chapter, where
a number of new approximations are derived, which are based on a semi-infinite
cylindrical domain.





Chapter 4

Estimation of the transport
coefficients for heat waves

propagating outwards
(semi-infinite)

In this chapter approximations are derived based directly on semi-infinite cylin-
drical geometry, that can be used to calculate the diffusivity, convectivity, and
damping from the spatial derivatives of amplitude and phase of temperature
fluctuations. In combination with the approximations based on slab geometry
derived in Chapter 3, these can be used to calculate the transport coefficients
for heat waves propagating outwards.

Three methodologies are used to find approximations for χ, V , and τ , namely
continued fractions, asymptotic expansions, and multiple harmonics. A large
number of approximations are found for various combinations of transport co-
efficient dependencies. These are compared for different values of the transport
coefficients, dimensionless radius, and frequency. In practice, the transport co-
efficients are unknown. Therefore, also a method is introduced to select and
test the accuracy of the approximation without knowing the actual transport
coefficients.

This chapter is based on the following article: van Berkel, M., et al. [2014]. Explicit
approximations to estimate the perturbative diffusivity in the presence of convectivity and
damping II Semi-infinite cylindrical approximations, Phys. Plasmas 21: 112508.
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4.1 Derivation of explicit approximations

Three new methods are introduced to find approximations for determining the
diffusivity in cylindrical geometry using (2.22) and (2.23). They are based on
continued fractions, asymptotic expansions, and multiple harmonics. A great
number of new approximations are derived in this chapter. Therefore, in this
section only the basic ideas are explained to increase the readability. The full
derivations are summarized in the next section and their derivations can be found
in Appendix B.

4.1.1 Continued fractions

The solution to the Bessel Differential Equation (A.1) and Confluent Hyper-
geometric Differential Equation (A.2) can be found by substitution of a power
series (see Appendix A). This yields the recurrence relationship and is used
to calculate the infinite series representation of Bessel functions and Confluent
Hypergeometric Functions. Moreover, if a fraction of these functions is stud-
ied, the recurrence relationships and series representation can also be rewritten
in terms of a continued fractions representation [Cuyt, 2008; Jones, 1980]. By
truncating this continued fraction, the ratio of Bessel functions and Confluent
Hypergeometric Functions can be approximated. This approximation is then
inverted such that the transport coefficients can be directly calculated.

The use of a continued fraction to derive an explicit approximation for χ is
best explained by means of an example. Therefore, consider again (2.23) with
V = 0 and z defined in (2.24)

Θ′

Θ
= −zK1 (zρ)

K0 (zρ)
, with z =

√
3

2

iω + τinv
χ

.

The Laplace variable s has been replaced by iω as s can only be measured on
the imaginary axis. The continued J-fraction from [Cuyt, 2008; Jones, 1980] can
be used to calculate the ratio

K1 (zρ)

K0 (zρ)
= 1 +

1

2zρ
−

(4zρ)
−1

2zρ+ 2−
9/4

2zρ+ 4−
25/4

2zρ+ 6−
64/4

· · ·

. (4.1)

This continued fraction can be truncated to find explicit approximations for χ.
The most simple truncation is

Θ′

Θ
= −z

(
1 +

1

2zρ

)
. (4.2)
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This can be rewritten by substituting (2.25) and rewriting in terms of z

z = −
(
A′

A
+ iφ′ +

1

2ρ

)
. (4.3)

By substituting (2.24) and squaring (4.3), it is possible to find χ and τinv using
the imaginary part and real part

χc =
3

4

ω(
A′

A + 1
2ρ

)
φ′

and

τc =
ω

2


(
A′

A + 1
2ρ

)
φ′

− φ′(
A′

A + 1
2ρ

)
 . (4.4)

The index, here c, is used to distinguish between the different approximations.
The same approximation for χ is found in [Jacchia, 1991], i.e., (2.47), using a
different approach. In contrast to the approach in [Jacchia, 1991], using this
method also the corresponding τinv is found, which is denoted by τc.

More accurate approximations can be found by using more terms in the con-
tinued fraction. In principle, it is possible to find an approximation of arbitrary
accuracy. However, in practice solving for χ beyond third order polynomials in z
is too complicated. The reason is that finding zeros for a fourth or higher order
polynomial in z is not straightforward. In addition, different solutions apply
for different regions of interest because the coefficients in the polynomials in z
depend on A′/A and φ′. Hence, mathematical bifurcations can occur.

The continued fraction in (4.1) can also be truncated at a later stage, for the
first three terms of (4.1) resulting in

Θ′

Θ
= −z +

1

2ρ
+

1

ρ

− 1/4

2zρ+ 2−
9/4

2zρ+ 4

 . (4.5)

It can be rewritten in terms of z resulting in the third order polynomial

0 = a3z
3 + a2z

2 + a1z + a0, (4.6)

with coefficients

a3 = 16ρ3, a2 = 16
Θ′

Θ
ρ3 + 56ρ2,

a1 = 48
Θ′

Θ
ρ2 + 45ρ, and a0 = 23

Θ′

Θ
ρ+ 7.5, (4.7)
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where Θ′/Θ is given by (2.25). The third order polynomial yields three solutions.
On the other hand, the argument of z must lie in the domain [0, π/4] since χ,
τinv, and ω are larger than zero. Consequently, generally there is only one
solution which satisfies this constraint on z. However, this is difficult to derive
analytically. Hence, the correct solution (zero) has been verified numerically.
This gives that the solution for the semi-infinite domain approximations of the
third order polynomial, i.e., (4.6), is always given by

z = − a2

3a3
−

3
√

2p0

3a3p1
+

p1

3 3
√

2a3

, (4.8)

where p0 = 3a1a3 − a2
2, p1 = 3

√
p2 +

√
4p3

0 + p2
2, and p2 = −27a0a

2
3 + 9a1a2a3 −

2a3
2. Similarly, the correct solution can be found for a second order polynomial

in z. Then, the solution for χ is found by squaring and using the imaginary part
and the real part of z2

χ =
3

2

ω

= (z2)
. (4.9)

The diffusivity χ can always be found for such polynomials in z using (4.9),
which is based on (2.24). Therefore, in case the approximations are based on z,
only the polynomials in terms of z are given and not the explicit approximation
in χ. The approximation for τinv can also be found based on (2.24)

τinv = ω
<
(
z2
)

= (z2)
. (4.10)

However, the damping τinv is much more sensitive to errors due to mismodeling
(see Section 3.3.2). Therefore, they generally do not give reasonable values
for the true damping. This also holds for approximations of the convectivity V ,
which are derived in the next sections. Nevertheless, they play an important role
in the validation of the χ estimates. In Appendix B other continued fractions
are used to find explicit approximations for χ.

4.1.2 Asymptotic expansions

An alternative to continued fractions are asymptotic expansions. An asymp-
totic expansion of a function can be based on either a truncation of its series
expansion or on an approximation of the defining Ordinary Differential Equation
for the function [Bateman, 1953; Erdélyi, 1956; Slater, 1960]. The asymptotic
expansions can be calculated for the Bessel functions and for the Confluent Hy-
pergeometric Function of the second kind Ψ. Here, an approximation is derived
based on (2.22) in terms of Ψ. The derivation of the approximation for χ based
on Bessel functions of the second kind can be found in Appendix B.
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The asymptotic expansion for x ≈ 0 of Ψ (a, b, x) are given in [Abramowitz,
1976; Slater, 1960]. Using this we find for (λ1 − λ2) ρ small

Ψ (a, 1, (λ2 − λ1) ρ) ≈ − 1

Γ (a)
(ln ((λ2 − λ1) ρ) + z (a) + 2γ) , (4.11)

and

Ψ (a+ 1, 2, (λ2 − λ1) ρ) ≈ ((λ2 − λ1) ρ)
−1

Γ (a+ 1)
, (4.12)

where a = λ2/ (λ2 − λ1), γ is the Euler-Mascheroni constant and Γ is the gamma
function. It should not be confused with the particle flux Γ. The logarithmic
derivative of Γ is the digamma function denoted by z, which is often also denoted
as ψ. The logarithmic temperature derivative can be calculated by substituting
(4.11) and (4.12) into (2.22)

Θ′

Θ
= λ1 + λ2

1
Γ(a+1) ((λ2 − λ1) ρ)

−1

1
Γ(a) (ln ((λ2 − λ1) ρ) + z (a) + 2γ)

. (4.13)

This can be simplified using a = λ2/ (λ2 − λ1) and using the property Γ (a+ 1) =
aΓ (a) [Nielsen, 1906]

Θ′

Θ
= λ1 +

1

ρ (ln ((λ2 − λ1) ρ) + z (a) + 2γ)
. (4.14)

The digamma function z (a) as function of a and the appearance of λ1 in and
outside the logarithm pose important obstacles to find approximations for χ.
Therefore, two simplification steps are necessary. The asymptotic expansion is
based on x ≈ 0, which implies that ρ ≈ 0. Thus, the term with 1/ρ will dominate
over λ1, hence (4.14) can be simplified to

Θ′

Θ
=

1

ρ (ln ((λ2 − λ1) ρ) + z (a) + 2γ)
. (4.15)

However, if V 6= 0 the problem of z (a) remains.
In case V = 0, a = 1/2 such that z simplifies to z (1/2) = −2 ln (2) − γ,

which simplifies (4.15) towards

Θ′

Θ
=

1

ρ (ln ((λ2 − λ1) ρ)− 2 ln (2) + γ)
. (4.16)

This can be rearranged as

λ2 − λ1 =
1

ρ
exp

(
1

Θ′

Θ ρ
+ 2 ln (2)− γ

)
, (4.17)
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such that

1

2
(λ2 − λ1) =

γ1

ρ
exp

((
Θ′

Θ
ρ

)−1
)
, (4.18)

where γ1 = 2 exp (−γ). The approximation in terms of z is given by

z =
γ1

ρ
exp

((
Θ′

Θ
ρ

)−1
)
, (4.19)

for which the solution in terms of χ and τinv are given in (4.9) and (4.10). Note
that in this special case, χ and τinv can also be expressed in terms of geometrical
functions

χAEΨ =
3

2
ω
ρ2

γ2
1

exp

(
2

ρ

A′/A

|Θ′/Θ|2

)−1

sin

(
−2

ρ

φ′

|Θ′/Θ|2

)−1

, (4.20)

and

τAEΨ = ω

(
tan

(
−2

ρ

φ′

|Θ′/Θ|2

))−1

. (4.21)

A similar relationship is derived based on the asymptotic expansions of Bessel
functions in Appendix B. This approximation only differs from (4.20) by the
factor γ1. The comparison of the approximations with and without γ1 shows
that using the factor γ1 improves the result, thus only (4.19) is presented here.

When V 6= 0 it is not possible to rewrite (4.15) such that the diffusivity χ
can be estimated explicitly. Therefore, another approximation step is introduced
when V 6= 0 by replacing z (a) by z (1/2). Then, it is still possible to estimate
χ well in cases where a ≈ 1/2, e.g., V ≈ 0 or ln ((λ2 − λ1) ρ) � z (a). The
reason is that V is also contained in λ2 − λ1. In that case (4.15) is expressed as

(
V

2χ

)2

+
3

2

τinv
χ

+
3

2

iω

χ
=
γ2

1

ρ2
exp

((
Θ′

Θ
ρ

)−1
)2

. (4.22)

Interestingly, the estimate (4.20) for the diffusivity χ does not change as the
imaginary part only contains χ. If τinv = 0 in (4.22), then

|VAEΨ| =
3

2
2ω

√
< (z2)

= (z2)
. (4.23)

However, the possibility to estimate V in practice using (4.23) is questionable.
The combination of V and τinv cannot be calculated using this approximation.
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4.1.3 Multiple harmonics

Every harmonic fixes two degrees of freedom, which means in practice that either
χ and τinv or χ and V can be estimated if only one harmonic is used. Therefore,
to estimate χ, V , and τinv together, it is necessary to use at least two harmonics.
In Section 2.3.3 an approximation is given in (2.46) based on [Jacchia, 1991]

χ (ρ) =
1.5ω −

(
2.5Γ

n + Γ
)
φ′

φ′′ +
(

2A
′

A + 1
ρ + n′

n + χ′

χ + U(ρ)
χ

)
φ′
.

Section 2.3.3 shows that, to make this approximation applicable, the diffusivity
χ is assumed constant such that χ′/2χ = 0, V = 0, Γ = 0, and φ′′ = 0. However,
in case two harmonics are used, only the assumptions Γ = 0 and φ′′ = 0 need
to be retained because the term χ′/2χ + V/2χ can be eliminated. As such, it
is possible to calculate χ, V , and τinv, if accepting errors caused by the φ′′ = 0
assumption. Therefore, rewrite (2.46) in terms of the unknown quantities

χ

(
A′

A
+

1

2ρ
+
n′

2n

)
− 3

4

ω

φ′
= −χ

(
χ′

2χ
+
V

2χ

)
. (4.24)

This gives for two harmonics ω1 and ω2 at the same ρ

χ

(
A′ω1

Aω1

+
1

2ρ
+

1

2

n′

n

)
− 3

4

ω1

φ′ω1

= χ

(
A′ω2

Aω2

+
1

2ρ
+

1

2

n′

n

)
− 3

4

ω2

φ′ω2

, (4.25)

where the short-hand notation φ′ω2
= φ′ (ω2) and A′ω2

/Aω2
= A′ (ω2) /A (ω2) is

used. Solving (4.25) yields

χc2H =
3

4

ω1

φ′(ω1) −
ω2

φ′(ω2)(
A′

A (ω1)− A′

A (ω2)
) . (4.26)

Note that (4.26) is insensitive to density gradients. The convectivity V is found
by rewriting (4.24) and assuming φ′′ = 0 and χ′ = 0

Vc2H = −2

(
A′

A
+

1

2ρ
+

1

2

n′

n

)
χc2H +

3

2

ω

φ′
, (4.27)

where ω can be freely chosen. However, calculating the damping is more difficult.
Therefore, after the substitution of Θ′ and Θ′′ into (2.9) the real part should be
considered

χ

(
A′′

A
− (φ′)

2
)

=
3

2
τinv −

(
1

ρ
V + V ′ +

n′

n
V

)
−
{

1

ρ
χ+

n′

n
χ+ V

}
A′

A
. (4.28)

This can be rewritten in terms of τinv

τc2H =
2

3
χ

((
A′′

A
− (φ′)

2
)

+

(
1

ρ

V

χ
+
V ′

χ
+
n′

n

V

χ

)
+

{
1

ρ
+
n′

n
+
V

χ

}
A′

A

)
.

(4.29)
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After the substitution of (4.24) it yields

τc2H =
2

3
χ

((
A′′

A
− (φ′)

2
)

+
V

χ

(
1

ρ
+
V ′

V
+
n′

n

)
+

{
1

ρ
+
n′

n
+

(
3

4

ω

φ′χ
−
(

2
A′

A
+

1

ρ
+
n′

n

))}
A′

A

)
. (4.30)

Two unknowns are still present in (4.30), thus, in the spirit of neglecting φ′′,
∂
∂ρ

(
A′

A

)
is also neglected. Additionally, the standard assumption that V is

constant in space is used such that V ′ = 0. This results in

τc2H =
2

3
χ

((
A′

A

)2

− (φ′)
2

+
V

χ

(
1

ρ
+
n′

n

)
+

{
1

ρ
+
n′

n
+

(
3

4

ω

φ′χ
− 2

(
A′

A
+

1

ρ
+
n′

n

))}
A′

A

)
. (4.31)

The calculation of τinv is based on a complex relationship. In addition, assuming

φ′′ = 0 and ∂
∂ρ

(
A′

A

)
= 0 introduces additional errors when estimating χ, V , and

τinv. This influences the approximations τc2H and Vc2H more significantly and
hence these are not so useful in practice.

It may seem that assuming χ to be constant is no longer necessary by elim-
inating χ′ in (4.26). However, if χ′ is non-zero, it also modifies φ′′. As such, it
is questionable if better estimates of χ can be achieved. The density gradient is
still included here to show that it is possible to take it into account. However,
in this thesis the density is assumed to be constant such that n′/n = 0.

The methods of continued fractions, asymptotic expansions, and multiple
harmonics are used to derive many different explicit approximations of χ. They
are all approximations and all have a different region in which their approxima-
tion is good and regions in which it is bad. The other explicit approximations
are presented in Appendix B, which together with the approximations presented
here are summarized and compared in the next section.

4.2 Outward solutions

In this section, the explicit approximations for χ in a semi-infinite cylindrical ge-
ometry with constant spatial parameter dependencies are summarized and com-
pared. The compared approximations, based on (2.22) and (2.23), are presented
in tabularized form. In addition, the slab geometry formulas from Chapter 3
are also considered here. This section consists of four parts: the overview ta-
ble with all the derived approximations; a presentation and discussion on the
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selection of the best approximations when only χ is considered; a similar dis-
cussion when χ and τinv are considered (V = 0); and when χ, V , and τinv are
considered. The comparison is based on combinations of ρ, ω, χ, V , and τinv
and is presented in terms of normalized transport coefficients, i.e., χ̄ = χ/ω,
V̄ = V/ω, and τ̄inv = τinv/ω. A more detailed discussion on the normalization
can be found in the beginning of Section 3.2. Whenever two harmonics are nec-
essary, A′/A (ω1), A′/A (ω2), φ′ (ω1), and φ′ (ω2) are calculated using ω1 = ω
and ω2 = 2ω corresponding to the first and second harmonic.

4.2.1 Overview of possible explicit approximations

Table 4.1 on page 58 summarizes the derived approximations to calculate χ from
Section 4.1 and Appendix B, including some relationships from the literature
derived in Chapter 2. The following notation is used to express approximations
based on continued fractions χKj3: K denotes the Bessel function of the second
kind, lower case j denotes the J-fraction, and 3 denotes the approximation
order (truncation). The approximations derived from asymptotic expansions
are denoted as follows: χAEΨ, where AE means Asymptotic Expansion and Ψ
the Confluent Hypergeometric Function of the second kind on which it is based.

Many approximations can also be expressed using polynomials in terms of z,
Θ′/Θ, and ρ to directly calculate χ and τinv. Therefore, Table 4.2 on page 59
gives the coefficients of these polynomials with their solutions to calculate z.
Note that the approximations for τinv and V in Table 4.1 on page 58 can show
large deviations from the true values. Therefore, they should be used carefully.

The different approximations for χ in this table are compared in the following
subsection.

4.2.2 Diffusivity only

The comparison for χ only (V = 0 and τinv = 0) is made based on a large
number of possibilities of χ, ω, and ρ.

There are different methods to find φ′ and A′/A, which can influence the
results significantly. Therefore, to avoid any ambiguity on how the derivatives
φ′ and A′/A should be approximated and how they affect the comparison, the
true derivatives generated by (2.23) are used. The most interesting and best
approximations are shown in Figure 4.1 on page 60 in terms of the relative error
with respect to the true diffusivity χ.

The approximations χφ, χc, χKj3, χKc2, and χKc5 are basically extensions
of the slab geometry case as they estimate χ well if the ratio ρ/χ̄ is large.
Perturbations with large ω or small χ penetrate less deep. This also holds for
errors and the influence of cylindrical geometry, which allows χ to be estimated
well by χφ, χc , χKj3, χKc2, and χKc5.

It is important to remember that χφ is based on the phases of two harmonics
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Figure 4.1. Comparison between the different relative errors of the χ
estimates for a large range of χ̄ = χ/ω and ρ. The relative error is defined

as εrel = 100× |χ−χest|χ [%] , where χest is either χφ (2 harmonics are used,

which are ω1 = ω and ω2 = 2ω), χc, χKj3, χKc2, χKc5, and χAEΨ from
Table 4.1 on page 58. This comparison is based on a cylindrical geometry
using a semi-infinite domain with χ and V = τinv = 0, where the heat
waves travel outwards. The darkest blue represents εrel < 1% and the
darkest red represents all εrel > 150%.

making it more difficult to compare them with the other approximations. In χc
and χKj3 large relative errors are observed for small ρ and large χ̄. Why these
large errors occur for χc is discussed in Section 3.2.1. Intuitively, one expects a
similar behavior for χKj3 as it is based on the same continued fraction. However,
this is difficult to show analytically. The approximation χKj3 is more accurate
and extends the region in which χ can be estimated well, which is a logical
consequence of taking more terms in the continued fraction before truncation.
Clearly, χKc2 and χKc5 do not suffer from the zero crossing causing the large
errors in χc and χKj3. The region in which χ is estimated well by χKc5 is slightly
larger than χc and smaller than χKj3.

Generally, χKj3 gives the best approximation of χ, except when ρ/χ̄ is small.
In that region the asymptotic expansions play an important role. They estimate
χ well for zρ ≈ 0, which can be clearly seen in Figure 4.1 for χAEΨ, which gave
the best result of the two asymptotic expansions. This also means that almost
the entire region of χ is estimated well if χKj3 and χAEΨ are combined.
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Figure 4.2. Relative error of the χ estimates for the combination of χKj3
and χAEΨ presented for different χ̄ = χ/ω and τ̄inv = τinv/ω represented
at a number of spatial locations ρ. The relative error is defined as εrel =

100 × |χ−χest|χ [%]. This figure combines the approximations χKj3 and
χAEΨ which take both χ and τinv into account and are separated by the
boundary represented by the white line (middle of the largest error). The
resulting error is based on a cylindrical geometry using a semi-infinite
domain with χ and V = 0, where the heat waves travel outwards.

4.2.3 Diffusivity and damping only

There are a number of suitable approximations to determine χ in the presence
of τinv. However, it suffices, with a minimal loss of accuracy, to use the approx-
imations χKj3 and χAEΨ to estimate χ in the region of interest, which is shown
in Figure 4.2.

The white line shows approximately the boundary of the applicability of
χKj3 and χAEΨ. This does not mean that χKj3 and χAEΨ estimate χ with the
highest accuracy compared to the other approximations in the presented region,
but they have the largest region of approximation and are the most accurate in
a large region. In addition, χKj3 and χAEΨ are the best approximations around
the white line where the errors are largest. This can also be understood by
considering Figure 4.1 on page 60.

In general, the effect of damping τinv acts as a shift parameter and is not
directly influenced by the cylindrical geometry (see Chapter 3). However, these
effects are also influenced by the approximation used. This means that for large
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τinv the regions in which χ are estimated well is extended for χKj3, and similarly
for χφ, χc, χKc2, and χKc5. On the other hand, it is reduced for χAEΨ, which
is also shifted in the same direction.

The maximum relative error for the combination of χAEΨ and χKj3 over the
entire presented region is εrel < 20%. It is also important to note that in some
regions χKc2, χKc5, and χKj2 give a slightly better approximation. In some
isolated regions other approximations have a smaller error than the previously
mentioned approximations are better approximations than , but generally with
a comparable accuracy. Note that the absolute error for large χ̄ will be larger
than 20%.

4.2.4 Diffusivity and convectivity with τinv = 0 and τinv = 2

Most of the previously discussed approximations poorly estimate the diffusivity
in the presence of convectivity. In principle, only four relationships are available
to analyze χ for heat waves propagating outwards, i.e., χV , χφ, χAEΨ, and χc2H
(see Table 4.1 on page 58). It is unclear what a good range is for V̄ = V/ω.
Therefore, an arbitrary choice for this range is used, i.e., −100 6 V̄ 6 100.

It turns out that χφ outperforms all other approximations except when ρ/χ̄ is
small. There χAEΨ performs better. On the other hand, χc2H performs similar
to χφ, both in error and the size of the region in which it estimates χ well,
making them almost interchangeable. Although they are both based on (the
first) two harmonics, χφ only uses the phase. Therefore, only χφ and χAEΨ are
presented in Figure 4.3 for τinv = 0 and Figure 4.4 for τinv = 2.

Figure 4.3 on page 64 and Figure 4.4 on page 63 show similar regions. In
general χ can be estimated well for large ρ, but there is an area with larger errors.
Although this area is influenced by the damping, its effect is rather small. In
addition, there is a small region which has large errors (εrel > 150%) for large
negative V and for small ρ and χ̄.

4.2.5 Summary

In this section many different approximations are introduced. For problems
with convective velocity, χφ and χAEΨ should be used. Otherwise, χAEΨ, χφ,
and χKj3 are the best approximations. The other approximations can also be
used. Although these other approximations are sometimes more accurate, their
accuracy is in general comparable to the approximations given in Figure 4.2 on
page 61 and Figure 4.3 on page 63. Section 4.3 will elaborate on how to select
the proper approximation based on the underlying models.
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Figure 4.3. Relative error of the χ estimates for the combination of χφ
and χAEΨ presented for different χ̄ = χ/ω and V̄ = V/ω represented at a
number of spatial locations ρ. The relative error is defined as εrel = 100×
|χ−χest|

χ [%]. The approximation regions of χφ and χAEΨ are separated by
white lines. This comparison is based on a cylindrical geometry using a
semi-infinite domain with τinv = 0, where the heat waves travel outwards.
The darkest blue represents εrel < 1% and the darkest red represents all
εrel > 150%.

4.3 Choice and validation of approximations

The previous section presented many different approximations. The validity
ranges of these approximations do not only depend on ρ and ω, but also on
the unknown transport coefficients χ, V , and τinv. This may seem to be a
problem, but this can be solved partly using the original models in terms of
Bessel functions or Confluent Hypergeometric Functions in (2.22) and (2.23).
These original models can be used to explicitly calculate estimates of the original

A′/A and φ′, denoted by Â′/A and φ̂′. They can be calculated by substituting
the estimated transport coefficients with corresponding ρ and ω in (2.22) and

(2.23). This should result in approximately the same Â′/A and φ̂′ as the original
A′/A and φ′.

The procedure to select the approximation for the cases with only χ and τinv
is shown through an example.
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Figure 4.4. Relative error of the χ estimates for the combination of χφ
and χAEΨ presented for different χ̄ = χ/ω and V̄ = V/ω represented at a
number of spatial locations ρ. The relative error is defined as εrel = 100×
|χ−χest|

χ [%]. The approximation regions of χφ and χAEΨ are separated by
white lines. This comparison is based on a cylindrical geometry using a
semi-infinite domain with τ̄inv = 2, where the heat waves travel outwards.
The darkest blue represents εrel < 1% and the darkest red represents all
εrel > 150%.

Example: Consider a measurement at ρ = 0.1 where A′/A = −7.0593
and φ′ = −3.5588 with ω = 50π and assuming that V = 0. Basically, two
approximations are best tried first, i.e., χKj3 and χAEΨ. This results in χKj3 =
7.8629, τKj3 = −5.0253 and χAEΨ = 13.1327, τAEΨ = 72.4163 using Table 4.1
on page 58 and Table 4.2 on page 59. Clearly, the τinv’s are erroneous. To test
which is the proper approximation, substitute the values of χ and τinv back into

the original model, which in this case is (2.23). This results in Â′/A + φ̂′i =

−7.0377 − 3.6514i for χKj3, and Â′/A + φ̂′i = −6.8527 − 2.2746i for χAEΨ.

Consequently, χKj3 is the best approximation as Â′/A ≈ A′/A and φ̂′ ≈ φ′.
It is also possible to use χc and χKj2 resulting in χc = 10.7168, τc = −90.2764

and χKj2 = 7.9655, τKj2 = −18.1707, with Â′/A+ φ̂′i = −5.9559− 4.1495i and

Â′/A+ φ̂′i = −6.8924− 3.7907i, respectively. Again, χKj3 is closest to the true
A′/A and φ′ and hence should be selected.
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In this example, the true values are χ = 8 and τinv = 0.5 such that actually
χKj2 is closest to the true χ. However, due to the much larger error in τKj2 the

Â′/A and φ̂′ deviate significantly from the true A′/A and φ′.
Hence, it is the combination of χ and τinv, which is tested. Nevertheless, this

test gives a clear statement of which χ estimate is trustworthy with respect to

(2.22) and (2.23). In most cases A′/A ≈ Â′/A and φ′ ≈ φ̂′ are found with some
small rounding error, unlike the example presented here.

Similarly, other approximations can be tested, which are based on one har-
monic only. However, two harmonics are necessary for the mixed case of χ, V ,

and τinv. This procedure is more difficult. It is still possible to compare Â′/A

and φ̂′ to A′/A and φ′, but this comparison also depends on A′/A and φ′ of
the second harmonic, which can also introduce a difference even if the estimated
parameters are correct. Nevertheless, this comparison still gives valuable infor-
mation on the quality of the approximation used. In case χφ or χV are used,
the transformation in Section 3.3 can be helpful to calculate V and τinv.

If V 6= 0, then also an implementation of the Confluent Hypergeometric
Function is required, which is not always available especially for complex valued
arguments. In this thesis, Mathematica c© is used to calculate Ψ. Alternatively, it
is also possible to use the continued fraction on p. 326 in [Cuyt, 2008], which can
in principle be used to calculate (2.22) with a desired accuracy using truncation.
However, selecting a priori the number of terms necessary to arrive at a desired
accuracy is not easy.

The procedure presented here checks the quality of the approximation with
respect to its underlying model. It does not give any validation of the true χ
as it depends on many other factors such as variation of the profiles, bound-
ary conditions, approximation A′/A and φ′, disturbances such as noise, and
non-linearities. Noise and non-linearities require an extensive study based on
statistics and higher harmonics.

4.4 Conclusions and summary

A large number of new approximations have been introduced in this chapter to
estimate χ directly from A′/A and φ′ for different combinations of χ, V , and τinv.
These approximations and the approximations from Chapter 2, and Chapter 3
have been compared for heat waves propagating outwards (semi-infinite domain).

The quality of the approximations is presented in several figures. In case
only χ and τinv are considered (V = 0), the relative error of the χ estimate for
the region of interest is in general 1%. In a small region, the errors are larger
with a maximum relative error of 20%. These errors are achievable by combining
χKj3 and χAEΨ assuming that (2.22) is exact. If V is also considered, the new
approximations show a significant region in which χ can be estimated well, but
also regions in which no suitable approximation exists. In this case, combining
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χAEΨ and χφ covers a large region where χ can be well estimated.
Several figures present the ranges where χ can be estimated well as function

of ρ, ω, and the transport coefficients. However, in practice these figures are less
useful as the true transport coefficients are unknown. Therefore, in Section 4.3
a simple test is presented to check if the chosen approximation reproduces the
original A′/A and φ′. This means that, without using knowledge of the actual
transport coefficients, a proper approximation can be selected. Therefore, it
is also necessary to determine the convectivity and damping. However, this
test does not give information about the quality of the approximation with
respect to the original PDE (2.8). More extensive validation tests are discussed
in Chapter 7.

This chapter discussed the estimation of χ in a cylindrical geometry us-
ing several approximations based on perturbative measurements for heat waves
propagating outwards. In Chapter 5, approximations to estimate χ are derived
and discussed for heat waves propagating towards the center (inwards) based on
a symmetry boundary condition. Some of the approximations based on semi-
infinite domains might also be applicable for heat waves propagating towards
the center in cases where the influence of cylindrical geometry is not so strong.



Chapter 5

Estimation of the transport
coefficients for heat waves

propagating inwards (symmetry)

In this chapter approximations are obtained of the heat-equation in a cylindri-
cal domain assuming a symmetric domain (Neumann boundary condition) and
unknown diffusivity χ, convectivity V , and damping τ . These approximations
should be used in case of an off-axis perturbative heating source, i.e., when heat
waves travel towards the center of the plasma. This chapter has a similar struc-
ture as Chapter 4, using the ratio of modified Bessel functions of the first kind
or Confluent Hypergeometric Functions of the first kind are used. Both can be
approximated by truncation of continued fractions.

5.1 Derivation of explicit approximations using
continued fractions

In this section, a number of continued fractions are used to find approximations
for the transport coefficients in cylindrical geometry using (2.50) and (2.51).
The three most important approximations are derived in this section. The other
approximations are derived and given in Appendix B. A summary of the ap-
proximations is given in three tables in the next section.

This chapter is based on the following article: van Berkel, M., et al. [2014]. Explicit approx-
imations to estimate the perturbative diffusivity in the presence of convectivity and damping
III Cylindrical approximations for heat waves traveling inwards, Phys. Plasmas 21: 112509.
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5.1.1 Derivation of inward approximations for the diffu-
sivity and the damping only

The continued fraction for a ratio of Bessel functions of the first kind is used to
find approximations for χ under influence of damping by assuming that V = 0.
Therefore, the logarithmic temperature derivative introduced in (2.51) is used.
The following continued S-fraction of the ratio of Bessel functions can be found
in [Cuyt, 2008](page 362)

I1 (zρ)

I0 (zρ)
=

a1

1 +
a2

1 +
a3

1 + ...

, (5.1)

where ak+1 = (zρ)
2
/ (4k (k + 1)) for k > 1 and a1 = zρ/2. If this continued frac-

tion is truncated taking only the first term a1 into account, then the logarithmic
temperature derivative in (2.51) is approximated by

Θ′

Θ
= z

zρ

2
. (5.2)

This can be solved in terms of χ and τinv using (2.24), resulting in

χIsφ =
3

4

ω

φ′
ρ and τIsφ =

ω

φ′
A′

A
. (5.3)

This relationship can also be found based on the asymptotic expansions given
in [Abramowitz, 1976].

Continued fractions can also be used to find more accurate approximations
by using more terms in the continued fraction before truncation. In this case the
best approximation is found by truncating at a4 in (5.1), which can be written
in terms of a second order polynomial in z2

0 = c2z
4 + c1z

2 + c0, (5.4)

with coefficients

c2 = 12ρ3 − Θ′

Θ
ρ4, c1 = 192ρ− 72

Θ′

Θ
ρ2, and c0 = −384

Θ′

Θ
, (5.5)

where Θ′/Θ is given by (2.25). The second order polynomial yields two solutions
in terms of z2 where z2 must lie in the first quadrant of the complex plane since
χ > 0, τinv > 0, and s = iω with ω > 0. Therefore, generally only one zero of
the second order polynomial in z2 satisfies this constraint. This zero is used to
calculate χ. However, using a truncation of (5.1) at location a5 results in more
solutions within this domain. Hence, it is no longer straightforward to select the
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correct solution. Therefore, truncations higher than a4 will not be considered
here. For the truncation using a4 as the last term, it has been numerically
determined that the zero in z2 is given by

z2 =
−c1 +

√
c21 − 4 c0 c2
2c2

, (5.6)

covers the largest region of interest. The solutions for the diffusivity χ and the
damping τinv are found using (4.9) and (4.10), respectively. The continued frac-
tion in (5.1) can also be used to find two other approximations belonging to
a2 and a3, which are named χIs2 and χIs3, respectively. These can found in
Table 5.2 and are derived in Appendix B. This also holds for another approx-
imation based on the continued fraction for the ratio of Bessel functions of the
first kind.

In this subsection, the convectivity is assumed zero such that the continued
fractions for Bessel functions can be considered. The next subsection consid-
ers non-zero V . Therefore, the continued fraction for the ratio of Confluent
Hypergeometric Functions of the first kind is used to find approximations for χ.

5.1.2 Diffusivity, convectivity, and damping

The logarithmic amplitude derivative A′/A and phase derivative φ′ are given
in (2.50) as a function of χ, V , and τinv. However, only two quantities are
known, i.e., A′/A and φ′, whereas the right-hand side contains three unknowns.
Therefore, a third quantity needs to be introduced to calculate the transport
coefficients, which can be done by introducing measurements on a second har-
monic, i.e., A′ (ω2) /A (ω2) or φ′ (ω2). In addition, the expression in (2.50) needs
to be approximated using a continued fraction. In this case the continued C-
fraction of the ratio of Confluent Hypergeometric Functions of the first kind
[Cuyt, 2008](page 324) is used

Φ (a+ 1, b+ 1, z)

Φ (a, b, z)
=

1

1−

b− a
(b+ 0) (b+ 1)

z

1 +

a+ 1

(b+ 1) (b+ 2)
z

∣∣∣∣∣
I

1−

b− a+ 1

(b+ 2) (b+ 3)
z

1 +

a+ 2

(b+ 3) (b+ 4)
z

∣∣∣∣∣
II

1−
. . .

. (5.7)
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This continued fraction needs to be truncated and substituted into (2.50) to
find a proper approximation for χ. Here, (5.7) is truncated at locations I and
II because in these special cases there are no square roots in the resulting ap-
proximation of the logarithmic temperature derivative in (2.50). Hence, it is
easier to derive explicit approximations for χ, V , and τinv. In Appendix B, the
truncations at locations I and II are derived for various combinations of ampli-
tude and phase. In this section, only the truncation at location II is given using
two amplitudes and one phase, i.e., A′ (ω1) /A (ω1), φ′ (ω1), and A′2 (ω) /A (ω2)
because it gave the best numerical result. This does not necessarily mean that
in practice it also gives the best result. For instance, calibration errors will in-
fluence this approximation more than the one based on two phases because the
sensitivity of the amplitude to calibration errors is larger.

Although it is now possible to calculate explicit solutions for χ, V , and τinv,
the calculations are too complicated to do by hand. Therefore, Mathematica c©

was used to derive approximations for χ, V , and τinv based on the truncation
in (5.7). Truncating at location II results in a third order polynomial such that
there are three solutions. However, only one is different from the zero solutions
χ = 0, and is given by

χΦ4a =
3

2

6859ρ3ω2
1φ
′
1o2dA

8 (o3 + 27436ω3
1dA

3 + 45o3
1)
, (5.8)

where

dA =
A′1
A1
− A′2
A2

,

o1 = ω1

(
dA

(
A′1
A1

ρ− 4

)
+ ρ (φ′1)

2
)
− ρω2φ

′
1φ
′
2,

o2 = ω2
1

(
dA2 + (φ′1)

2
)
− 2ω1ω2φ

′
1φ
′
2 + ω2

2 (φ′2)
2
,

and
o3 = 1311o2

1ω1dA+ 10108o1ω
2
1dA

2.

The corresponding V and τinv are given by

VΦ4a = −χΦ4a
30o1

38ρω1dA
(5.9)

and

τΦ4a =
3

2
χ
−15ρ2 ω

χ
A′

1

A1
− 6

(
V
χ

)2

ρ2φ′ − 19ρ2ω V
χ2

15ρ2φ′

+
3

2
χ

48
(
V
χ

)
ρφ′ + 60ρωχ − 120φ′

15ρ2φ′
, (5.10)
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where the subscripts Φ4a on the right-hand side have been omitted. These
solutions are complicated, but are the only explicit approximations found for
the combined problem of estimating χ under convectivity and damping. The
other approximations are given in Appendix B. All the approximations are
summarized and compared in the next section.

5.2 Inward solutions

In this section, the different approximations to determine χ, V , and, τinv are
summarized and compared for heat waves propagating towards the center. The
approximations are based on the underlying models (2.50) and (2.51), which
are used to calculate A′/A and φ′ for a large number of combinations of the
transport coefficients. In addition, the semi-infinite approximations derived in
Chapter 4 can also be used. The comparison is again based on five parameters
ρ, ω, χ, V , and τinv, which are presented in terms of normalized transport
coefficients, i.e., χ̄ = χ/ω, V̄ = V/ω, and τ̄inv = τinv/ω. In case two harmonics
are necessary, A′/A (ω1), A′/A (ω2), φ′ (ω1), and φ′ (ω2) are calculated using
ω1 = ω and ω2 = 2ω.

5.2.1 Overview of possible explicit approximations

Table 5.1 summarizes all derived approximations from Section 5.1 and Ap-
pendix B to estimate χ. Some semi-infinite domain solutions from Chapter 4 are
also included. The reason is that if cylindrical effects are small, i.e., the ratio
of ωρ/χ is large, the semi-infinite domain approximations give a good approx-
imation again. However, different solutions need to be selected if polynomials
in z are used based on semi-infinite domains. The reason is that A′/A and φ′

are negative for heat waves propagating outwards and that they are positive for
heat waves propagating towards the center.

Table 5.1 only states χ explicitly to keep the table compact. The correspond-
ing equation numbers of V and τinv are given instead. In Table 5.2 on page 73 the
polynomials expressed in terms of z using Θ′/Θ = A′/A+ iφ′ and ρ to directly
calculate χ and τinv are given. Table 5.3 on page 74 presents the approximations
in terms of polynomials in z for approximations based on semi-infinite domains.

The useful solutions of the polynomials in z are different from those used for
the analysis of heat waves propagating towards the wall because the sign of A′/A
and φ′ is opposite. Therefore, to distinguish between the solutions for outward
heat waves and inward heat waves the superscript inw (inward) is added. The
useful solutions have been selected by comparing the three possibilities numer-
ically. The other solutions based on semi-infinite domains and summarized in
Tables 4.1 and 4.2 on pages 58 and 59 can also be used when the influence of
the cylindrical geometry is weak. However, χAEK and χAEΦ are not suitable
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χ Equation for χ V τinv

Approximations based on symmetry boundary condition

χIsφ
3
4
ω
φ′ ρ 0 (5.3)

χIs2φ
3
2ωρ
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8φ′ 0 0
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Approximations based on semi-infinite domain

χc
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2ρ )
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χφ 3
4
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2

φ′2
ω1
φ′2
ω2

(φ′2
ω1
−φ′2

ω2
)
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Table 5.1. Overview of the approximations for χ for heat waves prop-
agating towards the center in a cylindrical geometry where a symmetry
boundary condition is assumed. From left to right the columns denote:
the approximation of χ either explicit or in terms of z in which case the
tables on pages 73 and 74 give the relationship for z; the equation numbers
for χ, V and τinv refer either to Section 5.1 or to Appendix B.



5.2 Inward solutions 73

χ
E

q
u

a
ti

o
n

fo
r
z

E
q
u

a
ti

o
n

s

Q
u

ad
ra

ti
c

p
ol

y
n

o
m

ia
l

in
z

z
=
( −b 1

+
√ b2 1

−
4
b 0
b 2

) /
(2
b 2

)

χ
I
t1

b 2
=
ρ
,
b 1

=
−

Θ
′

Θ
ρ
,
b 0

=
−

2
Θ

′

Θ
(B

.7
)

Q
u

ad
ra

ti
c

p
ol

y
n

o
m

ia
ls

in
z

2
z

2
=
( −c 1

+
√ c2 1

−
4
c 0
c 2

) /
(2
c 2

)

χ
I
s
2

c 2
=

Θ
′

Θ
ρ

2
−

4ρ
,
c 1

=
0,
c 0

=
8

Θ
′

Θ
(a

t
a

2
)

(5
.1

)

χ
I
s
3

c 2
=
ρ

3
,
c 1

=
24
ρ
−

8
ρ

2
Θ

′

Θ
,
c 0

=
−

4
8

Θ
′

Θ
(a

t
a

3
)

(5
.1

)

χ
I
s
4

c 2
=

12
ρ

3
−

Θ
′

Θ
ρ

4
,
c 1

=
19

2ρ
−

7
2

Θ
′

Θ
ρ

2
,
c 0

=
−

3
8
4

Θ
′

Θ
(5

.5
)

C
u

b
ic

p
ol

y
n

om
ia

l
in
z

z
=

1 a
3

( −a
2 3
−

3√
2
p
0

3
p
1

+
p
1

3
3√

2

) ,
p

2
=
−

2
7
a

0
a

2 3
+

9
a

1
a

2
a

3
−

2
a

3 2

p
0

=
3a

1
a

3
−
a

2 2
,
p

1
=

3√ p
2

+
√ 4

p
3 0

+
p

2 2

χ
I
t3

a
3

=
2ρ

2
,
a

2
=
( 3ρ
−

2
ρ

2
Θ

′

Θ

) ,
a

1
=
−

4
ρ

Θ
′

Θ
,
a

0
=
−

6
Θ

′

Θ
(B

.8
)

T
a
b

le
5
.2

.
O

ve
rv

ie
w

o
f

ap
p

ro
x
im

at
io

n
s

fo
r
χ

in
te

rm
s

o
f
z

fo
r

h
ea

t
w

av
es

p
ro

p
a
g
a
ti

n
g

to
w

a
rd

s
th

e
ce

n
te

r
in

a
cy

li
n

d
ri

ca
l

ge
om

et
ry

w
h

er
e

a
sy

m
m

et
ry

b
o
u

n
d

ar
y

co
n

d
it

io
n

is
a
ss

u
m

ed
.

T
h

is
ta

b
le

is
u

se
d

to
ca

lc
u

la
te
z

u
si

n
g

Θ
′ /

Θ
=
A
′ /
A

+
iφ
′

a
n

d
ρ
,

w
h

er
e
z

is
u

se
d

to
ca

lc
u

la
te
χ

=
3 2
ω
/=
( z2)

a
n

d
τ i
n
v

=
ω
<
( z2)

/=
( z2)

;
th

e
eq

u
a
ti

o
n

n
u

m
b

er
s

re
fe

r
ei

th
er

to
S

ec
ti

o
n

5
.1

o
r

to
A

p
p

en
d
ix

B
.



74 Chapter 5. Estimation for heat waves propagating inwards

χ
in
w

z
E

q
u

ation
for

z
E

q
u

ation
s

Q
u

a
d

ratic
p

o
ly

n
om

ials
in
z

z
= (−

b
1 − √

b
21 −

4
b
0
b
2 )
/

(2
b
2 )

χ
in
w

K
c
2

b
2

=
4ρ
,
b
1

=
3

+
4

Θ
′

Θ
ρ
,
b
0

=
Θ

′

Θ
(B

.4)

χ
in
w

K
j
2

b
2

=
8ρ

2,
b
1

=
8ρ

2
Θ

′

Θ
+

4
ρ
,
b
0

=
8

Θ
′

Θ
ρ
−

3
(B

.2)

C
u

b
ic

p
o
ly

n
om

ials
in
z

z
=

1a
3 (−

a
23

+
1−
i √

3
3·

3 √
4

p
0

p
1
−

1
+
i √

3
6·

3 √
2
p

1 )
,
p

2
=
−

2
7a

0 a
23

+
9
a

1 a
2 a

3 −
2a

32 ,

p
1

=
3 √
p

2
+ √

4p
30

+
p

22 ,
p

0
=

3a
1 a

3 −
a

22

χ
in
w

K
j
3

a
3

=
16ρ

3,
a

2
=

16
Θ

′

Θ
ρ

3
+

56
ρ

2,
a

1
=

48
Θ

′

Θ
ρ

2
+

4
5
ρ
,
a

0
=

2
3

Θ
′

Θ
ρ

+
7
.5

(4.7)

χ
in
w

K
c
5

a
3

=
16ρ

2,
a

2
=

36ρ
+

16
ρ

2
Θ

′

Θ
,
a

1
=

1
5

+
2
8
ρ

Θ
′

Θ
,
a

0
=

3
Θ

′

Θ
(B

.5)

T
a
b

le
5
.3

.
O

verv
iew

of
ap

p
rox

im
ation

s
for

χ
in

term
s

o
f
z

fo
r

h
ea

t
w

av
es

p
ro

p
a
g
a
tin

g
tow

ard
s

th
e

ed
ge

in
a

cy
lin

d
rical

geom
etry

w
h

ere
a

sem
i-in

fi
n

ite
d

om
ain

is
a
ssu

m
ed

.
T

h
is

ta
b

le
is

u
sed

to
calcu

late
z

u
sin

g
Θ
′/Θ

=
A
′/A

+
iφ
′

an
d
ρ
,

w
h

ere
z

is
u

sed
to

calcu
late

χ
=

32
ω
/= (z

2 )
a
n

d
τ
in
v

=
ω< (z

2 )
/= (z

2 );
th

e
eq

u
ation

n
u

m
b

ers
refer

to
S

ection
5.1

or
to

A
p

p
en

d
ix

B
.



5.2 Inward solutions 75

χφ

χ̄

0 0.5 1
10

−3

10
−1

10
1

10
3

χc

0 0.5 1
10

−3

10
−1

10
1

10
3

χinw
Kj3

0 0.5 1
10

−3

10
−1

10
1

10
3

χinw
Kc5

0 0.5 1
10

−3

10
−1

10
1

10
3

χIsφ

ρ

χ̄

0 0.5 1
10

−3

10
−1

10
1

10
3

χIs4

ρ
0 0.5 1

10
−3

10
−1

10
1

10
3

χIt3

ρ
0 0.5 1

10
−3

10
−1

10
1

10
3

χΦ4V

τinv =0

V =0

ρ
0 0.5 1

10
−3

10
−1

10
1

10
3

εrel[%]

0

50

100

150

Figure 5.1. Comparison between the different relative errors of the χ
estimates for a large range of χ̄ = χ/ω and ρ. The relative error is

defined as εrel = 100 × |χ−χest|χ [%], where χest is χφ, χc, χ
inw
Kj3, and

χinwKc5, which can be found in the tables on pages 72, 73, and 74. These
approximations are based on semi-infinite domains (first row). The true
cylindrical models (second row) are estimated by χIsφ from (5.3), χIs4
from (5.5), χIt3 from (B.8), and χΦ4V from (B.17). This figure is based
on a cylindrical geometry using a symmetry boundary condition with χ
and V = τinv = 0, where the heat waves travel inwards. The darkest blue
represents εrel < 1% and the darkest red represents all εrel > 150%.

because they approximate χ in a strong cylindrical geometry for the semi-infinite
domain.

The approximations in Tables 5.1, 5.2, and 5.3 are compared in the rest of
this section.

5.2.2 Selection of interesting approximations

The comparison of the approximations when only the diffusivity χ is present,
i.e., V = 0 and τinv = 0, is made based on a large number of possibilities of ρ
and the combined parameter χ̄ = χ/ω. Therefore, (2.50) and (2.51) are used to
generate A′/A and φ′. The most interesting and best approximations are shown
in Figure 5.1 in terms of the relative error with respect to the true diffusivity χ.

The use of semi-infinite domain approximations for heat waves propagating
towards the center give a good approximation if the ratio ρω/χ is large. In
that case χc has the largest region with a good accuracy. The highest accu-
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racy is generally given by χKj3 in the region where both approximate χ̄ well.
In that case the approximations based on cylindrical geometry for heat waves
propagating towards the center give good approximations for χ. Hence, χIt3
almost approximates the entire presented region well, albeit with less accuracy
than χIs4. Also, χΦ4V performs well, although it was mainly derived to perform
well under convectivity. χIsφ is also shown as it is the most simple cylindrical
approximation found. Unfortunately, its region of applicability is much smaller
than the other approximations.

In summary, χIt3 has the largest region of applicability. Its relative error is
maximally εrel ≈ 30% in a small region. In this region, different approximations
are necessary, for instance χKj3 or χc and χIs4.

5.2.3 Diffusivity and damping only

It is not possible to use one approximation to approximate χ well for all com-
binations of χ, ω, ρ, and τinv. However, it turns out that by combining two
approximations to estimate χ almost the entire presented region of interest for
heat waves propagating inwards can be covered. This is shown in Figure 5.2 on
page 77, where the maximum relative error over the entire presented region is
below 2%. Hence, it is always possible to get an accurate result for the presented
combination of χ, ω, τinv, and ρ. Both χinwKj3 and χIs4 have been chosen because
they give the most accurate approximations in their regions of applicability and
they are complementary. The white line shows the approximate boundary of the
regions of applicability of χinwKj3 and χIs4. The error is largest at this boundary.

5.2.4 Diffusivity and convectivity with τinv = 0 and τinv = 2

For the inward case, multiple approximations are available to estimate V . It
is not easy to choose a suitable approximation before the measurements have
been analyzed because the approximations all depend on different harmonic
information. For instance, χφ uses only the phases of two harmonics, but χΦ4a

uses two phases and one amplitude. On the other hand, when τinv = 0, then
χΦ4V can be used, which uses only one harmonic. Therefore, it is not possible
to point out the best approximation. However, the regions of applicability of
the approximation are again clearly defined. χφ which originates from slab
geometry is best at approximating χ for large ωρ/χ. On the other hand, the
approximations based on the symmetry boundary conditions estimate χ well for
small ωρ/χ.

From a numerical point of view, χΦ4V a performed best, but it is comparable
to the other cylindrical approximations. Therefore, it is chosen to combine χΦ4V a

and χφ separated by the white line, which is shown in Figure 5.3 on page 78 and
Figure 5.4 on page 79 for τinv = 0 and τinv = 2, respectively. Both figures show
similar regions where χ can be estimated well and where not. The large error
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Figure 5.2. The relative error of the χ estimates for the combination
of χIs4 and χinwKj3 presented for different χ̄ = χ/ω and τ̄inv = τinv/ω at
a number of spatial locations ρ. The relative error is defined as εrel =

100 × |χ−χest|χ [%]. This figure combines the approximations χIs4 and

χinwKj3, which are separated by the boundary represented by the white line.
This figure is based on a cylindrical geometry using a symmetry boundary
condition with V = 0, where the heat waves travel inwards.

close to the boundary is caused by the limited region of approximation. There
is no suitable approximation, which handles the regions with large errors.

5.3 Conclusion and summary

A large number of new approximations have been introduced to estimate χ
directly from A′/A and φ′ for different combinations of χ, V , and τinv for heat
waves propagating towards the center. This corresponds to the case of off-axis
heating. The approximations are based on a symmetry boundary condition and
are derived on the basis of cylindrical geometry using standard assumptions.

The quality of the approximations is presented in several figures. In case
only χ and τinv are considered (V = 0), the relative error of the χ estimate for
the region of interest is smaller than 2% with respect to (2.50). These errors are
achievable by combining χinwKj3 and χIs4. In case also V is considered, the new
approximations show a significant region in which χ can be estimated well, but
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Figure 5.3. The relative error of the χ estimates for the combination
of χΦ4V a and χφ presented for different χ̄ = χ/ω and V̄ = V/ω at a
number of spatial locations ρ. The relative error is defined as εrel =

100 × |χ−χest|χ [%]. This figure combines the approximations χΦ4V a and
χφ, which are separated by the boundary represented by the white line.
This figure is based on a cylindrical geometry using a symmetry boundary
condition with τinv = 0, where the heat waves travel inwards. The darkest
blue represents εrel < 1% and the darkest red represents all εrel > 150%.

also regions in which no suitable approximation exists. Combining χΦ4V a and
χφ cover a large region where χ can be well estimated.

This concludes the parts in which analytic solutions have been derived. All
approximations have been derived either based on one or two harmonics. How-
ever, in practice more harmonics are available. As such the diffusivity is cal-
culated for the individual harmonics and compared qualitatively. In the next
chapter, it is investigated if it is also possible to find an estimate of the best
diffusivity for multiple harmonics taking measurement noise into account.
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Figure 5.4. The relative error of the χ estimates for the combination
of χΦ4V a and χφ presented for different χ̄ = χ/ω and V̄ = V/ω at a
number of spatial locations ρ. The relative error is defined as εrel =

100 × |χ−χest|χ [%]. This figure combines the approximations χΦ4V a and
χφ, which are separated by the boundary represented by the white line.
This figure is based on a cylindrical geometry using a symmetry boundary
condition with τ̄inv = 2, where the heat waves travel inwards. The darkest
blue represents εrel < 1% and the darkest red represents all εrel > 150%.





Chapter 6

Estimation of the diffusivity
taking frequency measurement

uncertainties into account

In the previous three chapters various relationships are derived to determine the
perturbative electron diffusivity χ based on slab or cylindrical geometry using
different assumptions on the non-diffusive contributions, i.e., convectivity and
damping. These relationships are based on a single harmonic or two harmonics,
ω, ω1 and ω2, respectively. However, in practice more harmonics are available
and the measurements are uncertain, which is not considered in these relation-
ships. This often leads to accuracy loss of the diffusivity estimate and the other
transport coefficients. The reason for this accuracy loss is due to the calculation
method and how different harmonic components are combined, which is directly
associated with the underlying Probability Density Function (PDF) of χ.

The combinations of ρ, A′/A, and φ′ in Chapters 3, 4, and 5 are rather com-
plicated. Therefore, in this chapter we focus first on the approximations found
in the literature because those consist of simple combinations of A′/A and φ′,
i.e., (2.28), (2.29), (2.30), (2.31), (2.32), and (2.47). For these approximations,
it is shown in this chapter that the resulting PDFs of χ are non-Gaussian and
have long tails. This has two important implications:

1. The estimated diffusivities have a high upper uncertainty.

2. Taking the average of estimated diffusivities, e.g., for different harmonics,
will result in a biased diffusivity estimate.

This chapter is based on the following article: van Berkel, M., et al. [2014]. Estimation of
the thermal diffusion coefficient in fusion plasmas taking frequency measurement uncertainties
into account, Plasma Phys. Control. Fusion 56: 105004.
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Both implications are demonstrated in this chapter.

The standard assumption of Circular Complex Normal Distributed (CCND)
noise on the Fourier coefficients is used in the analysis part of this chapter. This
distribution is the result of the Fourier transform of several different additive
noise distributions including a Gaussian noise distribution. Based on the CCND
and some minor conditions on the initial Signal to Noise Ratio (SNR), it is
shown that the resulting PDF of the diffusivity is an inverse non-central chi-
squared-distribution. This PDF is derived via an analysis of the propagation of
noise from the time domain to the estimated diffusivity. This analysis also gives
insight on how to arrive at the optimal diffusivity estimate by averaging the
different harmonics, amplitude, and phase. A weighted averaging method using
Maximum Likelihood Estimation is proposed [Martin, 2012]. This weighting is
a sub-optimal solution in the sense that the resulting bias and variance on the
diffusivity estimate is larger than the theoretically achievable bias and variance
given the measurements. Nevertheless, it will still increase the accuracy signif-
icantly and gives a direct method for calculating the diffusivity without using
complicated algorithms. If the damping is included, i.e., (2.31), the distribution
of the product of φ′ and A′/A needs to be used. As no closed-form expression
for the PDF exists for this product of random Gaussian variables, a Gaussian
approximation is used. This approximation is based on recent work related to
this topic [Oliveira, 2013]. This introduces some error, which are studied using
a Monte Carlo analysis.

The Cumulative Density Function (CDF) of χ is derived analytically. Hence,
the accuracy of the estimated diffusivities can be determined through the con-
struction of confidence bounds.

This chapter is structured as follows. Section 6.1 shortly introduces the com-
monly used relationships to calculate χ and their main assumptions. Moreover,
it explains that Gaussian noise is the dominant noise on ECE-measurements
used to measure the temperature. This allows for the derivation of the PDFs of
amplitude and phase, which can be approximated under certain conditions by
Gaussian distributions. The PDFs of the phase derivative and the logarithmic
amplitude derivatives are calculated using an alternative method, which also
includes cross-correlation terms between real and imaginary parts. Section 6.2
uses these Gaussian approximations of the phase derivative and logarithmic am-
plitude derivative to determine the resulting PDFs of the diffusivities. The
corresponding CDFs are used to construct confidence bounds on the diffusivity.
In addition, the PDF for χ is introduced based on the Gaussian approximation
of the product φ′A′/A. Section 6.3 focuses on the practical aspects of esti-
mating mean values and variances of the Fourier coefficients. Direct methods
for measuring the mean values and (co-)variances of the Fourier coefficients are
presented, which are necessary to determine the PDFs of the diffusivity.

Section 6.4 introduces weighting methods to combine amplitude, phase, and
different harmonics to achieve a combined overal diffusivity estimate. These
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techniques are applied to simulations using realistic values for the Fourier co-
efficients and the measurement noise extracted from ASDEX Upgrade1 data.
Moreover, the influence of static errors, such as calibration errors is discussed.
Finally, the main conclusions of this chapter are summarized in Section 6.5.

6.1 Distributions of phase and amplitude and its
spatial derivatives

The uncertainty on measurements can be quantified by studying the PDFs of
the measurement data. First, it is motivated why the Gaussian distribution is
the most probable noise distribution on our time domain measurements. Then,
this information is used to derive the PDFs of the Fourier coefficients, amplitude,
and phase and their spatial derivatives. Moreover, the conditions are determined
when the PDFs of amplitude and phase may be approximated by Gaussian
distributions.

6.1.1 Gaussian noise as the result of the central limit the-
orem

In many applications the noise on measurements can be modeled using a Gaus-
sian distribution function. This distribution is often the result of the central limit
theorem, which states that, if many noise sources of different distributions are
combined (hence their PDFs are convoluted), the resulting distribution tends to-
wards a Gaussian distribution. More formal formulations of this theorem can be
found in many statistics textbooks, e.g., [Billingsley, 2012]. This is the general ar-
gument for assuming a Gaussian distribution. However, for ECE-measurements
there is a stronger argument.

In this chapter, ECE-measurements are used to determine the diffusivity from
the electron temperature perturbations. The dominant measurement noise on
ECE-measurements is the thermal noise, which is generally Gaussian distributed
[Hartfuss, 1997]. More specifically, the thermal noise distribution on the output
temperature measurements of the radiometer depends on the ratio between the
intermediate frequency bandwidth BIF and the video bandwidth BV . If BIF �
BV , which holds for most radiometers used in fusion, the resulting distribution
is Gaussian. This is theoretically derived in [Emerson, 1953] and experimentally
verified in [Sattler, 1993].

1The author wishes to acknowledge the ASDEX Upgrade team and specifically Dr. François
Ryter for the support and allowing the use of ASDEX Upgrade measurement data in this
chapter.
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6.1.2 Normal complex circular distributed noise

By assuming a Gaussian noise distribution in the time domain, the distribution
functions of the Fourier coefficients can be also determined. These distribution
functions are determined for every Fourier coefficient corresponding to a specific
frequency ω.

The PDF of a Fourier coefficient at frequency ω can be determined by taking
the Fourier transform of a sinusoidal signal T (t) with amplitude M and phase θ
and a Gaussian distributed zero-mean additive noise term e (t) with variance σ2

t

T (t) = M cos (ωt+ θ) + e (t) . (6.1)

The Fourier transform of (6.1) is not easily calculated. It requires the noise to
be split in its harmonic components and the use of Hilbert transform properties.
This transformation is described in [Goodman, 1963; Whalen, 1971] and is easily
verified using a Monte Carlo analysis [Kroese, 2011]. The Fourier coefficient Θ
at frequency ω has a bivariate distribution (PDF) in terms of its real part Θ<
and imaginary part Θ=

fΘ (Θ<,Θ=) =
1

2πσ2
F

exp

(
−1

2

(
Θ< − µ<

σF

)2

− 1

2

(
Θ= − µ=

σF

)2
)
. (6.2)

The mean values of this distribution µ< and µ= can also be related to the
mean value of the Fourier coefficient, i.e., Θ̂ = µ< + iµ=. The variance σ2

F

directly depends on σ2
t , but also on the cross-correlation of the time domain noise.

Therefore, instead of calculating σ2
F from σ2

t , a different method is used, which
directly estimates σ2

F (ωk) from the measurements. This method is presented in
Section 6.3.2.

The distribution fΘ (Θ<,Θ=) is shown in Figure 6.1 and is called a Circular
Complex Normal Distribution (CCND). The real part Θ< and imaginary part
Θ= are independently identically distributed (i.i.d.) and have a Gaussian distri-
bution, see (6.2) or [Goodman, 1963; Pintelon, 2012]. It belongs to one Fourier
coefficient at a specific frequency ω. This implies that for every Fourier coef-
ficient Θ (ωk), where k denotes the excited harmonic, such a distribution can
be defined, but with a different µ<, µ=, and σ2

F . Moreover, the distribution of
Θ (ωk) is independent from the distribution of Θ (ωk+1) [Goodman, 1963; Pin-
telon, 2012], which is important when different harmonics need to be combined.

The distribution fΘ (Θ<,Θ=) can also be expressed in polar coordinates using
the amplitude A =

√
Θ2
< + Θ2

= and the phase φ defined as tan (φ) = Θ=/Θ<

fAφ (A, φ) =
A

2πσ2
F

exp

(
− (A cos (φ)−M cos θ)

2

2σ2
F

− (A sin (φ)−M sin θ)
2

2σ2
F

)
,

(6.3)
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Figure 6.1. (a) A scatter plot of the Fourier coefficients calculated per
period at frequency ω of x (t) = 0.5 sin

(
ωt+ π

6

)
+ e (t), where e (t) is

Gaussian distributed noise. The Fourier coefficients are presented in the
complex plane where Θ< and Θ= are its real and imaginary parts, respec-
tively. In addition, the 95% circular confidence bound is presented (red
dashed). (b) The corresponding histogram/PDF of the Circular Complex
Normal Distribution in the complex plane.

where µ< = M cos θ and µ= = M sin (θ) [Whalen, 1971]. This form is more
useful to calculate the PDFs of amplitude and phase, which will be necessary to
determine the diffusivity. Finally, it is worth noting that the CCND is a good
approximation of the Fourier transform for many other distributions in the time
domain. However, whether the distribution is CCND depends on the number
of time samples in one period of the Fourier transform and a number of noise
properties, which are not so easily derived [Brillinger, 2001; Pintelon, 2012].
This can also be easily verified using Monte Carlo simulations. Therefore, in
this chapter, rather than assuming a Gaussian distribution in the time domain,
a CCND in the frequency domain is assumed. This extends the subsequent
analysis to a much broader class of noise distributions in time domain.

6.1.3 Amplitude and phase distributions and their confi-
dence bounds

The relationships introduced to determine the diffusivity are based on the ampli-
tude and phase of the measurements [Lopes Cardozo, 1995; Ryter, 2010]. There-
fore, the PDFs of the amplitude and phase are investigated. If the SNR, defined
here as M/σF , is large enough it can be shown that the PDFs of the phase and
amplitude can be well approximated by a Gaussian distribution function.

The PDF of the amplitude can be found by integrating (6.3) over all the
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Figure 6.2. (a) Rician PDF of the amplitude for different values of
the SNR using ν = A/σF as a scaling parameter. In the special case
of M/σF = 0, the Rician distribution becomes a Rayleigh distribution.
(b) The Rician phase PDF for different values of the SNR. In the special
case of M/σF = 0, the Rician phase distribution reduces to a uniform
distribution.

phases on a circle. The PDF of the phase can be found by integrating over all
amplitudes on a line starting at the origin. The resulting PDF of the amplitude
is the Rician distribution, which has two limit cases: the Rayleigh distribution
when M = 0 and the Gaussian distribution when M/σF −→ ∞, [Whalen,
1971]. The resulting PDF of the phase is sometimes referred to as the Rician
phase distribution [Simon, 2005] and is defined on the range −π ≤ θ < π. It
has again two limit cases: the uniform distribution for M = 0 and the Gaussian
distribution for SNR M/σF � 0. The analytic expressions for the Rician and
Rician phase distributions can be found in Appendix C.

The evolution of the Rician distribution and Rician phase distribution for
different values of the M/σF is presented in Figure 6.2. It shows that if the SNR
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M/σF is large enough it can be well approximated by a Gaussian distribution
function. Consequently, the mean value µ and the variance σ2 of this Gaussian
approximation need to be determined. The mean values of amplitude and phase
are simply µA = M or µφ = θ. However, the corresponding variances σ2

A and
σ2
φ need to be calculated, for which we use propagation of uncertainty. This is

also known as propagation of errors [Martin, 2012; Pintelon, 2012]. It can be
considered as a first order Taylor approximation for random variables around
the mean value. In case of the phase this results in θ = arctan (µ=/µ<)

σ2
φ = Jφcov (Θ<,Θ=) JTφ ,

with Jφ =

[
∂ arctan (µ=/µ<)

∂µ<
,
∂ arctan (µ=/µ<)

∂µ=

]
, (6.4)

where cov (Θ<,Θ=) is a diagonal matrix with on the diagonal the variance of
Θ< and Θ=, i.e., σ2

F because fΘ (Θ<,Θ=) is i.i.d. This results in the phase
variance σ2

φ = σ2
F /M

2. Similarly, also the variance of the amplitude can be

calculated, which is σ2
A = σ2

F . The corresponding confidence bounds for this
Gaussian approximation are calculated as follows [Martin, 2012]

Cφ = θ ± σF
M

√
2erf−1 (p) or CA = M ± σF

√
2erf−1 (p) (6.5)

in terms of a confidence p, e.g., p = 0.95. However, these confidence bounds only
hold if the individual harmonics have a large SNR as is shown in Figure 6.3,
where also the true confidence bounds are shown. It shows that for a SNR> 5,
the Gaussian bound approximates the real confidence bounds well.

The Rician distribution is non-symmetric. Consequently, we have chosen for
a 95% central confidence interval such that the two confidence bounds are given
by 2.5% (p = 0.025) and 97.5% (p = 0.975). In Appendix C the derivation
and calculation of the confidence bounds of amplitude and phase using Rician
(phase) distributions are given.

The determination of χ requires the distributions of the scaled amplitude
derivative A′/A and phase φ′ derivative, which are derived next.

6.1.4 Distributions of φ′ and A′/A

In the previous section the phase and amplitude distributions are calculated on
the basis of a CCND. In this section, the distributions of the spatial derivatives
φ′ and A′/A are approximated. Although there are different methods used in
the literature to calculate these spatial derivatives, here the definition in (2.42)
is used. The reason is that for the slab geometry approximations this is the only
mathematical consistent choice with respect to the assumption of a homogenous
domain (see Chapter 2).

Based on the Gaussian distribution of φ and A and the definitions for the
derivatives it can be shown that both φ′ and A′/A can be well approximated by a
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Figure 6.3. Comparison between the real Rician 95% confidence inter-
val compared to the approximated confidence bound based on a Gaussian
distribution. In addition, the vertical line (dotted line) represents the
SNR where the relative error ε =

∣∣σ2
Rice − σ2

Gauss

∣∣ /σ2
Gauss in terms of the

variances equals 5%. (a) The 2.5% (dashed line) and 97.5% (solid line)
confidence bounds (95% confidence interval) based on the Rician distribu-
tion function and the Gaussian approximations (red dashed-dotted line)
of the confidence bounds for the 95% confidence interval. The y-axis is
the amplitude A scaled with σF . (b) the 97.5% confidence bound of the
phase (solid line) based on the Rician phase distribution and the Gaussian
approximation of the confidence bound (red dashed-dotted line). Note
that the Rician phase distribution is symmetric around φ (relative to θ)
such that one confidence bound suffices. The CDF to calculate the true
confidence bounds can be found in Appendix C.
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Gaussian distribution function for reasonable SNRs. However, this is not easily
derived as the resulting distribution functions depend on five variables, the mean
values, the variances, and the covariance. In addition, two approximation steps
are necessary namely, one from the Fourier coefficients to phase and amplitude,
and one to their derivatives. Here, we wish to avoid these steps and directly
calculate the distributions for φ′ and A′/A from the Fourier coefficients.

The mean value and the variance of both these quantities can be calculated
using the first term in a Taylor expansion (propagation of uncertainty). The
mean values are calculated using (2.42) such that

µA′/A =
1

∆ρ
ln

(
M (ρi+1)

M (ρi)

)
and µφ′ =

θ (ρi+1)− θ (ρi)

∆ρ
. (6.6)

The following symmetric covariance matrix is used to represent the (co-)variances
of the real and imaginary parts of the Fourier coefficients at two locations (ωk
has been omitted)

cov (ωk,Θ< (ρi) ,Θ< (ρi+1) ,Θ= (ρi) ,Θ= (ρi+1)) =
σ2
< (ρi) σ

2
<< (ρi, ρi+1) σ2

<= (ρi) σ2
<= (ρi, ρi+1)

σ2
< (ρi+1) σ2

<= (ρi+1, ρi) σ2
<= (ρi+1)

σ2
= (ρi) σ2

== (ρi, ρi+1)
σ2
= (ρi+1)

 , (6.7)

where the exact definitions of the (co-)variances are given in Section 6.3.2. When
assuming CCND noise, this matrix can be further simplified using σ2

= (ρi) =
σ2
< (ρi) and σ2

<= (ρi) = σ2
<= (ρi+1) = 0, which is explained in detail in Section

6.3.2. Here, we have chosen to use the full covariance matrix for its generality.
Because, this full covariance matrix can also be used under the weak assump-
tion that the real and imaginary parts at spatial locations ρi and ρi+1 are jointly
Gaussian distributed and the resulting distributions of A′/A and φ′ can be ap-
proximated by a Gaussian distribution.

The (co-)variances of A′/A and φ′ can be found in terms of the covariance
matrix cov (ωk, A

′/A, φ′) using (6.7) and the Jacobian based on the derivative
with respect to the real and imaginary parts of (2.42)

cov (ωk, A
′/A, φ′) =

J (ωk) cov (ωk,Θ< (ρi) ,Θ< (ρi+1) ,Θ= (ρi) ,Θ= (ρi+1)) JT (ωk) , (6.8)

where the Jacobian is given by

J (ωk) =
1

∆ρ

[
− µ<(ρi)
M2(ρi)

µ<(ρi+1)
M2(ρi+1) −

µ=(ρi)
M2(ρi)

µ=(ρi+1)
M2(ρi+1)

µ=(ρi)
M2(ρi)

− µ=(ρi+1)
M2(ρi+1) −

µ<(ρi)
M2(ρi)

µ<(ρi+1)
M2(ρi+1)

]
. (6.9)
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The resulting covariance matrix takes the following form

cov (ωk, A
′/A, φ′) =

[
σ2
A′/A σ2

A′/Aφ′

σ2
A′/Aφ′ σ2

φ′

]
, (6.10)

where σ2
A′/A and σ2

φ′ are the variances of A′/A, respectively, and where φ′ and

σ2
φ′A′/A is the covariance between A′/A and φ′. In case the confidence on (2.28)

and (2.29) needs to be calculated, the corresponding variances σ2
φ′ and σ2

A′/A

can be extracted. The confidence of (2.31) and (2.47) are determined using the
full covariance matrix.

Here, Gaussian approximations of A′/A and φ′ have been calculated using
propagation of uncertainty based on the estimated (co-)variances. In the next
section, the distribution of χ and its confidence bounds are calculated based on
the assumption of Gaussian distributed A′/A and φ′.

6.2 Distributions of the diffusivity χ

This section derives the distribution functions of χ. These are used to determine
the confidence bounds on χ. First, the PDF for χ is determined based on the
case where the damping is zero. The corresponding CDF is calculated allowing
for the calculation of the confidence bounds for χ. Secondly, the PDF of χ based
on a Gaussian approximation of φ′A′/A is analyzed, which corresponds to the
case where also damping is included.

6.2.1 Inverse non-central chi-squared distribution

Here, the resulting distributions for (2.28) and (2.29) are discussed. The dif-
fusivity is calculated using the squared reciprocal of the spatial derivatives of
the phase or the amplitude, which results in a non-Gaussian distribution. The
derivation of these PDFs of χ can be simplified by introducing a variable γ,
where γ denotes either A′/A or φ′ when (2.28) or (2.29) are considered. The
PDF of γ is then denoted by g (γ). This, g (γ) is transformed to h (χ), the
PDF of χ, using conservation of area. Then, it follows from (2.28) or (2.29)

that γ =
√

3/4 · ω/χ and that the derivative equals |dχ/dγ|−1
=
√

3/16 · ω/χ3.
Hence, the resulting distribution function of χ is given by

h (χ {γ}) =

{√
3
16

ω
χ3 {g (γ) + g (−γ)} χ > 0

0 χ ≤ 0.
(6.11)
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If a Gaussian approximation of g
(
A′

A

)
or g (φ′) is used, then

g (γ) =
1√

2πσ2
γ

exp

(
− (γ − µγ)

2

2σ2
γ

)
. (6.12)

In this case, h (χ) is a special case of the general inverse non-central chi-squared
distribution. This distribution is positive non-symmetric with a large (positive)
tail and only resembles a Gaussian for small variances. Figure 6.4 shows the
inverse non-central chi-squared distribution, h (χ). It shows that h (χ) has a
long tail especially when the variance σ2

γ is large. The long tail also results in
a bias, which is defined as the difference between the expected value E {χ} and
the true value of χ. The bias, i.e., the expected value E {χ}, is defined by the
improper integral

E {χ} =

∫ ∞
0

χ h (χ) dχ =∞ (6.13)

is divergent. This has important implications, because it means that if the
diffusivity is determined a number of times from an experiment with the same
µγ and σ2

γ , the average of these experiments will not result in the true diffusivity
χ, i.e., it will be biased. Even worse, the diffusivity estimate will diverge to ∞
for an increasing number of estimates and its divergence rate depends on the
variance σ2

γ .

6.2.2 Confidence bounds non-central inverse chi-squared
distribution

The confidence bounds on the diffusivity can now also be calculated based on
(6.11) by calculating its Cumulative Density Function (CDF). The CDFH (X) of

the PDF h (χ) is given by H (X) =
∫X

0
h (χ) dχ, which can be solved analytically

H(X) =

 1− 1
2erf

(√
3
4
ω
X+µγ

σγ
√

2

)
− 1

2erf

(√
3
4
ω
X−µγ

σγ
√

2

)
X > 0

0 X ≤ 0.
(6.14)

The CDF H (X) is non-symmetric, which means that two confidence bounds
need to be calculated. We are interested in the central confidence interval such
that the lower bound Xmin is determined by H (Xmin) = (1− p) /2 and the
upper bound by H (Xmax) = (1 + p) /2. The CDF and the corresponding p =
0.95 central confidence interval is shown in Figure 6.4.

In practice, H (X) is difficult to invert analytically. On the other hand, the
bounds can be easily calculated by finding the zero crossing of H (X)−(1− p) /2
and H (X)− (1 + p) /2, for which many algorithms exist.
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Figure 6.4. (a) The inverse non-central chi-squared distribution for dif-
ferent values of the variance σ2

γ , where µγ = 0.866 and ω = 1. This
corresponds to χ = 1 represented by the dashed line. (b) The Cumulative
Density Function H (X) of the inverse non-central chi-squared distribu-
tion corresponding to the presented PDFs. The dashed line represents
the value of χ when σ2

γ → 0. The solid line show the values at which
H (X) = 0.025 and the dashed-dotted line where H (X) = 0.975 corre-
sponding to a central 95% confidence interval.

6.2.3 Inverse product distribution function

The product of the Gaussian distributed variables φ′ and A′/A plays an impor-
tant role in (2.31) and (2.47) in which the effect of damping is suppressed. The
distribution for χ (6.11) is a special case of the distribution discussed here as
it assumes that µφ′ = µA′/A and σ2

A′/A = σ2
φ′ . As such it is a simplification of

the general product of φ′ and A′/A. The distribution function of the general
product of φ′ and A′/A is treated here separately, because it does not have a
closed-form expression [Seijas-Macias, 2012]. This also holds for the PDF of
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χ based on (2.31). This complicates the calculation of the confidence bounds
significantly, because the CDF needs to be solved using a double integral.

As the closed-form expression does not exist, other approaches are necessary.
Therefore, the distribution function is generally approximated using various dis-
tribution functions for the different limit cases [Aroian, 1978] in the literature.
In case the ratio’s µA′/A/σA′/A and µφ′/σφ′ are large, then the product can
be approximated well by a Gaussian distribution [Craig, 1936]. However, it is
difficult to translate this into numbers as it also depends on the mean values
itself. Nevertheless, we have chosen to always approximate the product using a
Gaussian approximation. As the alternative of using other distribution functions
would result in a more complicated analysis [Aroian, 1978].

The recommended approach in the literature is used to approximate the
moments of the Gaussian distribution using the moment generating function
[Craig, 1936; Oliveira, 2013; Ware, 2003]. It is used to generate the first moment,
i.e., the mean

µp = µA′/Aµφ′ + σ2
A′/Aφ′ , (6.15)

which includes also a bias term equal to the covariance σ2
A′/Aφ′ . The second

moment, the variance, is given by

σ2
p = µ2

A′/Aσ
2
φ′ + µ2

φ′σ2
A′/A + σ2

A′/Aσ
2
φ′

+ 2σ2
A′/Aφ′µA′/Aµφ′ + σ2

A′/Aφ′σA′/Aσφ′ . (6.16)

Both (6.15) and (6.16) can be used to replace the mean value and variance in
the Gaussian approximation. The Gaussian approximation of the distribution
function of φ′A′/A is then given by

gp (φ′A′/A) =
1√

2πσ2
p

exp

(
− (φ′A′/A− µp)2

2σ2
p

)
. (6.17)

The distribution function of χ can be approximated using again preservation of
area

h (χ (µp)) =
3

4

ω

χ2

1√
2πσ2

p

exp

−
(

3ω
4χ − µp

)2

2σ2
p

 . (6.18)

This distribution is not further studied here because it is only an approximation
of the real distribution. Section 6.3 studies (6.18) more extensively and com-
pares it also to the actual distribution of (2.31) calculated using a Monte Carlo
simulation. The CDF of (6.18) is not presented here as it does not have a closed-
form expression. However, the CDF can be found by numerically approximating
a single integral such that the confidence bounds can still be calculated. This is
described in more detail in Appendix C.
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In (2.47) also an approximation is given which is based on cylindrical geom-
etry. This can be included by replacing the mean value of A′/A with µA′/A =
A′/A+ 1/ (2ρ).

In the next section, the mean values and variances are estimated based on
real measurements.

6.3 Estimating means and (co-)variances from
measurements

In the next section, we discus how to estimate the diffusivity from real mea-
surements. In this section realistic values for the Fourier coefficients and its
corresponding variances are calculated first. These are acquired from ASDEX
Upgrade discharge 17175, where the modulated ECRH is deposited off-axis at
toroidal normalized radius ρt = 0.6. A detailed description of this discharge can
be found in [Mantica, 2006a,b]. Here, the distribution function is investigated
based on the measurement data and it is explained how to calculate the mean
values and variances of the Fourier coefficients. In addition, the mean values
and (co-)variances are calculated at two specific spatial locations.

6.3.1 Noise distribution of ASDEX Upgrade measurements

In Section 6.1.1 it is explained why ECE-measurements are Gaussian distributed.
This is further investigated using the measurement data from ASDEX Upgrade.
Although the time interval where the periodic perturbations are present can be
used to extract the variances (see next section), it is unsuitable to determine
the PDF due to the low number of periods available. Therefore, the time do-
main noise is extracted from a time interval where the plasma is not perturbed
by a heat source, which gives the natural noise distribution. The normalized
histograms of the ECE-signals considered are presented in Figure 6.5 (left).

A Gaussian distribution can be recognized, albeit disturbed due to quantiza-
tion (discretization). However, we are interested in frequency domain properties
at the perturbed harmonics ωk. Therefore, extra random samples are generated,
which have the same normalized distribution function as the quantized noise
distribution shown in Figure 6.5. Then, the Fourier transform is calculated per
period, which results in many Fourier coefficients for the ground frequency ω1.
This process is performed for two ECE-measurements at different radial loca-
tions. The resulting distributions of these Fourier coefficients are presented in
Figure 6.5. Both, the real and imaginary parts are Gaussian distributed with
similar variances and uncorrelated such that the distribution function is close to
that of a CCND. However, this does not guarantee that in case of perturbative
measurements we also have a CCND because other disturbances are present.
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Figure 6.5. Histograms of AUG 17175 ECE measurements at locations
ρ = 0.484 and ρ = 0.473 measured between 1.67 − 2 s in the plasma
and distributions (left). On the right the histograms of Θ< and Θ=,
respectively the real and imaginary part of the Fourier coefficients at
14.71 Hz (first harmonic) at radial locations ρ = 0.484 and ρ = 0.473.
The distributions in time (left) are used to generate many samples (10000
periods at 14.71 Hz). These periods are Fourier transformed and the real
and imaginary parts of the Fourier coefficients at 14.71 Hz are extracted.
These are used to construct the histograms of Θ< and Θ=, which clearly
show that the resulting distribution is CCND.

6.3.2 Estimating the Fourier coefficients and variances

This subsection explains how to estimate the Fourier coefficients and variances
based on periodic perturbations. The estimated Fourier coefficients are denoted
by Θ̂ (ωk) (hat denotes estimates), which can also be seen as the mean value
of the Fourier coefficient. There are two possibilities to calculate the mean
values of the Fourier coefficients: (1) the Fourier transform can be applied over
the entire time interval or (2) the Fourier coefficients can be calculated per
period, which are then averaged to find the mean values of the Fourier coefficients
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Θ̂ (ωk) = µ̂< (ωk) + i · µ̂= (ωk), i.e.,

Θ̂ (ωk) =
1

M

M∑
m=1

Θ[m] (ωk) , (6.19)

where Θ[m] (ωk) is the Fourier coefficient of the individual period m for frequency
ωk and M is the total number of periods, also called realizations. Calculating
the Fourier transform (FFT) of one period, and averaging over all periods is
equivalent to calculating the Fourier transform of the entire time trace, for the
common frequencies (if the number of periods M is integer and without using a
window). For the example presented in this chapter, a time-trace of 680 ms is
used, which contains exactly ten periods M = 10.

The advantage of determining the Fourier coefficients per period Θ[m] (ωk) is
that they can also be used to directly estimate the variances. The variance for
the Fourier coefficient σ̂2

c can the be estimated using

σ̂2
c (ωk) =

1

M (M − 1)

M∑
m=1

∣∣∣Θ[m] (ωk)− Θ̂ (ωk)
∣∣∣2 . (6.20)

Alternatively, the variances for the real and imaginary parts can be estimated.
For the real part it is given by

σ̂2
< (ωk) =

1

M (M − 1)

M∑
m=1

∣∣∣Θ[m]
< (ωk)− Θ̂< (ωk)

∣∣∣2 , (6.21)

where Θ
[m]
< is the real part of Θ[m]. Similarly, the variance σ̂2

= (ωk) of the imag-
inary part can be determined.

The covariances between the Fourier coefficients at different spatial locations
can be estimated using the definition

σ̂2
j,i (ωk, ρj , ρi) =

1

M (M − 1)

M∑
m=1

(
Θ[m] (ωk, ρj)− Θ̂ (ωk, ρj)

)(
Θ[m] (ωk, ρi)− Θ̂ (ωk, ρi)

)
,

(6.22)
Again it is also possible to estimate the covariances directly for the real and

imaginary parts for j = i + 1, σ2
<= (ωk, ρi, ρi+1), σ2

== (ωk, ρi, ρi+1), σ2
<= (ωk, ρi)

using similar definitions, e.g., for σ̂2
=< (ωk, ρi+1, ρi)

σ̂2
=< (ωk, ρi+1, ρi) =

1

M (M − 1)

M∑
m=1

(
Θ=

[m] (ωk, ρi+1)− Θ̂= (ωk, ρi+1)
)(

Θ
[m]
< (ωk, ρi)− Θ̂< (ωk, ρi)

)
. (6.23)
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These variances refer to the variation of the Fourier coefficients with respect
to their mean values and the co-variances to the common variations of the Fourier
coefficients. The advantage of using the (co-)variances is that it takes into ac-
count the uncertainty based on the measurements directly. The variances can
be the result of for instance thermal noise inside the radiometer. On the other
hand, cross-correlations can also be the result of thermal noise due to common
components or it can be directly related to common temperature fluctuations in
the plasma due to the perturbation source or other sources such as edge localized
modes and sawteeth.

In case of a CCND, the full covariance matrix (6.7) can be simplified signif-
icantly because the real and imaginary parts at the same spatial location are
i.i.d., i.e., σ2

< (ωk) = σ2
= (ωk) = σ̂F (ωk). This also gives σ̂2

F = σ̂2
c (ωk) /2, which

can also be directly calculated from (6.20) by separating the real and imaginary
parts

σ̂2
c (ωk) = σ̂2

< (ωk) + σ̂2
= (ωk) . (6.24)

The easiest method to calculate (6.7) in case of a CCND is to use the covariance
matrix of the Fourier coefficients at ωk

cov (ωk,Θ (ρi) ,Θ (ρi+1)) =

[
σ2
c (ρi) σ2

c (ρi, ρi+1)
σ2
c (ρi, ρi+1) σ2

c (ρi+1)

]
, (6.25)

which can be constructed using (6.20) and (6.22). The covariance matrix (6.7)
can then be constructed using (6.25)

cov (ωk,Θ< (ρi) ,Θ< (ρi+1) ,Θ= (ρi) ,Θ= (ρi+1)) =

1

2

[
< (cov (ωk,Θ (ρi) ,Θ (ρi+1))) −= (cov (ωk,Θ (ρi) ,Θ (ρi+1)))
= (cov (ωk,Θ (ρi) ,Θ (ρi+1))) < (cov (ωk,Θ (ρi) ,Θ (ρi+1)))

]
. (6.26)

Its form can also be understood as follows: on the diagonal are the variances,
which are the same for the real and imaginary parts at the same spatial location
as such they are half that of σ2

c , see (6.24). The covariance between the real and
imaginary part at the same spatial location is zero. This results in zeros at a
number of locations and the same covariances between the real and imaginary
parts at two different locations. The sign difference is sometimes introduced due
to the complex nature of the random variables (complex conjugate).

The covariance matrix (6.10) of A′/A and φ′ in the CCND case can also be
simplified due to the reduced degrees of freedom in (6.26)

covc (ωk, A
′/A, φ′) =

[
σ2
γ′ 0

0 σ2
γ′

]
, (6.27)

where σ2
γ′ = σ2

A′/A = σ2
φ′ . This means that the cross-correlation between A′/A

and φ′ does not need to be considered if a CCND is assumed and the definition
of the derivatives (2.42) is used.
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It is important that the variances of real and imaginary part are used instead
of directly using the amplitude and phase per period and its corresponding vari-
ances to derive the overall amplitude and phase. The reason is that the distri-
butions of amplitude and phase are not necessarily Gaussian. In addition, the
phase can also be mapped differently in the complex plane as large error angles
are added shifting the phase beyond −π or π because of the high noise level.
This would result in a totally different and thus a wrong phase average.

6.3.3 Resulting A′/A and φ′ for AUG 17175 at ρt = 0.473
and ρt = 0.484

Here, the mean values and variances are calculated based on real measurements
from ASDEX Upgrade. These are necessary to estimate χ with its corresponding
confidence. In this thesis, only the procedure to estimate χ and its confidence
bounds is investigated. Therefore, only the confidence at two spatial locations
ρt = 0.4726 and ρt = 0.4844 for AUG 17175 are investigated. This discharge is
chosen as it has many low-frequent harmonics, which thus have more harmonics
with acceptable SNRs. On the other hand, the effect of non-diffusive contribu-
tions such as convectivity and damping cannot be excluded. The observation
that the amplitude and phase do not describe a purely diffusion model for AUG
17175 is also made in [Mantica, 2006b]. Therefore, often in the analysis in this
chapter not only the true mean values of the Fourier coefficients are used, but
are sometimes replaced with known values. This not only excludes the effect of
these non-diffusive terms, but also helps the interpretation of the results as the
resulting diffusion coefficient is known a priori.

The mean values µφ′ and µA′/A and their covariance matrix are estimated
as follows for the first harmonic ω1. Based on (6.19) the Fourier coefficients of
the first harmonic can be calculated resulting in Θ (ρi, ω1) = 1.69 + 28.75i and
Θ (ρi+1, ω1) = 2.78 + 26.77i. The mean values µA′/A (ω1) = 5.75 and µφ′ (ω1) =
3.77 are calculated using (6.6). The next step is to estimate the covariance
matrix using (6.21) and (6.23). This results in

cov (ω1,Θ< (ρi) ,Θ< (ρi+1) ,Θ= (ρi) ,Θ= (ρi+1)) =
0.49 0.45 −0.09 −0.09
0.45 0.43 −0.10 −0.09
−0.09 −0.10 0.28 0.30
−0.09 −0.09 0.30 0.31

 . (6.28)

This covariance matrix together with the mean values are used extensively in the
next section. The corresponding covariance matrix of A′/A and φ′ is calculated
using (6.8). This gives

cov (ω1, A
′/A, φ′) =

[
0.09 0.04
0.04 0.15

]
, (6.29)
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k ωk
A′/A φ′ φ′A′/A χ = 5

µA′/A σ2
A′/A µφ′ σ2

φ′ σ2
φ′A′/A θ′

1 92.4 5.75 0.09 3.77 0.15 0.04 3.72

2 184.8 6.40 0.34 4.94 0.70 -0.11 5.27

3 277.2 8.03 1.05 5.52 1.58 -0.11 6.45

4 369.6 12.29 3.28 7.72 3.07 -0.58 7.45

5 462.0 12.55 7.68 5.95 13.90 -0.72 8.32

Table 6.1. The mean values and variances of A′/A and φ′ at different
ωk, for time trace t = 3.26 − 3.94 and radial locations ρt = 0.484 and
ρt = 0.473.

where the diagonal terms are the variance of phase σ2
φ′ and amplitude σ2

A′/A,

respectively. The off-diagonal term is the covariance denoted by σ2
A′/Aφ′ , which

is sometimes also expressed in terms of the Pearson factor ρpearson = 0.3356
defined as ρpearson = σA′/Aφ′/

(
σφ′ σA′/A

)
[Martin, 2012]. This also means that

it is likely that the measurements are not distributed according to a CCND as
this would demand that A′/A and φ′ are uncorrelated. Although one needs
to consider that only 10 periods are used to calculate the variances, resulting
in a relatively large uncertainty on the (co-)variance estimates. Nevertheless,
we have chosen for this specific example to no longer assume a CCND, but to
work with (6.28) and to use propagation of uncertainty and assume Gaussian
approximations. In addition, the cross-correlation between different harmonics
was numerically evaluated, which showed that it is reasonable to assume that
independence over different harmonics.

The steps to calculate µA′/A (ωk), µφ′ (ωk), and cov (ω1, A
′/A, φ′) are re-

peated for the first five harmonics ωk, which fulfill the necessary SNRs. These
are presented in Table 6.1 and are extensively used in this section. If the mean
values µA′/A (ω1) and µφ′ (ω1) and its corresponding variances σ2

φ′ and σ2
A′/A

are compared, then it can be observed that the confidence bounds do not over-
lap. This indicates that the measurements cannot be described by a model with
diffusivity only. Hence, this uncertainty analysis also offers a zero-order test to
see if the measurements fit such a model. Such type of analysis will be further
extended in Chapter 7. As here the performance of the different methods is in-
vestigated, a known value of χ is used. The first harmonic has generally the best
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SNR, hence, it is a good choice for χ. As the phase is considered less sensitive
to calibration errors, the phase has been chosen resulting in χ = 4.88. This has
been rounded to the closest integer, i.e., χ = 5, to simplify the interpretation of
the different figures and errors. Then, (2.28) is rewritten to express µφ′ (χ = 5).
This results in new means for µφ′ denoted as θ′. The difference between µφ′ (ωk)
and the new θ′ (ωk) are not so large. Therefore, the original variances σ2

k of
A′/A and φ′ are retained. These new values are also included in Table 6.1 and
are used to study the estimation of χ in the next section.

6.4 Estimating χ

In this section a number of aspects of estimating χ are discussed namely: (a)
how to combine A′/A and φ′ optimally; (b) how to combine different harmonics
such that the resulting estimate of χ has a small bias and high accuracy. Finally,
the necessary steps to estimate χ are summarized at the end of this section.

6.4.1 Combining amplitude and phase estimates

Here, different possibilities are proposed to combine phase and amplitude. In
the analysis the mean values are replaced by known values to exclude the effect
of non-diffusive terms, as the interest goes out to the statistical properties. The
main question of this subsection is how to estimate χ using both amplitude
and phase, which can be seen as independent measurements of χ containing
correlated noise.

In Section 6.3.3 it has been shown that the cross-correlation between A′/A
and φ′ is significant. This cross-correlation can be exploited to increase the
accuracy of the χ estimate. Therefore, the generalized weighted mean can be
used to give a resulting combination of A′/A and φ′ with minimum variance. The
Gauss–Markov theorem states that it results in minimum variance for unbiased
estimators of the mean value [Cox, 2006]. This generalized weighted mean is
calculated as follows

µM = σ2
MW

T cov (A′/A, φ′)
−1 [

µA′/A (ω1) , µφ′ (ω1)
]T
, (6.30)

and its corresponding variance is determined using

σ2
M =

(
WT cov (A′/A, φ′)

−1
W
)−1

with W =
[

1 1
]T
. (6.31)

There are three different possibilities presented here to combine A′/A and φ′

namely χs3 in (2.29), χs4 in (2.31), and the generalized weighted mean in (6.30).
The product (2.32) is not included since (2.31) and (2.32) are theoretically the
same for one harmonic.
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The three different possibilities are compared using a Monte Carlo simulation
which uses (6.28) and the mean Fourier coefficients. In a Monte Carlo simula-
tion samples are generated from a distribution, which can be seen as possible
measurements. Then, these samples are used to calculate χ using the different
proposed relationships. This process is repeated many times such that the PDF
of the diffusivity estimates can be generated. The analytic distributions of χ for
the generalized mean and (6.18) are also presented.

Three simulations are performed for different cases:

(a) Using the original measurement data.

(b) A simulation where the original variances in (6.7) are retained, but the
mean values in Section 6.3.3 are replaced by Θ (ρi, ω1) = 1.67 + 28.75i and
Θ (ρi+1, ω1) = 2.80 + 27.42i such that both mean values µA′/A (ω1) and
µφ′ (ω1) give χ = 5 when the variance is zero.

(c) A simulation where next to the replaced mean values also the third diagonal
element of (6.7) is replaced by the first diagonal element, i.e., σ2

= (ρi) =
0.4904 in (6.28).

Figure 6.6 shows the resulting PDFs of the diffusivity denoted by h (χ). The
confidence bounds corresponding to the distributions presented in Figure 6.6
are given in Table 6.2. Figure 6.6(a) clearly shows that the distribution function
h (χM ), calculated using the weighted average (6.30), has the smallest variance.
This is followed by the distribution calculated using (2.30), because unlike the
product, the sum of two Gaussian distribution functions is still Gaussian before
calculating the reciprocal. Therefore, the tail is shorter compared to the product
distribution.

Figure 6.6(b) shows that the PDFs are almost the same since their mean
values have been fixed to be the same and the covariance matrix results in an al-
most equal variance for both amplitude and phase (after taking cross-correlation
into account). This means that there is hardly any difference between the dif-
ferent relationships to calculate χ. The best result is achieved using (6.30) as
it has the smallest variance. This is especially clear in Figure 6.6(c). Moreover,
this distribution can also be analytically calculated using the variance (6.31).
This is also supported by the confidence bounds in Table 6.2. Again, looking at
the confidence bounds in Table 6.2 it shows that the sum performs better than
the product. However, the product of φ′A′/A excludes the effect of damping.
Therefore, also the analytical approximation of h (χ (µp)) is shown in Figure 6.6,
which matches quite well, but also shows some errors. On the other hand, the
analytic approximation of h (χ (µM )) matches perfectly.

Summarizing, the generalized weighted mean gives the best result, which is
consistent with theoretical predictions.
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Figure 6.6. Normalized histograms (PDFs) for the proposed calcula-
tion methods to combine phase and amplitude, i.e., (2.31) represented
by (blue) ×, (2.30) represented by (red) ×, and (6.32) using (black) ×.
The distributions are generated using a Monte Carlo simulation (MC).
The analytic approximations of the distribution functions h (χ (µM )) and
h (χ (µp)) are presented using a black and cyan line, respectively. These
distributions are solely based on analytical calculations using (6.32) to
find µM with corresponding σ2

M and (6.11) to calculate the PDF of χ,
i.e., h (χ (µM )). In the product case, (6.15) and (6.16) are used to cal-
culate µp and σ2

p, which are used in (6.18) to calculate h (χ (µp)). Three
simulations are presented: (a) using the original mean value and variance;
(b) using the corrected mean values, but the original covariance matrix;
(c) using the corrected mean value and a different covariance matrix.
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Fig. 6.6(a) Fig. 6.6(c)

Confidence bounds 2.5% χ 97.5% 2.5% χ 97.5%

χMC = 3ω
4φ′A′/A 2.50 3.20 4.19 2.66 5.00 17.82

χanal
(
µp, σ

2
p

)
2.54 3.19 4.29 2.67 4.89 19.20

χMC = 3ω
(φ′+A′/A)2

2.43 3.06 3.89 2.57 5.00 14.12

χMC = 3ω
4µ2
M

2.16 2.68 3.30 3.43 5.00 7.84

χanal
(
µM , σ

2
M

)
2.17 2.68 3.33 3.44 5.00 7.88

Table 6.2. The numerically determined central interval confidence
bounds for the diffusivity χMC based on a Monte Carlo simulations (MC)
for the different methods to combine phase and amplitude. In addi-
tion, the analytically calculated confidence bounds for the generalized
weighted mean method χanal

(
µM , σ

2
M

)
and the product approximation

χanal
(
µp, σ

2
p

)
are presented as well. The results are presented for the

measurements (left) and using the adjusted Fourier coefficients in combi-
nation with the adjusted covariance matrix (right). Note that the χ value
is calculated using the corresponding equations and are not based on the
Monte Carlo analysis.

6.4.2 Combining different harmonics for φ′ and A′/A only

In this section, methods are discussed to combine different harmonics. They
are presented on the basis of the phase derivative distribution only because the
replaced means θ′ (ωk) are used to exclude the effect of non-diffusive terms. The
calculations are based on the values presented in Table 6.1.

Different combining methods are compared here using a Monte Carlo sim-
ulation, which is based on samples from five Gaussian distributions with mean
values µφ′ (ωk) and variances σ2

φ′ (ωk). The simplest method of combining dif-
ferent harmonics is by averaging the diffusivity estimates calculated for every
harmonic, i.e., E {χ}. The resulting PDF of χ is then denoted by h (E {χ})
and it is presented in Figure 6.7 with (blue) crosses. The resulting PDF of χ is
non-symmetric and has a long tail. The reason is that h (E {χ}) is the result of
averaging five PDFs of χ (ωk), which are distributed according to (6.11). These
individual PDFs of χ (ωk) already have a long tail and contain a bias. This bias
depends on the individual variances σ2

φ′ (ωk). This tail and bias are the result
of taking the squared reciprocal of the phase derivative and are retained when
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Figure 6.7. Normalized histograms (PDFs) for the three proposed calcu-
lation methods to calculate χ from either phase (or amplitude) using mul-
tiple harmonics generated using a Monte Carlo simulation (MC). The PDF
h (E {χ}) represented by (blue) × is calculated using the mean value of the
different χ’s of the different harmonics. The PDF h

(
χ
(
E
{
µk/
√
ωk
}))

represented by (red) × gives the PDF of χ using the weighted average of
the phase derivatives using only the weighting

√
ωk. The PDF h (χ (µ+))

is represented by ×, where a weighted average in (6.32) is used to calculate
χ. In addition, the theoretically determined PDF h

(
χ
(
E {µ+} , E

{
σ2

+

}))
based on the mean value of µ+ and the mean value of σ2

+ is presented.
The true value of χ is presented (dashed) and the 95% confidence interval
for h (χ (µ+)) is presented by the dashed-dotted vertical lines (left 2.5%
and right 97.5%), which are calculated analytically.
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averaging these estimates.
A better option is to directly average the phase derivatives because their dis-

tributions are approximately Gaussian, see Figure 6.2. However, the diffusivity
does not only depend on φ′, but also on the frequency ω in (2.28). Therefore,
the Gaussian distributions can only be averaged if they are first weighted with
the frequencies, i.e., µφ′ (ωk) /

√
ωk and σ2

φ′ (ωk) /ωk. Then, a new Gaussian dis-
tribution is found, which is used to calculate the resulting PDF of χ This PDF
is denoted by h

(
χ
(
E
{
µφ′ (ωk) /

√
ωk
}))

. In this case, the resulting distribution
can be determined analytically by calculating the new mean value and vari-
ance of the combined Gaussian distribution and then using (6.11) again. This,
PDF based on weighting with

√
ωk can also be determined using Monte Carlo

simulations, which is shown in Figure 6.7 using (red) ×.
It is clear that the side tail is still present, but has become smaller. The

diffusivity has become more certain due to the smaller side tail, but the un-
certainty region has shifted to the left. However, this method does not take
the uncertainty on φ′ into account. This means that there is no difference be-
tween estimates of the phase derivative with small variance compared to phase
derivatives with high variance. In other words, the uncertain higher harmonics
contaminate the harmonics with high SNR close to the ground harmonic in the
diffusivity estimates. Consequently, the diffusivity estimate can be improved by
taking the variance of the different harmonics into account, which have been
estimated from the periodic measurements. This results in the weighted mean,
which also includes a weighting with

√
ωk, i.e.,

µ+ =

∑K
k=1 wkµkω

−0.5
k∑K

k=1 wk
with wk =

ωk
σ2
k

, (6.32)

where µk = µ (ωk). This equation (6.32) is also applicable to the amplitude. This
type of weighting gives the Maximum Likelihood Estimate of the mean value for
Gaussian distributed variables [Martin, 2012], which has the smallest variance
when combining a number of independent Gaussian distributions. The resulting
PDF of χ using the weighted average, h (χ (µ+)) is presented in Figure 6.7 using
black ×. The tail of this distribution has been reduced significantly such that
the diffusivity estimate has become more certain. The use of the weighted mean
gives the best result for the compared methods in this section and should be
used to combine the different harmonics in case of a purely diffusive model.

The distribution h (χ (µ+)) can also be determined analytically by calculating
the variance σ2

+

σ2
+ =

1

K − 1

∑K
k=1 wk

(
µkω

−0.5
k − µ+

)2∑K
k=1 wk

, (6.33)

taking into account that σ2
+ is an estimate [Martin, 2012]. The confidence bounds

are calculated by setting the mean value µγ = µ+, the variance σ2
γ = σ2

+, and



106 Chapter 6. Estimation considering measurement uncertainties

Confidence bounds 2.5% χ 97.5%

χMC (E {χ}) 3.73 6.37 45.09

χMC

(
E
{
µk/
√
ωk
})

3.32 6.02 8.32

χMC (µ+) 3.81 5.11 6.84

χanal
(
E {µ+} , E

{
σ2

+

})
3.81 5.11 6.84

Table 6.3. The central interval confidence bounds for χMC using the
different combination methods based on a Monte Carlo simulations (MC).
In addition, the analytically calculated confidence bounds for the weighted
mean method χanal.

ω = 1 in (6.14). They can also be used to calculate the analytic PDF, which
is plotted in Figure 6.7. The analytic PDF (solid black line) is the same as the
PDF constructed using the Monte Carlo simulations.

A comparison of the different combination methods can also be made using
the confidence bounds, which are numerically determined from the Monte Carlo
simulations. These confidence bounds are summarized in Table 6.3. It again
shows that the weighted mean gives the best result and that in this case the
accuracy of the combined diffusivity estimate is increased 13 times compared to
averaging the individual diffusivities estimate. Note that the diffusivity estimate
still has a tailed distribution, which is caused by the method of calculation, i.e.,
taking the squared inverse.

For the experimental data using both amplitude and phase (no damping), the
resulting mean value and variance are µ+ = 0.48 and σ2

+ = 5.93 · 10−4 based on
the first five frequencies. This is smaller than any of the individual (frequency
weighted) variances. The corresponding diffusivity is χ = 3.29 with the 95%
confidence bounds χmin = 2.72 and χmax = 4.06. The confidence bounds are
larger than that of the first harmonic in absolute sense. This is a consequence
of the non-linear dependence of the confidence bounds on the mean value.

6.4.3 Combining different harmonics using the product
φ′A′/A

In section 6.4.2, we have established, that for a purely diffusive model, the
combination of A′/A and φ′ using the generalized weighted mean gives the best
result. For the combination of different harmonics, the weighted mean results
in the χ estimate with the smallest variance for the methods compared in this
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chapter.
If no longer a purely diffusive model is assumed, but also the damping needs

to be included, then we could use for instance (2.31) in slab geometry. Therefore,
we investigate how to reduce the uncertainty using (2.31) and the re-expressed
form (2.32) to estimate χ.

The product φ′A′/A is used to exclude the effect of damping, as the amplitude
and phase can no longer be used to reduce the uncertainty using the generalized
mean. In principle, one harmonic would suffice to estimate the damping. The
estimated damping could then potentially be used in the weighting process.
However, such a weighting is difficult to apply in the direct calculations of χ.
Instead, the product is applied for every harmonic. This means that for five
harmonics, four degrees of freedom are ignored, which potentially could be used
to reduce the uncertainty. An optimal method to estimate also the damping is
introduced in Chapter 7. Here, it is chosen to disregard this loss in optimality and
try to combine the different harmonics based on (2.31) and (2.32). Therefore,
the original measurement values from Table 6.1 are used again. Again, three
possibilities are compared using a Monte Carlo simulation based µA′/A (ωk),
µφ′ (ωk), and cov (ωk, A

′/A, φ′):

1. The simple average of the χ estimates per harmonic using (2.31).

2. The weighted average of φ′A′/A taking only ωk into account.

3. The weighted average using the Gaussian approximations with mean value
(6.15) and variance (6.16) taking both ωk and cov (ωk, A

′/A, φ′) into ac-
count.

The product of φ′A′/A is used, thus a weighting with ωk is necessary instead of√
ωk in (6.32) as now (2.31) is used instead of (2.28). Consequently, (6.32) and

(6.33) become for the weighted mean of the product

µmp =

∑K
k=1 wkµp (ωk) /ωk∑K

k=1 wk
with wk =

ω2
k

σ2
k

, (6.34)

and

σ2
mp =

1

K − 1

∑K
k=1 wk (µp (ωk) /ωk − µmp)2∑K

k=1 wk
, (6.35)

where the mean of the product µp and its corresponding variance σ2
p are defined

in (6.15) and (6.16). The samples used in the Monte Carlo analysis are generated
from the mean values and covariance matrices in Table 6.1. The three proposed
techniques are applied to these samples to analyze the difference again. In
addition, the analytic Gaussian approximation is calculated by substituting µmp
and σmp into (6.18) (ω = 1). The results are presented in Figure 6.8. The
corresponding confidence bounds are presented in Table 6.4. The results are
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Figure 6.8. Normalized histograms (PDFs) for the three proposed cal-
culation methods to calculate χ from either phase (or amplitude) us-
ing multiple harmonics generated using a Monte Carlo simulation (MC).
The PDF h (E {χ}) represented by (blue) × is calculated using the
mean value of the different χ’s of the different harmonics. The PDF
h
(
χ
(
E
{
µφ′ (ωk)µA′/A (ωk) /ωk

}))
represented by (red) × gives the PDF

of χ using only ωk in the weighted average. The PDF (MC) h (χ (µmp)) is
represented by ×, where a weighted average in (6.34) is used to calculate
χ. In addition, the theoretically determined PDF h (χ (µmp)) based on the
mean value of µmp and the mean value of σ2

mp is presented. The 95% con-
fidence intervals (left 2.5% and right 97.5%) are presented using dashed-
dotted lines for the analytical approximation based on h

(
χ
(
µmp, σ

2
mp

))
and are presented using dashed-dotted lines with × for (MC) h (χ (µmp)).
The latter is based on numerical calculations.
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Confidence bounds 2.5% χ 97.5%

χMC (E {χ}) -2.07 3.97 11.26

χMC

(
E
{
µφ′µA′/A/ωk

})
3.97 3.81 5.23

χMC (µmp) 3.28 3.82 4.76

χanal (µmp, σmp) 3.23 3.82 4.66

Table 6.4. The central interval confidence bounds belonging to the lines
in Figure 6.8. The bounds based on Monte Carlo simulations χMC are
calculated numerically. In addition, the analytically calculated confidence
bounds for the weighted mean method χanal (µmp, σmp) are presented.

similar to that in Section 6.4.2. Taking simply the average results in a long tail
distribution function. This also implies that the use of (2.32) should be avoided
if more harmonics are combined. Another interesting aspect is that the lower
bound is negative. This is physically not possible, but results from the fact that
the product φ′A′/A can become negative.

The averaging of long tail distributions can be avoided by averaging first the
product µφ′ (ωk)µA′/A (ωk) over the harmonics using the weight ωk, this average
is then used to calculate the overall diffusivity. This increases the confidence
on the estimate, which does not require any knowledge of the noise variances.
The confidence is further increased using the weighting that also includes the
variances.

The analytic calculation is clearly different from the one generated by the
Monte Carlo analysis due to the Gaussian approximations used. If the error in
terms of confidence bounds is considered, then it is clear that the lower bound
is over estimated and the upper bound is under estimated. The reason is that
the product of φ′A′/A is skewed with a tail to the right, which is not captured
by the Gaussian approximation. However, the difference between the confidence
bounds of the analytic calculation and the Monte Carlo analysis is small. This
means that this method can be used to estimate χ and its confidence bounds.
However, if the skewness of φ′A′/A is large the calculated confidence bounds
deviate significantly from the true confidence bounds.

We have chosen to use the moment generating function (Section 6.2.3) instead
of a Taylor expansion (Section 6.1.4) to approximate the mean value and the
variance for the product φ′A′/A. The advantage of this approach over the Taylor
expansion approach is that the confidence bounds found are smaller than that of
the Taylor expansion both numerically for the Monte Carlo analysis as analyti-



110 Chapter 6. Estimation considering measurement uncertainties

cally. In addition, the distribution function, thus also the confidence bounds, is
better approximated using (6.18) when different harmonics are combined using
the moment generating function. On the other hand, (6.15) introduces an error
on the mean (bias term: σ2

A′/Aφ′). Hence, for a better estimate of the mean
value it is sometimes desirable to use the Taylor expansion instead.

6.4.4 Calibration errors

Measurements can also be prone to calibration errors. These errors cannot be
quantified by studying the perturbative measurements. They are constant for
the entire time trace, otherwise the error would increase the variance. However,
they can influence the uncertainty of the parameter estimation.

The amplitude errors can be modeled by introducing scaling factors α and
β, that describe the calibration error in the measured amplitude Â, such that
Â1 = αA1 and Â2 = βA2. Note that the calibration error influences only
the gain and is assumed to be is constant for all frequencies. By applying a
weighted average similar to (6.32) for the amplitude measurements, an overall
Â1 or Â2 can be determined. The new amplitude with calibration error can then
be substituted in (2.29) giving

χ =
3

4
ω
(

ln
(
αÂ2/βÂ1

)
/∆ρ

)−2

, (6.36)

and rewriting yields

χ =
3ω

4∆ρ2

(
ln (α/β) + ln

(
Â2/Â1

))−2

. (6.37)

The resulting uncertainty on χ depends on the ratio of α and β. If α and β are
stochastic, in the sense that they can be presented by a distribution independent
of time, and ln (α/β) can be approximated by a Gaussian an extension is possible.
However, if ln (α/β) cannot be approximated well by a Gaussian, the calculation
becomes more complicated and probably numerical tools are necessary, e.g.,
Monte Carlo analysis. Note that in practice it can be even more cumbersome due
to possible correlations between α and β. On the other hand, if the calibration
errors α and β are the same for both radial locations, then the calibration error
vanishes.

Commonly, it is presumed that the phase φ is insensitive to calibration errors.
Although this is true for the mean value, it is not true if φ is treated as being
stochastic. The reason is that the variance of the phase depends on the amplitude
in (6.5), which is a direct consequence of the fact that amplitude and phase are
correlated quantities. This can be understood if one considers Figure 6.1 again,
but with varying amplitude M as a result of calibration errors.

Figure 6.9 clearly shows that in case of a calibration error also the uncertainty
on the phase is different. The difference depends on the mean value of the
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Figure 6.9. Circular confidence bounds for M = 0.5 and θ = π/6,
and the new circular confidence bounds for amplitude errors of 10%, i.e.,
Mmin = 0.45 (blue) and Mmax = 0.55 (green). In addition, the phase
confidence bounds are presented for M and Mmin only, which clearly
shows that if M is smaller due to a calibration error, i.e., Mmin, the
uncertainty on the phase increases, which is expressed through the broader
confidence bounds.

amplitude and the variance. However, considering uncertainty on the variance
is rather cumbersome. Therefore, in practice, it is easier to replace the mean
value M by the minimal possible Mmin due to calibration errors, which gives a
conservative confidence bound on φ.

Although the effect of calibration errors can be significant, due to its analyt-
ical complexity, it will not be further considered in this thesis.

6.4.5 Summary estimating χ with confidence

Here, a summary is given of the necessary steps to calculate the overall diffusiv-
ities:
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1. First, calculate the mean value and covariance matrices of the different
excited frequencies ωk.

2. Calculate the phase and amplitudes and determine if they can be approx-
imated by Gaussian distributions (SNR> 5).

3. Determine the mean values µA′/A′ (ωk) and µφ′ (ωk) and the covariance
matrix cov (A′/A, φ′) for every harmonic using the Jacobian, which is de-
scribed in Section 6.1.4.

4. Make a distinction between (a) (φ′)
2

and (A′/A)
2

and (b) the product of
φ′A′/A (including cylindrical approximation).

(a) Case: (φ′)
2

and (A′/A)
2

i. Calculate the generalized weighted mean for every harmonic using
(6.30) and its variance using (6.31). If phase and amplitude are
analyzed separately, then skip this step.

ii. Combine the different mean values µM (ωk) and the variances
σ2
M (ωk) to determine µ+ and its variance σ2

+ using (6.32) and
(6.33).

iii. Calculate the overall diffusivity

χ =
3

4
µ−2

+ . (6.38)

iv. The corresponding confidence bounds are calculated by replacing
µγ = µ+, σ2

γ = σ2
+, and ω = 1 in (6.14) and determine the

confidence bounds using the CDF.

(b) Case: the product of φ′A′/A or φ′A′/A+ 1/ (2ρ)

i. Approximate mean values and variances using the moment gen-
erating function for every harmonic.

ii. Combine the different mean values µp (ωk) and variances σ2
p (ωk)

using (6.34), but with weighting ωk instead of
√
ωk to determine

µmp and its variance σ2
mp using (6.35).

iii. Calculate the overall diffusivity

χ =
3

4

1

µmp
. (6.39)

iv. The corresponding confidence bounds are calculated by substi-
tuting µmp, σ

2
mp, and ω = 1 in (6.18) and determining the CDF,

which is acquired by numerically integrating (6.18).

In practice, the diffusivity is often rescaled in terms of SI units. The confidence
bounds should also be rescaled accordingly.
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6.5 Conclusions and discussion

In this chapter, the effect of uncertainty on the estimates of the diffusivity is
studied. The properties of ECE-measurements and of the Fourier transform
are used to determine the noise distribution of the Fourier coefficients. It is
assumed that the spatial derivatives of amplitude and phase are well approxi-
mated by Gaussian distributions for large SNRs. In this case the diffusivity is
distributed according to the inverse non-central chi-squared distribution when
the relationships in (2.28) and (2.29) are used. Its analytically derived CDF is
used to determine the confidence bounds on the diffusivity, i.e., its accuracy.

Different methods to combine harmonics, amplitude, and phase are com-
pared based on the distributions of χ and its confidence bounds. The (general-
ized) weighted mean gives the resulting Gaussian distribution with the smallest
variance for the results presented here. In case the diffusivity is calculated us-
ing a relationship containing the product of phase and amplitude derivatives,
the corresponding distribution function is approximated, which introduces some
errors.

The weighted average outperforms other methods commonly used to combine
different harmonics, amplitudes, and phases. Moreover, it gives an estimate of
the variance, which is necessary to determine the confidence bounds on χ. In
addition, the direct diffusivity estimate based on the ASDEX Upgrade data of
the first harmonic already shows a near Gaussian distribution, which is an in-
dication that it is close to the optimal solution in this specific case. However,
many issues arise from using amplitude and phase to determine the diffusivity
directly. Taking the squared reciprocal of Gaussian distributed variables always
gives a distribution with a long tail and hence a high upper uncertainty. This
effect becomes much larger when the variances increase. Therefore, relationships
based on inverting Gaussian distributed variables, as, e.g., the phase and am-
plitude, should be avoided for an optimal estimate of χ and the other transport
coefficients. This also holds for the relationships derived in Chapters 3, 4, and 5
because they have more complicated combinations of the spatial derivatives of
amplitude and phase. A better alternative is to determine the diffusivity and
the other transport coefficients using an implicit estimation scheme. In the next
chapter such an implicit method is developed based on Maximum Likelihood
Estimation in the frequency domain, which allows estimates of the transport
coefficients with near minimum variance given the assumptions.





Chapter 7

Frequency domain sample
maximum likelihood estimation

for spatially dependent parameter
estimation in PDEs

7.1 Introduction

In the previous chapters methods have been introduced to directly calculate the
transport coefficients based on the amplitude and phase. However, it is also
shown that approximations need to be made, the derivatives need to be esti-
mated, and non-optimal combination methods for the different harmonics are
necessary. Therefore, in this chapter a new method based on sample Maximum
Likelihood Estimation is introduced. This method allows the use of more compli-
cated models, to estimate the transport coefficients close to minimum variance,
and is directly based on the measurements instead of the derivatives. A dis-
advantage of the method presented here is that the calculation is based on the
minimization of a cost-function and thus an iterative optimization algorithm is
necessary.

The proposed method is also closely related to a number of system identifi-
cation methods and it is well situated in (more general) identification of infinite

This chapter is based on the following articles:
van Berkel, M., et al. [2014]. Frequency domain sample maximum likelihood estimation for
spatially dependent parameter estimation in PDEs, Automatica 50(8): 2113 – 2119.
van Berkel, M., et al. [2013]. Maximum likelihood estimation of diffusion and convection in
tokamaks using infinite domains, IEEE Multi-conference on Systems and Control, pp. 1230–
1234.
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dimensional systems or Distributed Parameter Systems (DPS) literature. There-
fore, this chapter gives many references to the literature in these fields and uses
also the terminology standard in these fields.

A good overview of the parameter estimation problems discussed in the DPS
literature is given in the monograph by Banks and Kunisch [Banks, 1989], and
references therein. In addition, different methodologies exist to identify spatially
varying parameters in PDEs [Kravaris, 1985], of which a number focus specifi-
cally on parabolic PDEs [Banks, 1985; Kunisch, 1991; Mochi, 1999]. Their em-
phasis is on the regularization of the least-squares cost-function used to estimate
the parameters, on the well-posedness in Hadamard’s sense, i.e., guaranteing of
the existence of its solution, and on the the uniqueness of the solution and its sta-
bility with respect to the measurement data [Vogel, 2002]. In addition, regular-
ization is often used to make the optimization problems convex and to constrain
the solution in some sense [Ito, 2008]. Moreover, different methods for reducing
the infinite dimensional PDEs to finite dimension exist and are discussed in the
above mentioned references. Generally, they are using some discretization of the
spatial coordinate [Heath, 1997; Smith, 1985] or basis functions [Banks, 1983;
Canuto, 1988].

A different approach to estimate the parameters is to solve the problem in the
frequency domain via the Laplace Transform [Curtain, 1995]. This reduces the
PDE to a parameterized Ordinary Differential Equation (ODE). These ODEs
can be approximated or sometimes even be solved analytically, thereby avoid-
ing approximation errors. The solutions are generally non-rational or fractional
functions [Curtain, 2009], of which the parameters can be identified using fre-
quency domain identification techniques [Gabano, 2011; Jalloul, 2011; Pintelon,
2005; Valério, 2007]. The disadvantage of this approach is that the non-rational
form of the function can complicate the identification significantly. On the other
hand, the use of periodic excitations enables the removal of the unexcited noisy
frequency lines from the measured data, hence high Signal to Noise Ratios (SNR)
can be obtained at the excited frequency lines by averaging the signals over con-
secutive periods. In addition, it is no longer required to use rational approxima-
tions in the frequency domain, making the identification easier.

We again consider the following second order parabolic PDE with spatially
varying parameters on a one-dimensional spatial domain

∂T

∂t
= fχ (ρ, θ)

∂2T

∂ρ2
+ fV (ρ, θ)

∂T

∂ρ
+ fτ (ρ, θ)T + P (ρ, t) , (7.1)

which is a generalized form of (2.8). We assume that the functions fχ (ρ, θ),
fV (ρ, θ), and fτ (ρ, θ) depend on the unknown transport coefficients (parame-
ters) θ, which we want to identify.

As in the previous chapters, it is assumed that the initial conditions are
unknown. Hence, only measurements are considered for ”t � the dominant
time constant” such that the transients are negligible compared to the forced
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response. The heat source term periodically excites the plasma and is defined
as

P (ρ, t) =

 p (ρ)

K∑
k=1

Ak cos (ωkt+ φk) ρ1 ≤ ρ ≤ ρ2

0 elsewhere,

(7.2)

where Ak, φk, and ωk are the amplitude, phase, and frequency, respectively. The
spatial dependence of the source p (ρ) is unknown, but p (ρ) 6= 0. In addition,
we assume that the temperature measurements are distributed according to a
CCND in the frequency domain (see Chapter 6).

The estimation of parameters from noisy measurements only is known as an
Errors-in-Variables problem (EIV). In the EIV literature it is well known that
the least-squares estimator is not consistent [Söderström, 2007], i.e., the param-
eter estimates will be biased. Moreover, this bias depends on the SNR, which
decreases with the distance to the source P (ρ, t). This is caused by the low-
pass characteristic of (7.1), which also causes the higher frequencies to contain
more noise than the lower frequencies. This problem can be partly overcome
using a low-pass filter to suppress the noisy “high-frequency” components in the
measurements when using time-domain estimators [Söderström, 1999]. How-
ever, the optimal cut-off frequency of this filter depends on the unknown system
parameters.

This chapter presents a frequency domain sample Maximum Likelihood Es-
timator (SMLE) for this EIV problem. The SMLE is based on the Probability
Density Function of the noise, allowing for a consistent estimate under weak
assumptions [Pintelon, 2012]. Moreover, it naturally weights the different fre-
quency components avoiding the necessity of a low-pass filter. In the SMLE
framework, the confidence bounds on the estimated parameters can be calcu-
lated and model validation tests exist. However, the SMLE requires knowledge
about noise properties of the measurements. Compared to other methods in the
EIV, a disadvantage of the SMLE is that its optimization is a non-linear least-
squares problem, which is no longer convex in contrast to linear least-squares
estimators.

The SMLE will be used to estimate a set of small sub-domains, instead of
modeling the entire domain or working with the spatial derivatives A′/A and
φ′. On each sub-domain again a complex valued non-rational analytic model
description is used such that discretization errors can be avoided in comparison
to numerical schemes[Bhikkaji, 2001]. The advantage of this approach is that
the decoupling in sub-domains assures that errors do not propagate from one
sub-domain to the others. In addition, the SMLE optimization problem remains
solvable, because only a few parameters need to be estimated.

In this chapter, two approaches are discussed for the choice of models on this
sub-domains. The SMLE can be used in combination with the transfer functions
derived in (2.36), (2.37), and (2.52). The advantage of this choice is that only
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two spatial points need to be used for every domain giving the most local domain
on which the parameters are estimated. In addition, the resulting models that
need to be estimated are Single-Input Single-Output, which makes the analysis
and estimation simpler. On the other hand, a semi-infinite domain or symmetry
boundary condition is assumed, which is a simplification of the real boundary
condition and the transport coefficients are assumed constant up to ρ =∞ or up
to the center at ρ = 0 (see Section 2.3 and Section 2.4). Therefore, this chapter
also introduces a second approach based on measurement points only, without
making assumptions on the boundary conditions. This does not mean that (7.1)
does not have boundary conditions at the ends of the entire domain. This would
imply that it does not have a unique solution. It means that the boundary
conditions are unknown and as such we make no assumptions about them. Con-
sequently, the smallest sub-domain that can be defined needs to contain at least
three measurement points. The reason is that two measurements act as the
boundary conditions (inputs) as such defining the solution of the second order
PDE. At least one measurement point between the boundaries (output) is neces-
sary to compare it with the solution of the PDE at that location. This solution
is determined by the parameters, the model structure, and the real boundary
conditions. In principle the number of measurements can be extended, but then
a Multiple-Input Multiple-Output system needs to be identified. Therefore, in
this chapter we limit the discussion to three adjacent measurements to define
a sub-domain. Note that we again only consider sub-domains that are outside
the interval [ρ1, ρ2], i.e., domains that do not contain an excitation source p (ρ)
(see (7.1) and (7.2)). The reason is that the exact dependency of p (ρ) on ρ is
unknown (see Section 2.1).

A general framework for different spatial dependencies and geometries is dis-
cussed, but results are only shown for sub-domains on which parameters can be
modeled as constants. Consequently, only piecewise smooth profiles are identi-
fiable.

An implicit identification scheme consists of the following three components:
a model of the system, derived in Section 7.2; a cost function minimization
scheme based on a realistic noise model, explained in Section 7.3; and simulation
data which is generated by means of a finite difference model such that the result
can be validated. The latter is discussed in Section 7.4. Finally, a number of
conclusions are summarized and discussed.

7.2 Modeling

This section derives the transfer functions based on a smart choice of the bound-
ary conditions. The most important concept is the replacement of boundary con-
ditions by measurements. In addition, derivations are done without specifying
any spatial dependency.
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7.2.1 Considered partial differential equation

This subsection is a small repetition of Chapter 2, but considering a more gener-
alized form of the PDEs under consideration. It considers the homogeneous form
of (7.1) outside the source domain, where the localized source P (ρ, t) perturbs
(excites) the plasma. It is possible to solve the inhomogeneous PDE, allowing
the use of a domain with a source. However, the inhomogeneous PDE results in
a more complex relationships and will not be discussed in this thesis.

The Laplace transform of (7.1) simplifies the PDE towards a complex valued
Ordinary Differential Equation (ODE) of the form

0 = fχ (ρ, θ)
d2Θ

dρ2
+ fV (ρ, θ)

dΘ

dρ
+ (fτ (ρ, θ)− s) Θ, (7.3)

with Θ = L{T} and the Laplace variable s = iω. The functions fχ (ρ, θ),
fV (ρ, θ), and fτ (ρ, θ) depend on the spatial coordinate ρ and the time-invariant,
unknown parameters, θ. In many cases this ODE can be solved analytically, with
the general solution given by

Θ (ρ, s) = E1 (s) ξ (ρ, θ, s) + E2 (s) ζ (ρ, θ, s) , (7.4)

where E1 (s) and E2 (s) denote the free variables set by the boundary conditions
for which two specific cases are described in Section 2.2. The choice of the
spatially dependent functions fχ (ρ, θ), fV (ρ, θ), and fτ (ρ, θ) in (7.3) determine
the solutions ξ (ρ, θ, s) and ζ (ρ, θ, s), which are the complex eigenfunctions of
(7.3). Solutions for many different choices of fχ (ρ, θ), fV (ρ, θ) and fτ (ρ, θ)
exist, such as constant, and linear functions. An extended list of these analytic
solutions can be found in Appendix A and [Polyanin, 2003]. The next step is to
derive the local transfer functions.

7.2.2 Local domain based on two measurements

In Chapter 2 the semi-infinite domain and the symmetric domain has been intro-
duced. This results in transfer function descriptions based on two measurement
points. For semi-infinite domains the transfer functions have been derived in
(2.36), (2.37), and (2.38)

Θ (ρi+1) =
ξ (ρi+1)

ξ (ρi)
Θ (ρi) (7.5)

and for symmetric domains in (2.52) and (2.53)

Θ (ρi+1) =
ζ (ρi+1)

ζ (ρi)
Θ (ρi) . (7.6)



120 Chapter 7. Maximum likelihood estimation for PDEs

These relationships can also be expressed in terms of a Single-Input Single-
Output system of the form

Y (s) = G1 (θ, s)U1 (s) , (7.7)

where Y (s) = Θ (ρi+1), U1 (s) = Θ (ρi), and G1 is either ξ (ρi+1)/ξ (ρi) or
ζ (ρi+1)/ζ (ρi).

In the rest of this chapter the description of the algorithm is based on two
transfer functions. The here used description can still be used by choosing
G2 (θ, s) = 0.

7.2.3 Local domain based on three measurements

Alternatively, a set of small sub-domains can be defined based on three measure-
ments, where no longer assumptions are necessary on the boundary conditions in
contrast to the previous subsection. Every domain uses three adjacent frequency
spectra of the measurements to estimate the local parameters. The outer two
measurements act as the boundary conditions, i.e., Θ (ρi−1, s) and Θ (ρi+1, s).
These two boundary conditions allow for the calculation of E1 (s) and E2 (s).
Rearranging and defining Θ (ρi, s) as the output measurement results in the
following Multiple-Input Single-Output system where ξ and ζ are known (de-
pendencies on θ and s are omitted):

Θ (ρi) =

(
ξ (ρi+1) ζ (ρi)− ζ (ρi+1) ξ (ρi)

ζ (ρi−1) ξ (ρi+1)− ζ (ρi+1) ξ (ρi−1)

)
Θ (ρi−1)

−
(

ξ (ρi−1) ζ (ρi)− ζ (ρi−1) ξ (ρi)

ζ (ρi−1) ξ (ρi+1)− ζ (ρi+1) ξ (ρi−1)

)
Θ (ρi+1) , (7.8)

with i = 2, ...,m − 1, where m denotes the number of sensors. The inputs and
outputs are defined as U1 (s) = Θ (ρi−1, s), U2 (s) = Θ (ρi+1, s), and Y (s) =
Θ (ρi, s) on the interval [ρi−1, ρi+1]:

Y (s) = G1 (θ, s)U1 (s)−G2 (θ, s)U2 (s) . (7.9)

In (7.8), the choices of ξ (ρ, θ, s) and ζ (ρ, θ, s) are deliberately undefined, as
different dependencies of fχ, fV , and fτ can be used. Here, we only consider
constant parameters as such only the solutions in (2.13) and (2.15) need to be
considered.

7.2.4 Change of variables

The parameters will be estimated by minimizing a cost function. The computa-
tion time and possibly avoidance of local minima can be improved by simplifying
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the equations to be evaluated. In Section 2.2, we have seen that the important
quantity λ1,2 takes the form

λ1,2 = − V
2χ
∓

√(
V

2χ

)2

+
3

2

s+ τinv
χ

, (7.10)

for both slab and cylindrical geometry. Therefore, a substitution is introduced
to avoid parameter divisions, i.e.,

λ1,2 = −a∓
√
a2 +

3

2
b+

3

2
c s, (7.11)

with a =
V

2χ
, b =

τinv
χ
, and c =

1

χ
.

This parameter set will be denoted as θ =
[
a b c

]T
and the estimated set by θ̂.

Although not discussed here, similar simplifications are possible for other choices
of the spatial dependent functions.

In the next section, not only the parameters are estimated, but also their
covariance. Consequently, the covariance matrix of the estimated parameters
can be recalculated using (see (6.4) for details)

Cov
(
χ̂, V̂ , ˆτinv

)
= Jχ Cov

(
θ̂
)
JTχ

with Jχ =
1

ĉ2

 0 0 −1
2ĉ 0 −2â

0 −ĉ b̂

 . (7.12)

7.3 Sample maximum likelihood estimator

In this section, the Errors-in-Variables (EIV) problem is discussed, for which
the sample Maximum Likelihood Estimator (SMLE) offers a solution. It is also
discussed how to minimize the sample Maximum Likelihood cost function, how
to construct confidence bounds on the estimated parameters, and how to validate
the estimated models.

Maximum Likelihood Estimation is a method for estimating parameters
which maximizes a known likelihood function. The likelihood function can be
interpreted as a Probability Density Function (PDF), but with respect to the
measured data. For example, if the difference between the measured output
and a predicted output based on the model and measured input is studied, the
remainder in the absence of model errors is fully characterized by the likelihood
function of the noise. The sample likelihood function differs from the likelihood
function in the sense that the real noise (co-)variances are unknown and are
replaced by sample variances determined using a pre-processing step.
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7.3.1 Error model: errors-in-variables

The transfer functions introduced in (7.9) are based on local spatial measure-
ments. This means that an EIV approach is necessary to handle the noise on
the measurements. In this chapter, the EIV problem is solved via the sample
Maximum Likelihood Estimator (SMLE) in the frequency domain. It is based
on additive circular complex normally distributed noise in the frequency domain
(CCND) (see Chapter 6 or [Pintelon, 2012]), which is the result of Gaussian
noise in the time domain [Goodman, 1963].

In the SMLE, the true unknown noise (co-)variances are replaced by sample
estimates obtained from the periodic signal. This is achieved by calculating
the averages and (co-)variances over the different periods per frequency line,
which is described in detail in Section 6.3.2. A minimum number of 4 periods is
necessary to make a parameter estimate, however, if at least 7 periods are used
other desirable properties of the SMLE are also retained (see [Schoukens, 1997]
for the details). In principle, also measurements containing transients can be
used to obtain the (co-)variances using the local polynomial method, but at the
cost of a more complex pre-processing step (see [Pintelon, 2010]).

Other approaches to handle EIV problems often rely on multiple experiments
and specific assumptions on the noise. An overview of the different methods can
be found in [Söderström, 2007]. In contrast, to the frequency domain (sam-
ple) MLE, also MLEs in time domain exist [Åström, 1980; Diversi, 2007], which
handle the spectral factorization and possible transients differently [Söderström,
2007]. Moreover, MLEs can also be constructed for non-Gaussian noise dis-
tributions [Goodwin, 1977]. However, the MLE for Gaussian noise are more
extensively studied, e.g., [Pintelon, 2012; Söderström, 2010].

7.3.2 Maximum likelihood cost

The sample MLE cost function is derived on the basis of the system model and
the error model. The sample log-likelihood cost function VSML is used [Pintelon,
2012]. It is defined as

VSML =
1

F

F∑
k=1

|e (ωk, θ)|2

σ2
e (ωk, θ)

, (7.13)

with ωk the excited frequencies and F the number of frequencies used. The error
e (ωk, θ) is defined as

e (ωk, θ) = Y (ωk)− (G1 (θ)U1 (ωk)−G2 (θ)U2 (ωk)) , (7.14)

where the transfer functions G1 and G2 are evaluated at ωk. The variability,
which takes the different noise contributions into account, is given by (depen-
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dency on ωk and θ are omitted)

σ2
e (ωk, θ) = σ2

Y + σ2
U1
|G1|2 + σ2

U2
|G2|2

− 2 Re
(
G1σ

2
U1U2

G2 + σ2
Y U1

G1 − σ2
Y U2

G2

)
, (7.15)

where the variances and covariances are estimated for every ωk using M realiza-
tions (periods) calculated using (6.20) and (6.22). The complex conjugate of G
is denoted as G. The parameters are estimated by minimizing VSML

θ̂ = arg min
θ

VSML (ωk, θ) . (7.16)

Minimizing this cost function gives the estimated parameters. For filtered white
noise disturbances the minimizer of (7.13), based on the non-rational transfer
models, has exactly the same asymptotic (F → ∞) properties as the SMLE
for rational transfer function models. For example, it is consistent and asymp-
totically normally distributed (see [Pintelon, 2012] for the details). The cost
function (7.13) can be naturally interpreted as a weighting of the error with
the uncertainty of the measurements. Measurements with small noise variances
have a higher weighting and vice versa. If σe is constant for all ωk, then (7.13)
reduces to a non-linear least-squares (NLS) estimator.

7.3.3 Optimization and confidence bounds

The minimization of (7.13) is in principle a non-convex problem. On the other
hand, only a few parameters need to be estimated. Therefore, the entire relevant
parameter space can easily be searched for the cost function’s minimum. In
addition, if the noise levels are reasonable and the parameters are optimized in
terms of θ, it has been observed that the gradient based algorithms converge to
the global minimum for many initialization values. These gradient methods are
computationally cheap, especially if an analytic Jacobian is used.

The analytical Jacobian can also used to estimate the confidence bounds on
the parameters found by minimizing (7.13) using the Jacobian from a first-order
Taylor series expansion

Jθ =
∂

∂θ

(
e (ωk, θ)

σe (ωk, θ)

)
, (7.17)

which is similar to the approach in Section 6.1.4. The resulting covariance matrix
in terms of θ is given by

Cov
(
θ̂
)
≈
(
M − 1

M − 3

)[
Re
(
2JHθ Jθ

)]−1
, (7.18)

with M the number of realizations (periods) [Pintelon, 2003]. The correction
term in M is necessary, because the estimated sample covariance matrix is used
instead of the real one. The uncertainty on the real valued parameters can be
calculated by (7.12).
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7.3.4 Cost function model validation

A cost function analysis is used to detect model errors. If the noise is indeed
normally distributed, no model errors are present, and under some weak assump-
tions [Pintelon, 2012], the expected value of the sample Maximum Likelihood
cost function equals the number of frequency lines F minus the number of free
real-valued parameters nθ divided by two, i.e.,

Vnoise =
(
F − nθ

2

)
. (7.19)

In addition, the theoretical variance of the SMLE cost equals Vnoise. How-
ever, as co-variances are estimated using M repeated experiments, a correction
is necessary to take this extra uncertainty into account, i.e.,

E {VSML} =
M − 1

M − 2
Vnoise (7.20)

and

var {VSML} =
(M − 1)

3

(M − 3) (M − 2)
2Vnoise. (7.21)

The estimated variance is used to construct confidence bounds. The cost
function is a real valued function such that the confidence bounds can be con-
structed based on a real valued normal distribution

Cbnd (p) = E {VSML} ±
√

2 var {VSML} erf−1 (p) . (7.22)

with confidence p. If VSML

(
θ̂
)

resides between the bounds Cbnd, then the model

is validated with respect to this test. Model errors generally lead to a higher
value of the cost function at the global minimum. Values lower than the confi-
dence bounds are mostly introduced by an incorrect modeling of the uncertainty.
The whiteness residual test and the measured frequency response functions with
their confidence bounds can also be compared to analyze the quality of the
model. These are clearly defined for a Single-Input Single-Output system as
given in Section 7.2.2 (see [Pintelon, 2003; van Berkel, 2013]). A similar white-
ness residual test exist for a Multiple-Input Multiple-Output system [Pintelon,
2003]. However, its applicability for the specific case of a Multiple-Input Single-
Output system where the transfer functions have coupled coefficients should be
further investigated.

7.3.5 Input design and choice of domain

The SMLE developed here always considers a local domain of two or three mea-
surement points. In case of three measurement points the measurement locations
can be non-uniformly distributed. In principle, the larger the domain, the bet-
ter the estimate of the parameters. The reason is that the suppression of the
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amplitude increases with the distance due to the source. Hence, the amplitude
difference between the input(s) and output is also larger. However, the larger
the domain, the more stringent the assumption of constant parameters becomes.
This means there is a trade-off between the sensor distance and the assumption
of constant parameters. These considerations are more important than the over-
all number of sensors used, because every domain is treated separately in the
approach used in this chapter. The validation test and confidence bounds can
be helpful in making a choice for the sensor locations. If the model (of constant
parameters) is rejected by the validation test, the model assumption is incorrect.
In that case the sensor locations should be closer to each other. On the other
hand, if the confidence bounds are large then increasing the distance between
the sensors could improve the accuracy.

The other important aspect is the source defined in (7.2). The theoretical
minimum number of sinusoidal components in the source should be F > nθ/2.
However, every extra sinusoidal component increases the accuracy of the esti-
mated parameters. The domain to be identified is preferably close to the source,
but should not contain the source. In case the domain has some distance to the
source, the diffusive process acts as a low-pass filter, which generally reduces the
optimal frequencies ωk with respect to the parameter accuracy when compared
with a similar domain closer to the source. In addition, the (unknown) param-
eters on the domain, and between the source and the domain, directly influence
the choice of the optimal excitation frequency. On the other hand, τinv can be
estimated using sine components at a very low-frequency, which follows from
s→ 0, and V is best identified somewhere in the intermediate region.

It is clear, that selecting the optimized identification accuracy is complex
and depends on many factors. Moreover, it depends on which parameters and
domains need to be identified accurately. The accuracy can be evaluated using
the Fisher information matrix. As such this matrix plays an important role in
designing optimal excitation signals and sensor placement. However, the exact
design of the optimal excitation signal and sensor placement is complicated, and
will not be considered in this chapter. The reader is referred to [Rafajlowicz,
1983; Ucinski, 2004] for a treatment of sensor placement and excitation design
in DPS. On the other hand, the design of optimal excitation signals for transfer
functions is treated in, e.g., [Rojas, 2007; Schoukens, 1991]. Note that non-linear
effects need to be considered also in the design of the excitation signal [Pintelon,
2012].

7.4 Simulation results

This section shows a number of analysis steps for the validation of the estimation
procedure presented in the previous sections using a Monte Carlo simulation. In
addition, a finite difference simulation is presented, which shows the estimation
results for varying profiles in slab geometry of χ and Vs. The models estimated
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using a finite difference simulation are validated by means of a cost function
analysis.

7.4.1 Estimator and confidence bound validation

The possibility to construct confidence bounds on the estimated parameters
is an important advantage of the SMLE. However, the implementation of any
estimation algorithm can be error-prone. Therefore, it is important to validate
the implementation. This especially holds for schemes which use an analytic
Jacobian. A number of trivial tests, such as Finite Difference Model comparison,
convergence to the true minimum, and comparison of the Fourier transforms are
done.

Next to validate the model, the estimated confidence bounds on the estima-
tor need to be verified. The SMLE has a number of advantages when compared
to the least-squares estimators. The estimates remain consistent if the additive
complex circular normal noise is filtered or if the different noise sources are cor-
related (covariance), because the noise models are also estimated based on the
realizations of the periodic signals. Under the conditions of filtered or colored
noise, the estimator should find a consistent estimate and should approximate
the confidence bounds accordingly. This can be tested by means of Monte Carlo
simulations. The noise sources have been filtered and are correlated between
different spatial locations. The original model is used and different noise realiza-
tions (10000) with the same variance and mean are simulated. The confidence
bounds were validated under these conditions. It turned out that the parameter
b = τinv/χ is extremely sensitive to noise. This is caused by the necessity of
excitation signals with very low ωk and the presence of V and χ. Therefore, in
the simulation in the next section the damping τinv is not considered.

7.4.2 Finite difference simulation

In this section, a simulation example is presented in Figure 7.1 where the dif-
fusivity χ and convectivity Vs are estimated assuming a slab geometry. Both
the diffusivity profile and convective profile contain a step (simulated by an erf
function), but at different locations. These profiles were chosen to show that the
domains can be identified independently from the profile outside the domain.

The excitation source P (ρ, t) is placed at ρ = 0.1 and hence influences the
estimates in the gray area of Figure 7.1. The sensors are positioned at ρ =
0.1, 0.15, ..., 0.95, with the exception of ρ = 0.75. The source is a multi-sine
with equal amplitude exciting the harmonics from 20 to 400 Hz (20 harmonics).
In total 40 periods are observed (2 s). Normally distributed noise is added
which is for 20% uncorrelated and 80% correlated (over different ρi), to simulate
a realistic situation. The simulation data is generated with a finite difference
model of 4000 grid points, a time step of 0.1 ms, and the boundary conditions
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are ∂T (ρ = 0) /∂ρ = 0 and T (ρ = 1) = 0.

In this example, the SMLE will be compared to the non-linear least-squares
(NLS) estimator (7.13) with σe = 1, which is comparable to an output error
approach in the time-domain [Ljung, 1993] (Parseval’s theorem). For the opti-
mization a simple grid search algorithm (brute-search) is used to find the global
minima for both the SMLE and the NLS. Exactly the same global minima are
found using a gradient based method (Levenberg-Marquardt) for the SMLE even
in the case of high noise levels. The resulting local estimates are presented in
Figure 7.1.

At low noise levels the SMLE and the NLS performance is similar. If the
measurements become more noisy, due to a larger distance to the source, the
estimates diverge from the true values. However, the confidence bounds for
the SMLE are still correct. At higher noise levels the NLS estimates diverge
significantly from the true values and perform worse than the SMLE. Moreover,
the estimated χ seems relatively insensitive for a step in fVs (ρ). In addition,
the estimates of the non-symmetric domains using the measurements at ρ =
[0.65, 0.7, 0.8] and ρ = [0.7, 0.8, 0.85], which are plotted at ρ = 0.7 and ρ = 0.8,
respectively, perform as expected. Although the performance at the steps seems
good, it is still necessary to validate the modeling.

7.4.3 Model validation of finite difference simulation

In Section 7.3.4 a model validation test is introduced, which is used here to
validate the estimates of the finite difference simulation. The value of the cost
function at the global minimum should equal the degrees of freedom (7.19) within
some confidence region. This is verified in Figure 7.2, where not only the values
of the cost function are plotted but also the cost function as function of the
parameters at one spatial location.

Figure 7.2(a) shows the cost function, due to the parameter transformation
introduced in Section 7.2.4. Many initialization values will allow for a gradient
based method to converge to the global minimum or its neighborhood. Figure
7.2(b) shows that most models describe the data well. However, if lower noise
levels than the noise level chosen here are used, the estimated models at the step
in fχ (ρ), and to a lesser extend at the step in fVs (ρ), will be rejected by the cost
function validation. Figure 3.6 is comparable in terms of the geometry and steps
in the profiles. In that example the transport coefficients calculated based on
the semi-infinite domains showed serious deviations after the step. This behavior
has disappeared by considering domains with three measurement points, which
is the main advantage for choosing three measurement point domains over two
measurement point domains.
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Figure 7.1. Comparison between the SMLE and the NLS. The true
profiles (solid lines) end estimates of χ and Vs are presented including
the 95% confidence bounds (SMLE only). Some NLS estimates of Vs be-
come very large, are not included. The estimate is plotted at the central
measurement ρi of the domain. The amplitude of the ground frequency
|Θ (ρi, ω1)| and the amplitude of the highest excited frequency |Θ (ρi, ω20)|
are shown. The other amplitudes of the excited frequencies are situated
in between. In addition, the standard deviation of the noise in the fre-
quency domain |σnoise (ρi, ωk)| = σy is presented, which is constant for all
frequencies. In comparison also the SNR in the time domain is presented,

which is defined as SNRtime (ρi) = 20 log10

(
Trms(ρi)

noiserms(ρi)

)
. The crosses

represent the measurement locations.
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Figure 7.2. (a) Contour plot of the cost function values as function of the
transformed parameters a and c at a specific spatial location. Note that
the original parameters are defined in terms of θ so χ is plotted from 1 to
200 and a is a more complicated combination of χ and Vs. (b) The values
of the cost function at the global minimum (×), VSML for the different
spatial estimates (×). The dashed lines are the 95% confidence bounds
based on the expected variance of VSML.

7.5 Conclusions and discussion

This chapter presents a new methodology to identify the spatial dependent pa-
rameters. The estimation is performed in the frequency domain, allowing ana-
lytic models to be used for simple dependencies. A transfer function is derived,
based on two or three measurement points such that unknown boundary con-
ditions can be handled. Moreover, a sample Maximum Likelihood Estimator
is used to estimate the parameters. It takes the noise into account, which is
present at the inputs and the output. This allows for consistent estimates of the
parameter values and their uncertainties.
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The SMLE performs better than the non-linear least squares estimator at
high noise levels. A model validation technique shows that most estimates are
accepted. The local estimation with three parameters ensures a simple and
robust minimization of the cost function as only a few parameters need to be
estimated. The local estimates also overlap, resulting in some redundancy, which
can further improve the estimation procedure by using the overlap information.

Extending the methodology to higher dimensions is not straightforward. The
main problem is foreseen in terms of the boundary conditions of a domain.
The out and inflow of energy between two measurement locations needs to be
described, which probably would require some interpolation. In addition, the
required number of measurements increases to at least four (triangular element)
in 2D. This means that the SMLE needs to be extended accordingly.



Chapter 8

Conclusions, discussion and
recommendations

A number of new methodologies for the determination of the thermal transport
coefficients from electron temperature measurements during power modulation
experiments are introduced. Some of these methodologies also take the influence
of measurement uncertainty into account. These methodologies range from,
quick-and-dirty (the estimate is simple to implement and gives a rough estimate
of the transport coefficients), to hard-yet-gracefully (the estimate is difficult to
implement, but given the uncertainties of the measurements, provides an optimal
estimator for the transport coefficients on a local domain, consisting of two or
three measurement points).

8.1 Conclusions

In Section 1.4 the general objective of this thesis is given, i.e.,

Develop practical methods to reduce the uncertainty of the estimated trans-
port coefficients allowing for the validation of the chosen transport model.
These methods should not restrict the modulation of the source, such that
optimal excitations can be applied.

To achieve this objective, the following steps were taken:

• Linking fusion literature with system identification concepts: The
first step in linking these two fields is analyzing the differences in modeling,
i.e., the logarithmic temperature derivative (fusion) and transfer functions
(system identification). Comparing the logarithmic temperature derivative
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and transfer functions shows that (in slab geometry) the (logarithmic)
spatial derivatives of amplitude and phase are constant if the transport
coefficients are independent of the radius. In addition, it is shown that the
spatial derivatives both in slab and cylindrical geometry are directly linked
to the spatial dependence of the transport coefficients and as such cannot
be chosen separately. As such transfer functions offer a method in which
no longer the derivatives of amplitude and phase need to be calculated
directly.

• The introduction of a large number of new approximations in
cylindrical geometry: Based on the logarithmic temperature derivative,
approximations for the diffusivity have been derived, as well as approxi-
mations for the convectivity and damping. Therefore, it was necessary
to extend the modeling, i.e., the logarithmic temperature derivative and
transfer functions to include convectivity. This resulted in models in terms
of the Confluent Hypergeometric Functions.
Both slab and cylindrical geometries are considered, assuming either a
semi-infinite domain or a symmetric domain. In slab geometry, the approx-
imations can be directly calculated in terms of the logarithmic derivative
using one or two harmonic components of the temperature perturbation,
i.e., harmonics. The approximations in cylindrical geometry are derived
using continued fractions and asymptotic expansions. Moreover, if both
convectivity and damping are considered next to the diffusivity, two har-
monics are necessary.
The approximations based on a semi-infinite domain, with the exception of
the asymptotic expansion, estimate the diffusivity well for large radii, high
frequencies, and small diffusivities. This holds both for the cases where
heat waves travels outwards or inwards. The approximations derived us-
ing asymptotic expansions are only applicable for heat waves traveling
outwards, enabling the estimation of the transport coefficients for small
radii, low frequencies, and large diffusivities. Approximations based on a
symmetry boundary condition for heat waves traveling inwards perform
well for small radii, low frequencies, and large diffusivities. The approxi-
mations based on the continued T -fraction show only some errors in the
overlap region of the other approximations.
In this thesis approximations are also compared on the basis of the follow-
ing three cases:

1. Diffusivity only for which the solution is given in terms of Bessel
functions with the exception of the slab approximations.

2. Diffusivity and damping for which the solution is given in terms of
Bessel functions with the exception of the slab approximations.

3. Diffusivity, convectivity, and damping for which the solutions are
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given in terms of the Confluent Hypergeometric Functions with the
exception of the slab approximations.

In case convectivity is negligible, i.e., cases 1 and 2, two approximations
suffice to determine the diffusivity well. The relative error of the diffusivity
estimate for the region of interest is in general well below 1%. However,
in a small region, the errors are larger with a maximum relative error for
heat waves traveling towards the edge of 20% and for heat waves traveling
towards the center of 2%. For both cases a simple test is introduced to
select the proper approximation.
The third case also considers convectivity. In this case the new approxi-
mations show a significant region in which the diffusivity can be estimated
well, but also regions in which no suitable approximation has been derived.
This implies that implicit methods will be necessary to estimate the con-
vectivity also in these regions.
Although the transport coefficients are assumed to be independent of the
radius, i.e., if the spatial variation of the profiles is small, it is still possible
to determine these spatial varying transport coefficients. However, signif-
icant errors can occur due to the assumption of the transport coefficients
being independent of the radius in combination with semi-infinite domains
or symmetric domains. These errors can even occur when the transport
coefficients on the local domain under consideration are constant. The
influence of errors due to the variation of the profiles decreases with in-
creasing frequency due to the low-pass character of the heat transport
(models). As both convectivity and damping are determined by frequen-
cies below that of the diffusivity, these errors also impact the estimation
of the convectivity and the damping more significantly. In addition, the
approximations derived for the convectivity and damping are less accurate
compared to those for the diffusivity.

• Extending the analysis to multiple harmonics such that the fre-
quency content of the modulation can be chosen freely: Another
important aspect of estimating the transport coefficients is the combination
of different harmonics. This can only be done in an optimal way by taking
the measurement uncertainties into account. For the methods introduced
in Chapter 2 used to determine the diffusivity, it has been shown that
the distribution of the diffusivity is described by a non-central inverse chi-
squared distribution, under the assumption of a Complex Circular Normal
Distribution in the frequency domain. This has serious consequences for
combining estimates of the diffusivity determined at different frequencies
(harmonics). The resulting distribution function has a long tail resulting
in a high upper uncertainty. In addition, the average diffusivity will be
biased. Therefore, an alternative approach is introduced, which is closely
related to Maximum Likelihood Estimation. This approach first averages
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the weighted spatial derivatives, where the spatial derivatives can be seen
as Gaussian random variables. On the other hand, this approach is less
suitable if products of these spatial derivatives or more complicated combi-
nations appear in the approximations. In such cases clearly an alternative
approach is necessary, which is introduced in Chapter 7.

• The use of the sample Maximum Likelihood Estimator to reach a
near minimum variance on the estimated transport coefficients,
which also allows a statistical analysis of the validity of the as-
sumed model: The sample Maximum Likelihood Estimator uses the mea-
sured Fourier coefficients, mean values and (co-)variances, without the need
for approximating the spatial derivatives of amplitude and phase. In addi-
tion, the transport coefficients can be estimated using the original transfer
functions and hence no additional approximations are needed. Moreover,
more complicated models can be used. Therefore, a new local domain
is introduced, which considers three measurement points instead of two
measurement points in combination with a boundary condition. As such
it avoids errors commonly related to the semi-infinite domains or domains
based on symmetry boundary conditions. Another important advantage of
the sample Maximum Likelihood Estimator is that it is a consistent esti-
mator. It gives the transport estimates with small variance, which is close
to the theoretical minimum. Moreover, using some statistical test(s) it is
possible to validate the estimated model with respect to the measurement
data. Two disadvantages of the sample Maximum Likelihood Estimator
with respect to the other methods presented in this thesis are: 1) the
implementation is more complicated and 2) the optimization problem is
non-convex, hence, convergence to the global minimum is not guaranteed.

In summary, the extension of the modeling with convectivity not only allows it
estimation, but also allows for the modulation frequencies to be lowered. The
reason is that the effect of convectivity no longer needs to be suppressed. In ad-
dition, the combination of different harmonics allows the spreading of harmonics
over a large frequency range. This is important for estimating the transport co-
efficients as they are sensitive to different frequency ranges. In addition, taking
the measurement noise into account allows for a near optimal estimate of the
transport coefficients. Hence, as a near minimum variance parameter estimate
is reached, this also allows the validation of the chosen model. In Chapter 7 all
these steps come together in the Maximum Likelihood Estimator, albeit, at the
cost of a non-convex estimation algorithm. As this algorithm is implicit, it also
allowed the use of three point domains, which no longer are subject to errors due
to assumptions on boundary conditions necessary in a two point domain. As the
implicit methods require starting values, the explicit approximations derived in
Chapters 3-5 can be used for this purpose.
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The Maximum Likelihood Estimation algorithm does not depend on the cho-
sen perturbation, with the exception of some weak conditions and takes the
measurements into account in a near optimal way given the noise assumptions.
Hence, one may reach the conclusion that our objective has been reached. How-
ever, it is important to realize that the objective has only be reached for local
domains and not for entire profiles. In this thesis, we have limited our analysis
to constant parameter dependencies. This does not mean that spatial variations
cannot be taken into account, but the estimates are non-optimal. The reason
for this choice of parameter dependencies is that this thesis focuses on the use
of analytical solutions of the underlying Partial Differential Equation, which is
a natural continuation of the existing fusion literature. However, during this
research it also became clear that the limit of analytical solutions in cylindrical
geometry has been reached. Although, theoretically generalized hypergeometric
functions could be used to describe non constant profiles, they are not practical
in estimation algorithms.

8.2 Discussion and recommendations

This final section describes possible future research directions and discusses a
number of issues, which in the opinion of the author should be further inves-
tigated. It is subdivided in three parts each focusing on a different aspect of
(electron) heat transport studies, i.e., estimation of the transport coefficients,
experimental design, and the applicability of the presented methods to other
problems.

8.2.1 Improvement of the estimation

This section contains a number of recommendations concerning the methods
used to determine the transport coefficients based on perturbative experiments.
As such, this section is closest to the work described in this thesis.

• In the Distributed Parameter System (DPS) literature, e.g., [Banks, 1989],
many methods have been developed to estimate parameters in Partial Dif-
ferential Equations (PDEs). To date, this body of knowledge has not
been incorporated in the fusion literature, partly due to the mathematical
complexity of both the mathematical definitions and the implementations.
However, a number of these methods are directly applicable for problems
in fusion. In addition, as the MLE introduced in this thesis solves a non-
convex problem, a convex alternative from the DPS literature, could be
used to generate good start values.

• The MLE developed in this thesis is based on the assumption of local con-
stant parameter dependencies in slab and cylindrical geometry. This is a
limiting assumption if domains larger than three measurement channels
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are considered because for varying profiles higher order spatial dependen-
cies give a better description. Therefore, the MLE in frequency domain
should be extended to also include higher order spatial dependencies. Con-
sequently, discretizing the spatial coordinate will be necessary because gen-
erally analytical solutions do not exist with the exception of some special
cases. However, the use of higher order spatial dependencies also implies
more parameters need to be estimated. Moreover, the MLE optimization
problem is non-convex, which means that either good starting values need
to be found, for instance by solving the simplified linear least-squares prob-
lem possibly with regularization to make the optimization problem convex.
A parameter transformation might be necessary to avoid singularities to
find the global minimum. Moreover, the uniqueness of the solution should
be guaranteed. This is a serious issue when extending the slab geometry
MLE that uses three measurement points from constant parameter depen-
dencies to linear parameter dependencies. For some special cases it could
already be shown that there is no longer a global minimum, but a global
minima line, hence, no longer yielding a unique solution.

• The advantage of the frequency domain estimators over time domain es-
timators, is that the coefficients are estimated based on a complex val-
ued Ordinary Differential Equation (ODE). Consequently, the solutions of
these ODEs (transfer functions, state-space) in terms of inputs and out-
puts can be calculated using a matrix inversion. As such frequency domain
estimators are a serious competitor with other classic methods in the iden-
tification of DPS based on the time domain. The commonly used method
to discretize the spatial dependency is finite difference. However, calcula-
tion time is an important factor as the solution is used in an optimization
algorithm. In such cases spectral methods can offer a good alternative.
There are many basis functions available and the merits of these basis
functions should be investigated. In case of cylindrical geometry it is well
known that the eigenfunctions for the simplified case are the Bessel func-
tions (Chapter 2). Moreover, Confluent Hypergeometric Functions can be
approximated using a converging series in terms of Bessel functions [Slater,
1960]. As such the Bessel functions are a good candidate to use as basis
functions for the spatial discretization. This is also shown in [Heijmans,
2013] where discretization schemes based on Bessel functions as basis func-
tions and finite difference are compared.

• Although in the plasma core of tokamaks and stellarators the density gradi-
ents can often be neglected, they can play a more important role towards
the wall. In this thesis, the spatial density gradients have been largely
neglected. However, when numerical grids are implemented, density gra-
dients can be taken into account assuming measurements of the density
are available. If the methods used in this thesis also include a source term,
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they can also be used for the estimation of the particle transport. The rea-
son is that particle transport is also modeled according to the second-order
parabolic PDE considered in this thesis, with the only difference that the
perturbation source is not localized [Mantica, 2010].

• Estimating the transport coefficients based on the spatial derivatives of
amplitude and phase is fast and easy. However, the proper combination of
multiple harmonics requires a proper weighting (Chapter 6). The weighting
can be calculated for simple cases, but this fails for more complicated
relationships. Also, such relationships only match each harmonic with
two unknown transport coefficient and do not combine the deterministic
and statistical properties of all harmonics in one estimate. However, the
most important problem is the estimation of the derivative. Virtually every
method to approximate the derivative from the amplitude and phase yields
a biased estimate with an incorrect variance. This is known as the bias-
variance trade-off [Hall, 2010]. As such, an estimate close to the unbiased
estimate with a variance close to the minimum variance seems unachievable
following the derivative approach.

• The estimation of the Fourier coefficients and their variance as presented
in this thesis is based on the assumption of purely periodic measurements.
Consequently, trends or slow temperature drifts and temperature change
due to the initial conditions are not considered, i.e., transients. As such
the part of the measurement interval with non-negligible transients is ig-
nored. However, in this transient part also information is contained on
the transport coefficients. This information becomes more important if
measurement time is limited as is the case for many discharges. A possible
method to determine the Fourier coefficients and their variances under the
influence of transients is using the Local Polynomial Method [Pintelon,
2010]. However, under the assumption of the linearity of the transport
and no other temperature drifts than those due to the initial conditions,
the transient itself could be additionally used to determine the transport
coefficients by estimating also the initial condition. This has already been
investigated in [Monteyne, 2013] for rational polynomials and the Warburg
domain.
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8.2.2 Study of transport

This section gives some recommendations related to experimental design and
analysis.

• An important recommendation in [Peters, 1996] is to extend gyrotron’s
function generators to allow for more versatile binary signals. This, to
generate modulation signals in which the higher harmonics are larger than
the lower harmonics. This to compensate for the stronger damping, i.e.,
the larger suppression, of the higher harmonics in comparison to the lower
harmonics in the heat waves.
Function generators have been extended to accommodate more versatile
binary signals. However, the use of more versatile binary signals, e.g.,
periodic pseudo random binary modulation, are still not widely used. In
addition, optimal modulation signals are hard to conceive with binary
modulation signals. Therefore, we recommend that the power supply to
be extended to allow for even more versatile modulation signals in which
not only the timing of the pulses can be modified, but also the power. In
the absence of such new power supplies optimal modulations could be ap-
proximated by combining two or more gyrotrons and modify their timing
and deposition accordingly.
The problem of choosing optimal modulation signals goes further than just
increasing the amplitude of higher harmonics to compensate for the sup-
pression. Also the choice of modulation signals is important. For instance,
the diffusivity can be estimated using high modulation frequencies based
on relationships not considering convectivity and damping. An impor-
tant disadvantage is that, the resulting measurements will be more noisy
because transport acts as a low-pass filter. In this thesis, the effect of
convectivity (and damping) has been taken into account in a number of
newly introduced approximations and estimators. Therefore, the modula-
tion frequency should be reduced to have less noisy measurements leading
to better estimates of the diffusivity and to be able to estimate convectiv-
ity with acceptable uncertainty (see [van Berkel, 2013]). This all depends
on the number of harmonics used, their amplitudes, and their frequency
spread. A possible method to optimize the modulation signals systemat-
ically is using the Cramér–Rao lower bound or the closely related Fisher
information matrix [Rojas, 2007; Schoukens, 1991; Ucinski, 2004]. These
methods do not consider non-linearities, which can be created by large
amplitudes in the modulation signal. These non-linear effects should also
be considered in the optimization of the modulation signals.

• Transport is non-linear and depends on the specific physics regime or oper-
ating point [Inagaki, 2011]. Hence, it is important to confirm, specifically
for the regime which is being studied, that the perturbation is indeed small
enough to assume linearity. If not, the amount of non-linearity needs to be



8.2 Discussion and recommendations 139

quantified. This can be done using a simple test, e.g., increasing the mod-
ulation power and compare the output temperature, or using advanced
methods such as the Best-Linear-Approximation [Pintelon, 2012], which
also allows for the estimation of the dynamic behavior and the even and
odd non-linearities.

• Section 6.3.2 introduces a simple method to calculate the variance and
co-variance for different spatial locations. As turbulence determines the
propagation of the heat waves, it would be interesting to see how the
covariance matrix for different measurements is influenced by turbulence
and to investigate the possibility of recovering the correlation length from
these data.

8.2.3 Extension to other fields

The estimation of transport coefficients in parabolic PDEs is a common problem
in physics. As such some of the methods proposed in this thesis are applicable
to other applications.

One example is the quantification of groundwater-surface water exchange
flux in riverbeds used to study the transport of contaminants and nutrients [An-
derson, 2005]. The temperature is measured at different vertical positions using
a pole embedded in the riverbed. Based on these temperature measurements
and assuming a one dimensional slab geometry, the flow needs to be determined
to increase the understanding of the transport of contaminants and nutrients
[Rosenberry, 2008]. This flow is related to the convectivity used in this thesis.

Another example is the calibration of infrared imaging video bolometer,
which is used to study radiation structures in high temperature plasmas [Pe-
terson, 2000]. The radiation is deposited on a thin foil, whose temperature is
measured using an infrared camera. The amount of radiation deposited can
be reconstructed taking into account the heat transport on the foil. As the
foil is thin (≈ 2.5 µm), the transport coefficients (diffusivity) on the foil are
not homogenous. Therefore, they need to be estimated to compensate for this
transport component in real experiments. Currently, the diffusivity is estimated
by giving one laser pulse to heat the foil locally. This induces a circular Gaus-
sian temperature profile in two dimensions allowing the heat propagation to be
modeled as a one-dimensional PDE in cylindrical coordinates. The diffusivity is
estimated between two time instances on the basis of the decay and widening
of the Gaussian temperature profile in the cool down phase after the source has
been turned off [Cernuschi, 2001; Pandya, 2014]. The techniques of this thesis
can be applied in case a periodic laser pulse is applied in order to increase the
Signal to Noise Ratio and possibly to determine also a convective and damping
part.





Appendix A

Analytic eigenfunctions of PDEs

The Bessel functions and Confluent Hypergeometric Functions are extensively
used in the estimation of the transport coefficients. Therefore, in this appendix
a more detailed description of these functions is given. In Section A.1, the
underlying Ordinary Differential Equations (ODEs) of these eigenfunctions are
discussed. Furthermore, we show they can be solved using power series. Then,
in Section A.2, a generalized second order partial differential equation (PDE)
with linear parameter dependencies in space is introduced, which includes the
different geometries used in this thesis such as the PDE in slab and cylindrical
geometry with constant transport coefficients. At the end of this appendix,
Section A.4, the transformations from these PDEs to the underlying Bessel ODE
and Confluent Hypergeometric ODE are described.

A.1 The Bessel and confluent hypergeometric
ODEs

The Bessel functions and Confluent Hypergeometric functions are the resulting
eigenfunctions of the Bessel Differential Equation [Abramowitz, 1976]

%2y′′ + %y′ +
(
%2 − ν2

)
y = 0 (A.1)

and the Confluent Hypergeometric Differential Equation [Slater, 1960]

%y′′ + (b− %) y′ − ay = 0, (A.2)

respectively. The solution to the Bessel Differential Equation [Abramowitz, 1976]
is given by

y = D1J (ν, %) +D2Y (ν, %) , (A.3)
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where J (ν, %) is the Bessel function of the first kind and Y (ν, %) is the Bessel
function of the second kind, both of order ν. The solution to the Confluent
Hypergeometric Differential Equation [Slater, 1960] is given by

y = D1Φ (a, b; %) +D2Ψ (a, b; %) , (A.4)

where Φ (Kummer function) and Ψ (Tricomi function) denote the Confluent
Hypergeometric Functions of the first and second kind, respectively. The Bessel
functions and Confluent Hypergeometric Functions can also be defined in terms
of other functions, e.g., Airy functions, Whittaker functions, Laguerre polyno-
mials [Bateman, 1953]. The latter functions are derived from different ODEs,
which can be transformed into (A.1) and (A.2). Therefore, only the Bessel and
Confluent Hypergeometric functions are discussed.

The Bessel functions and Confluent Hypergeometric Functions are transcen-
dental functions meaning that they cannot be expressed in terms of algebraic
functions (polynomials, exponentials, etc.). This means that these functions
need to be approximated, which is discussed next.

A.2 Power series representation

The Bessel and Confluent Hypergeometric Functions cannot be expressed in
terms of algebraic functions, but can be described by converging power series,
asymptotic relationships, indefinite integrals, etc. In this section, only converg-
ing power series, the most common method to calculate these functions, are dis-
cussed. Although this method can be used to calculate the Bessel and Confluent
Hypergeometric Functions in a certain parameter ranges of order and argument,
the number of terms necessary to calculate accurate solutions is large. In these
regions other methods should be used [Bowman, 1958; Slater, 1960].

The general Bessel functions of respectively the first and second kind are
defined in terms of power series as [Abramowitz, 1976]

J (ν, %) =

∞∑
n=0

(−1)
n

n!Γ (ν + n+ 1)

(%
2

)ν+2n

(A.5)

and

Y (ν, %) =
J (ν, %) cos (πν)− J (−ν, %)

sin (πν)
, (A.6)

where the Gamma function Γ (x) is an extension of the factorial (x+ 1)! to
complex and real values [Nielsen, 1906]. The Bessel function of the second kind
Y (ν, %) is only valid for ν 6= 0,±1,±2, ... because otherwise a zero division
occurs. In this case, other power series exist to calculate the Bessel function. To
explain how to arrive at these power series from the ODE, a simple example is
presented for J (0, %).
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A.2.1 Example: derivation of power series solution of the
Bessel function of first kind of order ν = 0

This example shows how to derive the series expression of the Bessel function of
the first kind of order ν = 0. For ν = 0, the Bessel Differential Equation defined
in (A.1) reduces to following ODE by dividing it with %2, i.e.,

y′′ +
1

%
y′ + y = 0, % 6= 0. (A.7)

The power series solution can be derived by substituting y (%) =
∑∞
k=0 ak%

k,
which is comparable to taking a Taylor expansion in zero. Taking the derivatives
gives y′ =

∑∞
k=1 kak%

k−1 and y′′ =
∑∞
k=2 k (k − 1) ak%

k−2. Substituting these
in (A.7) gives

∞∑
k=2

k (k − 1) ak%
k−2 +

1

%

∞∑
k=1

kak%
k−1 +

∞∑
k=0

ak%
k = 0. (A.8)

This can be re-indexed such that all summations start from k = 0

∞∑
k=0

(k + 2) (k + 1) ak+2%
k +

∞∑
k=−1

(k + 2) ak+2%
k +

∞∑
k=0

ak%
k = 0. (A.9)

Considering k = −1 in (A.9) gives a1 = 0. For k ≥ 0 the terms can be combined

∞∑
k=0

(
(k + 2)

2
ak+2 + ak

)
%k = 0.

The recursion equation ak+2 = − (k + 2)
−2
ak allows the calculation of the co-

efficients of y =
∑∞
k=0 ak%

k. It is clear that because a1 = 0 all the uneven
coefficients are also zero. Therefore, the recursion can be further simplified by
choosing k = 2n. In Table A.1 the different coefficients are calculated such that
a structure can be recognized. The resulting summation series can be rewritten
using the identity Γ (n+ 1) = n!

y = a0

∞∑
n=0

(−1)
n

n!Γ (n+ 1)

(%
2

)2n

. (A.10)

This can be compared to the power series of the Bessel function of the first kind
(A.5) when ν = 0

J (0, %) =

∞∑
n=0

(−1)
n

n!Γ (n+ 1 + 0)

(%
2

)2n+0

, (A.11)



144 Appendix A. Analytic eigenfunctions of PDEs

n an Coefficients 2−2n (−1)
n

(n!)
−2
a0

- a0 a0 a0

0 a1 (−1)
1

2−2a0 (−1)
1

2−2a0

1 a2 (−1)
2

2−24−2a0 2−2·2 (−1)
2

1−22−2a0

2 a3 (−1)
3

2−24−26−2a0 2−2·3 (−1)
3

1−22−23−2a0

Table A.1. Coefficients of the series calculated using the recursion equa-
tion.

Clearly, the resulting power series are indeed the same when ν = 0 with the
exception of a0, which is the integration constant. The Bessel Differential Equa-
tion is a second order differential equation. Therefore, also a second solution
Y (0, %) exists, but it is more difficult to calculate (see [Bowman, 1958]).

This example shows how the power series solution can be calculated for
ν = 0. Similarly, the power series solution for (A.1) can also be found. Also, the
Confluent Hypergeometric Functions of the first and second kind are defined as
power series

Φ(a; b; %) =

∞∑
n=0

(a)n
(b)n

%n

n!
(A.12)

and

Ψ(a; b; %) =
Γ (1− b)

Γ (1 + a− b)
Φ(a; b; %) +

Γ (b− 1)

Γ (a)
%1−bΦ(1 +a− b; 2− b; %), (A.13)

with (a)n = a (a+ 1) (a+ 2) · · · (a+ n− 1) known as the Pochhammer symbol
or the rising factorial. The power series describing Confluent Hypergeometric
Functions are more complicated, but still can be evaluated for most values except
for b ∈ Z. For these values transformations exist [Slater, 1960]. For some
special values of a and b these series can again be simplified, for instance into
the Bessel function. The Confluent Hypergeometric Function of the first kind
Φ(a; b; %) is also often written as 1F1(a; b; %) because it is a special case of the
Hypergeometric Series which is a solution of the Hypergeometric Differential
Equation [Seaborn, 1991]. This Hypergeometric ODE can be used to calculate
the solution to more complicated ODEs [Seaborn, 1991]. However, only a few
power series solutions exist for the Hypergeometric Differential Equation, hence
it is numerically problematic to calculate the solutions for certain parameter
regions of the arguments in terms of accuracy and calculation time. Therefore,
we restrict ourselves to the Confluent Hypergeometric Functions and the Bessel
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functions. Many algorithms exist to calculate the solutions for specific value
ranges of the arguments allowing an efficient and accurate numerical calculation
of the solutions.

A.3 Numerical evaluation

The numerical evaluation of the Bessel functions and Confluent Hypergeometric
Functions is a complex process. Many different algorithms need to be combined
to calculate the solution for a large range of ν, a, b and %. Generally, there are
three types of algorithms to calculate the solution: 1) the power series solutions
which can be evaluated up to a desired precision (truncation); 2) iterative algo-
rithms based on recursive relations; 3) asymptotic expansions, in value ranges
where the Bessel function reduces to more simple functions often for large values
of the arguments.

In this thesis, Matlab c© is used to calculate the solutions of the Bessel function
at specific values of the argument and order. This implementation is based on
the algorithm described in [Amos, 1986] originally implemented in FORTRAN c©

66. It calculates the modified Bessel functions I (ν, z) and K (ν, z) using different
algorithms based on truncated power series, asymptotic expansions, recursions,
etc. The other Bessel functions and related special functions are expressed in
terms of these functions, e.g., J (ν, z) = iνI (ν,−iz). The complexity of the
calculation becomes clear in Figure A.1 [Amos, 1985], showing the algorithm
used for the calculation of the modified Bessel function of the first kind I (ν, z)
and the different approximations used. The, complex and negative real planes are
calculated using analytic continuation formulas [Amos, 1985]. In certain regions,
called overflow and underflow, it is difficult to calculate accurate results.

The Confluent Hypergeometric Function of the first and second kind are
less commonly used in practice. Consequently, there are not many efficient
algorithms to calculate specific solutions for these functions. Although both
Confluent Hypergeometric Functions are implemented in Matlab (2012b). That
the computational time was longer than expected, probably because only the
standard power series described in (A.12) and (A.13) are implemented. More-
over, in the case of the Confluent Hypergeometric Function of the second kind,
the solutions were often inaccurate without warning. Therefore, Matlab was
linked to Mathematica c© such that it is possible to calculate the solutions using
Mathematica’s implementation. In Mathematica, the exact implementation is
not described. However, the library for Φ(a; b; %) contains twelve different power
series representations and six asymptotic series expansions [Wolfram Research,
2014]. Testing the numerical solutions gave accurate results within acceptable
computational time. Bessel and Confluent Hypergeometric Functions can be cal-
culated using different approximations, however, the implementation is complex.
Consequently, we will rely on the algorithms used in Matlab (Bessel function)
and Mathematica (Confluent Hypergeometric Functions).
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Figure A.1. Computation Diagram for I (ν, z) , Re (z) > 0 based on
Figure 1 in [Amos, 1985].

The optimization techniques considered in this thesis require also the deriva-
tives of the special functions. The derivatives with respect to the argument z
can be expressed in terms of the original functions [Bateman, 1953] and conse-
quently do not pose any problem. However, derivatives with respect to the order
ν or the parameters a and b are more problematic. These derivatives can again
be described in terms of power series. The power series of the Bessel functions
with respect to the order, including (half-)integer orders, can be found in [Mag-
nus, 1966]. The derivatives of the Confluent Hypergeometric functions result in
power series involving the digamma function ψ, which is logical considering that
the derivative of the rising factorial is

d (a)n
da

= (a)n [ψ (a+ n)− ψ (a)] with ψ (x) =
d

dx
(ln (Γ (x))) . (A.14)

Note that calculating the derivatives with respect to a and b in (A.4) is still an
active research area and therefore needs to be performed with caution [Ancarani,
2008]. The derivatives with respect to the order ν and parameters a and b are not
implemented in Matlab. Therefore, Mathematica is used to numerically evaluate
these derivatives [Wolfram Research, 2014]. Except for the derivatives of the
Bessel functions with respect to order ν, which are numerically approximated in
Matlab using finite difference except for values of ν near (half-)integer values.
This implementation is computationally more efficient compared to Mathematica
with acceptable accuracy.
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In the last two sections it is discussed how to derive and calculate the eigen
functions used in this thesis. The next section shows how to transform the
general form of the PDEs used in this thesis into either the Bessel Differential
Equation (A.2) or Confluent Hypergeometric Differential Equation (A.1).

A.4 Solutions in terms of Bessel and confluent
hypergeometric functions

This section describes how to solve the following second order complex valued
ODE in terms of Bessel and Confluent Hypergeometric functions

(a2x+ b2)Z ′′ (s, x) + (a1x+ b1)Z ′ (s, x) + (a0x+ b0)Z (s, x) = 0, (A.15)

with (a2, a1, a0, b2, b1, and b0)∈ C. This ODE is a generalized form of (2.12)
and (2.14), but can also be the resulting ODE of the Laplace transform of a slab
geometry description with linear parameter dependencies. The complex valued
ODE in (A.15) can be solved in terms of its complex eigenfunctions, resulting
in following general solution

Z (s, x) = E1ξ (s, x) + E2ζ (s, x) , (A.16)

with ξ and ζ the complex valued eigenfunctions and E1 and E2 the boundary con-
stants, may depend on s and thus can be complex valued. These eigenfunctions
will be either exponential functions, Bessel functions, or Confluent Hypergeo-
metric Functions. The exponential functions are the resulting eigenfunctions in
case no spatial dependencies are assumed, i.e., a2 = a1 = a0 = 0.

The ODE with linear dependencies (A.15) can be transformed into the Bessel
or Confluent Hypergeometric Differential Equation to find the arguments and
order of the Bessel and Confluent Hypergeometric Functions. In [Murphy, 1960;
von Kamke, 1959] the different steps are explained to transform (A.15) into
either (A.1) or (A.2).

These are summarized in Table A.2, which is based on [Polyanin, 2003]. The
different cases need to be distinguished to avoid zero divisions. However, it is
important to remember that the solutions are still multiplied by the boundary
constants, which can result in slightly different results compared to the deriva-
tions in Table A.2. The special cases where (A.15) reduces to a first order ODE
are excluded from the table. An important case is the cylindrical geometry
with constant coefficients for which the argument % and coefficients a and b are
derived in (A.4).

A.4.1 Cylindrical geometry with constant coefficients

The analytic solutions to the ODE in cylindrical geometry with constant trans-
port coefficients is extensively used in this thesis. Therefore, in this subsection
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the argument % and corresponding a and b of (A.4) are derived. Therefore,
consider again the complex valued ODE in (2.14)

3

2
(s+ τinv) Θ (ρ, s) =

1

ρ

d

dρ

(
ρχ
∂Θ (ρ, s)

∂ρ
+ ρVΘ (ρ, s)

)
,

which can be expanded resulting in

0 = χ
∂2Θ (ρ, s)

∂ρ2
+

1

ρ
χ
∂Θ (ρ, s)

∂ρ
+

1

ρ
VΘ (ρ, s)+V

∂Θ (ρ, s)

∂ρ
− 3

2
(s+ τinv) Θ (ρ, s) .

(A.17)
Rearranging yields

0 = χ
∂2Θ (ρ, s)

∂ρ2
+

(
1

ρ
χ+ V

)
∂Θ (ρ, s)

∂ρ
+

(
1

ρ
V − 3

2
(s+ τinv)

)
Θ (ρ, s) . (A.18)

This can be multiplied by −ρ resulting in

0 = −χρ∂
2Θ (ρ, s)

∂ρ2
+ (−χ− V ρ)

∂Θ (ρ, s)

∂ρ
+

(
−V +

3

2
(s+ τinv) ρ

)
Θ (ρ, s) .

(A.19)
This gives a2 = −χ, b2 = 0, a1 = −V , b1 = −χ, a0 = 3

2 (τinv + s) , b0 = −V in
(A.15). Table A.2 can be used to calculate the resulting coefficients, which give
the resulting argument % and corresponding a and b in (2.15).





Appendix B

Derivation of approximations
using continued fractions

This appendix summarizes a number of derivations of approximations based on
continued fractions and asymptotic expansions. They lead to approximations
for χ and τinv in terms of z, in approximations for χ, V , and τinv, and approxi-
mations for χ in case V and τinv are negligible.

B.1 Continued J-fraction of the ratio of Bessel
functions of the second kind

The continued J-fraction of the ratio between K1 (z) /K0 (z) is given in (4.1) and
is based on p. 364 in [Cuyt, 2008]. It is used to calculate three approximations
of which two are given in (2.47) and (4.7). The approximation considering two
terms is given by

Θ′

Θ
= −z − 1

2ρ
+

1

ρ

(
1/4

2zρ+ 2

)
, (B.1)

where z =
√

3
2
iω+τinv

χ and Θ′/Θ is defined according to (2.25). It can be written

in polynomial form, i.e.

0 = 8ρ2z2 +

(
8ρ2 Θ′

Θ
+ 4ρ

)
z + 8

Θ′

Θ
ρ− 3. (B.2)

This polynomial is solved in terms of z to calculate χ (see Table 4.1).
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B.2 Continued C-fraction of the ratio of Bessel
functions of the second kind

The following continued C-fraction of the ratio K1 (z) /K0 (z) is based on p. 363
in [Cuyt, 2008]

K1 (zρ)

K0 (zρ)
=

1

1−
1

2zρ

1 +

3
2

1
2zρ

∣∣∣
I

1 +

1
2

1

2zρ

1 +

5
2

1
2zρ

∣∣∣
II

1 + · · ·

. (B.3)

It is used to approximate (2.23). Here, it is chosen to truncate only at locations I
and II to reduce the number of approximations. If (B.3) is truncated at location
I, this results in the following polynomial in terms of z

0 = 4ρz2 +

(
3 + 4

Θ′

Θ
ρ

)
z +

Θ′

Θ
, (B.4)

which needs to be solved to find χ and τinv. In case (B.3) is truncated at location
II, it gives the following polynomial, which can also be used to find χ and τinv

0 = 16ρ2z3 +

(
36ρ+ 16ρ2 Θ′

Θ

)
z2

+

(
15 + 28ρ

Θ′

Θ

)
z + 3

Θ′

Θ
. (B.5)

B.3 Continued T -fraction of the ratio of Bessel
functions of the first kind

The following continued T -fraction of I1 (zρ) /I0 (zρ) is based on [Cuyt, 2008](p.
363) and is useful for approximating (2.51). The continued T -fraction is given
by

I1 (zρ)

I0 (zρ)
=

zρ

2 + zρ|III +
− 3zρ

3 + 2zρ|IV +
− 5zρ

4 + 2zρ+ · · ·

, (B.6)

which needs to be substituted into (2.51) to find explicit solutions. This contin-
ued fraction is truncated at locations III and IV.
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a) Truncating (B.6) at location III results in the polynomial,

0 = ρz2 − Θ′

Θ
ρz − 2

Θ′

Θ
. (B.7)

b) Truncating (B.6) at location IV results in the following third order poly-
nomial

0 = 2ρ2z3 +

(
3ρ− 2ρ2 Θ′

Θ

)
z2 − 4ρ

Θ′

Θ
z − 6

Θ′

Θ
. (B.8)

Again, continued fractions with more terms result in fourth order or higher
order polynomials.

B.4 Continued C-fraction of the ratio of con-
fluent hypergeometric functions of the first
kind

The continued C-fraction for Φ (a+ 1, b+ 1, z) /Φ (a, b, z) given in (5.7) is used
to derive several approximations.

a) Truncating (5.7) at location I and substituting it into (2.50) results in the
following logarithmic temperature derivative

Θ′

Θ
= λ1 + λ2

1

1−

λ2 − λ1 − λ2

2
ρ

1 +
λ2 + (λ2 − λ1)

6
ρ

. (B.9)

This can be further simplified by partly substituting λ1 and λ2

Θ′

Θ
=

2λ2
1ρ+ λ1λ2ρ+ 2λ2

2ρ− 6Vχ

6− 2Vχ ρ
, (B.10)

where 2λ2
1 + λ1λ2 + 2λ2

2 = 2
(
V
χ

)2

+ 9
2
τinv+ωi

χ such that

(
6− 2

V

χ
ρ

)
A′

A
+

(
6− 2

V

χ
ρ

)
iφ′ =

(
2

(
V

χ

)2

+
9

2

τinv + ωi

χ

)
ρ− 6

V

χ
. (B.11)

By splitting (B.11) in its real and imaginary part, i.e.,(
6− 2

V

χ
ρ

)
φ′ =

9

2

ω

χ
ρ (B.12)
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and (
6− 2

V

χ
ρ

)
A′

A
= 2

(
V

χ

)2

ρ+
9

2

τinv
χ
ρ− 6

V

χ
, (B.13)

χ can be calculated. The imaginary part for V = 0 yields an approximation for
χ, i.e.,

χIsφ =
3

4

ω

φ′
ρ and τIsφ =

ω

φ′
A′

A
, (5.3)

which is also found using asymptotic expansions and in (5.3) using a continued
fraction based on Bessel functions. If τinv is assumed to be zero, then solving
(B.12) and (B.13) together gives

χΦ2V =
9ρω

4φ′(A
′

A ρ+ 3)
, (B.14)

and

VΦ2V = −
9A

′

A ρω

4φ′(A
′

A ρ+ 3)
. (B.15)

The mixed case of χ, V , and τinv cannot be solved, due to the system of equations
even if one harmonic is added.

b) Truncating (5.7) at location II and substituting it into (2.50) results in
following logarithmic temperature derivative by substituting λ1 and λ2

Θ′

Θ
=

4ρ
(
4V 2 + 5χ(τinv + iω)

)
(ρ2 (2V 2 + 5χ(τinv + iω))− 16ρV χ+ 40χ2)

−
ρ2V

(
6V 2 + 19χ(τinv + iω)

)
+ 120V χ2

3χ (ρ2 (2V 2 + 5χ(τinv + iω))− 16ρV χ+ 40χ2)
. (B.16)

The complexity of (B.16) makes it difficult to calculate approximations by hand.
Therefore, Mathematica c© has been used to calculate the approximations for χ,
V , and τinv.

b1) If τinv = 0, (B.16) results in

χΦ4V =
3

2

6859ρ3ωφ′

l2 − l3
(
−2A

′

A ρ± l1 + 30
) , (B.17)

with

l1 =

√
4

(
A′

A
ρ+ 15

)2

− 285ρ2 (φ′)
2
, (B.18)

l2 = 114ρ2 (φ′)
2
(

32
A′

A
ρ± l1 + 62

)
, (B.19)

and
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l3 = 6
A′

A
ρ

(
15
A′

A
ρ+ 32

)
+ 680. (B.20)

There are two solutions possible, the second option (− in ±) gives a solution
in a region with poor approximations and is disregarded. Hence, + solution is
used. The convectivity V is given by

VΦ4V = χΦ4V

−l1 − 17A
′

A ρ+ 30

19ρ
. (B.21)

b2) If A′1/A1, φ′1, and φ′2 are used, only one solution is found

χΦ4b =
3

2

6859dωρ3ω1φ
′
1

8(19dω + o2)
·

ω2
2

(
(dA)2 + (φ′1)

2
)

+ ω1φ
′
2(dω − ω2φ

′
1)

(1444dω2 + 456dωo2 + 45o2
2)

, (B.22)

with

dω = ω1φ
′
2 − ω2φ

′
1 (B.23)

and

o2 =
A′1
A1

ρω1φ
′
2 −

A′2
A2

ρω2φ
′
1 − 4dω. (B.24)

The corresponding V and τinv are given by

VΦ4b = −χΦ4b
30o2

38ρdω
, (B.25)

and (subscripts Ψ4b have been omitted)

τΦ4b =
3

2
χ
−15

A′
1

A1
ρ2ω 1

χ − 24
(
V
2χ

)2

ρ2φ′ − 120φ′

15ρ2φ′

+
3

2
χ
−38

(
V

2χ2

)
ρ2ω + 96

(
V
2χ

)
ρφ′ + 60ρω 1

χ

15ρ2φ′
. (B.26)

This equation is exactly the same as (5.10).

b3) The approximation using the same truncation as (B.22) and A′1/A1,
A′2/A2 and φ′1, is given in (5.8) in the main text. Also, a T -fraction is given in
[Cuyt, 2008; Jones, 1980], but it showed less accurate results than the continued
C-fraction.
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B.5 Continued J-fraction in case V = τinv = 0

From (4.3), i.e.

z = −
(
A′

A
+ iφ′ +

1

2ρ

)
,

two other approximations can be derived in case only diffusivity is considered
(V = τinv = 0). Substituting z and expanding results in

3

2

iω

χ
=

(
A′

A
+

1

2ρ

)2

+ 2iφ′
(
A′

A
+

1

2ρ

)
− (φ′)

2
. (B.27)

If the imaginary part is rewritten in terms of χ, it results in

χs1 =
3

4

ω

(φ′)
2 . (B.28)

This variation was also derived in [Fredrickson, 1986] based on Bessel functions
and can be derived in slab-geometry. The real part gives

χKj1A =
3ω

4
(
A′

A + 1
2ρ

)2 . (B.29)

The continued fractions with more terms lead to a mix between amplitude and
phase, which are complicated to solve. Hence, they are not calculated here.

B.6 Approximation for the continued S-fraction
for V = τinv = 0

If τinv = 0 and V = 0, the truncation of (5.1) with the last term a2 is given by

0 =

((
A′

A
+ iφ′

)
ρ2 − 4ρ

)
3

2

ωi

χ
+ 8

(
A′

A
+ iφ′

)
. (B.30)

The real part is given by

0 = −φ′ρ2 3

2

ω

χ
+ 8

A′

A
(B.31)

and the imaginary part is given by

0 =
A′

A
ρ2 3

2

ωi

χ
− 4ρ

3

2

ωi

χ
+ 8iφ′. (B.32)

Solving for A′/A and φ′ and rewriting in terms of χ yields

χIs2A = ω
3ρ3
√

4−A′/Aρ
16ρ2

√
A′/A

(B.33)



B.7 Asymptotic expansion based on the Bessel function of the second kind 157

and

χIs2φ = 3ωρ
2 +

√
4− ρ2 (φ′)

2

16φ′
. (B.34)

B.7 Asymptotic expansion based on the Bessel
function of the second kind

From [Abramowitz, 1976] the asymptotic expansion for z ρ ≈ 0 and fixed integer
order ν 6= 0 is given by

Kν ∼
1

2
Γ (ν)

(
1

2
z ρ

)−ν
, (B.35)

and for order ν = 0 is given by

K0 ∼ − ln (z ρ) . (B.36)

These can be substituted into (2.23) to describe Θ′/Θ around z ρ ≈ 0

Θ′

Θ
= −z

(
1
2Γ (1)

(
1
2z ρ

)−1
)

(− ln (z ρ))
. (B.37)

Simplifying yields
Θ′

Θ
=

1

ρ ln (z ρ)
. (B.38)

This can again be expressed in terms of z

z = ρ−1 exp

((
ρ

Θ′

Θ

)−1
)
, (B.39)

which can be solved using the techniques given in Table 4.1.





Appendix C

Distribution functions of A and φ
and numerical calculation of

confidence bounds

In this appendix the PDFs and CDFs of amplitude and phase are given, which
are necessary to calculate the confidence bounds on amplitude and phase. This
section is partly based on [Simon, 2005; Whalen, 1971]. In addition, a short
discussion is added on how to calculate the confidence bounds from PDFs or
CDFs, which cannot be calculated analytically.

C.1 Distributions of amplitude and phase

The PDF of the amplitude can be found by integrating (6.3) over the phase

fA (A) =

∫ 2π

0

fAφ (A, φ) dφ, (C.1)

which results in

fA (A) =
A

2πσ2
F

exp

(
−A

2 +M2

2σ2
F

)∫ 2π

0

exp

(
AM cos (θ − φ)

σ2
F

)
dφ. (C.2)

The resulting amplitude distribution is given by

fA (A) =
A

σ2
F

exp

(
−A

2 +M2

2σ2
F

)
I0

(
AM

σ2
F

)
, (C.3)
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where I0 denotes the modified Bessel function of the first kind of zero order. The
confidence bounds are calculated using the CDF. The CDF of the amplitude
FA (R) can be found by integrating the PDF fA (A) from 0 to R,

FA (R) =

∫ R

0

fA (A) dA = 1−Q1

(
M

σF
,
R

σF

)
, (C.4)

where Q1 denotes the Marcum Q-function [Whalen, 1971]. The Rician dis-
tribution is non-symmetric, which means that two confidence bounds need to
be determined separately in terms of a confidence p, e.g. p = 0.95. A cen-
tral confidence interval is constructed such that the lower bound is defined as
FA (Amin) = (1− p) /2 and the upper bound as FA (Amax) = (1 + p) /2. These
bounds are calculated by inverting (C.4) numerically (see C.2).

The PDF of the phase φ is derived by integrating the CCND in polar coor-
dinates (6.3) over A

fφ (φ) =

∫ ∞
0

fAφ (A, φ) dA. (C.5)

This integral can be solved using the substitution κ = A−M cos (θ − φ) [Simon,
2005] resulting in

fφ (φ) = exp

(
−M

2

2σ2

)[
1

2π
+
M cos (θ − φ)

2σF
√

2π
·

exp

(
M2 cos2 (θ − φ)

2σ2
F

)
erfc

(
M cos (θ − φ)

σF
√

2

)]
. (C.6)

This distribution is sometimes referred to as the Rician phase distribution [Si-
mon, 2005]. Again, we are interested in the confidence bounds, which can be
calculated via the CDF

Fφ (Φ) =

∫ Φ

−π
fφ (φ) dφ (C.7)

where −π < Φ 6 π. This integral does not have a closed-form expression, but
can be approximated numerically, which is explained next.

C.2 Numerical calculation confidence bounds

The CDF of (6.18) necessary to calculate the confidence bounds on χ when using
the product A′/Aφ′ and the CDF of the phase (C.7) necessary to calculate the
confidence bounds on the phase do not have a closed-form expression. There-
fore, here is explained how the confidence bounds can be calculated numerically
exploiting properties of the integrals. The CDF of h (χ (µp)) defined in (6.18) is
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given by the integral

H (X) =

∫ X

−∞

3

4

ω

χ2

1√
2πσ2

p

exp

−
(

3ω
4χ − µp

)2

2σ2
p

 dχ. (C.8)

This integral needs to be evaluated numerically and then needs to be inverted.
However, integrating from minus infinity is impractical. Therefore, this integral
is split into two parts

H (X) =

∫ 0

−∞
h (χ (µp)) dχ+

∫ X

0

h (χ (µp)) dχ, (C.9)

where the first term can be evaluated analytically giving

H0 =

∫ 0

−∞
h (χ (µp)) dχ =

1

2

(
1− erf

(
µp√
2σp

))
. (C.10)

If the diffusion coefficient is assumed to be always positive, this term should be
always smaller than the lower confidence bound H0 < (1− p) /2 and certainly
smaller than the upper confidence bound H0 < (1 + p) /2. This is of course not
guaranteed numerically as the product A′/Aφ′ can become negative and hence
also its confidence bounds. However, both special cases can be easily evaluated
and if the lower bound is negative we have decided to simply set it to zero
(χ > 0). If both bounds are negative the solution is not physical. Hence, to
calculate proper confidence bounds it suffices to numerically integrate

H (X) = H0 +

∫ X

ε

3

4

ω

χ2

1√
2πσ2

p

exp

−
(

3ω
4χ − µp

)2

2σ2
p

 dχ, (C.11)

where 0 has been replaced by a very small number ε and verifying that H0 <
(1− p) /2 and H0 < (1 + p) /2.

Calculating the CDF of the phase Fφ (Φ) is straightforward as the distribu-
tion fφ (φ) is symmetric around the mean θ and its integration interval is already
bounded, i.e., −π < Φ 6 π.

Now, the question is how to invert these relationships to find the confidence
bounds Xbnd for H (Xbnd) = (1± p) /2. The CDF is a (non-decreasing) mono-
tonic function and is bounded in the domain 0 to 1. Therefore, H (X)−(1− p) /2
has only one zero crossing at Xbnd = X, which can be found numerically using
various techniques [Forsythe, 1977]. This technique is also applied to find the
confidence bounds for (C.4) and (6.11). In case of (C.4) and (6.11) we found
it useful to use the property H (|X|) = |H (|X|)|, which allows also the use of
negative X such that an unconstrained algorithm can be used.
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Summary

Estimation of heat transport coefficients in fusion plasmas

In the future, sustainable, clean, and safe power plants are needed. A promising
future energy source that could possibly fulfill these requirements is nuclear fu-
sion. In tokamaks and stellarators, two different types of nuclear fusion reactors,
a hot plasma is magnetically confined. The magnetized plasma consists of nested
flux surfaces, in which the magnetic field lines are embedded. As the transport
of heat and particles parallel to the magnetic field lines is significantly higher
than the perpendicular transport, the flux surfaces can be considered to have
constant temperature. Consequently, the transport perpendicular to the flux
surfaces determines the quality of the confinement and hence the reactor perfor-
mance (efficiency). As such transport is generally modeled by a one-dimensional
heat equation with as effective transport coefficients, the diffusivity, convectivity,
and damping.

The transport of heat and particles due to Coulomb collisions between ions
and electrons in tokamaks and stellarators can be calculated in detail using
the neo-classical theory. The experimentally determined diffusivity exceeds the
theoretical predictions by a few orders of magnitude. This difference is attributed
to turbulent transport mechanism. Intriguingly, in some cases the turbulence
can be damped.

Various physics oriented studies have been performed to study the transport
and its intriguing behavior. A standard method is to follow the propagation of
heat waves through the plasma as a probe for the transport. These heat waves
are often induced using a localized heat source, e.g., electron cyclotron resonance
heating. Various approximations have been put forward in the literature to
explicitly derive the transport coefficients from the experimentally measured
amplitude and phase of the perturbation. However, these methods generally
determine only the diffusivity and the analysis is limited to a single harmonic.
In addition, a systematic analysis of the validity of the resulting diffusivity was
not done.
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Therefore, in this thesis, the methods to estimate the transport coefficients
in various geometries, i.e., the diffusivity, convectivity, and damping, are sys-
tematically re-assessed. New explicit approximations are introduced to estimate
the transport coefficients, and the concept of Maximum Likelihood Estimation
to improve the determination of the transport coefficients under noisy condi-
tions is developed. In addition, the confidence and the validity of the transport
coefficients are determined.

An important aspect of this thesis is that it introduces a number of new
approximations to directly estimate the perturbative diffusivity, convectivity,
and damping in slab and cylindrical geometry from measurement data. These
approximations are in-line with the standard methods used in the fusion liter-
ature, because they also use the logarithmic spatial derivative of the amplitude
and the spatial derivative of the phase of the heat waves induced by a local-
ized heat source. Different approximations are necessary in cylindrical geometry
for heat waves that travel towards the wall and towards the center, which is
a distinction not made within the literature. Therefore, next to the classically
used semi-infinite domain also a Neumann boundary condition is used to derive
approximations. The approximations are derived based on one or two harmon-
ics using continued fractions and asymptotic expansions of Bessel functions and
Confluent Hypergeometric functions, and are based on standard assumptions
used in the literature, e.g., constant transport coefficients.

The quality of the different approximations depends on the combination of
the frequency of the modulation, transport coefficients, and radius. However, by
combining various approximations the transport coefficients can be estimated
well over a wide parameter space and for various regimes. This is under the
assumption that the spatial derivatives of amplitude and phase are correct, that
the parameters are not estimated near the real boundary, and that local param-
eter changes are small. As this is often not the case, the effect of these errors on
the estimation of the transport coefficients is studied.

Another important aspect is that measurements used to estimate the dif-
fusivity suffer from stochastic noise. Therefore, accurate estimation of the dif-
fusivity should take this into account, which is not the case for the derived
approximations in the literature and the newly introduced approximations. As
such diffusivity estimates using these approximations have often an unneces-
sarily large uncertainty and suffer from a bias, i.e., a difference between the
estimated value and the actual value that remains even if more measurements
are added. If specifically the slab geometry approximations are analyzed, the
probability density function of the resulting diffusivity is given by an inverse non-
central chi-square distribution if the measurement noise in the frequency domain
is given by a Complex Circular Normal Distribution. Consequently, the diffu-
sivity that is found by sampling this inverse distribution will always be biased,
and averaging of multiple estimated diffusivities will not necessarily improve the
estimation. Based on this distribution also confidence bounds are constructed to
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illustrate the uncertainty in the diffusivity using different approximations, which
are equivalent in the noiseless case. To reduce the uncertainty when combining
different diffusivity estimates a different method based on weighted averaging
with the variances is suggested, which reduces the uncertainty significantly. Re-
sults are presented for both slab and cylindrical geometry approximations based
on the noise properties of ASDEX Upgrade measurements. The results clearly
show that it is impossible to get an unbiased estimate with minimum variance
of the diffusivity. On the other hand, the method is explicit such that it is easily
implementable.

It is possible to get an unbiased estimate of the transport coefficients with
minimum variance. Therefore, a new method is developed based on sample
Maximum Likelihood Estimation (MLE) in the frequency domain. This method
directly analyzes the resulting Fourier coefficients from perturbative transport
experiments using an optimization algorithm. Hence, it also avoids the use of
spatial derivatives of amplitude and phase, which are difficult to estimate from
noisy measurements. Instead, local transfer functions based on semi-infinite
domains are used, which describe the transport coefficients between two mea-
surement points. This model (transfer function) is chosen, because it is the most
local approximation and follows the standard assumptions and approximation
steps used in the literature. As such its results are much better comparable
to the methods used in the literature. The MLE estimates the transport co-
efficients with minimum variance given some assumptions, which is quantified
through confidence bounds. In addition, different validation tests can be applied
to verify if the estimated transport coefficients belonging to the transport model
really describe the experimental data.

Finally, the MLE is extended to take three measurement points into account,
giving the most local estimate of the transport coefficients without making ad-
ditional assumptions on the boundary conditions. Hence, it does not suffer from
the errors generally occurring when using semi-infinite domains. The three point
MLE still allows to use a cost function validation test and allows for the esti-
mation of the confidence bounds. The MLE methods are successfully applied to
simulations of a heat equation (parabolic PDE) with varying transport coeffi-
cients.





Societal summary

Estimation of heat transport coefficients in fusion plasmas

Our daily price of living is significantly determined by energy prices. In addition,
the most important current energy sources result in undesired emissions and
waste, which negatively influences our living environment. An example is the
burning of fossil fuels resulting in the emission of greenhouse gases. Therefore,
there is an increasing need for cheaper and cleaner energy sources.

A possible new energy source, which is clean and virtually inexhaustible is
the nuclear fusion of lightweight atoms, a process very similar to how our sun
produces its energy. However, to achieve nuclear fusion in a reactor we need to
minimize the heat losses to sustain the fusion reaction. Therefore, it is necessary
to investigate and reduce the heat losses to achieve fusion energy production.

In the PhD-thesis of Matthijs van Berkel advanced methods are developed
to get a better understanding of what drives these heat losses. These losses
can be described in terms of transport coefficients, diffusivity and convectivity.
They are determined by analyzing temperature fluctuations at different spatial
locations in the reactor. This allows us to obtain a better understanding of the
heat losses. This better understanding enables us to further reduce the heat
losses and brings us closer to controlled fusion energy production in a reactor.
In addition, many other applications in physics exist in which diffusion and
convection of heat, and hence, the physical parameters such as the transport
coefficient, play an important role. The developed methods can also be used in
those applications.
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