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ABSTRACT 

Major internet service providers have built and are 

currently building the world’s largest data centres 

(DCs), which has already resulted in significant 

global energy consumption. Energy saving measures, 

from chip to building level, have been introduced 

gradually in recent decades. However, there is further 

potential for savings by assessing the performance of 

different DCs on a wider scale and evaluating 

information technology (IT) workload distribution 

strategies among these DCs. This paper proposes a 

methodology to optimize the electricity consumption 

and CO2 emissions by distributing IT workload 

across multiple imaginary DCs. The DCs are 

modelled and controlled in a virtual test environment 

based on a building energy simulation (BES) tool 

(TRNSYS). A controller tool (Matlab) is used to 

support testing and tuning of the optimization 

algorithm. A case study, consisting of the distribution 

of IT workload across four different types of data 

centers in multiple locations with different climate 

conditions, is presented. The case study will illustrate 

the efficiency of the approach proposed in this paper.  

INTRODUCTION 

In 2013, the electricity demand of IT systems 

approached 10% of world electricity generation 

(Mills, 2013). The demand for IT workloads, e.g. 

storage, network, and computation, is increasing 

rapidly (Rao et al., 2012a). This continuous growth 

of IT workloads has resulted in larger, more complex 

and energy dense DCs to process the data requests of 

all customers (Oró et al., 2015). As these IT 

workloads become larger, DCs’ electricity 

consumption shows corresponding increases. The 

DCs’ electricity consumption and the energy sources 

used to generate this electricity greatly influence the 

carbon footprint of a DC (Oró et al., 2015). An even 

larger increase of the carbon footprint is expected in 

the future as the dependence on coal as a source of 

electricity rises (Mills, 2013). A decrease in the 

electricity consumption and carbon footprint could be 

obtained by equipping DCs with renewable energy 

sources (RES). However, energy generation from 

RES is unpredictable due to ever-changing weather 

conditions, while the IT requests of a DC must be 

processed at any time (Oró et al., 2015). 

Electricity saving measures for DCs have been 

examined on all different levels of functional 

abstraction. For example, twenty-two DCs have been 

benchmarked for the ‘best-practice’ technologies to 

reduce the electricity costs (Greenberg et al., 2006). 

Another approach to reduce the electricity costs is to 

combine information from management systems in a 

DC to enhance the performance of various systems 

(Sharma et al., 2008; Mohsenian-Rad et al., 2010). 

Similar to these studies, most research in this area 

has focused on reducing the electricity costs per DC 

at one specific location. Little research has been 

performed to reduce the total electricity consumption 

at multiple locations (Rao et al., 2012). Moreover, 

there is no earlier research studying the optimization 

of multiple performance indicators at the same time, 

such as the combination of the total electricity 

consumption and CO2 emissions.  

The main objective of this research is to identify the 

potential reduction in electricity consumption and 

CO2 emissions by distributing the IT computational 

workload among geographically dispersed DCs 

around the world. This principle will be referred to as 

‘Guiding the Cloud’. First, in order to answer this 

question, a literature review is performed. The next 

step is to define an evaluation method to assess the 

performance of ‘Guiding the Cloud’ Simulation-

based assessments can support the testing of early-

stage DC operation strategies, avoiding the safety 

and economic risks derived from real testing in 

physical DCs. Building Energy Simulation (BES) 

tools, based on a white-box modelling approach offer 

a suitable platform for the development of virtual test 

environments. Numerical models of different 

typologies of DCs (i.e. different geographical 

locations, cooling systems and on-site RES) are 

developed to achieve a sufficiently heterogeneous 

case study for the testing and tuning of the first 

prototype of the ‘Guiding the Cloud’ algorithm. 

Thus the potential of an optimal IT workload 

distribution at the wide world (cloud) level can be 

assessed.  
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GUIDING THE CLOUD 

The original principle of ‘Guiding the Cloud’(GtC) is 

based on a collaboration between the HVAC, power 

supply, and IT management systems to establish an 

optimum IT load distribution in an appropriate time 

(Deerns, 2012). Combining the measured 

performance data and weather data, enables a 

representation of the DC to be modelled. Then, using 

the weather forecast and predicted IT workload as an 

input, this representation can be used to estimate the 

DC’s behaviour in time. Based on this information, 

the IT workload can be scheduled via the IT 

management system in such a manner that minimal 

energy consumption is needed. If the goal was to 

optimize other performance indicators than electricity 

consumption and CO2 emissions, additional 

information from other sources could be used. For 

example, including the electricity contract enables us 

to minimize the electricity costs. Or, by predicting 

the availability of different systems, the maintenance 

and IT workload schedule can be configured to 

maximize the reliability of the DC.  

Besides the collaboration between management 

systems, as described above, another important 

element of ‘Guiding the Cloud’ is the focus on 

multiple DCs at the same time. More specifically, 

DCs are increasingly operating worldwide with 

activities dispersed globally. To support these 

worldwide activities, multiple IT resources are often 

geographically scattered. The use of these IT 

resources would be more beneficial, if worldwide IT 

resources were globally integrated by virtualization 

techniques, whereby the surplus of the IT resources 

could be used by another location (Stanoevska-

Slabeva et al., 2010). Considering multiple DCs, as 

such, would enable a global optimization of the DCs’ 

performance.  

The DCs’ performance is a key element in the 

decision to distribute IT workload from one location 

to another. However, the performance of the data 

network used to transport the IT workload should 

also be included in decision-making (Taal et al., 

2013). In a global scale data network the 

performance is dominated by the switching 

infrastructure rather than the transport infrastructure 

(Tucker, 2008). The switching infrastructure 

contains, for example, switches and routers while the 

transport infrastructure includes the line amplifiers, 

regenerators and optical switches. 

Selecting a strategy to distribute IT workload among 

several DCs, including the DC’s and infrastructure’s 

performance, represents a challenge due to the 

different domains involved in the decision. For 

example each DC and infrastructure has its own 

characteristics considering HVAC, power supply 

systems, IT facilities and possible on-site RES. 

Besides, the characteristics associated with their 

location such as climate conditions and net electricity 

generation must also be considered. Many of the new 

technologies to reduce electricity consumption or 

costs have been developed to reduce a single 

objective; however, this paper focuses on 

simultaneously reducing multiple objectives. 

ASSESSMENT METHOD 

As previously stated, a virtual environment is 

developed to assess the GtC control algorithm. The 

method presented in this paper consists of two types 

of model:. Prediction and simulation models.  

As part of the prediction model, the controller 

requires a fast response in order to evaluate a large 

number of alternatives for the optimization of the 

chosen objectives. Based on this requirement, 

simplified data-driven (black-box) models were 

selected.  

The lack of documentation and measured data from 

real DCs, generally due to financial and security 

factors, often delays or even discards the 

development of novel control strategies. 

The simulation model represents a virtual test 

environment for DCs that generates the needed 

performance indicators for an early stage assessment 

of the GtC control algorithm presented in this paper. 

It is a physics-based (white box) model developed by 

a BES tool (TRNSYS), and it is used firstly for an 

identification of prediction models and then for the 

final evaluation of the GtC control concept. Figure 1 

shows the different models involved in the process as 

well as their function. 

‘Real’ data centers Controller

 

Figure 1: Schematic representation of the test 

environment consisting of the ‘real’ DC model 

(TRNSYS) and the controller (Matlab) during 

simulation run-time. The reference models resides 

inside the controller; communication inside the 

controller is based on Matlab scripts 



CONTROL OPTIMIZATION OF 

GUIDING THE CLOUD 

This section describes the process and the different 

elements that form the control optimization algorithm 

of the ‘Guiding the Cloud’ concept.  

Schematic overview 

Figure 2 presents the method of ‘Guiding the Cloud’ 

to optimize the performance indicators by varying the 

IT workload’s distribution sequence over different 

DCs. The optimization process considers multiple 

solutions by altering the control sequence of the IT 

workload. When the Pareto Front is found, the 

decision maker selects the control sequence 
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Figure 2: Schematic overview of the performance 

assessment methodology for ‘Guiding the Cloud’. 

Model predictive control 

The algorithm is based on model predictive control 

(MPC) rather than on conventional rule-based control 

strategies. A key element of MPC is that it searches 

for the best control strategy using a data-driven, 

black-box model of the DC and its systems. This 

model can be implemented with non-linear and 

complex interactions in multiple-input-multiple-

output systems (Gyalistras et al., 2010). Other 

peripheral matters in conjunction with the MPC of 

‘Guiding the Cloud’ are described in more detail 

further on in this section. The MPC algorithm is 

based on the following steps: 

1. Altering the control sequence 

2. Predicting  the performance of ‘Guiding the 

Cloud’ using the control sequence 

3. Selecting an optimized control sequence 

4. Shifting forward and updating the boundary 

conditions and starting again with step 1 until the 

total number of control sequence variants has 

been executed 

The model developed to predict the DC performance 

influences the quality of the control sequence of the 

MPC. Also the optimization horizon and the control 

horizon length affect this performance. Further, the 

optimization method and objective function have an 

impact on the end result.  

Multi-objective optimization 

The core of the control algorithm is a multi-objective 

optimization. Generally, the optimization problem 

consists of two (or more) conflicting objectives, for 

example minimizing the energy demand while 

maximizing thermal comfort. It is impossible to find 

just one best design solution for these so-called 

multi-objective optimization problems. Instead, a set 

of ‘trade-offs’ or good compromise solutions are all 

Pareto optimal (i.e. an increase in one objective 

would simultaneously lead to a decrease of the other 

objective). 

In this research, the multi-objective optimization is 

performed over two objectives, electricity 

consumption and CO2 emissions. At first, these 

objectives appear complementary rather than 

conflicting, because a decrease in energy should 

result in a lower exhaust of CO2 emissions. However, 

when IT workload is distributed to another DC due to 

a higher energy efficiency, it is also possible that the 

CO2 emissions increases when the other DC produces 

relatively more CO2 in generating the net electricity. 

Control strategy 

The algorithm optimizes the objective values by 

varying possible distribution sequences. The results 

of the algorithm leads to a Pareto front with optimal 

distribution sequences. The selection of the final 

distribution sequence depends on the weight that is 

given to the objectives (i.e. CO2 emissions and 

electricity consumption). This final choice may vary 

depending on who is the stakeholder or final decision 

maker.  

In the initial assessment presented, the minimum 

value of the first objective, the minimum value of the 

second objective and a trade-off solution are 

presented to examine the savings potential of 

‘Guiding the Cloud’.  

The trade-off solution could be based on three types 

of indicators (Hoes, 2014), i.e. (1) robustness 

indicator, (2) robustness vector and (3) robustness 

balance. The robustness vector is used in this 

assessment, because it is independent of user 

preferences. The robustness vector depends on the 

distance from a utopian point to a solution. The 

length of the robustness vector is a quantified 

indicator of the robustness of the solution. The 

shortest distance is the most robust solution.  

The genetic algorithm, from the Matlab Optimization 

Toolbox, was used for the generation of a reduced 

number of control sequence variants that are needed 

to obtain a Pareto front. 

Prediction model 

A controller, developed in Matlab, uses prediction 

models to optimize the IT computational workload 

distribution, in order to minimize the total electricity 

consumption and CO2 emissions.  



The prediction models can be identified as data 

driven black-box models (specifically artificial neural 

networks). As stated before, the lower computational 

time required was a decisive factor in selecting this 

modelling approach.  

The prediction models are based on a state space 

characterization, which deals with each DC with 

several inputs and outputs (MIMO data). The inputs 

consist of (1) dry bulb temperature, (2) relative 

humidity, (3) wind speed, (4) total horizontal 

radiation, and (5) IT workload. The outputs are (1) 

electricity consumption and (2) emission, which are 

the objectives to be optimized. 

VIRTUAL TEST ENVIRONMENT 

This section presents the virtual test environment 

developed for testing. The virtual test environment 

for ‘Guiding the Cloud’ is created in TRNSYS and is 

used to simulate the energy consumption and CO2 

emissions of different typologies of DCs that 

constitute our case study. TRNSYS has been selected 

due to its extensive library with pre-defined 

components for building models, HVAC systems and 

RES. In addition, TRNSYS contains the functionality 

to directly embed other software tools (e.g. 

Matlab/Simulink). 

The data simulated by TRNSYS are used to train the 

surrogate black-box models in Matlab and then the 

overall model-based controller is embedded into the 

TRNSYS environment so the influence of ‘Guiding 

the Cloud’ concept can be evaluated by comparing 

with a baseline scenario.  

Case study description 

The case study, that is described below, is used to 

examine the potential of ‘Guiding the Cloud’. It 

includes a description of the relevant DCs and IT 

characteristics, model assumptions, IT scenarios, and  

performance indicators.  

Locations 

Six imaginary DCs are located around the world as 

presented in figure 3. 
 

 
Figure 3: Locations 

  

The DCs are located in different climate and time 

zones. Table 1 provides an overview of the climate 

and time zones of each location. 

 

Table 1 

Climate and time zones for each DC location (Lord 

Toran) 
 

LOCATION CLIMATE TIME ZONE 

(GMT) 

Sacramento Subtropical zone -8 

New York Moderate zone -5 

Madrid Moderate zone +1 

Bergen Cold zone +1 

New Delhi Tropical zone +5* 

Sydney Moderate zone +10 

* The time zone has been rounded from 5.5 to 5 hours. 
 

The time zone of Madrid and Bergen is selected as 

reference time zone (meaning that the data for 

Sacramento has been shifted by -9 hours). The 

performance of each DC is influenced differently due 

to the various climate circumstances and time zones.  

Data center characteristics 

The specific DC characteristics of each DC are 

assumed to be identical. Each DC has a capacity of 

2000 kW of IT resources available. The main 

difference between the DCs is the type of HVAC 

systems they have for cooling the IT resources. Four 

typical configuration of HVAC systems for DCs have 

been considered, these are (1) chillers, (2) chillers in 

combination with dry coolers, (3) sea water 

absorption cooling (SWAC) and (4) indirect 

evaporation cooling unit (IECU). The HVAC 

systems are chosen based on typical solutions for the 

climate conditions of the different locations selected. 

Table 2 lists the type of HVAC systems for each 

location considered in the case study. 
 

Table 2 

HVAC systems assigned for each location 
 

LOCATION HVAC SYSTEM 

Sacramento Dry coolers 

New York IECU 

Madrid IECU 

Bergen SWAC 

New Delhi Chillers 

Sydney Chillers 
 

Renewable energy systems (RES) 

Based on the efforts to achieve net-zero and even 

positive energy buildings, DCs try to obtain as much 

energy as possible from on-site RES. The DCs in this 

case study are also equipped with different types of 

on-site RES. These are presented in table 3. The peak 

power generated by the on-site RES is also provided. 
 

Table 3 

RES systems assigned for each location 
 

Location RES system Power 
[kW] 

Sacramento PV panels (4000m2) Ppeak (462.7) 



Bio gas turbine 400 

New York - - 

Madrid PV panels (2000m2) 

Bio gas turbine 

Ppeak (230.4) 

300 

Bergen 
Wind turbine(10pcs) 

 

Pnom(2000) 

 

New Delhi Wind turbine(5pcs) 

PV panels (3000m2) 

Bio gas turbine 

Pnom(1500) 

Ppeak (349.7) 

600 

Sydney PV panels (2000m2) 

Bio gas turbine 

Pp (252.4) 

1000 
 

Internal and external data distribution network 

The components of a data distribution network 

consume electricity while processing and distributing 

data. 

Each DC has its own internal distribution network, 

called a local area network (LAN), which connects 

the computing infrastructures and storage capacities 

with the outside world. The LAN components 

contain a host (network interface), switches, 

firewalls, and routers (Taal et al., 2010).  

The DCs are interconnected by an external dedicated 

distribution network, a light path network. This 

network is used to distribute the data from one 

location to another. When data is transported over the 

light path network it passes hops. Each hop contains 

two dense wavelength division multiplexing 

(DWDM) nodes. The number of hops between the 

DCs depends on the location. Three hops are 

assumed for transporting data in the same continent. 

An extra hop is added when data is transported to 

another continent. The contribution of other 

components, for example line amplifiers, 

regenerators or optical switches, are excluded from 

the case study, because the DWDM nodes have a 

significantly larger electricity consumption (Taal et 

al., 2010). 

When IT workload crosses over to another data 

network, it takes time to arrive at the final 

destination. The transport time depends on the 

bandwidth and latency of the network. The 

bandwidth is the amount of data that can travel 

through a network at a time. The latency is the speed 

of sending IT workload from one location to another. 

To analyse the potential of ‘Guiding the Cloud’ the 

transport time for IT workload distribution is ignored 

in this research. 

Total physical case study 

Figure 4 illustrates the complete physical case study 

to examine the potential of ‘Guiding the Cloud’. 
 

SWAC

Chiller

RAHU

RAHU

Chiller

Dry coolers IECU

IECU

Figure 4 Case study 
 

Weather data 

The weather data used in the simulations represent a 

typical meteorological year, which is based on an 

‘average’ from historical data for each location. The 

weather data contains hourly values of different 

climate parameters. The weather data is manually 

edited to correspond with the time zones of each DC. 

IT workload 

Three different IT scenarios have been defined 

processing (CPU-intensive), software (interactive) 

and data storage (hot and cold) (Taal et al., 2010). 

In this research, the software (interactive) scenario 

has been selected to examine the potential of 

‘Guiding the Cloud’. Three input parameters 

characterize this scenario. The first is the amount of 

input data, the second is the CPU processing time, 

and the third is the output data. The CPU processing 

time and output data are assumed to be dependent on 

the input data by the following two formulas: 

                    
       (2) 

and 

                               (3) 

When IT workload is distributed from one DC to 

another, the amount of input data changes, which 

results in a change of the CPU processing time and 

output data.   

The input data consists of a combination of fixed and 

variable IT workload. The fixed IT workload 

represents the IT requests that should be done locally, 

while the variable IT workload can be distributed 

among the other DCs. TRNSYS uses a predefined 

weekly profile of the IT workload. The IT workload 

of each DC is assumed to be identical. Yet, due to 

differences in time zones between the DCs, there are 

also differences in the IT workload between DCs at a 

certain time of a day. Figure 5 presents the IT 

workload daily profile for each DC. 
 



 
Figure 5 Predefined daily profile of the IT workload 

for each DC. The IT workload will shift in 

correspondence with time in the time zone. 
 

The IT workload profile describes the internal gains 

of each DC. During the day the IT workload will 

cause a higher internal gain in the DC than at night.  

Performance indicators 

The multi objective optimization considers two 

performance indicators, energy consumption and 

CO2 emissions, that are simulated in TRNSYS for 

every DC of the case study. The energy consumption 

in a DC is simulated by a single zone model. 

Temperatures in the zone are controlled by the 

respective HVAC system. The CO2 emissions are 

based on the energy consumption multiplied by a 

conversion factor. The conversion factors from 

energy consumption to CO2 emissions are presented 

in Table 4.  

Table 4 

Conversion factor from energy to emission per 

location (IEA, 2014) 
 

LOCATION EMISSION 

[gr. CO2 / kWhe] 

Sacramento 488 

New York 488 

Madrid 305 

Bergen 246 

New Delhi 926 

Sydney 798 

 
 

PERFORMANCE COMPARISON 

The performance comparison consists of the 

following four simulation steps: 

1. Gain results from the DCs using the  predefined 

daily IT workload profile 

2. Characterize state space models based on the 

results in the previous step  

3. Integrate the state space models in the MPC, 

search for optimized distribution sequences and 

select one distribution sequence 

4. Gain results from the ‘real DCs using the 

selected distribution sequence 

In the following paragraphs, two alternatives are 

compared, namely the performance of the 

combination of DCs applying and not applying the 

‘Guiding the Cloud’ concept. In addition, the 

maximum savings of electricity consumption and 

CO2 emissions will be presented.  

TRNSYS model versus black-box models  

It is a challenging task to characterize a black-box 

model. In order to obtain a black-box model, usually 

a trial-and-error process precedes. The black-box 

model has been characterized by varying the number 

of inputs and outputs, training data and order of the 

state space model. The best results are obtained when 

different amounts of weeks in January are used for 

training and when various higher orders of the state 

space model for each DC are used. The results from 

the state space model are compared with the first two 

weeks of comparison data of the results in February 

from the TRNSYS model. The normalized root mean 

square error (NRMSE) fitness value provides an 

indication about the goodness of the fit. The fit is 

calculated (in percentage) using the following 

formula: 

       (  
‖   ̂‖

‖   ̅‖
) (1) 

Where   is the validation data output (i.e. output of 

TRNSYS) and  ̂ is the output of the state space 

model (i.e. output of Matlab). 

The goodness of the fit is determined by the 

NRMSE. Results are presented in figure 6. 

As presented, most DCs show a good fit of 

approximately 90% or higher. However, the 

estimations of the DCs’ CO2 emissions in New York 

and Bergen differ significantly from an optimum fit.  
 

 
Figure 6: Best fit for each DC for a day in February 

 

Day in February 

The 8th of February has been selected as the day, to 

examine the potential of ‘Guiding the Cloud’. Figure 

7 presents the total electricity consumption based on 

the IT workload distribution sequence of the 

reference case (where ‘Guiding the Cloud’ is not 

applied), and the, optimization, minimum and 

maximum case (where ‘Guiding the Cloud’ is 

applied).  
 



 
Figure 7: Results of the total energy consumption 

divided in the reference, fit, and controller case for a 

day in February 
 

Figure 8 presents the total CO2 emissions based on 

the IT workload distribution sequence of the 

reference, optimization, minimum and maximum 

case. 

As presented in figure 7 and figure 8, the 

optimization algorithm results in an optimization of 

the total electricity consumption and CO2 emissions. 

Figure 8 provides an overview of the results that are 

obtained for the different cases compared to the 

reference case. 

 

Figure 8: Results of the total CO2 emissions divided 

in the reference, fit, and controller case for a day in 

February 

As presented in Figure 9, using the decision maker 

(coloured as yellow) to select the distribution 

strategies results in  electricity consumption and CO2 

emissions savings of  3.0% and 15.5% respectively. 

Selecting the minimum values for the electricity 

consumption from the Pareto solutions (coloured as 

blue), results in a decrease of 0.6% for the total 

electricity consumption and a decrease of 0.7% for 

the total CO2 emissions. Selecting, on the other hand, 

the minimum values for the CO2 emissions from the 

Pareto solutions (coloured as green), results in a 

decrease of 17.0% in CO2 emissions and a 2.5% 

decrease in electricity consumption.. 
 

 

Figure 9: Performance overview of the results of the 

total electricity consumption and CO2 emissions for 1 

day. 

 

It is observable that applying the minimum values for 

electricity consumption does not lead to the 

maximum reduction in electricity consumption. This 

can be explained by selecting a distribution sequence 

which will influence the future distribution 

sequences. In this case, the influence of the decision-

making resulted in a reduction of both electricity 

consumption and CO2 emissions.  

Overall, the results show that by applying ‘Guiding 

the Cloud’ it is possible to reduce energy 

consumption and CO2 emissions of the case study. 

The case study that is used in this research indicates a 

maximum reduction of 2.5% in total electricity 

consumption and 17.0% in total CO2 emissions. 

DISCUSSION 

Data centers’ representation  

The case study presented in this paper is based on 

physics-based models of six typical configurations of 

DC’s located in different climates. This case study 

was created to assess the potential of the ‘Guiding the 

Cloud’ concept. Real DCs and measurements to 

calibrate these models are necessary in the future to 

validate this concept. 

In order to improve the reliability of the result of 

‘Guiding the Cloud’, the representation of the DCs in 

the controller should be enhanced, because this will 

result in a more accurate prediction of the 

distribution sequences. 

Multi-objective optimization 

While conducting this research, a potential drawback 

of the genetic algorithm was detected. With this 

objective optimization technique, no weighting 

factors can be applied to emphasize more on one 

objective. The preferences of the user can only be 

implemented using the decision maker to select a 

distribution strategy. 

In the case study, which was presented in this 

research, the ‘optimization’ case contained an 

unprejudiced control strategy for selecting the 

distribution sequence. This means that the decision 

maker has no clear preferences for the two 

objectives. However, it would be better if the 



decision maker considers the preferences of the user 

when selecting the distribution sequence.  

Transport time of the IT workload distribution 

The IT workload consists of a fixed and a variable IT 

workload. The fixed IT workload represents the just-

in-time, just-in-place IT requests of customers while 

the variable IT workload could be distributed to 

another DC. However, transport time for distributing 

IT workload from one DC to another DC has been 

ignored. This research has focused on a simple setup 

of the problem without bandwidth or latency 

constraints. Future work should include the transport 

time. 

CONCLUSION AND FUTURE 

RESEARCH 

In this research, the potential of distributing IT 

workload among geographically dispersed DCs is 

investigated. The main objective is to examine its 

(possible) effect on reducing the total energy 

consumption and CO2 emissions. The preliminary 

results indicate that a reduction in total energy 

consumption and CO2 emissions is achievable. 

Savings of the total electricity consumption and CO2 

emissions can be up to 3% and 17.0% respectively.  

In future research, the concept presented in this 

research could be extended with a time delay when 

distributing IT workload from one DC to another. 

Besides the time delay, other relevant aspects can 

also be included, such as maximizing or setting 

boundaries for the reliability or minimizing the 

energy costs using spot pricing markets of the DCs. 

Another interesting concept is to combine a local and 

a global optimization. The local optimization will 

internally schedule the IT workload while the global 

optimization distributes the IT workload among the 

geographically dispersed DCs. 
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