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Abstract. We introduce the notion of column planarity of a subset R
of the vertices of a graph G. Informally, we say that R is column planar
in G if we can assign z-coordinates to the vertices in R such that any
assignment of y-coordinates to them produces a partial embedding that
can be completed to a plane straight-line drawing of G. Column planarity
is both a relaxation and a strengthening of unlabeled level planarity. We
prove near tight bounds for column planar subsets of trees: any tree on
n vertices contains a column planar set of size at least 14n/17 and for
any € > 0 and any sufficiently large n, there exists an n-vertex tree in
which every column planar subset has size at most (5/6 + €)n.

We also consider a relaxation of simultaneous geometric embedding (SGE),
which we call partial SGE (PSGE). A PSGE of two graphs G and G2 al-
lows some of their vertices to map to two different points in the plane. We
show how to use column planar subsets to construct k-PSGEs in which
k vertices are still mapped to the same point. In particular, we show
that any two trees on n vertices admit an 11n/17-PSGE, two outerpaths
admit an n/4-PSGE, and an outerpath and a tree admit a 11n/34-PSGE.

1 Introduction

A graph G = (V,E) on n vertices is unlabeled level planar (ULP) if for all
injections v : V — R, there exists an injection p : V' — R, so that embed-
ding each v € V at (p(v),y(v)) results in a plane straight-line embedding of
G. Estrella-Balderrama, Fowler and Kobourov [10] originally introduced ULP
graphs and characterized ULP trees in terms of forbidden subgraphs. Fowler
and Kobourov [12] extended this characterization to general ULP graphs. ULP
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Fig.1. (a) A graph G = (V, E) with R = {a,d, e, f} which is p-column planar for
p={d— l,a — 2,e — 3, f — 4}. (b-c) Two assignments of y-coordinates to the
vertices R and corresponding plane straight-line completions of G.

graphs are exactly the graphs that admit a simultaneous geometric embedding
with a monotone path: this was the original motivation for studying them.

In this paper we introduce the notion of column planarity of a subset R of
the vertices V of a graph G = (V, E). Informally, we say that R is column planar
in G if we can assign x-coordinates to the vertices in R such that any assignment
of y-coordinates to them produces a partial embedding that can be completed to
a plane straight-line drawing of G. Column planarity is both a relaxation and a
strengthening of unlabeled level planarity. It is a relaxation since it applies only
to a subset R of the vertices and a strengthening since the requirements on R
are more strict than in the case of unlabeled level planarity.

More formally, for R C V, we say that R is column planar in G = (V, E)
if there exists an injection p : R — R such that for all p-compatible injections
v : R — R, there exists a plane straight-line embedding of G where each v € R
is embedded at (p(v),~(v)). Injection ~ is p-compatible if the combination of p
and v does not embed three vertices on a line. Clearly, if R is column planar in
G then any subset of R is also column planar in G. We say that R is p-column
planar when we need to emphasize the injection p (see Fig. 1 for an example).
If R =V is column planar in G then G is ULP since column planarity implies
the existence of one assignment of z-coordinates to vertices that will produce a
planar embedding for all assignments of y-coordinates, while to be a ULP graph
the x-coordinate assignment may depend on the y-coordinate assignment. In
this sense, column planarity of V' is strictly more restrictive than unlabeled level
planarity of G. Di Giacomo et al. [8] study column planarity under a different
name. Specifically, they define EAP graphs as the graphs G = (V, E) where V
is column planar in G. They consider a family of graphs called fat caterpillars
and prove that these are exactly the EAP graphs.

As mentioned above, the study of ULP was originally motivated by simulta-
neous geometric embedding, a concept introduced by Brass et al. [4]. Formally,
given two graphs G; = (V, Ey) and Gy = (V, E3) on the same set of n vertices,
they defined a simultaneous geometric embedding (SGE) of G7 and G5 as an
injection ¢ : V — R? such that the straight-line drawings of G; and G5 induced
by ¢ are both plane. With slight abuse of notation, we refer to these drawings as
©(G1) and p(Gs). Fig. 2¢ depicts an SGE of the graphs in Fig. 2a and Fig. 2b.
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Fig. 2. (a-b) Two graphs on the same vertex set. (¢) An SGE of these graphs. (d) A
3-PSGE of these graphs.

Blésius et al. [2] give an excellent survey of the subsequent papers on SGE with
a comprehensive list of results. On the positive side, Brass et al. [4] prove that
two paths, cycles or caterpillars always admit an SGE. Cabello et al. [5] prove
that a matching and a tree or outerpath (a type of outerplanar graph) always
admit an SGE. On the negative side, Brass et al. [4] prove that three paths
sometimes do not admit an SGE. Erten and Kobourov [9] prove that a planar
graph and a path may not admit an SGE. Frati, Kaufmann and Kobourov [13]
strengthen this result to the case where the planar graph and the path do not
share any edges. Geyer, Kaufmann and Kobourov [14] describe two trees that
do not admit an SGE. Angelini et al. [1] close a long-standing open question by
describing a tree and a path that admit no SGE. Finally, Estrella-Balderrama
et al. [11] show that the decision problem for SGE is NP-hard.

In light of the restrictiveness of simultaneous geometric embedding, several
other variations on the abstract problem have been studied. Cappos et al. [6] con-
sider a version of SGE where edges are embedded as circular arcs or with bends.
Di Giacomo et al. [7] consider matched drawings: a version of SGE where the
location of a vertex in the drawing of G need only have the same y-coordinate
as its location in the drawing of Ga.

In this paper we consider a variant on SGE which we call partial simultaneous
geometric embedding (PSGE). We do not require every vertex to map to a single
point in the plane. Instead, some vertices can have a “split personality” and map
to two different locations, one associated with (G; and one associated with Gs.
Specifically, given two graphs G1 = (V, E1) and G = (V, E3) on the same set of
n vertices, a k-partial simultaneous geometric embedding (k-PSGE) of G1 and
G5 is a pair of injections ¢, : V — R? and ¢ : V — R? such that (i) the
straight-line drawings ¢1(G1) and ¢2(G2) are both plane; (ii) if ¢ (v1) = 2 (v2)
then v; = vy and; (iii) ¢1(v) = wa2(v) for at least k vertices v € V. An n-PSGE
is simply an SGE. Fig. 2d depicts a 3-PSGE of the graphs in Fig. 2a and Fig. 2b.

PSGE is related to the notion of planar untangling: Given a straight-line
drawing of a planar graph, change the embedding of as few vertices as possible
in order to obtain a plane drawing. Goaoc et al. [15] describe an improvement of
a result by Bose et al. [3] to show that y/(n + 1)/2 vertices can always be kept
in their original positions. Since we can simply take any plane embedding of G,
use the same embedding for Gy and then untangle G5, it immediately follows
that every two planar graphs on n vertices admit a ¢/(n + 1)/2-PSGE.



Results and Organization. In Section 2, we study column planarity for subsets
of trees. We prove that every tree on n vertices contains a column planar subset
of size 14n/17 and we show that there exist trees where every column planar
subset has size at most 5n/6. In Section 3, we establish the relation between
column planarity and PSGE. We show that every two trees admit an 11n/17-
PSGE, that every tree and ULP graph admit a 14n/17-PSGE, that every two
outerpaths admit an n/4-PSGE, and that every outerpath and a tree admit an
11n/34-PSGE.

2 Column planar sets in trees

In this section, we show how to find large column planar sets in trees. Let p(v)
be the parent of vertex v in a rooted tree T', and let 7(T") be the root of T'. Given
a subset R of the vertices of T, let Cr(v) be the non-leaf children of v in R
and let C}}(v) be those vertices in Cr(v) with at least one child in R. We first
prove that subsets of T satisfying certain conditions are always column planar
and next that every tree contains a large such subset.

Lemma 1. For a rooted tree T', R is column planar in T if for allv € R, either
(1) p(v) € R, the number of non-leaf children of v in R is at most two, and at
most one of these children has a child in R (i.e. Cr(v) <2 and Cf(v) < 1); or
(2) p(v) € R, the number of non-leaf children of v in R is at most four, and at
most two of these children have a child in R (i.e. Cr(v) < 4 and O} (v) < 2).

Proof. We will embed T recursively. The x-coordinates of V' will be fixed in
such a way that any assignment v : R — R of y-coordinates to R can be
accommodated by embedding the vertices of V' \ R with y-coordinates much
larger than max~y or much smaller than min~y. Thus, the edges between V' \ R
and R are embedded as near-vertical line segments. In the figures that accompany
this proof, such edges will be drawn as curves.

For a subtree T” of T', let p(T”) be the parent of r(T"). If r(T”) is the root
of T then p(T'), though it does not exist, is viewed as not in R. Our embed-
ding will have the following properties for each subtree T": (i) if 7(T") ¢ R or
{r(T"),p(T")} C R, then r(1”) has either the smallest or largest z-coordinate
among all vertices in 77; (ii) if »(77) € R, then r(T”) has either the smallest
or largest y-coordinate among all vertices in T”; and (iii) no almost-vertical ray
from r(T") intersects any edge from 7.

Let T be the rooted tree we want to embed. Let » = r(T). If r € R, then
recursively generate embeddings of all non-leaf children of r. Scale each such
embedding horizontally to width 1. Suppose first that p(T') € R. See Fig. 3a.

Embed r at = 1 and its £ leaf children at x = 2,...,¢ 4+ 1. (Their y-
coordinates are determined by v.) Suppose Cg(v) C {r1,s1} and C}(v) C {r1}.
Embed r; and its subtree recursively and scale its a-coordinates to lie in [(+3, £+
4]. By (i), and possibly after mirroring the embedding of the subtree rooted at
r1 horizontally, the edge {r,r1} does not cross edges in the subtree rooted at r;.
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Fig. 3. Embedding a tree with a column planar set. The column planar vertices are
black .

Embed sy at © = £ + 2. Let T4,...,T, be the child subtrees of s;. Embed
T; recursively and scale its z-coordinates to lie in [£ + 3 + 2i,¢ + 4 + 2i] for all
1 <4 < k. Vertex s; will be above {r,r;} for some v and below {r,r1} for other
~. If it is above, let 7(711), ..., (7)) have progressively larger y-coordinates (by
scaling up and mirroring vertically if necessary). If it is below, let them have
progressively smaller y-coordinates. Then none of the edges {s1,r(7;)} cross
{r,r1} and the edge {s1,7r(T;)} does not cross any edges in T; by (i) and (ii).

Recursively, embed the remaining child subtrees T7,...,T] (none of whose
roots are in R) with z-coordinates in [¢ + 3 + 2k + 2i,¢ + 4 + 2k + 2i] for all
1 <4 < tsuch that r(T7),...,r(T}) have progressively larger y-coordinates. The
edge {r,r(T})} does not cross any edges in T} by (ii). In the completed drawing,
note that r has the lowest a-coordinate, and thus (i) is satisfied. Properties (ii)
and (iii) are trivially satisfied.

Suppose that p(T) ¢ R. Proceed first as in the previous case. Suppose
Cr(v) C {r1,r2, 81,82} and C};(v) C {r1,r2}. Mirror the recursive embedding
of the subtree rooted at ro horizontally and scale it to have z-coordinates in
[-3,—2]. Embed the subtree rooted at s; as in the previous case. For s3, pro-
ceed similarly but embed s and its subtree to the left of . See Fig. 3b. Properties
(i)-(iii) are trivially satisfied.

Finally, suppose that r = r(T') € R. Embed its child subtrees T1,...,T}; to
have x-coordinates in [27,2i + 1] for all 1 <4 < ¢, starting with the ones rooted
at a vertex in R. Embed r sufficiently high on the line x = 1. For subtrees T;
with 7(T;) € R, note that the edge {r,r(T;)} does not cross any edges of T; due
to (iil). For the other ones, {r,r(T;)} does not cross edges of T; due to (i) and
(ii). See Fig. 3c. Properties (i-iii) are satisfied. O

It remains to show that every tree contains a subset that satisfies the conditions
imposed by Lemma 1. We show that every tree on n vertices contains such a
subset of size at least 14n/17 and that there are trees with no column planar
subset of size larger than 5n/6. Note that 14/17 ~ 5/6 — 0.01, and thus our
results are almost tight.



Lemma 2. Let T be a tree on n vertices rooted at any vertex r(T). Let ¢; be the
number of vertices with exactly i children. Then cg = (n+14 Z;:ll(i —2)¢;)/2.

Proof. The number of edges in T"is n —1 and also equals the degree sum divided
by two. Thus, S "ei(i +1) = 2(n — 1) +1 = 2n — 1. Since 1" ¢; = n,
Z;:Ol ¢i(i—2)+3n=2n—-1,and —2¢g = —n—1— Z?’:_ll ¢i(i —2). The lemma
follows. O

Theorem 1. A tree T on n vertices contains a column planar set of size at least
14n/17.

Proof. Root T at an arbitrary non-leaf vertex (7). Orient every edge towards
the root and topologically sort T' to obtain an order vy, ..., v,. We will greedily
add vertices to R in this order. More precisely, let Ry = () and let R; := R;_1 U
{v;i} if Ri—1 U{w;} satisfies Lemma 1 and let R; := R;_; otherwise. Let R = R,
be our final subset of T'.

We say that a vertex is marked if it is in R. Consider a vertex v = v; € R.
The reason that v is not in R is that R;_; U {v} does not satisfy the condition
in Lemma 1 for v or a child u of v (or both). More precisely, v is contained in
exactly one of the following sets:

X,={veT\R: |Cf(v)] > 2}
Xy={veT\R\X,: ICr(v)| > 4}
Xe={veT\R\ X, \Xp: O (u)] > 1}
Xo={veT\ R\ X,\ X\ X, : ICr(u)| > 2}.

We associate with each such v a witness tree W (v) as follows (see Fig. 4). If
v € X,, then let W (v) be v, three vertices of C};(v) and a marked child of each
of them (which must exist by definition of C};(v)). If v € X, then let W (v) be
v and five marked children of v. If v € X, then let W (v) be v, u, two vertices of
C7} (u) and a marked child of each of them. If v € X4, let W (v) be v, u and three
marked children of u. Note that W (v) and W (v') are disjoint for v,v" € T\ R
with v # v’. We have

| Xa| + [Xb] + [ Xe| + [ Xal +|R| = n. 1)
v v v
u Uu
veE Xy veXy ve X, veE Xqg

Fig. 4. The witness tree W (v) when v is in X4, Xs, X or X4. The marked vertices
are black. Dotted line segments indicate that a vertex has at least one child.



Let L; and I; be the set of marked vertices of (J ¢ x, W(v) that are leaves and
internal vertices in T, respectively, for ¢t = a, b, c,d. We have

|Ia|+|La| :6|Xa| |La| §3|Xa| (2)
| Ip| 4 | Lp| = 5| X3 |Ly| =0 (3)
‘IC| + ‘LC| = 5|XC| ‘LC| < 2|X0| (4>
[Lal + | La| = 4| Xa4] |La| =0 (5)
Since R always contains all leaves of T', we have
|R| > co + |La| + || + [Ic| + |1al, (6)

where ¢; is the number of vertices with exactly 4 children in T'. Note that W (v)
contains a vertex with at least three children if v € X, U X}, U X4. Hence, by
Lemma 2,

n—ert Yy e | n—en+ | Xal + [ Xl + | Xl
2 = 2 '

co > (7>
In addition, we have
co > |La| + |Lp| + |Le| + |Lal. (8)

Before we bound |R|, consider the set S formed by all leaves and all vertices with
one child. Then S is column planar by Lemma 1 and |S| = ¢g + ¢;. Whenever
the greedily chosen R has size less than ¢y + c¢1, we choose R = S instead. Thus,
Wwe may assume

|R| > co + 1. )

Equations (7) and (9) yield
R > n = co+ | Xa| + [ Xo| + | Xal; (10)

equations (2) and (8) yield
co = 6| Xa| — [La] + |Lecl; (11)

and equations (3), (4), (5), and (6) yield
IRI> co + 51X] + 5| Xe| + 4 Xa] — |Le] + |, (12)

To eliminate ¢y, we combine equation (10) with two times (11) and three times (12)
to obtain 4|R| > n + 13|X,| + 16| X,| + 15| X.| + 13| X4| — |Lc| + |1,|. With
equation (4), this gives 4|R| > n + 13| X,| + 16| X,| + 13| X.| + 13| Xq4| + |I,| >
n + 13(| Xa| + | Xp| + | Xc| + | Xal). Together with equation (1), this yields the
desired bound of |R| > 14n/17. O

The greedy algorithm achieves exactly this amount on the tree depicted in Fig. 5.
Note that also |S| = ¢g +¢1 = 14n/17 in this tree. In general, Theorem 1 is close
to best possible:
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Fig. 5. A tree for which |R| = |S| = 14n/17. The set R is colored black.

Theorem 2. For any € > 0 and any n > 2/e + 5, there exists a tree T with n
vertices in which every column planar subset in T has at most (5/6+¢€)n vertices.

Proof. Let p = |n/6]. Let T be p copies, T1,Ts,...,Tp, of the tree shown in
Fig. 6a in which the root of T;4; is made a child of the rightmost leaf of 75, for

i=1,...,p— 1. Suppose there is a column planar set R of marked vertices in T’
with |R|/n > 5/6 + €. Then in some sequence of at most k = [1/(3¢)] subtrees
T, Tit1, ..., T; there must be at least two trees with 6 marked vertices and the

other trees with 5 marked vertices. If not, since each subtree has 6 vertices, the
average fraction of marked vertices per tree is less than 5%—?2 <5/6 +e.

Let T3, Tiy1,...,T; be such a sequence. By possibly deleting a prefix of the
sequence, we can assume that 7; has 6 marked vertices. Let £ > i be the smallest
index such that the root of T} is marked. Since T}, T;11,...,1}; contains at least
two trees with 6 marked vertices, T, exists. Let H be the subtree induced by the
root of Ty and the vertices in T; UT; 41 U---UTy_;. By definition, the unmarked
vertices in H are exactly the roots of the subtrees T;11, Ti19,...,Ty—1. We claim
that the marked vertices are not column planar in H.

To simplify notation, let Hy, Ha, ..., Hy—1 be the sequence of subtrees in H
and let 7, be the (marked) root of Tp. Label the vertices of H; as in Fig. 6a
subscripted by i. See Fig. 6b. Let R’ be the marked vertices in H and suppose
R’ is p-column planar in H. For an edge {a,b} in H with a,b € R’, let p(a,b) =
[p(a), p(b)] be the z-interval of edge {a,b}. For two edges {a,b} and {c,d} in H
where a, b, ¢, and d are distinct vertices in R, p(a,b) N p(c,d) = 0: otherwise, by
choosing v appropriately we can cause the edges to intersect within their shared
z-interval. This implies, for example, that the z-interval spanned by marked
vertices in one subtree does not intersect that of a different subtree.

r T1 T2 Tq—1 h Tq
S S1
w ,
t ty
w1
U Uy
v U1
Hy Hy Hy

(a) (b)

Fig. 6. (a) The tree T; and (b) H used in the proof of Theorem 2.
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Fig. 7. An example of how ~ is chosen in the proof of Theorem 2 where ¢ = 5. Note
that forcing 75 (bottom left) below the z-axis causes the edge {wa4,r5} to intersect
another edge.

For Hy, since p(s1,t1) N p(ui,v1) = 0 and p(t1,u1) N p(ri,s1) = 0, p(t1) is
between p(r1,s1) and p(ui,v1) (meaning either p(r1,s1) < p(t1) < p(ui,v1) or
plur,v1) < p(t1) < p(ri,s1), where A < Bif for all a € A and b € B, a < b).
By similar reasoning, p(w) is between p(t1) and p(uy,v1) or between p(t;) and
p(r1, s1). Let us assume, by renaming vertices if necessary, that p(wy) is between
p(t1) and p(uy,vy1). See Fig. 7.

The basic idea is to choose v so that vertices in R are close to the z-axis
(with y(u;) < v(s;) < 0=~(w;) <v(t;) < v(v;) for all i except when mentioned
otherwise) and so that unmarked vertices are forced to be above the z-axis.
We set y(u1) to be negative and v(v1) to be positive (so w; lies in the triangle
tiujvy). This, together with the fact that ro is connected to sg, forces the edge
from wy to ro to be upward and thus 75 to be above the z-axis.

Consider the order of p(s2), p(t2) and p(us,vs). If p(s2) is between p(t2) and
p(uz,v2), then setting v so that the path to, us, vs is above sg (Y(t2) < y(v2) <
0 < y(s2) < 7v(uz)) causes the path to intersect {rz,s2}. Note that p(uz,vs)
cannot be between p(t2) and p(s2) since p(uz,v2) N p(s2,t2) = 0. Hence, p(ts)
is between p(s2) and p(ug,vsz). Now let us consider the possible positions of
p(wsa). If p(s2) is between p(ws) and p(ts), then setting v so that the path
Uz, ta, wq is above so (y(w2) < y(uz2) < 0 < y(s2) < 7¥(t2)) causes the path to
intersect {ry, s2}. Note that p(uq,vs) cannot be between p(ws) and p(t3) since
plug,v2) N p(te,ws) = 0. Hence, p(wz) is between p(sz2) and p(t2) or between
p(t2) and p(ug,vs). In the first case, we set y(s2) < 0 = y(ws) < ¥(t2) so the
edge from ws to r3 is forced upward to avoid intersecting path ro, so,ts. In the
second case, we set 7 so that the path ta, us, v is below wo (y(u2) < 0 = y(ws) <
~(t2) < v(v2)) and the edge from ws to r3 is forced upward. By repeating this
argument, we force all the unmarked vertices as well as r, to be above the z-axis.
Since r, is marked, we derive a contradiction by setting v(rq) < 0. a

3 Partial simultaneous geometric embedding

The relation between column planarity and PSGE is expressed by the following
theorem, which relates the size of column planar sets to PSGE.
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Fig. 8. (a) Graph G; with Ry = {a,d,e, f} and p1 = {d — 1l,a — 2,e — 3, f — 4}.
(b) Graph G2 with Ry = {a,b, f} and p2 = {a — 1,b+— 2, f — 3}. (c¢) A 2-PSGE of
G1 and G2 where vertex set R = R1 N Ry = {a, f} is shared.

Theorem 3. Consider planar graphs G = (V,E1) and G = (V,E3) on n
vertices. If Ry is column planar in Gy, Rs is column planar in G and |Ri| +
|Rz2| > n, then G1 and G2 admit a (|R1| + |R2| —n)-PSGE.

Proof. Fig. 8 illustrates the construction. The set R = Ry N Ry has size at least
|Ri| + |R2] —n > 0 and is column planar in both G; and G2. More specifically,
there exist injections p; : R — R and py : R — R such that R is p;-column
planar in GG; and po-column planar in Go. By exchanging the roles of the z-
and y-coordinates in the definition of column planar in G5, we see that for all
injections v : R — R, there exists a plane straight-line embedding of G2 that
embeds each v € R at (v(v), p2(v)). In particular, we may choose 7 = p;. O

Two trees. Combining Theorem 3 and Theorem 1 immediately yields the fol-
lowing lower bound on the size of a PSGE of two trees.

Corollary 1. Every two trees on a set of n vertices admit an 11n/17-PSGE.

There are two trees Ty and T on 226 vertices that do not admit an SGE [14].
Thus, an upper bound on the size of the common set in a PSGE of 77 and T,
is 225. Root T} arbitrarily and let TF be the result of taking k copies of T} and
connecting their roots with a path. Define T similarly. Then an upper bound on
the size of the common set in a PSGE of TF and T is 225k. It follows that there
exist two trees on a set of n vertices that admit no k-PSGE for k& > 225n/226.

Tree and ULP graph. If one of the two graphs in our PSGE is ULP, then the
size of the common set depends only on how large a column planar set we can
find in the other graph:

Lemma 3. Consider a planar graph G1 = (V,E1) and a ULP graph Gy =
(V,E2) on n wvertices. If R is column planar in G1, then G1 and G admit a
|R|-PSGE.

Proof. By exchanging the roles of z- and y-coordinates in the definition of col-
umn planar, we see that for all injections v : R — R, there exists a plane
straight-line embedding of G; with v € R at (v(v), p(v)). Since Gs is a ULP



graph, for all injections y : V' — R, there exists an injection x : V' — R such that
placing v € V at (z(v),y(v)) results in a straight-line embedding of Gs. Thus,
placing the vertices v € R at (z(v), p(v)) permits both a straight-line embedding
of G1 and Go. a

Combining this with Theorem 1 yields
Corollary 2. A tree and a ULP graph admit a 14n/17-PSGE.

Two outerpaths & outerpath and tree. An outerplanar graph is a planar
graph that admits an embedding (called the outerplane embedding) that places
all its vertices on the unbounded face. An outerpath is an outerplanar graph
whose weak dual (the graph obtained from the dual graph by deleting the ver-
tex corresponding to the unbounded face) is a path. A maximal outerpath has
exactly two vertices of degree two: these vertices are on the faces that corre-
spond to the terminal vertices of the dual path. Consider a maximal outerpath
G = (V, E). The outer cycle of G is the Hamiltonian cycle of G that bounds the
unbounded face in the outerplane embedding of G. Denote by C(G) the vertices
of degree two in G. Deleting C(G) from G partitions the outer cycle of G into
two connected components whose vertices we refer to as A(G) and B(G). Note
that A(G) U B(G)UC(G) = V. It is easy to see that:

Lemma 4. Given a mazimal outerpath G = (V, E), the subsets A(G) U C(G)
and B(G) U C(G) are column planar.

Unlike in the tree setting, Theorem 3 does not immediately give a lower bound
on the size of a PSGE of two outerpaths, since we might have |A(G)| = |B(G)| =
n/2 — 1. Fortunately, this is easily resolved:

Theorem 4. Every two outerpaths on a set of n vertices admit an n/4-PSGE.

Proof. Consider outerpaths G; = (V, Ey) and Gy = (V, E2). Without loss of
generality, G; and Ga are maximal. Let X;" := X(G;) U C(G;) for X = A, B
and i = 1,2. Then by Theorem 3 and Lemma 4, G; and G admit a max{|A] N
AT, |AT N By |, |Bf nAf|,|Bf N B |}-PSGE. Since the union of these four sets
is again V, the maximum of their cardinalities must be at least n/4. O

Since |C(GQ)| + max{|A(G)|, |B(G)|} > n/2+ 1, Theorem 1 and 3 yield:

Corollary 3. An outerpath and a tree on n vertices admit a 11n/34-PSGE.

4 Discussion and Open Problems

Our results leave several directions for future research. The tree drawings pro-
duced by Theorem 1 may have exponential area. It would be interesting to see
whether polynomial area is sufficient. Further research could be directed towards
closing the gap between the lower and upper bound on the size of column planar
sets for trees and on developing bounds for such sets in general planar graphs.
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