

Context in interactive mathematical documents : personalizing
mathematics
Citation for published version (APA):
Verrijzer, R. (2015). Context in interactive mathematical documents : personalizing mathematics. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.

Document status and date:
Published: 03/12/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/8e0b35af-80f9-4bc9-9b0c-b841de1c69ea

Context in Interactive Mathematical Documents
Personalizing Mathematics

PROEFONTWERP

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag
van de rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen door het
College voor Promoties, in het openbaar te verdedigen op donderdag 3 december 2015 om

16:00 uur

door

Rikko Verrijzer

geboren te Alkmaar

De documentatie van het proefontwerp is goedgekeurd door de pro-
motoren en de samenstelling van de promotiecommissie is als volgt:

voorzitter: prof.dr.ir. B. Koren

1e promotor: prof.dr. A.M. Cohen

copromotor: dr. F.G.M.T. Cuypers

leden: prof.dr. M. Kohlhase (Jacobs University)

prof.dr. J.H. Davenport (University of Bath)

prof.dr. P.M.E. De Bra

prof.dr. J.H. Geuvers (Radboud Universiteit)

prof.dr. J.T. Jeuring (Universiteit Utrecht)

Het ontwerp dat in dit proefontwerp wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Context in Interactive Mathematical Documents
Personalizing Mathematics

Rikko Verrijzer

Copyright c©2015 by R. Verrijzer.
Unmodified copies can be freely distributed.
Printed by Dereumaux.
Cover design by Cynthia Schoorl.

This work is part of the research project "Context in Interactive Math-
ematical Documents" (631.002.058) which is (partly) financed by the
Netherlands Organisation for Scientific Research (NWO).

A catalogue record is available from the Eindhoven Univeristy Li-
brary.
ISBN: 978-90-386-3975-8

Stubborn people get themselves in a lot of trouble,
but they also get things done.

— Anna Paquin

S U M M A RY

Today’s current information technology opens up new perspectives
and possibilities for documents on the web. They need no longer be
static. We can read and learn from content presented on the web in
an interactive way. This offers new possibilities for mathematical doc-
uments. For instance, the opportunity arises to keep track of a frame-
work for the mathematics that a user is working on in a mathematical
document. In our thesis, we develop a new document model for math-
ematical documents in which the content is enriched with a context
for the mathematics displayed.

The mathematical context of the document is captured by its sets
of theories, symbols, and variables. All three are partially ordered by
their dependencies and related through order preserving mappings.
This enables soundness checks of the document. The model is made
up of three parts, concerned with the mathematics, the user, and
the presentation, respectively. These parts interact with each other
to update the mathematical framework, to cater for user data, and to
achieve adaptivity.

A context as described by this model was implemented as an exten-
sion to MathDox, a dynamic system for presenting mathematical doc-
uments on the world wide web, developed at the Technische Univer-
siteit Eindhoven in the beginning of this millennium. This prototype
enables users to customize the document to their needs and prefer-
ences. The prototype context model contains implementations of the
parts concerned with the mathematical domain, user, and presenta-
tion model. These, in turn, use a theory, symbol, and variable graph,
representing the above-mentioned partial orders, as well as queries
and rules on these graphs. In order to demonstrate the features of
our document model, a sample document was created.

The pages that a user visits, automatically adapt to the user’s knowl-
edge and preferences by dynamically selecting and presenting con-
tent. Users select their own paths through a document and create
their own mathematical context by assigning values to variables to be
used in the content. The system keeps track of the knowledge of the
user and ensures good presentation and the soundness of the chosen
paths.

The implementation of the document model and its context are
generic and multi-purpose. When creating documents, authors will
be able to make a selection of context components (such as theory,
symbol, and variable graphs, as well as queries and rules on these
graphs) and to add their own components. The standards used for the

vii

implementation and content include OpenMath, Phrasebooks, XSLT,
XForms, Orbeon, Jelly, and Java.

The prototype demonstrates that and how mathematics can be pre-
sented considerably more interactively than by classical methods.

A C K N O W L E D G E M E N T S

It seems ages ago when Mark Spanbroek asked me to apply for the
position of technical developer in the European WebALT project at
the TU/e. This marked the start of my involvement with the Math-
Dox format and with it my interest in the possibilities of interactive
mathematics. When the WebALT project finished Arjeh Cohen and
Hans Cuypers approached me for a PhD project to enrich MathDox
with a context. I eagerly accepted. I would like to express my appre-
ciation to both Arjeh Cohen and Hans Cuypers for this opportunity
and with it their show of trust. Especially since it was quite clear that
with my dyslectic background, long travel hours and with a newborn
at home it would be a challenge. And a challenge it has been indeed.

I also want to express my gratitude to the committee members
Michael Kohlhase, James Davenport, Paul De Bra, Herman Geuvers
and Johan Jeuring for agreeing to serve on my PhD committee and
for providing me with much appreciated feedback.

Throughout the years many people have offered me their help and
assistance. The number of many friendly pointers to spelling mis-
takes, incorrect sentences, incomprehensible paragraphs are simply
too many to count. Among these people I especially have to thank
Eric Strouwen for his seemingly limitless amount of hours he spent
just to keep me writing. His proofreading of my sentences and para-
graphs and his suggestions as to how to change my texts to make
them say what they should, have been a tremendous help. Eric even
took vacation days and traveled to Bulgaria to keep me going, twice.
Finding mistakes was something Fabian Groffen was eerily good at.
He found a great number of them and helped out with quite a num-
ber of LATEX issues. His help came without being asked for and when-
ever I opened my laptop there was a good chance I had another one
of his mails waiting. Help also come from unexpected sides; cases in
example were Riny Bus and Marjolein Assenbroek, colleagues of my
wife at the Dutch embassy in Sofia. During our years in Sofia, it was
quite easy and tempting to let things slide and quit writing. However,
they simply refused to let me do just that and kept asking for status
updates. Shona Yu and Julia Collins also helped out by proofread-
ing texts and reviewing the math. They did so while being overseas.
Some last minute proofreading was done by Marja Scholten, René
Jonkman and Rob Baijens, colleagues at Bertrand Russell College in
Krommenie. They did not blink when they were surprised with a
stack of papers and a tight deadline. Of course they got their revenge
when they returned those papers full with notes. Cynthia Schoorl —
another colleague at Bertrand Russell College — demonstrated her

ix

skill as an artist by creating the cover of this thesis. She was helped
by Martijn Versteeg, who had way too much fun playing with Lego
and building the symbols one can see on the cover. During the im-
plementation of the context in the MathDox environment, Jan Willem
Knopper assisted with word and deed whenever a MathDox-related
problem would occur. He was a joy to brainstorm with over solutions
that would benefit both the MathDox Player and the context imple-
mentation.

I have truly enjoyed my time in Eindhoven and that is because of
all the great people I have had the pleasure to work with. I want to
thank Anita Klooster for always taking care of everybody and her
cheerful character. During my time, I have seen her leaving the de-
partment and returning. The Discrete Algebra and Geometry group
is definitely not the same without her. I also want to thank Rianne
van Lieshout, who took over from Anita in her own distinct manner
and was never shy of voicing her opinion. I have always appreciated
her honesty. Under the supervision of Bram van Asch I discovered
the joy of teaching. I am grateful for that as I am still teaching to-
day. I also want to thank Karin Poels, Mark Spanbroek and Dorina Ji-
betan, with whom I worked alongside in the LeActiveMath and Web-
ALT projects. And of course I want to thank the many PhD students
from the Discrete Algebra and Geometry and Coding and Cryptol-
ogy groups: Maxim Hendriks, Cristiane Peters, Dan Roozemond, Erik
Postma, Ellen Jochemsz, Reza Rezaeian Farashahi, José Villegas, Tim
Mussche, Jos in ’t panhuis and Andrey Sidorenko.

Last but certainly not least, I want to thank Janette, Joa and Natalja.
I am painfully aware that, far more often than I should have, I took
my burden into my family. I am thankful for their understanding,
support and love and deeply admire their patience.

Thank you all.

C O N T E N T S

1 introduction 1

1.1 MathDox . 2

1.2 Web 2.0 and the Semantic Web 3

1.3 Context . 4

1.4 Adaptive applications 5

1.5 The objective . 6

2 mathdox and other interactive math systems 7

2.1 Requirements for interactive mathematical documents 8

2.2 Formats for interactive mathematical documents and
its use . 11

2.2.1 Well-known formats 11

2.2.2 TeXmacs . 12

2.2.3 Computer algebra systems 14

2.2.4 Specialized mathematical formats 16

2.3 The MathDox format . 18

2.3.1 Requirements for interactive mathematical doc-
uments in MathDox 20

2.3.2 The structure of MathDox documents 24

2.3.3 Semantic encoding of Math 25

2.3.4 User driven interactivity 27

2.3.5 Programming and scripting 28

2.3.6 External services 29

2.3.7 Separating functionality in MathDox files 31

2.4 MathDox software . 31

2.4.1 The MathDox Player 32

2.4.2 Extending the MathDox format 35

2.4.3 The MathDox Formula Editor 36

2.5 MathDox at work . 37

2.5.1 MathDox examples 37

2.5.2 Exercise graphs 40

2.5.3 Authoring . 42

2.5.4 MathDox at work in various projects 43

3 context 47

3.1 Adaptive systems . 48

3.1.1 Scalar model . 50

3.1.2 Stereotype model 50

3.1.3 Structural model 50

3.1.4 Overlay model 50

3.1.5 Bug model . 52

3.1.6 Plan model . 53

3.2 Adaptive applications, an overview 53

3.2.1 Categories of adaptive systems 53

xi

xii contents

3.2.2 Examples of adaptive systems 54

3.3 Context of a user . 58

3.4 Requirements for an adaptive mathematical system . . 61

3.5 The need for context in MathDox 63

4 a mathematical context model 69

4.1 Domain model . 71

4.1.1 The theory graph 73

4.1.2 The symbol graph 76

4.1.3 The variable graph 78

4.1.4 Synthesis . 80

4.1.5 An example . 85

4.2 User model . 88

4.2.1 Mathematical context 88

4.2.2 Logistic context 89

4.2.3 Knowledge context 90

4.3 Presentation model . 91

4.3.1 Communication with the user and domain models 92

4.3.2 Selecting and structuring of content 93

4.3.3 Presentation of content 95

5 implementation of context in mathdox 97

5.1 Implementation design 98

5.1.1 The context object 98

5.1.2 Jelly implementation 100

5.1.3 Alterations in the MathDox Player 103

5.2 Domain model . 104

5.2.1 Theory graph . 108

5.2.2 Symbol graph . 108

5.2.3 Variable graph 110

5.2.4 Content . 117

5.3 User model . 123

5.4 Presentation model . 134

5.4.1 Queries and rules 135

5.4.2 Pre-defined set queries and rules 140

5.4.3 The knots example 148

5.4.4 The IDA example 151

6 conclusion 167

6.1 Meeting the requirements of a mathematical adaptive
system . 167

6.2 User evaluation . 170

6.3 Further research . 171

i appendix 173

a manual 175

a.1 How to set up a new document 175

a.2 Tutorial . 178

a.3 The layout of a MathDox Context document 188

contents xiii

a.3.1 File structure . 189

a.3.2 Document file . 189

a.3.3 Database structure 190

a.3.4 Author & inspection tools 193

a.4 Domain model graphs 196

a.4.1 Properties for nodes or edges 196

a.4.2 Defining nodes 197

a.4.3 Edges in a graph 199

a.4.4 Variable graph properties 200

a.4.5 Graph preparation script 202

a.5 Queries & rules . 202

a.5.1 Custom tags . 203

a.5.2 Creating new queries and rules 216

a.6 People who have worked on MathDox 219

Bibliography 221

Curriculum Vitea 233

L I S T O F F I G U R E S

Figure 1 The DocBook example rendered 25

Figure 2 MathDox Player overview 32

Figure 3 MathDox translation pipeline 33

Figure 4 Dynamic explanation of a tangent line in Dutch 38

Figure 5 A MathDox SCORM package in Moodle 40

Figure 6 MathDox exercise graph 42

Figure 7 The flow of knowledge/information from an
author, through a mathematical adaptive sys-
tem, to the reader of the document. 59

Figure 8 A drawing by Escher showing mutual depen-
dency. 72

Figure 9 Omitting redundant edges leads to a Hasse di-
agram. 73

Figure 10 A theory graph with nodal pages 74

Figure 11 A symbol graph on group theory. 77

Figure 12 A variable graph related to orbits. 78

Figure 13 Inter graph relations. 82

Figure 14 Used symbols and variables on nodal pages . 83

Figure 15 Running example usage 85

Figure 16 Theory graph (on the left) and symbol graph
(on the right) relations ΣS and Θ 87

Figure 17 Symbols introduced at theories (θ(s)) 88

Figure 18 The schema of the presentation model. 92

Figure 19 The MathDox Player and the context add-on. . 98

Figure 20 The MathDox interpretation schema. 101

Figure 21 Output of a MathDox page with Jelly statements102

Figure 22 A closer look at the Jelly phase and context in-
fluence on a page 103

Figure 23 A visual representation of the theory graph. . 108

Figure 24 A component of a variable graph related to orbits112

Figure 25 A variable graph related to orbits with conditions115

Figure 26 The MathDox Player translation pipeline adap-
ted to cope with fragments. 120

Figure 27 A component of a variable graph related to orbits129

Figure 28 The steps of the algorithm for a partial copy of
the variable graphs 130

Figure 29 Output of code in Listing 28 142

Figure 30 The theory graph as used by the knots document148

Figure 31 A view of a nodal page of the knot example . 149

Figure 32 The theory graph as used in IDA 152

Figure 33 The symbol graph as used in IDA 153

xiv

List of Figures xv

Figure 34 The variable graph as used in IDA 154

Figure 35 Logistic context of a user 158

Figure 36 Mathematical context of a user 159

Figure 37 Mathematical context of a user 159

Figure 38 An example with variables from the mathe-
matical context. 160

Figure 39 An example with automatic adapted variables
from the mathematical context. 160

Figure 40 A Euclid example performed by recursive frag-
ments. 162

Figure 41 Denied access because not all required knowl-
edge is understood. 162

Figure 42 Content made available by means of stretchtext. 163

Figure 43 A list of symbols as they occur on the theory
page. 164

Figure 44 Theory nodes that fail soundness checks. . . . 165

Figure 45 The MathDox Player status page 176

Figure 46 The division nodal page 183

Figure 47 The create user tool 188

Figure 48 A theory graph with unsound nodes 194

Figure 49 The main form of a domain model graph . . . 197

L I S T O F TA B L E S

Table 1 How well does LATEX and TEX meet the require-
ments . 12

Table 2 How well does TeXmacs meet the requirements 13

Table 3 How well does (X)HTML and MathML meet
the requirements 14

Table 4 How well does WebMathematica meet the re-
quirements? . 15

Table 5 How well does Sage meet the requirements? . 16

Table 6 How well does OMDoc meet the requirements 17

Table 7 How well does ActiveMath meet the require-
ments? . 18

Table 8 Requirements as met by the different formats . 19

Table 9 How well does MathDox meet the requirements 23

xvi

L I S T I N G S

Listing 1 An example of DocBook code 24

Listing 2 An example of OpenMath code 26

Listing 3 An example of XForms code 27

Listing 4 A Jelly Fibonacci example 29

Listing 5 Output of the Jelly Fibonaci example 29

Listing 6 An example of a MONET query 30

Listing 7 A call to a Jelly custom tag 35

Listing 8 A code example of a Jelly custom tag 36

Listing 9 An XPath expression that verifies that no addi-
tion is used. 39

Listing 10 A MathDox code example containing Jelly . . 101

Listing 11 A MathDox code example with executed Jelly 101

Listing 12 A library definition for custom tags 102

Listing 13 An example of a document file 105

Listing 14 A theory graph description file 106

Listing 15 Listing of a symbol graph 109

Listing 16 A partial variable graph 110

Listing 17 MathDox code calling a fragment 121

Listing 18 The fragment that is called 121

Listing 19 The include fragment tag 122

Listing 20 The include fragment tag 123

Listing 21 Mathematical context as stored in the user model125

Listing 22 A piece of the knowledge information 131

Listing 23 An example of knowledge information query
tags . 133

Listing 24 An example of a rule implemented in Math-
Dox code . 136

Listing 25 A Jelly rule being called 137

Listing 26 An example of a rule implemented by means
of a Jelly custom tag 137

Listing 27 An example of a fragment implementing a rule 138

Listing 28 The use of mastered available and notReach-
able queries. 141

Listing 29 A retrieval of the variable from the logistical
context . 143

Listing 30 A fragment call a step in the Euclidean algo-
rithm. 144

Listing 31 An example of a stretch text. 145

Listing 32 Calling the styling rule for a multiple choice
exercise. 146

Listing 33 Adding knowledge events to the knowledge
context. 147

xvii

xviii Listings

Listing 34 Retrieving the set of nodes leading towards the
goal node. 147

Listing 35 An example of a template as constructed with
fragments . 149

Listing 36 Contents of the template fragment rule 150

Listing 37 A node declaration in a theory graph 151

Listing 38 A node declaration in a symbol graph 153

Listing 39 A node from the variable graph 154

Listing 40 A document file. 156

Listing 41 Knowledge events stored in the database . . . 157

Listing 42 A fragment step in the Euclidean algorithm. . 161

Listing 43 The layout of a theory graph 179

Listing 44 The properties of a theory graph 180

Listing 45 The nodes of a theory graph 180

Listing 46 The edges of a theory graph 180

Listing 47 Nodal page group 182

Listing 48 Fragment code intro 183

Listing 49 The contents of the document.xml file 186

Listing 50 The contextvariables.xml 188

Listing 51 A knowledge XML document in eXist 190

Listing 52 An example of a variable XML document in eXist192

Listing 53 The start of a theory graph file 197

Listing 54 Definition of graph nodes 197

Listing 55 Definition of theory graph edge 199

Listing 56 An example of the OMExpression property . . 200

Listing 57 A conditions example 201

Listing 58 A fragment call with arguments set in the body 216

Listing 59 A fragment call with arguments in a name value
map . 216

Listing 60 An example of a custom tag. 217

Listing 61 The MathDox Context tag library class. 218

Listing 62 A snippet from the status page code with a call
to a custom Jelly tag. 219

1
I N T R O D U C T I O N

Today’s current information technology, with the internet, Semantic
Web, Web 2.0 and Cloud Computing, to mention just a few innova-
tions, opens up new perspectives and possibilities for mathematical
documents. We no longer have solely static documents or textbooks
from which to read, understand and learn, now we also have the op-
portunity to read and learn from interactive content. This offers new
perspectives for mathematical documents and their readers, as they
too benefit from dynamic and interactive material as it helps docu-
ments to make the step from a general audience focus towards a fo-
cus on smaller audiences. With the help of the computer we can now
create documents that are optimized for smaller and smaller target
audiences. Proper design of content makes it easier for an author to
reuse content and have that content adapted to its new environment.
This results in faster and more elaborate document creation and po-
tentially more users while still being able to adjust to the needs of the
few.

It is now time for the next step, where the target audience for a
document shrinks even further. Instead of making documents aimed
at an entire class of students we focus on an audience of only one:
an individual student. This way attention can be paid to the needs
of the individual student, making it easier for this reader to compre-
hend the contents of the document. The step from a large audience
with a general focus to a smaller audience and then to the individual,
requires that the author knows increasingly more about the smaller
audience’s needs in order to make the document fully connect with
them.

Whereas it involves dedication on the side of the author to write a
document targeting a small audience, it becomes virtually impossible
for an author to create documents so as to target different individu-
als, unless the author creates a document that automatically adapts
itself towards an individual. Such documents needs to modify their
contents through collection and analysis of data about the user so it
knows what to adapt and change.

The result of this collection and analysis is the user context, or
just context for short. The context keeps track of all important data
concerning the reader of the document and is to be used to adapt
and specialize a document that is specific in content for the needs of
a reader. In this manner specifically generated documents for readers
are created much in the same fashion as interactive websites, such as
e-banking systems, a web e-mail interface or an e-learning system. In

1

2 introduction

these examples, there are data about the user, that are subsequently
used to alter the web page to reflect the data stored in their profiles;
for example, their current account balance, number of new e-mails
waiting, or the current state of a course and such. We want to create
a similar adaptive environment for mathematical documents.

1.1 mathdox

The Discrete Algebra and Geometry group at Eindhoven University
of Technology has been working on the MathDox project [146, 61,
136, 62] for some time. MathDox is a format as well as a set of soft-
ware tools for creating interactive mathematical documents. Such doc-
uments can be delivered over the internet and be viewed via a web
browser. MathDox enables the creation of interactive mathematical
content that is accessible through the internet. One of the most pop-
ular applications of MathDox is e-learning; several showcases exist,
such as Wortel TU/e [112], MathAdore [60], IDA [148], WebALT [193],
TELMME [99], and the on-line knot theory course notes [50]. Math-
Dox may also be incorporated in e-learning environments such as
Moodle [158], OLAT [74], and Claroline [176]. MathDox does not limit
itself to just e-learning, it aims to make interactive mathematics acces-
sible to as many people as possible. As such it can also be used for
mathematical articles and documents.

Interactive mathematical formats differ from traditional paper doc-
uments and other static formats by their capacity to employ com-
puter algebra systems allowing for real-time computations. This pro-
vides for a user experience with mathematical concepts that would
not have been possible in any traditional document. For instance, ex-
amples that work with parameters as values — for example values
that are given by users — increase the variation and number of pos-
sible different occurrences significantly. Therefore users can set out
to satisfy their curiosity by experimenting with the values they enter,
and can see what kind of effects these have on computations.

In case of exercises, MathDox allows parameter values to be ran-
domized, surprising the user with many different exercises based on
the same template. But MathDox can go even further and take the in-
put from a user on a given page to use it for the selection of the next
MathDox page to show to the user, or confront the user with their
own input values by showing for instance a page that addresses the
(in)correctness of the input. Analysis of answers may lead to detec-
tion of common errors, offering the opportunity for users to find out
where possible misconceptions are located in their understanding of
a mathematical notion.

Other possibilities of MathDox are the inclusion of interactive ob-
jects such as graphs or applets that allow readers, for instance, to
play with trigonometry in a visual way [159, 178]. MathDox also pos-

1.2 web 2 .0 and the semantic web 3

sesses a formula editor [62] allowing users to enter in a simple way
complex mathematical formulae. In short, the MathDox format is a
scripting language aimed at constructing web pages that serve inter-
active mathematics, also called interactive mathematical documents.

To enrich the MathDox format with more interactivity and adap-
tation we introduce the concept of context into MathDox documents.
The context will enable MathDox to store data pertaining to visitors
of the web pages, and act upon the stored state of these users. This
makes MathDox more suitable for intelligent tutoring, as it enables
students to be guided by a document that adapts to the users and of-
fers them the opportunity to create their own mathematical context.

1.2 web 2 .0 and the semantic web

Let us take a moment to reflect on interactive mathematical docu-
ments written in MathDox, with the addition of context, in relation
to the already existing trends on the internet, namely Web2.0 and the
Semantic Web.

Web 2.0 is largely responsible for the recent increase of interactive
sites. Despite the lack of a precise definition of Web 2.0. In general
Web 2.0 is considered to be a distinct movement on the internet to
personalize content and make it interactive. As such, an emphasis
lies in content presentation and user interfaces, making Web 2.0 an
ideal candidate for the presentation layer in cloud computing, where
locally installed software is replaced by interfaces to software running
on remote servers instead. Despite the fuzziness of the term Web
2.0, it is generally accepted that Web 2.0 is a term for a collection or
combination of trends such as collaborating user, creating of content
by users, sharing of content, and interacting.

Examples of Web 2.0 applications are web logs (blogs), social net-
works (such as Facebook [24], Instagram [39] and LinkedIn [53]), web-
mail applications (e.g. Gmail [30], Hotmail [35] and Yahoo [119]), RSS-
feeds [88] and many others.

The Semantic web is older and quite different from Web 2.0. Where
Web2.0 aims to personalize the internet, the Semantic web tries to give
content on the internet a meaning [179]. The Semantic web wants to
enable software to be able to reason about content on the internet
on behalf of the user [165]. For this it is necessary for software to
understand what content is and what it means. Software lacks the
human notion of a context to do so properly without some extra help
in the form of metadata or data with a precise meaning (semantic
data). By adding metadata to content where meaning is otherwise
not precisely defined, it becomes possible to define relations between
various sources of content and for software to start to reason about
the meaning of content.

4 introduction

The MathDox format uses elements of both trends, and combines
them into a format that has both a meaning and interactiveness. How-
ever, the MathDox format currently lacks the sense of a user and the
notion of a context, or as it is called in Web2.0, a profile.

1.3 context

Context is a word used in many different settings. A dictionary will
give the following meanings of the word context.

The circumstances that form the setting for an event, statement,
or idea, and in terms of which it can be fully understood.
—Oxford Dictionary of English [195]

but also

The parts of something written or spoken that immediately pre-
cede and follow a word or passage and clarify its meaning.
—Oxford Dictionary of English [195]

We use context to denote the relevant circumstances of a user that is
reading an interactive mathematical document. These circumstances
will include:

• Logistic information. All personal information of relevance for
an interactive mathematical document, such as language, pro-
fession, etc.

• Knowledge information. To adjust content in order to make it
comprehensible for a reader, an interactive mathematical docu-
ment needs to have an idea about the knowledge of the user.
For instance the theorems or symbols that are understood.

• Mathematical context of the interactive mathematical document.
This includes all visible variables and their values as used in the
interactive document.

Note that context as described here fundamentally differs from the
notion of context as used in Dutch high schools1.

The notion of context we use does not describe a mathematical
problem, instead it describes the state of the user. As such it is com-
parable with a user profile as seen in a Web2.0 application or a user
model as found in an adaptive system.

1 A mathematical exercise with context on Dutch high schools is regarded as descrip-
tion of a situation with in which one or more mathematical problems occur that are
to be solved by the students. For example, an typical exercise context would be:

A tree has 23 rings in white, and 35 rings in brown. Each ring indicates a
year, however in the first three years no rings where created by the tree. How
old is the tree?
Answer: 23+ 35+ 3 = 61.

1.4 adaptive applications 5

An advantage of having a context is the fact that a mathematical
document can adjust its contents to the circumstances of the user. On
the basis of references in the context, a document will decide what
to include, exclude, or how to adapt any specific parts of the content.
For example beginners in the field will be offered an elaborate expla-
nation of the mathematical notions as they encounter them in the doc-
ument, while more advanced readers will be shown a reduced docu-
ment with only the basic definitions of new concepts. Another exam-
ple would be the representation of the imaginary symbol i which is
either left untouched or adapted to j if the user has a background in
electronics or physics, where the symbol i is commonly used to indi-
cate amperes. Also a context allows readers to set their own favorite
values for variables occurring in running examples throughout the
document, enabling readers to make a document their own.

1.4 adaptive applications

Enriching MathDox with a context and allowing MathDox code to
use this context to adapt the content as it is presented to the user
will make MathDox effectively an adaptive mathematical system. Our
study in making adaptive mathematical content is not alone in its ef-
fort. Over the past years several (although no mathematical) adaptive
application models have been proposed [151, 131, 161] and developed,
among these AHA! [132, 133], the LAOS framework [152] and the
more recent GRAPPLE [135]. These systems however do not focus on
and are not suitable for mathematics as they have trouble presenting
mathematics, accepting input and are missing a connection to compu-
tational engines like a computer algebra system, criteria in our view
required for a mathematical interactive document. Instead they aim
to be a general adaptive platform.

Panta Rhei [184, 185, 183] is an adaptive mathematical system that
is being built on top of OMDoc [174] and focuses on adaption of no-
tation in the content presented to the user. Panta Rhei can transform
mathematical texts into documents using the mathematical notation
preferred by the reader. To select the right notation Panta Rhei groups
its users into communities of practice (CoPs [199]).

ActiveMath [182, 1] is an intelligent tutoring system aimed at teach-
ing mathematics to its users. It focuses on finding misconceptions in
the knowledge acquired by its users and aims to repair these miscon-
ceptions. For this purpose ActiveMath takes into account the current
knowledge of a user, and the expected approaches of the user to solve
specific problems.

Our goal is to make it possible for authors to have their mathe-
matical content connect to their readers by letting the content adapt
to the specific needs of the users. This will increase the efficiency of
the reading and understanding of the texts by the user, mainly by

6 introduction

reducing the time a user loses when trying to figure out the mis-
matches in knowledge between the user’s and author’s assumption.
Panta Rhei collects individuals into groups, and loses the capability
to adapt documents to each specific individual. Our study focuses on
the individual within a group and creates the opportunity for content
to adapt itself to that specific user.

1.5 the objective

The objective of this thesis is designing a model which supports in-
teractive mathematical documents and that adapts automatically to-
wards the user with the help of the context.

To achieve this objective we first inspect the current existing (inter-
active) mathematical formats in Chapter 2. In Chapter 3 the different
aspects of context are discussed as well as their influence on adaptive
systems. Chapters 2 and 3 will lead up to a set of requirements a
mathematical adaptive system should meet.

The requirements and the conclusions drawn in these chapters are
used in Chapter 4 where we will introduce the three models domain
model, user model, and presentation model that make up our context
model. We will also pay attention to soundness so as to prevent pos-
sible undesired mistakes in adapted content. An implementation of
the context is described in Chapter 5, which discusses two prototype
implementations of interactive mathematical documents, one about
Knots, and another about Group theory, a conversion of the first chap-
ters of IDA [148]. We will end this thesis with conclusions in Chap-
ter 6.

2
M AT H D O X A N D O T H E R I N T E R A C T I V E M AT H
S Y S T E M S

Web pages about mathematics are hard to create and therefore often
static in the sense that they do not ask the user for any information
and therefore do not use such information to adapt the content. This
also includes pages with non-static elements if these do not accept
user input, such as movies. These pages do not invite the user to play
and experiment with the math they present and do not give the user
a chance to interact with the material. In this sense these web pages
are little more than a traditional math book.

We see three main reasons for this. First of all, interactivity in math-
ematical content often requires non-trivial computations that are not
easily performed without the assistance of specialized mathematical
software, e.g. computer algebra systems like Mathematica [63], Max-
ima [69] or GAP [28], or specialized applets such as Geogebra [29] or
JavaScript packages like JSXGraph [49]. Not being able to make calcu-
lations removes most if not all possibilities for interactivity, as these
web pages cannot react to math input from the user.

Second, displaying mathematics properly on a web page can be
challenging. There are a number of methods to render mathematics
on a web page, such as MathML [65], CSS [128], or by images. Unfor-
tunately, all of these are not intuitive to write for an author. MathML
is not yet natively supported by all major browsers1, CSS style sheets
are not always accurate and uniform on different browsers, images
are slow to create and cannot be easily generated on the fly. Math-
Jax [67] offers a way out by using JavaScript to render MathML and
LATEX into suitable fonts for the browsers without MathML support.

Third, user input of mathematical expressions is difficult. It is a lot
of work for users to enter complex or deeply nested formulae into a
web page with the standard set of XML elements, such as XHTML,
OpenMath or MathML. Without any aid –for instance of palettes with
mathematical symbols– it is nearly impossible for a user to enter any
complex mathematical expressions an in HTML input field.

Web pages that do contain interactive mathematics, often include
applets [102, 29] or flash applications [125] as demonstrated by web-
sites such as [129, 14]. The various applets and flash items tend to be

1 Of all major browsers Internet Explorer [41] and Chrome [10]. do not support
MathML natively. MathML support for Internet Explorer is obtained by installing the
MathPlayer plugin [58] in versions up to Internet Explorer 9. In Internet Explorer 11

the MathPlayer has been disabled. Chrome has a limited support for MathML. Work
towards MathML support had started but was canceled due to concerns about the
quality of the code. FireFox [72], Safari [90] and Opera [80] do support MathML
natively, but in varying degrees of completeness.

7

8 mathdox and other interactive math systems

and remain separate items on a page and do not come together with
the remainder of the content nor do they form a consistent interactive
mathematical document. Any expression or value occurring in these
items is not used in the surrounding page or document. These items
also tend to emphasize focus on graphical aspects of the mathematics
involved.

To address these issues the Discrete Algebra and Geometry (DAG)
research group at TU/e [15] has developed the MathDox system [61,
150, 146]. It consists of the MathDox format and a set of tools in-
cluding the MathDox Player. The MathDox format is an XML based
language for interactive mathematical documents. As such MathDox
documents can be interpreted and transformed into web pages by
the MathDox Player, software designed for this sole purpose. The re-
sulting web pages are dynamic and interactive, support rendering
of mathematics, offer easy access to mathematical services including
computer algebra systems, and are equipped with a convenient math-
ematical input system, the MathDox Formula Editor [62]. MathDox
shows its potential when demonstrating the workings of an algo-
rithm, testing readers’ skills with exercises, or explaining new con-
cepts with on-screen step by step calculations. However, it can also
be used in a more traditional way for publishing static mathematical
documents on paper (by export to PDF) or on the web (by export to
HTML).

The following sections will introduce the MathDox format and soft-
ware and other mathematical formats. In Section 2.1, we describe
what criteria we feel a mathematical interactive format should meet.
We discuss other available mathematical formats in Section 2.2. In
Section 2.3, we examine the different XML formats that are combined
within the MathDox format. Then, in Section 2.4, we discuss how the
MathDox system works. In Section 2.5, we give examples of various
projects in which MathDox has been used in practice.

2.1 requirements for interactive mathematical docu-
ments

The quality of an interactive mathematical format depends upon a
number of factors, listed here as a set of requirements. With the help
of these requirements we are able to compare the different formats.
We discuss in Section 2.2 how these requirements are met by some of
the available formats 2. In Section 2.3 we discuss how MathDox meets
these requirements.

2 By “format” we mean the grammar of the source text for such documents. It may
be necessary to apply programs to the source text in order to obtain presentable
mathematical documents. For instance a web browser that converts HTML code into
a viewable document in the browser, or a program to convert a LATEX file into a PDF
file.

2.1 requirements for interactive mathematical documents 9

The following six requirements are pertinent to interactive mathe-
matical documents.

Interactivity.
A user needs means of interacting with the mathematical content of
a document. For example, the user should be able to answer a math
question or to supply data for an example and to study the effects.
In short the user needs ways to change parameters and there has
to be a reasoning mechanism that can act on and work with those
parameters. Non-mathematical interactive web pages use reasoning
techniques like JSP [43], Java Servlets [44], PHP [84], or ASP [6].

Mathematical applets, flash applications are interactive but often
lack the opportunity to communicate and cooperate to form a consis-
tent page with the other elements. Flash applications or Java applets
run on the client browser and are sandboxed 3 by default, as such
they lack the capability to access anything outside the applet itself.
At best JavaScript [45] can retrieve values in the clients browser. But
by doing so an applet is considered untrusted and is run inside a
sandbox. JavaScript is only available at the client when the original
web page has already been constructed and sent to the client, severely
limiting the use of JavaScript for content adaption.

Usable in multiple formats.
An interactive mathematical document only benefits from interactive
aspects if it is served in an electronic environment. Web browsers
are very suitable for this task as they are already installed on virtu-
ally every computer and do not require extra software installations
by the user. However the need may arise to view such a document
on different media than a normal computer, such as a mobile phone
or more traditionally on paper. It is important that such formats are
supported from the same set of source files, although a different for-
mat may limit the functionality of the original document. No source
code changes should be required to allow for a change of display for-
mats; all that is needed is a different program or setting to transform
the source into the desired format for presentation. In other words,
content needs to be rich in semantics. A development in the field
of computer science addresses the same issue. There is a desire for
separation of content and presentation in general. Examples include
XHTML documents with CSS style sheets [128], where applying a
different CSS style sheet can dramatically change the presentation of
any XHTML page.

Semantics.
Semantics in non-mathematical content provides a starting point for

3 A sandbox is a confined area in which software is run and separated from other
software. A sandbox will not allow software to access anything outside the sandbox
like memory, connected devices and hard disk. This will protect other processes and
data on the computer from possible unstable or malicious code.

10 mathdox and other interactive math systems

transformations into different presentations, see the previous bullet
point. However the need for semantic meaning extends further than
just the content. The mathematics occurring in a mathematical docu-
ment requires an even higher level of semantic meaning as to enable
a variety of purposes, such as calculations that are to be performed
by the computer. But it also allows (parts of) mathematical expres-
sions — for instance entered by the user — to be analyzed and reused
in other expressions and calculations. The semantics also provide a
starting point for transformations from the mathematics as used by
the computer to mathematics as read and understood by a user.

Being extendable.
Mathematics is often regarded as a language that is used in various
other fields such as physics, electronics, computer science, economics,
etc. The usability of any mathematical format is greatly enhanced if
the format allows for field specific adaptations that would extend
the functionality of the mathematical format and make it suitable for
specialized applications. This means that if a document is written
for a specific target audience, the format must be able to include ex-
tra (non-standard) functionality to serve that target audience in the
best possible way. Extensions may include applets, web services, or
changes/extensions to the format itself.

Representation of mathematics.
Any mathematical format that aims to show mathematics to its users,
requires a good representation of mathematics. Before mathematics
expressions are rendered on the screen it can have various other for-
mats less readable by users. Examples are LATEX [171, 170], Open-
Math [77], or MathML [65], which are — in unprocessed form —
not the kind expressions one would expect in a mathematical text. It
is paramount that any reader is only served a proper rendering of
mathematics.

Availability of a dedicated computational engine.
To support interactivity in relation to mathematics it is necessary to be
able to (re)compute (complex) mathematical expressions when values
which they depend on change. Computer algebra system are special-
ized in complex mathematical computations and are a must have in
interactive mathematical document.

Ease of usage.
The success of a format is mostly given by the ratio of richness of the
format to the ease of usage. A format that does not offer much but is
still easy to use will not gain much popularity. The same goes for a
rich format that is very hard to use. The users involved here are both
the authors and the readers of the documents. For instance, users
should not have to install any extra programs or plugins in order to

2.2 formats for interactive mathematical documents and its use 11

read mathematical documents. At the same time authors should not
have too much difficulty creating the mathematical documents. Cre-
ating an interactive web page is often a programming task that many
authors have trouble with. Therefore an interactive mathematical for-
mat should be designed so as to make this task as easy as possible
for authors. For instance with authoring tools or by using well known
(sub)formats authors are familiar with.

Use of open standards.
By following existing standards, a format benefits from other tried
and proven technologies. It also helps to lower the learning curve
considerably as compared to a completely new format. Which again
directly assists in the previously discussed ease of usage of the for-
mat. Also the format itself and any programs needed for compilation
or translation should be open, so that every author will have direct
access to all the specifics of the format used and is free to make adap-
tations if necessary. This will further expand the opportunities the
format offers. Another benefit of open standards is the opportunity
to verify inner workings. Especially in the field of mathematics but
also in the academic world in general, validation of correctness is
paramount.

2.2 formats for interactive mathematical documents

and its use

There are a variety of different applications and formats available that
are capable of dealing with mathematics in a varying degree. They
range from well-known general formats like XHTML [189, 126] and
LATEX [171, 170] to computer algebra systems like Mathematica [63]
and Sage [91], to specialized formats like OMDoc [174] and Active-
Math [1], and to e-learning systems as WeBWorK [107] and EMILeA-
stat [21]. We have categorized these formats, selected some of each
category for discussion and compared them with our set of criteria
for interactive mathematical documents as given in Section 2.1.

2.2.1 Well-known formats

In this section we discuss well-known formats that can be used for
mathematics, but which may not have been primarily designed for
that purpose. As a consequence we see that they do not meet all of
our requirements for interactive mathematical documents, especially
where math interaction is involved. Two examples of this category
are LATEX and (X)HTML + MathML.

12 mathdox and other interactive math systems

Interactivity Limited
Usable in multiple formats Usually only PDF
Separation of content and presentation Math is non semantic
Being extendable Yes
Representation of Mathematics Very good
Availability of a computer algebra system No
Ease of usage Easy to use
Use of open standards Yes

Table 1: How well does LATEX and TEX meet the requirements

2.2.1.1 LATEX and TEX

LATEX [171, 170] is a markup format for typesetting of (mathematical)
documents, known by most (if not all) mathematicians and very suit-
able for static mathematical documents. LATEX is built upon TEX [171]
and focuses upon presentation aspect of the document; the mathe-
matical expressions in LATEX do not hold semantic value to interpret
the mathematics unambiguously. Although TEX is a Turing complete
programming language, LATEX is not built for computations. Neverthe-
less, LATEX is easy to use and can create documents in postscript and
PDF, which both render mathematics very well. As such the LATEX
format has been the standard for non-interactive mathematical doc-
uments for quite a while. Some interactivity is obtained by CTAN
packages [12] like the Exerquiz Package for exercises, the Eforms
Package for PDF forms, and the Insdljs package and dljslib Package
for JavaScript support, but limits the resulting document to Acrobat
Reader [123]. The gained interactivity is very limited and does not
support mathematical in or output.

2.2.2 TeXmacs

The TeXmacs [100] format competes with TEX and LATEX but is less
known. A big difference between TEX and TeXmacs is that TEX uses
a regular text editor and requires a compiler to process the TEX files,
whereas TeXmacs uses a WYSISWYG editor. Documents written in
TeXmacs are saved in either XML, Scheme [93] or the TeXmacs own
format. These are then convertible to PDF and postscript and with
converters also to TEX and HTML/MathML. TeXmacs documents
may also include plugins and connections to other programs, such
as computer algebra system as Maxima and Sage. TeXmacs is part of
the GNU Project [32] and therefore open source.

2.2 formats for interactive mathematical documents and its use 13

Interactivity Good
Usable in multiple formats PDF, postscript, LATEX

and HTML/MathML
Separation of content and presentation Math is non semantic
Being extendable Yes
Representation of Mathematics Very good
Availability of a computer algebra system Yes
Ease of usage Easy to use
Use of open standards Yes

Table 2: How well does TeXmacs meet the requirements

2.2.2.1 (X)HTML & MathML

(X)HTML and MathML [65] are both recommendations of W3C [103],
the World Wide Web Consortium. Both are therefore well documented
and (X)HTML documents are easy to create and use. Enriching the
XHTML with MathML takes some more effort if one is not familiar
with MathML, but it is an effort that pays in respect to the rendering
of the mathematics in a web browser. Despite being a W3C recom-
mendation MathML is not yet supported by all browsers.

MathML exists in two variants: MathML-Presentation and MathML-
Content. MathML-Presentation is used to render the mathematics in-
side users’ web browsers. MathML-Content is similar in purpose to
OpenMath [77] and both are meant as semantically rich formats, but
both need to be converted into MathML-Presentation before they can
be used by a web browser. MathML-Presentation, MathML-Content
and OpenMath all get increasingly difficult to type and edit when
expressions become more complex.

Recently, work has been completed on new versions of MathML
(MathML 3.0 W3C[66]) and OpenMath. These formats are interchange-
able with each other. As a result the differences in use are negligible.

(X)HTML and MathML are content formats and therefore any doc-
uments written in these formats will lack interactivity without the
addition of server sided software. This absence limits the possibility
to adapt the content sent to the user to the specific needs or demands
of said user, although some code adaption is still possible with the
use of JavaScript. Files containing (X)HTML and MathML can be dy-
namically generated by server-side applications like Java-Servlets [44]
(and JSP [43]), PHP [84] or ASP [6] scripts. By dynamically generating
the (X)HTML/MathML files the content can be made to adapt to the
needs of the user and interactivity is introduced in this way.

14 mathdox and other interactive math systems

Interactivity Requires server side code
Usable in multiple formats No
Separation of content and presentation Yes
Being extendable Yes
Representation of Mathematics Good
Availability of a computer algebra sys-
tem

No

Ease of usage Well known, easy to use
Use of open standards Yes

Table 3: How well does (X)HTML and MathML meet the requirements

2.2.3 Computer algebra systems

A Computer Algebra System (also called CAS) is an application spe-
cialized in (exact) mathematical calculations. It is able to receive an
expression by means of an interface (i.e.. command line or web in-
terface) and will return a response to it. Such a response may be the
result of a calculation or simply the confirmation of having received
the expression, which may be called upon in a following expression.
Computer algebra systems are a necessity for any interactive math-
ematical format that needs to perform calculations, as these calcula-
tions can quickly become so complex that the — in comparison —
simple computation possibilities of a normal programming language
are quickly exhausted. The complexity of computations even forces
computer algebra systems to specialize in specific fields. For instance
GAP [28] focuses on group theory where Maxima [69] specializes
in manipulation of symbolic and numerical expressions. Some com-
puter algebra systems support a feature called notebook. A notebook
is a (web) interface with predefined expressions, usually example pro-
grams that aim to show and or teach certain mathematical specifics.

Among the various computer algebra systems that exist, we discuss
Mathematica [63] and Sage [91] as representatives.

2.2.3.1 Mathematica, webMathematica

Mathematica [63] is a well-known computer algebra system. There
are multiple interfaces that connect to Mathematica, among which
a GUI, a command line interface, the Wolfram Workbench (based
on Eclipse [19]) and with webMathematica [106] and Wolfram Al-
pha [111] also a web browsers. Our interest goes to webMathematica,
as webMathematica is capable of producing interactive mathematical
documents on the web. It is based upon the Java Servlet framework
and offers some servlet functionality to the author of a webMathe-
matica document.

2.2 formats for interactive mathematical documents and its use 15

Interactivity Possible with Notebooks
Usable in multiple formats Very limited
Separation of content and presentation Limited
Extendable No
Representation of Mathematics Very good
Availability of a computer algebra sys-
tem

Yes

Ease of use Limited
Use of open standards No

Table 4: How well does WebMathematica meet the requirements?

WebMathematica pages are written in a similar fashion to how JSP
pages are written. HTML code is enriched with Mathematica Server
Page statements in order to get the desired combination of web page
and mathematical interaction.

Mathematics in webMathematica can be rendered by using images
or MathML. As the name suggests, webMathematica is a web based
interface to the computer algebra system Mathematica.

webMathematica is not an open format and is therefore more dif-
ficult to adapt to other applications. webMathematica does however
cooperate with JavaScript, applets, Active-X controls, browser plug-
ins, and Excel.

Mathematica also provides the Mathematica Player [64]. This is an
application in which the Mathematica engine is embedded and al-
lows the user to view interactive documents. The Mathematica Player
does not need prior installation of a servlet container or a Mathemat-
ica installation and can be used without a browser. The Mathematica
Player is a successor to MathReader, which handled only static doc-
uments. Mathematica Player uses manipulation functions for interac-
tion. These functions are graphical components that can be used to
input or alter settings. These settings are then passed to the Math-
ematica Player engine. The Mathematica Player does not allow the
input of mathematical expressions without the use of one of the ma-
nipulation functions.

2.2.3.2 Sage

Sage [91] is an open source computer algebra system that combines
different mathematical open source software into one computer al-
gebra package. It offers a command line interface as well as a web
interface.

Some software packages that are included are: GAP [27], PAR-
I/GP [82], Macaulay2 [54], Maxima [69], Octave [31], and Singular [96].
Closed software is not included, however, support for Magma [55],

16 mathdox and other interactive math systems

Interactive documents Possible with Notebooks
Usable in multiple formats Very limited
Separation of content and presentation Limited
Extendable Yes
Representation of Mathematics Very good
Availability of a computer algebra sys-
tem

Yes

Ease of use Easy
Use of open standards Yes

Table 5: How well does Sage meet the requirements?

Maple [56], Mathematica [63], and MATLAB [68] is included as to
allow users who have these installed on their computers to use them
through Sage as well. Sage is written in Python [86] and Cython [13]
and uses close to 100 open source libraries.

Sage provides Notebooks, which are mathematical documents that
can be viewed by and edited in a web browser. These are written in
Python and Cython. Notebooks aim at collaboration between people
allowing, for example, students to work together on their homework
assignments. The languages that can be used in the Notebooks are
Python and LATEX. The former is used for complex free-form calcula-
tions and plotting, whereas the latter is useful for displaying math-
ematical formulae. Since there are no interactive documents there is
no need for separation of content and presentation.

2.2.4 Specialized mathematical formats

Over time, various research groups have developed their own math-
ematical formats. These formats differ quite a bit from each other as
they have been build with different design goals. For instance while
OMDoc aims to be a semantically rich format, WeBWork [107] puts
more emphasis on presentation instead. We will discuss OMDoc and
ActiveMath (related to OMDoc) in more detail.

2.2.4.1 OMDoc

The OMDoc [174] format is an open format which focuses on the
semantic meaning of math in its documents. The strict distinction be-
tween semantic meaning and presentation form was one of the design
goals of the format. The semantic meaning of mathematics in OMDoc
is achieved by the use of OpenMath and Content MathML.

Transformation from the XML OMDoc format to another format
easier to read by humans is done in two steps. First knowledge about
the user is taken into account which results in in- or exclusion of ma-

2.2 formats for interactive mathematical documents and its use 17

Interactivity No
Usable in multiple formats XHTML, LATEX, PDF
Separation of content and presentation Yes
Extendable Yes
Representation of Mathematics Very good
Availability of a computer algebra system No
Ease of use Moderate
Use of open standards Yes

Table 6: How well does OMDoc meet the requirements

terial. This can include matters like language in the document itself
(provided the document has more than one language to offer) as well
as knowledge already known by the user and therefore not needed
by this user. Next a series of XSLT style sheets [118] will transform
OMDoc into HTML (+MathML) or LATEX. The transformation of the
latter to PDF is trivial with pdflatex from the LATEX suite.

The OMDoc format has no interactivity and therefore no means
for entering mathematical expressions. This is however something
ActiveMath adds to OMDoc. Also, changes in users’ context and the
lack of interactivity requires OMDoc to start new transformations to
reflect presentation changes.

The modular design of OMDoc enables extending the format into
other formats. OMDoc is used for e-learning by ActiveMath [1, 182,
181] although its emphasis is more on the formal, semantic and log-
ical treatment of mathematics and less on the interactivity of mathe-
matics. OMDoc is also extended to be used in a physics environment
with the format PhysML [168].

Because of the semantical and logical structure of OMDoc it en-
ables meaningful communication between various software systems,
including mathematical web services. Software also exists for trans-
lation to theorem provers and computer algebra systems such as
Coq [11] and Maxima [69].

2.2.4.2 ActiveMath

ActiveMath [180, 1, 182, 181, 122] is a mathematical intelligent tutor-
ing system developed by DFKI and Saarland University. ActiveMath
is built upon OMDoc and therefore requires content — which is frag-
mented into separate notions — to be written in OMDoc entities. An
document4 is then constructed by a compilation process that selects
entities and transforms them into a document. The generated docu-
ment is organized around a collection of concepts such as definitions,
axioms, assertions, proofs, algorithms, etc. This is further extended

4 also called a book or a course

18 mathdox and other interactive math systems

Interactivity Good
Usable in multiple formats HTML, Latex, PDF, SVG
Separation of content and presentation Yes
Extendable Yes
Representation of Mathematics Very good
Availability of a computer algebra sys-
tem

Yes

Ease of use Moderate
Use of open standards Yes

Table 7: How well does ActiveMath meet the requirements?

with additional items like explanations, elaboration and exercises.
The selection and transformation process also personalizes the con-
tent for individual students on the basis of user data. This user data
is gotten from questionnaires about learning goals, background and
preferences of the student and is then stored in the user model.

Because of its connection to OMDoc, ActiveMath has similar char-
acteristics, such as the semantics of content, including mathematics
which is written in OpenMath. The semantic meaning also makes it
possible to create a course in another format such as PDF or SVG. As
ActiveMath is a tutoring system it also supports means for interac-
tivity such as exercises, and access to computer algebra systems like
Mathematica [63] and GAP [28].

This modular design together with the opportunity to link client
tools and loosely coupled components and its open source license
allows for extending and specializing the ActiveMath format. Ease of
usage is moderate as the format used is not well known.

As intelligent tutoring systems are a subpart of adaptive systems,
we will discuss the adaptive capabilities of ActiveMath in more detail
in Section 3.2.2.6.

2.3 the mathdox format

MathDox has been developed at the Discrete Algebra and Geometry
group at the TU/e in Eindhoven. The MathDox format is a mathemat-
ical format that compares with OMDoc and ActiveMath. The Math-
Dox format combines several XML formats. The combination of XML
formats is then translated upon a user’s request to form an interac-
tive mathematical document accessible through the web. Each format
contributes a useful facet for an interactive mathematical document.
The XML formats used in MathDox are:

2.3 the mathdox format 19

Ta
bl

e
8

:R
eq

ui
re

m
en

ts
as

m
et

by
th

e
di

ff
er

en
t

fo
rm

at
s

R
eq

ui
re

m
en

ts
LA

T E
X

Te
X

m
ac

s
M

at
hM

L
an

d
(X

)H
TM

L

(W
eb

)-
M

at
he

m
at

ic
a

Sa
ge

O
M

D
oc

A
ct

iv
eM

at
h

In
te

ra
ct

iv
it

y
Li

m
it

ed
G

oo
d

R
eq

ui
re

s
se

rv
er

co
de

Po
ss

ib
le

w
it

h
N

ot
eb

oo
ks

Po
ss

ib
le

w
it

h
N

ot
eb

oo
ks

N
o

G
oo

d

U
sa

bl
e

in
m

ul
ti

pl
e

fo
r-

m
at

s
U

su
al

ly
on

ly
PD

F
PD

F,
po

st
sc

ri
pt

,
LA

T E
X

an
d

H
TM

L/
-

M
at

hM
L

N
o

Ve
ry

lim
it

ed
Ve

ry
lim

it
ed

X
H

TM
L,

LA
T E

X
,P

D
F

H
TM

L,
LA

T E
X

,
PD

F,
SV

G

Se
pa

ra
ti

on
of

co
nt

en
t

an
d

pr
es

en
ta

ti
on

M
at

h
is

no
n

se
m

an
ti

c
M

at
h

is
no

n
se

m
an

ti
c

Ye
s

Li
m

it
ed

Li
m

it
ed

Ye
s

Ye
s

Be
in

g
ex

te
nd

ab
le

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

R
ep

re
se

nt
at

io
n

of
M

at
he

m
at

ic
s

Ve
ry

go
od

Ve
ry

go
od

G
oo

d
Ve

ry
go

od
Ve

ry
go

od
Ve

ry
go

od
Ve

ry
go

od

A
va

ila
bi

lit
y

of
a

co
m

-
pu

te
r

al
ge

br
a

sy
st

em
N

o
Ye

s
N

o
Ye

s
Ye

s
N

o
Ye

s

Ea
se

of
us

ag
e

Ea
sy

to
us

e
Ea

sy
to

us
e

W
el

l
kn

ow
n

ea
sy

to
us

e

Li
m

it
ed

Ea
sy

M
od

er
at

e
M

od
er

at
e

U
se

of
op

en
st

an
da

rd
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

20 mathdox and other interactive math systems

• DocBook.
DocBook [16] is used to structure documents. It is an open
markup format that adds semantics by specifying the different
roles document parts have. Enabling translation into multiple
presentation formats. See also Example 1.

• OpenMath.
Semantic encoding of mathematics is done with OpenMath [77].
Thanks to the semantics of OpenMath, mathematical expres-
sions are used for computations but also for presentation.

• XForms.
User-driven interactivity, and user input in general, is made pos-
sible with XForms [113]. XForms is an open standard and it re-
places the combination of HTML-Forms [36] and JavaScript [45]
with a new XML based and open format.

• Jelly.
Jelly [47] is a programming and scripting XML format and is
responsible for acting upon user input. Content depending on
conditional actions, loops or external web services require Jelly
code.

• XInclude.
The inclusion of other pieces of content from different files en-
ables separation of responsibilities and enlarges the possibilities
for maintenance and adaptation. XInclude [117] makes this pos-
sible.

These formats will be discussed individually in the Subsections 2.3.2
to 2.3.7 below.

MathDox documents are served to users by the MathDox Player,
which will be discussed in Subsection 2.4.1.

2.3.1 Requirements for interactive mathematical documents in MathDox

We discuss how MathDox meets the criteria of each of the design
features listed in Section 2.1.

2.3.1.1 Interactivity

MathDox combines the interactivity as found on web pages with the
power of mathematical computations, resulting in interactive math-
ematics. The interactivity of web pages is realized within the Math-
Dox documents and MathDox Player by use of the scripting language

2.3 the mathdox format 21

Jelly, that adds conditional logic capable of responding to user input
from XForms elements [113]. The Jelly format also offers interactivity
through inclusion of (specialized) web services. Interactivity finally is
boosted by means of included applets on the page. The Jelly script-
ing language [47] also offers the opportunity to interface with exter-
nal software, the most notable among these being computer algebra
systems. XForms and applets react to user input without the need to
refresh the web page. XForms can even hide, show and adapt exist-
ing content on a web page to certain limits. This results in web pages
that adapt to user input and can contain complex mathematical ex-
pressions that are run-time computed.

2.3.1.2 Usable in multiple formats

Mathematical documents written in the MathDox format can be trans-
lated from the XML source into XHTML, but with a different set of
XSLT style sheets also into PDF and LATEX. By creation of yet more
XSLT style sheets other formats also become possible. These trans-
formations ensure that, besides the web browser based form of the
MathDox format, other electronic or even paper versions of MathDox
documents are possible.

2.3.1.3 Separation of content and presentation

The MathDox Player serves MathDox documents as XHTML docu-
ments to the user and uses CSS style sheets for styling issues. Any
further distinction between content and presentation is achieved by
means of semantic data. The semantic data is then used to interpret
the content in the correct way during the translation process to a
viewable document, usually an XHTML document.

2.3.1.4 Being extendable

MathDox is extendable. External applications can easily be embedded
into MathDox by means of web-service calls. In this way MathDox
documents are made suitable for almost any task involving external
software. This approach is also used to connect various computer al-
gebra systems to MathDox documents, so as to ensure that the user
is not bound to one particular system, but can select the best suited
computer algebra system for each computation. In fact, the invocation
of a computer algebra system can be done in essentially two different
ways: either the instructions for the computer algebra system are writ-
ten in the universal language OpenMath [77], and, by use of external
phrasebooks [142], encoded into — and later the results are decoded
from — specific commands for the computer algebra system; or the
instructions within MathDox are written straight in the specific com-
mand language for the computer algebra system.

22 mathdox and other interactive math systems

Other features also support extendability; CSS files, applets, the
open source license on the MathDox software and the modularity
of the MathDox Player implementation. Flexibility is highlighted in
more detail in Section 2.4.2. In Section 2.5.4 we will discuss projects
that have made use of MathDox and demonstrated its flexibility.

2.3.1.5 Representation of Mathematics

Mathematics can be represented in OpenMath [77], MathML [65]
and LATEX. Via XSLT transformations, OpenMath and MathML can
be transformed to LATEX, which, with the help of MathJax [67], can
be rendered within a web browser. MathJax translates LATEX into ei-
ther locally available suitable fonts, or images of appropriate sizes.
Other approaches to render mathematics in a web browser are to
make use of MathML (and skip translation to LATEX) or to translate
mathematics to images. MathML is not yet truly supported by Inter-
net Explorer [41] and requires an additional plug-in before web pages
with MathML are displayed properly. The need for a plug-in by In-
ternet Explorer requires a lot of users to install it. This requires extra
work and some users may lack the skill or the right permissions to
do it. The need for a plug-in almost always disrupts the ‘plug and
play’ feeling MathDox is aiming for. The Opera [80] and Mozilla Fire-
fox [72] browsers have native support for MathML and do not require
a plug-in. Chrome relies on MathML implementation in WebKit [105],
which is work in progress. The translation to images, as done by
MathJax, requires a dynamical translation of the mathematics. More-
over, images are known for their lack of scalability. The use of MathJax
allows MathDox document authors to use either OpenMath, Presen-
tation MathML or LATEX for mathematics they want to be rendered
in the web browser. See the Section 2.4 for more information on this
process.

2.3.1.6 Easy to use

MathDox documents should be easy to access and to use. Users should
not have to go through extra trouble to view a MathDox document in
a web browser. This consideration played a major part in the decision
(see Section 2.3.1.5) not to use MathML or images in the generated
HTML pages destined for the users’ web-browsers. Easy to use also
means that the MathDox documents are provided with a formula ed-
itor [62] that enables the entering of mathematical expressions in an
easy way and does not require existing knowledge about the under-
lying representation of math in LATEX, MathML or OpenMath. More
about this mathematical editor can be found in Section 2.4.3.

The use of existing standards helps authors to familiarize them-
selves with the MathDox format. To even further assist authors in the

2.3 the mathdox format 23

Interactivity Good
Usable in multiple formats HTML & PDF
Separation of content and presentation Good
Being extendable Yes
Representation of Mathematics Very good
Availability of a computer algebra system Yes
Ease of usage Limited
Use of open standards Yes

Table 9: How well does MathDox meet the requirements

creation of MathDox documents, several editors have been developed,
these are explained in detail in Section 2.5.3.

2.3.1.7 Usage of open standards

By combining existing standards MathDox profits from other tech-
niques that have already proven themselves. This approach saves a
lot of unnecessary work and helps new MathDox authors who are
already familiar with some of these standards to lower the learning
curve of the MathDox format. Authors also benefit from having ex-
isting documentation available if they are not yet familiar with these
standards. Often tools working on sources with these standards are
readily available.

In the same spirit, the MathDox software is available under the
open source license LGPL [52].

2.3.1.8 How well does MathDox meet the requirements

The MathDox format produces documents that are meant for inter-
action with the user and as such scores well in this regard. With
the addition of a context to MathDox, the user interaction will im-
prove further. The MathDox documents are meant to be viewed in a
web browser, therefore its main format is HMTL but PDF is also sup-
ported. The open source subformats used by the MathDox format are
semantically rich — together with CSS files — allowing for a good
separation of content and from. MathDox was designed with extend-
ability in mind and practice this mindset in the way it connects to
computer algebra systems. Representation of mathematics is done by
MathML and MathJax and works well. Authoring a MathDox docu-
ment involves a learning curve for new authors.

24 mathdox and other interactive math systems

2.3.2 The structure of MathDox documents

The MathDox format needs a structure that allows MathDox docu-
ments to be processed in a logical and semantic manner.

The required structure is provided by DocBook. DocBook adds se-
mantic structure to a document and is an open source XML format.

DocBook also has some disadvantages. It is more extensive than
what was sought for and is mainly focused on static documents and
lacks support for mathematics. The first disadvantage is minor, as
no MathDox author is forced to use DocBook to its full extent. The
second disadvantage is countered by the inclusion of other formats
into MathDox such as XForms and Jelly: see Section 2.3.4 and Sec-
tion 2.3.5. Inclusion of other formats also solves the lack of math sup-
port, namely OpenMath or MathML.

Listing 1: An example of DocBook code

1 <book>

2 <title>

3 <ulink url=" introduction .md">
4 <phrase role=" t i t l e1 ">
5 Transformations and differentiations

6 </phrase>

7 </ulink>

8 </title>

9 <subtitle>Introduction</subtitle>

10 <sect1 name=" introduction .mb" role=" introduction">
11 <title/>

12 <para class=" ">
13 Some text in a paragraph

14 </para>

15 <mediaobject>

16 <imageobject>

17 <imagedata fileref="image. jpg"/>
18 </imageobject>

19 </mediaobject>

20 <para>Some more text</para>

21 <itemizedlist>

22 <listitem>A list item</listitem>

23 <listitem>Another list item</listitem>

24 </itemizedlist>

25 </sect1>

26 </book>

Example 1:
See Listing 1 for an example of DocBook code. In this

example the root tag is a book (it could also have been an
article) element grouping the contents of a MathDox Doc-
ument together. Next is a title element which contains a
link (ulink) and a subtitle element stating the titles of this

2.3 the mathdox format 25

document. This document contains just one section which
is grouped together in the sect1 element. Within this sec-
tion some paragraphs (para) exists. Also, a mediaobject is
inserted which contains everything necessary for an im-
age to be displayed. Finally, we see an itemizedlist which
demonstrates an enumeration.

Figure 1: The DocBook example rendered

2.3.3 Semantic encoding of Math

Within MathDox, mathematics appears in various forms: mathemat-
ics as used in computations by software packages or mathematics
solely meant for the user to read or sometimes for both the computer
and the user. For each type of usage one wants mathematics to have
specific properties. In general a user will be able to grasp the meaning
behind a, possibly ambiguous, mathematical expression, often helped
by the context in which the expression appears. Computer software,
however, will need its mathematics to be completely unambiguous,
since it cannot benefit from the context in the way a mathematically
skilled reader does in order to solve gaps caused by incompleteness
and ambiguity. OpenMath [77] was chosen as the main format for
mathematics within MathDox documents. It is well suited because
it is semantically rich, unambiguous, XML-based and can easily be
transformed into other formats, such as MathML and LATEX, which
are better suited for presentation. Ambiguity in mathematical expres-
sions are solved in OpenMath by explicitly specifying the operator
that is intended. As most operators are grouped into categories, it
suffices to just name the group (called a content dictionary) and the
desired operator. Different operators have either different content dic-
tionaries, different names, or both. The display of OpenMath expres-
sions is left to translators such as XSLT style sheets. These translators
decide on the right presentation form.

26 mathdox and other interactive math systems

Example 2:
To give the reader an idea of the OpenMath encoding of

the semantics of a mathematical expression, we present a
snippet of OpenMath in Listing 2 representing 1+ sin(x):

Listing 2: An example of OpenMath code

1 <OMOBJ>

2 <OMA>

3 <OMS cd=" arith1 " name="plus"/>
4 <OMI>1</OMI>

5 <OMA>

6 <OMS name=" sin " cd=" transc1 "/>
7 <OMV name="x"/>
8 </OMA>

9 </OMA>

10 </OMOBJ>

In the listing we find an OpenMath Object (<OMOBJ>)
which is used as container to hold the OpenMath expres-
sion. Each OpenMath expression should start and end
with this tag, although incorrect it is also sometimes omit-
ted. Every expression contained by an <OMOBJ> then starts
with an OpenMath Application (OMA). To indicate what
kind of operator is required the OpenMath Symbol (OMS)
is used with the attributes cd and name. In the listing
the attributes of the first OMS (line 3) indicate that the
used symbol is the plus operator from the content dictio-
nary (cd) arith1. Each content dictionary, much like XML
namespaces, defines its own definitions for the symbols
they contain. This makes each combination of cd and name

distinct and together with the definition semantically rich.
Moreover, it prompts OpenMath Symbols to be abbrevi-
ated to the cd and name values, in this case: arith1.plus
The OpenMath Integer (<OMI>) then specifies the integer
value of 1. The second argument for the arith1.plus op-
erator is another OpenMath Application, containing an
OpenMath Symbol transc1.arith1

5. and the OpenMath
Variable (OMV) x.

5 The definition for arith1.sin can be found in the content dictionary [78] and is as
follows: This CD holds the definitions of many transcendental functions. They are
defined as in Abromowitz and Stegun (ninth printing on), with precise reductions to
logs in the case of inverse functions. Note that, if signed zeros are supported, some
strict inequalities have to become weak. It is intended to be ‘compatible’ with the
MathML elements denoting transcendental functions. Some additional functions are
in the CD transc2.sin
Role: application
Description: This symbol represents the sin function as described in Abramowitz
and Stegun, section 4.3. It takes one argument.
Commented Mathematical property (CMP): sin(x) = (exp(ix) − exp(−ix))/2i

2.3 the mathdox format 27

Note that if different definitions for symbols are re-
quired, alternative definitions can be created in a new dif-
ferent content dictionary.

MathDox documents use the OpenMath representation where se-
mantics are important and can switch to MathML or LATEX when the
mathematics need to be presented to the user either on screen or on
paper. The semantic structure offered by OpenMath also allows for
easy manipulation of a mathematical expression, i.e. to select, verify,
evaluate, (re)use it in computations or to present it without the need
of the surrounding expression and without losing its meaning.

Mathematics solely meant for presentation and not needed for com-
putations does not necessarily have to be written in OpenMath and
may be written directly in MathML or LATEX. Likewise mathematics
only used by a specific computer algebra system may be written in
the language of the used computer algebra system.

2.3.4 User driven interactivity

XForms [113] is a development which became a W3C recommenda-
tion [114] in October 2003 for version 1.0. XForms 1.1 received a W3C
recommendation [115] in October 2009.

XForms is meant to replace the current HTML forms in web pages.
For this purpose XForms offers new form elements that take over
the role of the existing HTML form [36] elements and the need of
JavaScript [45]. Any data collected by XForms elements is stored in an
XML form that is sent along with a submit event. Also XForms allows
rules, for example bindings, that determine when elements should
become visible, active, or disappear. Just like JavaScript, XForms is a
client based format, enabling actions to be taken without communi-
cation with the server.

XForms in MathDox documents provide means of interaction with
the reader of the MathDox document. It allows for many interaction
(form) elements which are used for user input, such as text fields,
radio buttons, and drop down menus.

A simple example of XForms code is shown in Listing 3. The upper
listing is the model, an XML document, used by XForms to store
values as they are set by the XForms controls on the HTML page.
When a submit occurs, this model is being sent back to the server,
notifying the MathDox Player of the new settings. Note that the <a>
element contains a default value of 1. The second listing contains
two input elements. These represent input fields directly linked to
the elements in the model just described. Initially the first input field
linked to a will show the default value of 1. The submit element at the
bottom of the listing represents a button labeled submit. When this
button is pressed the (modified) model will be sent to the server.

28 mathdox and other interactive math systems

Listing 3: An example of XForms code

1 <xforms:model>

2 <xforms:instance>

3 <variables>

4 <a>1

5

6 </variables>

7 </xforms:instance>

8 <xforms:submission method= ’post ’ action= ’aWebpage’
9 id= ’submission ’/>

10 </xforms:model>

11

12 <xforms:input ref= ’a ’>
13 <xforms:label>a</xforms:label>

14 </xforms:input>

15 <xforms:input ref= ’b ’>
16 <xforms:label>b</xforms:label>

17 </xforms:input>

18

19 <xforms:submit submission= ’submission ’>
20 <xforms:label>submit</xforms:label>

21 </xforms:submit>

XForms is included into the XHTML 2.0 draft specifications [126].
XHTML 2.0 was meant to become the successor of XHTML, how-
ever the development was canceled in favor of HTML5 [198]. Work
to support XForms natively by browsers has been done [116, 26], but
stalled after the cancellation of XHMTL 2.0. Examples of plugins are
the formsPlayer [26], a plug-in for Internet Explorer browser and the
Mozilla XForms project for Mozilla web browsers.

For now the XForms code in MathDox documents is translated au-
tomatically by the MathDox Player into HTML forms supplemented
by JavaScript, making sure it works whether or not the browser has
a plug-in for XForms support. This translation is done by Orbeon
Forms [81], see Section 2.4.1.

2.3.5 Programming and scripting

To specify and fine-tune reactions of a MathDox document to user in-
put, an author needs programming constructs. Most notably a Math-
Dox page needs if statements to test conditions, variables to set and
store values — both normal and XML values — to be used on the
page, the means to work with XML snippets, and constructs to call
other web services (see Section 2.3.6). As Jelly [47] offers these prop-
erties and is both an XML format and open source, Jelly has been
included in the MathDox format.

2.3 the mathdox format 29

Jelly is a JSP-like [43] XML-language, and has been developed as
part of the Apache project [5]. Jelly can be used for conditional state-
ments, loops, variables, and for calls to Java objects and web services.

Example 3:
See Listing 4 for an example of some Jelly code. This

example starts by declaring two variables a and b and
setting their values to 1. Then a while loop will be entered
with as condition that it continues as long as a < 100.
In the while loop, variable a will be printed. Next, the
variable c will get the sum of the values of a and b; then
a will get the value of b and b will get the value of c. This
little example calculates all Fibonacci numbers less than
100.

Listing 4: A Jelly Fibonacci example

1 <c:set var= ’a ’ value= ’1 ’/>
2 <c:set var= ’b ’ value= ’1 ’/>
3 <c:while test= ’ $(a &l t ; 100) ’>
4 ${a}

5 <c:set var= ’ c ’ value= ’ ${a+b} ’/>
6 <c:set var= ’a ’ value= ’ ${b} ’/>
7 <c:set var= ’b ’ value= ’ ${c } ’/>
8 </c:while>

Listing 5: Output of the Jelly Fibonaci example

1 1 1 2 3 5 8 13 21 34 55 89

Example 3 is a rather simple example for sake of clarity; however,
Jelly offers many more possibilities for a MathDox page. Just imagine
what scripting can do with parameters from a user or random chosen
set of values, when applied to an example or exercise.

2.3.6 External services

The MathDox Player facilitates the use of external services. Whenever
a MathDox document requires an external service, it makes a call to
that service and incorporates the reply in its output. The web calls
required for these external services are made by a SOAP [97] call,
facilitated by the Jelly format.

Examples include the call to the Natural Language Generator [73]
as performed in the WebALT project [193, 104]. Here an external ser-
vice translates a semantically rich abstractly formulated sentence en-
coded in OpenMath into a natural language sentence written in the
language chosen by the user. The MathDox document then displays

30 mathdox and other interactive math systems

this sentence to the user. Translating exercises from a meta format
into multiple different natural languages.

Another more commonly used application is the use of external
computer algebra systems. The computer algebra systems currently
supported by MathDox are; Mathematica [63], Maple [56], GAP [27],
Maxima [69], WIRIS [108], Magma [55] and Singular [96]. The interop-
erability between these systems is achieved by making use of Open-
Math and OpenMath phrasebooks 6. There is a separate OpenMath
phrasebook [142] for each of the aforementioned computer algebra
systems. These phrasebooks handle the translation from OpenMath
to the specific computer algebra system language and vice versa. This
effectively enables MathDox documents to communicate in Open-
Math with different computer algebra systems.

Since it is very common in MathDox to have a computer algebra
system perform computations and because an author should not be
bothered with the specifics of each computer algebra system, a spe-
cialized format MONET [70], was selected to assist in calling the dif-
ferent computer algebra systems in a uniform way. OpenMath expres-
sions that need computation are therefore encapsulated in MONET
expressions.

Listing 6: An example of a MONET query

1 <monet:query xmlns:monet=" http://monet.nag. co .uk/monet/ns">
2 <monet:classification>

3 <monet:directive-type

4 href=" http://mathdox. org/phrasebook/mathematica#eval"
5 />

6 </monet:classification>

7 <monet:body>

8 <monet:output>

9 <x:copyOf select="$monetExpr/∗" xmlns:x=" jelly:xml "/>
10 </monet:output>

11 </monet:body>

12 </monet:query>

Example 4:
In Listing 6 an example MONET query as used in a

MathDox page is shown. This code snippet begins with
the root element <monet:query>, which in turn contains
an <monet:classification> and <monet:body>. Inside the
<monet:classification> tag is the directive-type element
<monet:directive-type> with the attribute href. The href
attribute specifies what needs to be done, here it reads

6 A phrasebook is a wrapper around a computer algebra system. It is responsible for
translating OpenMath expressions into the format of the computer algebra system,
and the other way around. Upon receiving an OpenMath expression it will forward
it to the computer algebra system and returns the result again in OpenMath.

2.4 mathdox software 31

http://mathdox.org/phrasebook/mathematica#eval. The
first part tells which phrasebook to use, in this case the
Mathematica phrasebook. The last part asks for an evalu-
ation from this phrasebook. the <monet:body> contains a
element called <monet:output> which contains the Open-
Math expression that needs to be computed.

An observant eye notes that in this example there is
no OpenMath expression. At least, not directly listed in
the body. The OpenMath expression as required by the
<monet:output> element is contained in the Jelly XML
variable called monetExpr. The tag <x:copyOf/> copies the
content of this variable into the MONET query. As such it
demonstrates how OpenMath expressions can be stored,
before they are used either for display in the web-browser
or for computations, such as in this case.

The MathDox group participated in the SCIEnce [94] project (Sym-
bolic Computation Infrastructure for Europe) funded by the Euro-
pean Commission. SCIEnce was backed by four computer algebra
teams: GAP, KANT, Maple, and MuPAD. The project developed a
new communication protocol with computer algebra systems: SC-
SCP [175] (Symbolic Computation Software Composability Protocol).
SCSCP supports OpenMath and may therefore be a likely successor
of the current MONET approach.

2.3.7 Separating functionality in MathDox files

MathDox documents do not need to be a single big file. There are
cases in which it is advantageous to split documents into smaller
parts. The resulting set of parts will increase possibilities for reuse
and support maintainability. XInclude is used to include and group
together XML components from different files. XInclude is a W3C
recommendation [117].

2.4 mathdox software

So far we have only discussed the MathDox format and mentioned
the server-side software responsible for the execution of this format.
In Section 2.4.1 we will explain how the server sided MathDox player
works. The possibilities of customizing the MathDox software to the
specific needs of alternative applications which make use of the Math-
Dox system are discused in Section 2.4.2. We conclude this chapter
with Section 2.4.3 about the MathDox Formula Editor.

32 mathdox and other interactive math systems

2.4.1 The MathDox Player

The MathDox Player is responsible for making MathDox documents
accessible over the web. Its task is similar to that of a web server or
rather an application server in the sense that both a web server and
the MathDox Player offer stored documents from the server to the
outside world. A web server offers (ready-made) HTML files, while
an application server provides a web server with dynamically created
HTML files. The conversion of the MathDox documents into HTML
pages is the main task of the MathDox Player. We will now explain
how this process works.

MathDox
Documents

MathDox
Player

Web
browser

Server Client

Figure 2: MathDox Player overview

The MathDox Player is implemented in Orbeon Forms [81], a Java
Servlet application. Servlet applications are run within an application
server that is designed to the Java Servlet specification [44], these ap-
plication servers are called Java Servlet containers. The best-known
Java Servlet containers are Apache’s Tomcat [101] and JBoss [46]. Or-
beon Forms offers some useful tools for the translation process. The
most notable is an XSLT [118] processor. XSLT is a format especially
suited for transformations from an XML format into another data for-
mat, often but not necessarily XML. XSLT is used extensively by the
MathDox Player for transformations on the MathDox format.

The MathDox format is a combination of several different XML
formats (see Section 2.3). Each XML format used within MathDox
requires a separate XSLT translation. For instance, there is an XSLT
transformation that translates the DocBook structure into an HTML
structure, while other scripts translate the mathematics in OpenMath
to MathML and LATEX.

Just before the start of the translations, a copy of the MathDox
document is created and stored in memory. The XSLT-translations are
then performed sequentially and each of them places the results of
the translation to this local copy in memory. In this way the MathDox
document gradually changes into a HTML web page. An overview of
all steps needed in the translation process is presented in Figure 3. In
each step one of the subformats is converted into one of the remainder
formats.

1 Macro substitution.
Macros used by the user need to be substituted for the MathDox

2.4 mathdox software 33

Figure 3: MathDox translation pipeline

code they represent before the translation from MathDox to HTML
can start. This makes the substitution step the necessary first step of
the translation process.

2 Conversion of MONET to Jelly/JavaScript.
Since the actual calls to web services are done by Jelly code, an im-
portant step in the translation process of MathDox is the translat-
ing of MONET queries used for calls to computer algebra systems
into Jelly code. The queries translated to Jelly code will then be exe-
cuted together with the other Jelly code in the next step. For instance,
when a MONET query is encountered that requests evaluation of
an expression, it does not matter if that expression is log(2+ 4x) or
log(2x+ 1) + log(2) because both are usually considered equal by a
computer algebra system, the generated Jelly code will contain the
statements for calling a specific computer algebra system that is con-
figured for use with the MathDox Player, and that can handle the
evaluation.

Alternatively MONET code can also be translated into JavaScript to
facilitate communication with applets on a MathDox page since both
JavaScript and applets are client based. Only applets that know what
to do with these mathematical instructions should be addressed by
these MONET queries. Geogebra [29] is an example of such an applet,
see also Section 2.4.2.

The translation of MONET into Jelly or JavaScript code is handled
by XSLT transformations.

3 Execution of Jelly code.
After the translation of MONET queries into Jelly code, all Jelly code
is executed. This includes the just translated MONET expressions and
the Jelly code that was already present in the MathDox document. It
is the Jelly code that decides what should be presented on a page,
and takes care of conditional statements and calls to web services. It

34 mathdox and other interactive math systems

is through execution of the Jelly code that the content of a web page
created by a MathDox document is largely formed.

4 Conversion of DocBook to HTML.
Next in line is the conversion of DocBook. DocBook is used for docu-
ment structure and is translated into HTML, again with the use of an
XSLT script.

5 Conversion of mathematical expressions.
The transformation of OpenMath in order to render mathematics
in a web page is a bit more complex. First, one should know the
mathematics expressions still on the MathDox page at this stage are
solely meant for presentation. Mathematical expressions meant for
computations have already been processed by a computer algebra
system by this point. If the mathematics in OpenMath needs to be
shown on the screen (as is the case at this point), one would nor-
mally translate OpenMath into MathML-Presentation code. There is
a freely available XSLT script [79] that does exactly this. Although
MathML is supported either natively or by plugins by the most pop-
ular web browsers, too many users seem unwilling or incapable to
install the required plugin, and the browsers themselves have dif-
ferent approaches to using these plugins. See Section 2.3.1.5 for a
previous discussion on this subject. It was therefore decided not to
use MathML directly in the users’ web browser for now, but to con-
tinue with a translation from MathML to LATEXwith another XSLT
script [118]. As native MathML support in web browsers increase,
this step may be omitted in the future. The JavaScript program Math-
Jax [67] is used for the final translation at the users’ web browser
to a suitable font installed in the users’ browser. The use of Math-
Jax circumvents the use of plugins, and results in the rendering of
mathematics without any action required from the user.

Note that all mathematics meant for presentation on the web page
is translated first into MathML-presentation and next into LATEX. Since
these translation steps are always executed in this sequence, it is pos-
sible to use MathML-presentation or LATEX directly instead of Open-
Math. As long as it is only used for mathematics that is going to be
rendered, and not for mathematics that is needed for computations,
no harm is done.

6 XForms conversion to HTML.
The final step is converting XForms to HTML and sending the con-
structed HTML page to the user. This step is executed by Orbeon
Forms [81]. It first translates all XForms elements to JavaScript and
HTML and then sends the entire translated page, written in HTML
and containing some JavaScript code, to the web browser of the user
who requested the page.

2.4 mathdox software 35

2.4.2 Extending the MathDox format

The MathDox system has been designed in such a way that it is easy
to extend. This is especially useful when MathDox is used for more
specialized environments or tasks.

MathDox can be extended in at least four different ways. These
approaches are not mutually exclusive and combinations are possible.

First we describe an approach we have already discussed is the use
of external web services. External web services as used in MathDox
documents to connect to computer algebra systems are not limited to
computer algebra systems alone; any web service application can be
called from within a MathDox document. Incorporating the results
of these services within the MathDox document enriches the Math-
Dox documents with dynamic content of any nature. Web services
are called by inserting appropriate Jelly code into the MathDox docu-
ment.

The second approach to extension is the possibility for adding me-
dia elements such as images, movies, applets and flash. Including
images and movies — although not interactive — into a MathDox
document is an easy approach to create a more specialized environ-
ment. By adding applets and flash applications to MathDox docu-
ments, more specialized and interactive content and behavior can be
added to the generated web pages. An example of such specialization
is the inclusion of an applet editor WExEd [147] to create sentences
with the help of defined semantic OpenMath symbols. At this point,
communication support for the Geogebra [29] and the WIRIS Math
Editor [109] applets have been implemented. This implies that data
output from these applets is directly available for usage elsewhere on
a MathDox page, by means of JavaScript. Other applets may be used
on MathDox documents as well, although such a data link has not
been implemented for these other applets as yet.

A third way to extend behavior of MathDox documents is by de-
veloping and adding Jelly [47] custom tag libraries. A Jelly custom
tag library is written in Java and offers a set of tags which can be
used from within the MathDox format. Each tag connects to a Java
class that is instantiated and called when the tag is called from the
MathDox document.

An example of this is shown in Listing 8, which displays Java code
called by a Jelly custom tag. This tag is called <random> and needs
a variable name and a minimum and maximum boundary. It will
return a random integer into the variable whose value will be in be-
tween the listed boundaries. The random integer is gotten by execut-
ing the Java code also listed in Listing 8. This code is the implemen-
tation of the random tag. Of course many other Jelly custom tags can
be created and called in the same way.

Listing 7: A call to a Jelly custom tag

36 mathdox and other interactive math systems

1 <mdu:random xmlns:mdu=" jel ly:org .mathdox. ut i l . UtilLibrary"
2 var="a" minimum="1" maximum="6"/>

Listing 8: A code example of a Jelly custom tag

1 public void doTag(XMLOutput xml) {

2 JellyContext jellyContext = getContext();

3

4 Random random = new Random();

5 try {

6 int result = random.nextInt(max - min) + min;

7

8 if (var != null) {

9 context.setVariable(var, result);

10 } else {

11 xml.write(" " + result);

12 }

13 } catch(SAXException exception) {

14 exception.printStackTrace();

15 }

16 }

The fourth approach for extension is by programming alterations in
the translation process itself. The MathDox player has been designed
and implemented in a very modular way which allows inheritance
similar to inheritance in Object Oriented programming languages.
Alterations to XSLT style sheets and XML pipelines (as shown in Fig-
ure 3) can be created in such a way that there is no need to alter the
original code, making it possible to reuse as much as possible.

2.4.3 The MathDox Formula Editor

MathDox comes equipped with the MathDox Formula Editor. The
MathDox Formula Editor is a specialized JavaScript program that
helps users enter semantically rich mathematical expressions in Open-
Math format. It does so by allowing users to point and click on mathe-
matical symbols as well as to type expressions directly into the input
field. The MathDox Formula Editor will translate the entered mathe-
matical expression directly into OpenMath. The formula editor also
supports translation into MathML.

An editor like this not only makes entering mathematical expres-
sions easier, it also eliminates the need for users to know about math-
ematical formats such as LATEX, OpenMath or MathML. Other pro-
grams having the same goal are the WIRIS Input Editor [109] and
DragMath [17].

The MathDox Formula Editor is written in JavaScript. This allowed
a lot of flexibility in layout. For instance, the editor’s input field is
always as small as possible when it is started. When expressions are

2.5 mathdox at work 37

entered, it scales to fit the written expression, using only what it really
needs and leaving precious space on the web page available for other
content. These can be text, images or even applets. Applets like the
WIRIS Input Editor [109] or DragMath [17] do not resize dynamically
and therefore either reserve more space inside their displays than
they need, or cannot fit the expressions properly. Another feature is
the shared floating palette with clickable expression elements used
by the editor. Sharing this palette between multiple instances of the
MathDox editor reduces the number of palettes required and again
saves space on a page.

2.5 mathdox at work

In this section a few practical examples of MathDox will be presented.
We will pay attention to the creation process of MathDox documents
and present a track record of MathDox in various scientific projects.

2.5.1 MathDox examples

We present some examples that are taken from projects, the complete
list of projects MathDox has been involved in is listed in Section 2.5.4.
They will give a sample of the wide range of applications in which
MathDox can prove its value.

Dynamic explanations.
Interactive mathematical documents are well suited to explain the

workings of a mathematical concept. In Figure 4 a MathDox docu-
ment from the Oncourse project [76] is shown. The example presented
here, aimed at future freshmen students, asks for a tangent line to a
function f. It demonstrates the use of the derivative to find the correct
slope of the tangent line.

On MathDox pages like these, the function f is expressed in Open-
Math and the derivative is computed by a computer algebra system
and sent back in OpenMath. Ready to be rendered on the screen for
students to see, but also to be used for further computations. Note
that in this way the results found will still be valid when the original
function f is changed, or when another point for the tangent line is
chosen. This is supported by offering input fields for both f and the
x-coordinate for the point at which one wants to compute the tangent.

Exercises in MathDox.
MathDox documents are also used to create exercises which allow
users to test their skills in a mathematical topic, see also [154]. Ba-
sically two types of questions are possible; multiple choice and open
questions.

Multiple choice exercises are the easiest way to question users in an
electronic environment. The user selects one or more answers from a

38 mathdox and other interactive math systems

Figure 4: Dynamic explanation of a tangent line in Dutch

list and the software only needs to know which answers are correct.
It does not have to compute mathematical expressions to verify the
answer of the user. However, multiple choice questions may not chal-
lenge users enough to come up with answers on their own. The small
set of answers already warns the user of possible mistakes, since the
answer they are looking for may not be in the list. Finding an an-
swer in the list confirms users that they reached the right answer. If
this answer is in fact incorrect it will confuse users as they just had
confirmation on their beliefs that they did it right.

Checking the answers of open questions is much harder to do in an
electronic environment than checking the answers of multiple choice
questions. Within MathDox it is possible — with the use of a com-
puter algebra system — to compare the answers given by the user
to those of the author of the exercise. The computer algebra system
also assists in eliminating the problem that mathematical expressions
can be written in many different ways while the semantic meaning
remains the same. This allows readers to enter answers that are a
variation of the answer as entered by the author. For instance, if the
answer given by the reader is

√
8 whereas the author’s answer to

the question had been 2
√
2, the answer given by the reader need not

be marked as incorrect. The computer algebra system will evaluate
the specified answer of the author and the answer of the reader as
equivalent.

The strength of a computer algebra system to cope with variations
of answers also brings a disadvantage when an author requires a

2.5 mathdox at work 39

precisely formulated answer. Sangwin [191] goes into deeper detail
regarding computer algebra system related challenges. For example
say a student is asked to answer a question with an integer and inte-
ger only. Instead of answering 7, the student answers 3+ 4. The latter
answer is evaluated as being correct when it is evaluated by a com-
puter algebra system. Due to the semantic structure of OpenMath the
answer can be analyzed by MathDox Player and the occurrence of
the addition symbol will cause the answer to be recognized as not
being an integer, and as such will not be accepted as a correct an-
swer to this exercise. Here we use the power of the scripting format
Jelly [47]. Indeed, with the use of XPath expressions [145] the XML
structure of the OpenMath answer of the student expression can be
inspected. The XPath expression displayed in Listing 9 actually tests
for the occurrence of the addition symbol in the answer given by a
user. It checks for any (recursive) occurrences of <OMS> tags that con-
tain @name=’plus’ and cd=’arith1’ attributes. Any that are found
are returned representing a positive value, which is then negated by
the not(), resulting in a false. If none are found the expression re-
turns a true. Rather severe restrictions can be forced upon OpenMath
expressions as they are given as input from users. For example it is
possible to test for occurrences of 2

√
2 in favor of

√
8 or to test for

(x+ 1)2 instead of x2 + 2x+ 1 and many others.

Listing 9: An XPath expression that verifies that no addition is used.

1 not(answer//OMS[@name= ’plus ’ cd= ’ arith1 ’])

Exercises written in MathDox also allow the possibility of random-
ized values to be used in questions. The expected solution to a ques-
tion is then calculated from these randomized values. This makes it
possible to generate a near infinite amount of exercises which users
can practice. Because these exercises will always be different, users
may re-do the same exercise over and over with different results each
time.

Despite the fact that MathDox can be used to create exercises, Math-
Dox was never intended or designed to be a Learning Management
System (LMS) like Blackboard [7], Moodle [71], or Sakai [92]. Normal
LMSes that automatically process answers and grade them can only
work with multiple choice and have trouble with display of mathe-
matics.

A SCORM (Sharable Content Object Reference Model) [95] tool was
developed to create SCORM packages that embed MathDox docu-
ments into an LMS. The MathDox documents included in a SCORM
package do not have to be exercises, it is also possible to embed the-
ory or explanations as in this way, see also Section 2.5.1. In Figure 5

an example is shown of a MathDox exercise within an LMS.

40 mathdox and other interactive math systems

Figure 5: A MathDox SCORM package in Moodle

2.5.2 Exercise graphs

Exercises in MathDox can be created to contain multiple steps. Such
exercises are also known as a solution graphs or exercise graphs. An
exercise graph is a graph where each node is a step and every edge
represents a condition that has to be met by the user in order to nav-
igate to an adjacent node. These conditions usually involve user’s
answers to questions. As such they are examples of the possibilities
of programmable reactions in MathDox. These exercises can be specif-
ically designed to capture mistakes in order to address them and cor-
rect the understanding of the user; in such cases they are effectively
implementations of the bug model, as described in Section 3.1.5. Re-
actions to an incorrectly answered exercise may vary from a hint, a
reference to the theory, or by simplifying the question.

Of course the other way around is also possible; the exercise starts
simple and becomes more complicated as long as the answers are
correct. In this way exercises are created that will adapt to the skill of
the user. These kinds of exercises are already possible with MathDox
in its current state, that is, without the enrichment of a context or any
other adaptive features as described in this thesis. What makes this
possible is something we call implicit context. An implicit context is not
a context or user model — we will explain these later in Chapter 3 —
in the sense of storing data about a visiting user; in fact it does not

2.5 mathdox at work 41

store anything. Implicit context is the set of answers that navigates an
exercise graph. The mere presence of a user on a certain vertex says
something about their answers, because we know what actions they
must have taken to get there.

Example 5:
Student Steven visits a MathDox page that presents

him with a differentiation exercise, as shown in Figure 6.
The exercise Steven has to solve requires him to make
use of the chain rule, a rule Steven is not that familiar
with yet. As a result of his weak understanding of the
chain rule he answers the question incorrectly. Analyzing
his answer, the MathDox page recognizes the problem
to be a very basic misunderstanding of the chain rule;
it therefore selects a new MathDox page that presents
Steven with a simplified exercise that deals directly with
the principles of the chain rule. It even offers Steven a link
to yet another page in which the chain rule is explained
in detail if such is deemed necessary by Steven. How-
ever Steven recognizes his error and remembers the ba-
sics of the chain rule again and answers the second ques-
tion correctly. The MathDox exercise validates the answer
as correct and presents Steven next with a slightly more
complex exercise still related to the chain rule. Having an-
swered this question correctly also, Steven is finally taken
back to the original exercise, being offered a chance to
prove he learned what his mistake was by answering the
original exercise correctly.

Even though the MathDox pages only have the answers
of Steven to work with and do not have anything stored
about his past actions, answers or knowledge, the Math-
Dox pages are still able to understand the problem at
hand and address it and guide Steven back to the orig-
inal problem.

In Example 5 the exercise graph could be expanded with a num-
ber of other nodes and edges that address unique error situations,
but these edges need a valid error recognition too. This brings us to
the question of what should and what should not be added to such
a graph. A user may make a combination of errors: in addition to
struggling with the chain rule they might also be incorrectly differen-
tiating sin or log. We need to be able to recognize the possible and
actual mistakes being made before they be addressed.

Exercise graphs can be made extremely complex with a lot of nodes
and edges. A big graph with a decent amount of answer analyses
linked to edges can really tune in to the abilities and misconceptions
of a user. However, currently an exercise graph or a normal Math-

42 mathdox and other interactive math systems

Figure 6: MathDox exercise graph

Dox page cannot distinguish or remember users from previous ses-
sions, so when a user closes the browser he or she needs to start all
over again to continue where they left of the previous time. Although
MathDox is interactive it is not personalized, it lacks a context.

2.5.3 Authoring

Several tools exist to help with the creation of a MathDox docu-
ment. Among these are a LATEX package [169], the Mexico Editor,
the LeAMEL Exercise Editor and MathDox macros, see the MathDox
Manual [197, 153] for details. Of course there is also the option to
write MathDox code directly in your favorite text or XML editor.

Creating a MathDox document is very much like creating an in-
teractive (mathematical) web page. The more complex the MathDox
page needs to be, the more programming like skills are needed to
create a MathDox document. The various subformats are all open for-
mats and well documented, which assists in the writing of a MathDox
document. For those not looking forward to mastering the program-
ming like skills needed to write a MathDox document, a specialized
LATEX package may be of assistance. This LATEX package allows Math-
Dox content to be written in LATEX. The MathDox Player will then
translate the LATEX code into MathDox code and from there it will be
interpreted as if it were written as normal MathDox code. This ap-
proach enables an author to skip the learning process of the MathDox
format altogether. MathDox documents written with the LATEX pack-
age have some restricted functionality as not all functionality of the
MathDox format can be expressed in the LATEX package.

Closely related to this is the opportunity to translate MathDox doc-
uments back to LATEX. The resulting LATEX documents are just for pre-
sentation and cannot be translated back to MathDox code in the same

2.5 mathdox at work 43

way we just described. Also these LATEX documents are no longer in-
teractive and therefore, for instance, cannot support any real time
computations.

Closely related to the macros as defined in the LATEX package, are
the macros as defined in the MathDox format. As can be seen in
Figure 3, the translation process of the MathDox format begins with
translating any defined macros into proper MathDox code. The use
of these macros helps simplify the writing process of a MathDox doc-
ument to some extent.

A different approach to make authoring mathematical content in
MathDox easier, is the Mexico editor. This editor expands upon the
MathDox Formula Editor [62] and combines instances of the For-
mula Editor together with editors for typed text. Together this cre-
ates a mathematical document that can then be displayed in any
web browser with the help of the MathDox Player. The Mexico ed-
itor does not require any knowledge about the MathDox format nor
about LATEX and is therefore ideal for authors unfamiliar with either of
them and who want to create a simple page with some mathematics
and text.

Authors who want to use MathDox to create interactive exercises
and again do not want to have anything to do with the MathDox
format may use a special editor for the purpose of creating more
complex multi-layered exercises. This editor was created during the
course of the LeActiveMath project [51], and produces exercise graphs
as discussed in Section 2.5.2. These exercise graphs are written in a
language called Le ActiveMath Exercise Language or LeAMEL for
short. LeAMEL is automatically translated into MathDox code by the
MathDox Player, but is not considered a part of the MathDox format
itself.

Finally MathDox documents can also be written with the help of a
text editor: preferably one that can assist in validating XML. This is
without a doubt more difficult than any of the other options, but also
offers the most features and opportunities for interactive mathemati-
cal documents.

2.5.4 MathDox at work in various projects

MathDox was and is being used in several projects at high school,
university, national and European level. We will describe some of
them below.

• Wortel TU/e [112], Oncourse [76] and Experience Mathness [23]
are projects aimed to detect and repair mathematical deficien-
cies in the knowledge of (future) first year students at the Tech-
nical University of Eindhoven. MathDox exercises are used for
testing and to provide feedback.

44 mathdox and other interactive math systems

• Algebra Interactive [148, 2] is an interactive method for teach-
ing algebra to first year undergraduates. Algebra Interactive is
not only available in electronic format, but also on paper as a
textbook.

• MathAdore [60] is a web based mathematics text book for Dutch
high schools, developed by Pragma-ADE [85], Math4all [59] and
the DAG group [15] at the TU/e. The projects’ aim is to produce
a new generation of high quality teaching material incorporat-
ing various forms of interactivity. MathDox is used to provide
interactivity in both examples and exercises.

• LeActiveMath [51] is a European research project that focused
on web-based, multilingual e-learning. The role of MathDox
tools within this project was to provide a repository of exercises
that can be authored using a web-based editor.

• WebALT [104] is another European project. The WebALT project
ran from 2005 to 2006. The project’s goal was to create the neces-
sary tools for the creation and maintenance of interactive mul-
tilingual mathematical exercises. The multilingual aspect was
achieved by representing natural language in a special Open-
Math language, which can be translated into several natural
languages. The implemented languages were: Italian, French,
English, Swedish, Spanish and Catalan. Within the WebALT
project an exercise editor was required to create these multi-
lingual mathematical exercises. The editor was written in Math-
Dox and was co-developed for both the LeActiveMath and We-
bALT projects. The MathDox Player used for the WebALT Ed-
itor (WExEd [147]) was adapted with web service calls to the
Natural Language Generator [73].

• Intelligent feedback [40] was a Surf-funded project and investi-
gates e-learning tools for linear algebra that give feedback on
the level of strategies.

• Wiskunde D [110] is a new subject in Dutch high schools. It is
a mathematical course that deals with the more interesting as-
pects of mathematics at the level of high school students. Math-
Dox was used to create some of the interactive course materials.

• Onbetwist [75] is part of of the "toetsen en toetsgestuurd leren"
(test and test-driven learning) program of SURF [98]. It aims to
organize national standardized tests for mathematics at higher
education level, supported by a database of tests and practice
materials. Onbetwist is a cooperation of University of Hasselt,
University of Utrecht, Open University, Fontys, Maastricht Uni-
versity, University of Amsterdam and Technical Univeristy of
Eindhoven.

2.5 mathdox at work 45

• Technology Enhanced Learning of Mathematics for Master Edu-
cation (TELMME) [99], is a project of the federation of the three
technical universities (3TU) of the Netherlands. Like the Wor-
tel TU/e project it aims to mathematically prepare students of
–Dutch or international– hoger beroeps onderwijs (higher pro-
fessional education) schools for a master studies at one of the
participating technical universities. MathDox is used to present
mathematics via the web to these students. Telmme ran from
2009 till 2011.

summary

Interactivity in web pages on mathematics is not common. Complex-
ity in calculations, displaying and entering mathematical notations
are the main reasons that fully consistent and integrated interactive
mathematical documents are scarce. MathDox is a system that con-
sists of an XML based format and a set of tools that transforms said
format into dynamic and interactive mathematical web pages.

MathDox supports interactivity by combining interactive web pages
with the power of mathematical computations. Since its format is
XML based, it is easily transformed into other formats using e.g. an
XSLT style sheets. The design of MathDox is highly flexible due to
the ability to embed external applications by means of web-service
calls. Mathematical symbols are rendered using a JavaScript library
that has multiple approaches based on the capabilities of the browser
and system being used, guaranteeing an optimal rendering in any en-
vironment. Due to this, MathDox documents are easy to access and
use without requiring the user to install any software other than a
web browser. MathDox is fully based on open standards, which al-
lows it to profit from proven techniques, and also allows others to
benefit from the work being done by MathDox.

3
C O N T E X T

Many of today’s web pages are dynamic and interactive in the sense
that they adapt to the needs of the user. Examples of such web pages
are web shops (Amazon.com[3] and Bol.com[9] (a well known Dutch
web shop) etc.), e-Banking (ING[38] , Rabobank[87], both well known
Dutch banks.), auction sites (Ebay[18], Marktplaats[57] (a Dutch site),
etc.), and e-learning sites (Moodle[158], Sakai[92], Blackboard[7], etc.).

These pages would be unusable if they would lack the ability of
adapting the content to the needs of an individual user. Examples of
adaptation in a less direct manner are advertisements. Often embed-
ded in other pages they show the user products he or she might be
interested in. Adaptation is not limited to just web pages alone, when
you take a look at your mobile (smart) phone it will tell you where
you are on the map, where and how far the nearest touristic hot spots
are and in what direction. Instead of offering just information (a rec-
ommending system) adaptation can also take a more proactive action.
For instance a car that monitors its position and speed on the road
that not only warns if the car leaves the lane or comes too close to its
predecessor, but also automatically hits the brakes when the driver
does not react.

Adaption always needs information about the user — the users’
model or context — in order to adapt the content in a meaningful
way towards the user. The information needed for the users’ context
can be presented by the user, be readily available within the system,
being based on previous visited sites, exchanged between different
sites, or any combination of these.

Many adaptive web pages that are aimed at e-learning take infor-
mation about the user or information that might interest the user into
account when the content is generated. By doing this they capture
the user’s attention, an important requirement if the user is to learn
something. Sierra and Bates describe it as follows in [194].

"So what does your brain do with all the routine, ordinary, nor-
mal things you encounter? Everything it can to stop them from
interfering with the brain’s real job —recording things that mat-
ter. It doesn’t bother saving the boring things; they never make
it past the ’this is obviously not important’ filter."
—Sierra and Bates

The success of an adaptive system depends on knowing the right
data about the user; this data set is called the context. Before an
author starts creating an adaptive document, it is important he or

47

48 context

she questions him or herself what can and needs to be adapted, and
which data is required and how.

An adaptive document will not be able to assist a user if the user
is not sincere. Adaptive systems only benefit from context if the data
in the context is reliable and for this user cooperation is paramount.
Users who try to convince an adaptive system of their knowledge
without actually having that knowledge will put any adaptive system
on a disadvantage over a normal system. It is therefore important not
to see adaptivity as a tool to force the user to follow a predefined
path, but to see adaptivity as an opportunity to adapt content towards
interests and skills of the user, or spend extra attention to weak spots.
An adaptive system has to cooperate with the user, it should not lead
but assist. Failure to do so, will lead to situations in which users
become annoyed and start to try to circumvent the system. This will
trigger a battle between the user and the system. The system will fight
to keep the data accurate while the user fights to tweak the system
in such a way to get what he or she wants from it. Instead of losing
energy in this struggle, better results are gotten by cooperation.

In this chapter we will go deeper into adaptive systems and discuss
the different techniques that are used for adaptive systems. Some of
these techniques will be used to form a mathematical context model
that will enrich MathDox interactive mathematical documents with
the notion of context. We propose a generic adaptive mathematical
model that will facilitate authors to create context enriched docu-
ments. Such a generic adaptive mathematical model is suitable for
different kinds of documents, and each such document is free in how
much of the model is used. Without a doubt there will be documents
among these that are aimed at education. However, non-educational
documents should be possible.

We start with a discussion about the context of a user, followed by
a closer look at adaptivity in general, including adaptive applications.
The chapter is then concluded by an outline of our views for a generic
adaptive mathematical system.

3.1 adaptive systems

Adaptive systems find their roots in personalization of content. Per-
sonalization in the current web 2.0 days of the internet can be found
almost everywhere. Examples are web shops such as Amazon [3] and
Ebay [18], search engines like Google [33], Electronic Learning Envi-
ronments (ELE) like Blackboard [7], Moodle [158, 71] and Sakai [92]
and the various blog systems such as YouTube [120], Flicker [25], and
Blogger [8].

Although the personalization of the internet might be seen as a
recent development, in fact the techniques that allow for personal-
ization are not that recent at all. The Common Gateway Interface

3.1 adaptive systems 49

(CGI) standard was already developed in 1993, allowing websites to
respond to the client web browser’s requests with dynamically con-
structed responses based on information from the query string. This
worked by executing a server located program and translating the
resulting output to HTML. CGI can be used in combination with lan-
guages like Perl [83], Python [86], and Ruby [89], but CGI has some
drawbacks1. For example it is slow and requires a lot of resources. Its
successors like PHP [84], ASP [6], and JSP/Servlets [43, 44] offered
the same possibilities with less resources required from the server
and are widely used today. PHP in particular is very popular for dy-
namic websites. MathDox as discussed in Chapter 2 uses Jelly, an
open source XML variant of JSP.

Adaptive systems need more.
A dynamic website cannot be considered an adaptive system unless
it also has a notion of a user profile, user model or context, which is used
to adapt content and store data about the user for the next visit. The
definition of adaptive systems that Brusilovsky gives in [138] is the
following:

“By adaptive hypermedia systems we mean all hypertext and
hypermedia systems which reflect some features of the user in
the user model and apply this model to adapt various visible
aspects of the system to the user.”
— Brusilovsky

Again here it is the system that takes information about the user
and adapts the content in a way that fits the user better.

Definitions.
Although the names user profile, user model, and context usually indi-
cate the same thing –the part of the software responsible for storing
data about the user– their implementations and definitions might dif-
fer in different applications. A user model describes certain aspects of
a user in terms of data. Because there are different perspectives, there
will be different user models. We consider a user profile to be a special
case of a user model concerned with storing personal data about the
user, such as age, location, profession, etc. Due to the nature of this
data a user profile will not need many updates of its data, if any.

Context, as used in this thesis, will be a set of user models containing
at least one model but potentially more. Together these user models
represent the circumstances that capture the context of a user.

Several user models are described in the literature [186, 139, 155].
Among these there are the scalar model, stereotype model, structural

1 The execution of a command required a separate process including all the overhead
that comes with a newly created process, such as memory usage and delays in exe-
cution. Overhead costs are out of proportion when compared to the relatively simple
commands

50 context

model, overlay model, bug model and plan model. We will briefly
discuss some of these with their characteristics.

3.1.1 Scalar model

The scalar model [139, 130] requires users to provide an indication of
how advanced they are in the domain that is treated by the adaptive
system. If the user indicates that he or she is a beginner in the field,
then the system is able to present content in a more basic manner
than what would have been served to a user at an intermediate or
advanced level. For instance a user at expert level in a certain topic
of mathematics might be served with complicated proofs and other
backgrounds that would not go well with a beginner, a user at begin-
ner level might be served an intuitive explanation instead. The level
indication of the user is applied to all content available in the adap-
tive system. The scalar model has an averaging effect, meaning that it
ignores whether or not the user understands some aspects really well,
while the same user has no grasp at all in relation to other aspects.

3.1.2 Stereotype model

The stereotype model [139] represents a list of characteristics of the user.
Based on these characteristics the user is assigned a level much like
the scalar model which is used to determine what and how to present
content to the user. The stereotype model comes either as fixed or
flexible. Fixed means that the system determines just once what the
level of the user is. Flexible means that the system has been equipped
with some rules that can either promote or demote the level and with
that the level of content offered to the user.

3.1.3 Structural model

Where the stereotype model and the scalar model affect the whole
adaptive system with their settings, the structural model [138] aims at
dividing a system into several parts and storing information about
those parts separately. Such an approach would address the averag-
ing effect mentioned of the scalar model in Section 3.1.1. A typical
structural model approach would be the overlay model which we
will discuss next in Section 3.1.4.

3.1.4 Overlay model

The overlay user model [190] is the most popular user model used in
adaptive systems and especially in Intelligent Tutoring Systems [167];
a subclass of adaptive systems specialized in education. The overlay

3.1 adaptive systems 51

model focuses on the knowledge the user — typically a student —
possesses with regard to the knowledge available in the document.
Based on this data an adaptive system can adapt its content to the
skills of the user.

Adaptive hypermedia systems.
The document knowledge is modeled by a set of vertices in which
related items of information or knowledge are connected by edges,
forming a graph of knowledge. In this graph the nodes represent con-
tent and the edges represent the relations between the various pieces
of content. A personalized graph can be obtained by combining both
the graph that describes the document knowledge and the knowl-
edge data that is stored in the user model. This personalized graph
describes what a user understands, and what new information items
may be in reach or are of interest to the user. In the literature [137, 187]
there are different names for these items of information. They are
called knowledge items, knowledge elements, learning objectives or,
most commonly, concepts.

The overlay user model provides two types of adaptations that can
take place on content in an adaptive system. Content-level adaption fo-
cuses on changes in the content directly related to information items,
in such a way that the content is easier to understand for the user.
These adaptations can include modifications to comply with serving
various amount of detail in the content based on the knowledge of
the users, or changing the notation to the recorded user preferences.

Navigational-level adaption is meant to make recommendations for
further reading. As such it is typically used in hiding, showing, en-
abling, and disabling links that a reader can use to navigate though
the document. Based on the information known about the reader, a
system can use this mechanism to guide the reader to appropriate
sections that are needed to understand the learning goal of the user.
Especially when a user does not subscribe to a predefined sequence
in which to visit the concepts and learn, showing the user the next
logical learning step at the right moment can be quite useful. Note
that showing a possible place to continue reading is not the same as
forcing the reader to take that path. Users are better motivated if they
can choose their own path and adapt their learning paths to what
best suits them.

Binary versus incremental.
Traditional overlay models are binary in regard to whether a user
understands a specific topic. Either the user does or does not under-
stand. While this makes it easy for an adaptive system to use the user
knowledge data, it does not necessary reflect the situation of the user.
It does not address how well a user understands the topic at hand.
The user might have only a vague idea of the content of a page after
reading through it just once, or worse still, the user just clicked on the

52 context

link to the page without reading it at all. Yet in both cases the system
would assume full knowledge of the topic. The binary knowledge
also does not address the situation in which a user forgets what was
learned. A user then becomes confused and loses interest in what an
adaptive system is trying to teach or tell if the offered content does
not match the assumed knowledge the system has about that user.
This situation has a high degree of occurrence in any adaptive sys-
tem that relies on the accuracy of a binary knowledge overlay model.

A approach to circumvent this problem would be a system that can
assign a grade to a concept indicating the quality about the gained
knowledge of the user in an incremental way. If so needed these classi-
fications could be expanded to include a higher discriminating level.
An adaptive system that uses an overlay model with an incremen-
tal approach can now judge whether users meet a certain threshold
about a specific information element. For instance whether the user
is at beginner, intermediate or at expert level. Users who just read
a page once are only awarded a beginner mark. When an adaptive
system discovers that a user has lost some of his or her knowledge
level — or never really gained it in cases of clicking but not reading
topics — it can then decide to reduce his or her knowledge grade
to reflect a more appropriate level. Note that in this thesis we will
limit ourselves to the architecture that enables adaptive mathematical
documents. We will not indicate how such an adaptive mathematical
system should decide or observe if a user is gaining or losing knowl-
edge. Instead we aim to offer the means for such observations and
subsequent decisions.

3.1.5 Bug model

Brusilovsky and Millán [139] state that the overlay model is consid-
ered too simple to compare it to the real world, where the knowledge
possessed by users rarely matches an exact subset of the knowledge
as defined in document knowledge. Learning in practice is a gradual
process from generalized to refined knowledge, and includes miscon-
ceptions. When the knowledge graph is very fine-tuned, it will lead to
better matching of the user with subsets of knowledge. However, user
misconceptions are near impossible to prevent. It is therefore a wise
idea to try and model those misconceptions and act upon those in
the adaptive content. These misconceptions are also known as buggy
knowledge; hence the name of the bug model. A good bug model is
very hard to develop and, according to Brusilovsky and Millán, very
limited in practical use since they are only suitable for very simple
domains and in small intelligent tutor system problems. The limited
usability makes sense if one considers the trouble it takes to envision
as many error conditions beforehand as possible, particular for larger
domains or more complex problems. A known adaptive system that

3.2 adaptive applications , an overview 53

makes use of the bug model is WITS [200]. The exercise graphs (see
Section 2.5.2) as occurring in MathDox and ActiveMath [181, 1] and
as described in Section 3.2.2.6 are also based on the bug model. As
they too try to find (common) mistakes made by users and aim to
repair these misconceptions.

3.1.6 Plan model

Imagine an adaptive system that stores user actions and compares
these with a set of predefined plans. Whenever the expected actions
of one of these plans matches those of the user, the system will have
recognized the assumed goal of the user and from that point can
assist the user in achieving the assumed goal. Such a model is called
the plan model [172, 188]. Just like the bug model it is hard to implement
due to the wide variety of possible user actions and non plan-related
deviations from those user plans. It also neglects the possibility of a
user changing his mind, or being without a concrete plan whatsoever.
These drawbacks make the plan model only suitable for a small group
of adaptive systems, mainly those in which user actions are limited
and easy to categorize.

3.2 adaptive applications , an overview

Several adaptive applications exist that make use of the user models
as described in the previous Section 3.1. These can be categorized on
the basis of their purpose. We first discuss these categories in Sec-
tion 3.2.1 and then present some example adaptive systems in Sec-
tion 3.2.2.

3.2.1 Categories of adaptive systems

Adaptive systems can be divided into a number of different sub-
classes. We will describe some, starting in general and moving closer
to adaptive systems aimed at educational purposes.

adaptive hypermedia systems

The most commonly known name for adaptive systems must
be AHS, which stands for Adaptive Hypermedia System. Hy-
permedia in this sense refers to the fact that –although quite
common– adaptive systems are not necessarily always accessed
via the web or by web browsers. The class of Adaptive Hyperme-
dia Systems encloses almost all adaptive systems available.

adaptive educational (hypermedia) systems

Abbreviated to AEHS, the word education in Adaptive Educational
(Hypermedia) Systems says it all. This class of adaptive systems
aims to teach the user something and is therefore often used

54 context

for educational purposes. Adaptive hypermedia systems that
reason and adapt to an individual user situation by both chang-
ing content and navigation are very suitable in capturing the
reader’s attention and motivation, and therefore provide addi-
tional value as compared to a more traditional textbook.

intelligent tutor systems

ITSes, are systems that aim to help a user to master a certain
task. As such they are a subclass of Adaptive Educational Hy-
permedia Systems.

recommender and information retrieval systems

Some adaptive systems act as recommender systems that try to
advise users about other points that might be interesting e.g. the
well-known phrase: “Other customers also bought” on web shops
like Amazon [3] and Ebay [18]. But applications have a wider
range than just web shops. For instance there also exist tourist
guide applications like [144, 143] that offer information of inter-
est to users whenever they happen to be in the neighborhood
of an interesting location in a city. Of course what is considered
interesting varies from user to user. Another example would be
the well-known search engine Google [33]. Google is known for
storing data received from interaction with its services, to fine-
tune its advertisements and search results to the interests of its
users. The benefit of this fine-tuning is that results of a Google
search of the web is more likely to yield content the user was
actually looking for, resulting in higher customer satisfaction.
Google advertisements work in the same way. The same princi-
ple is implemented at various sites such as YouTube [120] which
recommends videos to watch based on what you have already
seen. Pandora/last.fm is an online radio station that selects mu-
sic based on your previous selections.

3.2.2 Examples of adaptive systems

Having discussed different types of adaptive systems, it is time to
take a closer look at a few examples.

3.2.2.1 ELM-ART

Weber has created an intelligent tutoring system called ELM-ART [20].
His adaptive system teaches the programming language Lisp to its
users. It makes use of a structural stereotype model. As such it asks
users about their knowledge in web browsers, programming lang-
uages and computer experience. Based on the answers to these ques-
tions the system categorizes the user and adapts the content towards
that category.

3.2 adaptive applications , an overview 55

3.2.2.2 The Aria Photo agent

A second example of an adaptive system is a recommender system
that connects to email messages being typed. When the user writes
a message, the Aria system [177] uses keywords from that message
to select pictures that might be relevant to that message. For instance,
when in a message the writer speaks about a wedding and later on
–unrelated– mentions a few names, Aria will use that information to
search pictures of a wedding which involves the people mentioned.
Having found such pictures it will show them to the user and make
them ready for attachment to the email message.

3.2.2.3 GRAPPLE

A more generic approach than the previous examples is AHA! [132,
134]. AHA! inspired LAOS [152] and MOT [166], and recently GALE,
which is part of the GRAPPLE project [135].

The European Generic Responsive Adaptive Personalized Learn-
ing Environment (GRAPPLE) project [135] ran from 2007 till 2011. Its
purpose is to create a multipurpose general adaptive system aimed
at lifelong learning. GRAPPLE recognizes that people have multiple
sources of education throughout their lives, being schools, univer-
sities, work or other sources. To facilitate livelong learning GRAP-
PLE offers a Generic User Model Framework (GUMF) that allows
distributed storage for sharing of user information and offers adap-
tive documents information about the user and his or her experiences
from the past. This reduces the need of questionnaires asking for the
same information again. Another feature is the ability to retrieve in-
formation about the user from the web, for instance Facebook. Data
stored in GUMF is in serialized Java objects along with a numerical
and string values so as to assist in queries. There are two kinds of
data stored, knowledge data as used in an overlay model and more
general data about the user. The overlay model not only supports
boolean values but also gradual values.

The data stored in GUMF is used by the GRAPPLE Adaptive Learn-
ing Environment (GALE), which delivers the adaptive materials to
the user. GALE works with content resources written in either XML
or HTML (HTML will be internally translated into XHTML). These
resources are then transformed by processors into content as offered
to the user on a page. The format also allows Java expressions embed-
ded into XML tags.

The design of GALE allows for extensions so as customize the adap-
tivity to a more specific field. Options for extendability include:

• Writing and adding of new Java classes so as to add alternative
reasoning to the Java expressions.

• Usage of new tags and the addition of code for these tags into
GALE.

56 context

• Addition of new processors into GALE so as to cope with other
XML subformats.

• Forwarding of page requests to other services outside of GALE.

• Changes to appearances of pages to allow for different look and
feel.

To assist authors in creating an adaptive document GRAPPLE has
included the GRAPPLE Authoring Tool (GAT). With GAT teachers
have a graphical tool that helps them to create a conceptual relation-
ship and link concepts and resources, forming the domain model. The
usage of a predefined set of templates reduces the learning curve of
a new author.

The different parts of GRAPPLE are connected to each other by the
GRAPPLE Event Bus (GEB). Which functions as a message board to
which different modules of GRAPPLE can subscribe.

GRAPPLE works closely with LMSes as Moodle [158, 71], Sakai [92]
and Claroline [176]. These systems provide the environment in which
adaptive documents are offered to users and are already present at
schools and institutes. While GRAPPLE focuses on the content the
LMSes focus on the need of communication in relation to the teaching
materials, such as grade books, forums, and teacher contact.

3.2.2.4 Panta Rhei

Panta Rhei [185, 183, 184] is an extension of the OMDoc format (see
Section 2.2.4.1). Content written in OMDoc is used to generate (static)
documents by means of a transformation process. These documents
are then often used for teaching purposes at the Jacobs University, a
university aimed at international students. These days a lot of univer-
sities get more and more people with different backgrounds in terms
of the educational road they followed. Especially if these educational
roads have led people through different countries or cultures, they
may have been educated by different Community of Practice (CoP) and
are therefore used to different notation. When these educational roads
converge and the different CoPs meet at the same mathematical doc-
ument, problems will arise. Forcing readers to adapt to the notation
used in the document, will introduce the students to confusion in-
stead of knowledge. Panta Rhei is an addition to OMDoc that allows
the OMDoc documents to be translated into different versions. Offer-
ing documents in different natural languages, notations, explanations
in relation to the background of the user. Panta Rhei also supports a
recommendation system for supplementary materials.

3.2.2.5 Math-Bridge

Math-Bridge [122] was an European project that ran from 2009 to the
end of 2011. The Math-Bridge projects goal is to create a platform that

3.2 adaptive applications , an overview 57

assists students in their efforts to repair weaknesses in mathematical
knowledge. Especially students leaving high school and about to start
their first year of college experience a gap in their knowledge. This
gap is seen as an important cause for dropouts in technical studies.
The Math-Bridge project tries to remedy this by offering students con-
tent in multiple languages, adjustment of notations to the users cul-
tural background and by refreshing or repairing any missing mathe-
matical knowledge. Students are offered predefined courses but they
may also search for other materials of interest. Math-Bridge is build
on top of ActiveMath [182, 181].

3.2.2.6 ActiveMath

ActiveMath [182, 181] — developed by DFKI and Saarland University
— is an intelligent tutor system and as such it is aimed at teaching
math to its users. We discussed ActiveMath before in Section 2.2.4.2,
where we addressed the mathematical aspects, but did not go into
details of the adaptivity that is expected of an intelligent tutor system.
Here we focus on the adaptive aspects of ActiveMath. The adaptivity
in ActiveMath is found in both the exercises offered and the courses
(documents) that are generated.

The presentation system compiles and transforms content into cour-
ses. To do this right however it requires the services of the rule engine
PAIGOS. This is a web service of ActiveMath that accepts the input
of a context and a task to create a course for a user. In its process of
selecting the right material it utilizes a set of 300 rules. The context
in this sense is a set of applicable rules concerning the topic at hand
e.g. arithmetic, differentiation, logic, etc. The tasks that are accepted
by PAIGOS will tell what kind of course to generate, again with user
data in mind such as learning goals. Tasks can be any of the follow-
ing;

• Discover, Discover and understand concepts in depth.

• Rehearse, Address weak points.

• TrainSet, Increase mastery of a set of concepts by training.

• GuidedTour, Detailed information, including prerequisites.

• TrainWithSingleExercise, Increase mastery using a single exer-
cise.

• Illustrate, Improve understanding by a sequence of examples.

• IllustrateWithSingleExample, Improve understanding using a
single example.

Decisions on what to include or exclude, are also based on the user
data. The user data is gotten from the user by questionnaires, but

58 context

also by storing results from exercises. A correctly answered exercise
tells the system not only something about the understanding of the
current mathematical concept or notion, but also about the underly-
ing concepts. Vice versa is also true, answering an exercise wrong,
makes the user not qualified to proceed to a more advanced topic
that depends on the current notion. As it is hard to analyze and de-
termine with certainty why a user did something correct or incorrect,
the recording of these events is accompanied by a probability. All rele-
vant events combined result in an aggregated probability on whether
the user understands a certain concept or not. The generated courses
are also adapted towards the users preferences, i.e. the requested lan-
guage.

Although the overlay model receives input, this does not change
the content in the generated course for the user, unless the users asks
for a new version.

Adaptivity in exercises does not just focus on logging probability
events. The answers a user supplies to questions are analyzed and if
they are incorrect an attempt is made to recognize where the error
was made and direct feedback is given to the user to make him or
her understand what went wrong. This is an implementation of the
bug model as discussed in Section 3.1.5. Also the knowledge of the
user is taken into account when the answer of the user is analyzed.
For example, the rules stored in the context of the user will tell the
diagnosis service if the user, in case of differentiation of f(x) = (x+

1) ·x, is familiar with the product rule, or whether the user is expected
to first expand the product to f(x) = x2+ x before starting the process
of differentiating.

3.3 context of a user

We discussed adaptive systems and their user models in Sections 3.1
and 3.2. Now it is time to discuss the more specific needs of a context
for an all-round adaptive mathematical system. What does such a
context need?

Before that question can be answered we first need to ask another
question: what is it that we are trying to achieve with adaptive mathe-
matical documents? This second question is not easy to answer; after
all, we aim to build an all-round system authors can use to build their
own adaptive mathematical system with. Therefore we need to facili-
tate as many different kinds of adaptive mathematical documents as
possible.

At a closer look similarities can be found between adaptive appli-
cations. In Figure 7 the flow of information through a (mathematical)
adaptive system is shown.

This information flow starts with the author of an adaptive docu-
ment who wants to put his or her information and knowledge into

3.3 context of a user 59

Figure 7: The flow of knowledge/information from an author, through a
mathematical adaptive system, to the reader of the document.

a document. This will then be stored as content and such is part of
the domain model. We will see later –in Section 4.1– that the domain
model will contain more than just content.

Observe that the content is fragmented rather than being one big
lump of knowledge or information. This fragmentation is required to
be able to feed the user manageable pieces of information. However,
in most cases this fragmentation goes further than mere fragmenta-
tion into chapters or sections, because smaller fragmentation allows
alternative composition of pages that are adapted to the user. The
adaptation process happens with the use of the context, which basi-
cally is user data of relevance stored within the adaptive system. It is
this context in a mathematical setting we will now examine further.

Context data can be roughly divided into three different kinds:

logistical context

Logistical context contains all non mathematical context data.

This sub-context can be even further divided into a static and
a dynamical part. The static part only has to be filled in once
and can be assumed only to change incidental afterwards. It
would typically store data such as a user’s name, date of birth,
profession, etc. A more dynamical part will store data like last
visit, exercise scores, etc. Logistical data is not necessarily math-
ematically oriented; it is however quite important for a lot of
small personalization aspects that make a user feel at home and
comfortable.

knowledge context

The primary task of knowledge context is tracking the knowl-
edge level of a user.

Almost all educational adaptive systems aim to transmit knowl-
edge to their users. Adaptive educational systems, such as in-
telligent tutoring systems, are especially focused on knowledge
gain of a user. Typically such a knowledge representation would
be modeled with the use of an overlay user model, as discussed

60 context

in Section 3.1.4. The overlay model will keep track of each con-
cept and the associated values which indicate the degree of mas-
tery by the user. An adaptive mathematical document does not
differ from this principle; it too needs to keep track of progress
made by users.

mathematical context

Variables that occur in a document and are important enough to
be maintained between sessions belong to the mathematical con-
text. An interactive mathematically flavored document (which
may also include related subjects as electronics and physics,
etc.) differs from a normal document by having mathematical
variables occurring in examples and exercises used to illustrate
notions and principles. Where in a traditional textbook the val-
ues of these variables cannot be altered, in the interactive ap-
proach they can. Effectively turning a variable from just a name
into content. Not only will these variables be remembered in
between sessions they are also available for use elsewhere in
the document. As stated before, we assume knowledge is frag-
mented and will be rebuilt later in possible different configura-
tions. This can easily lead towards a mosaic look and feel for
users since this content has to be rather independent in order
not to conflict in different settings with other pieces of content.
With the use of variables that reoccur throughout the document
this mosaic effect will be less evident. But more importantly,
the use of reoccurring variables will let users feel how different
values affect each other as different mathematical notions come
together and are combined into new concepts.

When we take another look at Figure 7 it is important to under-
stand that this information flow has the characteristics of a chain.
As a direct result the information flow only functions as required if
each process is performed with attention to quality. The final result
will only be as good as the worst performed process in the chain.
When a process is performed badly, it will cause damage to the in-
formation flow that can not be repaired later. If the quality in the
flow is properly maintained then a user is able to recompose the
information offered by the adaptive mathematical system back into
knowledge. Quality depends on content written and fragmented by
authors but also on the use of context when the content is presented
to the user. This process requires more than just reading the adapted
content, it requires the user to understand it, only then will informa-
tion turn into knowledge. Knowledge management is also addressed
in [173, 192]. Adaptivity in this regard is both an advantage and
a disadvantage. Obviously fragmenting knowledge, reordering and
turning it into adaptive content has a high risk of confusing readers
when it is not done correctly. Doing it in the correct way is a goal
that is hard to achieve since what works with one reader, might fail

3.4 requirements for an adaptive mathematical system 61

and confuse another. It is here where the user context really needs to
prove its worth. The data known about each user needs to be accurate
before it becomes possible to adjust to the exact needs of each user.
And here lies the catch. How accurate does the user context data need
to be? How complex does the adaptation process need to be to fully
utilize the user context data? Obviously, the increase of work related
to such an elaborate set of data and the complexity that comes with
it threatens the efficiency of an adaptive system. Authors cannot be
asked to take into account all possible situations, and users will not
appreciate the elaborate set of questionnaires.

Adaptation, performed with care for the reader and aware of the
efficiency trap, still has the upper edge as opposed to the traditional
unadaptive documents. Well chosen adaptations do not require in-
vestment from either author or user, while they can really go a long
way to make the reader understand the information offered.

3.4 requirements for an adaptive mathematical system

In this chapter we have described adaptive systems and considered
the implications for a mathematical adaptive system. In particular
we identified some attention points a mathematical adaptive system
needs to take into account. Now we translate these into a set of re-
quirements for our design for a mathematical adaptive system. Note
that the requirements as defined in Section 2.1 in regard to mathe-
matical formats also apply to a mathematical adaptive system; for
this reason they are included into this set of requirements as well.

interactivity

An adaptive mathematical document needs interaction with the
users. By observing the user it obtains user data required to
adapt to the user’s context, making the content easier to un-
derstand for the user. In a mathematical document is also is
paramount that a document is able to interact to mathematical
exercises and examples. That too is content that adapts to the
user, and also contains user input to observe and store in con-
text.

usable in multiple formats

Adaptive documents require electronic means to display the var-
ious pages that are adapted to the needs of the user before they
are accessed and read. A format meant for publishing on pa-
per is less suited for this purpose, however the need to display
pages in a different format still remains even if that means los-
ing adaptivity.

being extendable

The usability of an adaptive mathematical document is greatly

62 context

enhanced if it allows for extensions to the format and the adap-
tive system. Extensions can include new adaptive behavior, or
alterations of the adaptive system to a more specific mathemat-
ical subfield.

representation of mathematics

Any mathematical adaptive system of course requires the means
of working with mathematical expressions in a correct manner
— meaning the mathematics are required to be semantic — but
it also needs to display mathematics in a way that is easily un-
derstood by the reader. The rendering of mathematics should
not rely on images, hindering dynamic changes in mathemati-
cal expressions, or be limited by what a computer keyboard has
to offer.

ease of usage

A requirement that remains exactly the same regardless of inter-
active mathematical documents or adaptive systems, is the ease
of usage. Any format requires ease of usage. Without it writing
content becomes too difficult for authors to write, and improve-
ments and bugs will not be made or solved. The success of a
format depends for an important part on the ease in which con-
tent is being written and maintained.

use of open standards

By using open formats a system benefits from tried and proven
technologies and the community that backs such an open for-
mat. It prevents vendor lock-in, and assists in solving problems
by offering the opportunity to fall back upon the community
and to use pre-existing documentation. Using software with an
open source license allows for verification of correctness.

reusability of content

Adaptive systems that use fragments, can change page contents
by changing which fragments they include. More fragments al-
low for more adaptability, but also increase the amount of work
required to create them. The reusability of fragments by differ-
ent pages or documents, however, allows for the investment of
creation to be earned back.

stability

Adaptive documents that change content in between visits to
their users, run the risk of confusing them because, for exam-
ple, the users cannot find what they knew was there before.
Therefore adaptive systems need to pay attention to what and
when they adapt their content and offer their users some stabil-
ity from adaptations if required.

3.5 the need for context in mathdox 63

quality of adaption

The goal of adaption is to help the user to understand what he
or she is reading or to assist the user in his or her goal. Adaption
that does not have the right goal in mind, may therefore confuse
the user instead. An adaptive document does not need adaption
for the sake of adaption, adaption needs to serve a purpose.

sharing user data

Sharing information about a user between different adaptive
documents prevents asking the same questions to the user more
than once. An adaptive document therefore should be able to
accept data from external sources, provided the data is of use.

management of user data

The goal of an adaptive system is to assist the user. However
when misconceptions do occur in the user data, the user must
be able to correct them.

privacy

Collecting user data naturally also brings the responsibility to
act wisely with the information gathered about users. Nobody
other than the adaptive system, the administrator or the user
needs access to the data. In case of an e-learning application
this list could also include teachers, but only on a need to know
basis. An adaptive system needs to guard this privacy.

robust

If any errors during information gathering, or adaption do oc-
cur, the adaptive document is never allowed to enter a situation
in which it cannot recover anymore. If, despite all efforts, this
still happens, it may not affect any other users, or other adaptive
documents being served by the same adaptive system.

3.5 the need for context in mathdox

The MathDox system as described in Section 2.3 is well suited for pre-
senting highly interactive mathematical pages over the web. However,
when serving a document that consists of various related MathDox
pages, it is desirable to add a common context to unite the different
parts of the document, capturing the user’s preferences, performance,
browsing history, etc. Such a context makes it possible to guide users
through the document, present them with related examples in the var-
ious parts of the document, and to offer them exercises that meet their
knowledge level. We speak of uniting these pages with the means of
a context, because with the help of a context all of these pages can
now access and benefit from data collected by any of them.

Current state of MathDox.
Currently the MathDox Player does not possess any context. It is un-

64 context

able to maintain any knowledge about a page request as soon as the
request is completed and the page has been sent to the user’s browser.
However, MathDox pages can react to specific situations of users. As
we have seen in Section 2.5.2 a MathDox page can analyze user’s an-
swers and use the combination of the current page and the user’s
results to direct the user to a specific next page. Even though no in-
formation is stored about the user one can consider this a state and
transition system and view it as a local context. As soon as the user
decides to visit a different MathDox page as presented to him or her
this local context is lost and as such it has limited usefulness.

Some context can be added to MathDox by the use of Learning
Management Systems (LMS). By creating and placing a SCORM [95]
package with MathDox content in an LMS such as Blackboard [7],
Moodle [71] or Sakai [92], the task of keeping track of a particular
user can be outsourced to these LMSes. However the data stored by
these LMSes tends to be too general and too limited. They will keep
track of things like login times, exercise completion and scores, they
also might allow some customization. But they are not meant to adapt
content, and therefore lack the opportunity to interpret the data they
collect or to use it for adaptation of content. The possibilities of a
context and an adaptive document go beyond those of an LMS.

By adding context to the MathDox Player we aim to develop a sys-
tem that extends interactive mathematical documents with adaptive
qualities. An adaptive mathematical document is considered to be a
collection of mathematical pages containing theorems, proofs, exam-
ples, exercises, and the like, which undergo adaptations in content
and presentation to better suit the user. As is common in adaptive sys-
tems, these pages do not need a strict hierarchical structure of chap-
ters, sections, subsections, and paragraphs. Indeed, users may take
their own (guided) paths through the pages. Depending on their in-
terest, skills or tasks, these paths may vary. However not only the path
that a user is following may depend on his or her personal context,
also the contents of each page may dynamically be adapted. Users can
choose a favorite running example throughout the different pages of
a document, or while the students of a single class are studying the
same pages of a course, each can be offered personalized exercises,
matching their individual levels.

What is needed is a means to remember users, remember their
skills and knowledge, and remember their set variables as used in
the document, so that this information can be reused on other pages
as well as in later sessions. This is the task the context is going to per-
form for adaptive mathematical documents to be written by authors.

It is good to realize that the amount of context that is required by
an adaptive mathematical document varies between different docu-
ments. It also varies which data needs to be monitored and reacted
upon.

3.5 the need for context in mathdox 65

Adaptive mathematical systems.
Most systems we mentioned in Section 3.2 are systems that are not
suitable for mathematical contents. They lack the necessities to sup-
port such content. These necessities include an unambiguous format
to reason with mathematical expressions, a connection to a computer
algebra system or other means to perform exact calculations, and a
way to interactively present the mathematics to a user and receive
a mathematical response from this user. Panta Rhei [184], described
in Section 3.2.2.4 is a mathematical system specialized in adapting
notations in mathematical texts. ActiveMath [182], mentioned in Sec-
tion 2.2.4.2 utilizes a reasoning engine to compose documents to-
wards users on a stereotype basis.

User models and context.
In adaptive systems the user model takes care of maintaining data
about the individual user. Some user models were discussed in Sec-
tion 3.1. These user models are supported in these tasks by domain
data. Domain data and user models together enable adaptive systems
to adapt the content and to personalize it for each user. The term user
model is somewhat ambiguous since adaptive systems can combine
different user models and have them cooperate with each other in
their job.

All-round adaptive model for mathematics.
We want to enable MathDox to maintain a context and to be able to
react on the data stored in that context. By this approach we aim to
give authors the means to create MathDox documents that can adapt
towards the needs of their readers. As we have seen there already ex-
ist a multitude of adaptive systems with a wide variety of purposes
and user models. Our goal is to turn MathDox into a mathematical
adaptive system that allows authors to create different kinds of inter-
active mathematical documents with a context that made to fit each
document. This means that an author is allowed to omit parts if he or
she feels that it is not needed for the interactive mathematical docu-
ment the author is creating.

By taking an all-round approach to bringing adaptivity to Math-
Dox we prevent MathDox from over-specializing in any user model
in particular. Over-specialization might interfere with other types of
(non standard) user models and should therefore be avoided. How-
ever, this means that if an author wants to implement an adaptive
interactive mathematical document, he or she also might need to im-
plement the user model that is required for that particular interactive
mathematical document. While the nature of the MathDox format
already requires authors to be acquainted with light programming
tasks, we do aim to reduce the amount of work required. For this
purpose we will equip MathDox with a standard but optional user
model. The work required to implement a new user model can be

66 context

further reduced by supplying the author with a set of useful tools.
These tools will enable the author to achieve his or her goal without
too much effort; see Chapter 5 for more information about this tool
set.

The standard user model we implement is the overlay user model
(see Sections 3.1.4 and 4.1). The overlay user model is by far the most
popular model used in existing adaptive applications and we predict
that will also be true for most of the future adaptive applications in
MathDox as well. Also the existence of the aforementioned toolset
requires a basic architecture that can be obtained by the implementa-
tion of the overlay model. This default implementation of the overlay
model will not interfere with other implementations and can be ig-
nored if desired by an author.

Our proposed context enrichment of MathDox should enable an
author of an interactive mathematical document to cope with differ-
ences between users. These differences can include the following:

differences in notation

Mathematicians all over the world have adopted different ways
to write down mathematical formulae. For example an open
interval can be written in various ways. The notation that is
widely used internationally is (a,b), while this is often written
as]a,b[in Dutch and French speaking countries. Also 〈a,b〉
is not uncommon. Despite the differences in notation all three
versions mean the same. The preference of the user to which
notation should be used is again stored in the user model. The
presentation layer will use this data to adapt the content ac-
cordingly. Another example is the use of the letter i to indicate
complex numbers where electrical engineers and physicists use
the letter j instead in order not to confuse the complex numbers
with amperes that are also represented by the letter i.

differences in knowledge

Each user has a skill level that is determined by education,
profession, and the sequence in which he or she is reading
through study material. With help of the user model presen-
tation choices can be made that result in the creation of a per-
sonalized page for each user. The information shown on such
a page is therefore based on the knowledge of the user and
his or her needs. For instance a user needs to understand the
principles of a permutation group and even a symmetric group
before reading the notion of orbit or stabilizer. If the user does
not yet possess this knowledge a page about the notion of orbits
will have to include the basics of a permutation and symmetric
group also. We will revisit this particular example later on in
this thesis and expand up on it.

3.5 the need for context in mathdox 67

difference in symbols

A user will be unable to understand a new notion or symbol
which is based on other symbols which are not yet understood.
In such a case it is required to start with this missing knowledge
before a system can continue with the knowledge at hand.

the need for more elaborate explanation

Texts as they appear in mathematical documents are not always
equally understandable for everybody, even if users do possess
the required knowledge and therefore should be able to under-
stand. This difference is explained by differences in reading or
learning techniques, or in how well somebody is capable of un-
derstanding mathematics in general. Some users are capable
of recognizing the used formulae in computations and proofs
without the need for much explanation while others have more
trouble. This is typically something that does not only appear
in mathematical textbooks but could also happen in articles. By
adapting the presentation of these computations, those users
who are in need for more explanation can be satisfied. The inclu-
sion of more examples demonstrating the mathematics at work
also assists in a better understanding.

summary

There is a gray area between a website with dynamic content and an
adaptive system; not every dynamic website is an adaptive system.
An adaptive system needs means to adapt content to and store data
about the user. An adaptive system takes information about a user
and adapts content in a way that fits that user better. The kept in-
formation about the user is called context, and is a set of user models,
which represent the circumstances that capture the context of users in
relation to — in our case — interactive mathematical documents. Sev-
eral types of user models exist, ranging from simple beginner-novice-
expert gradation to the modeling of knowledge of a user based on
previous actions.

An interactive mathematical document is a collection of mathemat-
ical pages which do not need a strict hierarchical structure of chap-
ters, sections, etc. The path through the document depends on the
interests, skills or tasks as stored in the context of the user. Also the
difference in notation, knowledge, symbols and formulae depends on
the user and is stored in the context.

MathDox needs a context that allows documents to be adapted to
the situation of its users. Authors are enabled to write documents
that benefit from the requirements listed earlier (see Section 3.4), or a
subset thereof depending on the needs of the document and targeted
audience.

4
A M AT H E M AT I C A L C O N T E X T M O D E L

In this chapter we discuss in detail the mathematical context model
that was mentioned in Chapter 3, which will be utilized in our con-
text implementation in the MathDox system. The technical implemen-
tation of the model will be discussed in the next chapter, Chapter 5.

Generally speaking, an adaptive system that uses the overlay user
model — as discussed in Section 3.1.4 — can be divided into three
parts. The first is a static part that contains the overlay model graph
and the unadapted content. This part is called the domain model. The
second, the user model, keeps track of all known data of importance
about the user. Finally, through the presentation model, all information
is combined and the adapted page is presented to the user.

The names of these models are not always the same in the literature.
The domain model is also called the document model or doc model for
short, while the presentation model is sometimes also called the adaptive
model. The user model is consistently called the user model. Here we will
use the names domain model, user model, and presentation model.

Adaptive systems need an extra part to function. While its function-
ality is quite clear, it is not always considered to be a separate part
of an adaptive system, but rather integrated with other parts, it is
referred to as the observer model. The observer model is responsible for
making assumptions about the user’s state. It observes the user and
feeds the conclusions of these observations into the user model.

Based on these components Dolog, Henze, Nejdl and Sintek [157]
use the quadruple (DOCS, UM, OBS, AC) to define an adaptive hy-
permedia system. DOCS is short for the document model or, as we call
it, the domain model. UM stands for user model, OBS for the observer
model and finally AC is for the adaption component, which is called
the presentation model in this thesis. Those familiar with computer sci-
ence and design patterns [163, 162] might notice the similarity of the
setup of adaptive systems and the Model, View, Controller (MVC) pat-
tern 1 [141].

A mathematical context model for interactive mathematical documents.
We have adopted the domain, user and presentation models for the real-
ization of adaptive mathematical documents in our MathDox system.

Our domain model contains information on the knowledge domain
of an adaptive mathematical document. It is an abstract model for

1 The Model in the MVC design pattern can be compared with the user model, where
the View matches with the Presentation model and the Controller is the counterpart of
the Observer model. In this comparison, the Domain model is not present, however in
the MVC pattern the content is considered to be implicitly available.

69

70 a mathematical context model

the main concepts of an adaptive mathematical document, such as
symbols, definitions, theorems, proofs, etc., and their relations within
the document. The items in this model refer to collections of MathDox
sources.

The user model is a model for the data pertaining to a user of the
system. The model captures, for example, the logistic information
of the user, such as identity, profession, knowledge level, but also
information on the history of the user, such as acquired knowledge,
navigation history, and scores on exercises.

Finally, the presentation model takes responsibility for displaying the
content to the users. With input from the user model it selects and
transforms content from the domain model into a page rendered for
the user’s needs.

In our setup the observer model is encoded in the content itself and as
such it is a part of the presentation model. This makes sense since the
content is also responsible for monitoring and analyzing the user. The
content is best suited for analyzing the user reactions and drawing
conclusions about user knowledge and data.

Mathematical Context Model.
Mathematical content has different characteristics from non-mathe-
matical content normally used in adaptive systems. As mentioned in
Chapter 3, mathematical content makes use of variables and computa-
tions as opposed to non-mathematical content. Such content therefore
needs a specialized user model. This model has to take into account
that mathematics is very hierarchical by nature. The overlay model
(see Section 3.1.4) is therefore very appropriate as a basis for the math-
ematical context model, especially since its dependency graph is well
suited to represent the hierarchical structure of mathematics.

There exists more than just one hierarchical structure in mathemat-
ical content. For this reason we have chosen to include not one depen-
dency graph, but three graphs. One graph will represent knowledge
of theories (called the theory graph, see Section 4.1.1); another will rep-
resent symbols occurring in the document (called the symbol graph,
see Section 4.1.2) and a third will represent the variables in the doc-
ument (called the variable graph, see Section 4.1.3). In our model we
select the theory graph to be our main dependency graph, in com-
pliance with the overlay model. These graphs, together with the re-
lations between them, form the domain model of the mathematical
context model.

The graphs we have just described also have an impact on the
user model. As we will see in Sections 4.1 and 4.2 these graphs are
static and the user model will store data concerning to the user and
these graphs. However, the user model can also record other data that
might affect how content is presented to the user.

The presentation model is then responsible for combining the con-
tent and knowledge, as stored inside the graphs, with the data stored

4.1 domain model 71

in the user model to form a presentation of the content that fits the
user best.

In the following sections we give a more precise description of
the domain model, user model, and presentation model. Together
these will form the mathematical context model which is required for
providing context to adaptive mathematical documents. Some of this
work has also been discussed in [149].

4.1 domain model

A document contains a domain model, which is static in nature. The
domain model is concerned with the topic of the document, as it
contains the content and structure of the document. At the core of
the domain model is the theory graph. Alongside the theory graph
are the symbol graph and the variable graph. The main ingredients of
these three graphs are the mathematical objects, notions, statements,
symbols and mathematical expressions as used within the interactive
mathematical document, as well as their interdependence. The pur-
pose of these graphs is to structure the mathematical knowledge on
which an adaptive mathematical document is based.

We discuss each of these three graphs and conclude this section
with an analysis of their mutual relations and soundness conditions
that validates the correctness of an adaptive mathematical document.
While the content is also a part of the domain model, we will not
address the specifics of the content of an adaptive mathematical doc-
ument until Chapter 5.

Hasse diagram.
The theory, symbol and variable graphs will be defined as graphs
that are Hasse diagrams of a partial ordering. We first introduce the
necessary mathematics. A partially ordered set, also known as a poset,
is a pair (X,6) consisting of a set X and a relation 6 on X (written
infix) satisfying the following three properties.

• reflexive: for all x ∈ X, x 6 x;

• anti-symmetric: for all x,y ∈ X, x 6 y and y 6 x implies x = y;

• transitive: for all x,y, z ∈ X, x 6 y and y 6 z implies x 6 z.

In general we write x < y to denote x 6 y and x 6= y.
For any poset (X,6) one can define the Hasse diagram to be the

directed graph with vertex set X, in which two vertices (also called
nodes) x and y are connected by an edge from x to y if and only if
x < y and there is no element z ∈ X with x < z and z < y.

The Hasse diagram is by definition an acyclic graph from which the
poset can be fully reconstructed, the partial ordering is the transitive
and reflexive closure of the Hasse diagram.

72 a mathematical context model

M.C. Escher’s “Drawing Hands” c© 2013 The M.C. Escher Company - the Netherlands. All rights reserved.
Used by permission. www.mcescher.com

Figure 8: A drawing by Escher showing mutual dependency.

If a cycle is encountered in a dependency graph it would mean
that the vertices in that cycle depend indirectly on themselves. The
famous Escher picture Drawing hands as presented in Figure 8 shows
clearly why it is impossible to have a mutual dependency between
two nodes. After all, if one hand draws the other then which line was
the first to be drawn? And by which hand?

Omitting the redundant edges — as shown in Figure 9 — is a very
useful property of Hasse diagrams, since it makes these graphs much
easier to read and understand for a human, such as an author or a
reader of a document. Leaving out the redundancies also makes sense
from the perspective of a user; skipping dependencies is not allowed
since that would create a lack in required knowledge. Therefore a user
always has to take the long path to reach a desired node. It also makes
sense from a technical perspective; a lean dependency graph is easier
to reason with and eliminates a lot of non-valid routes (shortcuts).

Definition of domain model.
A domain model as used in the mathematical context model is the
quadruple(

T, S,V,→
)

(1)

where T, S, V are posets defined on disjoint sets T , S, V , respectively,
→ is a subset of (V ∪ S)× V ∪ T . Here, the members of T , S, and V
are called theories, symbols and variables, and are nodes of the theory
graph, symbol graph, and variable graph, respectively. The dependencies
between the elements within each of these sets are given by the partial
orderings vT , vS, vV on the respective sets T , S, V . So X = (X,vX)

4.1 domain model 73

Permutation

Symmetric group

Permutation group

Group

Subgroup

Permutation

Symmetric group

Permutation group

Group

Subgroup

Figure 9: Omitting redundant edges leads to a Hasse diagram.

for X equal to T , S, V . Each will be explained in the following sections.
The relation→ indicates in which theories the variables and symbols
occur, and in which variables the symbols occur. We therefore refer
to it as the occurs in relation.

4.1.1 The theory graph

The main notion for an adaptive mathematical document is the the-
ory graph. A mathematical document is a collection of statements in-
volving mathematical symbols and variables together with a logical
structure on these statements. The two main types of statements are
definitions and assertions. These statements are then often enlight-
ened by examples, exercises or remarks, or accompanied by proofs.
A union of such statements hinging on one definition or assertion
(possibly a compound one) comprises a theory, representing a node
of the theory graph. For example, one may view each statement as an
individual theory or, at another extreme, clumping together an entire
chapter into a single theory.

The dependencies within the theory graph can be understood for-
mally, from either the user’s or the mathematical point of view.

From a user perspective, an adaptive mathematical document can
adapt itself to the level of skill of the user by keeping track which
theories have been visited or mastered by the user. But such a doc-
ument can do even more for a user when it knows which theories
are required prerequisites of the requested theory, or which theories
might follow from the theory just read. By taking a look at the pre-
requisite theories — and determining whether these are understood
by the reader — an adaptive document adapts the requested page ac-

74 a mathematical context model

Permutation group

Stabilizer Orbit

Orbit stabilizer theorem

Nodal page
Permutation group

Nodal page
Stabilizer

Nodal page
Orbit stabilizer theorem

Nodal page Orbit

-Determines
 required prior
 knowledge
-Retrieves
 preferences
-Includes and
 adapts content
 accordingly

Figure 10: A theory graph with nodal pages

cording to the reader’s knowledge. An adaptive document can give
recommendations as to what to read next by looking at which the-
ories follow the theory just read. Thus from the user perspective, a
theory graph is a graph that represents the relation between theories.

In Figure 10, a theory graph with pages associated to each node is
shown. Each of these pages handles the content indicated by the name
of the node. The page about orbit shows how content is affected by
context both in preferences and knowledge as derived from the the-
ory graph. These pages associated with the theories are called nodal
pages.

A mathematical perspective on the theory graph is that one piece of
theory is needed to be able to formulate the next theory. For example,
the notion of a permutation group invokes that of a group and a
permutation. The edges of the theory graph can be described as a
presentation of this relation.

Let T denote the set of all theories — or the set of nodal pages
linked to these theories — of a document, and let vT be the relation
defined by x vT y if and only if y depends on x. This defines a partial
ordering on the theories and associated nodal pages in the set T .

We are now in a position to give a formal definition of our theory
graph; namely, it is the Hasse diagram corresponding to the poset
(T ,vT).

To elucidate our notions, we will work out the example of a docu-
ment on permutation groups. This particular example will also reap-
pear in later examples as we pay attention to other aspects of the
mathematical context model. This running example will allow us to
illustrate various aspects concerning the mathematical context model;
among these aspects, the most notable are the theories, symbols and
variables. By using the same context-enriched document it will be-
come clear how these different aspects are joined together to form a
powerful yet flexible document about permutations.

Example 6:
The mathematical starting point of this example docu-

ment is a finite set X. A permutation on X is a bijective map
X→ X. Usually, if X has size n, we take X to be {1, . . . ,n}.

4.1 domain model 75

A bijective map f is then defined by a list [f(1), . . . , f(n)] of
elements fj from X that are all distinct. This indicates that
f maps the element j to fj. The set of all permutations on
X is denoted by Sym(X) and contains the identity element
e, which maps x to x for each x ∈ X. It is closed under
composition of maps: if f,g ∈ Sym(X), then fg ∈ Sym(X),
where fg is the map sending x ∈ X to f(g(x)) ∈ X. Finally,
Sym(X) is closed under inverses: if f ∈ Sym(X), then the
inverse map f−1 characterized by ff−1 = f−1f = e is also
in Sym(X). These three properties make Sym(X) into a
group. A subset G of Sym(X) containing e and closed un-
der the operations of composition and taking inverse is
called a permutation group on X. If g and h are permu-
tations, the intersection of all permutation groups on X
containing g and h is again a permutation group on X.
This is called the subgroup of Sym(X) generated by g and
h.

Let G be a permutation group on X. If x ∈ X, then the
orbit of x under G is the subset

{g(x) | g ∈ G} (2)

of X. This orbit is usually denoted Gx. If H is a subset of a
permutation group G which is closed under composition,
then H is called a subgroup of G. The stabilizer in G of an
element x ∈ X is a subgroup of G, defined as

{g ∈ G | g(x) = x}. (3)

This is actually a permutation group on X and is usually
denoted by Gx.

The Orbit Stabilizer Theorem states that, if X is finite,
the following relation between the various cardinalities
holds, for any x ∈ X:

|G| = |Gx| · |Gx|. (4)

Instance of the theory.
By way of example, take X = {1, 2, 3, 4, 5, 6} and choose the
permutations g and h as follows.

g = (2, 4)(3, 5)

h = (1, 4, 6, 3)(2, 5)

76 a mathematical context model

Let G be the permutation group on X generated by g and
h. Then G consists of 24 elements. Now, if x = 1, we find

Gx = X

Gx = {(), (2, 3)(4, 5), (2, 4)(3, 5), (2, 5)(3, 4)}

and so the Orbit Stabilizer Theorem is confirmed, as

|G| = 24 = 4 · 6 = |Gx| · |Gx|.

The mathematics described so far can now be distrib-
uted into the nodes of the theory graph displayed in Fig-
ure 10.

The dependencies are dictated by the facts that the no-
tions of Orbit and Stabilizer make no sense without the
notion of Permutation group, and, likewise, the Orbit Stabi-
lizer Theorem needs the notions of Orbit and Stabilizer to be
formulated. It is the choice of the author to chop this into
four nodes. For example another author might have cre-
ated a node for the notion of the symmetric group (that
is, Sym(X)).

Also visible in Figure 10 are the nodal pages linked to
the theories in the theory graph. Each nodal page contains
all that is needed for the proper construction of content
related to that theory node. It needs to determine what
content to include and how to present it. This may, for in-
stance, lead to a page that refuses access until all previous
theories have been mastered. Or to a page that includes
useful definitions and examples of previous theories —
not yet mastered — before presenting the theory at hand.
These nodal pages decide on questions like: How should
this theory be presented? Does it need a lot of examples? Is a
proof required? Is it necessary to link to an example or applica-
tion that the reader is familiar with due to his/her affiliation or
profession? The decision process is part of the presentation
model as described in section 4.3.

4.1.2 The symbol graph

The next graph we discuss is the symbol graph. The symbol graph is a
graph whose nodes are the mathematical symbols found in mathe-
matical objects of an adaptive document.

Mathematical objects in the MathDox sources are represented by
OpenMath expressions, providing semantic encoding of notions. In
our set-up, a mathematical symbol is an OpenMath symbol. These
OpenMath symbols occur in OpenMath expressions as they are used

4.1 domain model 77

 set1:set

 group3:symmetric_group

 permutation1:permutation permgp1:group

 permgp1:stabilizer permgp1:orbit

 group1:group

 group1:subgroup permgp1:order

Figure 11: A symbol graph on group theory.

in the document, variables, expressions or computations. OpenMath
symbols are defined in content dictionaries, see [77].

The content dictionaries provide some information on the relations
between the various mathematical symbols. However, in many cases,
this information is too limited; there is no official (partial) ordering
that specifies which symbols need to be understood before another
can be comprehended. Obviously an adaptive mathematical docu-
ment runs into problems if it is not able to determine which math-
ematical symbols the user does or does not know. In such cases it is
no longer capable of determining a sequence of content to present
or teach to the user. Authors may have different opinions about the
proper (partial) ordering of symbols. We therefore offer authors the
flexibility to capture the dependencies between these symbols and
store them in a dependency graph called the symbol graph.

Let S be a set of OpenMath symbols, and suppose vS is the relation
defined by x vS y if and only if the mathematical notion of y depends
on that of x.

As before, the relation vS on the set of symbols S in a sound math-
ematical document is assumed to be a partial ordering. So, we can
define the symbol graph to be the Hasse diagram of the partial order-
ing vS on the set S of OpenMath symbols in the document.

The ordering vS on the set of symbols S inside a MathDox docu-
ment takes into account the OpenMath symbols needed for a formal
definition of each element of S. Figure 11 shows a small symbol graph
example related to the same interactive mathematical document as in
Figure 10 from Example 1.

The symbol graph in Figure 11 supplies the presentation model
(see Section 4.3) with information concerning dependencies of the
symbols, and therefore the order in which symbols need to be in-
troduced to the user to be understandable. The presentation model
then adapts the content accordingly so that each user will be able to
understand the presented knowledge.

78 a mathematical context model

 g

 G=permgroup(g,h)

 h

 GO=|G|

 Gx=orbit(G,x) G =stabilizer(G,x) x

 Theorem=(GO==OO*SO)

 x

 OO=|Gx| SO=|G | x

Figure 12: A variable graph related to orbits.

4.1.3 The variable graph

The third and last graph that we consider in our domain is a graph
whose vertices are the mathematical variables inside our document.
Let V denote the set of variables occurring in a given document.

A variable inside a document can have a value assigned to it by the
author, the user, the document, or it can have a value that depends
on other variables. For example, the values could be randomly chosen
for generating different exercises, or they could be the answers of a
previous exercise for a running example.

The variables in V are ordered by a relation vV , where x vV y for
x,y ∈ V means that variable y depends on variable x. Here depen-
dence means that the value of x is used to determine the value of
y. Examples are mathematical expressions, such as y = cos(x), or in-
stances of mathematical notions introduced, as y = VectorSpace(3, z),
where z is a variable whose value should be a field, for instance,
z = GaloisField(9). As in the previous cases, the variable graph is a
dependency graph represented by a Hasse diagram.

Example 7:
In Figure 12 a partial variable graph is shown. In this

variable graph, dependency relations between variables
are visualized as they occur in an adaptive mathematical
document. We will now show how different variables and
their values from different parts of the document cooper-
ate and can be used in examples concerning the topic of
the document: permutation groups (see Example 6). Since
the variables are not bound to any page and depend on
their predecessors for their values, it becomes possible
to create running examples throughout the document in
which each occurrence of a specific variable contains the
same value as anywhere else in the document. If values

4.1 domain model 79

on which these variables depend upon change, then the
values of these variables change accordingly.

Looking at Figure 12, one can see that the variables x,
g, and h have no predecessors. Their values are therefore
independent of any other variables and need to be set by
either the reader of the document or be given a default
value by the author of the document.

In Figure 10, it was shown that each theory had its own
nodal page. Now we will expand the document shown in
Example 6 by adding examples to the nodal pages shown
in Figure 10. These examples make use of variables for
their — on screen — computations and also for storage of
their values. This allows examples on other pages to build
on top of an example either on the same or on a previous
nodal page.

At a first example, on the nodal page entitled permuta-
tion groups, the reader is shown how permutation groups
work. For this purpose the reader is asked to supply two
permutations g and h. The variable G is then used to store
the permutation group generated by the permutations g
and h. Of course the user is allowed to change the per-
mutations g and h so as to see the effect this has on the
group G.

Next on the same nodal page about permutation groups
a different example shows the order of the group G result-
ing from the previous example. The value of the order is
computed by an expression that is stored in the properties
of variable graph variable GO; this variable also stores the
value.

For future examples the student is also asked to select
an element from X. The chosen element is then assigned
to the variable x.

On the nodal page about orbits an example about the
construction of orbits is shown. For this goal the permu-
tation group G is used again in conjunction with the user
picked element x. Together they provide the needed in-
put to construct the G-orbit of x.The formula to do so is
assigned to the variable Gx; this variable also stores the
actual computed orbit. Note that this orbit is indirectly
based on the user selected permutations g, h, and x on
the nodal page about permutation groups.

On the nodal page about stabilizers, an example demon-
strates the stabilizer theorem, by using G and x again to
create the stabilizer subgroup in G of the element x. This
subgroup is then assigned to the variable Gx, and just like

80 a mathematical context model

the orbit Gx this subgroup indirectly depends on g, h and
x.

Finally, at the nodal page about the Orbit stabilizer The-
orem it is shown how the data from the variable graph
comes together by accessing the value of GO, which holds
the order of the group G, the variableOOwhich holds the
order of the orbit Gx, and the value of SOwhich holds the
order of the stabilizer subgroup Gx. It is shown that these
variables are related by GO is the product of OO and SO.
This result is assigned to the variable Theorem.

Note that all variables depend upon the variables g and
h and x. If any of these variables change, the variables that
(indirectly) depend on them will to adapt to reflect these
modified values.

No user data stored in the variable graph.
The variable graph as part of the domain model is, just like the other
dependency graphs, immutable for users and is shared throughout
the document. The variable graph is used solely to define the depen-
dency relations and mathematical definitions of the variables and in
keeping these sound. As such, the variable graph does not contain
any values other than default settings made by the author. The val-
ues assigned to variables by a user, as described in Example 7, are
user dependent and stored in the user model as will be discussed in
Section 4.2.

4.1.4 Synthesis

Until now, the theory, symbol, and variable graphs have been consid-
ered as if they are independent of each other. However, given a math-
ematical document, a number of mathematical symbols and variables
are found in content such as assertions, examples, proofs, exercises or
remarks of the document. Moreover, each symbol or variable can oc-
cur in the various nodal pages of the document, linking symbols and
variables with theories. Note that symbols also occur within variables
from the variable graph.

This is formalized by the occurs in relation denoted by→. The occurs
in relation can be used between the union of the sets of symbols and
variables, with the set of theories. Let W = S∪ V , then

W → T (5)

Symbols can also occur in variables; this is represented as S→ V .

4.1 domain model 81

The reverse relation, from the set of theories T to the containing
elements from W, or from the set of variables V to the containing
symbols from S, is called the contains relation, denoted by← .

For w ∈ W, s ∈ S, v ∈ V and t ∈ T let us write w → t, if w occurs
in t, and also s → v if s occurs in v. And for the reverse relation, we
write t ← w to mean t contains the variable or symbol w. Similarly,
we write v← s to mean v contains the symbol s.

We are now ready to define some maps based upon the occurs in
and contains relations.

Let ΣS denote the map which assigns to each theory t ∈ T the set
of symbols of S, that occur in t.

ΣS(t) = {s ∈ S | s→ t}. (6)

Similarly, let ΣV denote the map which assigns to each theory t ∈ T
the set of variables from V that occur in t.

ΣV(t) = {v ∈ V | v→ t}. (7)

Combining ΣS(t) and ΣV(t),

Σ(t) = {w ∈W | w→ t}. (8)

Let Θ denote a map which assigns to each symbol and variable w the
set of theories t ∈ T containing w. So for w ∈W, we have

Θ(w) = {t ∈ T | t← w}. (9)

This set Θ(w) is called the scope of the element w.
Let w be a symbol or variable from W and consider the set Θ(w). If

this set contains a unique minimal element θ(w) with respect to the
poset of the theory graph, then θ(w) is called the introducing theory
for w. As we will see later, all symbols and variables have either intro-
ducing theories or are considered prior knowledge to an interactive
mathematical document. WhereΘmaps symbols and variables to the
theories in which they occur, the map Φ maps symbols to variables in
which they occur; for s ∈ S define

Φ(s) = {v ∈ V | v← s}. (10)

The relation Γ(v) give us the symbols that occur in a given variable
v ∈ V .

Γ(v) = {s ∈ S | s→ v}. (11)

Relations between graphs.
The maps ΣS, ΣV , Θ, Φ and Γ all connect the theory, variable and
symbol graph with each other. This is made visible in Figure 13.

82 a mathematical context model

Γ(v)

t1

t2 t3

t4 t5

v1

v2 v3

v4 v5

s1

s2 s3

s4 s5

ΣS(t)

Θ(v)Θ(s)

ΣV(t)

Φ(v)

Figure 13: Inter graph relations.

Recall the partial ordering of (T ,vT) defining the dependency re-
lations on the elements of T . This relation now helps us define the
dependency set ∆T (t) of an element t. The dependency set contains all
t ′ ∈ T on which the theory t depends, including t.

∆T (t) = {t ′ ∈ T | t ′ vT t}. (12)

Dependency sets can also be found in the symbol graph; for s ∈ S,

∆S(s) = {s ′ ∈ S | s ′ vS s}. (13)

Variable graphs also have dependencies, which in turn are described
by

∆V(v) = {v ′ ∈ V | v ′ vV v}. (14)

The dependency set ∆T (t) can be used to determine all symbols
available to a theory t ∈ T . The set of these available symbols is then
defined by

ΩS(t) = {s ∈ S | θ(s) ∈ ∆T (t)}. (15)

Similarly for variables we define

ΩV(t) = {v ∈ V | θ(v) ∈ ∆T (t)}, (16)

4.1 domain model 83

t1

t2t3

t5 t4

s1
s3

v1
v3
v6

t5

s1
s2
s4
s5

v1
v2
v4

t3
s1
s2

v1
v2

t1

s3 v3
t2

s2
s4
s6

v1
v2
v5

t4

Figure 14: Used symbols and variables on nodal pages

and for both variables and symbols, define

ΩW(t) = ΩS(t)∪ΩV(t) = {w ∈W | θ(w) ∈ ∆T (t)}. (17)

The difference between Σ and Ω.
The ΣS and ΣV mappings must be seen as indicating which symbols
and variables are being used by a theory, whereas the Ω relation
should be considered indicating as what is available for a theory to
use.

Example 8:
In Figure 14 an example theory graph is given. For

each theory, the symbols and variables used are indicated.
With the Θ(s) relation it is determined where a specific
symbol or variable is used, for example:
Θ(s1) = {t1, t3, t5},
Θ(s5) = {t3},
Θ(v1) = {t1, t3, t4, t5}.

The maps ΣS and ΣV yield the following values for the
theories t1 and t5.
ΣS(t1) = {s1, s2},
ΣV(t1) = {v1, v2},
ΣS(t4) = {s2, s4, s6},
ΣV(t5) = {v1, v2, v5}.
Observe that Θ and Σ are not each other’s inverses. This

becomes clear when one considers Σ(t1) = {s1, s2, v1, v2},
butΘ(s1) = {t1, t3, t5},Θ(s2) = {t3, t4},Θ(v1) = {t1, t3, t4, t5},
and Θ(v2) = {t1, t3, t4}. It is quite clear that Θ ◦ Σ(t1) is
not equal to just t1 as it would have to be for the maps to
be each other’s inverses. The same holds for Φ and Γ .

84 a mathematical context model

The set of dependencies found in the theories t1 and t5
are given by:
∆T (t1) = {t1},
∆T (t5) = {t1, t2, t3, t5}.

The set of all symbols available to theories t1 ant t5 are:
ΩS(t1) = {s1, s2}
ΩS(t5) = {s1, s2, s3, s4, s5}

Similarly the variables available from the same theories
t1, t5 are given by:
ΩV(t1) = {v1, v2}
ΩV(t5) = {v1, v2, v3, v4, v6}

4.1.4.1 Soundness

We call a context-enriched adaptive mathematical document sound if

• For all symbols or variables w ∈ W there exists an introduc-
ing theory θ(w), unless w has been marked as prior-knowledge.
Prior knowledge does not require introducing theories. All sym-
bols and variables that are used and are not considered prior
knowledge need to be introduced somewhere in the document.
If there is more than one introducing theory then that is an indi-
cation of a possible error. Multiple introducing theories are not
necessarily incorrect, although it is considered bad practice and
should be avoided.

• For all symbols s, s ′ ∈ S for which s vS s
′ holds, θ(s) vT θ(s

′)

must also hold. When a symbol s is introduced in a theory t, all
other symbols s ′ that depends upon s are introduced in either
the same theory t or in a theory t ′ that contains theory t in the
dependence set ∆(t ′).

• For all variables v, v ′ the validity of v vV v ′ implies θ(v) vT

θ(v ′); as in the case of symbols, all variables v ′ that are used
and depend on variable v should be introduced in the same
theory as the variable v or in a later theory that is (in)directly
connected in the partial ordering.

Note that when all afore-mentioned criteria for soundness have
been met, theories can make use of only those symbols and variables
that were introduced in a theory where the current theory depends
upon. All symbols or variables have to be introduced in a theory that
is in the dependence set ∆(t) of the current theory. Thus the following
will also hold.

Lemma. For all t ∈ T :

• ΣS(t) ⊆ ΩS(t);

• ΣV(t) ⊆ ΩV(t).

4.1 domain model 85

Permutation group

Stabilizer Orbit

Orbit stabilizer theorem

g
h
G
GO
x

group3.symmetric_group
permutation1.permutation
permgp1.group
permgp1.order

x
G
OO

permgp1.stabilizer
permgp1.order

OO
SO
GO
Theorem

x
Gx
OO

permgp1.orbit
permgp1.order

x

Figure 15: Running example usage

Proof. Fix t ∈ T . Let s ∈ ΣS(t). Then s → t, so t ∈ Θ(s). But θ(s) is by
definition the smallest of all theories with this property, so θ(s) vT

t. This establishes θ(s) ∈ ∆T (t), which is tantamount to s ∈ ΩS(t).
Hence the first assertion holds. The second is proved analogously.

If the theory symbols and variables are indeed all sound, then the
following also holds for all s ∈ Φ(v);

θ(s) vT θ(v). (18)

This notion can then be expanded upon, by expecting the same for
each variable v depends upon;

∀v ∈ ∆V(v) : ∀s ∈ Φ(v) : θ(s) vT θ(v) (19)

Soundness is a necessity in a context-enriched interactive mathe-
matical document, as it prevents a reader from going astray because
of obvious inconsistencies in the set-up and use of variables, symbols,
and theories in relation to each other. Our notion of soundness is pri-
marily a kind of well-formedness of the mathematics served and has
little bearing on formal mathematics.

The mathematical context emerges as the structured sets of sym-
bols and variables, as well the values of the variables, pertaining to
the theory visited by the user. As this is dependent on the user, fur-
ther treatment of it belongs to the next subsection.

4.1.5 An example

In this section we take another look at the previous examples. We
will see that these examples can be taken together into a combined
example which includes the theory, symbol and variable graphs.

In Example 6 we introduced a theory graph about permutation group,
orbit, stabilizer and the orbit stabilizer theorem. This theory graph is
shown in Figure 10, with nodal pages that are associated to the the-
ories in the graph. Figure 15 shows the same theory graph, but in-

86 a mathematical context model

stead of the nodal pages, the variables and the symbols that occur
within the nodal pages are listed. These symbols are also in the sym-
bol graph of Figure 11. Both these graphs and the variable graph from
Figure 12 are from the same domain model and as such the relations
mentioned earlier apply.

In Figure 16 the theory graph and symbol graph are shown. It also
shows the usage of the symbols by the various theories; these are the
maps ΣS and Θ. Note that the theory Orbit Stabilizer Theorem is not
referred to at all. This is explained by the fact that Orbit Stabilizer
Theorem only uses the symbols arith1:equal and arith1:times which are
both considered prior knowledge and are therefore not part of the
symbol graph. There are also symbols in the symbol graph which
are not referred to; this is due to this particular example with the
dressed-down theory graph and nodal pages which uses far fewer
symbols than would the case in a real document. The symbol graph
only requires symbols that will be introduced in the document and
therefore all symbols will be used by nodal pages. Exception to the
rule would be symbols that have been added for prior knowledge
reasons. Allowing the document and the user to refer to these prior
knowledge symbols.

In Figure 16 the sets ΣS(t), where t ∈ T , and Θ(s), where s ∈ S,
are visualized. By following all dotted lines from a theory t to all
connected symbols the set ΣS(t) for theory t is obtained. Similarly, in
the reverse direction: by following all dotted lines from a symbol s to
all connected theories, the set Θ(s) is obtained.

Figure 16 can be simplified if we only consider θ(s). The relation
θ(s) indicates where symbols are introduced. The simplified graph
representing θ(s), where s ∈ S, is shown in Figure 17. The figure ba-
sically divides the symbol graph into four parts. With the exception
of the first part, which is considered prior knowledge, the parts are
associated with the nodal page that introduces the symbol in the doc-
ument. Because theses nodal pages are linked to the theory graphs,
the different parts in the Figure 17 are also linked to the theory graph.
Indeed the parts have the same ordering as can be found in the the-
ory graph in Figure 16. Some variations are possible, when a nodal
page does not introduce symbols; in such cases the theory nodes are
skipped. Other deviations where the ordering is altered in compari-
son to the theory graph, indicate problems with soundness.

Also note that by taking the union of all introduced symbols from
the theory pages that exist in ∆T (t) (all predecessors of t and t itself),
we obtain ΩS(t).

Combining the theory and variable graph gives similar results. In-
deed, it represents the sets ΣV(t) where t ∈ T and Θ(v) where v ∈ V .
Again, it is possible that not all theories have references to variables.
This happens when nodal pages do not use any variables. However,
all variables should have a connection to at least one theory; if there

4.1 domain model 87

P
e
rm

u
ta

ti
o
n

 g
ro

u
p

S
ta

b
il

iz
e
r

O
rb

it

O
rb

it
 s

ta
b

il
iz

e
r

th
e
o
re

m

se
t1

:s
e
t

g
ro

u
p

3
:s

ym
m

e
tr

ic
_g

ro
u

p

p
e
rm

u
ta

ti
o
n

1
:p

e
rm

u
ta

ti
o
n

p
e
rm

g
p

1
:g

ro
u

p

p
e
rm

g
p

1
:s

ta
b

il
iz

e
r

p
e
rm

g
p

1
:o

rb
it

g
ro

u
p

1
:g

ro
u

p

g
ro

u
p

1
:s

u
b

g
ro

u
p

p
e
rm

g
p

1
:o

rd
e
r

Fi
gu

re
1

6
:T

he
or

y
gr

ap
h

(o
n

th
e

le
ft

)
an

d
sy

m
bo

lg
ra

ph
(o

n
th

e
ri

gh
t)

re
la

ti
on

s
Σ
S

an
d
Θ

88 a mathematical context model

 set1:set

 group3:symmetric_group

 permutation1:permutation permgp1:group

 permgp1:stabilizer permgp1:orbit

 group1:group

 group1:subgroup

 permgp1:order

Prior
knowledge

Permutation
group

OrbitStabilizer

Figure 17: Symbols introduced at theories (θ(s))

is none it means the variable is not used in a theory at all, and is
a redundant step in the dependency set ∆S(s) of the variable graph.
Redundant does not mean illegal, but one can wonder if the variable
is needed or desired.

Examining the θ(v) diagram it will produce a similar graph to the
one in Figure 17. The same remarks also apply in this case.

4.2 user model

A user model’s responsibility is to keep track of any user-related data
so that the presentation model can adapt content from the domain
model to the needs of the user. The domain model is static and is
created just once for a document. It is therefore immutable during the
use of the adaptive mathematical document. In contrast to the domain
model, a user model is dynamic and subject to constant change to
stay accurate and appropriate as to reflect the ever changing context
of the user. The user model assists the presentation model and needs
therefore to store the data required by the presentation model and to
keep this data up to date.

Roughly the data required is divided into three parts; mathematical
context, logistic context and the knowledge context. These include values
of variables connected to the user and a document, user-specific lo-
gistic information, and the knowledge information such as acquired
skills, read topics and passed exercises.

Needless to say, every user has their own instance of a user model,
making all data stored in each instance of the user model private for
each user.

4.2.1 Mathematical context

Adaptive mathematical documents rely heavily on variables. Vari-
ables can store different kinds of values but in this section we will
limit ourselves to mathematical content only. These mathematical ex-

4.2 user model 89

pressions range from basic values to complex OpenMath expressions.
The use of variables allows existing content to recur in different forms
due to the different values of the used variables, without the need to
alter any of the content. This kind of reuse of content typically occurs
with exercises and examples allowing an author to just write it once
but present it multiple times with different values.

Note that to the user the content changes when the variables are
changed. This demonstrates that the values of variables define a page
state. Now imagine extending the scope of these variables from a
single page to the whole document in such a way that other pages
can use the same values as well. This introduces a user state within
a document. Moreover, an important part of the notion of context: it
represents the mathematical context of a user.

As variable values are data belonging to the user and to the docu-
ment, it is the responsibility of the user model to keep track of vari-
able data and to allow for changes in their values.

The variable graph, as described in Section 4.1, contains defini-
tions of variables. As such, the variable graph only contains static
immutable data and does not contain any variable values set by the
user. The values belonging to these variables are stored in the user
model instead — to be more precise in the mathematical context —
completing the variable definitions of the variable graph.

Here, the difference between the symbol graph and the variable
graph becomes quite clear: the knowledge information (described in
Section 4.2.3) tells us which nodes t the user has visited, and so ΣS(t)

can be determined from it. In contrast, the knowledge of ΣV(t) is
insufficient and needs to be complemented with the values from the
user model of the variables that it lists. As these values may vary
as the user progresses and can be called at each instance, these are
contained and maintained in the mathematical context.

The mathematical context is stored in the user model as a list of
context variables, where all context variables are represented by at
least one tuple of the form (Variable ID, Value, Timestamp). Each change
to a variable will lead to a new tuple being added to the user model,
creating a list of tuples representing the mathematical context of any
variable at any given time.

4.2.2 Logistic context

Logistic context is the set of user data that contains logistic informa-
tion about the user. It consists of data such as name, date of birth,
address, education, affiliation, profession, etc. The exact composition
of data stored as logistic context is up to the author to determine. Al-
though this data has no mathematical meaning, it is required to be
able to adapt a document in a less mathematical way to the needs of
the reader. By incorporating the name of the user, his or her profes-

90 a mathematical context model

sion, study, culture or notation, a better connection between the user
and the content is created.

Logistic user information is not interconnected by nature. The data
is considered an independent set of properties stored by variables.
The logistic context is captured by a list of (Property ID, Value, Times-
tamp) tuples. This list is stored in the user model. Each tuple contains
a Property ID containing the name of the user property, a Value of that
user property and the time when this data was set. Organizing the
list of logistic information in this way allows an author to add those
properties he or she deems necessary for a document without being
restricted by the possibilities offered by a pre-defined set of variables.
The presence of timestamps allows retrieval of previous values of
properties in case they have been altered and need to be reverted to
their previous values to reflect the status of the context at an earlier
time. Note the similarity between the mathematical context and logistic
user information tuples. This similarity will allow us to regard logistic
context in the same way as mathematical context.

4.2.3 Knowledge context

Knowledge context concerns all data relating to the theory graph and
symbol graph as discussed in Sections 4.1.1 and 4.1.2. Visited or mas-
tered nodes from the theory or symbol graphs are contained in the
knowledge context. Both the theory and symbol graphs are situated
in the domain model instead of the user model, and as such the knowl-
edge information refers to the nodes in the theory and symbol graph.
In Section 3.1, we discussed different types of user models. The most
convenient user model for an adaptive document to keep track of
knowledge is the overlay model. In the case of an adaptive mathemat-
ical document this is even more valid due to the hierarchal nature of
both this model and mathematics in general.

Keeping track of user progress is done by storing event tuples con-
taining references to specific nodes from either the theory or the sym-
bol graph and actions. These tuples take the form (Node ID, Action,
Value, Timestamp). Typical values for Action may be Visited or Mas-
tered. Visited indicates that the user has visited that particular theory
or symbol explanation. Mastered means that the adaptive document
considers the theory or symbol understood by the user. If so desired,
an author is free to add extra actions allowing the adaptive document
to fine-tune the document even more to the user.

The value field is rather straightforward as it stores the value as-
sociated to the action. The type of value is not specified beforehand.
It could be boolean, as would be suitable for mastered actions, but it
could also be a number value to indicate the times a nodal page has
been visited. Note that the Timestamp records the moment the tuple
was added to the user model. As before, the timestamp is required

4.3 presentation model 91

to let the document re-adjust itself to a specific point in the past for
replay purposes.

The knowledge events that are stored enables different strategies
for how to work with the overlay model. It can be utilized as a binary
system, in which it only answers whether or not a user understands a
certain concept. It can also serve as an incremental system, in which
the overlay model predicts to what degree a user understands a con-
cept. In both approaches an analysis of the stored events is required.

4.3 presentation model

The third and last model we discuss in this chapter is the presentation
model. After discussing the domain model and the user model, the
presentation model is the place where it all comes together. The pre-
sentation model is responsible for the adaptation and presentation of
the content. Choices are made on what content is shown and how to
present it to the user. The presentation model is responsible for the in-
clusion of content that deals with required knowledge or symbols for
a selected page. It is also responsible for fetching the values belonging
to variables from the variable graph and using these in an example
that may or may not be included, depending on the decisions made
in the presentation model.

The adaptation process on a document is intended to make content
more accessible and easier to understand for the user. When content
is more easily understood it makes the knowledge transfer more effi-
cient and emphasizes the importance of a proper functioning presen-
tation model.

To achieve adaptation of content, information and decisions based
on information are required. The information originates either from
the domain or user model or is gathered by the interactive document
itself. The process of information gathering is done by queries. The
decisions in the adaptation and presentation process are then made
by feeding the results of the queries to a set of rules. Rules effectively
represent the author’s interpretation of a situation as described by
the information available. Based on this interpretation the rules draw
conclusions and perform the required actions in adaptation and pre-
sentation of the content. The final step is then to present the content
to the user; in our case, this is the MathDox Player translating the
content to HTML pages viewable by the user in a web browser; see
Chapter 2 for more details.

The process of gathering information, having this information in-
terpreted by the set of author-defined rules and delivering the results
to the user is what we define to be the presentation model, see Figure
18.

Flexibility in the presentation model is achieved by the possibility
of adding new and very specific rules for each interactive mathemat-

92 a mathematical context model

Figure 18: The schema of the presentation model.

ical document. There is, however, no need to require an author to
supply each and every single rule that is used by the presentation
model. There are rules that are recurring and are applicable to any
interactive mathematical document. By creating a standardized set of
frequently used rules, documents will be easier to create and more
consistent.

The main responsibilities of the presentation model are: communi-
cation with the user and domain model, selecting and structuring of
content and the presentation of content. In the following sections we
discuss these three architecture aspects of the presentation model in
detail.

4.3.1 Communication with the user and domain models

The domain model as presented in Section 4.1 provides an adaptive
document with all the required building blocks such as the theory,
symbol, and variable graphs, as well as (unadapted) content. The user
model (see Section 4.2) stores data related to the user in three separate
categories: mathematical, logistic, and knowledge context. Note that
the mathematical and knowledge context get their meaning from the

4.3 presentation model 93

graphs in the domain model and that the logistic context is the place
to store preferences to take into account when content is presented to
the user. Unlocking the information offered by both the domain and
user models and making it available to the presentation model is an
essential step and is done by queries.

The purpose of queries is to obtain or store information. Upon a
user entering a page, the presentation model acts by retrieving the
relevant information. The information retrieved by queries is to be
used by an adaptation rule to adapt (parts of) a requested page to fit
the needs of a user.

When the user reacts to the page presented to him or her, the user’s
actions are analyzed by a rule that implements the conditions that
define if and what data should be updated in the user model. The
rules that update the user model implement what is sometimes in
literature referred to as the observer model. Indeed, their job is to
observe the behavior of the user, draw conclusions from these actions
and store these in the user model.

4.3.2 Selecting and structuring of content

The most straightforward way to offer an adapted page to the user
is to create a number of unadaptable pages beforehand, each written
for specific situations. This is an approach that would do well with
the scalar and stereotype models, see Sections 3.1.1 and 3.1.2. The
adaptation process is then limited to selecting the most appropriate
prefabricated page. This approach offers pages of potentially good
quality as problems ill fitting pieces of content will have been dealt
with by the author. However, creating pages for all possible situations
becomes more and more complex and harder to achieve as the num-
ber of different situations and content in general, increases.

For this reason, adaptive systems often fragment their content and
offer these fragments as building blocks to create pages specifically
for each user. Prefabrication of fragments as opposed to prefabricated
pages require less effort due to the possibility of reusing the same
fragments on multiple pages in different combinations. By making a
correct selection and rearrangement of finely fragmented content, all
the knowledge a user needs is included into the offered page. Such a
page includes fragments with content that is required and omits those
fragments that are not needed by or not suited for the user. Each page
created in this way is therefore tailor-made for each individual user.

The selection of which fragments to include, and with that the con-
tent selection, is done by rules. These rules decide what definitions
need to be included into the presentation content, decide on exam-
ples that demonstrate certain principles which are directly connected
to the topic at hand, or the selection of examples that demonstrate ap-
plications of the topic in a field the user is more familiar with. These

94 a mathematical context model

rules first query the domain and user model — for instance the the-
ory and symbol graph from the domain model and the set of current
knowledge from the user model — to get the data about the user that
is of influence on the decisions made by the rules and then decide on
what content to include or exclude. The actual decision process itself
is implemented by the author, so the selection of content to be shown
to the user is the result of the implementation decisions made by the
author. We therefore call these rules author rules.

As the name author rules implies, the decisions made by the rules
are not influenced in a direct way by users. Rather they are the results
of the author’s automated view on the user data stored in the user
model.

Decomposing and recomposing knowledge.
Fragmenting content and recomposing it on a page comes quite close
to the process of decomposition of knowledge and recomposition of knowl-
edge as explained in [173]. The difference here is that Kohlhase and
Kohlhase talk about the human side where knowledge from the au-
thor is fragmented when it is put into a document. The fragmented
knowledge is then composed back into an understanding by a reader
of that document. Our approach uses the knowledge decomposition
as done by the author to compose a page tailor-made for the reader,
improving the understanding of the reader in the matter and increas-
ing the process of recomposing knowledge residing with the user.

Content Structuring.
As described in [140], creating a page from fragments is subject to the
processes content adaptation and content presentation. The process of
content adaptation is performed by two sub-processes: content selection
and content structuring. The content selection deals with the selection
of the fragments that are important to the requested page and user.
The sub-process of content structuring deals with finding the right
way to fit these fragments together and adapting them so that they
fit with each other on a page in such a fashion that the user is not
bothered by the fact that the page has been composed of fragments
rather than being written as a single page. Within the mathematical
context model we attached a page to each node from the theory graph:
the nodal page (see Section 4.1). From these nodal pages, fragments
that deal with the theory at hand or other fragments of interest to the
user are included. In our mathematical context model, the fragments
that are included do not necessarily contain only static text, but also
more adaptation rules. These rules allow fragments to adapt their
contents to their neighboring fragments and ease the transition of the
content between these fragments.

4.3 presentation model 95

4.3.3 Presentation of content

After selecting and structuring the fragments there is still the job of
adapting the content to the needs of the user. Adaptation of the pre-
sentation of content is achieved by again making use of rules.

Techniques used by presentation models for adaptation among oth-
ers include:

• Providing and coloring extra links that make additional content
-within the interactive mathematical document or by means of
external links- easily accessible.

• Adaptation of notation as used in the context so as to match
the standards familiar to the user, an important design goal of
Panta Rhei [184].

• Offering of stretch texts that can further explain concepts by
making hidden texts visible that explain concepts in greater de-
tail.

The set of rules that are involved with the presentation of content
do — as opposed to the author rules — take into account user pref-
erences stored in the logistic context of the user model. These sets
of rules are called user rules, they allow user input to affect their be-
havior. For example, one rule that takes into account the preferences
set by a user is a rule that displays a link to an external source for
more information on a specific topic in a color specified by the user.
Another example is a rule that consults the logistic information to let
the user replace the symbol i for the imaginary number

√
−1 for an j.

Example 9:
The student Steven visits the adaptive mathematical

document about permutation groups. He has not yet vis-
ited any page before and wants to learn straightaway a-
bout the orbit stabilizer theorem, without first reading any-
thing about permutation groups, orbit, and stabilizers.

As a consequence Steven has no registered knowledge
in the knowledge context about either of these theories or
the symbols involved; what Steven is missing exactly can
be deduced from the theory graph and the symbol graph.
Steven needs knowledge about all predecessors of the or-
bit stabilizer theorem and he is also missing the knowledge
concerning the symbols that were introduced in the corre-
sponding nodal pages.

This information is retrieved by queries to the knowl-
edge information in the user model, as opposed to the
theory and symbol graphs in the domain model. Next, the
information is forwarded to an author rule that decides

96 a mathematical context model

to include those content fragments that deals with this
knowledge. These rules can take into account Steven’s
background when they decide how elaborately the con-
tent needs to be shown. A student of mathematics would
require less elaborate content about the missing knowl-
edge than a student in computer science or engineering.
Another rule might employ a query to find out if Steven
likes examples on his pages; this would be information
stored in the logistic context section of the user model.

A user rule will adapt all included examples to work
with the values Steven has supplied for the permutation
variables g and h or any derivatives of these variables in
the variable graph (see section 4.1.3 for the used variable
graph).

The next step is translating all content to HTML, and
presenting the page to the user. The mathematical context
model then awaits a reaction from Steven.

If the page included an exercise that was answered
correctly by Steven, the interactive mathematical docu-
ment might conclude with a rule that Steven has mastered
the presented knowledge and will fire a query that will
record this in the knowledge section of the user model. A
wrong answer is another reason for updating the knowl-
edge information in the user model. If the page has no
exercises, the system might still update the user model.

summary

In this chapter we discussed the domain, user and presentation mod-
els. The domain model encapsulates the content and the structure of
an adaptive document by means of the theorems, proofs, definitions,
symbols, etc. It uses the theory and symbol graphs to store this struc-
ture.

The user model holds user-related data to facilitate adaptation to
the needs of the user. This data includes personal information like
profession and identity, but also the experience, skill level and history
within the system.

Lastly, the presentation model combines both the domain and user
model by means of queries and rules, to present the user with an
adaptive mathematical document. The model adapts and transforms
the content to be displayed from the domain model according to the
needs specified by the user model.

5
I M P L E M E N TAT I O N O F C O N T E X T I N M AT H D O X

The mathematical context model has been described so far in an ab-
stract manner without much attention to implementation details. The
reason for this is that the mathematical context is a model in its own
right and not necessary linked to the MathDox Player. Our imple-
mentation however was done on top of the MathDox Player. In this
chapter we discuss the details of the context implementation.

Enriching MathDox with the mathematical context model.
The MathDox format and the MathDox Player are already a powerful
team, capable of producing and delivering interactive mathematical
content to the user. Therefore the implementation of the mathematical
context model is not allowed to interfere with the original function-
alities of the MathDox Player or format. To this end we kept the im-
plementation of the mathematical context model out of the MathDox
Player altogether. This will guarantee that any MathDox documents
written without the mathematical context model will keep working
as intended. The mathematical context is implemented as an add-on
to the MathDox Player, in much the same fashion as web browsers
these days expand their functionality by allowing add-ons and plug-
ins. As such, the implementation also serves as a demonstration of
the MathDox Player abilities to be expanded upon.

Chapter overview.
In Figure 19 a schematic overview of the context implementation is
given. The MathDox Player is shown in the middle, the lower part
depicts the core of the MathDox Player, while the upper part shows
the addition of the mathematical context model. Especially the con-
text object, the Jelly interpretation and the change in interpretation
sequence — the only change to the MathDox Player necessary — are
important aspects and are discussed in more detail in Section 5.1. The
document file, graphs, conditions, content and fragments, in short all
that matters for the domain model are discussed in Section 5.2. In
Section 5.3 we talk about the database design. This includes among
other topics knowledge context, mathematical context and variables,
logistic context and logging. Finally, the presentation model includ-
ing the query and rules, as well as some examples are discussed in
Section 5.4.

97

98 implementation of context in mathdox

Figure 19: The MathDox Player and the context add-on.

5.1 implementation design

In MathDox a page determines what is being shown to the user. This
is a direct consequence of the stateless character of the MathDox
Player. As stated, to remain in the spirit of the MathDox Player, the
MathDox Context implementation is not centrally driven either; there
is no center of operations responsible for making decisions on what
content is being offered or adapted. Instead, the requested MathDox
page itself determines what content to offer and decides what needs
to be done to adapt content to the needs of the user.

This is in contradiction to for example ActiveMath [1] where a
centralized rule engine is responsible for creating courses based on
data known about the user. Mixing content and presentation also
goes against the principles of modern day computer science. Indeed
mixture of content and rules reduces reusability of content on other
pages, where quite possibly other rules apply causing conflict.

However a decentralized approach with — to a limited extend —
mixture of content and rules also has advantages. A centralized ap-
proach tends to create a mosaic feel in adaptive documents, the sep-
arate pieces of content remain present as the seams between these
pieces can be quite obviously identified. Also in our opinion the mix-
ing of rules and content offers more freedom for an author to create
adaptive mathematical documents. This may include different kinds
of documents than intelligent tutor systems, or not even related to
education. Later in this chapter we will introduce an approach based
on fragments that allows reuse of content and content and rules to be
less mixed while still maintaining the decentralized approach.

5.1.1 The context object

For a MathDox page to adapt content to the needs of the user, meth-
ods are needed to consult the static data as stored in the domain
model and the dynamic user data as stored in the user model. This

5.1 implementation design 99

data is processed and conclusions are drawn by the presentation
model’s rules as coded into the MathDox code on the page. Armed
with these data sets and interpretations as performed by the presenta-
tion model’s rules, the MathDox code is able to make the right adap-
tation during its interpretation path from source code towards HTML
code, which forms a web page for the user.

The means offered to a MathDox page for accessing data from the
domain model and user model, comes in the form of the context object.
The context object can be seen as the center of the mathematical con-
text model implementation. It embodies the domain and user model
of the mathematical context model by keeping track of the theory,
symbol and variable graphs of the domain model and by providing
access to the database with user related data from the user model.

The context object as a session.
In our implementation of the mathematical context model for the
MathDox Player we designed the context object to be a Java class
which is implemented following the singleton [163, 164] design pat-
tern. As such the context object is only created when it is needed and
is reused afterwards. There will always be at most one object of this
class at any given time, hence the name singleton. Indeed, there is
always just one context object available within the MathDox Player
implementation.

The benefits of using the singleton approach are two-fold. Each
page request is seen as an independent request by the MathDox Player,
and there is only a very minimal session environment available for
storage of user related details within the MathDox Player. In fact,
the only items the MathDox session does store are not even required
for most MathDox pages. They are the name of the user and his or
her password for possible database access. To keep in line with the
statement of not altering the code of the MathDox Player, we kept the
minimal MathDox session and added our own more elaborate session
within the context object. These sessions are responsible for caching
user data and storing this data after the session expires. A reference to
the context object from rules, typically implemented by Java or Jelly
code is obtained by using the singleton’s static getInstance() method
of the context object, making it as easy to use as the session interface
of a typical web application.

Caching of Domain model graphs by the context object.
Another direct consequence of the singleton design of the context
object is that all documents and all users of a MathDox Player share
the same context object, making it possible to maintain just one copy
of each theory, symbol or variable graph from the domain model of
an adaptive document. Since these graphs are immutable it does not
matter how many different users actually use them, nor how many
different documents reuse the same graphs. Each graph will only be

100 implementation of context in mathdox

loaded once when it is actually needed and is reused by any user or
document in need for it. For this purpose the graphs are identified by
the URLs that where used to locate them.

Caching of user model data.
The context object also serves as a database access point. It provides
access to the data stored in the user model. If not yet available the
data will be retrieved from the database and cached. For this purpose
the context object contains a separate database access object (DAO
design pattern) [121, 156], responsible for all database interaction. As
there is just one context object that is reused by all users, the object
also has the responsibility to only grant access to data belonging to
that particular user, and hence handle privacy issues.

Caching user data gives the context enriched MathDox Player a
performance gain as the number of queries to the database is reduced.
An activity table was added to the context object to keep track of
expiring sessions. When a session expires, cached data needs to be
stored if changed and purged from the system.

5.1.2 Jelly implementation

The key to the implementation of the mathematical context model as
an add-on to the MathDox Player is to make use of the extensibility
and flexibility of the MathDox format. The architecture of the Math-
Dox format allows for a combination of different execution steps, see
Figure 20 which was previously shown as Figure 3 in Chapter 2. Espe-
cially the Jelly phase is very suitable for building such extensions. Ex-
tensions in Jelly may take the form of web calls for extra information
or custom tags for new and different behavior of the MathDox code.
With custom tags also comes the opportunity to add Java classes for
more advanced implementation aspects, such as interaction between
the MathDox format and the context object. This Jelly phase and the
suitability for extensions will be used by queries to access the context
object and allows for the implementation of the mathematical context
model.

In Figure 22, we take a closer look at the Jelly execution step as
seen in Figure 20.

Example 10:
For the purpose of understanding fully what happens

at the Jelly execution step, we will demonstrate MathDox
code being interpreted according to the schema in Fig-
ure 20. The code shown in Listing 10 is in progress of be-
ing interpreted and is just before the Jelly execution step,
and consists of Jelly core and custom tags. These tags start
with the c:, and mdu: prefixes. Specialized XML Jelly tags
are also available, but not used in this example. The code

5.1 implementation design 101

Figure 20: The MathDox interpretation schema.

shown in Listing 11 is code in which all Jelly tags have
been executed and replaced by new expressions in either
the DocBook, OpenMath, or XForms format. Note that
code in between conditional tags such as <c:while> or
<c:if> only is translated when these test conditions eval-
uate to true. The generated page is shown in Figure 21

Listing 10: A MathDox code example containing Jelly

1 <article xmlns:c=" je l ly :core " xmlns:mdu=" jel ly:org .mathdox. ut i l .
UtilLibrary">

2 <para>

3 <c:set var="a" value="1"/>
4 <c:set var="b" value="0"/>
5 <c:set var="c" value="0"/>
6 <mdu:random var="d" minimum="10" maximum="50"/>
7

8 Fibonacci numbers smaller or equal to ${d}:

9 </para>

10

11 <para>

12 <c:while test=" ${c le d} " >

13 ${c}

14 <c:set var="c" value=" ${a+b} "/>
15 <c:set var="a" value=" ${b} "/>
16 <c:set var="b" value=" ${c } "/>
17 </c:while>

18 </para>

19 </article>

Listing 11: A MathDox code example with executed Jelly

1 <article xmlns:mdu=" jel ly:org .mathdox. ut i l . UtilLibrary">
2 <para>Fibonacci numbers smaller or equal to 28:</para>

3 <para>0 1 1 2 3 5 8 13 21</para>

4 </article>

102 implementation of context in mathdox

Figure 21: Output of a MathDox page with Jelly statements

Creation of custom tags.
Jelly tags are extremely useful for conditional logic and for gathering
(external) information on a MathDox page. These are properties that
are required to access the domain and user models via the context
object.

Listing 12: A library definition for custom tags

1 public class TheoryBlocksTagLibrary extends TagLibrary{

2 /**
3 registration of Jelly custom tags

4 */

5 public TheoryBlocksTagLibrary() {

6

7 // returns all variable names in a given symboltable.

8 registerTag("get−variablenames", GetVariablesNamesTag.class);

9

10 // test conditions of variables

11 registerTag(" test−conditions", TestConditionsTag.class);

12

13 // Returns current doc id as given in the document.xml

14 registerTag("get−docid", DocumentIDTag.class);

The creation of custom tags is quite straightforward. It requires a
Java class that extends the TagLibrary class from Jelly, in which the
names of the custom tags are linked to classes that implement the
tags, see Listing 12. Adding the new custom tags to the MathDox
Player only requires a jar file being added to the classpath of the
MathDox Player. This jar file must contain the classes implementing
these new tags and the extended TagLibrary class. A Java class imple-
menting a custom tag needs to implement the TagSupport interface
and supply an implementation for the public void doTag(XMLOutput)
method. This method takes an XMLOutput object to which output
needs to be written. The XMLOutput object is provided by the Jelly

5.1 implementation design 103

execution engine. Of course the output written needs to be valid XML
as the output is placed into the XML of the MathDox code that is be-
ing processed. For convenience an XMLWriter object can be used to
assist in generating valid XML. As it turns out it often pays off to im-
plement the reasoning for these custom tags in yet another separate
class. In this way that specific reasoning can also be used by other
tags and multiple reasoning objects can be combined to form new
reasoning.

Implementation of rules and queries.
Tags typically are the tools used for information retrieval, the previ-
ously named queries. Their Java nature however also allows to make
decisions based on this information and therefore they can also be
used as implementation of rules from the presentation model. But as
we will see in Section 5.4, tags are not the only way to implement
rules.

Figure 22: A closer look at the Jelly phase and context influence on a page

5.1.3 Alterations in the MathDox Player

For the context add-on to function properly some extra code needed
to be added to the MathDox Player. This was limited to some exten-
sions of the translation steps as depicted in Figure 20. These code
extensions in the MathDox Player were kept to a minimum so as not
to disturb the original behavior.

These changes included the addition of an identification process,
necessary to identify users and to retrieve their data from the database.
Until now, identification was either not necessary or left to a learning
management system.

104 implementation of context in mathdox

Another change included the execution process of MathDox frag-
ments (see Section 5.2.4 for more information about fragments in
MathDox). Until the introduction of fragments MathDox only used
static inclusions performed by XInclude [117] at the very beginning
of the translation process. Fragments as discussed in Section 3.3, re-
quired also conditional inclusion of fragments and therefore the need
to be processed and be included at the Jelly phase of the MathDox
page interpretation. At the same time fragments require a complete
interpretation of its code as not to lose any macros and MONET ex-
pressions within a fragment. Fragments therefore require a separate
partial translation to keep the translation process in sync with the
translation process of the main document.

With the exception of the partial fragment translation process, all
these changes also directly benefited the MathDox Player itself, and
where not just solely implemented for the enrichment of context. The
implementation of partial MathDox fragment translation could not
be resolved in any other way. However, the implementation is only
used when required and does not hinder the normal behavior of the
MathDox Player.

5.2 domain model

The domain model contains all sources that belong to a document.
As such it contains the theory, symbol and variable graphs and un-
adapted content. With the notions of the context object and the cus-
tom tags we will explain in this section how the domain model is
made available for adaptive mathematical documents.

The Document file.
A MathDox page of a context enriched document requires access to
the theory, symbol and variable graphs and content. Remember that
MathDox code is stateless by nature and is therefore oblivious as to
where to find any additional resources. This includes the unique iden-
tifiers that tell us which graphs are required and where these are to
be found. A document file containing document specific information
offers a solution. By placing the document file at the root of a docu-
ment, custom tags know where to find it and are able to look up what
they require. The document file shown in Listing 13 holds the URLs
to the theory, symbol and variable graphs and also contains other
useful information, such as the document identifier and prerequisite
knowledge that the documents assume to be already understood.

Dependency graph format.
All graph URLs and the URL of the document file are used as iden-
tifiers in the context object. These identifiers are linked to Java struc-
tures representing the cached graphs, document settings and prior
knowledge. The object structures are then used to execute queries to

5.2 domain model 105

gather information from a graph. The JGraphT Application Program-
ming Interface (API) [48] is used for the Java object structures that
represent the graphs.

Listing 13: An example of a document file

1 <document docid=" idacontext−cp1">
2 <url>http://evo02.win.tue.nl/rikkomathdoxplayer/</url>

3 <documenthome>/experimental/idacontext</documenthome>

4 <theorygraph>http://evo02.win.tue.nl/rikkomathdoxplayer/

experimental/idacontext/graphs/theorygraph/theorygraph.xml<

/theorygraph>

5 <symbolgraph>http://evo02.win.tue.nl/rikkomathdoxplayer/

experimental/idacontext/graphs/symbolgraph/symbolgraph.xml<

/symbolgraph>

6 <variablegraph>http://evo02.win.tue.nl/rikkomathdoxplayer/

experimental/idacontext/graphs/variablegraph/variablegraph.

xml</variablegraph>

7

8 <prior-knowledge>

9 <required-symbols>

10 <OMS cd=" arith1 " name="abs"/>
11 <OMS cd=" arith1 " name="divide"/>
12 <OMS cd=" arith1 " name="minus"/>
13 <OMS cd=" arith1 " name="plus"/>
14

15 <!-- some symbols were deleted for clarity-->

16

17 <OMS cd="setname1" name="Q"/>
18 <OMS cd="setname1" name="R"/>
19 <OMS cd="setname1" name="Z"/>
20

21 <OMS cd="sequence1" name="sequence"/>
22

23 <OMS cd=" transc1 " name=" ln"/>
24 </required-symbols>

25

26 <required-CDs>

27 <required-CD cd="prog1"/>
28 </required-CDs>

29 </prior-knowledge>

30

31 <extraDefinedSymbols>

32 <OMS cd="setname1" name="Z"/>
33 </extraDefinedSymbols>

34 </document>

In order to translate the GraphML [34] description of a graph to a
JGraphT object structure a graph import library was written. The de-
pendency graphs are written in the GraphML format as a collection of
nodes with edges to connect them. A feature of the GraphML format
and the import library to include optional properties — to be defined

106 implementation of context in mathdox

for the nodes or edges — may be utilized by authors to add specific
extra information into their graphs. These properties then become
available in the graph object structure and by means of queries are
available for adaptation purposes on a page. Additional properties
are not mandatory and author defined. This fits into our philosophy
of offering a generic and powerful system for creation of adaptive
mathematical documents.

Listing 14: A theory graph description file

1 <graphml xmlns=" http://graphml.graphdrawing. org/xmlns">
2

3 <!-- properties -->

4 <key id="oms" for="node" attr.name="oms" attr.type=" string "/>
5

6 <key id=" threshold" for="node" attr.name=" threshold" attr.type=

" string "/>
7

8 <key id="indexdata" for="node" attr.name="indexdata" attr.type=

" string "/>
9

10 <key id=" t i t l e " for="node" attr.name=" t i t l e " attr.type=" string "
/>

11

12 <key id="knowledgesummerize" for="node" attr.name="
knowledgesummerize" attr.type=" string "/>

13

14 <graph edgedefault="directed">
15 <!-- nodes -->

16

17 <!-- s1 -->

18 <node id="s1p1">
19 <data key=" t i t l e ">Division</data>
20 <data key=" threshold">1</data>
21 <data key="oms">
22 <symbols>

23 <OMS cd=" integer1 " name="quotient"/>
24 <OMS cd=" integer1 " name=" factorof "/>
25 </symbols>

26 </data>

27 <data key="indexdata">a,b,c,d</data>
28 <data key="knowledgesummerize">fragments/s1p1/

theorysummerize.mdf</data>

29 </node>

30

31 <node id="s1p2">
32 <data key=" t i t l e ">Quotient</data>
33 <data key="indexdata">b,d</data>
34 <data key=" threshold">3</data>
35 <data key="knowledgesummerize">fragments/s1p2/

theorysummerize.mdf</data>

36 </node>

5.2 domain model 107

37

38 <node id="s1p3">
39 <data key=" t i t l e ">remainder</data>
40 <data key="indexdata">c,d</data>
41 <data key=" threshold">3</data>
42 <data key="oms">
43 <OMS cd=" integer1 " name="remainder"/>
44 </data>

45 <data key="knowledgesummerize">fragments/s1p3/
theorysummerize.mdf</data>

46 </node>

47

48

49 <!-- for clarity reasons other nodes have been omitted from

this example -->

50

51

52 <!-- edges -->

53 <edge id="s1p1−s1p3" source="s1p1" target="s1p3"/>
54 <edge id="s1p1−s1p2" source="s1p1" target="s1p2"/>
55 <edge id="s1p1−s1p5" source="s1p1" target="s1p5"/>
56 <edge id="s1p1−s4p1" source="s1p1" target="s4p1"/>
57 <edge id="s1p2−s1p4" source="s1p2" target="s1p4"/>
58 <!-- edges removed from example for clarity reasons -->

59 </graph>

60 </graphml>

Example 11:
A theory graph is listed in Listing 14, in Figure 23 the

same graph is visualized. This theory graph describes
the partial ordering between mathematical notions of the
realm of group theory. The format we used to describe the
graph is GraphML, a rather common format to describe
graphs in XML. The way GraphML is structured is first
to declare properties that might exist for edges or nodes.
These are named by the id attribute. The for attribute tells
if the property is associated with either nodes or edges.
The type of value the property holds can be specified with
the attr.type attribute. Each property can be fitted with a
default value. The default value will be used if a node or
edge does not specify a value for that property.

The nodes and edges themselves need to be declared
within the graph section. This graph tag takes an attribute
edgedefault in which we specify that the graph is directed.
The nodes and edges each take an id that uniquely identi-
fies the node or edge. If there are no properties that apply
to a node then nothing more than just the tag with the
id is required. An edge obviously also requires a source

108 implementation of context in mathdox

Division

Quotient

Remainder

LCM

Definition prime

Polynomial division

GCD Polynomial quotient and remainder defs

Polynomial gcd and lcm introEuclidean algorithmPrime number theorem GCD LCM product

Extended factorisation

Polynomial gcdExtended Euclidean algorithm

Characterization of the GCD Polynomial Euclidean algorithm

Relatively prime

Relatively prime and divisibility

Diophantine equationsPrime characterization

Homogeneous Diophantine equation solving

Solving Diophantine equations

Euclids TheoremEratosthenes sieve

Prime divisors of product

Factorisation

Polynomials

Polynomial ring

Polynomial quotient and remainder

Figure 23: A visual representation of the theory graph.

to start from and a target to go to. These are listed as
attributes with node ids as value.

5.2.1 Theory graph

A theory graph, as previously discussed in Section 4.1.1, is a depen-
dency graph that defines the partial ordering between the different
mathematical notions, called theories. The relation vT between the-
ories is captured in the theory graph described in an XML file, and
loaded into the context object. An example of a theory graph was
given in Example 6.

5.2.2 Symbol graph

The symbol graph has similarities with the theory graph for instance,
both graphs are used for overlay purposes. Additionally, the theory
graph also refers to the symbol graph as it keeps track on which nodal
page a symbol is introduced.

This relation with the theory graph could be made more explicit
by applying the partial ordering of the theory graph to the symbols
as well, effectively merging the symbol graph into the theory graph.
However, it is preferable to keep the theory and symbol graph sepa-
rate due to separation of responsibility. This helps to keep the graphs
less complicated and reduces the chance of error. Reuse of graphs is

5.2 domain model 109

encouraged, when little changes have to be made, it is easier to re-
place just one graph and keep the other one unchanged, than replac-
ing a combined graph for a new one. Finally, finding the required
predecessors is easier and far more intuitive with the partial ordering
of the symbols in a separate graph.

Listing 15: Listing of a symbol graph

1 <graphml xmlns=" http://graphml.graphdrawing. org/xmlns">
2 <graph edgedefault="directed">
3 <!-- nodes -->

4 <node id=" arith1 .gcd">
5 <data key=" t i t l e ">GCD</data>
6 <data key=" representation">title</data>
7 <data key="page">document</data>
8 </node>

9

10 <node id=" arith1 . lcm">
11 <data key=" t i t l e ">LCM</data>
12 <data key=" representation">title</data>
13 <data key="page">document</data>
14 </node>

15

16 <!-- edges -->

17 <edge id=" factorof−lcm" source=" integer1 . factorof " target="
arith1 . lcm"/>

18 <edge id=" factorof−gcd" source=" integer1 . factorof " target="
arith1 .gcd"/>

19 <edge id=" factorof−P" source=" integer1 . factorof " target="
setname1 .P"/>

20

21 </graph>

22 </graphml>

Variations in symbol graphs.
Just like the theory graph, the symbol graph is created by the author
of a document. It is likely that other authors take different approaches
to the same topic. This is because their documents may be aimed at
different audiences or simply because they take a different view on
the matter at hand and explain things differently. This is a situation
very similar to the one we already discussed in Section 4.1.1 about
theory graphs. The distinction here however is that, whereas the the-
ory graph uses author defined nodes for the graph, the symbol graph
uses OpenMath symbols. OpenMath has a large collection of prede-
fined and standardized symbols and as such these are suitable to
be shared between different symbol graphs, as opposed to the more
freely defined theory nodes. If an author instead opts for symbols
that are not (yet) part of this standardized set, full cooperation be-
tween different symbol graphs becomes hard. Sharing knowledge of

110 implementation of context in mathdox

symbols between documents reduces the need for explicit data har-
vesting from the user, but requires privacy permission.

Another similarity with the theory graph is the way extra proper-
ties can be added to the nodes and edges of the symbol graph. Just
like we discussed at the start of Section 5.2.

In Listing 15, the listing of a partial symbol graph XML file is
shown. Note that this file is structured in the same way as a theory
graph, as discussed in Section 5.2.1. This includes the way properties
are added to either the nodes or edges. The location of the symbol
graph file is mentioned in the document file.

5.2.3 Variable graph

The variable graph indicates the dependency relations between the
various variables, again this is done by a GraphML file of the graph,
which is — just like the theory and symbol graph — loaded into the
context object.

The variable graph holds the declaration of the variables, mean-
ing all relevant data for a variable except for its value. The variable
graph does not record the values chosen by the users or the calculated
derivatives, that is the job of the mathematical context, a sub-model
of the user model, see Section 5.3

Properties in the variable graph.
Just as in the theory and symbol graph, the information stored in the
variable graph can be extended. If an author feels a variable needs
extra information, he or she can add this as extra attributes to the
variable vertices, or the connecting edges. This extra information can
later be used to fine tune content adaptation to the user, or for analy-
sis by the author. Some predefined attributes that have a meaning to
variable nodes are om, input, type, cas, xpathcondition and omcondition.
We discuss these properties as used in the variable graph.

Listing 16: A partial variable graph

1 <graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi

="http://www.w3.org/2001/XMLSchema-instance" xmlns:mdcv="http

://mathdox.org/mathdoxcontext/variables" xsi:schemaLocation="

http://graphml.graphdrawing.org/xmlns http://graphml.

graphdrawing.org/xmlns/1.0/graphml.xsd">

2

3 <key id="OMExpression" for="node" attr.name="OMExpression" attr

.type="xml"/>

4 <key id="type" for="node" attr.name="type" attr.type="xml"/>

5 <key id="conditions" for="node" attr.name="conditions" attr.

type="xml"/>

6 <key id="inputNode" for="node" attr.name="inputNode" attr.type

="boolean">

7 <default>false</default>

5.2 domain model 111

8 </key>

9 <key id="cas" for="node" attr.name="cas" attr.type="boolean">

10 <default>gap</default>

11 </key>

12 <key id="edgetype" for="edge" attr.name="edgetype" attr.type="

string">

13 <default>dependency</default>

14 </key>

15

16 <graph edgedefault="directed">

17 <node id="s1p1.a">

18 <data key="cas">gap</data>

19 <data key="inputNode">true</data>

20 <data key="conditions">

21 <conditions>

22 <condition type="xpath">

23 <xpath>not(//OMS[@cd="arith"])</xpath>

24 <message>no symbols from arith1 dictionary are

allowed</message>

25 </condition>

26 <condition type="cas" cas="gap">

27 <omexpr>

28 <OMA>

29 <OMS cd=’logic1’ name=’and’ />

30 <OMA>

31 <OMS cd=’relation1’ name=’leq’/>

32 <mdcv:variable/>

33 <OMI>100</OMI>

34 </OMA>

35 <OMA>

36 <OMS cd=’relation1’ name=’geq’/>

37 <mdcv:variable/>

38 <OMI>25</OMI>

39 </OMA>

40 </OMA>

41 </omexpr>

42 <message>A must be inbetween 2 and 10!</message>

43 </condition>

44 </conditions>

45 </data>

46 </node>

47

48 <!-- other nodes are not shown -->

49 <!-- the variable graph has no edges defined -->

50 </graph>

51 </graphml>

In Figure 24, a variable graph is shown associated with the running
example of the orbit stabilizer theorem as previously discussed in
Examples 7 and 16. Figure 24 was also shown earlier in Chapter 4 as
Figure 12, but is repeated here for convenience of the reader.

112 implementation of context in mathdox

 g

 G=permgroup(g,h)

 h

 GO=|G|

 Gx=orbit(G,x) G =stabilizer(G,x) x

 Theorem=(GO==OO*SO)

 x

 OO=|Gx| SO=|G | x

Figure 24: A component of a variable graph related to orbits

5.2.3.1 The om attribute

The om attribute is a required attribute used for assigning an Open-
Math expression to a variable. Such an OpenMath expression can be
anything from a value to a formula that depends on other variables
before it can be evaluated.

5.2.3.2 The input attribute

Because nodes from the variable graph depend on each other, the
root nodes have a lot of influence on the values associated with the
other nodes in the graph. For instance, consider the group G that is
defined as the group that is generated by the permutations g and h.
Because G is defined by these permutations, the two permutations
will always be elements of G. As such both the permutations and G,
and other successor nodes in the variable graph share a dependency
relation with the first picked permutations g and h. Note that if the
values of one or more of the non-root variables (like G, Gx, GO, OO
and others) are changed, instead of the values of g, h and x, then the
relation between the variables in the variable graph is lost. As a result
the Orbit stabilizer theorem does not necessary hold any longer. These
situations must not occur.

Two kinds of variables.
This demonstrates that there are two kinds of variables in the vari-
able graph. The first kind are those of which a user is allowed to
change the value without breaking the defined relations between the
variables. These variables are called input variables and are the roots
of the variable graph. In Example 7 the variables g, h, and x are input
variables. All other variables are called function variables; these should
not, and therefore cannot, be directly changed by a user. The variable
graph does not keep track of values assigned to variables by the users
but it can indicate which variables are suitable for value assignment
by the user and which are not.

5.2 domain model 113

Definition of functional variables.
Only variables f with x @V f are considered to be functional vari-
ables. Furthermore there is a mathematical expression determining
the value of f uniquely, once all variables occurring in it have been
assigned a value.

Note, when all variables used in a functional variable f have a value,
it necessarily follows that the same must recursively be true for all
variables that are used in f.

Definition input variables.
An input variable x is characterized by the absence of any dependen-
cies of the form y vV x. In particular it does not have a definition.
Therefore input variables need to obtain their values either as default
values from the author or have them to be assigned by the user. These
assigned values are then stored in the user model (see Section 5.3).

The input attribute.
The input attribute as given to a variable node from the variable
graph, tells the adaptive mathematical document which variables are
considered input variables. All variables that do not have the input at-
tribute set to true, are automatically considered functional variables.

Input variables without values.
If an input variable has no value, then no value can be assigned to
functional variables depending on it. This is a situation that is pre-
vented by the author by supplying default values for all input vari-
ables and demand valid new values when these are changed. See
Section 5.2.3.4 about conditions.

5.2.3.3 The cas attribute

The cas attribute stands for which computer algebra system needs to
be used to evaluate the variable. While it is usually a computer al-
gebra system that performs computations, any mathematical service
can be used as long as it is able to understand the MONET [70] pro-
tocol, typically provided by phrasebooks [142]. This attribute only
applies to functional variables, as input variables do not require eval-
uation by computer algebra systems.

Using different computer algebra systems allows one to use the
best computer algebra system available for the kind of computation
required. Any computer algebra system used in this way needs to be
defined in the properties file of the MathDox Player along with a URL
where its phrasebook can be found. If the cas attribute is omitted the
default of MathDox Player is used as specified in the properties file
of the MathDox Player. As can be seen in Listing 16 a default value
for a cas can be given in the variable graph. In Listing 16 this is the
gap phrasebook.

114 implementation of context in mathdox

5.2.3.4 Conditions

Conditions enable the checking of values of the variables as some val-
ues might be considered illegal or undesired. For example a division
by zero, a square root from a negative value, or any other value that
might lead to unwanted or illegal situations. Illegal situations do not
have to appear in the same variable, if the value is used to determine
the value of a functional variable problems may occur there or even
in other functional variables later.

In the MathDox context implementation, we have created two dif-
ferent types of conditions. An XPath condition, that needs to be ap-
plied upon the OpenMath expression of the variable, and a computer
algebra system condition (cas condition). As the name suggests the
later is a condition that includes the OpenMath expression from the
variable and is sent to a computer algebra system for evaluation.
XPath conditions are discussed later, first cas conditions are explored
a bit further. In Figure 25 a variable graph is shown that also makes
use of XPath and OpenMath conditions.

Cas conditions.
Looking at the OpenMath XML is not always enough to know wheth-
er the evaluated value it represents is within allowed value ranges.
The most practical way to verify whether value conditions are met, is
to send the OpenMath expression together with the conditions of to
a computer algebra system, and verify that the returning answer is
satisfactory.

If a cas condition is used, the expression needs to be constructed
in such a way that the computer algebra system returns an Open-
Math true or false value. This is rather easy to manage with the use
of OpenMath symbols such as lesser than, equal to or greater than. It
is not hard to expand conditions to suit the required needs with log-
ical operators as and, or and not. The value of the current variable is
included in a cas condition by the use of the this tag.

Note that although it would make sense to create cas conditions
only for the input variables in such a way that functional variables can
no longer produce illegal values in a variable graph, conditions can
also be attached to functional variables. This gives an author the free-
dom to choose whether he or she decides to check at the gate (at the
input variable level) or wants to warn a reader for an illegal situa-
tion at the moment it occurs and not before. Conditions at functional
variables also encourage reuse of parts of the variable graph. XPath
conditions are less useful for functional variables as their values are
computed and not given as input by the user. An exception occurs
when a functional variable is being reused as an input variable.

5.2 domain model 115

Figure 25: A variable graph related to orbits with conditions

Example 12:
In Figure 24 a variable graph is shown that is used

to connect some variables regarding permutation groups,
orbits and stabilizers. It did however not show any con-
ditions. In Figure 25 the same variable graph is shown
again, now with added conditions.

As was already clear from the previous example g and
h both need to be permutations. The element that func-
tions as starting point for the orbit and stabilizer algo-
rithm however also needs to occur in either g or h or
both. A good way to guarantee proper values for all in-
put variables, is to apply conditions that bind them all
to the same set X. Making sure that g and h are indeed
permutations containing only elements from the set X we
insist that each of them is an element from the symmetric
group Sym(X) as this group will hold all permutations
possible for the set X. This reflects in the variable graph
as two extra variables X and S as compared to Figure 24.
The added variables X and S also have a dependency as S
depends on X.

116 implementation of context in mathdox

Condition dependencies.
It would be logical to expect dependency relations also to exist be-
tween S and X on one side and g, h and x on the other side. However,
g, h, and x are input variables and as such they have no formula that
determines their value based on dependencies on either X or S. Still
these input variables are subject to conditions. In this case the con-
dition that these values have to be elements from either X for x or
S for g and h. Condition dependencies are represented by a dotted
edge in the variable graph. The conditions themselves are properties
of the variables nodes and as such linked to the variables to which
they apply. Input variables that are connected to a condition depen-
dency edge are still available for input, however this input is subject
to conditions that need the variable at the other side of the edge for
verification of the condition. In the current example this would result
in a situation that a user is able to specify any value for these input
variables as long as it is an element of the aforementioned sets.

Among other conditions that apply to the variable graph in Fig-
ure 25, there are restrictions on the order of the values of variables
GO, OO and SO. These cannot be negative and OO and SO cannot
be any larger than GO. Also, it will be clear that the graph is invalid
if Theorem ever holds a false value instead of true. Note however
that these conditions will always be true provided correct values were
chosen for the input variables.

Conditions contaminate content.
With restrictions put on the variables, one could say that the variable
graph is crossing the boundary from being a graph that plays a sup-
porting role for content to becoming content itself. After all with se-
vere restrictions on the conditions, the users’ freedom to choose those
values is heavily restricted. However, if the author makes these deci-
sions there are probably some good reasons for it. That being said,
we consider it a best practice, that an author should limit the use of
conditions to the level that is needed to warrant correctness within
the document. Using more conditions than whats needed for docu-
ment correctness would also limit the freedom of users to explore
and discover how expressions and values relate to each other.

XPath conditions.
An XPath condition does not try to compute a condition like a cas con-
dition, instead it utilizes an XPath expression to query the OpenMath
value. In both the XPath and cas condition types, the result needs to
be a boolean true value for the condition to pass. In case of XPath this
means either a direct true value is required as result, or a non-empty
data set as selected by the XPath expression, which defaults to a true
value.

An XPath condition only checks for the syntax of OpenMath ex-
pressions, as all functional variables have a set syntax it is of little use

5.2 domain model 117

to apply XPath conditions on functional variables to verify user input.
However XPath conditions may be used to verify the type of a value,
i.e.. whether a value is an integer or a real.

XPath conditions on input variables can be used to check for the
type of an expression, or for the use of certain (forbidden) operators.
An XPath condition might check if an OpenMath expression does
not contain any elements the author would have disapproved of. For
instance if the author requires an integer, he or she may have reasons
to really want an integer, and not just an expression that results in an
integer.

Multiple cas and XPath conditions can be used on one variable. Pro-
viding a mixture of conditions to verify the correctness of the value.

5.2.4 Content

Besides the theory, symbol and variable graphs, the domain model
also harbors content. The presentation model will make a selection
from the content based upon the needs of a user. Since the needs
of different users vary, the content they get served needs to change
accordingly. The content stored in the domain model is fragmented.
The nodal pages that represent the theories from the theory graph are
without any content themselves. The content that they present to the
user is formed by the included fragments.

In this section we discuss fragments and the way they are imple-
mented in detail. The MathDox format that is used to write the con-
tent was discussed earlier in Section 2.3.

Fragments in other formats.
The principle of distributing content over multiple files and taking
them together by including them into one file is already quite well
known. Indeed content can be reused at multiple locations while it
only needs to be written once. This technique is used in LATEX, but
also in programming environments like XInclude [117], PHP [84],
JSP [43], and many others. They all focus on content inclusion and
convert the original file enriched with all inclusions to a virtual file
with the complete contents. This is in contrast to object oriented lan-
guages, where the use of objects leads to inclusion of functionality
instead of a verbatim copy of the code. The verbatim inclusion of
fragment code means that an author needs to know how things are
done in a fragment. Similar to LATEXwhere authors really do need to
know what kind of environments are used in the included parts, or
which variables are defined in included fragments in JSP, in order to
prevent collisions with these declarations. In our mathematical model
implementation in MathDox, we aim for more than just inclusion of
the literal content, we want to include the functionality offered by the
fragments. Wherever a fragment is included a separate entity with its
own scope will be used. This will prevent undesired data collisions

118 implementation of context in mathdox

and warrant its functionality regardless of the contents of the envi-
ronment it is included into, be it in the file itself or in other fragments
already included.

Characteristic fragment properties.
A MathDox fragment is a piece of MathDox code that is stored in a
separate file and has the properties of being reusable, easy to include
and to exchange operational data. There is no set limit to the depth
of (recursive) fragment inclusion.

Reusable.
Fragments are designed to be included by other MathDox code. This
mechanism of including fragments, makes reuse of the same content
on different pages easy. Whenever rules of the presentation model tell
a page to include a definition about group theory, all a page has to
do is include the fragment that contains this definition. This allows
content to be written once and reoccur on each and every single page
that is in need of it.

The responsibility to preserve the look and feel of a page, especially
at the seams of used fragments lies with the caller of these fragments.
This caller may be another fragment or the page itself. It is up to the
code that performs the inclusion to make the content seams of in-
cluded content as smooth as possible and prevent a mosaic look and
feel. As the including code is aware which fragment it is including,
while the included fragment is not aware which code it is included
from. In this regard it is important that the content in a fragment does
not assume that the user already possess any information or knowl-
edge other than what is directly needed for the topic of the included
fragment. Failure to adhere to this, quickly reduces the reusability of
a fragment both in content of the fragment itself but also in relation
to fitting it in with the other content on the page.

Also, in order to encourage reusability a fragment must be easy
to call and include, and should not force the author into learning
any of its inner workings. Keeping the content of a fragment small
and to the point, and allowing configuration parameters will benefit
the reusability of fragments greatly. Some documentation explaining
what the fragment and the configuration parameters do, should be
enough.

Easy to include and to exchange operational data with.
Inclusion of a fragment is as easy as a function call in a programming
language. To form one continuous MathDox page it is important for
a page to be able to exchange operational data with the content/code
of the fragment. The separation of scopes prevents data collisions but
also direct data access. The solution comes in the form of having a
fragment accept arguments and to letting it be capable of returning
any useful results from its execution.

5.2 domain model 119

Fragments can include other fragments and create compound frag-
ments, combining the content and behavior of smaller fragments into
one larger fragment. A larger compound fragment is less suitable for
reuse, as it will contain more rules that might conflict upon reuse. The
view that is offered by a compound fragment can be considered one
of many. This means that there is no objection to create another com-
pound fragment that offers a different view on the same topic. These
other compound fragments can still include the same fragments as
the original compound fragment did, but can also deviate by includ-
ing extra content or fragments, reconfiguring fragments by adjusting
their configuration parameters or by omitting content that is not re-
quired. The creation of a new compound fragment allows for a new
ordering and reuse of the included fragments without the need to
rewrite them.

Scope and encapsulation.
As fragments can be included by one another the fragment itself re-
mains unaware of such embedding and remains responsible for its
correct functioning. Fragments therefore need a mechanism to shield
their properties — such as Jelly variables and XForms identifiers —
for outside use. This phenomenon is called encapsulation in object
oriented programming. Encapsulation for fragments is achieved by
adding a Jelly scope to protect variables, and a renaming mechanism
for XForms identifiers.

Rule implementing fragments.
In our design a fragment is a piece of MathDox code. MathDox code
already has the possibility to make choices based on user interaction.
The possibility to construct fragments and include these on pages,
results in having the possibility of including decision making algo-
rithms. It is this programmable behavior that allows cyclic or recur-
sive inclusions of fragments. As long as the end condition is well
defined there is no risk for an endless recursion. Programmable be-
havior as described here, lets us use fragments as rules as described
in the presentation model in Section 4.3. In Section 5.4 we go into
deeper detail.

Fragment implementation.
Implementation of fragments is done with the help of custom Jelly
tags which can be called from MathDox code. This means that by giv-
ing the right parameters to a Jelly fragment tag, the MathDox frag-
ment file is located and executed. However, consider the MathDox
translation pipeline as previously shown in Figure 3 and Figure 20

and also in Figure 26 where it is expanded by the translation pipeline
as needed for fragments. As can be seen from these figures, when any
Jelly tag is executed, all macros and MONET code present anywhere
in code is already translated. As a matter of fact MONET code is trans-
lated to Jelly code and macros can be used by authors as substitution

120 implementation of context in mathdox

for both MONET and Jelly code. Having a Jelly tag that acts as a hook
for fragment code therefore presents a problem as the code within the
fragment may still contain MONET code and macros. Furthermore it
may even contain other fragment calls that contain MONET code and
macros as well. Clearly any fragment code that is encountered at the
Jelly phase needs to have their MONET code and macros translated
first before the fragment can be executed. To this purpose the Math-
Dox Player — on a rare occasion — was slightly altered. Whenever
the MathDox player receives a request for a file in XML format that
contains the <fragment> root element, it only executes the first two
steps of the translation process and renames all XForms identifiers
to prevent name clashes later on. The intermediate result of the frag-
ment is then included into the calling code at the execution Jelly step.
From this point all content exists in the same (virtual) file and is ready
to be processed by the remaining translation steps that transforms
DocBook, OpenMath and XForms to HTML. Note that this process
also copes with recursive fragment calls. This process is shown in
Figure 26.

Figure 26: The MathDox Player translation pipeline adapted to cope with
fragments.

Data within fragments.
Among the responsibilities of the Jelly fragment tag is encapsulation
of data within the fragment. The protection of Jelly variables as they

5.2 domain model 121

are declared inside fragments is rather easily solved by Jelly. The Jelly
format offers the creation of an extra scope [160] in which the Jelly
code of the fragment is executed. As a result of the extra scope, Jelly
code can access all Jelly variables from the calling MathDox code,
but the calling MathDox code cannot access any Jelly variables from
inside the fragment. In case of variables with the same name, the
variable within the current scope takes precedence avoiding the use of
variables that where declared elsewhere. This very strongly resembles
to how program languages handle variables declared inside a block
i.e.. a while or for block as opposed to their availability outside that
block.

Encapsulation has it that the calling code should not be required
to know about any variables of the fragment and vice versa. For this
reason the fragment tag as used in MathDox code accepts a list of
name value pairs acting as (configuration) parameters for the frag-
ment, rather than having a fragment accessing variables outside its
current scope to obtain this configuration data. This list of name
value pairs is converted to a set of Jelly variables within the scope
of the fragment called. Alternatively new variables can also be de-
clared and set in the body of the fragment tag. Again these variables
are set in the scope of the fragment and therefore unreachable from
the MathDox code that is calling the fragment.

As a fragment needs parameters from the calling MathDox code to
adapt itself to its environment, the calling MathDox code may need a
result variable as parameter from the fragment. This works by a list
of name value pairs that is assigned to a variable identifier given to
the fragment as an attribute setting in the fragment tag.

Listing 17: MathDox code calling a fragment

1 <c:set c=" je l ly :core " var="a">16</c:set>
2

3 <mdc:include-fragment xmlns:mdc=" jel ly:org .mathdox. context .
TheoryBlocksTagLibrary" fragment="fragments/example.mdf"/>

4

5 ${a} <!-- will print the value of the variable-->

Listing 18: The fragment that is called

1 <mdc:fragment xmlns:mdc=" jel ly:org .mathdox. context .
TheoryBlocksTagLibrary">

2

3 <c:set var="a">32</c:set>
4

5 </mdc:fragment>

122 implementation of context in mathdox

Example 13:
Consider the code examples in Listing 17 and Listing 18.

In Listing 17 is an example of a fragment that is being
called, while in Listing 18 the content of the called frag-
ment in shown.

As both snippets of code have a declaration of a Jelly
variable called a, one has to wonder what exactly will
happen if these statements are joined into one (virtual)
file. Indeed in a similar format as JSP [43] both declared
variables are considered to be the very same. We want an
inclusion of a fragment to be as easy as a call to a pro-
cedure in a modern programming language. In order to
achieve this goal we need the two different declarations
of the variable a to remain different variables. The extra
scope in Jelly will make all variables as declared inside
the fragment invalid to the code outside of the fragment.
Variables declared outside the fragment can be accessed
in the fragment code, but only if their name is not be-
ing overwritten by new declarations. The Jelly statements
within the fragment will immediately be executed during
this inclusion. The print statement in Listing 17 will print
the number 16 even though the variable a has a different
value inside the fragment.

Listing 19: The include fragment tag

1 <c:new xmlns:c=" je l ly :core " var="argumentsList"
2 className=" java . ut i l .HashMap" />

3 <c:set xmlns:c=" je l ly :core " target=" ${argumentsList} "
4 property="argument1" value="value1" />

5 <c:set xmlns:c=" je l ly :core " target=" ${argumentsList} "
6 property="argument2" value="value2" />

7

8 <mdc:include-fragment

9 xmlns:mdc=" jel ly:org .mathdox. context . TheoryBlocksTagLibrary"
10 args=" ${argumentsList} " var=" resultList "
11 fragment="fragments/example.mdf" />

Example 14:
In Listings 19 and 20, MathDox code is shown that

demonstrates a fragment inclusion. In Listing 19 a list ar-
gumentsList is constructed, which is then filled with the
name value pairs argument1/value1 and argument2/value2.
This list argumentsList is then passed to the fragment by
means of the attribute args. The list with return values is
stored in the Jelly variable resultList as passed along in
the attribute var. The fragment that is to be included is

5.3 user model 123

being identified with the URL in the attribute fragment.
Note that the fragment url points to a file that is served
by the MathDox Player; the MathDox Player is going to
perform the required translation steps upon the request
of this fragment and will return MathDox code without
any macros or MONET expressions.

Listing 20: The include fragment tag

1 <mdc:include-fragment

2 xmlns:mdc=" jel ly:org .mathdox. context . TheoryBlocksTagLibrary"
3 var=" resultList "
4 fragment="fragments/example.mdf"
5 >

6 <c:set xmlns:c=" je l ly :core "
7 target="argument1"
8 value="value1"
9 />

10 <c:set xmlns:c=" je l ly :core "
11 target="argument1"
12 value="value1"
13 />

14 </mdc:include-fragment>

Example 15:
In Figure 20 MathDox code is shown with the same

functionality as previously shown in Figure 19. As op-
posed to the previous example, the parameters that are to
be passed to the fragment are no longer inserted into a
list of name value pairs. Rather, they are being declared
as variables in the body of the include-fragment tag. Both
approaches are considered identical.

5.3 user model

A user model is all about the data of the user. It stores raw data that
is later used by queries and rules from the presentation model to
adapt the content to the needs of the user. To make adaptation by the
presentation model work, it is of importance for the user model to
have a good data set about each user and to keep this up to date.

Initial data set.
An initial data set about the user may be obtained by presenting the
user with a questionnaire. The need and complexity of a question-
naire may vary from different documents. Sometimes it may be best
to ask a user for permission to copy relevant data that is already
known about the user from other adaptive documents, saving time
filling out questionnaires.

124 implementation of context in mathdox

Keeping data up to date.
The initial data set needs to be maintained and expanded upon dur-
ing visits of the user so as to reflect the progress made in the doc-
ument. The user reads through the document, learns new things,
makes changes in values and visits more and more different pages.
This is of course expected from the user, and needs to be recorded
in the user model so the document takes them into account upon the
next visit of the user. Updating the user model for a user can be done
implicitly, explicitly, or in a combination of both. Implicit data gath-
ering focuses on retrieving data from the user without him or her
being consciously aware of it. As such it may be subject to incorrect
assumptions made by the system, introducing a chance on inaccurate
user model data. Explicit data gathering is much like the afore men-
tioned questionnaire, it asks the user to verify an assumption or to
enter required data. Explicit data relies on the honesty of the user to
provide the correct data. A good design for an adaptive mathematical
document, takes a balance between implicit and explicit data gather-
ing and use implicit data to verify the explicit data and vice versa.

History.
As data is being updated it will change, causing the data set of a user
over time to migrate from one state to another to yet another. These
newer data sets will benefit the user as it leads to a different adapted
content, but there is also a danger as changed content might confuse
the user. After all if content is adapted it changes in presentation, and
the user may not recognize it any more as the same content. Confu-
sion will occur especially in cases where the user wants to look back
at things which are no longer there or have been replaced by other
fragments of content. The user will need a mechanism to (temporary)
roll back any data changes and use the data that has been stored at
an earlier point in time, and let the adaptive document reproduce the
content exactly as it is was before.

For this purpose each and any change to data in the user model
is done by means of information addition. That is, information is not
allowed to be replaced as to preserve the original values. Instead, new
information is added with a newer time stamp attached to it. In this
way, a versioning scheme is employed such that older data stored in
the user model is still present. Queries to the user model will need a
timestamp as to return the data that was known at that moment.

Values that are randomly picked and influence content need to be
stored in the user model, even if they normally would not be. Failure
to do so will still lead to different content when the user rolls back to
a previous timestamp.

eXist.
The user model is divided into three sub-models; mathematical, lo-
gistical and knowledge context. Each has its own responsibility. The

5.3 user model 125

mathematical context keeps track of all mathematical values, logisti-
cal context keeps track of non-mathematical values and the knowl-
edge model keeps track of which notions are understood. These are
being kept in the XML-database eXist [22]. An XML-database is es-
pecially useful for the mathematical context as the mathematical ex-
pressions are written in OpenMath, an XML format. Due to the XML
nature of the database XQuery [127] and XPath [145] are useful tools
in retrieving information from the database.

Mathematical and logistic context.
Variables are used throughout an adaptive mathematical document,
and can be categorized into either mathematical or logistic (non-math-
ematical) variables. Besides the math - non-math difference, there is
also a difference in scope. Logistic variables must be accessible from
anywhere in the document, while mathematical variables should only
be accessible in the nodal pages they are introduced at or in any
successor nodes. As a consequence variables are grouped in symbol
tables, one for each nodalpage and one for all logistic variables. Vari-
ables listed in the same symboltable have the same scope in the doc-
ument. Also, assigning each nodal page a symbol table, will grant a
page the freedom to name its variables without any name clashes.

Listing 21: Mathematical context as stored in the user model

1 <variables>

2 <document docid=" idacontext−cp1">
3 <symboltable name="s1p1">
4 <variable name="a" date="20150426154909" type="openMath"

vargraphvar=" true">
5 <OMI>12</OMI>

6 </variable>

7 <variable name="a" type="openmath" date="20150428094655"
vargraphvar=" true">

8 <OMI>8</OMI>

9 </variable>

10 <variable name="b" date="20150426154909" type="openMath"
vargraphvar=" true">

11 <OMI>4</OMI>

12 </variable>

13 <variable name="c" date="20150426154909" type="openMath"
vargraphvar=" true">

14 <OMI>14</OMI>

15 </variable>

16 <variable name="c" type="openmath" date="20150428094657"
vargraphvar=" true">

17 <OMI>12</OMI>

18 </variable>

19 <variable name="d" date="20150426154909" type="openMath"
vargraphvar=" true">

20 <OMI>7</OMI>

21 </variable>

126 implementation of context in mathdox

22 <variable name="ab_q" type="openMath" date="20150426201453"
vargraphvar=" true">

23 <OMI>3</OMI>

24 </variable>

25 <variable name="cd_q" type="openMath" date="20150427161733"
vargraphvar=" true">

26 <OMI>2</OMI>

27 </variable>

28

29 <!-- other variables entries have been removed for clarity

-->

30 </symboltable>

31

32 <!-- removed others symboltables for clarity -->

33 <symboltable name=" root">
34 <variable name=" f i rs tVis i t " date="20150427112131" type="

text " vargraphvar=" false ">true</variable>
35 <variable name="showProof" date="20150426154909" type=" text

" vargraphvar=" false ">true</variable>
36 <variable name="lastName" date="20150426154909" type=" text "

vargraphvar=" false "/>
37 <variable name="goal" date="20150426154909" type=" text "

vargraphvar=" false ">nogoal</variable>
38 <variable name="dateOfBirth" date="20150426154909" type="

text " vargraphvar=" false "/>
39 <variable name="minimizeQuestions" date="20150426154909"

type=" text " vargraphvar=" false ">true</variable>
40 <variable name="firstName" date="20150426154909" type=" text

" vargraphvar=" false "/>
41 <variable name="date" date="20150426154909" type=" text "

vargraphvar=" false ">20150427000000</variable>
42 </symboltable>

43 </document>

44 </variables>

Consider Figure 21, it displays a part of a user model serialized
as an XML file. Each user has its own document containing the vari-
ables from both the mathematical as logistic context. In Figure 21, a
part of the variables that belong to a user is shown. As can be seen by
the document tag all variables from different adaptive mathematical
documents are stored in the same file, but in a different branch of
the XML code. A document is identified with a document identifier
as mentioned in the document file discussed in Section 5.2. Figure 21

also shows that each symboltable is named after its nodalpage and
stores the variables that are introduced on that nodal page. The excep-
tion to this rule is the root symboltable. The root symboltable holds
all logistic variables. A third kind of symbol tables are local nodal
symbol tables which are used for local variables that should only be
used by the nodal page itself.

The symbol table name (prefix) and the variable name (suffix) com-
pose a variable identifier for use outside the symbol table. Because

5.3 user model 127

the symboltable name is used as a prefix, it is impossible for two
variables from different symbol tables to coexist with the same name.
Note that determining all variables available to a nodal page con-
nected to theory t now results in collecting all variables stored in the
symbol tables connected to the nodal pages of the preceding theories.
This is in line with the definition given in Section 4.1.4, where we
described all mastered predecessor theories as ∆(t) and ΩV(t) repre-
sents all variables available for use in the nodal page associated with
t. Therefore the lemma: ΣV(t) ⊆ ΩV(t) as stated in Section 4.1.4 and
where ΣV(t) represents the variables actually used on a nodal page
will be true, provided that ΩV(t) also includes the logistic variables
declared in the root symboltable.

The variables stored inside a symboltable contain a number of at-
tributes. First, there is the name of the variable, used for identification
within the symboltable. Note that variable names in a symboltable
are without the symboltable prefix. The variable identifier (the name
with the symboltable/nodalpage prefix) is used to look up any spe-
cial properties tied to this variable in the variable graph. Among these
properties may be OpenMath expressions and conditions that apply
to the values that a variable can assume. This kind of information
may not be changed by the user and is therefore part of the variable
graph in the domain model.

The next attribute contains the timestamp as previously discussed
in this section. These timestamps take the form of yyyyMMddhhmmss.
Where yyyy stands for the year, MM indicates the month and days
are given by dd. The same goes for hh which is the hours in a day, mm
are the minutes, and finally ss seconds. The sequence from large time
units to smaller units also helps in sorting, since newer timestamps
automatically have a bigger number. Time-stamps of variables are
used to select the right value for the variable at some time in the past.
This is useful when the user wants to return to a page as it was at an
earlier time.

The openmath attribute indicates if the variable contains an Open-
Math expression. Mathematical variables contain per definition Open-
Math expressions, but the same does not necessary hold for another
type of variable, like logistical variables as listed in the root symbol-
table. The openmath attribute defaults to true.

Functional variables.
Both input and functional variables are stored in the mathematical
context. Variables are assigned values by either the user, the author
(in case of default values), or by the document when functional vari-
ables are involved since those values need to be calculated on the
basis of other variable values. Note that some computations in func-
tional variables can be quite heavy, especially if such a value is used
repeatedly. It therefore makes sense to store the values of both input
and functional variables, especially as it prevents unnecessary com-

128 implementation of context in mathdox

putations for functional variables. Doing so implies the need to keep
track when the value of an input variable changes, because it has
consequences for the depending functional variables. All functional
variables depending on the changed input variable need then to take
notice and mark their values as out of date and recompute them.
The re-computation only happens when the value of that variable is
requested either by the document or by another functional variable
that needs it as input.

Logistic context.
Logistic user information typically consist of name-value pairs. As

such they are ideally suited to be stored as variables. Instead of being
mathematical variables, and therefore containing OpenMath expres-
sions, the values are usually text based. The logistic variables are not
bound to a specific nodal page and are therefore stored in the root
symbol table. Due to the high similarity between logistic informa-
tion and the mathematical context, it made sense to treat the logistic
information in the same way. As a result, logistic information vari-
ables have the same attributes as the variables from the mathematical
context, with the exception that their names are not identifiers in the
variable graph for extra information about the variable. As such, there
are no conditions or values to select the right computer algebra sys-
tem. Note that while logistic information tends to be text, the logistic
variables still have the openmath attribute and therefore also support
OpenMath expressions. Both kinds of variables are accessible within
MathDox code by the use of the same variable tag.

Local variables.
Looking again at Figure 21, one can find symbol tables named after
nodal pages, but also symbol tables with an extra -local suffix. These
local symbol tables store variables that only have the scope of the
nodal page they are associated with and are not to be used outside the
nodal page. The local symbol table is only accessible to the nodal page
it belongs to, and the symbol table will only be part of the collection
of symbol tables when its associated nodal page is visited. The use
of these local symbol tables gives nodal pages the freedom of using
variables that are not used in other expressions outside their own
control, on other nodal pages.

Copy of a variable graph.
Local variables stored in symbol tables with a -local suffix, are quite
suitable for creating copies of variable graphs. Creating a copy of a
variable graph comes in handy when new concepts are being demon-
strated and different values are needed, and the original relations
between the variables have to be preserved. It is required to find
those variables within the copy of the variable graph that can serve
as new input variables, without losing the relations between the vari-
ables of interest. Suitable new input variables are those that can be

5.3 user model 129

altered without creating conflicts elsewhere in the partial variable
graph copy.

These new input variables are found by an algorithm that works as
follows:

• Make a complete copy of the variable graph, and mark all vari-
ables that are used by the nodal page.

• Eliminate all variables that are successors of the required vari-
ables, as these are not needed.

• All variables that do not have any outgoing edges, but are still in
the same branch with another marked variable will mark their
predecessor variables, and remove the connecting edges. This
step is repeated until all marked variables are no longer in the
same branch of any other marked variable.

• The variables that have been marked, are those that are required
in the partial copy of the variable graph. A new copy of the vari-
able graph containing only the marked nodes and their connect-
ing edges can be used as the partial copy that was required.

In Figure 28 one can see the algorithm in action. The new input
variables in a fresh (partial) copy of the variable graph are those nodes
where the tracing stopped. Note that it is quite possible that some or
even all new input variables happen to be the same as in the original
variable graph. In such cases the tracing process continued until there
were no more predecessors left and a partial copy is not possible.

 g

 G=permgroup(g,h)

 h

 GO=|G|

 Gx=orbit(G,x) G =stabilizer(G,x) x

 Theorem=(GO==OO*SO)

 x

 OO=|Gx| SO=|G | x

Figure 27: A component of a variable graph related to orbits

Example 16:
Take a look at Figure 27. Here we can see that if a nodal

page for the stabilizer theorem wants to use some other
values for the variables OO, SO and GO that we need
to maintain the relation between them. If three new ran-
dom values are chosen, there will be no guarantee that

130 implementation of context in mathdox

the final theorem GO = OO ∗ SO will still be true. The
algorithm just described should be applied to preserve
this relation. The result of the algorithm is that the vari-
able graph should be copied except for the input nodes g
and h. The group G will take their place as the new input
node. This means that in the copied variable graph the
variables x and G are the ones that can be freely adapted,
provided associated conditions are met.

Figure 28: The steps of the algorithm for a partial copy of the variable graphs

Knowledge context.
The overlay model, on which a large part of the adaption relies, re-
quires that the user model keeps track of the mastered knowledge. In
our case that means that the knowledge context needs to keep track
of nodes of both the theory graph and symbol graph that are consid-
ered understood. This can be done in a binary way, that is, either the
user has mastered the knowledge or the user has not. Another ap-
proach is to award points to represent the degree on which the user
has mastered the knowledge.

Both approaches are possible with the same implementation, and
it is up to the author to decide which is preferred. In the case of the
binary system, any points regarding an item of knowledge indicate
that the user has mastered that knowledge, while in the other case
the awarded points need to be summed first to see if the user passes
a threshold.

5.3 user model 131

An implementation that uses probabilities instead of points was not
pursued, but is not hard to implement. Instead of awarding points,
the system needs to log probabilities and a rule to interpret these.

Listing 22: A piece of the knowledge information

1 <knowledge>

2 <theorygraph>

3 <documents>

4 <document docid=" idacontext−cp1">
5 <action actionid="read">
6 <theory name="s1p1" date="20150407200429"
7 resource="/experimental/idacontext/nodalpages/s1p1/

index .md" graphURL=" http://evo02 .win. tue . nl/
rikkomathdoxplayer/experimental/idacontext/graphs
/theorygraph/theorygraph .xml" points="1"/>

8 <theory name="s5p2" date="20150413091601"
9 resource="/experimental/idacontext/nodalpages/s5p2/

index .md" graphURL=" http://evo02 .win. tue . nl/
rikkomathdoxplayer/experimental/idacontext/graphs
/theorygraph/theorygraph .xml" points="1"/>

10 <theory name="s4p3" date="20150413091609"
11 resource="/experimental/idacontext/nodalpages/s4p3/

index .md" graphURL=" http://evo02 .win. tue . nl/
rikkomathdoxplayer/experimental/idacontext/graphs
/theorygraph/theorygraph .xml" points="1"/>

12 <!-- other entries have been removed for clarity -->

13 </action>

14

15 <action actionid="mastered">
16 <theory name="s4p1" date="20150404110455"
17 resource="/experimental/idacontext/nodalpages/s4p1/

index .md" graphURL=" http://evo02 .win. tue . nl/
rikkomathdoxplayer/experimental/idacontext/graphs
/theorygraph/theorygraph .xml"/>

18 <theory name="s4p1" date="20150404111315"
19 resource="/experimental/idacontext/nodalpages/s4p1/

index .md" graphURL=" http://evo02 .win. tue . nl/
rikkomathdoxplayer/experimental/idacontext/graphs
/theorygraph/theorygraph .xml"/>

20 <!-- other entries have been removed for clarity -->

21 </action>

22

23 <action actionid="MyOwnActionIdentifier">
24 <theory name="s1p4" date="20150429135515"
25 resource="/idacontext/nodalpages/s1p4/knowledgetest .

md" graphURL=" http://evo02 .win. tue . nl/
rikkomathdoxplayer/experimental/idacontext/graphs
/theorygraph/theorygraph .xml"/>

26 </action>

27 </document>

28 </documents>

29 </theorygraph>

132 implementation of context in mathdox

30

31 <symbolgraph>

32 <documents>

33 <document docid=" idacontext−cp1">
34 <action actionid="mastered">
35 <symbol name=" integer1 . quotient" date="20150427113938"

resource="/idacontext/nodalpages/s1p3/index .md"
graphURL=" http://dam04.win. tue . nl/
rikkomathdoxplayer/idacontext/graphs/symbolgraph/
symbolgraph.xml"/>

36 </action>

37 </document>

38 </documents>

39 </symbolgraph>

40 </knowledge>

In Listing 22, an example is given of how the knowledge context
is stored. Just like with the logistical and mathematical context, the
knowledge context is also stored as an XML document in the XML-
database eXist [22]. The knowledge information is captured in the
root tag knowledge, which contains a theorygraph and symbolgraph ele-
ments. Within these elements there is space for document elements,
each with an docid attribute referring to the identifier of the docu-
ment file, so as to prevent confusion between documents. Each docu-
ment element can hold a multitude of action elements, each identified
with an actionid attribute. The most common would be the mastered
and read actions. The first being for nodes from the theory or symbol
graph that are considered mastered, the second for nodes that have
been read, but require rules to determine how much is understood.
The author can also define extra actions, like the MyOwnActionIdenti-
fier, these do not interfere with the system but can store extra infor-
mation that can be made available to a document. Each action con-
tains entries for nodes to which the said action applies, these entries
are either symbol or theory elements. An entry will contain the node
name, a date, a resource, a graphURL and optionally points. Extra pa-
rameters are allowed to enable further customization. The name and
graphURL together uniquely identify which node from which graph
this entry is about. Which nodalpage is responsible for the entry is
listed in the resource attribute. The points attribute holds the points
awarded by this action. This may be a positive but also be a negative
number, or be omitted if it does not make sense for the action.

There is some redundant information in these entries as the graph
identifiers are being listed in the document file and are referred to in
the stored nodes in the database. However, experience teaches us that
graphs and documents may change overtime — especially during
initial development — and by keeping track of the graph and resource
information it becomes easier to understand why and what has been
recorded. Also, when documents share information about a user, they

5.3 user model 133

will have access to the information in the database but not necessary
to each others document files.

Knowledge context query tags.
In the context implementation some queries have been made avail-
able to check the knowledge of the visiting user. In Listing 23, three
examples are shown.

The first example checks if the knowledge information has any
record of a node with the identifier s2p1. If it does, the MathDox
code in the body of the element will be executed.

The second example takes the threshold instead of the binary ap-
proach and adds the attribute threshold to its call. The threshold at-
tribute takes a number and the code in the body is executed if the
sum of the points associated with the node in the theory graph is
greater or equal to the threshold parameter.

The third example shows the same for the symbol graph. Note that
this is the same tag as used for the theory graph; it is the type and
name attribute that identify the correct node.

Optional attributes are jelly-variable and timestamp. The jelly-variable
attribute takes the name of a jelly variable which is going to hold the
boolean outcome of the query. The other optional attribute, the times-
tamp attribute, is used to execute the query on the state of the data
at the given date. The timestamp setting as stored in the logistical
context is used as default.

Listing 23: An example of knowledge information query tags

1 <!-- 1 -->

2 <mdc:if-knowledge-available type="theorygraph" name="s2p1" >

3 <!-- MathDox code -->

4

5 </mdc:if-knowledge-available>

6

7

8 <!-- 2-->

9 <mdc:if-knowledge-available type="theorygraph" name="s2p1"
threshold="5" >

10 <!-- MathDox code -->

11

12 </mdc:if-knowledge-available>

13

14

15 <!-- 3 -->

16 <mdc:if-knowledge-available type="symbolgraph" name=" arith1:gcd "
>

17 <!-- MathDox code -->

18

19 </mdc:if-knowledge-available>

134 implementation of context in mathdox

Logging.
Every now and then an adaptive document needs to store logging
data. For instance to record when the user accessed a page, or to
record answers of the user to questions. This kind of data is not meant
to be stored in the knowledge, mathematical or logistic context. To
this end a separate folder was added to the database. Logging events
are similar to knowledge events and require a documentid, timestamp
and an action. The first two are provided by the system, while the
third needs to be specified by the log tag.

5.4 presentation model

The presentation model is responsible for combining the data avail-
able from the domain and user model and use these to produce an
individualized page for the user. The process takes into account the
knowledge and the background of the user, it knows how the differ-
ent notions relate to each other, and combines the different pieces of
content.

As discussed in Chapter 4 the presentation model has queries and
rules at its disposal. The queries retrieve the required data, while the
rules use the retrieved data to adapt the contents on the page.

Local reasoning.
The application of queries and rules is done by means of local reason-
ing as opposed to an external rule engine. Local reasoning means that
the queries and rules are embedded in the content, allowing the rules
to take the implicit context of content into account. Implicit context oc-
curs when content is not written in an independent manner and often
involves assumptions of the author in relation to prior knowledge of
the users and their goal. Such content is less suited to be fragmented
and be presented in a different form and should generally speaking
be prevented. However, it is very hard to write any content free of
implicit context, as authors tend to work with a bigger picture of
what they want to tell and then (subconsciously) make assumptions
on behalf of the reader. Besides, content void of any implicit content
may feel stiff and when it is combined with other content into an
adapted page it might appear somewhat mosaic. So instead of deny-
ing implicit context in content, it is more practical to accept that there
might be some present. Stuckenschmidt and Klein remark in their pa-
per [196] also that local reasoning helps in making the right decisions
when dealing with modular ontologies. Our setup of content divided
in fragments has a great similarity with just such modular ontology.
Separation of adaption rules from the content and metadata as pro-
posed in [157] works for adaptations with a minimal context. Due
to the wide variety of users and the number of required alterations,
content adaptations will become finely mazed and in need for a more
elaborate context, making it hard for external engines to cope with

5.4 presentation model 135

the fine mazedness. Furthermore, an external reasoning engine limits
the free form math documents we are used to in MathDox and aim
to achieve in the MathDox context implementation. Therefore content
needs to be aware and be able to adapt itself or its subcomponents by
means of local reasoning and we opt for local implemented rules for
adaption. However, separation of content and adaptation is and will
remain important. For instance it is possible to organize fragments
in such a manner that a fragment is without actual content but does
contain rules on how to use other (small) content fragments. Ideally
a fragment with adaptation rules has only control over a limited set
of fragments, and will coexist with many other fragments organizing
different parts of the document.

5.4.1 Queries and rules

Rules decide what happens in the presentation model but they re-
quire data provided by the queries to do so. The data provided can
be anything from the name of the user to the fact that the user does
not yet understand some required knowledge for the page he or she
is reading. When the queries deliver their data to the rules, then the
rules interpret the data and take actions accordingly. For instance
they decide to display the name of the user on the page, or decide to
include extra content so as to compensate for the knowledge of the
user.

Queries and rules are responsible for the local reasoning in the
presentation model. Queries connect the user and domain model to
the presentation model and rules implement the presentation model.

Queries.
Data gathered with queries are made available to MathDox code by
Jelly custom tags. They query the context object for data sets, and — if
needed — combine and process the required data. The context object
(as discussed in Section 5.1) maintains copies of the theory, symbol
and variable graphs from the domain model, as well as also user
model data of active users. Any data not yet available is retrieved by
database queries.

Rules.
As rules require conditional logic to make decisions, they are to be
implemented in either a Jelly custom tag or as MathDox code — often
in the form of fragments — as those are the only parts of the MathDox
format capable of conditional logic.

MathDox rules.
The most straightforward way to implement a reasoning rule is to
use Jelly statements directly in the MathDox code. This approach re-
quires the least amount of work compared to other options, but re-

136 implementation of context in mathdox

sults in rules that are impossible to reuse in different settings. Rules
implemented in this way are best used to take care of specific details,
details that do not deserve to take the extra effort to implement the
rules in a reusable way.

Listing 24: An example of a rule implemented in MathDox code

1 <mdc:knowledge-mastered name="s1p1" type="theorygraph" var="
mastered"/>

2

3 <c:choose>

4 <c:when test=" ${mastered} ">
5 The knowledge on this page has been previously understood.

6 </c:when>

7 <c:otherwise>

8 By reading this page, you have now understood this knowledge.

9 </c:otherwise>

10 </c:choose>

Example 17:
In the code example in Listing 24, MathDox code is

shown that first informs about the knowledge about di-
vision1, a node from the theory graph as depicted in Fig-
ure 23. The result of this query about the knowledge of di-
vision is then stored into the variable mastered. The same
mastered variable is used in a Jelly choose statement tag,
that looks at the result of the query. If the variable holds
a boolean true value, it responds that the user has already
understood the content on this page as the result of a pre-
vious visit. Otherwise the user is currently visiting the
page for the first time and is informed that the system
now assumes that the user has understood the knowledge.
We tried not to complicate things too much in this exam-
ple, but obviously there are many other possibilities, like
inclusion or adaptation of content.

This example illustrates how queries can be fired from
within MathDox code and how their results are then used
to make decisions about content. Furthermore, it makes
quite clear that these kind of rules cannot be reused else-
where in the document and therefore these kind of rules
are best suitable for subtle rules that will not be reused
and do not deserve a separate implementation in frag-
ment or Jelly custom tag.

Jelly custom tags rules.
We already encountered another way to implement rules in a more

1 Node identifiers and titles of nodal pages can differ. The MathDox context has been
set up in such a way that all nodes should be referred to by their identifiers.

5.4 presentation model 137

reusable format: Jelly custom tags. Previously these where used for
queries, but the Java code that goes inside them is also perfectly suit-
able for more complex conditional logic and it has also far easier ac-
cess to the various Java APIs compared to the MathDox format. Since
Jelly custom tags are separate objects linked to tags that can be used
in MathDox code, reuse of rules that are implemented in this way
becomes easy.

Listing 25: A Jelly rule being called

1 <mdc:createNewUser userName=" ${user } " passwd=" ${passwd} "
2 group=" ${group} "/>

Listing 26: An example of a rule implemented by means of a Jelly custom
tag

1 package org.mathdox.context.db;

2 import org.apache.commons.jelly.JellyTagException;

3 import org.apache.commons.jelly.MissingAttributeException;

4 import org.apache.commons.jelly.TagSupport;

5 import org.apache.commons.jelly.XMLOutput;

6

7 public class CreateNewUserTag extends TagSupport {

8 protected String userName=" ";
9 protected String passwd=" ";

10 protected String group=" ";
11

12 public void setUserName(String userName) {

13 this.userName=userName;

14 }

15

16 public void setPasswd(String passwd) {

17 this.passwd=passwd;

18 }

19

20 public void setGroup(String group) {

21 this.group=group;

22 }

23

24 public void doTag(XMLOutput arg0) throws

MissingAttributeException, JellyTagException

25 {

26 if (" ".equals(userName)) {

27 throw new MissingAttributeException("UserName not set ");
28 } else if {" ".equals(passwd)} {

29 throw new MissingAttributeException("Password not set ");
30 }

31

32 XPathAccesObject.addUser(userName, passwd,

33 group, getContext());

34 }

35 }

138 implementation of context in mathdox

Example 18:
The MathDox example code in Figure 26 is a rule that is

meant for the administrator of a MathDox context system.
It is part of a MathDox page that allows administrators to
add new users. To do so it needs parameters like user-
name, password and user group, these are then passed to
this tag as shown in Listing 25. The tag implementation
does some verification and then passes on the request to
the XPathAccesObject.

Fragment rules.
The third and last way to implement rules is by means of fragments.
Fragments are designed for reuse of content, but the content itself
can and often will contain rules. This approach allows a set of rules
to be written in MathDox code, but opposed to the first example in
a reusable manner. The opportunity to also include macros, DocBook
and MONET queries sets fragment rules apart from Jelly custom tag
rules. Rules implemented by fragments tend to apply for larger parts
of content. Where Jelly custom tag rules typically are used for smaller
items, while rules implemented by fragments are ideally suited for
styling of content or even a complete page.

Listing 27: An example of a fragment implementing a rule

1 <mdc:fragment xmlns:mdc=" jel ly:org .mathdox. context .
TheoryBlocksTagLibrary"

2 xmlns:x=" jelly:xml "
3 xmlns:xforms=" http://www.w3. org/2002/xforms"
4 xmlns:c=" je l ly :core ">
5

6 <c:new var=" _result " className=" java . ut i l .HashMap"/>
7 <c:set var=" iterator " value=" ${from} "/>
8

9 <c:while test=" ${ iterator le t i l l } ">
10 <x:parse var=" result ">
11 <monet:query xmlns:monet= ’ http://monet.nag. co .uk/monet/ns ’>
12 <monet:classification>

13 <monet:directive-type href=" http://mathdox. org/
phrasebook/mathematica#eval"/>

14 </monet:classification>

15 <monet:body>

16 <monet:output>

17 <OMOBJ>

18 <OMA>

19 <OMS cd=" set1 " name=" in"/>
20 <OMI>${iterator}</OMI>

21 <OMS cd="setname1" name="P"/>
22 </OMA>

23 </OMOBJ>

24 </monet:output>

5.4 presentation model 139

25 </monet:body>

26 </monet:query>

27 </x:parse>

28

29 <c:set var=" result " trim=" true">
30 <x:expr select="$result//OMS/@name" />

31 </c:set>

32

33 <c:if test=" ${ result or not justPrimes } ">
34 <c:choose>

35 <c:when test=" ${ result } ">
36 <c:set var="primetest" value="Prime "/>
37 </c:when>

38 <c:otherwise>

39 <c:if test=" ${not justPrimes } ">
40 <c:set var="primetest" value="No"/>
41 </c:if>

42 </c:otherwise>

43 </c:choose>

44

45 <c:new className=" java . lang . Integer" var=" intobj ">
46 <c:arg type=" int " value=" ${ iterator } "/>
47 </c:new>

48 <c:invoke on=" ${ _result } " method="put">
49 <c:arg value=" ${ intobj } "/>
50 <c:arg value=" ${primetest } "/>
51 </c:invoke>

52 </c:if>

53

54 <c:set var=" iterator " value=" ${ iterator+1}"/>
55 </c:while>

56 </mdc:fragment>

Example 19:
MathDox code in Figure 27 shows a fragment that im-

plements a rule that determines which integers from an
interval are prime and which are not. The fragment is
called from MathDox code — a MathDox page, or an-
other fragment — and uses three variables. Two of these,
a start and end point, define an integer interval. Each in-
teger from this interval is tested for being prime by ask-
ing Mathematica Phrasebook 2. A third variable indicates
if the returning list should only contain the primes or
should contain all integers. It is then up to the calling
code to process the list of integers.

2 note the mathematica#eval in line 11 to indicate a different than default cas

140 implementation of context in mathdox

5.4.2 Pre-defined set queries and rules

Our implementation of the mathematical context model, comes with
a pre-defined set of queries and rules. This set of queries and rules
does not claim to be complete, nor does it try to be. Authors are
invited to add new as they see fit. The pre-defined set is divided into
a few subsets.

5.4.2.1 Queries

As stated before in Section 5.4.1, queries are responsible for retrieving
information from the user model. The returned data is then used
by rules for presentation purposes. We will discuss some queries as
implemented in the mathematical context model.

Mastered, available and not reachable nodes.
There are three queries that retrieve information from the knowledge
context in relation to the theory and symbol graphs. These queries
return node identifiers that can be used by other queries or rules for
additional information or alternative content. These rules are:

• masteredNodes
Retrieves all theory or symbol identifiers that have been marked
as understood (mastered) or whose total amount of knowledge
points surpasses the set threshold for this node in the theory or
symbol graph.

• availableNodes
Those nodes that are currently ready to be read without the
need of reading prior knowledge first. As a user continues with
the document, this set will change.

• notReachableNodes
Returns the nodes from the theory or symbol graph that require
knowledge that is listed as (a) predecessor(s) in either the the-
ory or symbol graph. The user is expected to understand the
associated knowledge before he or she is expected to read and
understand any nodes in the returned set.

These queries apply to both the theory and symbol graph attributes
and require some additional parameters; these are:

• graphType
Selects either the theory graph or the symbol graph to work
with.

• returnType
Indicates if the results should be returned in either a Java col-
lection, or as a String. Some rules work better if the results are
offered as a collection object.

5.4 presentation model 141

• var
If the result is to be stored into a Jelly variable for later use, var
will hold the name of that variable.

Listing 28: The use of mastered available and notReachable queries.

1 <!-- retrieval of node lists -->

2 <mdc:availableNodes returnType=" collection "
3 graphType="theorygraph" var=" available "/>
4

5 <mdc:masteredNodes returnType=" collection "
6 graphType="theorygraph" var="mastered"/>
7

8 <mdc:notReachableNodes returnType=" collection "
9 graphType="theorygraph" var="outOfReach"/>

10

11 <!-- output of the node lists -->

12 <c:forEach var="nodalpage" items=" ${available } ">
13 <mdc:graph-property nodeName=" ${nodalpage} " graphType="

theorygraph" property=" t i t l e "/>
14 </c:forEach>

15

16 <c:forEach var="nodalpage" items=" ${mastered} ">
17 <mdc:graph-property nodeName=" ${nodalpage} " graphType="

theorygraph" property=" t i t l e "/>
18 </c:forEach>

19

20 <c:forEach var="nodalpage" items=" ${outOfReach} ">
21 <mdc:graph-property nodeName=" ${nodalpage} " graphType="

theorygraph" property=" t i t l e "/>
22 </c:forEach>

See Listing 28 for an example how to use these queries and see Fig-
ure 29 where the output is shown. After the first three lines have been
executed the Jelly variables available, read and outOfReach have been
created, each containing a subset of the nodes from the theory graph.
Note that these three sets do not have any elements in common, and
together hold all elements. In Listing 28 also the graph-property query
is being used to look up the title property for each node.

Retrieving variables from context.
Variables stored in the context — mathematical and non-mathematical
— contain very important information for adaptation rules and are ac-
cessible by means of queries from MathDox code. The <get-value>

tag takes five attributes of which three are commonly used.

• symboltableid
To access a variable the symboltableid has to be specified.

• variable
The variable requested from the mathematical or logistic con-
text.

142 implementation of context in mathdox

Figure 29: Output of code in Listing 28

• var
Sometimes it is required or convenient to store a variable from
context in a Jelly variable within the MathDox code itself. If a
variable name is given in the var attribute then that variable is
used. Otherwise the contents of the variable from the context is
directly used as output.

• date
The date used to revert the content of pages to a certain date in
the past. By default the value ‘now’ is used which is automati-
cally translated to the current date time stamp.

• evaluate
Only mathematical variables from the variable graph —which
are not input variables— can use this attribute. It forces the
expression of the variable graph to evaluate. Again in normal
use, this is not required as such a variable will check itself to
see if any of its input values has been changed before returning
a value.

An example is shown in Listing 29. It retrieves the variable goal —
used to specify a learning goal— from the logistic context and then
stores the value in a Jelly variable named goal, which is then used
as output. It makes no difference whether the requested variable is
text or XML (OpenMath) based, as demonstrated by line 6 where an
OpenMath value is retrieved. Also note that the result of this second

5.4 presentation model 143

call will be directly used as output as it is not stored in a variable
first.

Listing 29: A retrieval of the variable from the logistical context

1 <para>

2 <mdc:get-value symboltableid=" root"
3 variable="goal" var="goal"/>
4 ${goal}

5 </para>

6 <para>

7 <mdc:get-value symboltableid="s1p1" variable="a"/>
8 </para>

5.4.2.2 Content rules

The mixture of queries and rules in the MathDox content leads to con-
tent that is in control of its own adaptation as opposed to an external
rule engine. Probably the most important tag is the include-fragment
tag as this rule takes care of inclusion of content on a page. However
other rules also exist. We will now illustrate two examples that have
been implemented, the include-fragment and definition rules.

Include fragment.
The include-fragment tag will include another piece of MathDox code
into the current page. The contents being MathDox code, it is of
paramount importance to be able to share some of the interpreting
context (Jelly context) with the fragment to be included. That said,
it is also important to avoid collisions in the same Jelly context to
prevent duplicate names of variables or XForms identifiers. For this
reason the include-fragment takes the element body in which jelly vari-
ables can be declared; these are then created in a new Jelly context
connected to the calling Jelly context, allowing access to previous and
to the new created variables. These new Jelly variables are only valid
within the fragment and are discarded when the fragment finishes as
the new created Jelly context is no longer available. See Figure 30 for
an example. Attributes of the include-fragment are:

• fragment
The location of the fragment to include.

• frgid
XForms elements are prefixed with the frgid to keep the differ-
ent XForms elements in different fragments separate from each
other regardless of their names. For this purpose each fragment
in the same code file needs to have a unique identifier. These
identifiers will be prefixed to XForms identifiers. Fragments
that include fragments create a chain of prefixed identifiers.

144 implementation of context in mathdox

• args
Much like the static main(String[] args) method, a fragment can
also accept a Java map object with name value pairs to be used
as variables inside the fragment. This works exactly the same as
if the variables are declared in the body of the include-fragment
tag.

• var
Sharing a Jelly context also needs means to return variables and
their values from inside a fragment back to the calling code.
The var attribute will hold a name of a variable that is used to
store a Java Map with name value pairs containing results of
the fragment code. These results only need to be returned if the
calling code needs them, as the execution of the fragment itself
is directed to the output and thus to the page.

Listing 30: A fragment call a step in the Euclidean algorithm.

1 <mdc:include-fragment

2 fragment="fragments/rules/euclides/euclidesstep .mdf"
3 frgid="step" var=" result ">
4 <c:set var="a" value=" ${a} "/>
5 <c:set var="b" value=" ${b} "/>
6 <c:set var="step" value=" ${step+1}"/>
7 </mdc:include-fragment>

Definition Stretchtext.
Imagine a student reading a page in which he or she is reminded of

the definition of the Euclidean algorithm. And the frustration when it
just does not want to spring in mind what it was. A solution can be of-
fered by offering the student a stretch text rule by clicking, for instance
the name of the definition, the definition appears on the screen right
in between the rest of the page contents, offering the student a chance
to catch up without leaving the page. Obviously, the same is possible
when the student is offered a statement with the proof hidden only
to appear upon demand. Depending on personal preferences, these
pieces of content can be set to open by default, inserting it into the
page, or to open in a new window or tab.

The definition tag actually consists of two tags: the said definition tag
and the definition-anchor tag. The first displays the definition name,
while the second indicates where the stretching of the text will hap-
pen.

In Listing 31 an example is given; the attributes for definition are:

• Name
The name of the node from either the theory graph or the sym-
bol graph. It is used to locate a fragment that summarizes the
knowledge that goes with the node.

5.4 presentation model 145

• GraphType
Indicates in which graph the node as specified at the name at-
tribute is to be found.

• Location
A different location can be given in the location attribute for the
content that is to be included in the stretch text. This approach
allows also content that is not bound to the theory or symbol
graph.

• title
The title of the definition name as it will appear in the text on
the page.

• on
Defaults to true, but if the title needs to remain unclickable text
— turning effectively the stretch text off — a false value will do
that.

• stretch
Default setting is true, but if set to false, the content will appear
in a new window instead.

• var
The definition tag will create an XML document that tells the
definition-anchor what to do. This XML document is stored in
the variable with the name of var.

Listing 31: An example of a stretch text.

1 <para>

2 There is also an extended version of

3 <mdc:definition on=" true" name="s2p1" graphType="theorygraph"
4 title="Euclidean Algorithm" var="EuclidsAlgorithms2p1"/>,
5 which determines,

6 <!-- more text -->

7 </para>

8

9 <!-- a suitable location for the stretch text to appear -->

10 <mdc:definition-anchor var="EuclidsAlgorithms2p1" />

The definition-anchor only takes a var attribute containing the con-
structed XML document from the definition tag.

5.4.2.3 Presentation rules

In contrast with rules concerning the inclusion of content, presenta-
tion rules do not add content, they change content. Examples of these
are styling rules, rewriting mathematical notation rules, but also tem-
plate rules that add styling or a uniform environment to existing con-
tent.

146 implementation of context in mathdox

Styling multiple choice exercises.
A styling rule that is implemented as a fragment is the mcfragment,
a fragment that implements a multiple choice question. It takes an
XML document which contains the question, the answers and also
feedback on each chosen answer. It is then up to the fragment how to
render the exercise on the page. The style can either be selected by the
reader based on personal preferences in the logistic context or set by
the author. There are two formats available, an elaborate presentation
and a smaller version. In Listing 32 and example is given how to
include a multiple choice exercise from MathDox code. In the listed
code, a Java HashMap object is created and named parameters. The
map is then filled with the XML documents for the question and for
the answers of the multiple choice exercise. Next the map is given to
the fragment responsible for creating the multiple choice exercise by
putting it in the args attribute.

Listing 32: Calling the styling rule for a multiple choice exercise.

1 <c:new var="parameters" className=" java . ut i l .HashMap"/>
2 <c:set target=" ${parameters} " property="question"
3 value=" ${question} "/>
4 <c:set target=" ${parameters} " property="answer"
5 value=" ${answer} "/>
6 <mdc:include-fragment fragment=" exercises/mcfragment.mdf"
7 frgid=" exercise " args=" ${parameters} "/>

5.4.2.4 Observer rules

Observer rules are different from the other types of rules because they
do not add or change any content. Instead they update the context of
the user and adjust the data to match with the never changing data
of the user. Some important rules are the set-value tag and the add-
knowledge tag. The set-value tag stores variable values into the logistic
or the mathematical context. The add-knowledge tag writes knowledge
events to the knowledge context. Here the data is available for queries
and other rules can draw their conclusions from it.

• Name
The name of the node the current event belongs to.

• GraphType
The graph (theory or symbol) that contains the node in name.

• Action
The type of event. mastered and read are used to determine if
the knowledge linked to the node is understood. However any
other event type may be used.

• Points
Keeping track of progress involves handing out points, positive

5.4 presentation model 147

of negative. The sum of the awarded (or subtracted) points is an
indication on how well a user understands a certain notion.

belonging to s1p1 (division) marks itself as read by adding 1 point to
the amount of times the page is read. The threshold to consider the
page understood is 1, meaning that by reading this page once, the
node s1p1 will be marked as understood. The bug model [139] as
discussed in Section 3.1.5 can be implemented with the use of this
rule. Add points for correct answers to exercises and subtract points
for wrong answers or other signs of misunderstanding.

Listing 33: Adding knowledge events to the knowledge context.

1 <mdc:add-knowledge name="s1p1" type="theorygraph"
2 action="read" points="1"/>

5.4.2.5 Navigation rules

Deviating from the traditional linear reading through the content (as
can be found in a printed book), allows users to pick their own path
and some of them will subsequently get lost as a result. This is not
surprising because if the student knew enough about the content to
find his own path he or she is likely to have already some under-
standing of the content. Some navigation rules are created to help the
reader of the document and guide him or her into the right direction.
Examples are an index of used symbols on the page containing links
to their descriptions and the visualization of the theory and symbol
graph which act like maps of the content in the document. To use
a map however one first has to have a destination — a goal — in
mind before a route can be created and followed. Determining the
goal as described in the plan model [139] of a user is not trivial; see
Section 3.1.6. Instead a simpler approach in which the user tells the
system what his or her goal is, is implemented. A way to retrieve this
goal was already shown in Listing 29. The next step towards a set goal,
is always a node that has no unmet requirements to prior knowledge
and is therefore marked as available for reading. Leading to A ⊆ G,
where G is the set of nodes that should be taken to reach the goal and
A is the set of nodes that are available for reading. In Listing 34 the
set of G is retrieved by using the availableNodes tag discussed earlier
in Listing 28 with the help of the goal variable discussed earlier that
was used before in Listing 29. In this example the only new attribute
is the goal attribute which contains the node name of the goal.

Listing 34: Retrieving the set of nodes leading towards the goal node.

1 <mdc:available-theories returnType=" collection "
2 graphType="theorygraph" var="goalset " goal=" ${goal } "/>

148 implementation of context in mathdox

Figure 30: The theory graph as used by the knots document

5.4.3 The knots example

An existing MathDox document on knot theory was transformed into
an adaptive mathematical document; see [50]. The main addition to
the static knots document was a theory graph — see Figure 30 —
that allows users to select their own route through the document. It
lacks a symbol and a variable graph and limits its adaptivity to a
binary overlay model on the theory graph. It demonstrates the flex-
ibility of the MathDox Context system, as it shows that authors can
limit what they use to those parts they are interested in. The example
about IDA [148] — an adaption of Interactive Discrete Algebra — (see
Section 5.4.4) uses more of the MathDox Context.

theory graph.
Each node of the theory graph in Figure 30, is attached to nodal page.
Code of a nodal page typically looks as shown in Listing 35. In List-
ing 35 a fragment rule template.mdf is used to implement the same

5.4 presentation model 149

basic behavior on all nodal pages. It determines its identity by using
the values of the parameters theoryGraphURL and theoryName, which
are pointers to the theory graph and the theory node in this graph 3.
The variable fragmentAddress is used to find the fragment with the
actual contents that are to be displayed on the page. An exercise pas-
sExercise is also specified and is used to judge whether the user has
understood the content.

Listing 35: An example of a template as constructed with fragments

1 <article>

2 <mdc:include-fragment fragment= ’ template .mdf’ var= ’ result ’ >

3 <!-- all set variables in this body are parameters for the

fragment -->

4 <c:set var= ’theoryName’>primeknot</c:set>
5 <c:set var= ’theoryGraphURL’>knottheorygraph.xml</c:set>
6 <c:set var= ’fragmentAddress ’>primeknot.mdf</c:set>
7 <c:set var= ’passExercise ’>primeknotpassexercise.md</c:set>
8 </mdc:include-fragment>

9 </article>

Figure 31: A view of a nodal page of the knot example

3 The implementation of the knots example was done against an older version of the
MathDox context. In this version the document file, used to store pointers to the
graphs, was not available. Also, some rules have changed in more recent versions.

150 implementation of context in mathdox

Listing 36 explains how the page shown to the user is constructed
by the template fragment. Some parts of the code listed have been
omitted in order to improve readability. Figure 31 shows the resulting
page.

The template fragment begins at step one, with the title of the page
to be rendered, which is derived from the theory node in the the-
ory graph. Next, it assigns a boolean value to the variable ‘CanGoOn’
which indicates whether the user has the required prerequisite knowl-
edge. According to the value of this boolean, it either serves the con-
tents (in ‘fragmentAddress’) and an exercise at step two and three, or
suggests the user to a theory closer to the root in the theory graph as
he or she did not yet understand the prior knowledge.

Listing 36: Contents of the template fragment rule

1 <title>

2 <!-- 1 Title of this topic-->

3 <mdc:getTheoryProperty theoryGraphURL= ’ ${theoryGraphURL} ’
4 theoryName= ’ ${theoryName} ’ propertyName= ’verbose ’/>
5 </title>

6

7 <!-- if all required knowledge is present CanGoOn is set to true

-->

8 <mdc:available-theories theoryGraphURL= ’ ${theoryGraphURL} ’
9 theoryName= ’ ${theoryName} ’ direction= ’backward’

10 var= ’CanGoOn’/>
11 <c:choose>

12 <c:when test= ’ ${CanGoOn} ’> <!-- preknowledge is present -->

13 <!-- 2 show previous topics leading up to the current topic

-->

14 <mdc:include-fragment fragment= ’ successors .mdf’>
15 <c:set var= ’buttonName’>Predecessors</c:set>
16 <c:set var= ’ direction ’>Backward</c:set>
17 </mdc:include-fragment>

18

19 <!-- 3 show the content identified by the fragment

address -->

20 <mdc:include-fragment fragment= ’ ${fragmentAddress} ’/>
21 <para> <!-- link to exercise -->

22 <ulink url= ’ ${passExercise } ’>Try to pass an exercise!</

ulink>

23 </para>

24

25 <!-- 4 shows follow up topics available after current

topic -->

26 <mdc:include-fragment fragment= ’ successors .mdf’>
27 <c:set var= ’buttonName’>Successors</c:set>
28 <c:set var= ’ direction ’>Forward</c:set>
29 </mdc:include-fragment>

30 </c:when>

31 <c:otherwise>

32 <!-- preknowledge not present, redirect -->

5.4 presentation model 151

33 <para>Sorry, You first need to study the following sections

.

34 <mdc:include-fragment fragment= ’ successors .mdf’>
35 <c:set var= ’buttonName’>Predecessors</c:set>
36 <c:set var= ’ direction ’>Backward</c:set>
37 <c:set var= ’ l i s t ’>true</c:set>
38 </mdc:include-fragment>

39 </para>

40 </c:otherwise>

41 </c:choose>

With the exercise being offered the user can try to establish whether
he or she understood the theory. After passing the exercise the user is
suggested another page to read, based upon the knowledge context
at step four.

5.4.4 The IDA example

Interactive Discrete Algebra (IDA) [2] is a book and an interactive
mathematical document written in MathBook, an early predecessor
of MathDox. It is aimed at teaching freshmen the beginnings of (dis-
crete) algebra. The IDA document is organized as if it were a book;
there was no adaptation and the possibilities of the interactiveness
were limited.

This made IDA well suited to be adapted to become an adaptive
interactive document and show the possibilities of an adaptive math-
ematical document to the world. We will discuss the properties of
the adaptive IDA document: the theory graph, symbol graph and
variable graph, the knowledge-, logistic- and mathematical contexts,
followed by examples of adaptive techniques implemented in IDA.

Listing 37: A node declaration in a theory graph

1 <node id="s1p1">
2 <data key=" t i t l e ">Division</data>
3 <data key=" threshold">1</data>
4 <data key="oms">
5 <symbols>

6 <OMS cd=" integer1 " name="quotient"/>
7 <OMS cd=" integer1 " name=" factorof "/>
8 </symbols>

9 </data>

10 </node>

5.4.4.1 The Domain model

The domain model in the IDA document consists of the theory graph,
symbol graph and variable graph but also contains all content files.

152 implementation of context in mathdox

Theory graph.
The nodes of the theory graph contain extra information for the pages
that belong to that theory. For instance a human readable title instead
of an identifier used by the system and which OpenMath symbols are
introduced. Other data that can be included is the threshold, after how
many reads a page is considered understood and links which contains
links that are of interest to users with a specific background.

In Listing 37 the first node of the theory graph has been defined.
This node has been named s1p1, after section 1 page 1 of the original
IDA. Here, s1p1 is used as identifier of the node in the document. A
human readable name has been defined in the title property. The page
belonging to this node will be marked as understood after reading it
once because the threshold has been set to 1. The oms property specifies
the symbols that are marked to be introduced on this page.

The complete theory graph as used by IDA is shown in Figure 32.
Note, there has been an overlay with user data added to this graph.
Here the nodes that have been marked as understood are colored
green. The blue nodes are the nodes that do not require prior knowl-
edge but are not yet understood, while red nodes require knowledge
that is still marked as not understood. A goal was set for the user to
whom this theory graph belongs, namely the node with the red edge.
The blue nodes with the blue edges do not require any knowledge
and are on the route towards the set goal. This makes them the best
suited nodes to read next.

More information about theory graphs in general can be found in
Sections 4.1.1 and 5.2.1.

Figure 32: The theory graph as used in IDA

5.4 presentation model 153

Symbol graph.
The symbol graph is very similar to the theory graph, again the graph
specifies dependencies between nodes and indicates which symbols
are marked as being understood. In our implementation of adaptive
IDA we specified three extra properties for each node: title, represen-
tation and page. In Listing 38 an example of a few nodes as defined in
the IDA symbol graph are given. Figure 33 shows a part of the same
symbol graph. The title property adds a human readable title to a
node, which is used on a page dedicated to the symbol, but also when
the symbol needs to be listed and does not possess a suitable render-
ing. The representation property tells the document how to render
the symbol. The arith1.gcd node lacking a decent rendering therefore
chooses to use the title as rendering, while the setname1.C node does
have a good rendering and chooses to have this rendering used. Fi-
nally, the page property tells IDA where to find a page that explains
the symbol into more depth. If this value is set to document, the page
is expected to be present in the document. By default the parameter is
set to OM, indicating that it should use the OpenMath [77] website to
find information about the symbol. More information about symbol
graphs can be found in Section 4.1.2 and 5.2.2.

Figure 33: The symbol graph as used in IDA

Listing 38: A node declaration in a symbol graph

1 <node id=" arith1 .gcd">
2 <data key=" t i t l e ">GCD</data>
3 <data key=" representation">title</data>
4 <data key="page">document</data>
5 </node>

6

7 <node id="setname1 .C">
8 <data key=" t i t l e ">C</data>
9 <data key=" representation">OM</data>

10 </node>

Variable graph.
The variable graph, as shown in Figure 34, is distilled from the vari-

154 implementation of context in mathdox

ables used in the adaptive IDA document. It specifies where variables
that are computed should look for input. In Listing 39 two nodes
from the variable graph are given. They define the variables s1p1.a
and s1p1.ab_q, or in short a and ab_q. Name clashes are prevented by
prefixing the introducing theory nodes with the identifier. This is not
mandatory, it is just for convenience, using a different prefix does not
lead to errors. Moreover, the prefix is not used for soundness checks.

Some variables consist of expressions that need to be computed,
the functional variables. A property named cas allows for the selec-
tion of the computer algebra system. Different computer algebra sys-
tems have different strengths making exceptions of the default cas
necessary.

An inputNode does not have an expression to calculate its value,
instead it is given by the author or user. To tell the system if a vari-
able is an inputNode, a property can be set. Especially input nodes
require conditions to prevent values that cause problems in examples
either directly or indirectly by computed variables that use this value
as input. Conditions are not limited to input variables, but can be ap-
plied to all variables from the variable graph. They come in two types,
a CAS-condition and an XPath-condition. The first is an OpenMath
expression that needs to return true from a computer algebra system.
The second condition type uses XPath to verify that the OpenMath ex-
pression meets certain standards, for example restriction of the use of
certain OpenMath symbols. Using the mdc:variable tag in a condition
allows to use the value of a variable. Where conditions are involved
it usually is a self reference and the name attribute is omitted. The
mdc:variable is also used in OpenMath expressions for non input vari-
ables. Here it is used to take the values of the named variables and to
use these as input. Consequently the variable will use the expression
to compute its own value. An expression used to compute a value for
a non input node can be found in the variable s1p1.ab_q as shown in
Listing 39; also an example of both type of conditions can be found
there.

Figure 34: The variable graph as used in IDA

Listing 39: A node from the variable graph

1 <node id="s1p1 . a">
2 <data key="cas">gap</data>
3 <data key="inputNode">true</data>
4 <data key="conditions">

5.4 presentation model 155

5 <conditions>

6 <condition type="xpath">
7 <xpath>not(//OMS[@cd=" arith "])</xpath>
8 <message>no symbols from arith1 dictionary are allowed</

message>

9 </condition>

10 <condition type="cas" cas="gap">
11 <omexpr>

12 <OMA>

13 <OMS cd= ’ logic1 ’ name= ’and’ />

14 <OMA>

15 <OMS cd= ’ relation1 ’ name= ’ leq ’/>
16 <mdcv:variable/>

17 <OMI>100</OMI>

18 </OMA>

19 <OMA>

20 <OMS cd= ’ relation1 ’ name= ’geq ’/>
21 <mdcv:variable/>

22 <OMI>25</OMI>

23 </OMA>

24 </OMA>

25 </omexpr>

26 <message>N must be inbetween 2 and 10!</message>

27 </condition>

28 </conditions>

29 </data>

30 </node>

31

32 <node id="s1p1 . ab_q">
33 <data key="cas">gap</data>
34 <data key="OMExpression">
35 <OMA>

36 <OMS cd=" integer1 " name="quotient"/>
37 <mdcv:variable name= ’s1p1 . a ’></mdcv:variable>
38 <mdcv:variable name= ’s1p1 .b ’></mdcv:variable>
39 </OMA>

40 </data>

41 </node>

Content.
The remaining component of the domain model is the content it-

self. Content includes the document.xml, the contextvariables.xml and
all files containing content. The document.xml given in Listing 40

contains important settings for the adaptive mathematical document.
It specifies where it can find the theory graph, symbol graph, and
variable graph. As an adaptive mathematical document most likely is
not the only document —adaptive or non adaptive— running in the
MathDox Player installation, it needs to be told where the documen-
thome folder is. It considers everything in this folder as part of the
document. The prior-knowledge tag indicates which symbols, that oc-
cur in the document, are considered prior knowledge. Meaning these

156 implementation of context in mathdox

will not be introduced or explained. Because it can be tedious to list
each and every symbol in an OpenMath content dictionary, it is also
possible to list complete content dictionaries instead with the required-
CDs tag. Per default a symbol that is marked as prior knowledge has
no page within the document. However, when OpenMath symbols
that are considered prior knowledge are in need of a page explain-
ing them, then they need to be listed under extraDefinedSymbols. A
symbol listed under extraDefinedSymbols tells the MathDox Context
system to look locally for an explanation page, instead of referring to
an OpenMath page.

Listing 40: A document file.

1 <document docid=" idacontext−cp1">
2 <documenthome>

3 http://dam04.win.tue.nl/rikkomathdoxplayer/idacontext

4 </documenthome>

5 <theorygraph>

6 http://dam04.win.tue.nl/rikkomathdoxplayer/idacontext/graphs/

theorygraph/theorygraph.xml

7 </theorygraph>

8 <symbolgraph>

9 http://dam04.win.tue.nl/rikkomathdoxplayer/idacontext/graphs/

symbolgraph/symbolgraph.xml

10 </symbolgraph>

11 <variablegraph>

12 http://dam04.win.tue.nl/rikkomathdoxplayer/idacontext/graphs/

variablegraph/variablegraph.xml

13 </variablegraph>

14

15 <prior-knowledge>

16 <required-symbols>

17 <OMS cd=" arith1 " name="abs"/>
18 <OMS cd=" arith1 " name="divide"/>
19 <OMS cd="sequence1" name="sequence"/>
20 <!-- not all symbols are shown -->

21 <OMS cd="setname1" name="Q"/>
22 <OMS cd="setname1" name="R"/>
23 <OMS cd="setname1" name="Z"/>
24 <OMS cd=" transc1 " name=" ln"/>
25 </required-symbols>

26 <required-CDs>

27 <required-CD cd="prog1"/>
28 </required-CDs>

29 </prior-knowledge>

30

31 <extraDefinedSymbols>

32 <OMS cd="setname1" name="Z"/>
33 </extraDefinedSymbols>

34 </document>

5.4 presentation model 157

The contextvariables.xml file lists all initial settings of the variables
from the variable graph and the logistical context. These settings are
used whenever a new user is created and makes sure that each new
user starts in a well-defined environment.

The content itself is divided into a set subdirectories directly under
the documenthome setting. This set lists the folders definitions, exam-
ples, exercises, fragments, images, nodal pages and symbols. Each subdirec-
tory —except for the symbols directory— contains a set of subdirecto-
ries equal to the set of nodes in the theory graph. This allows authors
to keep content organized. The symbols directory contains a subdi-
rectory for each symbol in the symbol graph and all symbols listed
under extraDefinedSymbols. This way of organizing is not required by
the soundness verification process.

5.4.4.2 User model

The user model consists of three different sub-contexts, the knowledge,
logistic and mathematical context.

Listing 41: Knowledge events stored in the database

1 <document docid=" idacontext−cp1">
2 <action actionid="read">
3 <theory name="c3s2p5" date="20150327105555" resource="/

experimental/idacontext/nodalpages/c3s2p5/index .md"
graphURL=" http://evo02 .win. tue . nl/rikkomathdoxplayer/
experimental/idacontext/graphs/theorygraph/theorygraph .
xml"/>

4 <theory name="c3s2p5" date="20150327105800" resource="/
experimental/idacontext/nodalpages/c3s2p5/index .md"
graphURL=" http://evo02 .win. tue . nl/rikkomathdoxplayer/
experimental/idacontext/graphs/theorygraph/theorygraph .
xml"/>

5 </action>

6 <action actionid="mastered">
7 <theory name="c3s1p1" date="20150327133251" resource="/

experimental/idacontext/nodalpages/c3s1p1/index .md"
graphURL=" http://evo02 .win. tue . nl/rikkomathdoxplayer/
experimental/idacontext/graphs/theorygraph/theorygraph .
xml"/>

8 <theory name="s1p2" date="20150327145248" resource="/
experimental/idacontext/nodalpages/s1p2/index .md"
graphURL=" http://evo02 .win. tue . nl/rikkomathdoxplayer/
experimental/idacontext/graphs/theorygraph/theorygraph .
xml"/>

9 </action>

10 </document>

Knowledge context.
The knowledge context is responsible for keeping track of knowledge

158 implementation of context in mathdox

events. In our adaptive IDA document we allow sub-categories; most
notable are the knowledge theory context and knowledge symbols context.

But even within these subcategories there is a need to group spe-
cific events. Therefore the knowledge context — both theory and sym-
bol — is able to store events labeled with an action. In order to indi-
cate when a notion belonging to the theory or symbol graph is read or
mastered, the read and mastered are the most commonly used actions.
Other actions are also possible. Authors do not need to define actions
before usage. In Listing 41 an example of knowledge context is given
as stored in the XML database eXist [22]. Note that it only lists en-
tries for the knowledge theory context and that some lines have been
omitted for readability purposes. The knowledge symbol context is
stored in a similar fashion in the same XML document.

The knowledge (symbols) context is implemented in the same way as
the knowledge (theories) context.

Logistic context.
The logistic context contains all non-mathematical variables that are
important for the adaptive IDA document, see Figure 35. These vari-
ables range from the name of the user, to the date. Some variables
have dropboxes or radioboxes in oder to prevent them from taking
an illegal value. It is up to the author to guard the validity of the
input into the logistic context.

Figure 35: Logistic context of a user

Mathematical context.
In Figure 36 the mathematical context is shown. The input variables
of the variable graph —as discussed before in the domain model—
can be set by the user and will be stored in the mathematical con-
text. It is here that all values of the variables are visible along with
the conditions that mark whether variables have a valid value or not.
Because the adaptive IDA document is a prototype we have decided
to just warn about invalid values, and let people see what they do
regardless the outcome of the conditions. Of course an invalid value
could also be denied as the new value for a variable. If an input value
gets a new value, and another variable is called that depends on the

5.4 presentation model 159

Figure 36: Mathematical context of a user

value of the first variable, then all variable nodes in between are being
recalculated. This check is done by assigning a timestamp to each new
value. Any variable that is called and depends on a variable with a
newer value —directly or indirectly— will be recalculated. Note that
this is actually a recursive process.

Another approach, as shown in Figure 37, is to equip an example
used in the content with Formula Editor fields where the values of
the variables are given. The user can then change the settings without
leaving the theory page for the mathematical context. These values
are changed everywhere in the document.

Figure 37: Mathematical context of a user

5.4.4.3 Presentation model

The content from the domain model combined with the context from
the user model create the adapted pages for the user to read. The
rules and queries that are needed for the adaptation form together
the presentation model. In our context implementation, the rules and
queries of the presentation model are implemented within the con-
tent. However, there is a distinction between the content and the
queries and rules of the presentation model. For instance the Jelly
code —including any custom tags—, XForms and some specialized
fragments are responsible for any presentation tasks. Content is con-
sidered to be written by DocBook, OpenMath and text.

In this section we will focus on the implementation of adaptive
techniques in the adaptive IDA document. We will elaborate on a
number of examples.

Using variable graph variables in examples.
A seemingly simple but important adaptation technique is the use of

160 implementation of context in mathdox

user chosen values as much in the document as possible. This will
give the user a feel of control and recognition when a notion is being
explained and computed using his or her values. It also grants the
user the freedom to play around with the example using different
input.

Figure 38: An example with variables from the mathematical context.

Figure 38 shows one of the first examples from the adaptive IDA
document. Obviously in this example there is a problem when the
integers do not properly divide: a situation that can be solved by
a CAS-condition that enforces the divisibility on the values entered;
however in this case a different solution has been chosen. In this ex-
ample the code performs a test to determine if the two integers are
divisible. If they are not, the remainder is subtracted and forces the
two integers to be divisible again. Of course the user needs to know
about this as it was promised to only use the user specified values. A
screen shot of this altered variable values can be found in Figure 39.

Figure 39: An example with automatic adapted variables from the mathe-
matical context.

If one remembers the rules for soundness, one may wonder about
the example we just described. This example uses the remainder sym-
bol, while this symbol is not yet introduced on this page nor on one
of its predecessors in the theory graph, as there are no predecessors
for division. Indeed without author action the soundness verification
will fail for the division page. For these type of cases where an au-
thor needs something computed in the background and will only use
the result —not the computation itself— an exception was added to
soundness checks. If an OpenMath symbol gets the attribute ignore
set to true, that symbol will not be taken into account.

Fragments.
Fragments are used to include the same content more than once. As
discussed before this is of use when content refers back to previous
read content, but quite often fragments are also used to include con-
tent more than once on the same page. For example, exercises that use

5.4 presentation model 161

random values. By including the same fragment a few times, the user
will be presented with a set of similar but different exercises. Another
example is a recursive algorithm. Each step may be performed by the
same fragment. In Figure 42 the code in the euclidesStep fragment is
given as used in the Euclidean Algorithm.

Listing 42: A fragment step in the Euclidean algorithm.

1 <mdc:fragment xmlns:mdc=" jel ly:org .mathdox. context .
TheoryBlocksTagLibrary"

2 xmlns:c=" je l ly :core " xmlns:x=" jelly:xml ">
3

4 <!-- the new values for this iteration -->

5 <c:set var="c" value=" ${a%b} "/>
6 <c:set var="a" value=" ${b} "/>
7 <c:set var="b" value=" ${c } "/>
8

9 <!-- row in the table with the new values, with an optional

step counter -->

10 <tr>

11 <c:if test=" ${countsteps eq ’ true ’ } ">
12 <td class="euclides"><OMI>${step}</OMI></td>
13 </c:if>

14 <td class="euclides"><OMI>${a}</OMI></td>
15 <td class="euclides"><OMI>${b}</OMI></td>
16 </tr>

17

18 <!-- determine if end condition is met, if not call the next

step -->

19 <c:choose>

20 <c:when test=" ${b!=0} ">
21 <mdc:include-fragment

22 fragment="fragments/rules/euclides/euclidesstep .mdf"
23 frgid="step" var=" result ">
24 <c:set var="a" value=" ${a} "/>
25 <c:set var="b" value=" ${b} "/>
26 <c:set var="step" value=" ${step+1}"/>
27 </mdc:include-fragment>

28 <!-- the found gcd is stored in the return variable result

-->

29 <c:set var=" _result " value=" ${ result } "/>
30 </c:when>

31 <c:otherwise>

32 <!-- end of algorithm store the gcd-->

33 <c:new var=" _result " className=" java . ut i l .HashMap"/>
34 <c:set target=" ${ _result } " property="gcd" value=" ${a} "/>
35 </c:otherwise>

36 </c:choose>

37

38 </mdc:fragment>

In Figure 40 the example as it occurs on the Euclid page is dis-
played. Again this example works with variables from the mathemat-

162 implementation of context in mathdox

ical context. Because this implementation of the algorithm performs
the actual computation the result of this computation can be used
by passing it back as a result value. This allows the fragment also to
be used as an example that is disconnected from the mathematical
context.

Figure 40: A Euclid example performed by recursive fragments.

This example demonstrates how fragments can call themselves or
other fragments in order to create content. As such it is evidence how
smaller pieces of content can be taken together to form a larger piece
without losing coherence in the content.

Navigation.
Without a set order in which the theory pages have to be read, a user
may need help in deciding what to read next.

Figure 41: Denied access because not all required knowledge is understood.

A solution to prevent a user from reading a page he or she does not
possess all the required knowledge for is simply denying him or her
access as done in Figure 41. Of course these redirections are directed
at pages that do not need any prior knowledge to be read.

Instead of showing prior knowledge only when the page refers to
it, a page can also decide to include all prior knowledge that is not
considered to be understood by the reader at the opening of the page.
This content is then sorted along the theory graph according to the
following algorithm.

1. Take all available nodes (nodes that do not require any prior
knowledge that is not yet understood); if this set is empty then
the algorithm stops.

5.4 presentation model 163

Figure 42: Content made available by means of stretchtext.

2. Choose one of these and include the definition of that page into
the current page.

3. Mark the chosen page as pseudo understood.

4. Continue at step one.

Pseudo understood means that that page is only marked as un-
derstood during the execution of this algorithm. After the algorithm
execution a page marked as pseudo understood, regains the not un-
derstood status.

Yet another way to help users to find content is to include a symbol
list on a page. Users can choose to have this list displayed and it
lists all symbols that are used on the page. The listed symbols link to
pages of the symbol graph or OpenMath pages, each explaining the
symbol in more depth. In Figure 43 a list of symbols is shown.

The IDA document also assists users in finding a route through
the document towards a goal set by the user. The theory graph in
the knowledge context as seen in Figure 32 is colored so as to indi-
cate where the user should go next. Green indicates already read and
mastered, blue a suggested choice to continue reading and red not yet
recommended due to lack of prior knowledge. In combination with
the theory graph it can then be determined which nodes are not yet
mastered, and which subset has predecessors that are no longer un-
derstood. This subset will be the group with available theories while
the remaining set will be marked as not yet available. If a learning
goal is specified in the logistic context then those nodes that are both
in the predecessor list of the goal and in the set of available nodes are

164 implementation of context in mathdox

Figure 43: A list of symbols as they occur on the theory page.

advised as the next step to reach the set goal. A plan model (see Sec-
tion 3.1.6) has not been implemented in the adaptive IDA document,
as it is considered to be too difficult to determine the goal of the user
without asking.

Navigation also includes navigation to external pages. Based on
the background of a user, links can be offered to external pages that
provide more information about the topic at hand.

However, readers may also introduce error situations when they
enter invalid values for variables. In such cases conditions should
warn the users at the moment of entry.

5.4.4.4 Soundness

While creating an adaptive document an author needs tools to verify
the soundness. It is easy to create consistency errors while developing
and changing an adaptive document. Adaptivity will help users to
understand content, but only if the content is adapted in a correct
manner. Possible errors include the use of symbols or variables at an
earlier page than where they were introduced. The chance for this
to happen is considerable, especially since content is fragmented and
used by a lot of different pages. The building process of a page is
dynamic and because the content is being reused elsewhere in the
document, its hard to keep everything correct. It is easy to lose track
and let these kind of errors slip in.

5.4 presentation model 165

To this end all pages are scanned to determine what content, oper-
ators and variables have been used. These results are then compared
to what the document file, the theory and symbol graph indicate is
legal to use for each page. As user context cannot and should not4 be
taken into account the scan process includes all possibilities.

The results from the scan are summarized and checked for incon-
sistencies with regard to the pages, operators and variables. The find-
ings are then shared with the author as a graph or a list.

Soundness also applies to the values of variables. However, this is
a different kind of soundness check as the variable values belong to a
user and not to the document. Therefore the result differs from user
to user. The values of a user are verified by the conditions as listed
on variables input page.

Figure 44: Theory nodes that fail soundness checks.

Figure 44 shows a (partial) theory graph as can be found on the The-
ories inspection page. All nodes colored green are considered sound,
while the red nodes have problems associated with them. More elab-
orate information in regard to these nodes can be found further on
the page. In relation to Figure 44 there are three different kinds of
problems that can be identified. Firstly, most notable, the operator
ring3.poly_ring is used in Polynomials and subsequent nodes. How-
ever the Polynomials node in the theory graph failed to introduce
it. As a consequence whenever the operator is used, it is marked as
a potential error. Secondly, the node GCD fails to connect to Poly-
nomial gcd and lcm intro as a result the operator arith1.gcd which
is introduced at GCD is not available in Polynomial gcd and lcm
intro. Clearly this is an error in the graph and should be repaired.
Thirdly, the Euclidean algorithm is being used by Euclidean algo-
rithm but also by Polynomial gcd. In the first case the Euclidean
algorithm is only applied to integers while in the second case it ap-
plies to polynomials. Since both pages use the same code, the poly-
nomial3.remainder symbol ends up on the Euclidean algorithm page.

4 Soundness check occurs at the document level for two main reasons. Firstly as it is
impossible to verify soundness at user level with ever changing user contexts and
secondly as to warn the author to any (future) error condition that might occur when
a user goes through the document.

166 implementation of context in mathdox

The page limits the example to integers only so for users there is not a
problem for the users. Still the author is being alerted to the existence
of the potential error.

6
C O N C L U S I O N

"Complexity is often spawned from simplicity."
–author unknown

Complexity is a relative notion, allowing quite often for a break-
down in more basic parts. Obviously the reverse also holds. Combine
simple concepts and a more complex notion is created, which, when
the action is repeated, will become more and more complex while all
its subparts remain basic.

The mechanism of knowledge decomposition and knowledge com-
position is an important aspect of our project. Knowledge (de)compo-
sition happens in the minds of authors and users [173]. It also plays a
paramount role in our adaptive documents, where it is decided which
content is combined and how it will be represented to help the user
in the knowledge composition process.

The MathDox Context has been designed (see Chapter 4) and cre-
ated as a working prototype (see Chapter 5) with this process in mind.
The various components like the theory graph, symbol graph, vari-
able graph, fragments, queries and rules reflect the knowledge de-
composition.

An advantage of the decomposition is the reusability of the individ-
ual components. This addresses one of thirteen requirements for an
adaptive mathematical system as listed in Section 3.4. In this conclu-
sion we will first discuss to what extent we meet these requirements.
Next we discuss the need for a user evaluation and finally we present
four suggestions for further research.

6.1 meeting the requirements of a mathematical adap-
tive system

In Section 3.4 requirements were stated for an adaptive mathemati-
cal system. Obviously the MathDox Context needs to be measured
to these requirements as well. Because the context implementation is
built directly on top of the MathDox Player it benefits from all char-
acteristics of the MathDox format, see Section 2.4.

Interactivity.
The MathDox player offers interactivity by including the Jelly [47] for-
mat and the MathDox Formula Editor [62]. The MathDox Formula
Editor grants the ability to process answers given by the user. Thanks
to the MathDox Context, the answer can take into account the capa-
bilities of the user as well as the knowledge gathered by the user. The

167

168 conclusion

context also creates the possibility of running examples. The sound-
ness checks enables guidance of the user by keeping newly set vari-
ables and values consistent throughout the document.

Usable in multiple formats.
The context implementation inherits its format from MathDox. As
such it benefits from the XML structure that allows transformations
to other formats such as LATEX and PDF. Naturally a transformation
to a paper version will lose adaptivity. However, these transforma-
tions can be applied to a MathDox document which has been created
on basis of information in the context. In this way preferences set
by the user as well as running examples created by the user can be
transformed.

Being extendable.
External services can be included and used from within MathDox
code. Several examples exist including services for Geogebra, JSX-
Graph and computer algebra systems. New external services, like for
instance to a theorem prover, are also possible. New fragments and
Jelly custom tags are easy to write and to add to existing libraries. If
the provided API does not suffice, it can be extended by new classes
that either extend the current ones or interfaces with them to add
extra functionality.

The MathDox Context has been implemented in a general way. For
instance, the theory-, symbol-, variable graphs are author defined,
and are not mandatory. The use of variables or event logging is not
necessarily used nor limited to a predefined standard set.

Finally, the MathDox format itself is open source, and suitable to
any kind of extension, as proven by the LeActiveMath [51] and the
WebALT [104] projects.

The MathDox Context can be used as a starting point for future
extensions towards documents that work with abstract objects that
are well structured and may be encountered in chemistry, computer
science and physics.

Representation of mathematics.
The MathDox player provides good ways to render mathematics. This
rendering can be dependent on context information. For example the
complex number i can be rendered as j for students in electrical engi-
neering.

Ease of usage.
The MathDox format consists of several sub-formats and the imple-
mentation of the MathDox Context adds another. It is not surprising
that the mixture of these sub-formats is a bit daunting and complex.
MathDox code is hard to work with for inexperienced authors. Fur-
thermore, the sub-formats require separate translation steps, slowing

6.1 meeting the requirements of a mathematical adaptive system 169

down performance of the server. The addition of fragments — which
requires extra translations — does not improve performance. Yet, at
the same time, fragments and the Jelly custom tags do offer users
ready to use functionality, like queries, rules and templates.

Use of open standards.
The MathDox format, the MathDox Player and the MathDox Con-
text are all based on open (XML) standards and are all open source.
This includes external applications that are being used, such as Tom-
cat [101] and eXist [22]. Open source code allows for inspection and
verification of the code, low-cost installations and changes to the code
when it is deemed necessary for applications.

Reusability of content.
The MathDox Context contains a library of Jelly custom tags and frag-
ments, which can be expanded upon. For example, a fragment con-
taining an exercise or explanation about a definition can be plugged
into any MathDox page or document.

Also the context of documents can be reused. Documents can share
one or more of the context graphs. To promote reusability the files of
the theory graph, symbol graph and variable graph are identified
and retrieved by URIs. Quite often this means they are directly re-
questable from the MathDox Player that serves the document they
belong to. Reuse of parts of the context of course requires compat-
ibility and soundness checks. The soundness checks that have been
implemented can be used to verify if a (partial) document is suitable
for reuse.

Stability.
Stability is about how well the document performs seen form the
user’s perspective. Technical problems, like bugs and performance
issues are an obvious threat. Our context implementation has still
room to grow in terms of technical issues and performance. Another
threat comes with changing nature of adaptive documents, as they
might — again from the user’s perspective — unexpectedly change
content. It is up to the author to decide on the level of stability in the
document, as adaptivity on a MathDox page is the direct result of the
code on that page. Of course, this is strongly related to the quality of
adaption.

Quality of adaption.
To ensure this quality of adaptation, a document requires sufficient
and meaningful data. To this end an author is at liberty to add extra
information to the context as needed or not to use some tools and
aspects of the context at all. The theory, symbol and variable graphs
are designed to be used independently from each other and may be
omitted. The author also decides which variables are used and are
needed to be in the user model.

170 conclusion

Sharing user data.
Sharing data between adaptive mathematical documents eliminates
the need to ask the same questions when a new document is being
visited by the user. Before data can be shared the author should be
aware of any compatibility issues. In case of data as stored in the lo-
gistical context this is rather straightforward process. Any data stored
in relation to the theory graph, symbol graph or the variable graph,
needs first to be verified, both in compatibility as in correctness. (Var-
ious of these checks will be done automatically by the system.)

Management of user data.
The user is responsible for the contents of the logistical data. The
mathematical user data consists of the values of the variables appear-
ing in the variable graph. Our context implementation provides vari-
ous checks on these values to ensure they are within the boundaries
of the document. The knowledge context is somewhat different, as the
knowledge context contains data (mostly events) that are analyzed by
the system. The user has no influence on this analysis.

Privacy.
Authentication and storage of data in MathDox Context is delegated
to the eXist [22] database. Each request to the database requires the
credentials of the user, keeping the responsibility of the data with the
database. MathDox does not store any user passwords in between
sessions, only during a session. This gives access of user data only to
the user and the administrator.

Robust.
The MathDox Context has been built on top of reliable software com-
ponents such as Orbeon Forms, MathDox Player, eXist and Tomcat.
The context itself consists of tag libraries and three Java classes, the
ContextDocument object, DatabaseAccessObject and the GraphMan-
ager. These classes are independent of each other and their responsi-
bilities are divided. This modular approach makes the design of the
system robust.

6.2 user evaluation

Our research focused on the design of an adaptive mathematical doc-
ument and a prototype, rather then the effect of the adaptivity on
users. Nevertheless we seized the opportunity to see system at work
and gain some experience from potential authors, teachers and users.
Feedback on the MathDox Context implementation, as available in
our proof of concept [37], was asked for and received by a group of
mathematics and physics teachers at the Dutch high school Coperni-
cus Scholen Gemeenschap in Hoorn. These teachers have students
from 12 till 18 years old. The general consensus in this group of

6.3 further research 171

teachers was that the MathDox Player, enriched with context, is a
powerful tool that certainly helps students in comprehending and
speeding up their studies. Some well-liked features included tests to
verify whether a concept was understood or not, the visualization
of the theory graph with colors indicating whether concepts were
mastered or not and (running) examples that could be adapted to
work with user specified values. Change of contents as caused by
adaptivity was not noticed straightaway, but appreciated after it was
pointed out. However, some drawbacks were also mentioned, notably
that younger students are not expected to be mature and disciplined
enough to work with electronic materials without teacher supervi-
sion, ruling out MathDox materials as a primary source of content
for their studies.

A recommendation of the group is that materials are considered to
be more useful if the adaptivity is able to adjust to as many different
situations as possible, which were predicted to be quite a lot. This
suggests a very fine grained theory graph and increased analyzing
and adaptive possibilities in used fragments.

The group of teachers was also shown some code examples. The
consensus was they would love to use MathDox materials in their
classes, but were hesitant to create any themselves because of the re-
quired coding. These observations confirmed our expectations. At the
same time the observations emphasized the different roles that come
in play when MathDox materials are used in classroom conditions.
Among these — in increasing levels of technical experience — are the
roles of a classroom supervisor, teacher, author and programmer. Es-
pecially the author and programmer roles are needed for the creation
of the required materials.

6.3 further research

Mathematical documents come roughly in three flavors:

• Static: content does not change or adapt;

• Interactive: content allows for interaction, usually limited to ex-
ercises, or changeable example.

• Adaptive: the content in documents adapts to the user, enabling
them to read and interact with the document within a context
best suited for the individual user.

There are not many adaptive mathematical systems available. This
prompted us to design and implement the MathDox Context. it is
a first step towards a truly adaptive and interactive mathematical
document. The changes and adaptations to the user’s most current
context are achieved by utilizing the interpreter nature of the Math-
Dox Player, which enables document pages to change upon each page
request and gives users the freedom of navigation in a document.

172 conclusion

As we have seen in Subsection 3.4, MathDox documents enriched
with context meet more of the requirements that we have formulated
for interactive mathematical documents. Context enriched MathDox
documents are highly interactive and adaptive. However, work still
needs to be done in some areas.

We have implemented a proof of concept of our design [37]. In or-
der to turn this proof of concept into production, several tasks have to
be done. First of all, technical issues like performance and optimiza-
tion, as well as issues concerning reliability have to be taken care
of. Moreover, extending our system with various new external ser-
vices should be addressed. These services can range from databases
to proof checkers and theorem provers.

Secondly, how to make best use of adaptivity in mathematical docu-
ments has to be investigated. Adaptive mathematical documents can
be used in various situations, but due to the lack of good examples
there has been very limited information on the effectiveness of their
use. A study on how to use adaptive mathematical documents in for
example a classroom or a blended learning environment, would be
of high interest to us and could provide valuable information on how
to use and extent our content implementation. Our user evaluation
as described in Subsection 6.2 is a first tiny step in this direction.

Usage of MathDox documents and context by authors should also
be addressed. Although, we have tried to make authoring of context
enriched documents easier by adding macros, tags and fragments, we
still lack a good authoring environment. In order to make our system
available and attractive to a larger set of authors it is essential to have
good authoring tools. What a good authoring system is, needs also
further research.

Finally, to improve our context implementation, one might consider
to use proof checkers and theorem provers in the creation and sound-
ness checks of the various context graphs. Indeed, the soundness of
a theory graph can possibly be verified by involving such a proof
checker. But such a theory graph and the corresponding symbol and
variable graph could also be produced by a theorem prover. The use
of provers for adding and checking a context of a document is a topic
to investigate further.

Part I

A P P E N D I X

You can put some informational part preamble text here.
Illo principalmente su nos. Non message occidental anglo-
romanic da. Debitas effortio simplificate sia se, auxiliar
summarios da que, se avantiate publicationes via. Pan in
terra summarios, capital interlingua se que. Al via multo
esser specimen, campo responder que da. Le usate medi-
cal addresses pro, europa origine sanctificate nos se.

A
M A N U A L

To assist authors in creating documents in the MathDox Context sys-
tem we provide some extra information regarding the technical as-
pects of the system. We explain how these documents can be cre-
ated and maintained. We limit ourselves to the MathDox context sys-
tem. The basics of the MathDox system can be found in the MathDox
Player manual [61]. We will provide references to the MathDox Player
manual when they are of importance.

In Section A.1 we start with a list of steps that are required to
create a new document. This list is meant as an overview and does
not contain much background information. In Section A.2 the reader
is presented with a tutorial to implement the steps from Section A.1.
In Section A.3 more attention to the technical details is given. Finally
in Section A.5 a list of predefined queries and rules is presented along
with documentation on how to use these within a document.

a.1 how to set up a new document

We present a list of steps that help authors to create a new document.
These steps aim to cover all aspects of a new document but are con-
sidered guidelines as they are not meant as a fixed set of rules. The
list is divided into subparts, the first deals with the installation of the
required software, the second addresses the necessary preparations
before content can be written. In the third step content is written
which is then finalized and prepared for deployment in the fourth
step. At step five the content is deployed and can then be viewed by
the MathDox Player. The first two steps are optional if they have been
executed earlier.

Setup of the Software.
These steps guide the reader through the installation and deployment
of the MathDox Player and the MathDox Context add-on.

• Install required software.
Before the MathDox Player is installed it is required to install
some supporting software packages. These include Java [42],
Ant [4], Tomcat [101], eXist [22] and phrasebooks for computer
algebra systems as Mathematica [63], Maxima [69] or GAP [27].
Refer to their respective manuals for the instructions.

• Install and deploy the MathDox Player.
Install the MathDox Player. Refer to the MathDox Manual [61]
for instructions.

175

176 manual

• Add the MathDox Context add-on.
Copy the MathDox Context jar to the libraries/context direc-
tory of the MathDox Player and restart the Tomcat server.

• Test if the MathDox Player works correctly.
Open up the status page, as shown in Figure 45 within the Math-
Dox Player and verify that all tests successfully pass. If one or
more fail, fix those problems before continuing the next steps.
Refer to the MathDox Player manual [61] for assistance.

Figure 45: The MathDox Player status page

Preparations for content.
At this point one must have a working MathDox Player with the
MathDox Context add-on before continuing with the preparations
for content creation. If this is not the case please consult the previous
steps. The steps in the remainder of this section are meant as general
guidelines, a more precise tutorial can be found in Section A.2.

• Create a document home location.
To organize all files belonging to a context document a new
folder needs to be created. Regardless the name the folder has
been given, the folder will be called the document home folder
in this manual as it is the home of all files belonging to the
document.

• Create the folder structure in the document home folder.
We advise to copy the layout as described in Section A.3.1. This
layout is assumed in the remainder of this manual. A script has
been written to help in creating this structure. To use this script
copy the files contextstructure.zip and build.xml followed by the

A.1 how to set up a new document 177

command ant setuplayout, executed from the document home
folder.

• Create the theory graph.
The next step actually is the very first step in terms of creating
content for the document. Creating the theory graph is impor-
tant in the sense that it determines the next layout steps in the
folder structure, but more importantly it also requires the au-
thor to explicitly divide the document contents into separate
parts. The theory graph file needs to be placed in the folder
documenthome/graphs/src/xml/theorygraph. There are no re-
strictions on the name.

• Create the file structure for the nodalpages.
Having created the theory graph in the previous step, it is time
to use this theory graph with a script that expands the file
structure to encompass the nodalpages that have to be created.
To do this; run an ant script from the document home folder:
ant expand-nodalpages.

Creation of content.
Now all preparations have been done, it is time to start creating some
content that is to be included from the various pages.

• Create nodalpages & fragments.
Each nodalpage has a separate folder in the nodalpages folder.
Inside each of these folders a file called index.md is located. This
is the starting point of a nodalpage.

• Create the symbol and variable graphs.
When some content is written, symbols and variables will un-
doubtedly have been used. These have their own graphs, and
these graphs need to be created.

.

• Repeat previous two steps.
Repeat from step Create nodalpages & fragments until this step is
more or less done in the rough form.

Finalize and prepare for deployment of content.
Before the content can be deployed and tested in the MathDox Player,
a few more steps have to be taken. Among these is the previously
postponed addition of the edges in the variable and symbol graphs.

• Create edges in the graphs.
The edges in the theory and symbol graphs need to be created.
Note that the edges for the variable graph are automatically
created based on the edges content.

178 manual

• Finalize the graphs.
With the edges and properties added to the graphs, the graphs
need to be finalized by having them converted and encoded
into the right formats ready to be used by the document. These
conversions are done by an ant script and is executed by typ-
ing ant buildall. Mind that the result files are placed in the
graphs/build/encoded and graphs/build/jellyprepared.

• Create document file The document needs a database identifier, a
home folder: the locations of the graphs it will use and which
symbols are considered to be prior knowledge to this document.
Specify this in the document file.

Deploy content.
With the content written and the graphs created in previous steps, it
is time to deploy the content so that it becomes accessible through
the MathDox Player.

• Copy the document into the MathDox Player.
Create a link or copy the documents contents into the MathDox
Player content folder. Pay attention to non content files, such as
ant files and style sheets. These should not be made available in
the MathDox Player.

• (Re)start Tomcat.
Restart the Tomcat server to clear the cache. Verify if Tomcat
has successfully started by going to the document in a browser.
To increase performance the theory, symbol and variable graphs
are cached as are the values of variables. When new content
comes active, purge the cache as to force the MathDox Context
system to use the latest versions of the graphs and variables.

• Create users.
To create users first specify the default values for the variables
as stored in the logistic and mathematical context. Then visit
the document in a browser and go to inspectiontools and to
Create new user.

• Fine tune and finalize.
All major steps have been done in order to create a document.
Now fine tune your document. As some issues may only be-
come visible after inspection of the pages in the MathDox Player,
this step is quite important.

a.2 tutorial

In Section A.1 a list of steps is presented that guide authors through
the required steps to create a context enriched mathematical docu-
ment. In this section we are going through the steps of the previous

A.2 tutorial 179

section again but with more detail. While doing so we create an ex-
ample document. In this tutorial it is expected that the author has
installed all required software as described in Section A.1.

Preparations for content.

• Create a document home location
Create a document about group theory. This folder will be called
the home folder and should not be located within the content di-
rectory of the MathDox Player. The folder will contain some
files that are not suitable to the MathDox Player. At a later stage
the contents of this folder will be copied to the MathDox Player.

• Create the folder structure in the document home folder
Having created the home folder grouptheory, create the sub
folders that are to be used for content files later on. This task is
automated and can be done by unzipping the zip file
contextstructure.zip. Along with sub folders an ant file is
also unzipped. This ant file will offer automation to some of the
other tasks at hand.

• Create the theory graph
The next step is to create the first graph from the domain model,
the theory graph. Adding a partial ordering in the graph at this
point is optional and can be done later if desired. Go the the
folder graphs\src\xml\ and create a new folder called theorygraph.
Go into the newly created theorygraph and create a new file
called theorygraph.xml. A theory graph takes the form of a
GraphML file with added graph properties and nodes and edges
as shown in Listing 43. In Listing 44 the required properties are
listed, place them directly under the comment line

<!-- GRAPH PROPERTIES -->.

Do the same with the nodes as listed in Listing 45 and place
that code under the comment line

<!-- GRAPH NODES -->.

Finally the edges in Listing 46 go under

<!-- GRAPH EDGES -->.

Listing 43: The layout of a theory graph

1 <graphml

2 xmlns=" http://graphml.graphdrawing. org/xmlns"
3 xmlns:xsi=" http://www.w3. org/2001/XMLSchema−instance"
4 xsi:schemaLocation=" http://graphml.graphdrawing. org/xmlns
5 http://graphml.graphdrawing. org/xmlns/1.0/graphml.xsd"
6 >

7

180 manual

8 <!-- GRAPH PROPERTIES -->

9

10 <!-- Graph definition -->

11 <graph edgedefault="directed">
12

13 <!-- GRAPH NODES -->

14

15 <!-- GRAPH EDGES -->

16

17 </graph>

18 </graphml>

Listing 44: The properties of a theory graph

1 <!-- property declarations -->

2 <key id="links" for="node" attr.name="links"

3 attr.type="string"/>

4

5 <!--

6 url property, allows external links to be attached to a

nodal page

7 -->

8 <key id="url" for="node"

9 attr.name="url" attr.type="string">

10 <default>false</default>

11 </key>

12

13 <!--

14 OMS property, defines all required symbols that need to

15 be understood by the reader when reading the current

16 nodal page.

17 -->

18 <key id="oms" for="node" attr.name="oms"

19 attr.type="string"/>

Listing 45: The nodes of a theory graph

1 <!--

2 Node definitions

3 -->

4 <node id="group"/>
5 <node id="subgroup"/>
6 <node id="permutation_group"/>
7 <node id=" orbit "/>
8 <node id="permutation"/>
9 <node id="symmetric_group"/>

10 <node id="orbit_stabilizer_theorem"/>
11 <node id=" stabil izer "/>

Listing 46: The edges of a theory graph

A.2 tutorial 181

1 <!--

2 Edge definitions

3 -->

4 <edge id="subgroup−permutation_group"
5 source="subgroup" target="permutation_group"/>
6 <edge id="permutation_group−orbit "
7 source="permutation_group" target=" orbit "/>
8 <edge id="permutation_group−stabil izer "
9 source="permutation_group" target=" stabil izer "/>

10 <edge id=" stabilizer−orbit_stabilizer_theorem"
11 source=" stabil izer " target="orbit_stabilizer_theorem"/>
12 <edge id=" orbit−orbit_stabilizer_theorem"
13 source=" orbit " target="orbit_stabilizer_theorem"/>
14 <edge id="group−subgroup"
15 source="group" target="subgroup"/>
16 <edge id="group−symmetric_group"
17 source="group" target="symmetric_group"/>
18 <edge id="permutation−symmetric_group"
19 source="permutation" target="symmetric_group"/>
20 <edge id="symmetric_group−permutation_group"
21 source="symmetric_group" target="permutation_group"/>

When the theory graph is written, it needs to be processed in
order to deal with encodings. To this end, type the following
command: ant encode in the home folder. It will create an en-
coded theory graph in the graphs/build/encoded folder. Create
a folder called graphs/theorygraph and copy the theorygraph.xml
from the graphs/build/encoded folder to the graphs/theorygraph
folder. This will be the location the document later will look for.
Visual verification of the theory graph is done by creating a SVG
file from the theory graph. This is done by running the follow-
ing ant script: ant dot-theorygraph. The result can be found
in graphs/build/svg. For more information about the theory
graph and the other domain graphs see Section A.4

• Create the structure for the nodalpages
Having the theory graph created, the folders that will contain
the nodalpages are to be created in accordance with the the-
ory graph. Each node from the theory graph will have its own
folder that contains all files directly belonging to that nodalpage.
Creation of these nodalpage folders is automated and can be
done by calling an ant script from the document home folder
like this: ant expand-nodalpages. This script will also create
an index.md file in each nodalpage folder with the most used
namespaces defined and a title that corresponds with the node.

Create content.
At this point all preparations for a new document have been done. We
created the location where the document will be developed, created a

182 manual

theory graph and created the file structure required by the MathDox
Context System. The logical next step is to start writing the content
that goes into the document.

• Create nodalpages & fragments
Nodalpages are the starting points to the various sections of a
document. Each nodalpage should therefore be designed as if
it were a small document of its own. To this end it is good to
observe that while a nodalpage suggests just one page, there
can be more than just the one page for a node. If more pages
are required, it is wise to have at least one of these pages called
index.md as this page will be seen as the starting point.

As each nodal page is seen as a separate document there will
be cases in which content is repeated. Do not fear repetition
but instead use it wisely. A good way to do so is by defining
a fragment file that includes the content that is to be repeated.
Instead of writing the same content again later, it will suffice
to just include the fragment where ever the contents are needed.
Fragments can include fragments of their own, however prevent
fragment circle inclusion. All content — be it in a nodal page or
in a fragment — is written in MathDox.

In this tutorial we create a nodalpage for the theory node group,
see Listing 47.

Listing 47: Nodal page group

1 <article xmlns:mdc= ’ je l ly:org .mathdox. context .
TheoryBlocksTagLibrary ’ xmlns:c= ’ je l ly :core ’ >

2 <title>Division</title>

3

4 <mdc:include-fragment

5 fragment="fragments/division/intro .mdf"
6 frgid=" intro "/>
7

8 <mdc:include-fragment

9 fragment=" definitions/division/index .mdf"
10 frgid="defquot"/>
11

12 <para>

13 For example, Consider the integers

14 <mdc:get-value variable="a" symboltableid="division"/>
15 and

16 <mdc:get-value variable="b" symboltableid="division"/>.
17 Note that these integers have no common divisor.

18 </para>

19

20 <mdc:include-fragment fragment=" exercises/division/
exercise1 .mdf" frgid=" exercise1 "/>

21

22 </article>

A.2 tutorial 183

Figure 46: The division nodal page

The use of fragments.
In Listing 47 and Figure 46 an example group nodalpage is
shown. The code of this page includes a fragment
<include-fragment fragment="intro.mdf" frgid="intro">.
The fragment attribute contains the web address of the frag-
ment, located within the same document or elsewhere on the
internet. The frgid attribute is used to identify included frag-
ments. One should make sure that all fragments included from
the same source file have non identical names. Identical names
but included from different files — i.e. two different fragments
or a nodalpage and a fragment — are not a problem. The code
of this fragment is shown in Listing 48. Fragments may take ar-
guments, work with local variables and may return values, how
this works is explained in more detail in Section A.5.1.3.

Listing 48: Fragment code intro

1 <mdc:fragment

2 xmlns:mdc=" jel ly:org .mathdox. context .
TheoryBlocksTagLibrary">

3 <para>

4 Let

5 <OMOBJ>

6 <OMS cd="setname1" name="Z"/>
7 </OMOBJ>

8 denote the set of integers.

9 We know how to add integers, how to subtract them and

how to multiply them.

184 manual

10 Division is a bit harder.

11 </para>

12

13 <mediaobject>

14 <imageobject>

15 <mdc:get-dochome var="docHome"/>
16 <imagedata

17 fileref=" ${docHome + ’/images/s1p1/hasse30 . jpg ’ } "/>
18 </imageobject>

19 <caption>

20 <para>

21 A schematic representation of all positive divisors

of

22 <OMOBJ>

23 <OMI>30</OMI>

24 </OMOBJ>

25 </para>

26 </caption>

27 </mediaobject>

28 </mdc:fragment>

The use of a variable.
There are two kind of variables that can be used in a fragment
or on a page. The first kind are the normal Jelly variables, while
the second are the context variables such as the mathemati-
cal variables and logistic variables. Here we will only discuss
the context variables. The use of a context variable is done by
<mdc:get-value variable=’a’ symboltableid=’division’/> as
shown in lines 12 and 14 in Listing 47. There are two attributes
that are needed for this tag, variable and symboltableid. The
first, variable is used to indicate the name of the variable re-
quested, while the second, symboltableid indicates at which
nodal page this variable is introduced. This implies that vari-
ables can be reused in nodal pages that come after the current
nodal page in the theorygraph.

Logistic context variables.
Logistic context is accessible in the exact same way as the vari-
ables from the variable graph, with the only difference that they
all are linked to the symboltable=’root’ setting. the root value
indicates that these variables are not to be found in the math-
ematical context or variable graph but in the logistic context.
As a consequence these logistic variables are in each and single
nodalpage accessible.

• Create the symbol and variable graphs
The content created so far has used variables and symbols. These
need to be put in symbol and variable graphs. To assist with this

A.2 tutorial 185

process, content written is to be analyzed and used symbols and
variables will be placed into the symbol and variable graphs. To
start this process the author needs to type the commands

ant create-vargraph-nodes

and

ant create-symbolgraph-nodes.

Run these commands in the home directory of the document
and it will create a folder tempgraphs in the graph directory
with inside the tempgraphs folder the two graph files will be
created. The resulting symbol graph and variable graph files
will only contain the nodes, they will not contain any edges,
nor do they contain any properties. These need to be added at a
later moment because at the moment the content is still chang-
ing, and with changing content the symbol and variable graphs
will change also. Be careful that the graphs can be accidental
overwritten when content changes and the unfinished graphs
are replaced by newer versions.

• Repeat previous two steps

As content is changed and adapted there is also a need for up-
dating the symbol and variable graphs. By repetitions of the last
two steps content can be formed to the wishes of an author. At
this point the author cannot review the content in the MathDox
Player, this will come at a later moment.

Finalize and prepare for deployment of content.

The content has been written and the theory, symbol and variable
graphs have been partial written. The next step is to prepare the doc-
ument for deployment in the MathDox Player. For this we need to
finalize the graphs.

• Create edges in the graphs
Nodes in the theory, symbol and variable graph need to be con-
nected to each other by edges. As this depends heavily on the
readers work, for example the amount of used theory nodes,
variables and symbols, it is not possible to give a step by step
guideline. Therefore we will describe the general process.

Copy the latest graph files from the directory theorygraph for
the theory graph and tempgraphs for the symbol and variable
graphs to graphs/src/xml/variablegraph and
graphs/src/xml/symbolgraph.

To add edges to the theory graph, refer to Listing 46. Added
edges should contain an identifier a source and a destination.
Edges for the symbol graph are added in a similar way.

186 manual

The variable graphs is a bit different, as it does not need edges
to be added manually. Instead the edges of the variable graph
are determined from the mathematical expressions that need
to be added to the nodes. It is these expressions that tells the
MathDox Context system how to calculate the values every time
when a variable is requested.

• Finalize the graphs
All graph source files are now located in sub folders of the
graphs/src/xml/ directory. Before they can be used by the doc-
ument some values of the properties in the graphs need to be
encoded. For this there is another ant script available. Since
we also want our graphs to be visible in MathDox documents,
just encoding will not be enough, SVG versions of the graphs
are also needed. The command ant build-all will produce
the document ready graphs and write them to the respectively
graphs/build/theorygraph, graphs/build/symbolgraph and
graphs/build/variablegraphfolders. If the result is acceptable
they then need to be copied to the graphs/theorygraph,
graphs/symbolgraph and graphs/variablegraph folders. The
build-all command will also create the SVG representations of
the graphs. These will be stored in the graphs/buid/svg folder.
Some Jelly enriched variations of SVG graphs will also be cre-
ated. These are for sake of soundness checks and tracking user
progress through the document.

• Create the document file
Before the content can be copied the MathDox Player content
folder it first needs a valid document.xml file. This file should
look similar to Listing 49.

Listing 49: The contents of the document.xml file

1 <document docid="grouptheory">
2 <documenthome>grouptheory</documenthome>

3 <theorygraph>grouptheory/graphs/theorygraph/theorygraph.

xml</theorygraph>

4 <symbolgraph>grouptheory/graphs/theorygraph/symbolgraph.

xml</symbolgraph>

5 <variablegraph>grouptheory/graphs/theorygraph/

variablegraph.xml</variablegraph>

6 <prior-knowledge>

7 <required-symbols>

8 <OMS cd=" arith1 " name="minus"/>
9 <OMS cd=" arith1 " name="plus"/>

10 <required-symbols>

11 <required-CDs>

12 <required-CD cd="prog1"/>
13 <required-CDs>

14 </prior-knowledge>

A.2 tutorial 187

15 </document>

Important elements are:

– <document docid="grouptheory">

Which gives each document an unique identifier to be used
by the MathDox context system to distinguish between dif-
ferent documents.

– <documenthome>grouptheory</documenthome>

Tells the MathDox context system where the files of the
document are located.

– <theorygraph/>

<symbolgraph/>

<variablegraph/>

The location of the theory symbol and variable graphs.

– <required-symbols/>

lists all symbols that are considered to be understood and
will not need any extra attention.

– <required-CDs/>

lists all content dictionaries that are considered understood
or not necessary to explain.

Deploy content.
Having finalized the contents and the graphs we continue with the
necessary steps in order to deploy the document.

• Copy the document into the MathDox Player
Until this point all the material for our document was created
and located in separate directory. In order to see the results of
the document we need to copy the document materials into the
document folder of the MathDox Player.

To do so, copy the document folder called grouptheory into
the content folder of the MathDox Player. The graphs/src and
graph/build folder should be omitted.

• (Re)start Tomcat
We are now ready to start up the Tomcat server, and with that
our document. Verify that the document is indeed active. Re-
member, if small changes are made to the graphs, a restart of
Tomcat is necessary to clean the cache.

• Create users The MathDox Context System is user focused, that
implies our document is only usable when we add users for it.
Before user can be added, a file named contextvariables.xml.
needs to be created. In this file all default values for new users

188 manual

are listed, see Listing 50. After the creation of this file, users can
be added with a tool in the document. Go to inspectiontools

and then to create user, see Figure 47. Fill out the user name
and password and optionally the group the user belongs to. The
group is important for authors and teachers, as these are given
rights to add new users later on.

Listing 50: The contextvariables.xml

1 <properties>

2 <entry key=" root . goal">nogoal</entry>
3 <entry key=" root .notMathContextLink">false</entry>
4 <entry key=" root .background">empty</entry>
5 <entry key=" root . date">now</entry>
6 <entry key=" root . firstName"></entry>
7 <entry key=" root . f i rs tVis i t ">true</entry>
8 <entry key=" root . lastName"></entry>
9 <entry key="s1p1 . a"><OMI>9</OMI></entry>

10 <entry key="s1p1 .b"><OMI>4</OMI></entry>
11 </properties>

Figure 47: The create user tool

• Fine tune and finalize
The document has been written and deployed, and is accessible
through the MathDox Player. It does however need to be tested
and verified if everything works as supposed. The author has
some tools at his or her disposal to check for soundness and
verify the relations defined in Section 4.1.4. These soundness
checks are available in the document at inspection tools.

a.3 the layout of a mathdox context document

In the previous Section A.1 and Section A.2 the creation process of a
document has been discussed. In this section we will pay more atten-
tion to some technical details that were kept a minimum to previously.

A.3 the layout of a mathdox context document 189

Being; the files and layout in Section A.3.1, the document file A.3.2
and the database in section A.3.3.

a.3.1 File structure

To structure the files as needed for a document, a folder structure
is advised located directly in the home folder of the document. This
structure includes at least the folder nodalpages. Other folders that are
recommended are fragments, exercises, definitions and examples. Each
of these folders contain a separate folder for each nodalpage that
exists in the document. In these sub-folders fragments — that are
included in the nodalpages– are located. One should keep in mind
that fragments can be included in different nodalpages. Convention
in such cases dictate that such fragments belong to the nodalpage
that is the highest in the theory graph.

Another recommended folder in the document home folder is the
graphs folder. This folder is the place where the source files for the
theory graph, symbol graph and variable graph are located. These
are discussed in Section A.4

a.3.2 Document file

The document file is used to identify the current document within the
MathDox context system. By placing the document file in the root of
the document, all content belonging to the document is able to find
and use the document identifier inside this document file.

This document identifier is then used by the contents to link all
actions — as performed by the document — to the document in the
database, allowing to distinguish between actions from different doc-
uments. Besides the document identifier the document file also con-
tains links to the domain graphs such as the theory graph, symbol
graph and variable graph, which form the domain model of the doc-
ument together with the content and thereby define the document;
in essence the values used in the document file give all the separate
pieces a location in the bigger whole that is the document.

An author needs to specify the boundaries of a document. E.g.
what is to be expected as entry knowledge from the readers. These
boundaries are taken in the form of OpenMath symbols, as they are
defined in a standard as opposed to theories from any theory graph.
A trivial example would be the use of the addition or subtraction
operators. Any mathematical document will assume that these oper-
ators are known to the reader. The required-symbols and required-CDs
fields in the document file are to be used to tell the system which
mathematical operators are expected to be known. Allowing for both
single operators, or complete cds.

190 manual

a.3.3 Database structure

The MathDox Context system stores all important actions and deci-
sions in an eXist database. The eXist database is an XML oriented
database, meaning all data is stored as an XML document. Each user
has his own folder in the database containing two documents. The
knowledge document contains all actions in regard to knowledge gain
of the user. The variables document contains all values of the vari-
ables and the logs contain all log events made by the document.

User verification in the MathDox context system is done by check-
ing for the user in the eXist database, so each reader of a document
needs to have an account in eXist. These credentials are used in the
MathDox context system to allow readers access. This approach also
protects the privacy of the user data in the database.

Listing 51: A knowledge XML document in eXist

1 <knowledge>

2 <theorygraph>

3 <documents>

4 <document docid="IDA20100810">
5 <action actionid="mastered">
6 <theory

7 name="permutation_group"
8 date="20110131111521"
9 resource="/experimental/orbits/nodalpages/example.md"

10 graphURL=" http://localhost:8080/mathdoxplayer/
experimental/orbits/graphs/orbit−theorygraph .xml"

11 />

12 </action>

13 <action actionid="read">
14 <theory

15 name="permutation_group"
16 date="20110131111521"
17 resource="/experimental/orbits/nodalpages/example.md"
18 graphURL=" http://localhost:8080/mathdoxplayer/

experimental/orbits/graphs/orbit−theorygraph .xml"
19 points="2"
20 />

21 <theory

22 name="permutation_group"
23 date="20110131125229"
24 resource="/experimental/orbits/nodalpages/example.md"
25 graphURL=" http://localhost:8080/mathdoxplayer/

experimental/orbits/graphs/orbit−theorygraph .xml"
26 points="2"
27 />

28 </action>

29 </document>

30 <document docid="grouptheory">
31 </document>

A.3 the layout of a mathdox context document 191

32 </documents>

33 </theorygraph>

34 <symbolgraph>

35 <documents>

36 <document docid="IDA20100810">
37 <action actionid="mastered">
38 <symbol

39 name="group.group"
40 date="20110131125229"
41 resource="/experimental/orbits/nodalpages/example.md

"
42 graphURL=" http://localhost:8080/mathdoxplayer/

experimental/orbits/graphs/orbit−theorygraph .xml
"

43 />

44 </action>

45 </document>

46 </documents>

47 </symbolgraph>

48 </knowledge>

Knowledge document.
In Listing 51 an example of a knowledge document is given. This
example is kept short, as they may be considerably longer for an ac-
tive user. The knowledge document stores both knowledge gained
from the variable graph and the symbol graph. The theorygraph and
symbolgraph contain an element called documents which in turn con-
tains child elements for each specific document the reader has visited.
These document elements need to contain the document identifier as
specified in the document file. Note that the structure within the
theorygraph and symbolgraph elements are similar. Within a document

element come action elements. The action elements come in differ-
ent flavors, there are mastered and read actions. But custom actions
can also be created. An action element contains child elements and
depending if the action is part of the theory or symbol graph these
child elements are either called theory or symbol. The theory and
symbol elements contain a set of attributes consisting of values of
interest for this action. The standard set of attributes are:

• name, the name of the node from the theory or symbol graph.

• graphURL, the location of said theory or symbol graph.

• date, indicates when this action was added to the context and
allows for time sensitive replay.

• resource, contains the resource file responsible for adding this
action to the context.

192 manual

This standard set can be expanded upon. A read action for exam-
ple contains an attribute points that indicate the amount of reading
points the system as awarded to the reader by just reading a page.

Variable document.
The variable document in Listing 52 contains the user values of the
variables that occur in the document. All variables are grouped in
symboltable elements. The name symboltable comes from the field
of compiler construction [124] and should not be confused with sym-
bols from the symbol graph. A symboltable is linked to a nodalpage
and contains all variables that are introduced in that nodalpage. The
exception is the symboltable with the name attribute set to root. This
symboltable does not contain any variables from a nodalpage. Instead
it contains all variables that occur in the logistic context. All symbol-
tables belonging to one document are then grouped in the document

element. Again this document element needs to contain the document
identifier.

All variables contain the following attributes:

• name, contains the name of the variable. Note that this name is
without the nodalpage prefix, as this prefix is already given in
the name of the symboltable element.

• date, specifies the date that the value of the variable has been
set. Usually the variable with the most recent date is used, un-
less a different date was specified

• type, indicates the type of the variable. This can either be text

for traditional programming variables, XML for XML snippets, or
OpenMath for mathematical variables expressed in OpenMath

• vargraphvar, is used to indicate if the variable occurs in the
variable graph. If the variable does occur in the variable graph
the system needs to verify if its value is still valid or not, and
needs to know how to recalculate the value.

• input, only applies to variables from the variable graph and
contains a boolean value to indicate if the variable is a so called
inputvariable and may contain a direct value or if its value needs
to be computed from other variables in the variable graph.

It is important to realize that all variables declared in the vari-
able graph also need to be present in the variable document in the
database.

Listing 52: An example of a variable XML document in eXist

1 <variables>

2 <document docid="myfirstdoc">
3 <symboltable name=" root">

A.3 the layout of a mathdox context document 193

4 <variable name="lastName" date="20100816140000" type=" text "
5 vargraphvar=" false ">Verrijzer</variable>
6 <variable name="date" date="20101107200112" type=" text "
7 vargraphvar=" false ">now</variable>
8 <variable name="lastName" type=" text " date="20101224150338"
9 vargraphvar=" false ">Verrijzer</variable>

10 <variable name="readThresshold" date="20091106202153"
11 type=" text " vargraphvar=" false ">5</variable>
12 </symboltable>

13

14 <symboltable name="permutation">
15 <variable name="g" input=" true" date="20110411173000"
16 type="openmath" vargraphvar=" true">
17 <OMI>9</OMI>

18 </variable>

19

20 <variable name="h" date="20110111173000" type="openmath"
21 vargraphvar=" true">
22 <OMI>6</OMI>

23 </variable>

24

25 <variable name="h" type="openmath" date="20110422001843"
26 vargraphvar=" true">
27 <OMI xmlns=" http://www.openmath. org/OpenMath">18</OMI>
28 </variable>

29 </symboltable>

30 </document>

31

32 <document docid=" idacontext">
33 <symboltable name=" root">
34 <variable name="lastName" date="20100816140000" type=" text "
35 vargraphvar=" false ">Verrijzer</variable>
36 <variable name="date" date="20101107200112" type=" text "
37 vargraphvar=" false ">now</variable>
38 <variable name="readThresshold" date="20091106202153"
39 type=" text " vargraphvar=" false ">5</variable>
40 </symboltable>

41 </document>

42 </variables>

a.3.4 Author & inspection tools

Author and inspection tools encompass all that assist the author in
the creation of a document. An example of these tools are the scripts
used in the tutorial in Section A.2. Another example are the inspec-
tion tools that are used to verify the relations in the document and
indicate whether a document is sound. It are these tools that show
the author the ΣV , ΣS, ΘV , ΘS, ΓS and ΦV relations. Invaluable in cre-
ating a document and keeping track of the used variables and sym-
bols on pages and variables. Even more useful for an author are the

194 manual

theory graph inspection page, the symbol graph inspection page

and variable graph inspection page pages.

Theory inspection page.
The TheoryGraph Status page tells the author if everything related
to the theory graph is considered sound. This mainly focuses on the
nodalpages.

Figure 48: A theory graph with unsound nodes

In Figure 48 a theory graph is shown in which the nodes are colored
either green, if the nodalpage associated to that node is sound, or red
when the nodalpage is not sound. Any node that is considered not
sound must be checked by the author. To assist in this task each node
from the theory graph has a separate status table on the TheoryGraph
Status page. This status table contains the following checks:

• All resources used by the nodal page
A list of all content files as used by this nodalpage. This list
includes all normal MathDox pages and fragments. All condi-
tional fragment inclusions are also included in this list.

• All variables available for use by this nodal page (∆V)
The map ∆V(theory) includes all variables that are available to
the current nodalpage theory, it will also include the value of
the variable and where that variable is introduced.

• All symbols available for this nodalpage (∆S)
Similar to ∆V(theory). The map ∆S(theory) includes the sym-
bols available to the current nodalpage theory and specifies
where the symbol was introduced. If the symbol was specified
as required knowledge in the document file, it will show as
prior-knowledge.

• Variables used on the nodal page (ΣV)
ΣV(theory) is a map that includes all used variables on the
nodalpage associated with the theory. As added information a
check is done to verify ΣV(theory) ⊆ ∆V(theory) holds.

A.3 the layout of a mathdox context document 195

• Symbols used on the nodal page (ΣS)
Similar to ΣV . It is a map that lists all used symbols on the
current nodalpage. The check ΣS(theory) ⊆ ∆S(theory) is also
performed.

• The symbols occurring in the variables on this nodal page
(Φ(ΣV(theory)). Is a map that is gotten by using the results of
Σv(theory) as input for Φ. The resulting list are all symbols
occurring in the variables that are used on the current nodal-
page. This list again should be a subset of ∆S(theory) which is
checked.

• Theory properties
Lists all properties associated to the theory node in the theory
graph.

If any check fails it will be indicated with a red bar. Also the status
table header itself will turn red in such a case. A failed check is only
an indication something might be wrong and needs author attention.

Variable inspection page.
The variable inspection page has the same function as the
theory inspection page, but as the name suggests it focuses on the
the variables instead. The variable inspection page starts with a
variable graph, which, unlike the theory inspection page, is not col-
ored. Coloring could be done based on variable conditions, however
these apply on the values of a user, while this page operates on doc-
ument level.

For each variable there is a status table that shows all related prop-
erties for each variable. These status table includes the following:

• Variable is used in the following nodal pages
It lists all nodal pages that this particular variable is used on.

• Introducing theory is
Will tell the author in which nodalpage the variable is intro-
duced, first used.

• Variable uses the following symbols
Lists all symbols occurring in the variable. If the variable is an
input variable it will not contain any symbols.

• Variable properties are the following
Lists all properties associated with the variable in the variable
graph. These typically include (but are not limited to)

– cas, indicates which computer algebra system should be
used for the computation of the current variable. This al-
lows for having some operations done on a different —
more specialized — computer algebra system.

196 manual

– inputNode, is an attribute that is set when the variables
value is not computed but given by the reader because it
has no dependencies.

– OMExpression
Contains the OpenMath expression needed to calculate the
value of this variable. Any variable containing this attribute
is not an input variable.

– description
Gives a short human readable description of the variable.

– inputnode
Indicates if the current variable is considered an input node
in the variable graph. Meaning, whether the user is al-
lowed to adapt its value.

• Conditions
Lists all conditions that apply to this variable. It will display
the name of the condition, the mathematical expression of the
condition and the result of the condition. Note however, that the
current value is for the current user and might be different for
other users.

a.4 domain model graphs

The theory, symbol and variable graph all make use of the GraphML
format and are therefore all similarly constructed. For this reason
we suffice with explaining the construction of a theory graph file as
this is the main graph of the MathDox Context system. It helps to
guide the user through the document and also provides the document
and user a partial ordering to the various subtopics that are being
addressed in the document. Later in this section (see Section A.4.4)
some attention is paid to specific differences in the variable graph as
compared to the theory and symbol graph.

The main summarized form of a domain model graph is given in
Figure 49. This summarization only displays the key tags as needed in
a GraphML file, namely the graphml and graph tags. Also, all required
namespaces as they may be needed in a domain graph file have been
omitted for the sake of readability. One exception has been made for
the GraphML namespace itself. Domain graphs are directed, which is
indicated at the attribute edgedefault="directed". We will discuss each
section denoted in comments in Figure 49 in the following sections,
starting with properties for nodes and edges in Section A.4.1.

a.4.1 Properties for nodes or edges

The layout of the different components of a theory graph file is dis-
cussed one by one, starting with the head, right after the graphml

A.4 domain model graphs 197

<graphml xmlns="http://graphml.graphdrawing.org/xmlns">

<!-- properties -->

<graph edgedefault="directed">

<!-- nodes -->

<!-- edges -->

</graph>

</graphml>

Figure 49: The main form of a domain model graph

opening tag are the declarations of the properties. In Figure 53 an ex-
ample of such property declarations can be found. These declarations
define what properties can be used in the nodes and edges defined
later in the GraphML file. The syntax is straightforward: an open-
ing key tag with included attributes stating the identifier id of this
particular property, a name for the property given in attr.type, a defi-
nition whether it is a property for a node or edge (either for=’node’ or
for=’edge’) and finally the type of the property value can be set by sup-
plying the attribute attr.type. These typings correspond to XMLSchema.
Inside the key tags there is an optional default tag. The value defined
in this default tag is used as the default value when the property is
not actively given at the node or edge it belongs to.

Listing 53: The start of a theory graph file

1 <key id="links" for="node" attr.name="links" attr.type="string"/>

2

3 <key id="url" for="node" attr.name="url" attr.type="string">

4 <default>false</default>

5 </key>

6

7 <key id="oms" for="node" attr.name="oms" attr.type="string" />

a.4.2 Defining nodes

The next part of the graph we are going to discuss is the definition of
nodes. In Listing 54 we are going to address how a node in a theory
graph is defined. The contents of Listing 54 show a few nodes of a
theory graph that immediately connects to the previous part of the
theory graph as shown in Listing 53 and is a possible implementation
of the <!-- nodes --> comment in Listing 49.

Listing 54: Definition of graph nodes

1 <node id="subgroup">
2 <data key=" links ">
3 <links>

4 <link category="cs ">

198 manual

5 <description>test url</description>

6 <url>https://en.wikipedia.org/wiki/Alan_Turing</url>

7 <name>Alan Turing</name>

8 </link>

9 </links>

10 </data>

11 </node>

12

13 <node id="permutation_group">
14 <data key="oms">
15 <symbols>

16 <OMS cd="permutation1" name=" cycle "/>
17 <OMS cd="permutation1" name="permutation"/>
18 <OMS cd="permgp2" name="symmetric_group"/>
19 <OMS cd="permgp2" name="cyclic_group"/>
20 <OMS cd="groupname1" name="dihedral_group"/>
21 <OMS cd=" fns4" name="maps_to"/>
22 <OMS cd=" fns4" name="assign_to"/>
23 <OMS cd=" fns1" name="lambda"/>
24 <OMS cd=" fns1" name=" inverse"/>
25 <OMS cd=" fns3" name=" function"/>
26 <OMS cd=" fns3" name=" restriction "/>
27 </symbols>

28 </data>

29 </node>

The two node tags shown in Listing 54 defines nodes in a graph, in
our case a theory graph. It is required to uniquely name each node
by the use of the id attribute. As discussed in Section A.4.1 optional
properties can be attached to a node. When this is desired the key tag
is to contain a child data tag with a key attribute. The value specified
for the key attribute needs to refer to a previously declared property.
Multiple properties can be added to one node, however, each property
added requires a separate data tag.

Theory graph properties.
The properties as attached to the nodes in Listing 54 are predefined
properties in the MathDox Context system. Therefore we briefly ex-
plain what each of these properties is used for.

• The links property defines potential useful links based on the
background of the reader. The syntax is as that of an XML doc-
ument. It starts with a links root element in which one or more
link elements can be placed. Each link element in its turn con-
sists of a description and url element, containing a description
and the URL of the link. Since this embedded XML document
will be parsed as a separate XML document later on by the
MathDox system, it is important to make sure the document is
valid on its own. Meaning all used namespaces need to be (also)
declared inside this XML document. In this example the node
subgroup can present to its readers from the category cs a link

A.4 domain model graphs 199

to useful information outside the document. Needless to say, if
the reader has a different background than computer science
(cs) it will not show this link. Also, the functionality to show
such a link is left to the code in the nodal page or in one of
its fragments. This code is of course free to overrule any indica-
tions given here.

• The oms property is specified within the data tag element. The
oms property specifies which OpenMath symbols are introduced.
This in is fact a tool for the system to check if the nodal pages
are sound. Due to the many different conditional included frag-
ments it is hard for an author to keep track of all the symbols
used. By specifying these symbols the author is telling the sys-
tem that they will be introduced in this nodal page. By com-
bining all symbols from this page and all predecessor pages a
set can be constructed that indicates all introduced symbols so
far. If by chance a piece of content (nodal page or a fragment
included by the nodal page) uses a symbol that is not in this set,
then the page is unsound. A situation an author wants to ad-
dress and possibly repair. As such this is a mechanism aimed at
the author and it assists the author in keeping the pages correct.

a.4.3 Edges in a graph

In Listing 55 an example is given on how to connect nodes from
the theory graph with edges. The contents of Listing 55 connect to
the previous Listings 53 and 54 and is a possible implementation of
the <!-- edges --> comment in Listing 49. This section and example
only applies to the theory graph and symbol graph and not to the
variable graph. The variable graph gets edges created in a preparation
script, more about this in Section A.4.5. As one can see in Listing 55,
edges are defined by an empty element edge. This tag does however
require three attributes; id which is required by the GraphML format
to uniquely define each edge, source to indicate the source of the
edge and target to likewise indicate the target of the edge. If so
required properties can be added to edges in the same way as was
done in Section A.4.2 for nodes.

Listing 55: Definition of theory graph edge

1 <edge

2 id="subgroup−permutation_group"
3 source="subgroup"
4 target="permutation_group"
5 />

6

7 <edge id="permutation_group−orbit "
8 source="permutation_group"

200 manual

9 target=" orbit "
10 />

11

12 <edge id="permutation_group−stabil izer "
13 source="permutation_group"
14 target=" stabil izer "
15 />

a.4.4 Variable graph properties

The basic variable graph syntax is similar to that of the theory and
symbol graph, the graph syntax therefore needs no extra explanation
as the definition of the properties and nodes are identical. However
the definition of the edges differ, as they are created by the graph
preparation script, see Section A.4.5. All edge information is stored
inside the OMExpression property attached to each node. It is this
information that is used to create the necessary edge definitions in an
automatic manner. The following properties only apply to nodes of
the variable graph;

• OMExpression
As the nodes in the variable graph represent variables which
are in most cases constructed from input from other variables
in the variable graph, an OpenMath expression is required to
define the formula responsible for determining the value of the
current node. As before this requires a data tag element. The
required attribute is OMExpression. The XML entered into this
data element is required to be valid as a separate XML doc-
ument, hence the namespace declaration. In Listing 56 an ex-
ample of an OMExpression property is given. Note that when
another variable is used this variable is referenced with the tag
variable. The name attribute refers to the symboltable and vari-
able separated by a dot.

Listing 56: An example of the OMExpression property

1 <node id="symmetric_group.S">
2 <data key="cas">gap</data>
3 <data key="OMExpression"
4 xmlns:mdcv=" http://mathdox. org/mathdoxcontext/

variables "
5 >

6 <OMA>

7 <OMS name="symmetric_group" cd="permgp2"/>
8 <mdcv:variable name="symmetric_group.n" />

9 </OMA>

10 </data>

11 </node>

A.4 domain model graphs 201

• inputNode
There are variables that are not depending on other variables,
they are at the root of the graph. These variables can be marked
as input variables by the inputNode attribute. Doing so will al-
low readers to change their values while reading through the
document.

• cas
The cas property is used as means to indicate which computer
algebra system needs to be used to calculate the OMExpression.
If this attribute is not specified, then the default is used as spec-
ified in the MathDox properties file, refer to the MathDox man-
ual for more information on the MathDox properties file. An
example can be seen in Listing 56

• conditions
The soundness of the variable graph, and its values as they will
be used in the document need to be watched over. For this pur-
pose conditions can be supplied. Conditions can be given in
two different flavors. Cas conditions are OpenMath expressions
which may refer to variable values (current variable included)
that need to pass when they are calculated by a computer alge-
bra system. For this purpose the OpenMath expression needs
to return a boolean value.

A different kind of condition is given by means of an XPath
expression. An XPath expression succeeds when the result is
not empty or not false. An example of conditions is given in
Listing 57. Again the XML inside the omexpr element needs to
be a valid XML document as it will be parsed as such by the
system.

Listing 57: A conditions example

1 <conditions>

2 <condition type="xpath">
3 <xpath>not(//OMS[@cd=" arith "])</xpath>
4 <message>

5 no symbols from arith1 dictionary are allowed

6 </message>

7 </condition>

8 <condition type= ’ cas ’ cas= ’gap ’>
9 <omexpr>

10 <OMA>

11 <OMS cd="permgp1" name=" is_in "/>
12 <mdcv:variable/>

13 <mdcv:variable name="symmetric_group.S"/>
14 </OMA>

15 </omexpr>

16 <message>

202 manual

17 permutation.G needs to be an element of

symmetric_group.S!

18 </message>

19 </condition>

20 <condition type= ’ cas ’ cas= ’gap ’>
21 <omexpr>

22 <OMA>

23 <OMS name="neq" cd=" relation1 "/>
24 <mdcv:variable/>

25 <mdcv:variable name="permutation .h"/>
26 </OMA>

27 </omexpr>

28 <message>

29 permutation.g needs to be different than permutation.h

!

30 </message>

31 </condition>

32 </conditions>

In Listing 57 it is demonstrated that one can create as many
conditions as required. Each condition requires a type that spec-
ifies if the condition is either a cas or xpath condition. If the
condition is a cas condition an extra optional attribute named
cas may also be provided. This extra attribute specifies which
computer algebra system is to be used for the evaluation. Both
types of conditions require a message which contains a descrip-
tion message to be shown to the author when the author checks
for soundness.

a.4.5 Graph preparation script

The graphs of the domain model; theory, symbol and variable graph,
all are XML documents that need some further preparation before
they are suitable for the MathDox Context system. Among these tasks
is the conversion of the XML documents into SVG files that can be
colored with some Jelly statements. This particular step exports the
GraphML format towards the dot format, which in turn is converted
into a SVG file with a proper layout by the program GraphViz. The
conversion is then concluded by the addition of the proper Jelly state-
ments that provide the logic for the coloring of the nodes. This last
step is performed for each set of logic required.

The conversion script is implemented by an ant script. The script is
run with the command ant buildall.

a.5 queries & rules

The MathDox Context system comes with a set of predefined queries
and rules implemented by custom Jelly tags or MathDox fragments.

A.5 queries & rules 203

This set is by no means fixed or final. New queries or rules can be
added or existing can be expanded upon. First we present a summa-
rization of the current available custom tags, their uses and proper-
ties.

a.5.1 Custom tags

The predefined custom Jelly queries and rules all are packaged into
the same tag library jar. They therefore all share the same namespace,
usually abbreviated to mdc (MathDox Context),
xmlns:mdc="jelly:org.mathdox.context.TheoryBlocksTagLibrary"

The predefined custom tags are divided into separate subgroups of
functionality. Each sub-group is discussed in the next sections.

a.5.1.1 Graph queries

Graph queries are Jelly custom tags that retrieve data from a theory,
symbol, or variable graph. They do not change the context nor do
they change the content, they merely retrieve data that are to be used
as input for rules that do take action upon the provided data. For this
reason these tags usual have an attribute that lets the author specify
and variable name. It is this variable name that is used to create a
variable with the result of the tag. Omitting the variable name lets
the results be used as text in the constructed page.

neighbour-theories.

The tag neighbour-theories returns a set with all neighboring nodes
of the current graph. This includes all predecessors and all successors.
Attributes are:

• name

The name or identifier of the node we are looking for

• type

The type of graph in which the node is to be found. Accepted
values are theory, symbol and variable

available nodes.
available-theories returns a set with all theories or symbols that
have not yet been mastered while all their requirements have been
met. In other words, the reader is ready and able to start reading the
associated nodal pages. Attributes are:

• type
Accepts either theorygraph or symbolgraph and affects the kind
of graph this tag will work on.

204 manual

• var
Specifies the variable in which the results need to be stored.

masterednodes.
The tag earned-theories returns a set with all mastered theories or
symbols from the theory or symbol graph. Attributes are:

• type

The type of graph in which the nodes are to be found. Accepted
values are theory and symbol

notReachableNodes.
The tag notReachableTheories returns a set with all nodes from the
theory or symbol graph that can not yet be understood by the reader
because he or she lacks the required knowledge. In other words, one
or more of the predecessors have not yet been mastered Attributes
are:

• type

The type of graph in which the node is to be found. Accepted
values are theory, symbol and variable

required-theories.
The tag required-theories returns a set with all predecessor nodes
that have not yet been mastered. This tag works on both the theory
and symbol graphs. Attributes are:

• name

The name of the node from the theory or symbol graph that
identifies the node the required knowledge is wanted from.

• type

The type of graph in which the node is to be found. Accepted
values are theory and symbol

graph-property.
The tag graph-property returns the value of the named property of
a node. The node can be a node from the theory, symbol or variable
graph. Attributes are:

• name

The name of the node we are looking for

• type

The type of graph in which the node is to be found.

• property

The name of the property Accepted values are theory, symbol
and variable

A.5 queries & rules 205

get-nodes.
The tag get-nodes returns all nodes from the named graph. Attributes
are:

• node

The name or identifier of the node we are looking for

• type

The type of graph in which the node is to be found. Accepted
values are theory, symbol and variable

get-variablenames.
The tag get-variablenames returns all variable names in a given sym-
boltable. Attributes are:

• jellyvariable

The variable name in which the result is to be stored.

• symboltableid

The name of the symbol table of interest

a.5.1.2 Knowledge tags

The next group of custom tags are tags that aim at the knowledge
logistic. Hence this group of tags all have something to do with either
checking the knowledge level of the user, or setting or changing the
knowledge of the user in the context.

add-knowledge.
The tag add-knowledge tag records that the user has gained knowl-
edge from either the theory or symbol graph.

Attributes that go with this tag are:

• name

The concept that is to be recorded as being mastered by the user.

• type

Indicates whether the concept graph is a theory or a symbol
graph.

• action

Allows for different types of learning points. For example the
author can make a difference in read or understood. If this at-
tribute is left blank it will get assigned the value read.

• points

An integer indicating the points the user is to be awarded or
penalized if the integer is negative. If left blank zero points will
be added.

206 manual

if-knowledge-available.
The tag if-knowledge-available tag allows conditional behavior

based on the knowledge of the user. The body of this tag is only exe-
cuted if the knowledge of the user passes a certain threshold in points
or the knowledge has been registered as being mastered. Attributes
are:

• name

The concept that is to be recorded as being mastered by the user.

• type

Indicates whether the concept graph is a theory or a symbol
graph.

• action

Allows for different types of learning points. For example the
author can make a difference in read or understood

• aggregate

Tells the tag what to do with the entries for the given action.
count counts the number of entries, pos sums all positive points,
neg sums all negative points, all sums all points positive and
negative.

• count

returns the number of entries in the context.

• var

If a value is given then it stores the result in the variable with the
given name. Otherwise the result is returned to the MathDox
page.

knowledge-count.
This tag will gathers all events that belong to a certain action and to a
node in either the theory or the symbol graph. The result is either the
total events found, or the points that have been added to each event
summed.

• type

Specifies whether the theory or the symbol graph is to be used.

• action

The action that needs to summed.

• name

Which node the tag will work on.

• aggregate

Whether to count the occurrences in the database, or to add/-
subtract all assigned points

A.5 queries & rules 207

• var

The variable to store the result in.

a.5.1.3 Fragments

include-fragment.
The tag include-fragment includes the contents of a fragment onto
the page that is being created for the user. The fragment uses already
set variables from the code that includes the fragment, but also ac-
cepts parameters. It does so a number of different ways; variables can
be put as name value pairs into a map or variables can be set in the
body of the fragment. In both cases the variables will be created in a
separate Jelly context meaning, the fragment will see and use them as
normal variables, but the code including the fragment will not be able
to access them. When it is desired that the code inside the fragment
passes a result value back to the including code outside the fragment,
then a variable name can be passed along that is used to store any
returning values as name value pairs and returning these to the code
outside of the fragment.

Attributes are:

• fragment

The location of the fragment that is to be included. Local ad-
dresses are allowed.

• frgid

An identifier used to tell fragments apart. Nested fragments ap-
pend their identifiers to that of their parents, creating a package
like structure that is used to link post values from XForms to
the correct fragment.

• args

May contain a variable name of a map with name-value pairs.
These name-value pairs are converted to variables in the Jelly
context of the fragment.

• var

Stores any variables that need to be returned after execution
of the fragment towards the calling code. The attribute value is
used as the name of the map that contains name-value pairs rep-
resenting the returned values. A fragment does need to create
this map and its content before it is possible to return values.

fragment.
The tag fragment only invokes its body and sets trim to false. The
tag has no other functionality but is required as a root element for
the fragment MathDox code and serves as recognition point for the
MathDox Player to recognize a fragment as a fragment.

208 manual

Attributes are:

• No attributes.

a.5.1.4 Variables

Variables as used in the variable graph need means to read or write
associated values.

set-value.
The set-value tag is used to assign values to variables in the logistic
or mathematical context. As such this tag is closely related to the
get-value tag which retrieves these values for usage in the MathDox
document.

• variable

Indicates which variable is to be used.

• symboltableid

The identifier of the symboltable the variable belongs to.

• value

Leaving this attribute blank means the value is specified as the
body of this element.

get-value.
The get-value tag retrieves a value from a variable. It does not matter
if this variable is used for the mathematical or logistic context. Basic
variable types can be text, OpenMath or XML.

• variable

Indicates which variable is to be used.

• symboltableid

The identifier of the symboltable the variable belongs to.

• jellyvariable

The value of the variable is stored into the provided Jelly vari-
able. Allowing adjustments to be made locally and without the
need to store these.

• date

This field works with a number indicating the date and time.
When a date is specified the value retrieved is the value that
was present on the specified date, regardless of any changes
made to the variable afterwards. In other words the value that
has been set before the given date with the smallest possible
time difference is used. If no date is specified the current date
is used

A.5 queries & rules 209

• evaluate

This attribute takes a boolean value. If the boolean value is set
to true it will recalculate the value of the variable according to
its OpenMath expression and values of variables it depends on.
This may result in recalculation of these depending variables
as well. Recalculation is performed automatically when a pre-
decessor contains a newer value that the current variable value.
Therefore default value for this attribute is false.

get-coloring.
When a graph is displayed on a MathDox page it is helpful to have its
nodes colored as to help the reader to understand his current context.

• soundness

A true value will tell this tag to check if the nodes are sound
and adapt the coloring of these nodes accordingly. Soundness
can only be checked on the theory graph, where it actually ap-
plies to the nodal pages associated with the theory graph or
with the variable graph where it verifies if the values held by
the variables from the variable graph all meet the specified con-
ditions. The default value is false

• pointsRequired

The MathDox Context system can judge a node from the theory
graph as being understood based upon the times it was visited
by the user. Nodes from the theory graph that have points asso-
ciated to them can be colored with a different color when they
have more points that the threshold specified here. If no thresh-
old is used the predefined threshold in the logistic context is
used.

• notOwnedTheoriesColor

The setting for this attribute will determine the color for the
nodes that failed the conditions or have not been mastered yet.
The color is given as a string and can be anything that is recog-
nized by the SVG format. The default color is red.

• ownedTheoriesColor

The setting for this attribute will determine the color for the
nodes that passed the conditions or have been mastered. The
default color is green

• availableTheoriesColor

All neutral nodes will be colored with color specified in this
attribute. The default color is blue.

210 manual

a.5.1.5 Relations

The relations as described in Section 4.1.4 have been implemented
and are shown on the authoring pages. In this section we will discuss
the implementations and their interfaces.

delta-var.
The delta-var tag lists all variables the specified nodal page is able
to access. This includes all variables linked to earlier nodal pages. A
earlier nodal page is a nodal page that is linked to a higher node
in the theory graph than the current specified node from the theory
graph.

• theory

The theory node from the theory graph that is used as a starting
point. All nodes higher in the graph than this theory node will
be examined for linked variables.

• suppress

Normally results are written in a table. However a list is also
possible when this attribute is given a true value. The default
value is false

• toTop

When the scope of interest is limited to variables that are linked
to the current nodal page a false value can be specified. The de-
fault value is true, meaning that by default all variables linked
to higher nodal pages are included.

delta-sym.
The delta-sym is very similar to the delta-var, instead of returning
variables it returns the symbols introduced at the given nodal page
or at one of its predecessors.

• theory

The theory node from the theory graph that is used as starting
point. All nodes higher in the graph than this theory node will
be examined for symbols.

• suppress

Normally results are written in a table. However a list is also
possible when this attribute is given a true value. The default
value is false

• toTop
When the scope of interest is limited to symbols on the current
nodal page a false value can be specified. The default value is
true, meaning that by default all symbols used on higher nodal
pages are included.

A.5 queries & rules 211

used-resources.
The used-resources tag makes an inventory of all content files used.
Especially with the use of fragments which in turn can use other frag-
ments, it is hard to keep track of the contents of a page or document.
Such an inventory is used to determine which symbols or variables
are introduced on what page. It is therefore an important aspect of the
soundness constraints that apply to a document. The only attribute
that is used:

• theory
The theory node that indicates which nodal page should be in-
spected for used resources.

occurrence-var.
Lists all variables that occur on the nodal page, given by the the-
ory node. The difference between delta-var –with the totop setting to
false– and this tag is that the delta-var tag lists all variables in the vari-
able graph linked to the nodal page, whereas this tag only lists those
variables actually used on this nodal page. This tag only takes one
attribute namely:

• theory

The theory node indicating which nodal page is to be inspected
for actual occurrences of variables.

occurrence-sym.
The occurence-sym tag is very similar to the occurence-var tag. It
too looks for occurrences on the nodal page, but this tag looks for
symbols instead of variables. Furthermore, occurence-sym is almost
identical to sigma-var, with the difference that the occurrence tags
are used for internal use, while the sigma tags presents the results.
This tag takes one attribute:

• theory

The theory node indicates which nodal page is to be inspected
for actual occurrences of variables.

sigma-var.
This tag has the same functionality as the occurence-var tag. Both list
the variables that occur on a nodal page. However this tag also takes
care of presentation and shows each result as a link to the appropriate
section within the document.

• theory

The theory node indicates which nodal page is to be inspected
for actual occurrences of variables.

212 manual

sigma-sym.
This tag has the same functionality as the occurence-sym tag. Both list
the symbols that occur on a nodal page. However this tag also takes
care of presentation and shows each result as a link to the appropriate
section within the document.

• theory

The theory node indicating which nodal page is to be reviewed.

sigma-var-complete.
The sigma-var-complete tag does the same as the sigma-var tag, but
instead of taking just one nodal page, it considers the complete docu-
ment. For this reason it does not accept any attributes.

sigma-sym-complete.
This tag is similar to the sigma-sym tag, but performs the task on all
theories instead.

theta-var.
Indicates on which nodal pages the current variable occurs. The nodal
pages are presented as links.

• variable

The variable from the variable graph that occurs on nodal pages.

theta-var-complete.
The same as the theta-var tag, but now applies to variables from the
variable graph. It does not accept any attributes.

theta-sym.
Similar to the theta-var tag but now for the symbols. This tag search-
es which nodal pages contain this symbol.

• symbol

The symbol we search on the nodal pages of the document.

theta-sym-complete.
The same as the theta-sym tag, but now for all symbols occurring
anywhere in the document. This tag does not accept any attributes.

small-theta-var-complete.
This tag returns an oversight of all variables and where they were
used for the first time in the theorygraph associated nodal pages. It
does not look at the symboltable identifiers to do so, but scans the
document to determine this. This tag does not accept any attributes.

A.5 queries & rules 213

small-theta-var.
Similar to small-theta-var-complete. However, it now accepts a vari-
able name and determines where the variable was first used in the
theory graph associated nodal pages.

• variable

The variable to determine its first use.

small-theta-sym-complete.
This tag returns an oversight of all symbols and where they have been
introduced in the nodal pages. Any symbols that are specified as prior
knowledge in the document file, will be labeled ’prior knowledge’.
This tag has no attributes.

small-theta-sym.
Given a symbol this tag returns the introduction nodal page or prior-
knowledge.

• symbol

The symbol for which to determine the introduction page.

phi-complete.
Returns a presentation of symbols as used in the variables. The sym-
bols are given as links to the symbol pages in the document. This tag
does not accept any attributes.

phi-var.
Given a variable the tags returns the used symbols in the variable.

• variable

The variable to be examined.

gamma-complete.
This tag returns for each symbol used in the document a list of vari-
ables that make use of the symbol. This tag has no attributes.

gamma-sym.
Given a specific symbol, this tag returns in which variables the sym-
bol is used.

• symbol

The symbol that is sought for in variables.

gamma-sym-list.
Unlike the previous gamma relations that are supposed to be used
in oversights, this tag returns a list with variables that uses the given
symbol. This means that this tag is meant as a query unlike the other
tags which are meant to be used as rules.

214 manual

• symbol

The symbol that is sought for in variables.

sigma-subset-delta-var.
The delta-var tag produces a list of all variables the nodal page
should have access to. The sigma-var is the list the nodal page actu-
ally accesses. In a sound document the second list is always a sub-set
of the first. This tag returns whether that is really true.

• theory

The nodal page that is to be examined.

sigma-subset-delta-sym.
The delta-sym returns a list of symbols that are available to be used
by the nodal page. The sigma-sym gives the list of symbols that are
used by the nodal page. The latter needs to be a subset of the first.
This tag returns whether this is the case.

• theory

The nodal page that is to be examined.

a.5.1.6 Conditions

Conditions apply to the variables of the variable graph, mostly to
the input variables. However, they may also apply to other non input
variables. The conditions are used to make sure the user does not
enter values that lead to unwanted or illegal states later on.

test-conditions.
This tag checks all conditions — CAS conditions and XPath condi-
tions — available for the given variable and determines whether they
hold or not. The conditions and the results are presented in a table.

• variable

The variable which conditions are to be checked.

a.5.1.7 Mathematics adaptation rules

definition & definition-anchor.
The definition tag works together with the definition-anchor tag.
The definition tag inserts a link in the text connected to a stretch-
text elsewhere on the page, usually just below the paragraph. The
definition-anchor marks the location where the stretchtext will be.

The attributes for the definition tag are;

A.5 queries & rules 215

• url

Contains the location URL for the content in the stretchtext. Ei-
ther the url or the name has to be specified. If both are specified,
the location URL takes precedence.

• name

The name should be given if there is no location url or the docu-
ment should determine the location itself. If there is no location
URL, the name is used to determine the location of the right
definition fragment.

• graphType

The name attribute only has meaning if the document knows
which graph to use.

• title

Contains the name used in the link in the text.

• on

With the on attribute an existing definition definition-anchor

pair can be turned off. Useful for example in a global setting.

• stretch

Indicates if the content should be a stretchtext or a separate tab
in the browser instead.

• var

The definition tag creates the content and puts it into a vari-
able, specified here, so that the definition-anchor can pick it
up and show the contents.

The attributes for the definition-anchor tag are;

• var

The variable that contains the content that should be shown in
the stretchtext.

link.
If there are links available for the users background in the theory
graph, this tag will show them on the page.

• category

The category to look for in the theory graph under the current
node. If no category is given all links found at the current node
in the theory graph are shown.

recursive-Sigma-Phi.
This tag returns a table with symbols that occurs in the variables that
are used in a given theory.

216 manual

• theory

The nodal page to be examined.

recursive-Sigma-Phi-is-Subset-DeltaSym.
The results as returned by recursive-Sigma-Phi should not contain
any symbols that were not introduced in an previous or current node
in the theory graph. This tag verifies that is indeed not the case.

• theory

The nodal page to be examined.

a.5.1.8 Soundness

theory-sound.
Verifies if all soundness checks hold for the given theory.

• theory

The nodal page to be examined.

a.5.2 Creating new queries and rules

When the standard set of queries and rules do not suffice, new queries
or rules can be added to implement new behavior. Extending behav-
ior is done by writing MathDox code (see the MathDox manual [61]),
creating a fragment or creating a custom tag.

Creating fragments queries and rules.

Listing 58: A fragment call with arguments set in the body

1 <mdc:include-fragment fragment="fragments/rules/euclides/
euclidesstep .mdf" frgid="step" var=" result ">

2 <c:set var="a" value=" ${a} "/>
3 <c:set var="x" value=" ${x} "/>
4 <c:set var="y" value=" ${y} "/>
5 <c:set var="b" value=" ${b} "/>
6 <c:set var="u" value=" ${u} "/>
7 <c:set var="v" value=" ${v} "/>
8 <c:set var="step" value=" ${step+1}"/>
9 </mdc:include-fragment>

Listing 59: A fragment call with arguments in a name value map

1 <c:new var="parameters" className=" java . ut i l .HashMap"/>
2 <c:set target=" ${parameters} " property="question"
3 value=" ${question} "/>
4 <c:set target=" ${parameters} " property="answer"

A.5 queries & rules 217

5 value=" ${answer} "/>
6

7 <mdc:include-fragment fragment=" exercises/mcfragment.mdf"
8 frgid=" exercise " args=" ${parameters} "/>

A fragment offers functionality to another fragment or a Math-
Dox page. Included fragments can have their own set of arguments
that is used inside the fragment and affects the functionality of the
fragment. In Listing 58 a fragment is being called. Note the defini-
tion of the variables in the include-fragment tag. These variables
are only valid inside the fragment and are not accessible outside the
include-fragment tag, making them effectively local variables for the
fragment and preventing collisions with variables used by the calling
code or other fragments. A different way of passing arguments to
a fragment is shown in Listing 59. Here a list of name value pairs is
passed along as an attribute value. Upon receiving this list in the frag-
ment the contents are converted to variables, again only valid inside
the fragment. A third option is possible by having a fragment access
the variables from the calling code directly. These variables are how-
ever not just limited to the fragment and may also be used in other
places. As such the first two approaches are preferred and the author
is required to be more careful when the last approach is used.

Fragments may also return (intermediate) results to the calling
code. This is especially useful if the called fragment performed a sub-
task of a larger yet unfinished task. The intermediate results of this
subtask may be required to complete the larger task. In Listing 58

there is also an example of returning results. Note that the author
is free to choose the variable that will hold the results. Again this is
important to avoid collisions with other variables already in use. The
fragment itself makes use of a reserved variable name _return as the
MathDox code in the fragment is unaware of the variable given in the
call. Instead the _return value is relabeled with the given var name
by the implementation of the include-fragment tag.

Creating new tags.
With new custom tags new behavior is implemented. Jelly custom
tags are Java classes programmed to perform a task and return the
results either as XML into the MathDox document, as a value of a
variable, insert into a database, or not return anything. Tags written
in Java can perform a lot of different and complex tasks.

Listing 60: An example of a custom tag.

1 package org.mathdox.context.util;

2

3 import org.apache.commons.jelly.TagSupport;

4 import org.apache.commons.jelly.XMLOutput;

5

6 /**

218 manual

7 * A tag to specify the current version

8 * of the MathDox Context tag library

9 */

10 public class StatusTag extends TagSupport

11 {

12 public void doTag(XMLOutput output) {

13 try {

14 output.write("MathDox Context installed , "+
15 "version 1 .0 , "+
16 "dated October 13th 2015");
17 output.flush();

18 } catch (Exception exception) {

19 exception.printStackTrace();

20 }

21 }

22 }

In Listing 60 an example of a custom Jelly tag is given. This is a
very simple tag since its only function is to return the current version
into the page that is being served by the MathDox Player. Consider
the code and note that this tag is implemented in a class that ex-
tends from the org.apache.commons.jelly.TagSupport class. Extend-
ing this class is required as it provides an important part of the inter-
face for a Jelly tag and allows any Jelly tag to be seen as an object from
this type. Something else that needs attention is the doTag method. It
takes as argument and XMLOutput object. This object is used to write
any XML towards the MathDox page being processed. In this exam-
ple there are no XML elements, just text, being written to the output.
If however XML elements do need to be written the XMLOutput ob-
ject has startElement(String) and endElement(String) methods to
do just that.

Listing 61: The MathDox Context tag library class.

1 public class TheoryBlocksTagLibrary extends TagLibrary {

2 /**
3 * Tags are registered in the constructor, the

4 * constructor is called from jelly after

5 * inclusion in a mathdox document.

6 */

7 public TheoryBlocksTagLibrary() {

8 // returns all variable names in a given symboltable.

9 registerTag("get−variablenames", GetVariablesNamesTag.class);

10

11 // returns all variable types in a given symboltable.

12 registerTag("get−variabletype", GetVariableTypeTag.class);

13

14 // Returns current version, ideal to verify if the context

15 // system is installed from the mathdox status page

16 registerTag("get−version", StatusTag.class);

A.6 people who have worked on mathdox 219

Once one or more tags have been created, a tag library has to be cre-
ated as well. In this tag library all tags included are associated with a
namespace for use from MathDox, as well as a name for each tag as
they will be known in the MathDox system. The tag library as used
for the standard MathDox Context tag set is given in Listing 61. Cre-
ating is done by sub classing the class. A tag library will be similar
to MathDox Context library partly shown in Listing 61.

Listing 62: A snippet from the status page code with a call to a custom Jelly
tag.

1 <para>

2 <c:catch var=’http.exception’>

3 <mdc:get-version xmlns:mdc="jelly:org.mathdox.context.

TheoryBlocksTagLibrary" />

4 </c:catch>

5 <c:choose>

6 <c:when test=’${not empty http.exception}’>

7 <phrase role=’error’>The MathDox Context system has not (

properly) been installed</phrase>.

8 </c:when>

9 </c:choose>

10 </para>

Once a tag library with tags has been created the classes need to be
compiled and stored in a jar file. This jar file then needs to be added
to the jar library of the MathDox Player web application in the Tomcat
server (or any other Java application server used).

In Listing 62 is shown how to call the Status tag the results were
visible in Listing 45. Note that the namespace closely resembles the
Java path of the tag library file.

a.6 people who have worked on mathdox

The quality of the context implementation depends on the quality of
the MathDox Player and format. It is therefore only fair to credit the
people that have been working on the development of MathDox over
the years: Arjeh Cohen, Hans Cuypers, Dorina Jibetan, Karin Poels,
Manfred Riem, Olga Caprotti, Mark Spanbroek, Zubair Afzal, Mike
Boldy, Matthijs Brouwer, Jan Willem Knopper and Rikko Verrijzer.

B I B L I O G R A P H Y

[1] Activemath. http://www.activemath.org.

[2] Algebra interactive. http://www.mathdox.org/ida.

[3] Amazon. http://www.amazon.com.

[4] Ant. http://ant.apache.org.

[5] Apache project. http://www.apache.org.

[6] ASP.NET. http://www.asp.net/.

[7] Blackboard. http://www.blackboard.com.

[8] Blogger. http://www.blogger.com.

[9] Bol.com. http://www.bol.com.

[10] Chrome. https://www.google.com/chrome.

[11] The coq proof assistant. http://coq.inria.fr.

[12] Ctan latex packages. http://www.ctan.org/tex-archive/

macros/latex/contrib/acrotex/.

[13] Cython. http://www.cython.org.

[14] Digital mathematics envirmonment. http://www.fi.uu.nl/

dwo.

[15] Discrete algebra en geometry. http://www.mathdox.org/

new-web/about.html.

[16] Docbook. http://www.docbook.org.

[17] Dragmath. http://www.dragmath.bham.ac.uk.

[18] Ebay. http://www.ebay.com.

[19] Eclipse. http://www.eclipse.org/.

[20] Elm-art. http://art2.ph-freiburg.de/Lisp-Course/.

[21] Emilea-stat. http://www.emilea.de.

[22] exist-db open source native xml database. http://exist.

sourceforge.net.

[23] Experience mathness. https://www.tue.nl/en/

education/tue-bachelor-college/education-structure/

experience-mathness/.

221

http://www.activemath.org
http://www.mathdox.org/ida
http://www.amazon.com
http://ant.apache.org
http://www.apache.org
http://www.asp.net/
http://www.blackboard.com
http://www.blogger.com
http://www.bol.com
https://www.google.com/chrome
http://coq.inria.fr
http://www.ctan.org/tex-archive/macros/latex/contrib/acrotex/
http://www.ctan.org/tex-archive/macros/latex/contrib/acrotex/
http://www.cython.org
http://www.fi.uu.nl/dwo
http://www.fi.uu.nl/dwo
http://www.mathdox.org/new-web/about.html
http://www.mathdox.org/new-web/about.html
http://www.docbook.org
http://www.dragmath.bham.ac.uk
http://www.ebay.com
http://www.eclipse.org/
http://art2.ph-freiburg.de/Lisp-Course/
http://www.emilea.de
http://exist.sourceforge.net
http://exist.sourceforge.net
https://www.tue.nl/en/education/tue-bachelor-college/education-structure/experience-mathness/
https://www.tue.nl/en/education/tue-bachelor-college/education-structure/experience-mathness/
https://www.tue.nl/en/education/tue-bachelor-college/education-structure/experience-mathness/

222 Bibliography

[24] Facebook. http://www.facebook.com.

[25] Flicker. http://www.flicker.com.

[26] Formsplayer plugin for internet explorer. http://www.

formsplayer.com.

[27] Gap. http://www-gap.mcs.st-and.ac.uk.

[28] Gap —groups, algorithms, programming— a system for com-
putational discrete algebra. http://www.gap-system.org/gap.

html.

[29] Geogebra. http://www.geogebra.org.

[30] Gmail. http://www.gmail.com.

[31] Gnu octave. http://www.gnu.org/software/octave.

[32] Gnu project. http://www.gnu.org/gnu/thegnuproject.en.

html.

[33] Google. http://www.google.com.

[34] Graphml. http://graphml.graphdrawing.org/.

[35] Hotmail. http://www.hotmail.com.

[36] Html 4 forms. http://www.w3.org/TR/html401/interact/

forms.html.

[37] Ida context implementation. http://evo02.win.tue.

nl/rikkomathdoxplayer//experimental/idacontext/

nodalpages/index.md.

[38] ING eBanking. https://mijn.ing.nl/internetbankieren.

[39] Instagram. https://instagram.com/.

[40] Intelligent feedback. http://uu.academia.edu/

ChristianBokhove/Papers/219911/Intelligent_feedback_

to_digital_assessments_and_exercises_in_Dutch_.

[41] Internet Explorer. http://www.microsoft.com/windows/

internet-explorer.

[42] Java. http://java.sun.com.

[43] Java server pages. http://java.sun.com/products/jsp/index.
jsp.

[44] Java servlet 2.4 specification. http://jcp.org/aboutJava/

communityprocess/final/jsr154/index.html.

http://www.facebook.com
http://www.flicker.com
http://www.formsplayer.com
http://www.formsplayer.com
http://www-gap.mcs.st-and.ac.uk
http://www.gap-system.org/gap.html
http://www.gap-system.org/gap.html
http://www.geogebra.org
http://www.gmail.com
http://www.gnu.org/software/octave
http://www.gnu.org/gnu/thegnuproject.en.html
http://www.gnu.org/gnu/thegnuproject.en.html
http://www.google.com
http://graphml.graphdrawing.org/
http://www.hotmail.com
http://www.w3.org/TR/html401/interact/forms.html
http://www.w3.org/TR/html401/interact/forms.html
http://evo02.win.tue.nl/rikkomathdoxplayer//experimental/idacontext/nodalpages/index.md
http://evo02.win.tue.nl/rikkomathdoxplayer//experimental/idacontext/nodalpages/index.md
http://evo02.win.tue.nl/rikkomathdoxplayer//experimental/idacontext/nodalpages/index.md
https://mijn.ing.nl/internetbankieren
https://instagram.com/
http://uu.academia.edu/ChristianBokhove/Papers/219911/Intelligent_feedback_to_digital_assessments_and_exercises_in_Dutch_
http://uu.academia.edu/ChristianBokhove/Papers/219911/Intelligent_feedback_to_digital_assessments_and_exercises_in_Dutch_
http://uu.academia.edu/ChristianBokhove/Papers/219911/Intelligent_feedback_to_digital_assessments_and_exercises_in_Dutch_
http://www.microsoft.com/windows/internet-explorer
http://www.microsoft.com/windows/internet-explorer
http://java.sun.com
http://java.sun.com/products/jsp/index.jsp
http://java.sun.com/products/jsp/index.jsp
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html

Bibliography 223

[45] Javascript programming language. http://www.iso.org/iso/

catalogue_detail.htm?csnumber=33835.

[46] Jboss. http://www.jboss.org.

[47] Jelly. http://commons.apache.org/jelly.

[48] Jgrapht. http://jgrapht.org/.

[49] JSXGraph. JSXGraphhttp://jsxgraph.uni-bayreuth.de/wp/.

[50] Knot theory. http://evo01.win.tue.nl/mathadore/knots.

[51] Leactivemath. http://www.leactivemath.org/.

[52] Lgpl. http://www.lgpl.org.

[53] Linkedin. http://www.linkedin.com.

[54] Macaulay2. http://www.math.uiuc.edu/Macaulay2.

[55] Magma. http://magma.maths.usyd.edu.au.

[56] Maple. http://www.maplesoft.com.

[57] Marktplaats. http://marktplaats.nl.

[58] Math player. http://www.dessci.com/en/products/

mathplayer/.

[59] Math4all. http://www.math4all.nl.

[60] Mathadore. http://www.mathadore.nl.

[61] Mathdox. http://www.mathdox.org.

[62] Mathdox formula editor. http://mathdox.org/formulaeditor.

[63] Mathematica. http://www.wolfram.com.

[64] Mathematica player. http://www.wolfram.com/products/

player.

[65] Mathematical markup language (mathml) version 2.0. http:

//www.w3.org/TR/MathML2.

[66] Mathematical markup language (mathml) version 3.0 (pro-
posal). http://www.w3.org/TR/MathML3.

[67] Mathjax. http://www.mathjax.org.

[68] Matlab. http://www.mathworks.com/products/matlab.

[69] Maxima. http://maxima.sourceforge.net.

[70] Monet. http://monet.nag.co.uk/monet.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=33835
http://www.iso.org/iso/catalogue_detail.htm?csnumber=33835
http://www.jboss.org
http://commons.apache.org/jelly
http://jgrapht.org/
JSXGraph http://jsxgraph.uni-bayreuth.de/wp/
http://evo01.win.tue.nl/mathadore/knots
http://www.leactivemath.org/
http://www.lgpl.org
http://www.linkedin.com
http://www.math.uiuc.edu/Macaulay2
http://magma.maths.usyd.edu.au
http://www.maplesoft.com
http://marktplaats.nl
http://www.dessci.com/en/products/mathplayer/
http://www.dessci.com/en/products/mathplayer/
http://www.math4all.nl
http://www.mathadore.nl
http://www.mathdox.org
http://mathdox.org/formulaeditor
http://www.wolfram.com
http://www.wolfram.com/products/player
http://www.wolfram.com/products/player
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/MathML3
http://www.mathjax.org
http://www.mathworks.com/products/matlab
http://maxima.sourceforge.net
http://monet.nag.co.uk/monet

224 Bibliography

[71] Moodle. http://www.moodle.org.

[72] Mozilla firefox. http://www.mozilla.org/firefox.

[73] Nlg. http://webalt.math.helsinki.fi/content/results/

generator/index_eng.html.

[74] Olat. http://www.olat.org.

[75] Onbetwist website. http://www.onbetwist.org/.

[76] Oncourse website. https://oncourse.tue.nl/2015/.

[77] Openmath. http://www.openmath.org.

[78] Openmath. www.openmath.org/cd.

[79] Openmath to mathml xslt translation scripts. http://www.

openmath.org/standard/omxsl/index.html.

[80] Opera. http://www.opera.com.

[81] Orbeon forms. http://www.orbeon.com.

[82] Pari/gp. http://pari.math.u-bordeaux.fr.

[83] Perl. http://www.perl.org.

[84] PHP: Hypertext Preprocessor. http://www.php.net.

[85] Pragma ade. http://www.pragma-ade.nl.

[86] Python. http://www.python.org.

[87] Rabobank eBanking. https://bankieren.rabobank.nl/

klanten.

[88] Rss 2.0 specification. http://www.rssboard.org/

rss-specification.

[89] Ruby. http://www.ruby-lang.org.

[90] Safari. http://www.apple.com/safari/.

[91] Sage. http://www.sagemath.org.

[92] Sakai. http://www.sakaiproject.org.

[93] Scheme. http://www.scheme.com/tspl4/.

[94] The science project. http://www.symbolic-computation.org/

The_SCIEnce_Project.

[95] Scorm. http://www.adlnet.gov/Technologies/scorm/

default.aspx.

http://www.moodle.org
http://www.mozilla.org/firefox
http://webalt.math.helsinki.fi/content/results/generator/index_eng.html
http://webalt.math.helsinki.fi/content/results/generator/index_eng.html
http://www.olat.org
http://www.onbetwist.org/
https://oncourse.tue.nl/2015/
http://www.openmath.org
www.openmath.org/cd
http://www.openmath.org/standard/omxsl/index.html
http://www.openmath.org/standard/omxsl/index.html
http://www.opera.com
http://www.orbeon.com
http://pari.math.u-bordeaux.fr
http://www.perl.org
http://www.php.net
http://www.pragma-ade.nl
http://www.python.org
https://bankieren.rabobank.nl/klanten
https://bankieren.rabobank.nl/klanten
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://www.ruby-lang.org
http://www.apple.com/safari/
http://www.sagemath.org
http://www.sakaiproject.org
http://www.scheme.com/tspl4/
http://www.symbolic-computation.org/The_SCIEnce_Project
http://www.symbolic-computation.org/The_SCIEnce_Project
http://www.adlnet.gov/Technologies/scorm/default.aspx
http://www.adlnet.gov/Technologies/scorm/default.aspx

Bibliography 225

[96] Singular. http://www.singular-uni-kl.de.

[97] SOAP 1.2. http://www.w3.org/TR/soap12-part1/.

[98] Surf website. https://www.surf.nl/en.

[99] Telmme project. http://www.surffoundation.nl/nl/themas/

innovatieinonderwijs/studiesucces/Documents/SURF.

[100] Texmacs. http://www.texmacs.org/.

[101] Tomcat. http://tomcat.apache.org.

[102] Trigonometric functions. http://www.univie.ac.at/future.

media/moe/galerie/wfun/wfun.html.

[103] W3c. http://www.w3.org.

[104] Webalt. http://www.webalt.org.

[105] The webkit open source project. http://webkit.org.

[106] webmathematica. http://www.wolfram.com/products/

webmathematica.

[107] Webwork. http://wwrk.maa.org.

[108] Wiris. http://www.math4more.com.

[109] Wiris graphical editor. http://www.wiris.com/content/view/

20/3/lang,en.

[110] Wiskunde d. http://www.win.tue.nl/wiskunded/.

[111] Wolfram alpha. http://www.wolframalpha.com.

[112] Wortel tu/e. http://wortel.tue.nl.

[113] XForms. http://www.w3.org/MarkUp/Forms.

[114] XForms 1.0 recommendation. http://www.w3.org/TR/2003/

REC-xforms-20031014/.

[115] Xforms 1.1 recommendation. http://www.w3.org/TR/

xforms11/.

[116] XForms project at Mozilla. http://www.mozilla.org/

projects/xforms.

[117] XInclude. http://www.w3.org/TR/xinclude.

[118] Xsl transformations (xslt) version 1.0. http://www.w3.org/TR/

1999/REC-xslt-19991116.

[119] Yahoo! http://www.yahoo.com.

http://www.singular-uni-kl.de
http://www.w3.org/TR/soap12-part1/
https://www.surf.nl/en
http://www.surffoundation.nl/nl/themas/innovatieinonderwijs/studiesucces/Documents/SURF
http://www.surffoundation.nl/nl/themas/innovatieinonderwijs/studiesucces/Documents/SURF
http://www.texmacs.org/
http://tomcat.apache.org
http://www.univie.ac.at/future.media/moe/galerie/wfun/wfun.html
http://www.univie.ac.at/future.media/moe/galerie/wfun/wfun.html
http://www.w3.org
http://www.webalt.org
http://webkit.org
http://www.wolfram.com/products/webmathematica
http://www.wolfram.com/products/webmathematica
http://wwrk.maa.org
http://www.math4more.com
http://www.wiris.com/content/view/20/3/lang,en
http://www.wiris.com/content/view/20/3/lang,en
http://www.win.tue.nl/wiskunded/
http://www.wolframalpha.com
http://wortel.tue.nl
http://www.w3.org/MarkUp/Forms
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/xforms11/
http://www.w3.org/TR/xforms11/
http://www.mozilla.org/projects/xforms
http://www.mozilla.org/projects/xforms
http://www.w3.org/TR/xinclude
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.yahoo.com

226 Bibliography

[120] YouTube. http://www.youtube.com.

[121] Core J2EE Patterns - Data Access Object, 2010.

[122] Math-Bridge, bridging the math gap between high school and univer-
sities, In Proceedings EADTU annual conference 2011, pages 177 -
185, 2011.

[123] Acrobat. Acrobat reader. http://get.adobe.com/uk/reader/,
void.

[124] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers. Principles, Tech-
niques and Tools. Addison Wesley, 1986.

[125] AplusMath. Aplusmath flashcards.
http://www.aplusmath.com/Flashcards.

[126] J. Axelsson and M. B. et al. Xhtml 2.0 - w3c working draft.
http://www.w3.org/TR/xhtml2.

[127] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie,
and J. Simeon. Xml query language - w3c recommendation.
http://www.w3.org/TR/xquery.

[128] B. Bos, C. Tantek I. Hickson, and H. W. Lie. Cascading style
sheets - w3c recommendation. http://www.w3.org/TR/CSS.

[129] M. Bourne. Interactive mathematics.
http://www.intmath.com/.

[130] C. Boyle and A. Encarnacion. Metadoc: An adaptive hypertext
reading system. User Modeling and User-Adapted Interaction, 4:1–
19, 1994.

[131] P. D. Bra. Design issues in adaptive web-site development. In
Proceedings of the 2nd Workshop on Adaptive Systems and User Mod-
eling on the WWW, 2001.

[132] P. D. Bra, A. T. M. Aerts, B. Berden, B. de Lange, B. Rousseau,
T. Santic, D. Smits, and N. Stash. Aha! the adaptive hypermedia
architecture. In Hypertext, pages 81–84, 2003.

[133] P. D. Bra and J.-P. Ruiter. Aha! adaptive hypermedia for all. In
WebNet, pages 262–268, 2001.

[134] P. D. Bra, D. Smits, and N. Stash. Creating and delivering adap-
tive courses with aha! In W. Nejdl and K. Tochtermann, editors,
EC-TEL, volume 4227 of Lecture Notes in Computer Science, pages
21–33. Springer, 2006.

http://www.youtube.com
http://get.adobe.com/uk/reader/
http://www.w3.org/TR/xhtml2
http://www.w3.org/TR/xquery
http://www.w3.org/TR/CSS

Bibliography 227

[135] P. D. Bra, D. Smits, K. van der Sluijs, A. Cristea, and M. Hen-
drix. Grapple: Personalization and adaptation in learning man-
agement systems. In Proceedings of World Conference on Ed-
ucational Multimedia, Hypermedia and Telecommunications 2010,
pages 3029–3038, Toronto, Canada, June 2010. AACE.

[136] P. Brouwer, H. Cuypers, and J. Knopper. Mathdox editor. In
Proceedings of the 5th Mathematical User-Interfaces Workshop 2009,
Canada, pages 1–8, 2009.

[137] P. Brusilovsky. Developing adaptive educational hypermedia
systems: From design models to authoring tools.

[138] P. Brusilovsky, A. Kobsa, and W. Nejdl, editors. The Adaptive
Web, Methods and Strategies of Web Personalization, volume 4321

of Lecture Notes in Computer Science. Springer, 2007.

[139] P. Brusilovsky and E. Millán. User models for adaptive hyper-
media and adaptive educational systems. In The Adaptive Web,
pages 3–53, 2007.

[140] A. Bunt, G. Carenini, and C. Conati. Adaptive Content Presen-
tation for the Web. In P. Brusilovsky, A. Kobsa, and W. Nejdl,
editors, The Adaptive Web, volume 4321 of Lecture Notes in Com-
puter Science, chapter 13, pages 409–432. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2007.

[141] S. Burbeck. Applications programming in smalltalk-80(tm):
How to use model-view-controller (mvc). http://st-www.cs.

uiuc.edu/users/smarch/st-docs/mvc.html, 1992.

[142] O. Caprotti, A. Cohen, and M. Riem. Java phrasebooks for Com-
puter Algebra and Automated Deduction. In Sigsam Bulletin.
2000.

[143] F. Cena, L. Console, C. Gena, A. Goy, G. Levi, S. Modeo, and
I. Torre. Integrating heterogeneous adaptation techniques to
build a flexible and usable mobile tourist guide. AI Commun.,
19(4):369–384, 2006.

[144] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstra-
tiou. Developing a context-aware electronic tourist guide: some
issues and experiences. In CHI, pages 17–24, 2000.

[145] J. Clark and S. DeRose. Xml path language - w3c recommenda-
tion. http://www.w3.org/TR/xpath.

[146] A. Cohen, H. Cuypers, J. Knopper, M. Spanbroek, and R. Ver-
rijzer. Mathdox : A system for interactive mathematics. In Pro-
ceedings ED-MEDIA 2008, Vienna, 2008.

http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://www.w3.org/TR/xpath

228 Bibliography

[147] A. Cohen, H. Cuypers, K. Poels, M. Spanbroek, and R. Verrijzer.
WExEd - WebALT Exercise Editor for Multilingual Mathematics
Exercises. http://www.mathdox.org/wexed/wexed.html.

[148] A. Cohen, H. Cuypers, and H. Sterk. Algebra Interactive!
Springer-Verlag, Berlin, New York, etc., 1999.

[149] A. Cohen, H. Cuypers, and R. Verrijzer. Mathematical con-
text in interactive documents. Mathematics in Computer Science,
3(3):331–347, 2010.

[150] A. M. Cohen, H. Cuypers, and E. R. Barreiro. Mathdox: Mathe-
matical documents on the web contribution to the omdoc book,
2005.

[151] A. Cristea, S. D., and P. de Bra. Towards a generic adaptive
hypermedia platform: a conversion case study. Journal of Digital
Information, 8(3), 2007.

[152] A. Cristea and A. de Mooij. LAOS: Layered WWW AHS Au-
thoring Model and their corresponding Algebraic Operators. In
WWW, 2003.

[153] H. Cuypers, J. W. Knopper, M. Spanbroek, and R. Verrijzer.
http://www.mathdox.org/mathdoxplayer/mathdox/manual/
index.mathdox.

[154] H. Cuypers, J. W. Knopper, and H. Sterk. Mess: the mathdox
exercise system, 2009.

[155] P. de Bra and N. Stash. Hypermedia structures and systems.
adaptive course text offered at the tu/e, 2009.

[156] D. M. Deepak Alur, John Crupi. Core J2Ee Patterns: Best Practices
and Design Strategies. Prentice Hall Professional, 2003.

[157] P. Dolog, N. Henze, W. Nejdl, and M. Sintek. Towards the adap-
tive semantic web. In PPSWR, pages 51–68, 2003.

[158] M. Dougiamas and P. Taylor. Moodle: Using learning commu-
nities to create an open source course management system. In
Proceedings of World Conference on Educational Multimedia, Hyper-
media and Telecommunications, 2003.

[159] J. Edwards and K. Jones. Linking geometry and algebra with
geogebra. Mathematics Teaching, 194, 2006.

[160] E. Fernandes and A. N. Kumar. A tutor on scope for the pro-
gramming languages course. In SIGCSE ’04: Proceedings of the
35th SIGCSE technical symposium on Computer science education,
pages 90–93, New York, NY, USA, 2004. ACM.

http://www.mathdox.org/wexed/wexed.html

Bibliography 229

[161] T. Fischer, F. Bakalov, and A. Nauerz. Towards an automatic
service composition for generation of user-sensitive mashups.
In LWA, pages 14–16, 2008.

[162] E. T. Freeman, E. Robson, B. Bates, and K. Sierra. Head First
Design Patterns. O’Reilly Media, 2004.

[163] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. De-
sign patterns: elements of reusable object-oriented software. Addison
Wesley, 1995.

[164] X. Gang. Wims: An interactive mathematics server.
http://mathdl.maa.org/mathDL/23/?pa=content&sa=

viewDocument&nodeId=354, 2001.

[165] P. Gärdenfors. How to make the semantic web more seman-
tic. In A. C. Varzi and L. Vieu, editors, Formal Ontology in In-
formation Systems: proceedings of the third international conference
(FOIS-2004), volume 114 of Frontiers in Artificial Intelligence and
Applications, pages 17–34. IOS Press, 2004.

[166] F. Ghali, R. I. Cristea, and C. Stewart. My online teacher 2.0.

[167] J. Hartley and D. Sleeman. Towards more intelligent teaching
systems. International Journal of Man-Machine Studies, 5(2):215 –
236, 1973.

[168] E. Hilf, M. Kohlhase, and H. Stamerjohanns. Capturing the con-
tent of physics: Systems, observables, and experiments. In Math-
ematical Knowledge Management, number 4108 in LNAI. Springer,
2006.

[169] J. W. Knopper. http://mathdox.org/mathdoxplayer/mathdox/
latex/index.mathdox.

[170] D. E. Knuth. TeX: The Program. Addison-Wesley, 1986.

[171] D. E. Knuth. The TeXbook. Addison-Wesley, 1986.

[172] A. Kobsa. User modeling: Recent work, prospects and hazards,
1993.

[173] A. Kohlhase and M. Kohlhase. Semantic knowledge manage-
ment for education. In Proceedings IEEE, 2008.

[174] M. Kohlhase. OMDoc - An Open Markup Format for Mathematical
Documents [version 1.2], volume 4180 of Lecture Notes in Com-
puter Science. Springer, 2006.

[175] A. Konovalov and S. Linton. Scscp symbolic computation soft-
ware composability protocol version 1.1.4, 2009.

http://mathdl.maa.org/mathDL/23/?pa=content&sa=viewDocument&nodeId=354
http://mathdl.maa.org/mathDL/23/?pa=content&sa=viewDocument&nodeId=354

230 Bibliography

[176] M. Lebrun, F. Docq, and D. Smidts. Claroline, an Internet Teach-
ing and Learning Platform to Foster Teachers’ Professional De-
velopment and Improve Teaching Quality : First Approaches.
AACE, 17:347–362, 2009.

[177] H. Lieberman and H. Liu. Adaptive linking between text and
photos using common sense reasoning. pages 2–11. Springer,
2002.

[178] D. Marquès, R. Eixarch, G. Casanellas, B. Martínez, and T. J.
Smith. Wiris om tools: A semantic formula editor. In Proceed-
ings of the 2006 Mathematical User-Interfaces Workshop, St Anne’s
Manor, Workingham, United Kingdom, page 06, 2006.

[179] C. C. Marshall and F. M. Shipman. Which semantic web? In
Hypertext, pages 57–66, 2003.

[180] E. Melis, E. Andres, J. Budenbender, A. Frischauf, E. M. E. An-
drÃšs, G. Goguadze, P. Libbrecht, M. Pollet, and C. Ullrich. Ac-
tivemath: A generic and adaptive web-based learning environ-
ment. International Journal of Artificial Intelligence in Education,
12:385–407, 2001.

[181] E. Melis, G. Goguadze, P. Libbrecht, and C. Ullrich. Activemath
- a learning platform with semantic web features, 2009.

[182] E. Melis and J. H. Siekmann. Activemath: An intelligent tutor-
ing system for mathematics. In ICAISC, pages 91–101, 2004.

[183] C. Müller. Adaptation of Mathematical Documents. Ph.D. Thesis,
Jacobs University, Bremen, Germany, May 2010.

[184] C. Müller and M. Kohlhase. panta rhei. In LWA, pages 318–323,
2007.

[185] C. Müller and M. Kohlhase. Context-Aware Adaption A Case
Study on Mathematical Notations. In Information Systems Man-
agement, 2009.

[186] L. Nguyen and P. Do. Learner model in adaptive learning. http:
//www.waset.org/journals/waset/v45/v45-70.pdf, 2008.

[187] L. Nguyen and P. Do. Learner model in adaptive learning. 2008.

[188] L. Nguyen and P. Do. Learner model in adaptive learning, 2008.

[189] S. Pemberton and D. A. et al. Xhtml 1.0 the extensible hypertext
markup language - w3c recommendation. http://www.w3.org/
TR/xhtml1.

[190] M. C. Polson and J. J. Richardson, editors. Foundations of intelli-
gent tutoring systems. L. Erlbaum Associates Inc., Hillsdale, NJ,
USA, 1988.

http://www.waset.org/journals/waset/v45/v45-70.pdf
http://www.waset.org/journals/waset/v45/v45-70.pdf
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/xhtml1

Bibliography 231

[191] C. Sangwin. Stack: making many fine judgements rapidly, 2007.

[192] W. Scholl, C. König, B. Meyer, and P. Heisig. The future of
knowledge management. an international delphi study. Knowl-
edge Management, 8, 2004.

[193] M. Seppälä, S. Xambó, and O. Caprotti. Novel Aspects of the
Use of ICT in Mathematics Education. In Proceedings of the In-
ternational Conference on Engineering Education, Instructional Tech-
nology, Assessment, and E-learning (EIAE), 2006.

[194] K. Sierra and B. Bates. Head first EJB - passing the Sun certi-
fied business component developer exam: a brain-friendly study guide.
O’Reilly, 2003.

[195] A. Stevenson. Oxford Dictionary of English. Oxford reference
online premium. OUP Oxford, 2010.

[196] H. Stuckenschmidt and M. C. A. Klein. Reasoning and
change management in modular ontologies. Data Knowl. Eng.,
63(2):200–223, 2007.

[197] R. Verrijzer and M. Spanbroek. http://mathdox.org/new-
web/manuals/mathdoxmanual.pdf, 2007.

[198] W3C. http://www.w3.org/News/2009#item119, 2009.

[199] E. Wenger. Communities of Practice. Cambridge University Press,
1999.

[200] O. Yasuhisa, W. Kenzi, and K. Hiroki. An implementation of an
intelligent tutoring system (its) on the world-wide web (www)
: Individualized tutoring mechanism in the www framework.
Educational technology research, 19(1):35–44, 1996-12.

C U R R I C U L U M V I TA E

Rikko Verrijzer was born on February 7th, 1975 in Alkmaar, the Neth-
erlands.

He received his MAVO (1991) and HAVO (1993) diplomas at the
secondary school Bernardus Alfrink College in Schagen, the Nether-
lands. Later, in 1993, he started his computer science bachelor at the
Hogeschool Enschede, which he obtained in 1997. He continued his
computer science studies with a study of Technical Computer Science
at the Universiteit Twente, also in Enschede. He graduated in 2002 in
the group Distributed Systems with the thesis “Het beschermen van
mobiele agents tegen kwaadwillende agentservers” (protection of mo-
bile agents against malicious hosts).

In 2000, on a parallel track, Rikko started his professional career at
the startup company Tryllian, where he was introduced to working
on mobile agents. In 2002 he switched to a telecom company to work
with texting systems for television shows. He started working at the
Technische Universiteit Eindhoven in 2005 as a developer within the
European WebALT project.

Rikko started his PhD on context in mathematical documents in
2007 at the TU/e under the supervision of Prof. Dr. Arjeh M. Cohen
and Dr. Hans Cuypers. The experience with interactive mathematics,
OpenMath and MathDox gained during the WebALT project and the
work of Prof. Paul De Bra gave him the motivation to address prob-
lems that arise while studying mathematical texts and which have
their roots in the background and context of the reader of those texts.

Having gained experience as a teacher during his PhD studies,
Rikko took up a computer science teaching position at the Coperni-
cus Scholen Gemeenschap, a secondary school in Hoorn. He worked
there from 2010 till 2011 and continued teaching and tutoring at the
Anglo American School, an international high school in Sofia from
2011 till 2014. After the summer of 2014 he started a computer sci-
ence teacher position at Bertrand Russell College, a high school in
Krommenie. He still holds this position.

The present dissertation contains the results of Rikko’s PhD work
from 2007 to 2015.

233

	Dedication
	Summary
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 MathDox
	1.2 Web 2.0 and the Semantic Web
	1.3 Context
	1.4 Adaptive applications
	1.5 The objective

	2 MathDox and other interactive math systems
	2.1 Requirements for interactive mathematical documents
	2.2 Formats for interactive mathematical documents and its use
	2.2.1 Well-known formats
	2.2.2 TeXmacs
	2.2.3 Computer algebra systems
	2.2.4 Specialized mathematical formats

	2.3 The MathDox format
	2.3.1 Requirements for interactive mathematical documents in MathDox
	2.3.2 The structure of MathDox documents
	2.3.3 Semantic encoding of Math
	2.3.4 User driven interactivity
	2.3.5 Programming and scripting
	2.3.6 External services
	2.3.7 Separating functionality in MathDox files

	2.4 MathDox software
	2.4.1 The MathDox Player
	2.4.2 Extending the MathDox format
	2.4.3 The MathDox Formula Editor

	2.5 MathDox at work
	2.5.1 MathDox examples
	2.5.2 Exercise graphs
	2.5.3 Authoring
	2.5.4 MathDox at work in various projects

	3 Context
	3.1 Adaptive systems
	3.1.1 Scalar model
	3.1.2 Stereotype model
	3.1.3 Structural model
	3.1.4 Overlay model
	3.1.5 Bug model
	3.1.6 Plan model

	3.2 Adaptive applications, an overview
	3.2.1 Categories of adaptive systems
	3.2.2 Examples of adaptive systems

	3.3 Context of a user
	3.4 Requirements for an adaptive mathematical system
	3.5 The need for context in MathDox

	4 A Mathematical Context Model
	4.1 Domain model
	4.1.1 The theory graph
	4.1.2 The symbol graph
	4.1.3 The variable graph
	4.1.4 Synthesis
	4.1.5 An example

	4.2 User model
	4.2.1 Mathematical context
	4.2.2 Logistic context
	4.2.3 Knowledge context

	4.3 Presentation model
	4.3.1 Communication with the user and domain models
	4.3.2 Selecting and structuring of content
	4.3.3 Presentation of content

	5 Implementation of Context in MathDox
	5.1 Implementation design
	5.1.1 The context object
	5.1.2 Jelly implementation
	5.1.3 Alterations in the MathDox Player

	5.2 Domain model
	5.2.1 Theory graph
	5.2.2 Symbol graph
	5.2.3 Variable graph
	5.2.4 Content

	5.3 User model
	5.4 Presentation model
	5.4.1 Queries and rules
	5.4.2 Pre-defined set queries and rules
	5.4.3 The knots example
	5.4.4 The IDA example

	6 Conclusion
	6.1 Meeting the requirements of a mathematical adaptive system
	6.2 User evaluation
	6.3 Further research

	Appendix
	A Manual
	A.1 How to set up a new document
	A.2 Tutorial
	A.3 The layout of a MathDox Context document
	A.3.1 File structure
	A.3.2 Document file
	A.3.3 Database structure
	A.3.4 Author & inspection tools

	A.4 Domain model graphs
	A.4.1 Properties for nodes or edges
	A.4.2 Defining nodes
	A.4.3 Edges in a graph
	A.4.4 Variable graph properties
	A.4.5 Graph preparation script

	A.5 Queries & rules
	A.5.1 Custom tags
	A.5.2 Creating new queries and rules

	A.6 People who have worked on MathDox

	Bibliography
	Curriculum Vitea

