
 

Variational method for the minimization of entropy generation
in solar cells
Citation for published version (APA):
Smit, S., & Kessels, W. M. M. (2015). Variational method for the minimization of entropy generation in solar
cells. Journal of Applied Physics, 117(13), 134504-1/7. https://doi.org/10.1063/1.4916787

DOI:
10.1063/1.4916787

Document status and date:
Published: 07/04/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1063/1.4916787
https://doi.org/10.1063/1.4916787
https://research.tue.nl/en/publications/2ef0abf0-e71e-4c71-bddb-fcf749d7211c


Variational method for the minimization of entropy generation in solar cells
Sjoerd Smit and W. M. M. Kessels 
 
Citation: Journal of Applied Physics 117, 134504 (2015); doi: 10.1063/1.4916787 
View online: http://dx.doi.org/10.1063/1.4916787 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/117/13?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Communication: Maximum caliber is a general variational principle for nonequilibrium statistical mechanics 
J. Chem. Phys. 143, 051104 (2015); 10.1063/1.4928193 
 
Statistical mechanical theory for steady state systems. VI. Variational principles 
J. Chem. Phys. 125, 214502 (2006); 10.1063/1.2400859 
 
Publisher’s Note: “Optimizing the driving function for nonequilibrium free-energy calculations in the linear regime:
A variational approach” [J. Chem. Phys.122, 104106 (2005)] 
J. Chem. Phys. 123, 039901 (2005); 10.1063/1.2006669 
 
Optimizing the driving function for nonequilibrium free-energy calculations in the linear regime: A variational
approach 
J. Chem. Phys. 122, 104106 (2005); 10.1063/1.1860556 
 
Entropy production and thermodynamics of nonequilibrium stationary states: A point of view 
Chaos 14, 680 (2004); 10.1063/1.1781911 
 
 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

131.155.151.137 On: Tue, 06 Oct 2015 09:31:52

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/220118377/x01/AIP-PT/JAP_ArticleDL_092315_2/AIP-2639_EIC_APL_Photonics_1640x440r2.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Sjoerd+Smit&option1=author
http://scitation.aip.org/search?value1=W.+M.+M.+Kessels&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4916787
http://scitation.aip.org/content/aip/journal/jap/117/13?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/143/5/10.1063/1.4928193?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/125/21/10.1063/1.2400859?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/123/3/10.1063/1.2006669?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/123/3/10.1063/1.2006669?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/122/10/10.1063/1.1860556?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/122/10/10.1063/1.1860556?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/14/3/10.1063/1.1781911?ver=pdfcov


Variational method for the minimization of entropy generation in solar cells

Sjoerd Smit and W. M. M. Kesselsa)

Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

(Received 13 February 2015; accepted 23 March 2015; published online 6 April 2015)

In this work, a method is presented to extend traditional solar cell simulation tools to make it

possible to calculate the most efficient design of practical solar cells. The method is based on the

theory of nonequilibrium thermodynamics, which is used to derive an expression for the local

entropy generation rate in the solar cell, making it possible to quantify all free energy losses on the

same scale. The framework of non-equilibrium thermodynamics can therefore be combined with

the calculus of variations and existing solar cell models to minimize the total entropy generation

rate in the cell to find the most optimal design. The variational method is illustrated by applying it

to a homojunction solar cell. The optimization results in a set of differential algebraic equations,

which determine the optimal shape of the doping profile for given recombination and transport

models. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916787]

I. INTRODUCTION

Following the analysis of the efficiency potential of

single-junction solar cells by Shockley and Queisser,1 the

upper limit on the efficiency of solar cells has been deter-

mined in literature under various idealized assumptions (see,

e.g., Refs. 2–4). For many practical types of solar cells, how-

ever, it is still unclear how to realize the highest possible effi-

ciency because of the presence of specific (non-ideal) loss

mechanisms that limit the efficiency potential of the cell. For

example, in solar cells based on crystalline silicon (c-Si),

Auger recombination and surface recombination at the metal

contacts limit the attainable efficiency considerably, whereas

in an ideal solar cell only radiative recombination would

occur. Furthermore, these non-ideal loss mechanisms often

have complex interactions in the cell design, making it diffi-

cult to find the optimal trade-off between them. In homo-

junction cells, for example, the high doping densities in the

emitter and back surface field (BSF) function to limit the

recombination at the metal contact, but simultaneously give

rise to increased Auger recombination.

To aid in the practical design of these kinds of non-ideal

solar cells, detailed models have been developed to predict

their efficiency. Programs like PC1D,5 AFORS-HET,6 and

ASA7 are all efficiency-predictive in this sense. Efficiency-

predictive simulations are commonly used in parametric opti-

mization studies where the simulation results of the solar cell

design are used to improve the design iteratively and provide a

cost efficient alternative for experimental trials. However, the

parameter space for such optimization problems can become

very large if many different parameters are optimized simulta-

neously. For example, to optimize the doping profile qðxÞ of a

homojunction cell in complete generality, it is in principle pos-

sible to parameterize the function qðxÞ using a spline function

with a high density of control nodes, but this will lead to an

unfeasibly large parameter space.

The goal of this work is to introduce the design-predictive
method of Variational Entropy Generation Minimization

(VEGM), which aims to circumvent iterative optimization alto-

gether. The VEGM method extends the scope of current

efficiency-predictive methods by making it possible to directly

predict the optimal solar cell design for a given set of physical

constraints and non-ideal loss mechanisms that depend on the

materials used. The main difference with efficiency-predictive

methods is in the figure of merit used to optimize the solar cell.

Iterative methods based on efficiency-predictive models opti-

mize the solar cell based on figures of merit such as the output

power P, open circuit voltage VOC, and short circuit current JSC.

These figures of merit are determined on the boundary of the so-

lar cell, and it is therefore often non-trivial to understand how

changes to the design in the bulk of the cell will affect P, VOC,
and JSC on the boundary. The key point of the new approach is

to de-emphasize the importance the usual boundary figures of

merit and instead focus on the total rate of entropy production

QS as a new bulk figure of merit. Unlike P, VOC, and JSC, the

total rate of entropy production QS is an integral over the bulk

of the cell and thus combines local information from the whole

cell. Therefore, QS can be optimized using variational methods

to immediately predict the most efficient cell given a set of geo-

metrical and physical constraints. In this work, the Euler-

Lagrange (EL) method will be used to minimize QS, but in prin-

ciple any variational optimization method can be used.

The type of solar cell considered here is a device that

converts blackbody radiation from the sun into electrochemi-

cal energy (in the form of electron-hole pairs) and then into

work (in the form of an electric current).8 Like any other de-

vice that converts heat into work, the solar cell produces en-

tropy under operation and the more entropy it produces, the

more energy is lost in the form of low-grade heat. Therefore,

the problem of maximizing P is equivalent to that of mini-

mizing QS, which is an integral of the local entropy produc-

tion rate qs over the domain of the cell X

QS ¼
ð

X
qs dV: (1)

It is important to note that QS should be minimized under the

constraints that the solar cell is operating at maximum powera)Electronic mail: w.m.m.kessels@tue.nl
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conditions under illumination, since the absolute minimum

entropy generation rate is trivially QS¼ 0 in the dark at ther-

modynamic equilibrium.

Equation (1) shows that qs is the central quantity that is

required for the variational optimization of a solar cell. The

expression for qs will be derived in the following paragraphs

using nonequilibrium thermodynamics, which is a field that

has not found widespread use in the solar cell community.

For this reason, the method of De Groot and Mazur9 is used,

which is conceptually simple and can be related to traditional

semiconductor physics (as commonly practiced in the field

of photovoltaics) with relatively little effort. A general back-

ground of this method for nonequilibrium thermodynamics

can also be found in the books of, e.g., Kuiken,10 Le Bellac

et al.,11 or Kjelstrup and Bedeaux.12 General thermodynamic

treatments of semiconductors physics can be found in the

works of, e.g., Lindefelt13 and Parrott.14

II. ENTROPY PRODUCTION IN SOLAR CELLS

To derive qs, three components from the theory of none-

quilibrium thermodynamics are required; the assumption of

local thermodynamic equilibrium (LTE); and the continuity

equations for the extensive variables. The derivation for qs

presented below is based on the aforementioned literature

sources and has been reduced to the essentials as much as

possible for the sake of accessibility.

For a solar cell in global equilibrium, the relevant ther-

modynamic quantities are: entropy S; internal energy U; tem-

perature T; volume V; the electron/hole electrochemical

potentials gn;p; and finally the total number of electrons and

holes Nn;p. The electrochemical potentials are defined as

gn ¼ lc
n � e/; gp ¼ lc

p þ e/; (2)

with lc
n;p being the chemical potentials for the electrons and

holes, e being the elementary charge, and / being the elec-

trostatic potential. Because of the fundamental coupling

between charge and particle, gn and gp are the relevant ther-

modynamic potentials for the electrons and holes and there

is no need to consider / and lc
n;p separately.8 Related to gn;p

are the more commonly used quasi-Fermi energies EFn;p,

given by gn ¼ EFn and gp ¼ �EFp. It is assumed that pres-

sure is not an important thermodynamic quantity for a solar

cell because the kinetic energy and momentum of the elec-

trons/holes do not play a significant role in the operation of

the device.

It should be noted that there is also entropy associated

with the angular distribution of the radiation field and the

consideration of this distribution can therefore also help to

improve solar cells15 and in principle it is possible to mini-

mize the entropy generation rate of the total system consist-

ing of the solar cell and the radiation field taken together.

For this work, however, only the entropy balance of the solar

cell itself will be considered and the radiation field will be

regarded as a source term for the processes in the semicon-

ductor. This simplifying approximation is well-suited for

material systems where radiative recombination is not the

main loss mechanism, such as c-Si.13

With the quantities identified in the previous paragraph,

the first law of thermodynamics for a solar cell in global

equilibrium can be stated in terms of S

dS ¼ 1

T
dU þ�EFn

T
dNn þ

EFp

T
dNp: (3)

Observe that in this formulation, U, Nn, and Np are consid-

ered to be the independent thermodynamic variables and S
is the fundamental potential, so S ¼ SðU;Nn;NpÞ. To gen-

eralize Eq. (3) to (nonequilibrium) operating conditions,

LTE is assumed. Under this assumption, the system is di-

vided into finite volumes that are small enough to reach

equilibrium with their surroundings on a macroscopic

timescale, yet microscopically large so that they can be

accurately described by thermodynamic variables. It is fur-

thermore assumed that the functional form of Eq. (3)

remains valid locally. The local form of Eq. (3) is stated

using volumetric densities of the extensive variables,

which are indicated by a lower case letter: entropy density

s, internal energy density u, and the electron/hole densities

n, p. These quantities are all dependent on time t and posi-

tion x, but these dependencies will not be stated explicitly

in equations unless confusion can arise. The local form of

Eq. (3) is, therefore,

ds ¼ 1

T
duþ�EFn

T
dnþ EFp

T
dp: (4)

The densities s, u, n, and p satisfy local continuity equations.

Let qs;u;n;p and Js;u;n;p denote the local sources and currents of

s, u, n, and p, respectively. Then

@s

@t
þr � Js ¼ qs; (5a)

@u

@t
þr � Ju ¼ qu; (5b)

@n

@t
þr � Jn ¼ qn ¼ G� R; (5c)

@p

@t
þr � Jp ¼ qp ¼ G� R: (5d)

Here, G is the generation rate and R is the recombination

rate of electron-hole pairs. Note that Jn;p are defined as parti-

cle currents (unit: cm�2 s�1) and that the currents Js;u;n;p are

considered in the barycentric frame of the cell (so Js;u;n;p ¼ 0

under global equilibrium conditions). To find qs, first the t
derivative of Eq. (4) is taken

@s

@t
¼ 1

T

@u

@t
þ�EFn

T

@n

@t
þ EFp

T

@p

@t
: (6)

From Eqs. (5) and (6), the time derivatives can be elimi-

nated. The entropy current Js can then be eliminated by

using the following relation for the currents:16

Js ¼
1

T
Ju þ

�EFn

T
Jn þ

EFp

T
Jp: (7)

After rearranging, qs is then obtained

134504-2 S. Smit and W. M. M. Kessels J. Appl. Phys. 117, 134504 (2015)
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qs ¼
1

T
qu þ

EFn � EFp

T
R�Gð Þ þ Fu � Ju þFn � Jn þ Fp � Jp :

(8)

In Eq. (8), the forces Fu;n;p are defined by

Fu ¼ rð1=TÞ; Fn ¼ rð�EFn=TÞ, and Fp ¼ rðEFp=TÞ. The

expression for qs derived here agrees with expressions for

power loss in solar cells derived in the literature previ-

ously,17,18 but also includes thermal effects through the term

Fu � Ju, which includes entropy production due to transport

of heat. The heat flux JQ is given by

Ju ¼ JQ þ EFnJn � EFpJp (9)

and can be used to rewrite Eq. (8) as

Tqs ¼ qu þ EFn � EFpð Þ R� Gð Þ

�rT

T
� JQ �rEFn � Jn þrEFp � Jp: (10)

Equation (10) gives the source term for the entropy balance

in the solar cell. The first two terms correspond to the trans-

fer of entropy from the radiation field to the solar cell;

electron-hole recombination; and the creation of entropy due

to the non-radiative relaxation of electron-hole pairs immedi-

ately after the absorption of a photon. The last three terms in

Eq. (10) are entropy production terms that correspond to irre-

versible transport phenomena. An overview of the physical

meaning of the terms in Eq. (10) is given in Fig. 1.

The Fu;n;p introduced in Eq. (8) are referred to as forces

because they drive the currents Ju;n;p. According to Onsager

theory,19 the most general relation (for an isotropic medium

and linear transport phenomena) between the currents and

forces takes the form

Ju

Jn

Jp

0
@

1
A ¼ Luu Lun Lup

Lnu Lnn Lnp

Lpu Lpn Lpp

0
@

1
A Fu

Fn

Fp

0
@

1
A: (11)

The Lij in Eq. (11) are the transport coefficients for the solar

cell. Onsager theory states that the matrix L is symmetric

(due to microscopic reversibility) and positive-definite (due

to the fact entropy cannot spontaneously decrease). In tradi-

tional solar cell modeling, only the transport coefficients Lnn

and Lpp (which are proportional to the electron and hole con-

ductivities) are commonly used, while the remaining trans-

port coefficients are implicitly assumed to be negligible.

In most solar cells, recombination of electron-hole pairs

at the boundary @X of the cell will also contribute to the total

rate of entropy generation. The surface entropy production

rate QS;surf should be added to the bulk contribution and can

be calculated by

QS;surf ¼
ð
@X

EFn � EFp

T
Rsurf dA: (12)

In Eq. (12), Rsurf is the surface recombination rate (in

cm�2 s�1).

Equations (8) and (10) can be used directly to gain addi-

tional insight into simulation results from common solar cell

simulation tools such as AFORS-HET. In order to plot power

losses due to recombination and Ohmic dissipation in a solar

cell, it is useful to define the dissipative part of qs, which

will be denoted by qdiss

Tqdiss ¼ EFn � EFpð ÞR�
rT

T
� JQ �rEFn � Jn þrEFp � Jp:

(13)

Because qdiss is always positive, it can be conveniently plot-

ted as a color map on top of a band diagram calculation to

show where the greatest losses of free energy are occurring.

This is illustrated in Fig. 2. However, it is important to

remark that in order to optimize the solar cell completely, it

is necessary to not only minimize the total dissipation but to

also make sure that the generation of electron-hole pairs

takes place in regions of the cell where the Fermi level split-

ting is greatest, as can be seen from the term �ðEFn � EFpÞG
in Eq. (10).

It is interesting to note that for a one-dimensional solar

cell at constant temperature and under steady-state operation,

the relation between the total entropy generation rate QS and

output power P can be obtained by direct integration. It is

assumed that the electrons are extracted at x¼ 0 and the

holes at x¼ d. Let eU ¼ ðEFnð0Þ � EFpðdÞÞ be the voltage

over the cell and J0 ¼ eðJp � JnÞ be the total charge current

(which is constant throughout the cell). Then P ¼ UJ0. The

total solar energy absorption in the solar cell will be denoted

by QU ¼
Ð d

0
qudx. The recombination rate at the electron

contact equals Rsurf ð0Þ ¼ �Jpð0Þ and that at the hole contact

Rsurf ðdÞ ¼ JnðdÞ. Using Eqs. (5), (8), and (12), QS is then

given by

TQS ¼
ðd

0

Tqs dxþ TQS;surf

¼
ðd

0

ðqu � EFnJ0n þ EFpJ0p � E0FnJn þ E0FpJpÞdx

þ
X

x¼f0;dg
½EFnðxÞ � EFpðxÞ�Rsurf ðxÞ

¼ QU � UJ0 ¼ QU � P: (14)

FIG. 1. Schematic band diagram of an illuminated solar cell that illustrates

the physical processes corresponding to the terms in the entropy generation

rate as given by Eq. (10). It is assumed that the temperature in the cell is

higher on the side facing the light, as indicated by the color gradient.
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Equation (14) demonstrates that the minimization of QS

indeed leads to the maximization of P, provided that QU

has been given (e.g., from optical modeling) or fixed in

some other fashion. This again demonstrates that some care

should be taken when minimizing entropy production, since

a cell in equilibrium in the dark trivially produces no

entropy.

III. VARIATIONAL SOLAR CELL OPTIMIZATION

With Eqs. (8) and (11), the total entropy generation rate

QS can now be considered as a functional that depends on all

relevant solar cell variables such as n, p, and /:

QS ¼ QS½nðxÞ; pðxÞ;/ðxÞ; :::�. This makes it possible to mini-

mize QS using variational methods such as the EL method.

There are, however, physical laws that need to be satisfied

by the solution, so these laws need to be added as constraints

to the optimization procedure. In addition, other practical

constraints can be imposed as well. Hence, the VEGM

method consists of four steps:

(1) The relevant unknowns are identified as well as the phys-

ical equations that need to be satisfied.

(2) The Lagrange multiplier method is used to construct

a functional K which, when minimized, will lead to

a solution that simultaneously minimizes QS and

satisfies all physical equations and additional

constraints.

(3) The EL method is used to find the set of differential

equations for the stationarity of K.

(4) The obtained set of equations is solved using a numerical

method.

In the next paragraphs, the first three steps of the

VEGM method will be illustrated by applying it to a homo-

junction solar cell to optimize the doping profile qðxÞ
(expressed in cm�3). The solar cell will be modeled under

assumptions commonly used in literature. This means that

the device is considered at constant temperature T (so

Fu ¼ 0) and under steady-state operation. It is assumed that

the boundary of the cell @X consists of perfectly passivated

surface (meaning that Rsurf¼ 0) and metal contacts. At the

metal contacts the boundary condition (BC) EFn¼EFp is

assumed since Fermi level splitting is not possible in a

metal. With these BCs, QS;surf ¼ 0 in Eq. (12) and only

bulk contributions to QS need to be considered. This does,

however, not mean that recombination at the metal contacts

does not generate entropy, but only that the entropy is gen-

erated in the bulk rather than at the contact (as can be seen

in Fig. 2).

To obtain a transport model equivalent to ordinary semi-

conductor physics, the off-diagonal transport coefficients in

Eq. (11) Lun ¼ Lnu ¼ 0; Lup ¼ Lpu ¼ 0 and Lnp ¼ Lpn ¼ 0

are assumed negligible. Taken together, these assumptions

amount to neglecting the Seebeck and Peltier effects as well

as off-diagonal transport effects between electrons and holes.

From a microscopic point of view, the assumption Lnp¼ 0

means that electron-hole collisions are neglected.13 The di-

agonal coefficients for charge transport are Lnn ¼ Tnln=e
and Lpp ¼ Tplp=e (with ln;p being the electron/hole mobili-

ties). The mobilities ln;p ¼ ln;p½qðxÞ� are assumed to depend

on the doping density q. The local absorption of solar heat qu

is assumed known from optical modeling, as well as the gen-

eration rate G ¼ GðxÞ. For recombination model R, the gen-

eral form

R ¼ Rðx; n; p; qÞ (15)

is used, indicating that R depends on n, p, and q as well as on

x explicitly (due to, e.g., a position-dependent defect den-

sity). Furthermore, Boltzmann statistics will be assumed, so

EFn;p are related to n, p, and / by

n ¼ NC exp
EFn þ vþ /

kT

� �
; (16)

p ¼ NV exp �EFp þ vþ EG þ /
kT

� �
; (17)

with NC;V being the effective densities of states for the con-

duction and valence bands, v and EG the electron affinity and

band gap (all assumed to be constant), and k the Boltzmann

constant.

Next, the set of physical functions Y and transport equa-

tions N that describe the solar cell are specified. The set of

functions Y that will be used is given by: Y ¼ fn; p;/; qg. If

FIG. 2. Band diagram calculations (performed in AFORS-HET) of a p-type

c-Si homojunction solar cell (a) with backside diffusion (BSF) and (b) with-

out BSF. The entropy production rate is shown using a color map. The insets

show magnifications near the surface of the cell. The BC EFn¼EFp was real-

ized by choosing a sufficiently high surface recombination velocity.
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the equations are stated as ni ¼ 0, the set of equations N ¼
fnig is

n1 ¼ r � �
lnn

e
rEFn

� �
� G� Rð Þ;

n2 ¼ r �
lpp

e
rEFp

� �
� G� Rð Þ;

n3 ¼ r2/þ e2

�
p� nþ qð Þ:

Here, n1;2 are the drift-diffusion equations and n3 is the

Poisson equation. Because q is considered to be an unknown,

the set N consists of three equations in the four unknowns Y
and is therefore underdetermined. However, the requirement

that the solution minimizes QS is used to make the problem

well-posed.

To minimize QS subject to the constraints set by Eqs. N,

the following functional K is minimized:

K½Y; fkig� ¼
ð

Tqs þ
X3

i¼1

kiðxÞni

 !
dV

¼
ð �

qu � ðEFn � EFpÞðG� RÞ � rEFn � Jn

þrEFp � Jp þ
X3

i¼1

kiðxÞni

�
dV:

:

(18)

The functional K depends on the four functions Y as well as

the three scalar Lagrange multiplier functions kiðxÞ, which

ensure that Eqs. N are satisfied for all x 2 X.

Because K depends on seven scalar functions, there are

also seven EL equations that correspond to the stationarity

requirement dK ¼ 0. The three EL equations for the ki repro-

duce the three Eqs. N, while the EL equations for the four

functions Y generate four new equations. The latter set of

four equations can be simplified by making the substitutions

k1 ¼ k̂1 � EFn and k2 ¼ k̂2 þ EFp. The resulting four differ-

ential algebraic equations (DAEs) are

r � lnn

e
rk̂1

� �
¼ n

@R

@n

k̂1 þ k̂2

kT
� Jn � rk̂1

kT
� e2nk3

�kT
; (19a)

r �
lpp

e
rk̂2

� �
¼ p

@R

@p

k̂1 þ k̂2

kT
� Jp � rk̂2

kT
þ e2pk3

�kT
; (19b)

r � ðlnnrk̂1 � lpprk̂2 þ erk3Þ ¼ 0; (19c)

e2

�
k3 þ

@R

@q
k̂1 þ k̂2

� �
¼ Jn � rk̂1

ln

@ln

@q
þ Jp � rk̂2

lp

@lp

@q
:

(19d)

The BCs for the k1;2;3 are obtained by considering the natural

BCs that make K stationary (see, e.g., Wan20 and the

Appendix). The natural BCs depend on the BCs that have

been imposed on the variables Y as well as on QS;surf . For

example, if n and p are fixed at the boundaries (i.e., Dirichlet

BCs) and QS;surf ¼ 0 (as has been assumed here), the natural

BCs require that k1 ¼ k2 ¼ 0 on @X (note that these BCs are

stated in terms of k1;2 rather than k̂1;2). The BCs for k3

depend on those of /: on boundaries with a Dirichlet BC for

/ the BC k3 ¼ 0 applies, while on boundaries with a

Neumann BC on / the BC n̂ � rk3 ¼ n̂ � ½2ðJn � JpÞ þ
ðlpp=eÞrk2 � ðlnn=eÞrk1� applies (with n̂ the outward unit

normal vector on @X).

There are seven EL equations in seven the functions Y
and k1;2;3, so the system of DAEs can be solved by a numer-

ical method to obtain the optimal shape for q. This illus-

trates the trade-off between parametric optimization and

the variational method: in the VEGM method the set of dif-

ferential equations is larger and has to be derived for each

particular optimization problem, but the numerical solution

has to be computed only once and the shape functions such

as q are optimized in complete generality rather than

parametrically.

In conclusion, the framework of nonequilibrium ther-

modynamics offers a useful perspective for the analysis of

local power losses in photovoltaic devices. By considering

the entropy generation rate, it becomes possible to take

into account electrical, optical and thermal losses and

compare them on a uniform scale. The total entropy gener-

ation rate can be regarded as a functional, making it possi-

ble to optimize solar cells by taking advantage of the

power of the calculus of variations. The design-predictive

method of Variational Entropy Generation Minimization

can take advantage of detailed models for, e.g., charge car-

rier recombination and mobility reduction due to semicon-

ductor doping and use these models to predict, e.g., the

optimal doping profile for a homojunction solar cell. In

short, the VEGM method should be considered as an

extension of the field of numerical solar cell modeling that

makes it possible to find the optimal trade-off between the

many complex loss mechanisms that occur in real solar

cells.
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APPENDIX: BOUNDARY CONDITIONS FOR THE VEGM
METHOD

Consider the homojunction solar cell in one-

dimensional (1D) at constant T for simplicity. The

domain of the cell is the interval X ¼ ½0; d� and the

boundary of the cell consists of the two points

@X ¼ f0; dg. The cell is described by the set of physical

functions Y ¼ fn; p;/; qg and transport equations

N ¼ fnig. This time the effect of the surface entropy gen-

eration will be accounted for in generality, so QS;surf 6¼ 0.

The functional K then becomes
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K½Y; fkig� ¼
ðd

0

�
Tqs þ

X3

i¼1

kiðxÞni

�
dxþ TQS;surf

¼
ðd

0

�
qu � ðEFn � EFpÞðG� RÞ

�E0FnJn þ E0FpJp þ
X3

i¼1

kiðxÞni

�
dx

þ
X
x2@X
½EFnðxÞ � EFpðxÞ�Rsurf ðxÞ

¼
ðd

0

LðxÞ dxþ
X
x2@X

LBðxÞ: (A1)

In Eq. (A1), the symbols L and LB have been introduced. The

part inside of the integral L is often referred to as the

Lagrangian of the problem. The boundary term LB will be

called the boundary Lagrangian here, but sometimes it is

also referred to as salvage value or terminal payoff (these

terms are more common in variational problems in

economics).

To obtain the proper BCs for the variational problem

dK ¼ 0, it is necessary to consider both the first order varia-

tion of L as well as that of LB. Calculating this variation

gives

dK ¼
ðd

0

X
y

@L

@y
dyþ @L

@y0
dy0 þ @L

@y00
dy00 þ :::

 !
dx

þ
X
x2@X

X
y

@LB

@y
dyþ @LB

@y0
dy0 þ @LB

@y00
dy00 þ :::

� �
:

(A2)

The sum over y runs over all functions Y as well as the ki.

Note that dðy0Þ ¼ ðdyÞ0 ¼ dy0 since the functional differential

d commutes with ordinary derivatives such as d=dx. The EL

equations are obtained by repeated application of partial inte-

gration on the integral in Eq. (A2) until no derivatives of the

first order variations (i.e., dy0; dy00, etc.) appear under the in-

tegral anymore

dK ¼
ðd

0

X
y

@L

@y
� @L

@y0

� �0
þ @L

@y00

� �00
�:::

 !
dy dx

þ
X
x2@X

X
y

(
n̂

@L

@y0
� @L

@y00

� �0 !
þ @LB

@y

" #
dy

þ n̂
@L

@y00
þ @LB

@y0

� �
dy0 þ :::

)
: (A3)

Here, n̂ is the 1D unit outward normal vector defined by

n̂ð0Þ ¼ �1; n̂ðdÞ ¼ 1. Note that no assumptions have been

made on the boundary values of dy and its derivatives yet.

The requirement dK ¼ 0 has consequence for both the part

under the integral and for the boundary terms. Under the inte-

gral, the first order variation dy can be any infinitesimal func-

tion, so in order for the integral to be zero, the prefactor of dy
has to be zero for every point x. Assuming that L does not

depend on higher derivatives than y00, the EL equations are

d2

dx2

@L

@y00

� �
� d

dx

@L

@y0

� �
þ @L

@y
¼ 0: (A4)

The EL Eq. (A4) is a necessary condition for the stationarity

of K, but it is not sufficient since the boundary terms in Eq.

(A3) must be zero as well. On @X, all variations dy and dy0

are independent of each other. This means that for every

term one has to choose between setting the variation equal to

zero (i.e., picking a BC for y or y0) or setting the prefactor of

that variation to zero. The latter choice results in a so-called

natural BC.

To illustrate this, consider the boundary terms involving

dn and dn0 on the boundary x¼ d. It is assumed that this is the

hole-collecting boundary and therefore Rsurf ðdÞ ¼ n̂JnðdÞ.
Because the variations in n and n0 are independent, each of the

terms involving dnðdÞ and dn0ðdÞ have to be zero, so

E0Fn þ k01 þ
k1 þ EFn � EFpð Þ/0

kT

� �
dn dð Þ ¼ 0; (A5a)

ðk1 þ EFn � EFpÞdn0ðdÞ ¼ 0: (A5b)

Both Eqs. (A5a) and (A5b) have to be satisfied, but dnðdÞ
and dn0ðdÞ cannot be zero simultaneously since the trans-

port equation for n is second order. This means that a

choice has to be made between imposing either a Dirichlet

BC for n (so dnðdÞ ¼ 0) or a Neumann BC (dn0ðdÞ ¼ 0). A

Dirichlet BC for n leads to a natural BC for k1 specified by

Eq. (A5b) while a Neumann BC leads to a natural BC for k1

specified by Eq. (A5a). The BCs for k3 are similarly

obtained by considering the boundary terms involving d/
and d/0.

In solar cell modeling, it is often desirable to consider

more general types of BC than just Dirichlet and Neumann

BCs. Such general BCs can be employed in the VEGM

method by the use of Lagrange multipliers. For example,

the recombination at the metal contact can be described by

an effective surface recombination velocity Seff:

Rsurf ¼ Sef f Dn. Here, Dn is the injection level, which is

approximately n at the hole-collecting contact. The desired

BC for electron transport is therefore: JnðdÞ ¼ n̂Sef f nðdÞ.
This mixed BC cannot be used directly in the variational

approach since it makes the variations in dnðdÞ and dn0ðdÞ
interdependent. To remedy this, the BC is enforced with a

(scalar) Lagrange multiplier kn by adding the term

kn½JnðdÞ � n̂Sef f nðdÞ� to the boundary Lagrangian LB.

After that, K is minimized with respect to kn in addition

to all the other variables, thus ensuring that the BC JnðdÞ
¼ n̂Sef f nðdÞ is satisfied by the solution. The boundary

terms for dnðdÞ; dn0ðdÞ and dkn are then

/0

kT
� n̂

eSef f

kTln

" #
kn þ E0Fn þ k01

 

þ k1 þ EFn � EFpð Þ/0

kT

�
dn dð Þ ¼ 0 (A6)

ðk1 þ kn þ EFn � EFpÞdn0ðdÞ ¼ 0; (A7)

ðJn � n̂Sef f nÞdkn ¼ 0: (A8)
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In this case, natural BCs have to be used to satisfy Eqs.

(A6–A8), since dnðdÞ; dn0ðdÞ, and dkn are all nonzero. From

Eqs. (A6) and (A7), the multiplier kn can be eliminated to

obtain the (mixed) BC for k1.
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