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A 96% Efficient High-Frequency DC-DC Converter
Using E-Mode GaN DHFET's on Si

Jo Das, Member, IEEE, Jordi Everts, Member, IEEE, Jeroen Van Den Keybus, Marleen Van Hove, Domenica Visalli,
Puneet Srivastava, Student Member, IEEE, Denis Marcon, Student Member, IEEE, Kai Cheng, Maarten Leys,
Stefaan Decoutere, Johan Driesen, and Gustaaf Borghs

Abstract—III-Nitride materials are very promising to be used
in next-generation high-frequency power switching applications.
In this letter, we demonstrate the performance of normally off
AlGaN/GaN/AlGaN double-heterostructure FETs (DHFETS) us-
ing a boost-converter circuit. The figures of merit of our large
(57.6-mm gate width) GaN transistor are presented: Ron * Q¢
of 2.5 2 - nC is obtained at Vps = 140 V. The switching perfor-
mance of the GaN DHFET is studied in a dedicated high-frequency
boost converter: both the switching times and power losses are
characterized. We show converter efficiency values up to 96.1%
at 500 kHz and 93.9% at 850 kHz at output power of 100 W.

Index Terms—Converters, efficiency, GaN, high voltage, power
field-effect transistors (FETs), SPICE.

I. INTRODUCTION

OR power switching applications, there is a trend to

increase the switching frequency in order to reduce the
size of the converter design. In this perspective, GaN-based
materials have attracted a lot of attention because of their
outstanding properties such as high power density and high
breakdown voltage [1], [2]. Moreover, it has been shown that
these heterostructures can be grown onto large-diameter Si
substrates [3], which is of course a major cost advantage.

For switching applications, enhancement-mode (E-mode)
devices are usually preferred. Different concepts have been
proposed in the literature [4]-[6] to convert the GaN device
from the conventional depletion mode (D-mode) to E-mode.

We have recently shown that E-mode operation can be ob-
tained by selective removal of the in situ grown passivation
layer under the gate [7]. We will show the potential of this
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approach for high-frequency power conversion applications. In
the literature, some demonstrations of GaN-based devices in
converter circuits have been already shown. An efficiency value
of 97.8% for D-mode devices on SiC has been demonstrated
[2]. For E-mode devices, recently, efficiency values of 96% at
200 kHz have been presented [8].

In this letter, we discuss the results of a boost converter
with a compact design for a frequency range between 300 kHz
and 1 MHz. High efficiency values at high switching frequen-
cies are demonstrated, proving the high potential of the GaN
technology.

II. DEVICE FABRICATION AND CHARACTERIZATION

The GaN devices are fabricated starting from a SizNy/
Alp.45Gag 55N/GaN/Aly 18Gag.goN  metal-organic chemical-
vapor-deposition-grown heterostructure on a 100-mm Si{111)
substrate (p > 5000 €2 - cm) [9]. The III-nitride heterostructure
is capped with a 50-nm in sifu-grown SisN, layer in order
to passivate the surface and prevent strain relaxation of the
Alp.45Gag 55N layer [10]. To process the layers into devices, the
following steps are executed: device isolation, ohmic contact
formation, gate fabrication, SizN, passivation, and deposition
of an interconnection layer.

The IM-nitride heterostructure is designed in such a way
that E-mode devices are obtained: by scaling down the
Alp.45Gag 55N top-layer thickness below 5 nm, and by se-
lectively removing the in situ SizN4 under the gate, positive
threshold voltages can be obtained [7]. In this letter, we have
used a 4-nm-thick Aly 45Gag 55N top barrier layer. The GaN
channel layer and Alg 18Gag.goN buffer layer thickness are
150 nm and 1 pm, respectively.

On-wafer transfer characteristic measurements are done on
small devices, with total gate width W = 200 ym and gate
length Ls = 1.5 um. From these measurements, threshold
voltage Vi = 0.15V, ON-resistance Ron = 12 - mm, and
maximum saturation current Ipg = 0.4 A/mm are extracted.
The OFF-state breakdown voltage (measured at gate voltage
Vas = 0V) depends on gate—drain gap Lgp and the buffer
thickness [11]. For Lgp = 8 pum, we obtained Vpp as high as
550 V, where Vpp is defined as the drain voltage at which the
leakage current Ipg increases to 1 mA/mm. Note that, although
the average V3p measured on small test devices is 550 V, we
will limit the operating voltage of the final GaN switching
device in the converter setup to 200 V in order to avoid any
possible device degradation during operation.

0741-3106/$26.00 © 2011 IEEE
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Fig. 1. Boost converter schematic. A driver is designed in order to provide

both negative and positive gate voltages in a frequency range up to 6 MHz.

III. BOOST CONVERTER: DESIGN AND REALIZATION

To show the potential of the GaN double-heterostructure
FET (DHFET) devices for high-frequency power switching
applications, a high-frequency hard-switching boost converter
is constructed, as this is often used, e.g., for power factor
correction. Starting from the dc and C-V characterization of
the devices, a SPICE model for the GaN DHFETs was made
prior to the converter design. We have already shown before that
the model is scalable to large gate-width GaN devices [12]. For
this letter, GaN DHFETs with total gate width Wg = 57.6 mm
are used. To integrate these GaN DHFETSs into the boost
converter circuit, the dies are packaged onto an AIN carrier
acting as a heat spreader. Mounting is done using a 25-um
-thick AuSn preform layer in order to obtain an excellent heat
transfer between the GaN die and the carrier. Furthermore, AIN
is mounted in a next step on an additional Cu heat sink.

The schematic of the circuit is shown in Fig. 1. A SiC diode
(Cree C3D04060, 600 V, 4 A) is used because of its very low
recovery current. The converter has a custom-made gate driver
circuit [13], which can deliver drive signals up to 6 MHz. The
voltage range of the gate driver is adjustable, making it possible
to deliver negative voltages. This way, both D-mode (normally
on) and E-mode (normally off) devices can be used in the
setup. Finally, special attention was paid to the compactness
of the converter. Therefore, an ultracompact planar inductor
(L = 33.9 uH) was developed in-house, with a volume of only
19.2 cm?®. However, a disadvantage of the small inductance is
the bigger hysteresis loss per cycle.

IV. CONVERTER RESULTS

Using the boost converter setup, the dynamic ON-resistance
Ron-pyn and gate charge values Q¢ of the GaN transistor are
measured [13]. Ron-pyn is calculated as Vpg/Ips during the
ON-state of the transistor in the boost converter. Ron-DyN =
0.23 © and only shows a minor increase with increasing OFF-
state drain voltage Vpg orr, proving the absence of surface
or bulk electron trapping in the device. () is determined by
integrating the gate drive current during the turn-on switching
of the transistor. From these measurements, a total gate charge
value of 11 nC is obtained at Vpg orr = 140V, resulting in
Ron * Q¢ as low as 2.5 Q - nC for the E-mode GaN DHFET.
This value is comparable with commercial Si-based 200-V-
rated MOS transistors but significantly higher compared with
commercial devices from EPC [14]. The Q¢ value of our GaN
devices, which is still relatively high due to the very thin top
AlGaN layer, could still be improved by scaling down the gate
length to submicrometer dimensions.
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Fig. 2. (a) Boost converter transient behavior: both drain voltage Vpg of

the GaN DHFET and current 7, through the inductor are shown. (b) and
(c) Detailed switching behavior of the GaN DHFET: the measured drain
voltage Vpg is compared with the simulated behavior using SPICE simulations.
(b) Rise time of 5 ns and (c) fall time of 20 ns are obtained.

Fig. 2 shows the switching behavior of the E-mode GaN
DHFET. We can see that the measured rise and fall time values
are in close agreement with the SPICE simulations. Note that
the gate was switched between 2 and —8 V, whereas the output
voltage of the converter was at 140 V. The two reasons for the
negative gate voltage are to obtain a faster turnoff of the device
and to avoid unintended switching imposed by disturbances.
For the turn-on, the maximum gate voltage is limited to 2 V
to avoid an excessive current in the Schottky gate diode. As
a result, the fall time tparr, = 20 ns of the drain voltage is
much higher than the rise time tgr1sg = 5 ns. To reduce the fall
time, the maximum allowable gate voltage should be increased
beyond 2 V. Therefore, it would be an advantage to replace the
Schottky gate by a MOS gate so that a larger positive gate swing
can be obtained.

In a next step, the boost converter efficiency was measured
as a function of the switching frequency and output power
(see Fig. 3). Duty cycle D was kept constant at 50%. The
highest efficiency values were obtained at PoyT = 100 W: at
500 and 850 kHz, efficiency values as high as 96.1% and 93.9%,
respectively, are obtained. Note that the efficiency (at constant
Pour) slightly depends on Vour (and, thus, also on Iout).
This is mainly because the conduction losses are higher at
higher output currents. To the best of our knowledge, this is
the highest efficiency reported for E-mode GaN DHFETSs on Si
substrates at these high switching frequencies. It clearly shows
the high potential of GaN-on-Si devices for high-frequency
power switching applications compared with commercial Si-
based MOSFET devices [15], [16].

To have a better understanding of the efficiency limitations
in the converter, we analyzed the power losses in the converter
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Fig. 3. Converter efficiency versus switching frequency. The duty cycle (50%)
and PoyT (100 W) are constant. At 500 kHz and Voyr = 140 V, maximum
efficiency of 96.1% is obtained. (Inset) Efficiency as a function of the output
power at two different switching frequencies, i.e., 400 and 850 kHz.
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Fig. 4. (a) Simulation of the SiC diode losses (Psijc-propg) and GaN
DHFET losses (PgaN-DHFET = PconpucTioN + PswiTcH-oN +

PswirchH-orr) as a function of the switching frequency. Duty cycle
D =50%, Pouyr = 100 W, and Voyt = 140V are constant. (b) Simu-
lation of PgaN-purET and Psic-propg at different Poy as a function of
D. Vour = 140 V and f = 500 kHz are kept constant.

using SPICE simulations. Fig. 4(a) shows the losses of the
SiC diode and the GaN DHFET as a function of the switching
frequency. It is clear that, at high switching frequencies, the
GaN DHFET losses are dominated by the switch-on losses
because of the relatively high fall time of the drain-to-source
voltage. Note that the losses of the gate driver are less than
3% of the total losses, and therefore, they are not included
in the figure. By a comparison of the SPICE simulation and
measurements, we can also estimate the parasitic losses (e.g.,
inductor and interconnection losses), which are around 2 W at
Poyr = 100 W and f = 500 kHz. Fig. 4(b) shows the diode
and DHFET losses for different duty cycles and different Pour.
From this figure, it is clear that the DHFET losses are dominant
at higher duty cycles because of the higher DHFET conduction
losses at these conditions.

V. CONCLUSION

A 100-W compact boost converter has been designed for
a frequency range up to 1 MHz using a GaN-on-Si E-mode
device and a SiC diode. Low switching times (tgisg = 5 ns and
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trarr = 20 ns) and Ron X Qg = 2.5 Q.nC at Vpg =140V
are demonstrated. Moreover, high conversion efficiency values
of 96.1% and 93.9% are obtained at switching frequencies of
500 and 850 kHz, respectively, showing the high performance
of the E-mode GaN-on-Si DHFETs.
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