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Abstract

We investigate the problem of constructing Bayesian credible sets that are honest and adap-
tive for the L2-loss over a scale of Sobolev classes with regularity ranging between [D, 2D],
for some given D in the context of the signal-in-white-noise model. We consider a scale of
prior distributions indexed by a regularity hyper-parameter and choose the hyper-parameter
both by marginal likelihood empirical Bayes and by hierarchical Bayes method, respectively.
Next we consider a ball centered around the corresponding posterior mean with prescribed
posterior probability. We show by theory and examples that both the empirical Bayes and
the hierarchical Bayes credible sets give misleading, overconfident uncertainty quantification
for certain oddly behaving truth. Then we construct a new empirical Bayes method based
on risk estimation, which provides the correct uncertainty quantification and optimal size.

Keywords: Credible sets, coverage, uncertainty quantification

1. Introduction

In Bayesian nonparametrics it is common to visualize the uncertainty of the posterior
distribution by plotting the credible sets, i.e. sets accumulating a large fraction (typically
95%) of the posterior mass. These sets are often used in practice to quantify the uncertainty
of a given estimate. They can be especially useful when the construction of confidence sets
is not possible due to computational complexity or lack of theoretical results. However, the
frequentist interpretation of the credible sets at the moment is rather unclear. In the present
paper we investigate the asymptotic frequentist behaviour of Bayesian credible sets in the
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context of the signal-in-white-noise model. We consider the sequence formulation

Xi = θ0,i +
1√
n
Zi, for all i = 1, 2, ... (1.1)

where X = (X1, X2, ...) is the observed infinite sequence, Zi are independent standard nor-
mal distributed random variables and θ0 = (θ0,1, θ0,2, ..) is the unknown infinite dimensional
parameter of interest. The signal-in-white-noise model is a relatively simple and tractable
model but can be used at the same time as a platform to investigate more difficult statistical
problems. For instance it is asymptotically equivalent with the regression model [1], and the
density function estimation problem [16]. We expect our finding to generalize to the preced-
ing models, however this does not follow straightforward from the asymptotic equivalence
of the models, since we consider a particular method.

We assume that the true signal θ0 belongs to a collection of nested submodels
∪β∈[D1,D2]Θ

β, for fixed D1 and D2, and Θβ2 ⊂ Θβ1 for β1 < β2. Considering any norm
‖ · ‖ a confidence set Ĉn corresponding this norm is called honest over ∪β∈[D1,D2]Θ

β if, for a
level γ > 0,

lim inf
n→∞

inf
θ0∈∪β∈[D1,D2]

Θβ
Pθ0(θ0 ∈ Ĉn) ≥ 1− γ

and rate adaptive if for all β ∈ [D1, D2]

lim inf
n→∞

inf
θ0∈Θβ

Pθ0(‖Ĉn‖ ≤ Cβrn,β) ≥ 1− γ, (1.2)

where rn,β denotes the minimax rate corresponding the norm ‖ · ‖ and class Θβ, and the
constant Cβ depends only on the parameter β. Honesty (uniformity in θ0) is a relatively
strong, but essential requirement. A pointwise (not uniform in θ0) confidence set has very
limited applicability in practice, because in this case we know that for large enough n the
confidence set contains the true parameter with high probability, but what “large enough”
means highly depends on the unknown parameter itself. Therefore pointwise asymptotic
confidence sets provide only theoretical quantification of the uncertainty, in practice these
sets are essentially uninformative.

It was shown in [12] and [19] that the size of honest confidence sets over ∪β∈[D1,D2]Θ
β

is bounded below by the maximum of the minimax rate of estimation rn,β of θ ∈ Θβ and
the minimax testing rate εn,D1 of θ ∈ Θβ against the alternative hypothesis {θ ∈ ΘD1 :
‖θ − Θβ‖ ≥ εn,D1}. Usually the testing rate εn,D1 depends only on the larger submodel
ΘD1 and it is typically not bigger than the rate of estimation rn,D1 (over the submodel
ΘD1). Therefore for the existence of honest and adaptive confidence sets over a collection
of submodels ∪β∈[D1,D2]Θ

β we require that the minimax estimation rate over the smallest
submodel ΘD2 is not smaller than the minimax testing rate of θ0 ∈ ΘD2 against the largest
submodel ΘD1 , i.e. εn,D1 ≤ rn,D2 .

As a first example, consider the supremum-norm and the corresponding Sobolev ball

Θβ
∞(M) = {θ ∈ `2 : sup |θiiβ| ≤M}.
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The minimax testing rate for θ0 ∈ Θβ
∞(M), β > D1, against the largest submodel ΘD1

∞ (M)
is εn,D1 = (n/ log n)−D1/(1+2D1), see (3.128) of [10]. Furthermore the minimax rate for esti-
mating θ0 ∈ Θβ(M) is rn,β = (n/ log n)−β/(1+2β), see (2.87) of [10]. Following from the lower
bound introduced in [12] and [19] the size of a honest confidence set over Θβ

∞(M), with
β > D1, is bounded from below by (n/ log n)−D1/(1+2D1) � (n/ log n)−β/(1+2β). Therefore
honesty and adaptivity can not hold at the same time for any choice of the parameters
D1 < D2. Similar results were concluded for the L∞-loss in various other settings, see for
instance [4], [7] and [15]. To achieve honesty and adaptivity at the same time for L∞-loss
some additional constraints have to be introduced, see for instance [9], [17], [8], [2].

However, the situation is rather different if we consider the `2-loss and Sobolev balls

Sβ(M) = {θ ∈ `2 :
∑
i

θ2
i i

2β ≤M}.

In this case the minimax testing rate for θ0 ∈ Sβ(M), β > D1, against the alternative
hypothesis SD1(M) is of order n−D1/(1/2+2D1); see Theorem 2.1 or 3.1 of [11] or (3.128)
of [10]. Furthermore following from [18] the minimax rate for estimating θ0 ∈ Sβ(M) is a
constant multiplier of n−β/(1+2β). These bounds suggest that the size of the honest confidence
sets for β ∈ [D1, D2] can be of the order n−β/(1+2β)∨n−D1/(1/2+2D1). For β ≤ 2D1 this means
the minimax bound n−β/(1+2β) while for β > 2D1 a sub-optimal rate n−D1/(1/2+2D1). In our
work we focus on the special case D2 = 2D1, where the size of the honest confidence sets
are bounded from below by the minimax rate n−β/(1+2β), hence adaptation is possible. The
existence of honest and adaptive confidence sets over ∪β∈[D,2D]S

β(M) were shown in [19],
[3].

In this article we investigate whether Bayesian methods can reproduce the frequentist
results and provide adaptive and honest confidence sets for the `2-loss over the collection
of Sobolev balls ∪β∈[D,2D]S

β(M). First we consider the empirical Bayes method based on
marginal likelihood estimation of the regularity parameter and show that although the size
of the credible sets achieve the optimal rate, the honesty requirement will not be fullfilled.
We construct certain oddly behaving signals θ0 for which the marginal likelihood empirical
Bayes method provides credible sets with coverage tending to zero, i.e. honesty (and also
pointwise coverage) fails. A technical explanation of the preceding phenomenon relies on
the bias-variance trade-off. In the marginal likelihood empirical Bayes method, for certain
irregular signals θ0 the bias can dominate the posterior spread and the variance of the
posterior mean, which leads to a coverage probability close to zero.

Next, we consider the hierarchical Bayes method with arbitrary hyper-prior distribution
over [D, 2D]. We show that the full Bayes method performs similarly to the marginal
likelihood empirical Bayes method, in the sense that the hierarchical Bayes credible sets are
not honest over ∪β∈[D,2D]S

β(M) (or in the case of a degenerate hyper-prior distribution at
D they are not adaptive). This result is perhaps not surprising in the light of [20] and [14]
where we have investigated the close relationship of these two techniques.

The negative results stated above show that the standard Bayesian techniques fail to
achieve the frequentist limits. However, by modifying the empirical Bayes procedure one
can construct optimally behaving credible sets. We introduce a new empirical Bayes method
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based on risk estimation, which provides honest credible sets and achieves adaptivity as well.
As the first step of the technique we give an estimator for the squared bias and compute
the posterior variance. Then we balance out these two quantities to get high coverage and
at the same time optimal size for the credible sets. The method is based on the findings of
[19].

The main message of this paper is that the choice of the statistical method has to be in
accordance with the goal one wants to achieve. For instance if one evaluates the performance
of the posterior mean with the mean integrated squared error then it could happen that the
likelihood based procedures attain sub-optimal behaviour. A possible explanation of this
phenomenon relies on that the mean integrated squared error is connected to the `2-loss
function, while the likelihood based methods, like the marginal likelihood empirical Bayes
method and the hierarchical Bayes method, are related to the Kullback-Leibler divergence.

As mentioned above it is not possible to be honest and rate adaptive at the same time
considering the L2-loss function over the whole range of submodels ∪β>DSβ(M). However, by
removing an asymptotically negligible set of signals from the collection of nested submodels
∪β>DSβ(M) the construction of honest and adaptive confidence sets is possible, see [3].
We discuss briefly the extension of our risk based empirical Bayes method to cover this
more general case as well. A slightly different direction to achieve honesty is to introduce
additional constraints on the signals, similarly to the L∞-loss case. In [21] we introduced
a new constraint, the “polished tail” condition, and showed that under this restriction the
marginal likelihood empirical Bayes method produces honest confidence sets.

The remainder of the paper is organized as follows. In Section 2 we describe in details the
marginal likelihood empirical Bayes and full Bayes procedures and state that the credible
sets based on the preceding techniques have frequentist coverage tending to zero for certain
true signals. Then we introduce a new empirical Bayes technique, which provides adaptive
and honest confidence sets. In Section 3 we demonstrate both the negative and the positive
findings by simulating the credible sets for an irregular, oddly behaving function. The proofs
of the theorems of Section 2 are given in Sections 4 and 5. The proofs of additional auxiliary
lemmas and theorems are deferred to Sections 6 and 7.

1.1. Notation
The `2 norm of an element θ ∈ `2 is denoted by ‖θ‖ = (

∑∞
i=1 θ

2
i )

1/2. For two real
sequences an and bn the notation an . bn means that an/bn is bounded, and an � bn that
an/bn → 0. For two real numbers a and b, the notations a∨ b and a∧ b denote the maximum
and the minumum of the numbers, respectively. If a denotes the empty set and b is a real
number, then both a∨b and a∧b are taken to be equal to b. We denote the distribution of the
infinite sequence X corresponding to θ0 in (1.1) by Pθ0 and the corresponding expectation
and variance by Eθ0 and varθ0 , respectively.
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2. Main result

2.1. Model
To make inference about the unknown sequence θ0 in the signal-in-white-noise model

(1.1) we endow it with a prior distribution

Πα(·) =
∞⊗
i=1

N(0, i−1−2α), (2.1)

where the parameter α > 0 denotes the regularity level. The corresponding posterior distri-
bution θ|X ∼ Πα(·|X) can be easily computed

Πα(·|X) =
∞⊗
i=1

N
( n

i1+2α + n
Xi,

1

i1+2α + n

)
. (2.2)

The optimal choice of the hyper-parameter α = β leads to posterior contraction rate
n−β/(1+2β), while for other choices we get sub-optimal contraction rates; see [13] and [5].
Since the regularity parameter β ∈ [D, 2D] of the truth θ0 is usually not available one has
to use a data driven method to choose α.

2.2. Marginal likelihood empirical Bayes method
The first adaptive Bayes method we deal with is the marginal likelihood empirical Bayes

method. In the Bayesian setting, described by the conditional distributions θ |α ∼ Πα and
X | (θ, α) ∼ ⊗iN(θi, 1/n), it holds that

X |α ∼
∞⊗
i=1

N(0, i−1−2α + 1/n).

The corresponding log-likelihood for α (relative to an infinite product of N(0, 1/n)-
distributions) is given by

`n(α) = −1

2

∞∑
i=1

(
log
(

1 +
n

i1+2α

)
− n2

i1+2α + n
X2
i

)
. (2.3)

We consider the maximum likelihood estimator, i.e. the estimator α̂n which maximizes the
preceding marginal log-likelihood function in the interval [D, 2D], formally

α̂n = arg max
α∈[D,2D]

`n(α).

Then the empirical Bayes posterior is defined as the random measure Πα̂n(·|X) obtained by
substituting α̂n for α in the posterior distribution given in (2.2), i.e.

Πα̂n(A|X) = Πα(A|X)
∣∣∣
α=α̂n

(2.4)
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for measurable subsets A ⊂ `2.
For fixed α > 0 the posterior distribution (2.2) is Gaussian with variance independent of

the data, hence for given γ ∈ (0, 1) there exists a deterministic radius rn,γ(α) such that the
ball around the posterior mean θ̂α = θ̂n,α contains 1− γ fraction of the posterior mass:

Πα(θ : ‖θ − θ̂n,α‖ ≤ rn,γ(α)|X) = 1− γ. (2.5)

In the empirical Bayes method we replace the fixed parameter α with the estimator α̂n. We
investigate the resulting credible ball (possibly) blown up by a constant multiplier L > 0

ĈE
n (L) = {θ : ‖θ − θ̂n,α‖ ≤ Lrn,γ(α̂n)}. (2.6)

From [21] follows that the radius of the empirical Bayes credible sets (2.6) is rate adaptive
over a collection of Sobolev balls ∪β∈[D,2D]S

β(M). Here we are interested wether the credible
sets are also honest at the same time over ∪β∈[D,2D]S

β(M). Unfortunately the answer is
negative to this question. By adapting Theorem 3.1 of [21] to the present setting we can
show that for any regularity parameter β ∈ [D, 2D) there exists a sequence θ0 ∈ Sβ(M)
such that the coverage of the marginal likelihood empirical Bayes credible sets tends to zero
along a subsequence.

Theorem 2.1. Take an arbitrary β ∈ [D, 2D), β′ ∈ [D, β) and M > 0. Furthermore, take
a sequence of positive integers nj such that n1 ≥ 2 and nj � n1+4D

j−1 , let K > 0 and define
the sequence θ0 = (θ0,1, θ0,2, ...) by

θ2
0,i =

{
Ki−1−2β, if n1/(1+2β)

j ≤ i < 2n
1/(1+2β)
j for every j = 1, 2, ...

0, else.
(2.7)

Then the constant K can be chosen such that θ0 ∈ Sβ
′
(M) and for every L > 0 the coverage

of the credible set ĈE
n (L) defined in (2.6) tends to zero, i.e. Pθ0(θ0 ∈ ĈE

nj
(L))→ 0 as j tends

to infinity.

The proof of the theorem follows the line of the proof of Theorem 3.1 of [21] tailored to
the present set up. The main difference between Theorem 2.1 and Theorem 3.1 of [21] is
that in the present setup we have the prior information that the true smoothness lies in the
interval β ∈ [D, 2D]. However, the maximizer of the marginal likelihood function can easily
fall outside this interval, for instance in the case of (2.7). Therefore, in Theorem 2.1 we are
not concerned with the asymptotic performance of the global maximizer of the likelihood
function like in Theorem 3.1 of [21], but rather the local maximizer in the interval [D, 2D].
We defer the proof to the appendix, Section 7.1.

2.3. Hierarchical Bayes
In the hierarchical, full Bayes method the hyper-parameter α in (2.1) is endowed with a

hyper-prior distribution λ. Then the hierarchical prior distribution takes the form

Π(dθ) =

∫ 2D

D

Πα(dθ)λ(dα).
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We consider a ball around the hierarchical posterior mean θ̂n with radius r̂n,γ such that
it accumulates a fraction 1− γ of the posterior mass. In the construction of the hierarchical
Bayes credible sets we introduce some additional flexibility by (possibly) blowing up the ball
with a constant factor L

ĈH
n (L) = {θ : ‖θ − θ̂n‖ ≤ Lr̂n,γ}. (2.8)

Similarly to the marginal likelihood empirical Bayes method the hierarchical Bayes
method also chooses for certain oddly behaving sequences θ0 a sub-optimal hyper-parameter
by concentrating the hyper-posterior distribution around it. Therefore, the hierarchical
Bayes credible sets (2.8) are not honest and/or have sub-optimal size.

Theorem 2.2. For any choice of the hyper-prior λ there exist β ∈ [D, 2D] and θ0 ∈ Sβ(M)
(for arbitrary M > 0) such that for every L > 0 the hierarchical Bayes credible set defined in
(2.8), has sub-optimal size ‖ĈH

n (L)‖ � n−β/(1+2β) with Pθ0-probability tending to one and/or
has frequentist coverage tending to zero along a subsequence.

Proof. See Section 4.

In our setup the main difference between the marginal likelihood empirical Bayes tech-
nique and the hierarchical Bayes method is that the former is conditionally Gaussian given
the observations while the latter has much more complicated distribution. In the proof of
Theorem 2.2 we use the results on the asymptotic behaviour of the maximum likelihood es-
timator α̂n, but the different nature of the posterior distributions requires separate analysis.

2.4. Risk based empirical Bayes method
The main problem with the marginal likelihood empirical Bayes method is that the esti-

mator maximizes the likelihood function instead of minimizing the estimated mean squared
error of the posterior mean. This could cause a wrong bias-variance trade-off and therefore
bad coverage result. In the present section we aim to correct this problem and give another
estimator for the hyper-parameter which provides adaptive and honest empirical Bayes cred-
ible sets over ∪β∈[D,2D]S

β(M). The idea of our estimator relies on the technique introduced
in [19].

First we give an estimator for the squared norm of the bias B2
n(α; θ0) = ‖θ0−Eθ0 θ̂n,α‖2 =∑∞

i=1 i
2+4αθ2

0,i/(i
1+2α + n)2 with fixed hyper-parameter α:

B̂2
n,kn(α) =

kn∑
i=1

i2+4α

(i1+2α + n)2
(X2

i −
1

n
),

where the sequence kn will be specified later. One can observe that the expected value of
the preceding estimator is

B2
n,kn(α; θ0) := Eθ0B̂

2
n,kn(α) =

kn∑
i=1

i2+4αθ2
0,i/(i

1+2α + n)2. (2.9)
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Hence for θ0 ∈ Sβ(M) the bias of the estimator B̂2
n,kn

(α) is bounded above by

∞∑
i=kn+1

i2+4αθ2
0,i/(i

1+2α + n)2 ≤ (kn + 1)−2β

∞∑
i=kn+1

i2βθ2
0,i ≤Mk−2β

n . (2.10)

For the choice kn = n1/(1/2+2D) the right hand side of the previous display is further bounded
from above by Mn−4D/(1+4D) for any β ∈ [D, 2D].

With the help of the preceding estimator B̂n,kn(α) we define

α̃n = inf{α ≥ D : B̂n,kn(α) ≥ C1n
−α/(1+2α)} ∧ ((2D − C0/ log n) ∨D), (2.11)

with

C1 > 0 and C0 = (1 + 4D)2 log(25C−2
1 γ−1)/2 ∨ 0. (2.12)

The parameter C1 controls the degree of under smoothing; a smaller choice for the parameter
C1 results in a smaller estimator for the regularity parameter α̃n. The parameter C0 controls
the behaviour of the estimator close to the upper bound 2D. It is a monotonically decreasing
function of C1.

We use this estimator in the empirical Bayes procedure and define the risk based empirical
Bayes posterior by substituting α̃n defined in (2.11) for α in the posterior (2.2). The risk
based empirical Bayes credible sets are constructed as

ĈR
n (L) := {θ : ‖θ − θ̂n,α̃n‖ < Lrn,γ(α̃n)}, (2.13)

where L is a scaling parameter, rn,γ is the radius of a 1− γ credible ball for fixed α defined
in (2.5) and α̃n is the new estimator of the hyper-parameter. We show that the credible sets
defined in (2.13) are honest over the collection of Sobolev balls ∪β∈[D,2D]S

β(M) and rate
adaptive over Sβ(M) for all β ∈ [D, 2D].

Theorem 2.3. For arbitrary positive parameters D,M,C1 and γ the credible sets defined
in (2.13) with the constant factor L ≥

√
8(1 + 31+4D)(

√
6 +

√
2(C2

1 +M)) are honest

lim inf
n→∞

inf
θ0∈∪β∈[D,2D]S

β(M)
Pθ0
(
θ0 ∈ ĈR

n (L)
)
≥ 1− γ. (2.14)

Furthermore the radius of the credible set is rate adaptive, i.e. for all β ∈ [D, 2D]

lim inf
n→∞

inf
θ0∈Sβ(M)

Pθ0
(
rn,γ(α̂n) ≤ Kn−β/(1+2β)

)
≥ 1− γ (2.15)

with
K =

√
3 + 2/D exp

(2[(1/2 + β) log(2M/C2
1) ∨ C0]

(1/2 + 2D)2

)
.

Proof. See Section 5.
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The scaling parameter L, similarly to C1 (given in (2.11)), also controls the degree of
under smoothing. It can be seen that a smaller choice of the parameter C1 results in a
smaller value for the scaling factor L. At the same time the radius of the credible ball (2.15)
is monotonically increasing as C1 goes to zero.

Remark 2.1. From the definition of α̃n one can see that for regularity parameter β > 2D the
estimator of the hyperparameter α̃n “undersmooths” the truth, i.e. chooses smaller regularity
parameter (α̃n ≤ 2D) than the true regularity. Therefore the size of the credible set will be
sub-optimal, but the coverage statement holds (actually we get asymptotically conservative
coverage one in this case).

2.5. Extension to the case D2 > 2D1

A natural question is the performance of Bayesian procedures for D2 > 2D1, i.e. without
the assumption β ∈ [D1, 2D1]. As we have discussed it already in the introduction, the
construction of adaptive and honest confidence sets is impossible in this case. Therefore
there is no hope for a Bayesian based procedure to provide confidence sets with good coverage
properties and rate adaptive size. However, by introducing some additional constraints, like
in [3], the construction of adaptive and honest confidence sets is possible. We show that by
slightly adapting our Bayesian based method (introduced in Section 2.4) we can achieve the
frequentist limit.

For given 0 < D1 < D2 <∞ as a first step we define the grid

B = {βm}Nm=1 = {D1, 2D1, 4D1, ..., 2
N−1D1},

for 2(N−1)D1 ≤ D2 < 2ND1 and with the help of the grid we introduce the notation, for
β ∈ B\{βN},

S̃
(
β, ρ,M

)
= S̃

(
β,B, ρn(β),M

)
= {θ ∈ Sβ(M) : ‖θ − Sα(M)‖ ≥ ρn(β), ∀α > β, α ∈ B},

denoting the collection of β-regular signals which are at least

ρn(β) := n−β/(1/2+2β)

far away from any Sobolev ball Sα(M) (for α > β and α ∈ B). Then we can take the union
of such sets

Pn(M,B) = SβN (M)
⋃( ⋃

β∈B\{βN}

S̃(β, ρ,M)
)
.

One can observe that the above set tends to SD1(M) as n goes to infinity, hence the “left out
signals” asymptotically vanish. Furthermore from Theorem 1 and Theorem 5 of [3] follows
that Pn(M,B) is the largest set on which the construction of adaptive and honest confidence
sets is possible in `2-norm (for known radius parameter M > 0).

Next we introduce a slight modification (following the technique in [3]) of our risk based
empirical Bayes method which allows us to reproduce the frequentist results. Using the
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adapted version of the test given in (17) of [3] to our setting we can give an estimator
β̂n ∈ B such that for any θ0 ∈ Pn(M,B) we have

Pθ0(θ0 ∈ ∪β∈[β̂n,2β̂n]S
β(M)) ≥ 1− γ/2.

Then we modify the estimator α̃n given in (2.11) by plugging in k̂n = n1/(1/2+2β̂n). Along the
lines of the proof of Theorem 5 of [3] and Theorem 2.3 it can be shown that the so defined
extended risk based empirical Bayes method provides adaptive and honest confidence sets
over Pn(M,B).

2.6. Discussion
The marginal likelihood empirical Bayes method and hierarchical Bayes method are

closely related. They differ only in that the empirical Bayes method takes the maximizer
of the marginal Bayesian likelihood whereas the hierarchical Bayes approach equips this
marginal likelihood with a hyper-prior. Therefore the sub-optimal behaviour of the marginal
likelihood empirical Bayes approach (at least in our setting) leads to a sub-optimal behaviour
of the hierarchical Bayes technique. The situation is not as bad as it looks at first sight, by
appropriate choice of the hyper-parameter the construction of adaptive and honest credible
sets is possible over ∪β∈[D,2D]S

β(M). However, these credible sets have no close relation
with the full Bayes method. The applied estimator is based on balancing out the bias and
variance, and therefore it is substantially different from the marginal likelihood empirical
Bayes method and hence from the hierarchical (full) Bayes method.

Another important question is the practical applicability of the derived risk based em-
pirical Bayes method. First of all we note that similarly to the marginal likelihood empirical
Bayes method it is computationally substantially faster than the hierarchical Bayes method
(except perhaps in case of conjugate hyper-priors). Furthermore following from Remark 2.1
the sets ĈR

n can be used in practice for uncertainty quantification even in the case β > 2D in
the sense that they contain the truth with high probability for large enough n (they just do
not achieve the optimal size which is perhaps the smaller problem). Of course if one wants
to achieve full adaptation then one can apply the extended method of Section 2.5 at the
price of throwing out certain (asymptotically vanishing) subsets. For large values of n the
constant multipliers do not play an important role, therefore the choice of the parameter C1

in (2.12) and as a consequence C0 and L has no real effect on the behaviour of the credible
sets. For small sample size the parameter C1 plays a crucial role. A smaller choice of C1

leads to better coverage results but a larger set size, while a larger C1 results in a worse
coverage level but smaller set size. Therefore (depending on the noise level) we recommend
to use smaller values of C1.

Finally, we note that our results (after slightly adapting the proofs) also hold for other
regularity classes, for instance hyperrectangles. However, in the present paper we consider
only Sobolev balls for better tractability and for better connection with the frequentist
literature.
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3. Simulation study

To illustrate our findings we consider the functional formulation of the signal-in-white-
noise model

Xt =

∫ t

0

θ0(s)ds+ (1/
√
n)Wt, t ∈ [0, 1],

where Xt is the noise observation, θ0 the unknown function of interest and Wt denotes
the Wiener process. Then we simulate data from this model for θ0 given by its Fourier
coefficients

θ0,i =


sin(i)10−1.7, if i = 10..20,
3 sin(i)100−1.7, if i = 100..150,
i−1.2, if i = 44j ...2× 44j for any j = 2, ...,
0, else.

with respect to the eigen basis ϕi(t) =
√

2 cos((i − 1/2)πt). We note that the function θ0

is contained in the Sobolev ball Sβ′(M) with any β′ < β := 1.2 and sufficiently large M .
Furthermore we assume the prior knowledge that β ∈ [1, 2].

Figure 1: Marginal likelihood empirical Bayes credible sets for unregular function. The true function is drawn
in black, the posterior mean in red and the credible set in grey. We have n = 102, 104, 105, 106, 5× 106 and
5× 107.

In Figure 1 we visualize the 95% marginal likelihood empirical Bayes credible sets defined
in (2.6) for n = 102, 104, 105, 106, 5 × 106 and 5 × 107, respectively. We note that in Figure

11



1 and also in the following figures we plot the zoomed in version of the functions to the
interval [0.3, 0.35]. The true function is drawn in black, the posterior mean in blue and the
grey area is the collection of the 95% closest out of 800 draws to the posterior mean from
the posterior distribution, which gives a good indication of the 95%-credible set. In the
simulation study we do not blow up the credible sets by a constant factor, i.e. we worked
with L = 1 in all three cases. The figure indicates that the credible set fails to cover the
true function along a subsequence.

Figure 2: Hierarchical Bayes credible sets. The true function is drawn in black, the posterior mean in blue
and the credible sets in grey. We have n = 102, 104, 105, 106, 5× 106 and 5× 107.

To demonstrate that the hierarchical Bayes method has bad coverage performance along
a subsequence we plot the credible set given in (2.8) with uniform hyper-prior λ on [D, 2D]
in Figure 2. Since the posterior distribution can not be computed explicitly we used an
MCMC method generating draws from the hierarchical posterior distribution. As a first
step we truncate the infinite dimensional vector θ0 to its first N = n1/(1/2+2D) coefficients
θN0 . This way the approximation ‖θ − θN‖ is of smaller order than the contraction rate.
Then we apply a Metropolis within Gibbs sampling algorithm for sampling draws (α, θN)
from the posterior distribution. We alternate between draws θN |(α,X) which can be done
explicitly and α|(θN , X). For the latter we use standard Metropolis-Hastings algorithm with
uniform proposal distribution over [D, 2D] for α. We choose a 3200 iteration long burn in
period and then sample 800 draws. The implementation is straightforward hence we omit
further description of the algorithm. One can see that similarly to the marginal likelihood
empirical Bayes method the true function (in black) is not included in the credible sets for
n = 104, 106 and 5× 106.

Finally in an attempt to illustrate the better coverage property of the risk based empirical
Bayes credible sets we use the same simulated data as in the preceding two cases and plot

12



Figure 3: Risk based empirical Bayes credible sets. The true function is drawn in black, the posterior mean
in green and the credible sets in grey. We have n = 102, 104, 105, 106, 5× 106 and 5× 107.

in Figure 3 the corresponding 95%-credible set. In the particular example we choose the
parameter C1 (given in (2.11)) to be C1 = 1/3, hence the constant C0 defined in (2.12) is
105.1. In the example we take C0 to be zero, because this way we avoid very conservative
credible sets, i.e. credible sets from overly under smoothed posterior distributions (α̃n = D).
It can be clearly seen that the grey areas cover the true function θ0 plotted in black even in
the critical cases n = 104, 106 and 5× 106 where the other two Bayesian procedures failed.

4. Proof of Theorem 2.2

In the case that the hyper prior λ is the Dirac measure concentrated at α0 ∈ [D, 2D],
the hierarchical posterior distribution will be Πα0(·|X) see (2.2). By choosing β 6= α0 and
θ0 ∈ Sβ(M) the posterior distribution Πα0(·|X) achieves a sub-optimal contraction rate
around θ0 following from [6], hence we get sub-optimal size for the credible set and/or
coverage tending to zero.

It remains to deal with non-degenerate hyper-prior distributions λ, for which there exist
some constants c > 0 and D∗ ∈ (D, 2D) such that λ(α ∈ [D∗, 2D]) > c. One can see
that for any given n there exists a parameter D′ = D′(n) ∈ [D1, 2D − 1/(log n)] such that
λ([D′ + 1/(2 log n), D′ + 1/(log n)]) > c/(2 log n). Furthermore take any β ∈ (D,D∗) and
define θ0 as in (2.7) (with small enough constant K as in Theorem 2.1). Finally let us
introduce the notation

Wn(α) = θ̂α − Eθ0 θ̂n,α, and Bn(α; θ0) = Eθ0 θ̂n,α − θ0, (4.1)
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for the centered posterior mean and bias, respectively.
From triangle inequality we have

Pθ0
(
‖θ̂nj − θ0‖ ≤ Lr̂nj ,γ

)
≤

Pθ0
(
‖Bnj(D

′, θ0)‖ ≤ ‖θ̂nj − θ̂nj ,D′‖+ ‖Wnj(D
′)‖+ Lr̂nj ,γ

)
,

To prove that the right hand side of the preceding display tends to zero it is sufficient to
show that there exist positive constants A1, A2, A3, A4 such that

‖Bnj(D
′; θ0)‖2 ≥ A1n

−2β/(1+2β)
j , (4.2)

Pθ0
(
‖Wnj(D

′)‖2 ≤ A2n
−2D′/(1+2D′)
j

)
→ 1, (4.3)

Pθ0
(

sup
α∈[D′,2D]

‖θ̂nj − θ̂nj ,α‖2 ≤ A3n
−2D′/(1+2D′)
j

)
→ 1, (4.4)

Pθ0
(
r̂2
nj ,γ
≤ A4n

−2D′/(1+2D′)
j

)
→ 1, (4.5)

since n−2D′/(1+2D′)
j � n

−2β/(1+2β)
j . We note that (4.4) can be replaced by a weaker assertion

but for the proof of (4.5) we need it in the present form. The proof of assertion (4.3) follows
from (5.9) of [21] with α = D′ and p = 0, i.e.

inf
θ0∈`2

Pθ0( sup
α≥α1

‖θ̂n,α − Eθ0 θ̂n,α‖2 ≤ 6n−2α1/(1+2α1))→ 1. (4.6)

For (4.2) we have following from the explicit expression for θ̂D′ in (2.2), the inequality D′ > β

and the definition of θ0 given in (2.7) with the notation Nj = n
1/(1+2β)
j that

∥∥Bnj(D
′; θ0)

∥∥2 ≥
∑

Nj≤i<2Nj

i2+4D′θ2
0,i

(i1+2D′ + nj)2
≥ 1

4

∑
Nj≤i<2Nj

θ2
0,i & n

−2β/(1+2β)
j . (4.7)

For the proofs of assertions (4.4) and (4.5) we refer to Sections 4.1 and 4.2, respectively.

4.1. Proof of assertion (4.4)
By Jensen’s inequality, Fubini’s theorem and triangle inequality one can obtain that

sup
α1∈[D′,2D]

‖θ̂nj − θ̂nj ,α1‖2 = sup
α1∈[D′,2D]

‖
∫ 2D

D

(
θ̂nj ,α − θ̂nj ,α1

)
λ(dα|X)‖2

≤ sup
α1∈[D′,2D]

∞∑
i=1

∫ 2D

D

(
θ̂nj ,α,i − θ̂nj ,α1,i

)2
λ(dα|X)

≤ sup
α1,α2∈[D′,2D]

‖θ̂nj ,α1 − θ̂nj ,α2‖2λ(α ∈ [D′, 2D]|X)

+ sup
α1,α2∈[D,2D]

‖θ̂nj ,α1 − θ̂nj ,α2‖2λ(α ∈ [D,D′]|X). (4.8)
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Next we show that both terms on the right hand side of (4.8) are bounded above by constant
times n−2D′/(1+2D′)

j with Pθ0-probability tending to one.
Starting with the first term, we use the trivial bound 1 for the hyper-posterior probability.

Furthermore we have

sup
α1,α2∈[D′,2D]

‖θ̂nj ,α1 − θ̂nj ,α2‖2 ≤ sup
α1,α2>∈[D′,2D]

‖Eθ0 θ̂nj ,α1 − Eθ0 θ̂nj ,α2‖2

+ 2 sup
α∈[D′,2D]

‖θ̂nj ,α − Eθ0 θ̂nj ,α‖2. (4.9)

From (4.6) with α1 = D′ the second term on the right hand side of (4.9) is bounded
above by a multiple of n−2D′/(1+2D′)

j with Pθ0-probability tending to one. The first term
on the right hand side of (4.9) can be written as supα1,α2∈[D′,2D]

∑∞
i=1(fi(α1) − fi(α2))2 for

fi(α) = njθ0,i/(nj + i1+2α). The derivative of fi(α) is −2 log(i)i1+2αnjθ0,i/(nj + i1+2α)2.
Writing the difference as the integral of f ′i(α), applying Cauchy-Schwarz inequality to its
squares and then interchanging the sum and the integral we get that

∞∑
i=1

(fi(α1)− fi(α2))2 =
∞∑
i=1

(∫ α2

α1

f ′i(α)dα
)2

≤
∞∑
i=1

(α2 − α1)

∫ α2

α1

(f ′i(α))2dα

= (α2 − α1)

∫ α2

α1

∞∑
i=1

(f ′i(α))2dα ≤ (α2 − α1)2 sup
α∈[α1,α2]

∞∑
i=1

(f ′i(α))2

≤ 4D2 sup
α∈[D′,2D]

∞∑
i=1

n2
jθ

2
0,i(log i)2i2+4α

(nj + i1+2α)4
(4.10)

Using the definition of θ0 given in (2.7) and the lower bounds i1+2α and nj for the term
nj + i1+2α in the denominator, the expression in the preceding display is bounded from
above by constant times∑

1≤i≤2n
1/(1+2β)
j−1

n−2
j (log i)2i1+8D−2β +

∑
i≥n1/(1+2β)

j

n2
j(log i)2i−(3+4D′+2β). (4.11)

The first term is bounded above by a multiple of (log nj−1)2n
(2+8D−2β)/(1+2β)
j−1 /n2

j , which
tends to zero faster than n

−2D′/(1+2D′)
j−1 following from the assumptions D < β < D′ and

nj ≥ n1+4D
j−1 . By Lemma 7.1 the second term of (4.11) is bounded above by

n2
j(log nj)

2n
−(2+4D′+2β)/(1+2β)
j � (log nj)

2n
−2D′/(1+2β)
j � n

−2D′/(1+2D′)
j ,

following from β < D∗ < D′.
It remained to deal with the second term on the right hand side of (4.8). Following from

(4.9), (4.6) with α1 = D and triangle inequality we have with Pθ0-probability tending to one
that

sup
α1,α2∈[D,2D]

‖θ̂nj ,α1 − θ̂nj ,α2‖2 ≤ 4 sup
α∈[D,2D]

‖Eθ0 θ̂nj ,α‖2 + 12n
−D/(1+2D)
j ≤ 4M + o(1).
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In Section 4.3 we prove that

Eθ0λ(α ∈ [D,D′] |X) . exp(−c1n
1/(1+4D)
j ) log nj, (4.12)

for some constant c1. Therefore by applying Markov’s inequality one can obtain that the
second term on the right hand side of (4.8) has smaller rate than any polynomial with
Pθ0-probability tending to one, which concludes the proof.

4.2. Proof of assertion (4.5)
First we give a lower bound for the hierarchical posterior probability of the credible ball

centered around the hierarchical posterior mean with radius r̂nj ,γ.

Π(θ : ‖θ − θ̂nj‖ < r̂nj ,γ|X) ≥
∫ 2D

D′
Πα(θ : ‖θ − θ̂nj‖ < r̂nj ,γ|X)λ(dα|X).

Then by applying triangle inequality one can observe that the right hand side of the preceding
display is bounded from below by∫ 2D

D′
Πα(θ : ‖θ − θ̂nj ,α‖+ ‖θ̂nj − θ̂nj ,α‖ < r̂nj ,γ|X)λ(dα|X) ≥

inf
α∈[D′,2D]

Πα(θ : ‖θ − θ̂nj ,α‖+ ‖θ̂nj − θ̂nj ,α‖ < r̂nj ,γ|X)λ(α ∈ [D′, 2D]|X). (4.13)

From assertion (4.12) and by applying Markov’s inequality follows that the probability
λ(α ∈ [D′, 2D]|X) is bigger than (1 − γ)/(1 − γ/2) with Pθ0-probability tending to one.
Therefore to prove (4.5) it is sufficient to show that there exists some large enough constant
C such that with Pθ0-probability tending to one

inf
α∈[D′,2D]

Πα(θ : ‖θ − θ̂nj ,α‖+ ‖θ̂nj − θ̂nj ,α‖ < Cn
−D′/(1+2D′)
j |X) ≥ 1− γ/2. (4.14)

Following from (5.7) and (6.1) of [21] we have for any compact interval [α1, α2] and for
n ≥ (10(1 + 31+2α2)/(1− γ))1+2α2 that

cn−α2/(1+2α2) ≤ inf
α∈[α1,α2]

rn,γ(α) ≤ sup
α∈[α1,α2]

rn,γ(α) ≤ Cn−α1/(1+2α1), (4.15)

with

c = (1 + 31+2α2)−1/2/
√

2, and C =
√

3 + 2/α1.

Therefore one can observe that for a fixed hyper-parameter α ≥ D′ the radius of the 1−γ/2-
credible ball is bounded above by a multiple of n−α/(1+2α)

j ≤ n
−D′/(1+2D′)
j . Together with (4.4)

this concludes the proof.

16



4.3. Proof of assertion (4.12)
In the proof of Theorem 2.1 we have shown that the likelihood function is monotone

increasing on the interval [D, 2D] ⊃ [D,D′+ 1/(log nj)]. Then by replacing αn with D′ and
taking p = 0 in the second paragraph of the proof of Theorem 2.5 of [14] we get that

Eθ0λ(α ∈ [D,D′]|X) ≤
exp

(
−Knj1/(1+2D′)/(1 + 2D′)

)
λ(α ∈ [D′ + 1/(2 log nj), D′ + 1/(log nj)])

. (4.16)

From the definition of D′ = D′(nj) follows that the denominator on the right hand side of
(4.16) is at least c/(2 log nj). Therefore the right hand side of (4.16) is bounded above by a
multiple of exp(−K1nj

1/(1+4D)) log nj.

5. Proof of Theorem 2.3

As a first step we investigate the behaviour of the new estimator of the hyper-parameter
α̃n. We introduce the notation

αn = inf{α ≥ D : B2
n,kn(α; θ0) ≥ (C2

1/2)n−
2α

1+2α} ∧ ((2D − C0/ log n) ∨D), (5.1)

αn = inf{α ≥ D : B2
n,kn(α; θ0) ≥ 2C2

1n
− 2α

1+2α} ∧ ((2D − C0/ log n) ∨D), (5.2)

where B2
n,kn

(α; θ0) is defined in (2.9). The next lemma says that with high probability the
estimator α̃n is going to be in the interval [αn, αn].

Lemma 5.1. For every positive γ and C1 and the constant C0 defined in (2.12) we have

lim inf
n→∞

inf
θ0∈SD(M)

Pθ0(αn < α̃n < αn) ≥ 1− γ/2. (5.3)

Furthermore for all β ∈ [D, 2D]

inf
θ0∈Sβ(M)

αn > β − [(1/2 + β) log(2M/C2
1) ∨ C0]/ log n (5.4)

Proof. See Section 6.

Now we are ready to deal with the honest coverage assertion (2.14). From Lemma 5.1
we have

inf
θ0∈SD(M)

Pθ0(θ0 ∈ ĈR
n (L)) ≥ inf

θ0∈SD(M)
Pθ0
(

sup
αn≤α≤αn

‖θ̂n,α − θ0‖ ≤ L inf
αn≤α≤αn

rn,γ(α)
)
− γ/2 + o(1).

Let us denote by Bn(α; θ0) the bias Eθ0 θ̂n,α − θ0 and by Wn(α) the centered posterior mean
θ̂n,α − Eθ0 θ̂n,α. From triangle inequality follows that for (2.14) it suffices to prove

inf
θ0∈SD(M)

Pθ0
(

sup
αn≤α≤αn

‖Wn(α)‖ ≤ inf
αn≤α≤αn

Lrn,γ(α)− sup
αn≤α≤αn

‖Bn(α; θ0)‖
)
→ 1.
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To establish the preceding convergence we show that

inf
α∈[αn,αn]

rn,γ(α) > (
√

8(1 + 31+4D))−1n−αn/(1+2αn), (5.5)

sup
α∈[αn,αn]

‖Bn(α; θ0)‖ ≤
√

2(C2
1 +M)n−αn/(1+2αn), (5.6)

inf
θ∈SD(M)

Pθ0
(

sup
αn≤α≤αn

‖Wn(α)‖ ≤
√

6n−αn/(1+2αn)
)
→ 1. (5.7)

Assertion (5.7) follows from (4.6) with α1 = αn. For assertion (5.5) following from (4.15)
it suffices to prove that

n−αn/(1+2αn) ≤ 2n−αn/(1+2αn). (5.8)

If αn = 2D − C0/ log n or αn = D, then necessarily αn = 2D − C0/ log n or αn = D holds,
respectively and therefore n−αn/(1+2αn) = n−αn/(1+2αn). For αn < 2D−C0/ log n and D < αn
we have

(C2
1/2)n−2αn/(1+2αn) ≤ B2

n,kn(αn; θ0) ≤ B2
n,kn(αn; θ0) ≤ 2C2

1n
−2αn/(1+2αn).

To prove assertion (5.6) we divide the sum in ‖Bn(α; θ0)‖2 into two parts, from one to
kn = n1/(1/2+2D) and from kn + 1 to infinity. From (2.10) we get that the second sum is
bounded above by Mn−4D/(1+4D). To bound the sum from one to kn we distinguish two
cases. For αn > D we have ‖Bn,kn(αn, θ0)‖2 ≤ 2C2

1n
−2αn/(1+2αn) and for αn = D

‖Bn,kn(D; θ0)‖2 =
kn∑
i=1

i2+4Dθ2
0,i

(i1+2D + n)2
≤

n1/(1+2D)∑
i=1

i2+2Di2Dθ2
0,i

n2
+

kn∑
i=n1/(1+2D)

i2Dθ2
0,i

i2D

≤ n−
2D

1+2D

∞∑
i=1

i2Dθ2
0,i ≤Mn−

2D
1+2D . (5.9)

Finally we prove assertion (2.15). Since α̃n ∈ [αn, αn] with probability bigger than 1−γ/2,
from (4.15) follows that with probability bigger than 1−γ/2 the radius of the empirical Bayes
credible ball is bounded above by (3+2/D)1/2n−αn/(1+2αn). Then by applying assertion (5.4)
and Lemma 7.2 we can conclude the proof.

6. Proof of Lemma 5.1

First we deal with assertion (5.3) and show separately that both αn ≥ α̃n and αn ≤ α̃n
hold with probability bigger than 1− γ/4 uniformly over SD(M).

We start with the upper bound αn ≥ α̃n. Following from the definition of α̃n we have to
deal only with the case αn < 2D − C0/ log n, where

B2
n,kn(αn; θ0) ≥ 2C2

1n
−2αn/(1+2αn) (6.1)
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holds. Then it is sufficient to prove that for α ≤ αn and n ≥ (M ∨ 4C2
1)(1+2D)(1+4D)

var0

(
B̂2
n,kn(α, θ0)

)
≤ 5n−8D/(1+4D), (6.2)

because by (6.1) and (6.2)

B̂2
n,kn(αn)− C2

1n
− 2αn

1+2αn ≥ C2
1n
− 2αn

1+2αn + B̂2
n,kn(αn)−B2

n,kn(αn; θ0)

> C2
1n
− 2αn

1+2αn −
√

20/γn−
4D

1+4D

holds with probability bigger than 1− γ/4 following from (2.9) and Chebyshev’s inequality.
From Lemma 7.2 and αn ≤ 2D − C0/ log n one can see that the right hand side of the pre-
ceding display is bounded below by (C2

1e
2C0/(1+4D)2 −

√
20/γ)n−4D/(1+4D), which is positive

following from the definition of C0 and therefore αn ≥ α̃n.
To show assertion (6.2) we note that varθ0 X

2
i = 2θ2

0,i/n+ 4/n2 and B2
n,kn

(α; θ0) is mono-
tonically increasing, hence

varθ0
(
B̂2
n,kn(α)

)
=

kn∑
i=1

i4+8α

(i1+2α + n)4

(2θ2
0,i

n
+

4

n2

)
≤

2B2
n,kn

(αn; θ0)

n
+

4kn
n2

, (6.3)

for all α ≤ αn. By the choice kn = n2/(1+4D) the second term on the right hand side of
(6.3) is bounded above by 4n−8D/(1+4D). The first term of (6.3) for αn > D is bounded by
a multiple of n1/(1+2αn)−2 and for αn = D it is bounded by Mn−(1+4D)/(1+2D) following from
(5.9). Since both of the preceding rates are faster than n−8D/(1+4D) this concludes the proof
of assertion (6.2).

Next we deal with the lower bound α̃n ≥ αn, which holds trivially for αn = D. Assume
that αn > D and denote the set of parameters satisfying this inequality by Θn ⊂ SD(M).
From triangle inequality we have

sup
α∈[D,αn]

B̂2
n,kn(α)− C2

1n
− 2α

1+2α ≤ sup
α∈[D,αn]

(
|B̂2

n,kn(α)−B2
n,kn(α; θ0)| − (C2

1/2)n−
2α

1+2α

)
+ sup

α∈[D,αn]

(
B2
n,kn(α; θ0)− (C2

1/2)n−
2α

1+2α

)
. (6.4)

For θ0 ∈ Θn following from the definition of αn the second term on the right hand side is
non-positive. Next we show that

sup
α∈[D,αn]

(
|B̂2

n,kn(α)−B2
n,kn(α; θ0)| − (C2

1/2)n−
2α

1+2α

)
≤ (24/γ)n−4D/(1+4D) − (C2

1/2)n
− 2αn

1+2αn ,

(6.5)

with probability bigger 1 − γ/4. Then by Lemma 7.2 one can obtain that the right
hand side of (6.5) and hence the right hand side of (6.4) is bounded above by [24/γ −
(C2

1/2)e2C0/(1+4D)2 ]n−4D/(1+4D) < 0. Therefore with probability bigger than 1 − γ/4 the
lower bound αn ≤ α̃n holds.
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To prove (6.5) following from Markov’s inequality it suffices to show that for large enough
n (depending only on D,C1 and γ)

sup
θ0∈Θn

Eθ0 sup
α∈[D,αn]

|B̂2
n,kn(α)−B2

n,kn(α; θ0)| ≤ 6n−4D/(1+4D).

By Corollary 2.2.5 [22] applied with ψ(x) = x2 the preceding inequality holds if

n8D/(1+4D) sup
θ0∈Θn

sup
α∈[D,αn]

varθ0
(
B̂2
n,kn(α)

)
≤ 5 (6.6)

sup
θ0∈Θn

∫ diamn

0

√
N(ε, [D,αn], dn)dε→ 0, (6.7)

where dn is the semimetric defined by

d2
n(α1, α2) = n8D/(1+4D) varθ0

(
B̂2
n,kn(α1)− B̂2

n,kn(α2)
)
,

N(ε, A, d) is the covering number of the set A with ε-balls relative to the semimetric d and
diamn is the diameter of the interval [D,αn] relative to dn.

The first assertion (6.6) follows immediately from (6.2). From triangle inequality one can
observe that the diameter diamn is bounded above by 2

√
5. Furthermore for any θ0 ∈ Θn

and α ∈ [D,αn]

sup
θ0∈Θn

B2
n,kn(α; θ0) ≤ 2C2

1n
−2α/(1+2α) ≤ 2C2

1n
−2D/(1+2D).

Therefore from Lemma 6.1 follows that for αn ≥ α2 > α1 the semi-metric satisfies
dn(α1, α2) . log(n)n−1/[2(1+4D)(1+2D)]|α1−α2|. Then the covering number is bounded above
by

N(ε, [D,αn], dn) . log(n)n−1/[2(1+4D)(1+2D)]/ε,

hence the integral

sup
θ0∈Θn

∫ 2
√

5

0

√
N(ε, [D,αn], dn)dε→ 0.

It remained to prove assertion (5.4). For C > 0 we have

sup
θ∈Sβ(M)

B2
n,kn(β − C

log n
, θ0) ≤

∑
1≤i≤n

1
1+2β−2C/ logn

i2+2β−4C/ logni2βθ2
0,i

n2
+

∑
i>n

1
1+2β−2C/ logn

i2βθ2
0,i

i2β

≤ ‖θ0‖2
βn
− 2β

1+2β−2C/ logn < Me−2C/(1+2β)n−
2β−2C/ logn

1+2β−2C/ logn .

For eC ≥ (2M/C2
1)1/2+β the constant multiplier on the right hand side is bounded above by

C2
1/2. Since the function B2

n,kn
(α; θ0) is monotonically increasing and fn(α) = n−2α/(1+2α) is

strictly monotonically decreasing one can conclude that for α < β−C1/ log n the inequality
B2
n,kn

(α; θ0) < (C2
1/2)n−2α/(1+2α) holds and hence αn ≥ β−[(1/2+β) log(2M/C2

1)∨C0]/ log n.
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Lemma 6.1. For any D ≤ α1 < α2 ≤ 2D we

sup
θ0∈SD(M)

varθ0
(
B̂2
n,kn(α1)− B̂2

n,kn(α2)
)
. (α2 − α1)2(log n)2(B2

n,kn(α2; θ0)/n+ n−
1+4D
1+2D )

Proof. The left hand side of the inequality in the lemma is equal to

kn∑
i=1

( i2+4α1

(i1+2α1 + n)2
− i2+4α2

(i1+2α2 + n)2

)2

varθ0 X
2
i . (6.8)

Furthermore the derivative of the function fi(α) = i2+4α(i1+2α + n)−2 satisfies

|fi(α)′| ≤ 4n log(i)i2+4α(i1+2α + n)−3.

Applying varθ0 X
2
i = 2θ2

0,i/n+ 4/n2, the preceding upper bound for |fi(α)′| and Cauchy-
Schwarz inequality, similarly to (4.10) we get that (6.8) is bounded above by a multiple
of

(α2 − α1)2 log2(n) sup
α∈[α1,α2]

1

n

kn∑
i=1

n2i4+8αθ2
0,i

(i1+2α + n)6

+ (α2 − α1)2 log2(n) sup
α∈[α1,α2]

1

n2

kn∑
i=1

n2i4+8α

(i1+2α + n)6
.

One can obtain that the first term on the right hand side is bounded above by constant
times (α2 − α1)2 log2(n) supα∈[α1,α2] B

2
n,kn

(α; θ0)/n, while the second term by a multiple of
(α2 − α1)2(log n)2n−2+1/(1+2α). The assertion of the lemma follows from the monotonically
increasing property of B2

n,kn
(α; θ0).

7. Appendix

In this section we collected the proof of Theorem 2.1 (which is based on the proof of
Theorem 3.1 of [21]), and additional auxiliary lemmas.

7.1. Proof of Theorem 2.1
First of all it is easy to see that for given M > 0 and for arbitrary parameter β′ ∈ [D, β)

we can choose the constant K small enough (depending only on M and β − β′) that θ0 ∈
Sβ
′
(M).
Then following from [14] and [20] we define the function

hn(α; θ0) =
1 + 2α

n1/(1+2α) log n

∞∑
i=1

n2i1+2α log(i)θ2
0,i

(i1+2α + n)2
, (7.1)

and introduce the variable

α0,n = inf{α > 0 : hn(α; θ0) > 1/16} ∧
√

log n.
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From Theorem 2.2 of [14] with p = 0 follows that with probability tending to one the
likelihood function is monotonically increasing for α ≤ α0,n + 1/ log n, hence the maximum
in [D, 2D] is taken for some α ≥ (α0,n ∨D) ∧ 2D. We show below that α0,nj

> 2D, hence
with Pθ0-probability tending to one α̂nj = 2D.

Using the notation (4.1) we have that θ0 ∈ ĈE
n (L) if and only if ‖θ̂α̂n − θ0‖ ≤ Lrn,γ(α̂n),

which implies that
∥∥Bn(α̂n; θ0)

∥∥ ≤ Lrn,γ(α̂n)+
∥∥Wn(α̂n)

∥∥. Combined with Pθ0(α̂nj = 2D)→
1 it follows that Pθ0

(
θ0 ∈ ĈE

n (L)
)
is bounded above by

Pθ0
(
‖Bn(2D, θ0)

∥∥ ≤ Lrn,γ(2D) +
∥∥Wn(2D)

∥∥)+ o(1). (7.2)

Assertions (4.6) with α1 = 2D, (4.7) with D′ = 2D and (4.15) with α1 = 2D show that

sup
θ0∈`2

rn,γ(2D) . n−2D/(1+4D),

‖Bn(2D; θ0)‖2 & n−2β/(1+2β)

inf
θ0∈`2

Pθ0
(∥∥W (2D)

∥∥ ≤ Cn−2D/(1+4D)
)
→ 1.

Thus we deduce that the expression to the left of the inequality sign in (7.2) is of larger order
than the expression to the right, whence the probability tends to zero along the subsequence
nj.

Finally we prove the claim that α0,nj
≥ 2D, by showing that hnj(α; θ0) < 1/16 for all

α < 2D. Let Nj = n
1/(1+2β)
j then we have hnj(α; θ0) ≤ A1 + A2 + A3 for

A1 =
1 + 2α

n
1/(1+2α)
j log nj

∑
i≤2Nj−1

Ki2α−2β log i,

A2 =
1 + 2α

n
1/(1+2α)
j log nj

∑
Nj≤i<2Nj

n2
j i

2α−2β(log i)K2−1−2β

(i1+2α + nj)2
,

A3 =
1 + 2α

n
1/(1+2α)
j log nj

∑
i≥Nj+1

Kn2
j i
−2−2α−2β(log i).

For α < 2D, so that i2α−2β ≤ i2D,

A1 . n
− 1

1+2α

j N1+2D
j−1 . nj−1n

− 1
1+4D

j → 0,

since n1+4D
j−1 � nj. By Lemma 7.1 the third term satisfies

A3 .
logNj+1

log nj
n

1+4α
1+2α

j N
−(1+2α+2β)
j+1 .

(log nj+1)/nj+1

(log nj)/nj
n

2α
1+2α

j n
− 2α

1+2β

j+1 .

Because n1+4D
j � nj+1 (and f(x) = (log x)/x = 0 is monotone decreasing for x ≥ e), this is

also easily seen to vanish as j →∞. The term i1+2α + nj in the denominator of the sum in
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A2 can be bounded below both by i1+2α and by nj, and there are at most Nj terms in the
sum. This shows that

A2 .
n
−1/(1+2α)
j

log nj
Nj

( n2
j

N1+2α
j

∧ (2Nj)
1+2α

)
log(2Nj)N

−1−2β
j K

. K
(
n

1+2β−2α
1+2β

− 1
1+2α

j ∧ n
1+2α−2β

1+2β
− 1

1+2α

j

)
.

The exponents of nj in both terms in the minimum are equal to 0 at α = β. For α ≥ β
the first exponent is negative, whereas the second exponent is increasing in α and hence
negative for α < β. It follows that A2 . K.

Putting things together we see that lim supj→∞ supα≤2D hnj(α; θ0) can be made arbitrar-
ily small by choosing K sufficiently small.

7.2. Auxiliary lemmas
We collected the auxiliary lemmas in this section.

Lemma 7.1 (Lemma 10.4 of [21]). For k > 0, m ≥ 0, and N ≥ e2m/k,∑
i>N

i−1−k(log i)m ≤ (1/N + 2/k)(logN)mN−k.

Lemma 7.2. For the function fn(α) = n−2α/(1+2α), α ∈ [D, 2D], K > 0 and n ≥ eK/4 we
have

e2K/(1+4D)2fn(α) ≤ fn(α−K/ log n) ≤ e2K/(1/2+2D)2fn(α),

e−2K/(1+2D)2fn(α) ≤ fn(α +K/ log n) ≤ e−2K/(1+4D)2fn(α).

Proof. Since (log fn(α))′ = −2(log n)/(1 + 2α)2 we have

log
fn(α−K/ log n)

fn(α)
≥ (−K/ log n)(−2 log n)/(1 + 2α)2 ≥ K/(1 + 4D)2,

log
fn(α−K/ log n)

fn(α)
≤ K/(1 + 2α− 2K/ log n)2 ≤ K/(1/2 + 2D)2,

where the second inequality in the second line holds for n ≥ eK/4. The second part of the
lemma follows similarly.

References

[1] Brown, L. D., and Low, M. G. Asymptotic equivalence of nonparametric regression and white
noise. Ann. Statist. 24, 6 (1996), 2384–2398.

[2] Bull, A. Honest adaptive confidence bands and self-similar functions. Electron. J. Statist. 6 (2012),
1490–1516.

[3] Bull, A., and Nickl, R. Adaptive confidence sets in l2. Probability Theory and Related Fields 156,
3-4 (2013), 889–919.

23



[4] Cai, T. T., and Low, M. G. An adaptation theory for nonparametric confidence intervals. Ann.
Statist. 32, 5 (2004), 1805–1840.

[5] Castillo, I. Lower bounds for posterior rates with Gaussian process priors. Electron. J. Stat. 2
(2008), 1281–1299.

[6] Castillo, I. Lower bounds for posterior rates with Gaussian process priors. Electron. J. Stat. 2
(2008), 1281–1299.

[7] Genovese, C., and Wasserman, L. Adaptive confidence bands. Ann. Statist. 36, 2 (2008), 875–905.
[8] Giné, E., and Nickl, R. Confidence bands in density estimation. Ann. Statist. 38, 2 (2010), 1122–

1170.
[9] Hengartner, N. W., and B., S. P. Finite-sample confidence envelopes for shape-restricted densities.

Ann. Statist. 23, 2 (1995), 525–550.
[10] Ingster, Y., and Suslina, I. A. Nonparametric goodness-of-fit testing under Gaussian models,

vol. 169. Springer, 2003.
[11] Ingster, Y. I. Asymptotic minimax nonparametric testing for independent sample density hypothesis.

Zapiski Nauchnykh Seminarov POMI 136 (1984), 74–96.
[12] Juditsky, A., and Lambert-Lacroix, S. On nonparametric confidence set estimation. Math. Meth.

of Stat 19, 4 (2003), 410–428.
[13] Knapik, B., van der Vaart, A. W., and van Zanten, J. H. Bayesian inverse problems with

gaussian priors. Ann. Statist. 39, 5 (2011), 2626–2657.
[14] Knapik, B. T., Szabó, B. T., van der Vaart, A. W., and van Zanten, J. H. Bayes procedures

for adaptive inference in inverse problems for the white noise model. ArXiv e-prints (Sept. 2012).
[15] Low, M. G. On nonparamteric confidence intervals. Ann. Statist. 25, 6 (1997), 2547–2554.
[16] Nussbaum, M. Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist.

24, 6 (1996), 2399–2430.
[17] Picard, D., and Tribouley, K. Adaptive confidence interval for pointwise curve estimation. Ann.

Statist. 28, 1 (2000), 298–335.
[18] Pinsker, M. S. Optimal filtration of square-integrable signals in Gaussian noise.
[19] Robins, J., and van der Vaart, A. W. Adaptive nonparametric confidence sets. Ann. Statist. 34,

1 (2006), 229–253.
[20] Szabo, B., Van der Vaart, A., and Zanten, J. Empirical Bayes scaling of Gaussian priors in the

white noise model. Electron. J. Statist. 7 (2013), 991–1018.
[21] Szabo, B. T., van der Vaart, A. W., and van Zanten, J. H. Frequentist coverage of adaptive

nonparametric Bayesian credible sets. ArXiv e-prints (Oct. 2013).
[22] van der Vaart, A. W., and Wellner, J. A. Weak convergence and empirical processes. Springer

Series in Statistics. Springer-Verlag, New York, 1996. With applications to statistics.

24


	1 Introduction
	1.1 Notation

	2 Main result
	2.1 Model
	2.2 Marginal likelihood empirical Bayes method
	2.3 Hierarchical Bayes
	2.4 Risk based empirical Bayes method
	2.5 Extension to the case D2>2D1
	2.6 Discussion

	3 Simulation study
	4 Proof of Theorem 2.2
	4.1 Proof of assertion (4.4)
	4.2 Proof of assertion (4.5)
	4.3 Proof of assertion (4.12)

	5 Proof of Theorem 2.3
	6 Proof of Lemma 5.1
	7 Appendix
	7.1 Proof of Theorem 2.1
	7.2 Auxiliary lemmas


