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Chapter 1

Introduction

This report gives background information on the principles of the direction cosine matrix method to
determine the orientation of, for example, an unmanned aerial vehicle (UAV) with respect to (the ref-
erence frame of) the earth. In combination with, for example, GPS and/or an optical flow camera, this
information can be used to determine the global position of the UAV. Other methods for determining
the orientation of an UAV are using a Kalman filter (see for example [2, 3]), an unscented Kalman filter
(see for example [7]), a particle filter (see for example [6]) and a complementary filter (see for example
[1]). In this report no new principles on the direction cosine matrix method are presented as the main
principles are already present in [5] on which the major part of this report is based.

The goal of the project is to create a Matlab/Simulink implementation of the direction cosine ma-
trix algorithm. Such an implementation allows to simulate other parts of code and/or Simulink
models in combination with the direction cosine matrix algorithm. Slightly modified versions of
the APM2 Simulink Blockset were used to create a single Simulink model for simulations within
Simulink and for running the model on the hardware (an ArduPilot Mega 2560 was used). The imple-
mentation is based on the C++ implementation of the file AP_AHRS_DCM.cpp (available at https://
github.com/diydrones/ardupilot/tree/master/libraries/AP_AHRS) which makes use of the
library https://github.com/diydrones/ardupilot/tree/master/libraries. The presented im-
plementation is based on the on 12 July 2013 available C++ implementation. As the code is subject to
change, it might be that there are small implementation and parameter differences with the current
version.

The research problem is formulated as: create a Matlab/Simulink implementation of the direction
cosinemethod for determining the orientation of anUAV. The target is to achieve amaximum absolute
difference with the original algorithm of 0.5◦ in terms of the Euler angles such that the quality is
determined by the accuracy of the sensors and not by the algorithm used. This work differs from the
rest as it gives an implementation in Matlab/Simulink rather than in C++.

In the remainder of this chapter background information on the direction cosine matrix algorithm in
general as well as the notation that is used throughout this report is presented. Moreover, the direction
cosine matrix (DCM) is introduced. As the DCM changes over time it is updated which is discussed
in Chapter 2. The required drift correction is the topic of Chapter 3. The last step is to determine the
Euler angles (i.e., the orientation) which is discussed in Chapter 4. In the final chapter, Chapter 5,
obtained results are discussed.
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1.1 Background

The direction cosine matrix describes the rotation between the reference frame of the body and the
reference frame of the earth and will be formally introduced in Section 1.3. The nine elements of the
DCM are a function of the Euler angles and allow to extract the Euler angles which is the topic of Chap-
ter 4. As the body moves with respect to the earth, the DCM changes in time and should therefore be
updated. This could ideally be done using only gyroscope measurements. However, due to numerical
errors and gyroscope offset and drift, errors accumulate in the DCM resulting in incorrect angles. The
errors in roll and pitch can be compensated by use of accelerometer measurements. Accelerometer
measurements are unsuitable for the yaw correction as the plane of the yaw is perpendicular to the
gravitational field. Therefore, a magnetometer is used to compensate for error in the yaw. These errors
are fed back into the update of the DCM by use of negative proportional plus integral control action.
An schematic overview of the algorithm is presented in Figure 1.1.

DCM

update-

+
gyroscope

magnetometer

accelerometer

drift correction

roll & pitch

drift correction

yaw

PI controller

to Euler

roll

pitch

yaw

+

+

Figure 1.1: Schematic overview of the direction cosine matrix method.

In order to be able to compare the C++ implementation with the Simulink implementation, print
statements are added to the C++ implementation for data collection. However, these print statements
occasionally cause an overrun for a sample rate of 100 Hz. Also for a lower sample rate (50 Hz)
overruns occur. Therefore, the resulting variation in sample rate is taken into account in the Simulink
implementation and the default sample rate of 100Hz is used.

1.2 Notation

The following notation is used throughout this report:

• A matrix is denoted by a bold capital Latin letter, e.g.,A, and parameterized as

A =





Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz



.

• A column is denoted by a bold lower case Greek letter, e.g., α =





αx

αy

αz



. The length is given by

the root-mean-square (RMS) value: ‖α‖ =
√

α2
x + α2

y + α2
zl. A normalized column is denoted

as α̂ = α

‖α‖ .

• A row is denoted by a bold lower case Latin letter, e.g., a =
[

ax ay az
]

). The length is defined

as the root-mean-square (RMS) value: ‖a‖ =
√

a2x + a2y + a2z . A normalized row is denoted as
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â = a

‖a‖ .

• The transpose is denoted by ⊤.

• The dot product of the columns α and β of length n is defined as α · β =
∑n

i=1
αiβi = α⊤β.

The dot product of the rows a and b of length n is defined as a · b =
∑n

i=1
aibi = ab

⊤. The dot
product is commutative: α · β = β ·α and a · b = b · a.

• The cross product of two columns α and β is defined as α × β = ‖α‖‖β‖ sin θ with θ the
smaller angle between α and β (i.e., 0◦ ≤ θ < 180◦). The cross product of two rows a and b is
defined as a× b = ‖a‖‖b‖ sin θ with θ the smaller angle between a and b (i.e., 0◦ ≤ θ < 180◦).
The cross product is anticommutative: α× β = −β ×α and a× b = −b× a.

• The frame of reference is indicated by a superscript: e for earth and b for body.

1.3 Introducing the DCM

Figure 1.2 depicts the reference frame of the earth and the reference frame of the body. The orientation
vector of the body, describing the orientation with regards to its reference frame, is indicated by ρb with
directions along the axis xe, ye and ze. Similarly, the orientation vector of the earth is indicated by ρe

with directions along the axis xb, yb and zb.

x
e

y
e

z
e

x
b

y
b 

z
b

Figure 1.2: Reference frame of the earth (e, solid) and of the body (b, dashed).

The relation between ρe and ρb is given by

ρe = Rρb (1.1)

with R the direction cosine matrix (DCM):

R =





rx

ry

rz



 . (1.2)

The rotation seen from the reference frame of the body (R−1) is of the samemagnitude but in opposite
direction from the rotation seen from the reference frame of the earth (R) and thus it holdsR−1 = R

⊤

or equivalent RR
⊤ = I, i.e., the DCM is orthogonal.
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Chapter 2

DCM

2.1 Updating the DCM

From the perspective of the reference frame of the body, the orientation of the earth changes over time

and the orientation of the body not, i.e., ρ̇b = 0. The time-derivative of ρe is given by

ρ̇e = Ṙρb +Rρ̇b

= Ṙρb

= ṘR
−1ρe

= ṘR
⊤ρe

= ωb
rot × ρe.

Here the orthogonality propertyRR
⊤ = I is used from which follows that İ = ṘR

⊤+RṘ
⊤ = 0 and

thus ṘR
⊤ = −RṘ

⊤ = −
(

ṘR
⊤
)⊤

, i.e., ṘR is skew-symmetric and thus there is a column ωb
rot

such that ṘR
⊤ρe = ωb

rot × ρe. The rotation rate column ωb
rot is given by

ωb
rot = ωb

P + ωb
P,yaw + ωb (2.1)

with ωb
P and ωb

P,yaw the proportional terms of the controller based on roll and pitch, and yaw, respec-

tively, and ωb defined as

ωb = ωb
gyro + ωb

I (2.2)

where ωb
gyro are the gyroscope measurements from the inertial measurement unit (IMU) and ωb

I is

the integrating term of the controller. The terms ωb
P , ω

b
P,yaw and ωb

I are defined later on.

For small time steps δt, the orientation of the earth at the next time step ρe(t+δt) can be approximated
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by

ρe(t+ δt) = ρe(t) + ρ̇e(t)δt

= ρe(t) +
(

ωb
rot(t)× ρe(t)

)

δt

= ρe(t)− ρe(t)× ωb
rot(t)δt

= R(t)
(

ρb(t)− ρb(t)× ωb
rot(t)δt

)

= R(t)
(

ρb(t) +
(

ωb
rot(t)δt

)

× ρb(t)
)

= R(t)





ρbx + ωb
rot,yδtρ

b
z − ωb

rot,zδtρ
b
y

ρby + ωb
rot,zδtρ

b
x − ωb

rot,xδtρ
b
z

ρbz + ωb
rot,xδtρ

b
y − ωb

rot,yδtρ
b
x





= R(t)





1 −ωb
rot,zδt ωb

rot,yδt
ωb
rot,zδt 1 −ωb

rot,xδt
−ωb

rot,yδt ωb
rot,xδt 1



ρb.

Hence, the update of the DCM is given by

R(t+ δt) = R(t)





1 −ωrot,zδt ωrot,yδt
ωrot,zδt 1 −ωrot,xδt
−ωrot,yδt ωrot,xδt 1



 . (2.3)

The update of the DCM (2.3) usingωb
rot defined in (2.1) is implemented in the function matrix_update.

2.2 Renormalization of the DCM

Due to approximations in the update of the DCM given by (2.3), orthogonality properties will be lost
over time. Therefore, the DCM is renormalized.

The dot product e⊥ = rx · ry is zero when rx and ry are orthogonal and unequal to zero if not orthog-
onal. e⊥ is thus a measure of orthogonality between rx and ry and is therefore used for correction:

t0 = rx − 1

2
e⊥ry and t1 = ry −

1

2
e⊥rx. (2.4)

To guarantee the third row is orthogonal to the first two rows it is based on the first two rows:

t2 = t0 × t1. (2.5)

The normalized DCM is given by

R =





t̂0

t̂1

t̂2



 . (2.6)

Note that this is the exact normalization in contrast to the normalization proposed in Eqn. 21 of [5]
which is based on a Taylor series expansion to decrease the computational time. As in the original
C++ implementation the exact normalization is implemented, this is also done here (see the function
renorm). In the function normalize (2.4) and (2.5) are implemented.
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Chapter 3

Drift correction

To correct for drift, the terms ωb
P,yaw, ω

b
P and ωb

I are determined which are eventually used in (2.3)
for updating the DCM. The drift correction for roll and pitch is based on accelerometer measurements.
The drift correction for yaw is based on magnetometer measurements.

3.1 Drift correction yaw

The correction for yaw only applies to the z-direction of ωb
P,yaw and ωb

I as they are defined in the refer-

ence frame of the body, i.e., onlyωb
P,yaw,z andω

b
I,z are updated in the function drift_correction_yaw.

The correction is based on the error between the magnetometer reading and the actual heading based
on declination measurements.

3.1.1 No new magnetometer reading

If there has been no new magnetometer reading, which may be the case if the reading of the compass
was not finished in time, the proportional term ωP,yaw is decreased to 97% of its previous value to
decrease the influence of the yaw error that was based on previous measurements.

3.1.2 New magnetometer reading

If there has been a new magnetometer reading, the time between this reading and the previous one is
denoted by∆Ty. For the heading only the x- and y-direction are relevant in the reference frame of the
earth and therefore only these values are computed from the measured compass magnitude ηb:

ηe
xy =

[

rx

ry

]

ηb. (3.1)

Denoting the measured declination by δ, the heading is

[

cos(δ)
sin(δ)

]

. The yaw error in the earth frame

(which is in z-direction) is based on comparing this with ηe
xy after normalization, i.e., comparing with

η̂
e
xy which is the normalized version of the two dimensional column ηe

xy. This is done by calculating
the corresponding cross product:

eeyaw = η̂ex sin(δ)− η̂ey cos(δ). (3.2)

9



As the correction is only based on the z-component in the body frame and the resulting z-component
in the earth frame, the ‘rotation’ from the reference frame of the earth to the reference frame of the
body is given by

ebyaw = Rzze
e
yaw. (3.3)

The proportional term ωb
P,yaw,z is given by

ωb
P,yaw,z = kP,yawPgain(‖ω

b‖)ebyaw (3.4)

with Pgain(‖ω
b‖) a nonlinear function of the spin rate ‖ωb‖ and kP,yaw = 0.3 rad/s a constant

defined in AP_AHRS.cpp.

The function Pgain(‖ω
b‖) as implemented on 12 July 2013 returns ‖ωb‖ divided by 50 180

π
and satu-

rated between 1 and 10. In the code it is stated that this variable gain is based on [4]. However, the
implementation differs from the one suggested in [4], which is a mistake in the implementation. The
spin rate is in [rad/s] and the proposed values of 50 and 500 are in [◦/s] so it should be ToRad instead
of ToDeg for all three instances in the function _P_gain defined in AP_AHRS_DCM.cpp. In the results
discussed in Chapter 5 are based on the old implementation, i.e., divide ‖ωb‖ by 50 180

π
and saturate

the result between 1 and 10.

The integrating term ωb
I,sum,yaw is given by

ωb
I,sum,yaw =





0
0

∫

∆Ty

kI,yawe
b
yaw dt



 (3.5)

if the time ∆Ty < 2 s (there has been a yaw reference in the last two seconds) and if the spin rate
‖ωb‖ is smaller than the spin rate limit of 20 ◦/s (the body is not spinning too fast), with the con-
stant kI,yaw = 0.01 rad/s2 as defined in AP_AHRS_DCM.h. If one of these conditions is not satisfied,
ωb

I,sum,z is not updated based on the yaw correction.

3.2 Drift correction roll and pitch

The drift correction for roll and pitch are based on comparing the accelerometer measurements con-
verted to the reference frame of the earth with the actual acceleration in the reference frame of the
earth.

The accelerometer measurements ηb are transformed to the reference frame of the earth:

ηe = Rηb. (3.6)

The accelerometer values used for correction are denoted by η̄e and are the average of ηe over time
since the last update∆Trp ago, i.e.,

η̄e =
1

∆Trp

∫

∆Trp

ηe. (3.7)

η̄e is divided by the gravitational acceleration g = 9.80665 m/s2 and normalized when its length is
larger than one. The result is denoted by ∗η̄e which is compared with the accelerations at the earth
given by

γe =





0
0
−1



 . (3.8)

The error ǫeaccel is defined as
ǫeaccel =

∗η̄e × γe. (3.9)
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To guarantee only the roll and pitch are corrected, the last element of ǫeaccel is explicitly set to zero.
ǫeaccel is converted to the body frame:

ǫbaccel = R
⊤ǫeaccel. (3.10)

The proportional term of the controller is calculated as

ωb
P = Pgain(‖ω

b‖)kpǫ
b
accel (3.11)

with the function Pgain(‖ω
b‖) as defined at (3.4) and the constant kP = 0.3 rad/s defined in

AP_AHRS.cpp.

Integrating kIGerror,b with kI = 0.0087 rad/s2 a constant (defined in AP_AHRS_DCM.h), over time
during the time span∆Tsum and adding it to the term from the yaw correction ωb

I,sum,yaw gives:

ωb
I,sum = ωb

I,sum,yaw + kI

∫

∆Tsum

ǫeaccel dt. (3.12)

The time span ∆Tsum is a combination of the time intervals in which the spin rate ‖ωb‖ is smaller
than the spin rate limit of 20 ◦/s since the last reset. ωb

I should remain within the physical bounds of
the device given by the maximum gyro drift rate of w′

lim = 0.5 ′/s = 0.5
60

◦/s2 (defined in
AP_InertialSensor_MPU6000.cpp). Therefore, ωb

I is set equal to ωb
I,sum after saturating it by

±w′
lim∆Tsum.

Note that the conditions under which the drift correction for yaw takes place are different from the
conditions under which the drift correction of the roll and pitch takes place. The update of ωb

I depends
on the roll and pitch update.
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Chapter 4

Euler angles

In this chapter the calculation of the Euler angles roll φ, pitch θ and yaw ψ of the body is explained.

The orientation of the reference frame of the body with respect to the reference frame of the earth can
be described by Euler angles φ, θ and ψ as is illustrated in Figure 4.1. Starting from an orientation

ψ

ψ

θ

θ
φ

φ

xe
ye

ze

xb

yb 

zb

x′

y′

z′

Figure 4.1: Relation between the reference frame of the earth (e) and the reference frame of the
body (b) in terms of the Euler angles φ, θ and ψ.

of the reference frame of the body equal to the orientation of the reference frame of the earth, the
relation is given by the following subsequently rotations (the order is of importance):

1. Rotate the body about its z-axis (ze in Figure 4.1) through the yaw angle ψ, i.e., apply rotation
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matrix

R1 =





cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1



 .

2. Rotate the body about its y-axis (y′ in Figure 4.1) through the pitch angle θ, i.e., apply rotation
matrix

R2 =





cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)



 .

3. Rotate the body about its x-axis (xb in Figure 4.1) through the roll angle φ, i.e., apply rotation
matrix

R3 =





1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)



 .

Applying these rotation in this order yields the relation ρb = R3R2R1ρ
e. Comparing this with the

relation ρe = Rρb gives (using the orthogonality property ofR):

R = (R3R2R1)
−1

= (R3R2R1)
⊤

=





cos(θ) cos(ψ) sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ) cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)
cos(θ) sin(ψ) sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ) cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ)

− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)



 .

From this relation between the DCM and the Euler angles, the Euler angles can be determined as
follows:

φ = arctan

(

Rzy

Rzz

)

(4.1)

θ = − arcsin(Rzx) (4.2)

ψ = arctan

(

Ryx

Rxx

)

(4.3)

The roll φ, pitch θ, and yaw ψ angles are determined within the function euler_angles which calls
the function to_euler in which (4.1), (4.2) and (4.3) are implemented.
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Chapter 5

Results

In this chapter results are presented and differences are commented.

Gyroscope, accelerometer and magnetometer data was captured during motion of an ArduPilot Mega
2560 with the original direction cosine matrix algorithm implemented. This data was then used to
validate the implementation of the algorithm in Matlab/Simulink.

The resulting roll, pitch and yaw angles are presented in Figure 5.1. Differences are hardly visible
and therefore the difference in the resulting angles from the two algorithms is studied. To avoid
discontinuities that occur when changing from+180◦ to−180◦ or vice versa, the sine of the difference
is shown in Figure 5.2 rather than the difference itself. From this figure it can be derived that the
difference is not always smaller than the target of 0.5◦. The figures show that there is no drift present,
i.e., there are no structural differences between the algorithms.

Based on these results it is concluded that the in Matlab/Simulink implemented direction cosine
matrix algorithm describes the original algorithm quite well but not as accurate as was aimed for in
the research problem. A possible reason is that maybe not all functions are implemented (correctly).
For improving the quality of the algorithm, it is advised to evaluate each function separately instead of
validating the complete algorithm at once.
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Figure 5.1: Roll φ, pitch θ and yaw ψ as function of time for the original implementation (solid)
and for the Simulink implementation (dashed).
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Figure 5.2: Sine of the difference in the roll ∆φ, pitch ∆θ and yaw ∆ψ between the original
implementation and the Simulink implementation.
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