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Abstract—Numerous age-related pathologies affect the prostate gland, the most menacing of which is prostate
cancer (PCa). The diagnostic tools for prostate investigation are invasive, requiring biopsies when PCa is
suspected. Novel dynamic contrast-enhanced ultrasound (DCE-US) imaging approaches have been proposed
recently and appear promising for minimally invasive localization of PCa. Ultrasound imaging of the prostate
is traditionally performed with a transrectal probe because the location of the prostate allows for high-
resolution images using high-frequency transducers. However, DCE-US imaging requires lower frequencies
to induce bubble resonance and, thus, improve contrast-to-tissue ratio. For this reason, in this study we inves-
tigate the feasibility of quantitative DCE-US imaging of the prostate via the abdomen. The study included 10
patients (age 5 60.7 ± 5.7 y) referred for a needle biopsy study. After having given informed consent, patients
underwent DCE-US with both transabdominal and transrectal probes. Time–intensity contrast curves were
derived using both approaches and their model-fit quality was compared. Although further improvements
are expected by optimization of the transabdominal settings, the results of transabdominal and transrectal
DCE-US are closely comparable, confirming the feasibility of transabdominal DCE-US; transabdominal curve
fitting revealed an average determination coefficient r2 5 0.91 (r2 . 0.75 for 78.6% of all prostate pixels)
compared with r2 5 0.91 (r2 . 0.75 for 81.6% of all prostate pixels) by the transrectal approach. Replacing
the transrectal approach with more acceptable transabdominal scanning for prostate investigation is feasible.
This approach would improve patient comfort and represent a useful option for PCa localization and moni-
toring. (E-mail: M.mischi@tue.nl) � 2015 World Federation for Ultrasound in Medicine & Biology.

Key Words: Prostate cancer, Contrast-enhanced ultrasound, Ultrasound contrast agents, Dilution curve, Transab-
dominal ultrasound, Transrectal ultrasound, Perfusion.
INTRODUCTION

Prostate problems are a major age-related burden in men.
Three in four men in their sixties present with lower
urinary tract symptoms, which are often the result of
benign prostate hyperplasia (Wei et al. 2008), but
generate concerns for prostate cancer (PCa) and thus
require special investigations (Brown et al. 2003). PCa
is the cancer with the highest incidence in Western men
(Siegel et al. 2014). Twenty-seven percent of all new ma-
lignancies diagnosed in men in 2014 in the United States
are expected to be prostate cancer (Siegel et al. 2014).
Standard PCa diagnosis comprises digital rectal examina-
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tion, assessment of serum prostate-specific antigen levels
and transrectal ultrasound (TRUS) imaging. All have
serious limitations: digital rectal examination is subjec-
tive and assesses only a part of the gland (the posterior
part), whereas the prostate-specific antigen test is not dis-
ease specific, producing about two in three false-positive
results (Draisma et al. 2003; Schr€oder et al. 2009).
Ultrasound is the most used clinical instrument for pre-
and peri-operative visualization of the prostate gland. It
permits estimation of the prostate volume, as well as
guidance for systematic biopsies. In addition, gray-scale
and Doppler imagingmay provide diagnostic information
on intraprostatic abnormalities, although its poor sensi-
tivity and specificity make this approach unreliable
(Aarnink et al. 1998; Sedelaar et al. 2001).

Because of the relatively small size of the prostate
and its proximity to the rectal wall, prostate imaging is
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Fig. 1. Three selected frames from the transabdominal dynamic contrast-enhanced ultrasound scan (a) before ultrasound
contrast agent wash-in, (b) at peak concentration and (c) during washout, revealing a hypervascularized prostate extension

toward the bladder. The bladder, prostate and a prostate extension into the bladder are indicated in (a).
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conventionally performed with a transrectal probe that al-
lows use of high-frequency ultrasound (typically .8
MHz) to provide high-resolution images. The quality of
the images justifies the patient’s discomfort caused by
transrectal access.

More recently, the potential of advanced imaging
methods, including elastography and dynamic contrast-
enhanced ultrasound (DCE-US) imaging, to improve
detection and localization of PCa has been reported
(Salomon et al. 2008; Wink et al. 2008). Elastography
estimates tissue stiffness as a marker for increased
cellular density and, therefore, cancer (Salomon et al.
2008). DCE-US can detect signals from the microvascu-
lature and serves as a marker for neoangiogenesis and tu-
mor progression (Halpern et al. 2001; Russo et al. 2012).
This relates to the diameter of the microbubbles used as
ultrasound contrast agents (UCAs); they are gas
microbubbles with a size comparable to that of red
blood cells (Schneider 1999) and can therefore flow
through the smallest microvessels. A large retrospective
study reported that UCAs are tolerable for non-cardiac
applications (Piscaglia et al. 2006).

Several methods have been proposed for detection
of changes in the microvascular architecture based on
the assessment of tissue perfusion by analysis of the
time evolution (wash-in and wash-out) of the UCA con-
centration (Russo et al. 2012). To this end, specific
(empirical) features are estimated from UCA time–in-
tensity curves (TICs) measured after a peripheral intra-
venous injection of an UCA bolus (Eckersley et al.
2002). Typical features extracted are the mean transit
time, wash-in rate and area under the curve. More
recently, some authors have proposed UCA dispersion
as a better marker than perfusion for detection of angio-
genic changes in the microvascular architecture
(Kuenen et al. 2011). The results obtained in the prostate
are promising and have motivated the development of
improved algorithms for dispersion analysis (Kuenen
et al. 2013b; Mischi et al. 2012).

Driven by established clinical practice and the com-
mon thought that a transrectal approach leads to
improved spatial resolution, DCE-US has always been
performed by TRUS, but this overlooks essential tech-
nical aspects of the imaging system. In particular, DCE-
US is performed with contrast-specific imaging using
dedicated pulse schemes that improve microbubble
detectability by suppressing tissue echoes and thus
increasing the contrast-to-tissue ratio (Frinking et al.
2000). Commonly used solutions for contrast-specific im-
aging modes aim at enhancing the non-linear signals pro-
duced by UCAs compared with the linear signals
produced by tissue (Frinking et al. 2000).

An important feature common to all these methods
relates to the chosen ultrasound frequency; to achieve
strong contrast signals, the ultrasound frequency should
be close to the resonance frequency of the microbubbles
used. According tomicrobubble simulations and dedicated
measurements, the resonance frequency of commercially
available UCAs is #3 MHz (Fillon 2013; Gorce et al.
2000; Schneider 1999). Therefore, when TRUS is used,
the high US frequencies that are allowed by the small
imaging depth (low attenuation) are lowered to values
that are close to the microbubble resonance frequency.
This permits achievement of efficient contrast
enhancement at the cost of a lower spatial resolution.

In the work described here we evaluated for the first
time the feasibility of DCE-US imaging of the prostate
via the abdomen, using lower frequencies that are close
to the microbubble’s resonance and permit achievement
of the required, greater depth. To this end, the quality
of TICs acquired by transabdominal scanning is evalu-
ated and compared with that of TICs acquired by a trans-
rectal probe. The transabdominal approach avoids patient
discomfort and simplifies clinical practice.



Fig. 2. Transabdominal (top) and transrectal (bottom) contrast-enhanced (a, e) and fundamental (b, f) scans of the patient
in Figure 1 with four overlaid regions of interest (a, e) where the displayed time–intensity curves (c, g) have been
measured. Clear time–intensity curves can be extracted in different regions throughout the entire prostate gland. The cor-
responding parametric (color) maps displaying the determination coefficient r2 of the local density randomwalk model fit

to time–intensity curves measured at each pixel are shown on the right (d, h).
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METHODS

The study was institutional review board approved
and included patients referred for a needle biopsy study.
After having given informed consent, patients underwent
the DCE-US investigations.

Patients underwent both transrectal and transabdo-
minal DCE-US scans of the prostate in random order
before biopsy. The patients were asked not to void before
the scans to avoid an empty bladder and, therefore, the
presence of additional (attenuating) tissue along the
path between the transabdominal probe and the prostate.
For each scan, a 2.4-mL SonoVue (Bracco SPA, Milan,
Italy) UCA bolus was administrated intravenously fol-
lowed by a 5-mL saline flush, and the transit of the bolus
through the prostate was imaged and recorded using an
iU22 ultrasound scanner (Philips Healthcare, Bothell,
WA, USA). C10-3v and C5-2 probes were used for the
transrectal and transabdominal scans, respectively. TIC
acquisition requires an approximately 1-min recording
during which the ultrasound probe must be kept still to
obtain TICs that are derived from one tissue plane and
are not affected by motion artifacts.

The acquired contrast ultrasound image sequences
were stored in the digital imaging and communications
in medicine (DICOM) format and analyzed off-line in
MATLAB (The MathWorks, Natick, MA, USA) to eval-
uate the quality of the recorded data.
Patients
Ten patients (age 5 60.7 6 5.7 y) were included.

The patients had body mass index ranging from 21.5 to
35.5 kg/m2, a prostate volume from 16 to 145 mL and a
prostate-specific antigen level from 0.6 to 42.2 ng/mL.
Because of an evident hypervascularized prostate



Table 1. Statistics of the determination coefficient r2 of
the local density random walk fits to time–intensity
curves measured by TA and TR dynamic contrast-

enhanced ultrasound at each pixel covering the prostate

Patient

r2 r2 . 0.75 (%) Failed fit (%)

TA TR TA TR TA TR

1 0.93 6 0.10* 0.90 6 0.11 83.7 86.0 10.0 6.8
2 0.92 6 0.13 0.91 6 0.10 69.5 87.0 12.5 6.1
3 0.90 6 0.15 0.92 6 0.13 76.6 83.7 9.3 8.6
4 0.96 6 0.07 0.92 6 0.09 86.0 86.6 10.9 7.8
5 0.88 6 0.12 0.91 6 0.11 67.9 82.1 21.0 9.8
6 0.92 6 0.11 0.95 6 0.08 77.3 91.2 16.0 5.4
6 0.90 6 0.12 0.886 0.12 76.7 68.8 13.8 21.0
7 0.93 6 0.08 0.88 6 0.14 93.8 76.7 2.1 10.1
9 0.87 6 0.15 0.87 6 0.14 66.0 70.5 19.0 16.7
10 0.90 6 0.15 0.91 6 0.12 83.4 86.6 8.0 5.0
Globaly 0.91 6 0.13 0.91 6 0.12 78.6 81.6 12.4 10.1

TA 5 transabdominal; TR 5 transrectal.
* Mean 6 standard deviation.
y Global values refer to the statistics over the complete set of time–in-

tensity curves from all the scanned patients.
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extension into the bladder base, providing a clear, com-
mon landmark to compare the transabdominal and trans-
rectal scans, the patient in Figure 1 is taken as guiding
example. This patient (age 5 59 y) had a body mass in-
dex, prostate volume and prostate-specific antigen level
of 35.5 kg/m2, 98 mL and 42.2 ng/mL, respectively.
Twelve of 12 biopsies were found positive with a Gleason
score of 5 1 4.

Scanner settings
The acquisitions were performed in contrast-specific

(power modulation) mode at 3.5 MHz with a mechanical
index of 0.06 for the transrectal scan and at 1.7 MHz for
the transabdominal scan with a higher mechanical index
(0.16) to improve signal strength while maintaining a suf-
ficiently low acoustic pressure so as to minimize
bubble destruction (Frinking et al. 2000). For both the
transrectal and transabdominal scans, the gain and the dy-
namic range were adjusted so that signal from tissue was
slightly above the background level. As an example, in
Figure 1 are three frames from the dynamic abdominal
scan before UCA arrival, at peak concentration and dur-
ing washout.

Quality measure
Time–intensity curves were extracted from the data

sets obtained to evaluate the feasibility of performing
DCE-US transabdominal imaging of the prostate
compared with transrectal DCE-US imaging. Only TICs
representing the prostate were extracted and evaluated.
To this end, the prostate contour was determined by an
expert and manually overlaid on the images.

Time–intensity curves were first measured in several
regions of interest placed in both the peripheral and tran-
sition zones of the prostate for visual comparison of the
transrectal and transabdominal data sets. A quantitative
evaluation of TIC quality was performed by assessment
of the signal-to-noise ratio, defined according to Mischi
et al. (2007) as the ratio between the TIC peak and the
noise standard deviation expressed in decibels.

Dynamic contrast-enhanced ultrasound quantifica-
tion typically involves model fitting; therefore, the qual-
ity measure we adopted was the suitability of the
recorded data for accurate model fitting. Before this,
the data was linearized (Kuenen et al. 2011). We used
the local density random walk model, which describes
the convection–dispersion process of the microbubbles
and is extensively reported to produce accurate fits of
TICs (Mischi et al. 2003; Strouthos et al. 2010). The
model-fitting algorithm proposed in Kuenen et al.
(2011) was adopted. At each pixel in the prostate, the
fit quality was assessed by the determination coefficient
r2, which is commonly used to indicate the agreement be-
tween a model and the data (Menard 2000). Color maps
of r2 were derived for both the transabdominal and trans-
rectal scans to compare the quality of the data sets.

RESULTS

Figure 2 illustrates the results from the transabdomi-
nal and transrectal scans of the selected patient in
Figure 1. Contrast-specific (Fig. 2a, e) and fundamental
(Fig. 2b, f) images, as displayed by the scanner, are pro-
vided. The displayed TICs (Fig. 2c, g), which are derived
in several regions of interest representative of different
prostate zones, show comparable quality for the transab-
dominal and transrectal acquisitions, with the transabdo-
minal TICs having lower amplitudes compared with the
corresponding transrectal TICs. Single-pixel TICs
measured in the same regions of interest had average
signal-to-noise ratios equal to 18.77 6 4.18 and 18.56
6 3.10 dB for the transabdominal and the transrectal ac-
quisitions, respectively. Parametric maps of the determi-
nation coefficient r2 of the local density random walk fits
to the TICs measured at each pixel covering the prostate
are also provided (Fig. 2d, h). Pixels where no r2 color is
shown correspond to ‘‘failed fitting’’ because of poor or
absent signals, caused, for example, by calcifications
(no perfusion). Quantitative results for each patient are
summarized in Table 1.

DISCUSSION

The comparison of transabdominal and transrectal
data indicates the feasibility of transabdominal contrast-
enhanced ultrasound imaging of the prostate. TIC quality
that is adequate for quantitative analysis was achieved in
all patients, with a wide range of body mass indexes and
prostate volumes.



Fig. 3. Functional images of dispersion estimated by the method described in Mischi et al. (2012) for the transabdominal
(a) and transrectal (b) ultrasound scans in the same patient presented in Figures 1 and 2. Both maps reveal the prostate

extension into the bladder as angiogenic (red color).
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As illustrated in Figure 2, reduced signal strength
was observed in the transabdominal TICs. This could
have resulted from the greater distance between the probe
and the prostate; however, standard transabdominal
probes, such as the one we used, are designed for imaging
a large field of view rather than a small, deep target like
the prostate. Probes dedicated to prostate imaging can
be expected to produce better transabdominal prostate
TICs.

The scanner settings were chosen on the basis of
experience and real-time visual feedback, and improve-
ments in image quality can be expected from a thorough,
systematic optimization. Further improvements could
also be achieved by optimizing the measurement protocol
to account for the bladder volume, which can be adjusted
by voiding. An empty bladder could result in increased
attenuation from intestinal tissue in the ultrasound path,
whereas a full bladder may result in non-linear propaga-
tion artifacts because of a long ultrasound propagation
pathway through urine (Bouakaz et al. 2004). In general,
at the adopted higher mechanical index, necessary for
proper insonification of the peripheral zone in the
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prostate, other effects may occur affecting the image
quality, such as bubble destruction and non-linear propa-
gation artifacts that can be observed independent of the
amount of urine along the ultrasound path. Nevertheless,
the quality of the TICs we obtained permitted analysis of
the contrast agent bolus kinetics, as confirmed by our
model-fitting evaluation.

With the size restrictions dictated by the transrectal
route removed, the transabdominal approach facilitates
the use of 4-D DCE-US, permitting analysis of the entire
gland with a single intravenous UCA bolus. This would
be an important improvement compared with 2-D imag-
ing, where the analysis of each plane requires the injec-
tion of a separate UCA bolus.

Currently, DCE-US cannot replace the use of sys-
tematic biopsies for the diagnosis of PCa. However,
recent studies have reported the emerging role of DCE-
US in this context (Wink et al. 2008); biopsies targeted
by DCE-US lead to fewer biopsies per session without
compromise of detection rate compared with systematic
biopsies (Mitterberger et al. 2007). Based on the prelim-
inary results of quantitative methods, such as contrast ul-
trasound dispersion imaging (Kuenen et al. 2013b;
Mischi et al. 2012), with a sensitivity and specificity of
77.3% and 86.0%, respectively (Kuenen et al. 2013a),
further improvements can be expected in the localization
of PCa by DCE-US. Especially when a high negative pre-
dictive value is achieved, abdominal DCE-US could be an
easier, more comfortable option for selecting patients for
biopsy, active surveillance and treatment monitoring and
follow-up. Therefore, the proposed transabdominal DCE-
US investigation could provide an important opportunity
to limit biopsies in patients with a high suspicion of
aggressive cancers.

In Figure 3 are the abdominal and TRUS functional
dispersion maps for the same patient in Figures 1 and 2,
estimated with the method proposed in Mischi et al.
(2012). Both the transabdominal dispersion map and
the corresponding TRUS map reveal the prostate exten-
sion into the bladder as highly angiogenic. This result,
also supported by the 12-core biopsy, provides additional
confidence in the feasibility of the transabdominal
approach compared with TRUS. Other than the prostate
extension into the bladder, visible in both scans, the im-
ages are not perfectly registered, because of the different
ultrasound beam angles to the prostate from the abdom-
inal wall and from the rectum.
CONCLUSIONS

We report the feasibility of transabdominal dynamic
contrast-enhanced ultrasound imaging of the prostate, ex-
ploiting the lower ultrasound frequencies that are optimal
for contrast-specific imaging. Time–intensity curves
were successfully extracted and analyzed in 10 patients.
Given the high incidence of prostate pathology, espe-
cially prostate cancer, together with the emerging role
of dynamic contrast-enhanced ultrasound imaging for
its localization, the use of the transabdominal approach
to the prostate may represent a clinically useful option
for selecting patients for biopsy, active surveillance and
treatment monitoring and follow-up.
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