

Synthesizing data-centric models from business process
models
Citation for published version (APA):
Eshuis, H., & Van Gorp, P. M. E. (2016). Synthesizing data-centric models from business process models.
Computing, 98(4), 345-373. https://doi.org/10.1007/s00607-015-0442-0

DOI:
10.1007/s00607-015-0442-0

Document status and date:
Published: 01/01/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1007/s00607-015-0442-0
https://doi.org/10.1007/s00607-015-0442-0
https://research.tue.nl/en/publications/844bfb17-401b-4e68-b01a-6395dda2b3bc

Computing (2016) 98:345–373
DOI 10.1007/s00607-015-0442-0

Synthesizing data-centric models from business process
models

Rik Eshuis · Pieter Van Gorp

Received: 11 January 2014 / Accepted: 19 January 2015 / Published online: 14 February 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Data-centric business process models couple data and control flow to spec-
ifyflexible business processes.However, it canbedifficult to predict the actual behavior
of a data-centric model, since the global process is typically distributed over several
data elements and possibly specified in a declarative way. We therefore envision a
data-centric process modeling approach in which the default behavior of the process
is first specified in a classical, imperative process notation, which is then transformed
to a declarative, data-centric process model that can be further refined into a complete
model. To support this vision, we define a semi-automated approach to synthesize an
object-centric design from a business process model that specifies the flow of multiple
stateful objects between activities. The object-centric design specifies in an imperative
way the life cycles of the objects and the object interactions. Next, we define a map-
ping from an object-centric design to a declarative Guard-Stage-Milestone schema,
which can be refined into a complete specification of a data-centric BPM system. The
synthesis approach has been implemented and tested using a graph transformation
tool.

Keywords Data-centric BPM · UML · Case management · Model transformation

Mathematics Subject Classification 68U01 · 68U31

R. Eshuis (B) · P. Van Gorp
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: h.eshuis@tue.nl

P. Van Gorp
e-mail: p.m.e.v.gorp@tue.nl

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-015-0442-0&domain=pdf

346 R. Eshuis, P. Van Gorp

1 Introduction

The classic way to model business processes is to specify atomic activities and their
ordering in a flowchart-like, imperative process model. In recent years, data-centric
modeling paradigms have increasingly grown popular in research and industry as alter-
native to the classic, activity-centric paradigm. Data-centric modeling approaches aim
to have amore integrated perspective on business processes by treating data elements as
first-class citizens next to process elements [22,29]. Moreover, data-centric modeling
approaches support the specification and execution of semi-structured, knowledge-
intensive business processes [40], which are more difficult to support using classic
process modeling.

These two paradigms are often positioned as alternatives, each having their own
modeling techniques and implementation technologies. Data-centric approaches use
for instance statemachines [21,22,29,46] or business rules [7] asmodeling techniques,
while activity-centric approaches use process flow models such as UML activity dia-
grams [41] or BPMN [30], where each modeling technique is supported by dedicated
engines.

In this paper, we aim to combine the strengths of both approaches. An activity-
centric model shows clearly the behavior of the process, while in a data-centric model
the actual behavior is difficult to predict, either since the global process is distributed
over different data elements or since the behavior is specified in a declarative way,
for instance in the Guard-Stage-Milestone (GSM) approach [7]. Conversely, data-
centric approaches enable more flexible ways of performing business processes than
activity-centric approaches, which are typically rigid [33].

Given these strengths of both approaches, we envision the following high-level
designmethod for designing data-centric BPM systems. Initially, classic process mod-
eling techniques are used to specify themain “default” scenarios of a process, allowing
users to understand and define exactly what the intended behavior is. In a later stage, a
data-centric approach is used to actually realize a data-centric BPM system. The back-
bone of the data-centric BPM system is the behavior specified by the default scenarios.
In addition, extra behavior is specified for anticipated exceptional circumstances, for
instance by specifying business rules that are not in the main scenarios. This allows
actors to perform the process in the prescribed way for default scenarios, but respond
in a flexible way to exceptional circumstances not covered by the default scenarios,
which is one of the strengths of data-centric process management [33].

To support this way of working, a process model specifying the default scenarios
needs to be translated into a data-centric model. Such translations are currently lacking
in the literature, as we elaborate in Sect. 7.

This paper outlines a semi-automated approach for creating a data-centric design
from a business process model that specifies the main scenarios in which business
objects interact. The approach uses synthesis rules that relate process model con-
structs to object life cycle constructs. The resulting object-centric design can be used
as starting point for a data-centric process implementation. In particular, we show
how the constructed object life cycles can be translated to GSM schemas [19]. The
constructed GSM schemas can be refined with additional “non-default” behavior such
as exceptions.

123

Synthesizing data-centric models 347

While the last phase of our proposed approach uses GSM schemas, the first phase
uses UML [41], since UML offers a coherent notation for specifying both activity-
centric and data-centric models. To specify business process models that reference
objects, we use UML activity diagramswith object flows.We use UML state machines
(statecharts) to model communicating object life cycles, which specify an object-
centric design. The key concepts of the GSM model have been incorporated in the
emergingOMG standard on casemanagement [5]. Since ourmapping consumesUML
activity diagrams as input, and produces GSM schemas expressible in CMMN via
UML state machines, it is very relevant to the OMG ecosystem of standard mod-
eling languages. The synthesis rules defined on UML activity diagrams are directly
applicable to any imperative process modeling language that uses a similar seman-
tics for object flows as UML. As we explain in Sect. 7, the object-flow semantics of
BPMN [30] differs from UML [41].

The remainder of this paper is structured as follows. Section 2 summarizes a previ-
ously developed approach for synthesizingoneobject life cycle fromabusiness process
model that specifies different states of the object. This paper extends that approach to
the case of multiple objects of different types that interact with each other. Section 3
presents synthesis rules that define coordination logic between multiple object life
cycles based on object-flow constraints from the activity diagram. Section 4 presents
synthesis rules that define execution logic of object life cycles based on control-flow
constraints from the activity diagram. Section 5 presents a mapping of the resulting
object-centric designs to GSM schemas. Section 6 discusses a prototypical reference
implementation of the rule-based translation from activity diagrams to object-centric
designs. Section 7 presents related work and Sect. 8 ends the paper with conclusions.

This paper revises and expands a workshop paper [10]. New parts of this paper
are a mapping from object-centric designs to GSM schemas and a discussion of a
prototypical reference implementation based on graph-transformations.

2 Preliminaries

We assume readers are familiar with UML activity diagrams [41] and UML state
machines [41]. Figure 1 shows an activity diagram of an ordering process that we
refer to in the sequel. In previous work [9,11], we outlined an approach to synthesize
a single object life cycle, expressed as a hierarchical UML state machine, from a
business process model, expressed in a UML activity diagram. This paper builds upon
that approach. To make this paper self-contained, we briefly summarize our previous
results here and explain the extensions made in this paper.

Input to the synthesis approach is an activity diagramwith object nodes. Each object
node references the same object but in a distinct state, identified by the modeler. An
activity can have object nodes as input or output. An activity can only start if all its
input object nodes are filled, and upon completion it fills all output object nodes [41].
If an activity has multiple input or output object nodes that reference the same object,
the object is in multiple states at the same time; then the object life cycle contains
parallelism. Each parallel state specifies a partial view on the global state of the object
life cycle [11]. Parallelism may lead to interference if concurrent tasks write the same

123

348 R. Eshuis, P. Van Gorp

Fig. 1 Activity diagram of ordering process

123

Synthesizing data-centric models 349

data element. In Sect. 4.6 we discuss how to deal with such interference. A single
object node is exclusive: if multiple activities require an input object from the same
object node, only one activity can read (consume) the object.

The synthesis approach consists of two steps. First, irrelevant nodes are filtered
from the activity diagram. Object nodes are relevant, but activities are not. Control
nodes are only relevant if they influence the object nodes. Second, the filtered activity
diagram is converted into a UML state machine by constructing a state hierarchy
that ensures that the behavior of the state machine induced by the state hierarchy is
equivalent to the behavior of the filtered activity diagram. Each state machine has a
start state (black dot) and one or more final states (bull’s eyes), which have no explicit
counterpart in the activity diagram.

A limitation of that approach [9,11] is that it assumes that all object nodes in an
activity diagram belong to the same object. If an activity references multiple different
objects with different types, for each object a different version of the activity diagram
specific to that object can be created. While this ensures that for each object a state
machine skeleton can be created, the generated state machine skeletons are not yet
executable, lacking coordination and execution logic.

This paper removes that limitation by defining coordination and execution synthesis
rules that materialize state machine skeletons synthesized using the earlier defined
approach [9].

Figure 2 shows for some objects their life cycles that are generated using the
approach proposed in this paper. The earlier defined synthesis approach [9] is used to
construct the skeletons of the life cycles, so the nodes and edges without labels. The
approach defined in this paper in Sects. 3 and 4 adds annotation to the skeletons. Also,
it refines some atomic states into composite states. We revisit the example in Sect. 4.6.

Activity diagrams also support a pin-style modeling of object flows: each activity
can have attached input and output pins that model input and output objects, respec-
tively, of the activity. The basic pin style is equivalent to the object node style [41]:
each object node translates into an output pin for each activity that produces objects
for the object node and into an input pin for each activity that consumes objects from
the object node. However, the general pin-style notation is more expressive, since it
allows the specifications of alternative pin sets, called parameter sets [41]. The results
in this paper carry over to the basic pin-style notation.

3 Synthesis rules for coordination logic

The translation from UML activity diagrams to communicating state machines that
specify object life cycles is based on synthesis rules. Each synthesis rule translates a
basic substructure in an activity diagram to a basic substructure of a state machine.
The state machines constructed by applying the synthesis rules form an object-centric
design, in which the objects collaboratively execute the process.

In this section, we focus on synthesis rules that define coordination logic. Each
synthesis rule for coordination logic is defined on a substructure in an activity diagram
that has a single activity and multiple objects connected to the activity by object flows.
One of the objects, called the coordinator, is responsible for orchestrating the other

123

350 R. Eshuis, P. Van Gorp

Fig. 2 State machines for objects from ordering process

123

Synthesizing data-centric models 351

Table 1 Basic relations between activity A and object :O in activity diagrams

Relation Object flow from A to :O[s1] Object flow from :O[s2] to A Extra constraint

A creates :O x

A finalizes :O x

A accesses :O x x

A read-accesses :O x x s1 = s2
A update-accesses :O x x s1 �= s2

objects, called participants, such that the behavior specified in the substructure is
jointly realized by the objects in the object-centric design. Applying coordination-
logic rules results in abstract object-centric designs that are not executable, since they
do not contain external event triggers or task invocations. Section 4 presents synthesis
rules for execution logic, the application of which results in executable object-centric
designs.

3.1 Basic notions

Let A be an activity (action node) and let o:O[s] be an object node representing
object o of type (class) O where o is in state s. Node :O represents an anonymous
object of type O with an unspecified state. Activity A and object :O can be related by
object flows in five possible ways, as specified in Table 1. The last two relations are
specializations of the third (access) relation, leaving four basic relations. Note that
if there is an object flow between A and :O , then exactly one of these four relations
holds, so the four basic relations are complete.

We define for each basic relation between A and :O a corresponding coordination-
logic synthesis rule, in which the object :O plays the role of participant. Each
coordination-logic synthesis rule also requires that A has exactly one coordinator
object, different from :O , that is responsible for coordinating the behavior of :O in
the object-centric design. Performing A typically causes a state change with the coor-
dinator, so A updates the state of the coordinator. Any object that A updates can play
the role of coordinator. Alternatively, if A does not update any object, any object that
is read by A can become coordinator. Otherwise, there is no coordinator. We consider
this as a design error that can be detected automatically and fixed via additional user
input. If A accesses multiple objects, the user has to decide which object is responsible
for coordinating :P . Alternatively, from a process model with object flows a priority
scheme on object types can be automatically derived, for instance based on the domi-
nance criterion [21]. The object type with the highest priority can be made the default
coordinator of :P .

In the sequel, we present synthesis rules for coordination logic.We assume that each
activity has one coordinator, which is either derived automatically from the activity
diagram or designated by the user. To simplify the presentation, we assume that the
coordinator changes state. We explain the impact of considering a coordinator that
does not change state at the end of this section.

123

352 R. Eshuis, P. Van Gorp

Fig. 3 Synthesis rule for creation

Fig. 4 Synthesis rule for finalization

3.2 Creation

We consider the case that activity A creates an object of type P under coordination
of object :O . Figure 3 specifies the synthesis rule for creation. The activity diagram
specifies that by performing A, the state of :O moves from S1 to S2 and that an
object p:P is created whose first state is ini t . In the corresponding object life cycle,
coordinator :O creates an object p of type P with action create(P) when moving
from S1 to S2. Coordinator :O is also responsible for executing task A and waiting for
its completion, but these details are defined by the synthesis rule for tasks in Sect. 4.

3.3 Finalization

Activity A finalizes object p:P under coordination of object :O by moving p:P into
its local end state, which has no successor state. Finalization does not mean that the
object is destroyed. The finalization is realized in the object life cycles (Fig. 4) by
letting coordinator :O send a special event f inali ze to p:P , provided :P is indeed
in the expected state T , modeled with guard condition p.in(T). The f inali ze event
moves the life cycle of p:P to the local end state. It might be that the life cycle of p:P
has multiple end states in different parallel branches; in that case, the other parallel
branches of the life cycle can still continue after this branch has been finalized.

3.4 Read-access

If activity A reads object p:P under coordination of :O , then :P does not change state.
This means no transition is required in the object life cycle of p:P . However, the state

123

Synthesizing data-centric models 353

Fig. 5 Synthesis rule for read-access

Fig. 6 Synthesis rule for update-access

of P is a precondition for :O to change state, since A can only start if objects :O and
p:P are present. Therefore, in Fig. 5 the coordinator state machine for :O can only
change state if the current state of p:P is T .

3.5 Update-access

If activity A updates object p:P under coordination of :O , then both :O and p:P move
to a new state. The state change of p:P is triggered by :O . But coordinator :O may
only generate an event for p:P if p has already reached the state that is precondition
to A. Figure 6 shows that :O generates an event toT 2 that triggers p:P to move to its
next state, but only if p:P is currently in state T , since otherwise A cannot start.

3.6 Discussion

We next discuss two issues for the translation.

3.6.1 Coordinators with read-access

As explained in Sect. 3.1, the synthesis rules for coordination logic assume the coor-
dinator changes state when activity A is performed. If the coordinator does not change
state, the rules need to be slightly adjusted. Denote the coordinator state with S. All
the state machines for :O in the coordination rules can be adjusted by letting states S1
and S2 become substates of composite state S. For instance, Fig. 7 shows the synthesis

123

354 R. Eshuis, P. Van Gorp

Fig. 7 Synthesis rule for update-access using coordinator with read-access

rule for update-access, modified from Fig. 6, in case the coordinator uses a read-access
for A.

3.6.2 Multiple participants

In the discussion of the synthesis rules, we tacitly assumed that for each activity A
there is only one participant. In practice, however, there can be multiple participants.
For instance, in Fig. 1 activity close order has coordinator o:Order and two partici-
pants s:Shipment and b:Bill. In the case, the effects on the coordinator life cycle that
are obtained by applying the rule to each participant separately, must be combined
in the coordinator life cycle by joining all the guards and actions introduced for each
participant. For instance, in Fig. 2 the transition from dispatched to delivered for coor-
dinator o:Order contains a conjunction of the guard conditions obtained by applying
the finalization rule for both participants b:Bill and s:Shipment. Similarly, the transition
generates two events that are also the result of applying the finalization rule to each
participant.

4 Synthesis rules for execution logic

Synthesis rules for coordination logic only capture the object-flow constraints from
activity diagrams. To capture control-flow constraints, we define synthesis rules for
execution logic. Each execution-logic synthesis rule translates a substructure which
contains a basic control-flowconstruct (task, decision,merge, fork, join) into an object-
centric design. These constructs are similar to the standard workflow patterns used in
any process language [2].

4.1 Task

A task is invoked in an activity node. A typical distinction is between manual, auto-
mated, and semi-automated tasks [1]. For this paper, we only consider automated tasks;
we expect the generated designs can be adapted easily to other task types. Figure 8
shows how a task invocation can be specified in an object-centric design. The coordina-

123

Synthesizing data-centric models 355

Fig. 8 Synthesis rule for tasks

tor :O is responsible for invoking task A; there its precondition state S1 is decomposed
into two states, where busy A denotes that activity A is being executed. The busy state
can be decomposed to model a more complex task life cycle, for instance allowing
suspension of a task [6]. However, we assume tasks are successful, so task abortion is
not considered. Upon completion, the coordinator moves to S2 and informs the other
object p:P that it has to move to new state T 2. In Fig. 8, the underlying coordination-
logic rule is update-access, but the synthesis rule for tasks can be combined with any
coordination-logic rule or be used independently if only a single object is involved.
We discuss in Sect. 4.6 how the synthesis rule is applied to the example in Fig. 1.

4.2 Decision

An object node can have multiple outgoing flows. This represents exclusive (choice)
behavior: exactly one of the outgoing flows is taken if the object node is active. The
actual decision is taken in the control flow, represented by a decision node.

Figure 9 shows the synthesis rule for decision nodes. In the activity diagram, state
S1 is precondition to both A and B; upon completion of either A or B object :O moves
to S2 or S3. The object life cycle mimics this behavior. Upon entering state S1 of :O ,
either A or B is invoked, where A can only be invoked if p:P is in state T 2. If A is
invoked, then also p:P must change state (update-access rule). As in the case of the
previous rule, the precondition state S1 is hierarchical. In this case, S1 contains the
decision logic to decide between A or B; note that this decision logic comes from the
control flow in the activity diagram.

4.3 Merge

Similar to the previous case, an object node with multiple incoming object flows
represents exclusive behavior: if one of the object flows is activated, the object node is
entered. Again, the actual behavior is governed by control flow. The resulting synthesis
rule for merge nodes shown in Fig. 10 is symmetric to the rule for decision nodes.

123

356 R. Eshuis, P. Van Gorp

Fig. 9 Synthesis rule for decision nodes

Fig. 10 Synthesis rule for merge nodes

Note that in the object life cycle for o:O states S1 and S2 are exclusive, so they cannot
be active in parallel at the same time.

4.4 Fork

So far, we have seen only sequential statemachines that do not contain any parallelism.
However, an object can be in multiple states at the same time [16,41], each state being
a partial view of the global state. In activity diagrams, parallelism inside an object
life cycle for object type O is introduced by an activity node that outputs multiple
object nodes belonging to O . Since activity nodes activate all outgoing object flows,
all output object nodes are filled. Each output object node for O then represents a
parallel branch in the life cycle for O . For examples, we refer to earlier work [9].

In the control flow of activity diagrams, parallelism is introduced by a fork node.
Figure 11 shows how the resulting synthesis rule for fork nodes is specified. The

123

Synthesizing data-centric models 357

Fig. 11 Synthesis rule for fork nodes

state hierarchy is constructed using the approach we developed previously [9]. The
two concurrent states, separated with a dashed line, model the two parallel branches
started upon completion of A. The state hierarchy for S2 and S3 derives from the
synthesis rule for tasks. The state hierarchy for S1, also due to the task synthesis rule,
is not shown to simplify the exposition.

4.5 Join

The rule for join nodes is symmetric to the one for fork nodes (Fig. 12). Complicating
factor is to decide where in the life cycle task C should be invoked. Activity C syn-
chronizes the parallel branches in the activity diagram. Similarly, the parallel branches
in the object life cycle for :O are only left if activity C completes. This implies that
in the life cycle for :O task C needs to be invoked in one of the parallel branches
(since activity C is invoked only once in the activity diagram). But if C is invoked in a
branch, the other parallel branch must be in the state that is precondition to C . Which
parallel branch is chosen to invoke C is arbitrary. In the figure, the task rule for C is
applied to S2. This means that C can only be invoked if the other parallel branch is in
state S4.

4.6 Discussion

We highlight the most interesting issues of the translation defined in this section and
the previous one.

4.6.1 Interference

The synthesis rules for fork and join nodes introduce concurrency inside a business
object, which may lead to interference if two concurrent tasks write the same data

123

358 R. Eshuis, P. Van Gorp

Fig. 12 Synthesis rule for join nodes

element. We do not handle interference in the approach, but interference can be pre-
vented in different ways. First, orthogonal states can be required to access distinct data
elements. However, this may be too restrictive. Alternatively, if orthogonal states do
access shared data elements, nested transactions [15] can be used by creating for each
state a transaction and nesting a transaction t inside another transaction t ′ if the state
of t is descendant of the state of t ′ in the state machine. Nested transactions allow for
relaxed isolation between concurrent tasks in workflow management [45].

4.6.2 Order example

To obtain the state machines in Fig. 2 from the activity diagram in Fig. 1 all four
rules for coordination logic are required. Next, the task synthesis rule is used. The
decision, merge, fork, and join control nodes in Fig. 1 all reference multiple objects
and therefore do not fit in any individual object life cycle. Consequently, the synthesis
rules for these control nodes are not applicable for this example.

To derive the state machines in Fig. 2, first the activity diagram is copied and
sliced per object type. Next, for each object type a flat state machine skeleton is
synthesized using the approach defined in earlier work and summarized in Sect. 2.
Then the coordination-logic rules are applied iteratively, which result in annotation on
transitions of the statemachines. Next, the synthesis rule for tasks is applied iteratively,
which results in decomposition of the states that have been created for the object nodes
in Fig. 1.

The decomposition of state dispatched in Fig. 2 is more complex than the other
states because of activity send bill, where the coordinator o:Order uses a read-access
rather than update-access. Since send bill creates object bill, the synthesis rule for
creation needs to applied. Since the coordinator uses a read-access, a slightly modified
version of the rule in Fig. 3 is applied: S1 and S2 of coordinator :O are substates of the
composite state S of :O , similar to the rule defined in Fig. 7. State init inside dispatched

123

Synthesizing data-centric models 359

in Fig. 2 resembles state S1 of object :O while send bill completed resembles S2. Next,
state send bill completed is decomposed in order to invoke task receive arrival info,
which needs to be executed after send bill.

4.6.3 Multiple start states

If an object life cycle has multiple start states that are created by parallel activities, the
synthesis approach will create multiple create actions. This results in multiple objects
rather than a single object with parallelism.

We consider multiple start states as a design error: two parallel activities that create
the same object :O suggest on the one hand that :O is created synchronously while on
the other hand the two activities execute independently from one another. This error
can be repaired by merging the activities that create the object. Another option is to
extend the object life cycle with a new, unique start state fromwhich the old start states
can be reached.

4.6.4 Multiple variables

The translation does not consider two different objects that reference the same object
type but have different states. One option is to view such objects as two orthogonal
aspects of the same object life cycle. Another option is to view the objects as indepen-
dent subclasses of the object type, each subclass having its own life cycle. We defer
further analysis of such models to future work.

5 From state machines to GSM schemas

We define a mapping from state machines constructed by the rules in Sects. 3 and 4
to GSM schemas, a recent proposal for declarative, artifact-centric business process
management [7,19]. We introduce first the basics of GSM schemas, next the mapping,
and finally the most salient features of the mapping.

5.1 GSM schemas

The core ingredients of a GSM schema are stages and milestones [19]. A milestone
specifies an operational business objective. A stage specifies a business activity per-
formed to achieve a milestone. If a stage has multiple milestones, at most one of them
can be achieved at a time [19]. The GSM version we consider in this paper has been
published in citations [12,39] and allowsmilestones that are disconnected from stages.
A GSM schema contains the following kind of rules:

– for each stage guard rules that specify when the stage is opened and termination
rules that specify when the stage is closed; and

– for each milestone achieving rules that specify when the milestone gets achieved
and invalidation rules that specify when the milestone gets invalidated.

Each rule has the syntax ON e IF condition where e is an event and condition is
a Boolean expression, possibly true. Both the ON-part and the IF-part are optional.

123

360 R. Eshuis, P. Van Gorp

Each change of a stage or milestone generates an event that can be referenced in
rules. Event prefixes + and −indicate the kind of change: for milestone m event +m
occurs if m gets achieved and −m occurs if m gets invalidated, and for stage S event
+S occurs if S gets opened while −S occurs if S gets closed.

5.2 Mapping

To simplify the definition, we first identify two types of states for state machines
constructed using the mapping defined in Sects. 3 and 4.

– In a busy state the system waits for an activity to complete. Each busy state does
not contain any other states and has a label starting with “busy”.

– An object state corresponds directly to an object node in the activity diagram. An
object state either contains no other states or is composite, without having any
parallel branches.

For instance, in the state machine of Bill (Fig. 2), state busy receiving payment is
a busy state, while composite state unpaid and state paid are object states. The other
states are neither busy nor object states.

By definition, a busy state is not an object state and vice versa. Based on this
classification, we map state machines to GSM schemas. Object states are similar to
milestones while busy states are similar to stages. We exploit this correspondence in
the mapping defined below. However, not all properties of a generated state machine
can be captured in aGSMschema. By construction, a busy state is inside an object state
(cf. Fig. 8). InGSM schemas, however, a stage cannot be nested inside amilestone, and
therefore the state machine hierarchy cannot be encoded directly in a GSM schema.

Wenowdefine amapping from statemachines as constructed using the rules defined
in Sects. 3 and 4 to GSM schemas. We define the set of stages and milestones as well
as the rules that specify when the stages and milestones change status.

5.2.1 Stages

Each busy state in which task T is performed, maps into a stage ST in which T is
launched. By construction (cf. Fig. 8), the parent of the busy state is an object state that
maps into a milestone m, defined below. The guard of ST becomes “ON +m”. If the
busy state follows a decision (cf. Fig. 9), the guard of ST is appended with “IF cond”,
where cond is the condition of the decision branch in the state machine that leads to
the busy state for T . The termination rule of ST becomes “ON cpl(T)”.

For example, consider busy state busy completing order in Fig. 2,which is contained
in object state open. We create a stage complete order, whose guard rule isON +open,
for milestone open, and whose terminating rule is ON cpl(complete order).

5.2.2 Milestones

We define two sets of milestones with achieving and validating rules. For the first set,
each state s that has an incoming transition t triggered by a completion event cpl(T),

123

Synthesizing data-centric models 361

where T is a task, maps to a milestone ms . State s is either an object state (cf. Fig. 8)
or a state containing parallel branches (cf. Fig. 11). An achieving rule “ON −ST ” is
defined for the milestone ms , so when the stage performing T is closed, the milestone
is achieved.

For example, for object state finalized in Fig. 2 a milestone finalized is created,
whose achieving rule is ON −complete order, since the incoming transition of state
finalized has trigger cpl(complete order).

If s has an outgoing transitionwith trigger event cpl(T) for some task T , then the tar-
get state of the transitionmaps into amilestonem, as defined in the previous paragraph.
The invalidating rule ofms becomes “ON+m”. For example, the invalidating rule for
milestone open becomes ON +finalized. Otherwise, if s has no outgoing transition
with trigger event cpl(T) but is child of an object state forwhichmilestonem is created,
milestone ms becomes invalid if parent milestone m becomes invalid, so the invali-
dating rule of ms becomes “ON −m”. For instance, for state send bill completed in
Fig. 2 milestone send bill completed is created, whose parent milestone is dispatched.
Therefore the invalidating rule for send bill completed becomesON −dispatched. As
another example, for the milestonesmS2 andmS4 created for Fig. 12, the invalidating
rule becomes in both casesON−mc, wheremc is the milestone created for composite
state c in the figure. In all other cases, no invalidating rule is specified for ms .

For the second set, each object state s that has no incoming transition triggered
by a completion event maps into a milestone ms . Figure 11 contains two such object
states: S2 and S3, which are both the initial states of a composite state that is entered
by a transition triggered by a completion event. Next, S2 and S3 are in parallel. By
definition of the first set of milestones, such a composite state c maps to milestone
mc. In that case, the achieving rule ofms becomes “ON+mc”, so ifmc gets achieved,
also ms gets achieved.

Alternatively, the object state s can have an incoming transition triggered by a
generated (non-completion) event e (cf. Fig. 6). In that case, the achieving rule for
milestone ms becomes “ON e”. For example, for the Shipment object in Fig. 2 the
achieving rule for milestone being shipped becomes ON leave.

Otherwise, the object state is the start state of the life cycle and the achieving rule
is trivially achieved by rule “IF true”.

The definition of the invalidating rule for milestone ms is similar to the one for
milestones from the first set.

5.2.3 Example

Figures 13 and 14 show the stages and milestones and their rules for the Order arti-
fact of Fig. 2 that are obtained by applying the translation defined above. Milestone
send bill completed has a different type of invalidating rule than the other milestones:
the corresponding state send bill completed does not have an outgoing transition trig-
gered by a completion event, but is contained inside an object state for whichmilestone
dispatched is created. All milestones are from the first set, except openwhich belongs
to the second set.

123

362 R. Eshuis, P. Van Gorp

Stages Guard rules Terminating rules
complete order ON +open ON cpl(complete order)
send shipment ON +finalized ON cpl(send shipment)
send bill ON +dispatched ON cpl(send bill)
receive arrival info ON +send bill completed ON cpl(receive arrival info)
close order ON +delivered ON cpl(close order)

Fig. 13 Stages with their rules for Order artifact

Milestones Achieving rules Invalidating rules
open IF true ON +finalized
finalized ON -complete order ON +dispatched
dispatched ON -send shipment ON +delivered
send bill completed ON -send bill ON -dispatched
delivered ON -receive arrival info ON +closed
closed ON -close order

Fig. 14 Milestones with rules for Order artifact

5.3 Discussion

We next discuss the most salient features of the translation.

5.3.1 Refining

The constructed GSM schema is a skeleton that is to be further refined by adding data
attributes as well as additional stages, milestones and rules, for instance to incorporate
human-centric behavior. To illustrate, suppose the companyof the order processwishes
to allow that a customer cancels a finalized order that has not yet been paid by rejecting
a sent bill. This means that an external cancellation event can occur which needs to be
responded to. Modeling the response by extending the global process model of Fig. 1
results in a complex diagram with a lot of additional edges. In the GSM schema, only
a few local changes are required to model the response: extending the life cycle of the
Bill and Order artifacts with additional milestones that model cancellation plus new
rules that specify the intended response if the cancellation event occurs.

5.3.2 Creation and communication

The GSM approach does not support explicit create and communication actions.
Rather, GSM tasks are responsible for creating new artifacts and generating events that
are sent to other artifacts [20]. The tasks in the object-centric design of Fig. 2 do not
have this functionality. Consequently, the GSM schema for Order of which the core
elements are specified in Figs. 13 and 14 is less detailed than the object-centric model
forOrder in Fig. 2, at the expense of more complex GSM task implementations to real-
ize the creation of artifacts and generation of events. For instance, a Shipment object
is created by the Order object in the design of Fig. 2, but in a GSM implementation
task Complete order should be responsible for creating the Shipment artifact instance
and returning an ID for this instance. Likewise, the generation of events leave, arrive
and finalize by Order for Shipment in Fig. 2 must be implemented by GSM tasks.

123

Synthesizing data-centric models 363

5.3.3 Direct vs. indirect mapping

Anatural question iswhether a directmapping fromactivity diagrams toGSMschemas
would not be preferable. An obvious mapping would be to translate every activity with
n outgoing object nodes into a stagewith nmilestones attached. However, themeaning
of an activity in UML [41] is that it simultaneously produces n different objects, while
milestones attached to a stage are exclusive [19], i.e., at most one milestone at a
time can be true. Another mismatch is that an activity can produce different types of
objects (artifacts), while a stage that encapsulates a task is always local to one artifact.
These two mismatches between activity diagrams and GSM schemas considerably
complicate defining a direct mapping from activity diagrams to GSM schemas.

Using an intermediate state machine model helps to resolve the two mismatches
as follows. The synthesis rules for fork and join nodes in Sects. 4.4 and 4.5 introduce
composite states containing parallel branches; these states translate into milestones.
For instance, the composite state in Fig. 11 translates into amilestonem, since it has an
incoming transition triggered by a completion event. Milestonem belongs to the stage
in which task A is launched. The object states S2 and S3 translate into milestones from
the second set, which get achieved if the milestonem gets achieved; they do not belong
to any stage. This resolves the first mismatch. The second mismatch is resolved by the
synthesis rule for tasks, which allocates an activity to the coordinator of the activity.

6 Implementation

To evaluate the feasibility of the approach, we implemented the synthesis rules in a
prototype. For the implementation, we build upon previous work on the transformation
of Petri nets to UML state machines [43]. In turn, that line of work builds upon
GrGen.NET [14], a generic graph transformation infrastructure not specific to BPM.
In this section, we describe the overall architecture of our implementation. Appendix
provides a gentle introduction to the source code, to stimulate the reader to leverage
our open source materials.

Figure 15 provides a dynamic view on the architecture of our implementation.
Each thick arrow represents a step in the transformation process. At the most abstract
level, the figure shows that the humanmodeler only interacts with a professional UML
editor; all processing steps are automated.

Step 1© represents the step of exporting the inputUMLactivity diagram to a standard
format. Our current implementation supports XMI based on the UML metamodel in
version 2.2 from theObjectManagement Group. All examplemodels have been edited
using MagicDraw 16.6 but other tools conforming to the standard can be used too.
Steps 2© to 9© are fully automated. Step 2© consists of a simple syntactic translation.
The output of this step is an input script for GrGen.NET. In Step 3©, this script is
executed by the GrGen.NET shell interpreter. This results in a graph representation
of the UML activity diagram. The graph is typed according to the various elements
from the UML metamodel. The type graph is used to check among others whether
cardinality constraints are satisfied in the input model.

123

364 R. Eshuis, P. Van Gorp

F
ig
.1

5
A
rc
hi
te
ct
ur
e
of

th
e
Im

pl
em

en
ta
tio

n

123

Synthesizing data-centric models 365

Step 4© is the start of the conceptual translation work. In this step, the graph rep-
resenting the activity diagram is cloned once for each object type. Also, traceability
links are generated between source and target elements. In Fig. 15, traceability links
are sketched as dotted edges. For the figure, we assume three object types, resulting
in three copied UML instance graphs. The GrGen.NET platform provides checks for
ensuring that metamodel constraints are preserved throughout the cloning process.
Finally, note that right before the cloning, it should be decided which object types
act as the Coordinators of the various activities. Our implementation can mark valid
Coordinators automatically or it can let an expert select among valid candidates. Fig-
ure 15 does not show that since our prototype has no end-user oriented UI widgets
for this optional interaction step. For industrial settings, one may build a user-friendly
UML tool plug-in for the Coordinator selection.

In Step 5©, the cloned activity diagrams are sliced per object type: first of all, only
object nodes of one specific type are preserved per slice. Additionally, filtering rules
remove gateways that are irrelevant for the sliced object life cycle. The filtering rules
are reused from [9] (since they were also needed for process flows involving just one
object type) while the cloning and slicing rules are new for this paper.

The synthesis of filtered activity diagrams to state machines, defined in earlier
work [9], is implemented by first mapping activity diagrams to Petri nets (Step 6©)
and next applying in Step 7© Petri-net reduction rules that construct a state machine
with state hierarchy [8,43] to the generated Petri nets. This results in a valid state
machine for a Petri net if the net has been reduced to exactly one place. As elaborated
in previous work [42], the tool chain generates end-to-end traceability links (from
activity diagram elements to state machine elements), which is non-trivial given the
destructive effect of the Petri-net reduction rules that construct state hierarchy [8].
The reduction rules can deal also with semi-structured processes involving cross-
synchronizations between concurrent regions.

After the reduction rules [8,43] have completed, Step 7© performs additional sub-
steps specific to this paper. First, it annotates the statemachineswith trigger, guard and
effect (action) labels. This is realized by rules that implement the new coordination-
logic rules from Sect. 3. Finally, rules are executed for realizing the execution-logic
rules from Sect. 4, e.g. inserting nested flows.

In Step 8©, the transformation chain dumps the generated state machines to a text
file. More specifically, the state machine instance graphs are mapped to text fragments
based on theUMLandXMI standards. In Step 9©, the human expert opens thatXMIfile
in a professional UML editor. Tools such as MagicDraw implement automatic layout
algorithms that perform well for life cycle models, since these tend to be simple in
structure.

A strength of our architecture is its modularity: we incrementally build upon prior
work and we have avoided changes to the reused parts. As indicated above, the imple-
mentation described in citation [43] has been reused in Step 6© and in the first phase
of Step 7©. The second phase of that latter step involves new rules (regarding Sects. 3
and 4) but these additions are incremental. As a second example of modularity, the
filtering rules defined in citation [9] are applied without changes in the second phase of
Step 5©. The newcloning rules (cf. Step 4©) andfiltering rules (cf. phase twoof Step 5©)
have been added incrementally to the transformation chain of prior work [9,43].

123

366 R. Eshuis, P. Van Gorp

In future work, we plan to implement the translation defined in Sect. 5. The target
language will be CMMN [5]. Since the GSM constructs are directly supported in
CMMN, we do not expect any implementation issues.

7 Related work

As stated in the introduction, in the last years a lot of research has been per-
formed in the area of data-centric process modeling approaches such as business
artifacts [18,21,29,46], case management [3,40], data-driven process models that are
executable [22,28,33] and process models with data flow [25,27,38,44]. Sanz [37]
surveys previous work on integrating the data and process perspective in the field of
entity-relation modeling in connection to data-centric process modeling. This paper
uses UML activity diagrams with object flows as data-centric process modeling nota-
tion but we also show how the resulting object-centric designs can be mapped to
declarative, artifact-centric schemas [19].

We first discuss in detail existing transformation approaches between activity-
centric and data-centric processmodels. Next, we discussmodeling approaches related
to the ones used in this paper.

7.1 Transformation approaches

Related to this paper are approaches that distinguish between process and data models
and bridge the gap by deriving a process model that is coherent with a predefined data
model [17,35] or object behavior model [13,23,32]. This paper takes the opposite
route: it considers a process model with data (object) flow and derives object behavior
models that realize the process model.

More related are a few works [21,24,26,44] that define a translation between
activity-centric and object-centric process models, which consist of communicating
object life cycles. As the process models in this paper, activity-centric process models
manipulate stateful business objects, where each step in a process model can lead
to a change in one or more business objects. The main differences are therefore in
the considered data-centric process models. Both Kumaran et al. [21,24] and Meyer
and Weske [26] use synchronized object life cycles, which are flat, sequential state
machines that synchronize on shared activities. Event communication between objects
and task invocations are not specified by these state machines. In contrast, the object
life cycles (UML state machines) generated by our approach are hierarchical, allow
parallelism, deal with task invocations, and use asynchronous event communication,
in line with UML [41].

Because the modeling notation for object life cycles is more complex, also the
mapping to object life cycles defined in this paper is more involved than the other
mappings [21,24,26], which are specified by relatively simple algorithms. We use
synthesis rules in Sects. 3 and 4 to avoid defining a single, complex algorithm.Kumaran
et al. [21,24] focus on the problem how to identify the objects in the process model
for which an object life cycle should be constructed, while we construct an object
life cycle for every stateful object. Like us, Kumaran et al. derive object life cycles

123

Synthesizing data-centric models 367

from the syntax of process models, whereasMeyer andWeske [26] construct an object
life cycle by processing each trace of a process model. Disadvantage of a trace-based
mapping is that the same nodes (activity or object nodes) can occur in multiple traces,
resulting in object life cycles with duplicate states.

Next, Meyer and Weske [26] also consider an artifact-centric process model con-
sisting of business rules. Each rule consists of a pre and postcondition on objects plus
a set of tasks that manipulate objects to achieve the postcondition. Such a rule roughly
corresponds to a GSM stage whose guard is the precondition and a GSM milestone
that is achieved when the postcondition is fulfilled.

Wahler and Küster [44], based on earlier work [36], use as target implementation
model a static set of predefined business objects that need to be “wired” together,
where the activity-centric process model is used to derive the wiring relation. They
study how to design the wiring in such a way, by changing the process model, that the
resulting wired object design has a low coupling. In contrast, this paper studies the
problem of deriving an object-centric design from a process model with object flows.
The problem is then defining the set of business objects and their behavior, which are
both given in the approach of Wahler and Küster.

To the best of our knowledge, there is only one other paper that discusses a trans-
lation into GSM schemas. Popova and Dumas [31] define a mapping from classical
Petri nets to GSM schemas. They focus on tasks, modeled by Petri net transitions, and
do not consider object flows. Therefore their mapping is not applicable to the UML
activity diagrams we consider in this paper. Their translation is complicated by the
presence of invisible transitions in Petri nets, which do not occur in activity diagrams
and state machines. Each visible Petri net transition maps to a stage with an accom-
panying milestone that is achieved when the stage completes. Places are not used in
the translation. To mimic the token-flow of Petri nets faithfully in GSM schemas, they
need to use complex rules. For example, if a Petri net transition consumes a token
that can also be consumed by another transition, then in the guard of the created stage
time stamps of milestone changes are compared. Our guard rules for stages are much
more simple due to the more structured syntax of UML state machines: each transition
connects two states that cannot be simultaneously active. Consequently, achieving the
milestone created for the target state of a transition invalidates themilestone created for
the source state, as illustrated in Fig. 14 in Sect. 5. Drawback of UML state machines
is that unlike Petri nets, they cannot directly express cross-synchronization between
parallel branches of an object life cycle. In previous work [11], we have defined a
specific translation rule based on event synchronization for such cases.

Bhattacharya et al. [4] propose a data-centric design methodology in which GSM-
like schemas are constructed step by step. The focus is on defining different life
cycles for different artifacts from scratch, which may complicate for stakeholders the
understanding of the overall default behavior. The approach we propose complements
theirs, since it allows to develop a global process model that specifies the default
behavior of the artifacts (objects). The mapping defined in Sect. 5 can be used to
generate starting definitions for the artifacts, which can be further refined by applying
the methodology of Bhattacharya et al. [4].

123

368 R. Eshuis, P. Van Gorp

7.2 Modeling techniques

The first part of the approach is defined in the context of UML activity diagrams [41],
which model business processes in an imperative, activity-centric way. The synthesis
rules of Sects. 3 and 4 are directly applicable to any imperative process modeling
language that uses a similar semantics for object flows as UML activity diagrams; for
instance, an activity can only start if its input objects are present, so read-access is
mandatory [34].

BPMN [30] supports a similar object-flow notation as UML activity diagrams, but
the BPMN semantics is different for some models. UML uses a token-flow semantics
for objects. For instance, if an object node is read via an outgoing object flow, the
object (token) moves to the target of the object flow and is no longer available for
other outgoing object flows of the object node, as explained in Sect. 2. Whereas
BPMN uses a copy semantics for objects: if available, the input object of a BPMN
object flow, called data association, is copied to the output [30]. This implies that
if a BPMN object node, called data object, is read via an outgoing data association,
the read object remains available for the other outgoing data associations. So while
a UML object node with multiple outgoing object flows specifies exclusive behavior,
a BPMN data object with multiple outgoing data associations does not. However, if
in a BPMN model every data object has at most one incoming and one outgoing data
association, its behavior is similar to an activity diagram. The rules defined in this
paper can be applied to such BPMN models with little modification, only replacing
the UML activity diagram concepts by their BPMN counterparts.

As alternative for GSM schemas, case management [3,40] or object-aware process
management [22] could be used as target framework. A discussion of the similari-
ties and differences between these approaches is outside the scope of this paper, but
Reichert and Weber present an overview [34]. Note that all these data-centric frame-
works allow formuchmore fine-grained behavior than can be expressed inUML activ-
ity diagrams [41] or related imperative process modeling notations like BPMN [30].
For instance, enabling of an activity can depend on specific attribute values of multi-
ple, related object instances. Such fine-grained behavior can be added by refining the
initial data-centric process design obtained by applying the synthesis approach.

Most data-centric process management approaches [3,19,22] also allow to design
process models using an activity-centric style. For instance, it is possible in GSM
schemas to use a flow-style modeling that resembles imperative, activity-centric mod-
eling [19]. The default behavior of a business process can therefore also be modeled
directly using a data-centric process modeling approach instead of UML activity dia-
grams.However, these data-centric approacheswere never intended to develop impera-
tive, activity-centricmodels: their strength is the flexible specification and execution of
data-centric processes. While the strength of imperative process modeling techniques
like UML activity diagrams is that they clearly and concisely specify default behavior
of a business process. For this reason, we propose to model the default behavior of
processes in an imperative, activity-centric way and have defined an approach to trans-
form them in data-centric process models. The resulting data-centric process designs
can be further refined and extended to deal with anticipated exceptional circumstances,
which is the strength of data-centric process management approaches [3,19,22].

123

Synthesizing data-centric models 369

Finally, Meyer et al. [27] take a different approach to solve the tension between
activity-centric and data-centric process models. Based on a subset of requirements
identified byKünzle andReichert [22], they address shortcomings ofBPMN in the area
of data-centric process management. In particular, they introduce BPMN annotations
to specify data-centric behavior and define SQL queries that realize these annotations.
While their approach is supported by state-of-the-art process- and data-management
technology, it does not support the full range of options supported by data-centric
approaches [3,19,22].

8 Conclusion

We have presented a semi-automated approach that synthesizes an object-centric
system design from a business process model that references multiple objects. The
approach distinguishes between coordination-logic synthesis rules that realize object-
flow constraints and execution-logic rules for control-flow constraints. The rules heav-
ily use the state hierarchy for the object life cycles to establish a clear link with the
process model constructs. We have implemented and tested the rules in a prototype
based on graph-transformation technology [14].

The resulting object-centric design can be used to perform the process in a flexible
way [32]. We showed this by mapping object life cycles to Guard-Stage-Milestone
schemas, which have inspired the emerging OMG standard on case management
(CMMN) [5]. We expect the proposed translation carries over directly to CMMN.
Future work includes connecting the prototype to CMMN tools.

The approach is defined in the context of UML [41], but we plan to define a similar
approach for BPMN [30]. As explained in Sect. 7, BPMN uses a similar object-flow
notation as UML activity diagrams but with a different semantics in certain cases.

The approach can also be extended to deal with more advanced UML activity
diagram constructs, for instance activities that can be instantiated multiple times in
parallel or iteratively to process a collection of objects. Object-aware frameworks like
PHILharmonicFlows [22] support such functionality, but also allow much more fine-
grained synchronization among multiple objects and activities. In line with design
method proposed in Sect. 1, such fine-grained synchronization can then be added in a
refinement step.

In this paper, we envision that the data-centric process design generated using the
approach can be further refined by specifying responses to exceptional circumstances.
This does imply that these circumstances need to be anticipated [34]. For imperative
processes, adaptive process management technology has been proposed to deal with
unanticipated events at run-time [34]. Though adaptive processmanagement still needs
to be developed for data-centric processes [22,34], we do expect that it can deal in the
future with unanticipated events for data-centric processes.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

123

370 R. Eshuis, P. Van Gorp

Appendix: Source code and online demonstrator

We provide open access to the source code of the prototype via GitHub.1 That online
repository provides access to sources for steps 2© to 8© from Fig. 15. In particu-
lar, folder ad2grgen contains a Java based tool for step 2©. Folder grgen2sc pro-
vides rules and transformation scripts for the GrGen.NET platform [14]. Source file
UML23AD.grg contains the heart of the implementation. In the following, wewalk the
reader through the implementation of one specific rule that is defined in that file. That
should provide sufficient insight for exploring the other rules online. Since installing
the GrGen.NET platform may be a burden to many readers, we also provide an online
demonstrator in the form of a remotely accessible virtual machine.2

1 rule Add_GuardsTriggersAndEffectsForCoordinator {
2 c:UmlClass <-:smType - cbnS1:CentralBufferNode -:ObjectFlow -> a:ActivityNode -:ObjectFlow

-> cbnS2:CentralBufferNode -:smType -> c;

3 a -:Coordinator -> c;
4 negative { a -:VisitedEdge -> c; }
5 cbnS1 -:AN2SC -> s1:SC_State;
6 cbnS2 -:AN2SC -> s2:SC_State;
7 s1 -trans:SC_Transition -> s2;
8 iterated {
9 alternative {

10 UFR { // Generic for Update/Finalize/Read
11 cbnT1:CentralBufferNode -:ObjectFlow -> a;
12 scbnT1:State <-:inState - cbnT1 -:smType -> c2:UmlClass;
13 cbnT1 -:AN2SC -> t1:SC_State;
14 negative { cbnT1 -:VisitedEdge -> a; }
15 alternative {
16 Update { // Update Rule
17 a -:ObjectFlow -> cbnT2:CentralBufferNode -:smType -> c2;
18 cbnT2 -:inState -> scbnT2:State;
19 cbnT2 -:AN2SC -> t2:SC_State;
20 t1 -trans2:SC_Transition -> t2;
21 modify {
22 eval {
23 trans.effect= cbnT2.name+’’.to’’+scbnT2.name+’’ ’’+trans.effect;
24 trans2.trigger= ’’to’’+scbnT2.name+’’ ’’+trans.trigger;
25 }
26 }
27 }
28 Finalize { /* Finalize Rule omitted from paper */ }
29 Read { /* Read Rule: no extra modify */ a -:ObjectFlow -> cbnT1; }
30 }
31 modify {
32 cbnT1 -:VisitedEdge -> a;
33 eval {
34 trans.guard=’’[’’+cbnT1.name+’’.in(’’+scbnT1.name+’’)] ’’+trans.guard;
35 }
36 }
37 }
38 Create { // Create Rule
39 a -:ObjectFlow -> cbnInit:CentralBufferNode;
40 cbnInit -:smType -> typeOf_cbnInit:UmlClass;
41 negative {
42 cbnOther:CentralBufferNode -:ObjectFlow -> a;
43 cbnOther -:smType -> typeOf_cbnInit;
44 }
45 modify {
46 eval {
47 trans.effect=cbnInit.name+’’:= create(’’+cbnInit._type+’’)’’;
48 }
49 }
50 }
51 }
52 }
53 modify {
54 a -:VisitedEdge -> c;
55 }
56 }

The listing defines a graph transformation rule named “Add_GuardsTriggersAnd-
EffectsForCoordinator”. The ruleshould be executed as long as possible during the

1 See https://github.com/pvgorp/AD2SC.
2 See http://share20.eu/?page=ConfigureNewSession&vdi=Win7_AD2SC_i.vdi.

123

https://github.com/pvgorp/AD2SC
http://share20.eu/?page=ConfigureNewSession&vdi=Win7_AD2SC_i.vdi

Synthesizing data-centric models 371

second phase of Step 7© in the transformation chain (cf. Fig. 15). The termination of
the rule is handled by requiring in its matching part the absense of an edge (cf. line 4)
of type VisitedEdge while generating exactly such a link in the side-effects part of
the rule (cf. line 54). The example rule realizes the full behavior of the Coordinator
synthesis rules from Sect. 3. Below, we further clarify the transformation language
syntax by example. A comprehensive manual of the GrGen.NET syntax and execution
environment is available online.3

Line 2 declares via “c:UmlClass” a node variable c of type UmlClass. Line 3
specifies that this node should be the Coordinator for activity a, by requiring that
there is a special edge from a to c (the expression “− : Coordinator− >” defines an
anonymous variable for a directed edge of typeCoordinator). The creation of that edge
is handled by another rule, which is executed during Step 4© in in the transformation
chain (cf. Fig. 15). Line 3 only checks for the existence of the edge. Line 2 also states
that c is the type of two object nodes: cbnS1 (which has an outgoing object flow to
activity a) and cbnS2 (which has an incoming object flow starting from a). Together,
lines 2 and 3 specify textually a rule that formally represents the shared parts of Figs. 3,
4, 5 and 6.

Lines 5 to 7 further specify the matching part of the rule. The expressions “− :
AN2SC− >” require the presence of traceability links from the two object nodes in
the activity diagram to their corresponding state machine elements (two nodes of type
SC_State). At line 7, the name “trans” is bound to the edge variable that represents
the transition between these states.

A detailed explanation of the remainder of the code is omitted for the sake of
brevity. Do note that via constructs such as iterated, the rule is applied maximally to
the host graph, ensuring that it also works in case multiple update rules apply to the
same UML activity. Also note that via the alternative construct, the variation between
the different Coordination synthesis rules (cf. Figs. 3, 4, 5 and 6) is handled without
duplicating code. Finally, note that all expressions within amodify clause realize side-
effects. Within the example code, most side-effects relate to updating the labels within
the state machine graph. For example, the expression on line 47 updates the effect
attribute of the trans variable that was matched via the rule pattern on line 7.

References

1. van der Aalst WMP, van Hee KM (2002) Workflow management: models, methods, and systems. MIT
Press, USA

2. van der AalstWMP, ter Hofstede AHM,Kiepuszewski B, Barros AP (2003)Workflow patterns. Distrib
Parallel Databases 14(1):5–51

3. van der Aalst WMP, Weske M, Grünbauer D (2005) Case handling: a new paradigm for business
process support. Data Knowl Eng 53(2):129–162

4. Bhattacharya K, Hull R, Su J (2009) A data-centric design methodology for business processes. In:
Handbook ofResearch onBusiness ProcessManagement, Information Science Publishing, pp 503–531

5. Bizagi et al. (2013) Case Management Model and Notation (CMMN). Object Management Group,
OMG Document Number dtc/2013-01-01

3 http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.

123

http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual

372 R. Eshuis, P. Van Gorp

6. CoalitionWM (1997)Workflowmanagement coalition workflow client application (interface 2) appli-
cation programming interface (WAPI) specification

7. Damaggio E, Hull R, Vaculín R (2013) On the equivalence of incremental and fixpoint semantics for
business artifacts with guard-stage-milestone lifecycles. Inf Syst 38(4):561–584

8. Eshuis R (2009) Translating safe petri nets to statecharts in a structure-preserving way. In: Cavalcanti
A, Dams D (eds) FM. Lecture Notes in Computer Science, vol 5850. Springer, pp 239–255

9. Eshuis R, Van Gorp P (2012) Synthesizing object life cycles from business process models. In: Atzeni
P, Cheung DW, Ram S (eds) Proceedings of ER 2012. Lecture Notes in Computer Science, vol 7532.
Springer, pp 307–320

10. Eshuis R, Van Gorp P (2014a) Synthesizing object-centric models from business process models. In:
Lohmann N, Song M, Wohed P (eds) Proceedings of Business Process Management Workshops 2013,
Revised Papers. Lecture Notes in Business Information Processing, vol 171. Springer, pp 155–166

11. Eshuis R, Van Gorp P (2014b) Synthesizing object life cycles from business process models. Softw
Syst Model. doi:10.1007/s10270-014-0406-4 (in press)

12. Eshuis R, Hull R, Sun Y, Vaculín R (2014) Splitting GSM schemas: A framework for outsourcing of
declarative artifact systems. Inf Syst 46:157–187. An early version appeared. In: Daniel F, Wang J,
Weber B (eds) BPM 2013. Lecture Notes in Computer Science, vol 8094. Springer, pp 259–274

13. Fritz C, Hull R, Su J (2009) Automatic construction of simple artifact-based business processes. In:
Fagin R (ed) ICDT, ACM, ACM International Conference Proceeding Series, vol 361, pp 225–238

14. Geiß R, Kroll M (2008) GrGen.NET: A fast, expressive, and general purpose graph rewrite tool. In:
Rensink A, Täntzer G (eds) AGTiVE 2007, Kassel, October 10–12, 2007, Revised Selected and Invited
Papers, Springer, LNCS, vol 5088, pp 568–569

15. Gray J, Reuter A (1993) Transaction processing: concepts and techniques. Morgan Kaufmann, USA
16. Harel D, Gery E (1997) Executable object modeling with statecharts. IEEE Comput 30(7):31–42
17. vanHeeKM,Hidders J,HoubenGJ, Paredaens J, ThiranP (2009)On the relationship betweenworkflow

models and document types. Inf Syst 34(1):178–208
18. Hull R (2008)Artifact-centric business processmodels: Brief survey of research results and challenges.

In: Meersman R, Tari Z (eds) OTM Conferences (2). Lecture Notes in Computer Science, vol 5332.
Springer, pp 1152–1163

19. Hull R, Damaggio E, Fournier F, Gupta M, Heath FT, Hobson S, Linehan MH, Maradugu S, Nigam A,
Sukaviriya P, Vaculín R (2010) Introducing the guard-stage-milestone approach for specifying business
entity lifecycles. In: Bravetti M, Bultan T (eds)WS-FM. Lecture Notes in Computer Science, vol 6551.
Springer, pp 1–24

20. Hull R, Damaggio E,Masellis RD, Fournier F, GuptaM, Heath FT, Hobson S, LinehanMH,Maradugu
S, NigamA, Sukaviriya PN, Vaculín R (2011) Business artifacts with guard-stage-milestone lifecycles:
managing artifact interactions with conditions and events. In: Eyers DM, Etzion O, Gal A, Zdonik SB,
Vincent P (eds) ACM, DEBS, pp 51–62

21. Kumaran S, Liu R, Wu FY (2008) On the duality of information-centric and activity-centric models of
business processes. In: Bellahsene Z, Léonard M (eds) CAiSE. Lecture Notes in Computer Science,
vol 5074. Springer, pp 32–47

22. Künzle V, Reichert M (2011) Philharmonicflows: towards a framework for object-aware process man-
agement. J Softw Maint 23(4):205–244

23. Küster JM, Ryndina K, Gall H (2007) Generation of business process models for object life cycle
compliance. In: Alonso G, Dadam P, Rosemann M (eds) BPM. Lecture Notes in Computer Science,
vol 4714. Springer, pp 165–181

24. Liu R, Wu FY, Kumaran S (2010) Transforming activity-centric business process models into
information-centric models for soa solutions. J Database Manag 21(4):14–34

25. Meyer A, Weske M (2012) Data support in process model abstraction. In: Atzeni P, Cheung DW, Ram
S (eds) Proceedings of ER 2012. Lecture Notes in Computer Science, vol 7532. Springer, pp 292–306

26. Meyer A, Weske M (2014) Activity-centric and artifact-centric process model roundtrip. In: Lohmann
N, Song M, Wohed P (eds) Proceedings of Business Process Management Workshops 2013, Revised
Papers. Lecture Notes in Business Information Processing, vol 171. Springer, pp 167–181

27. Meyer A, Pufahl L, Fahland D, Weske M (2013) Modeling and enacting complex data dependencies
in business processes. In: Daniel F, Wang J, Weber B (eds) Proceedins of BPM 2013. Lecture Notes
in Computer Science, vol 8094. Springer, pp 171–186

123

http://dx.doi.org/10.1007/s10270-014-0406-4

Synthesizing data-centric models 373

28. Müller D, Reichert M, Herbst J (2007) Data-driven modeling and coordination of large process struc-
tures. In: Meersman R, Tari Z (eds) OTM Conferences (1). Lecture Notes in Computer Science, vol
4803. Springer, pp 131–149

29. Nigam A, Caswell NS (2003) Business artifacts: an approach to operational specification. IBM Syst J
42(3):428–445

30. (OMG) OMG (2011) Business process model and notation (bpmn) version 2.0. Tech. rep
31. Popova V, Dumas M (2013) From Petri nets to guard-stage-milestone models. In: Rosa ML, Soffer P

(eds) Proceedings of Business Process Management Workshops 2012, Revised papers, Lecture Notes
in Business Information Processing, vol 132. Springer, pp 340–351

32. Redding G, Dumas M, ter Hofstede AHM, Iordachescu A (2008) Generating business process models
from object behavior models. IS Manag 25(4):319–331

33. Redding G, Dumas M, ter Hofstede AHM, Iordachescu A (2010) A flexible, object-centric approach
for business process modelling. Serv Oriented Comput Appl 4(3):191–201

34. Reichert M, Weber B (2012) Enabling Flexibility in process-aware information systems: challenges,
methods, technologies. Springer, Berlin

35. Reijers HA, Limam S, van der Aalst WMP (2003) Product-based workflow design. J Manag Inf Syst
20(1):229–262

36. Ryndina K, Küster JM, Gall H (2006) Consistency of business process models and object life cycles.
In: Kühne T (ed) MoDELS Workshops. Lecture Notes in Computer Science, vol 4364. Springer, pp
80–90

37. Sanz JLC (2011) Entity-centric operations modeling for business process management: a multidis-
ciplinary review of the state-of-the-art. In: Lu X, Younas M, Zhu H, Gao JZ (eds) SOSE, IEEE, pp
152–163

38. SunSX,Zhao JL,Nunamaker JF, ShengORL (2006) Formulating the data-flowperspective for business
process management. Inf Syst Res 17(4):374–391

39. Sun Y, Hull R, Vaculín R (2012) Parallel processing for business artifacts with declarative lifecycles.
In: Meersman R, Panetto H, Dillon TS, Rinderle-Ma S, Dadam P, Zhou X, Pearson S, Ferscha A,
Bergamaschi S, Cruz IF (eds) OTM Conferences (1). Lecture Notes in Computer Science, vol 7565.
Springer, pp 433–443

40. Swenson KD (2010) Mastering the unpredictable: how adaptive case management will revolutionize
the way that knowledge workers get things done. Meghan-Kiffer Press, USA

41. UML Revision Taskforce (2010) UML 2.3 Superstructure Specification. Object Management Group,
oMG Document Number formal/2010-05-05

42. Van Gorp P (2011) Applying traceability and cloning techniques to compose input-destructive model
transformations into an input-preserving chain. In: 1st Workshop on Composition and Evolution of
Model Transformations, King’s College, London, UK

43. VanGorpP, EshuisR (2010)Transforming processmodels: executable rewrite rules versus a formalized
java program. In: Petriu DC, Rouquette N, Haugen Ø (eds) MoDELS (2). Lecture Notes in Computer
Science, vol 6395. Springer, pp 258–272

44. Wahler K, Küster JM (2008) Predicting coupling of object-centric business process implementations.
In: Dumas M, Reichert M, Shan MC (eds) BPM. Lecture Notes in Computer Science, vol 5240.
Springer, pp 148–163

45. Wang T, Vonk J, Kratz B, Grefen PWPJ (2008) A survey on the history of transaction management:
from flat to grid transactions. Distrib Parallel Databases 23(3):235–270

46. Yongchareon S, Liu C, Zhao X (2011) An artifact-centric view-based approach to modeling inter-
organizational business processes. In: Bouguettaya A, Hauswirth M, Liu L (eds) WISE. Lecture Notes
in Computer Science, vol 6997. Springer, pp 273–281

123

	Synthesizing data-centric models from business process models
	Abstract
	1 Introduction
	2 Preliminaries
	3 Synthesis rules for coordination logic
	3.1 Basic notions
	3.2 Creation
	3.3 Finalization
	3.4 Read-access
	3.5 Update-access
	3.6 Discussion
	3.6.1 Coordinators with read-access
	3.6.2 Multiple participants

	4 Synthesis rules for execution logic
	4.1 Task
	4.2 Decision
	4.3 Merge
	4.4 Fork
	4.5 Join
	4.6 Discussion
	4.6.1 Interference
	4.6.2 Order example
	4.6.3 Multiple start states
	4.6.4 Multiple variables

	5 From state machines to GSM schemas
	5.1 GSM schemas
	5.2 Mapping
	5.2.1 Stages
	5.2.2 Milestones
	5.2.3 Example

	5.3 Discussion
	5.3.1 Refining
	5.3.2 Creation and communication
	5.3.3 Direct vs. indirect mapping

	6 Implementation
	7 Related work
	7.1 Transformation approaches
	7.2 Modeling techniques

	8 Conclusion
	Appendix: Source code and online demonstrator
	References

