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On a Make-to-Stock Production/Mountain Model
with Hysteretic Control

O. Boxma∗, A. Löpker†, D. Perry‡

August 6, 2013

Abstract

We consider a make-to-stock production-inventory model with one machine
that produces stock in a buffer. The machine is subject to breakdowns. During
up periods, the machine fills the buffer at a level-dependent rate α(x) > 0. During
down periods, the production rate is zero, and the demand rate is either β(x) > 0
or γ(x) > 0 when the inventory level is x; which of the two demand rates applies
depends on a hysteretic control policy.

We determine the conditions under which the steady-state distribution of
the inventory level exists, and we derive that distribution. Other performance
measures under consideration are the number of switches from β(·) to γ(·) per
busy period, the busy period distribution, and the overshoot above a particular
hysteretic level.

1 Introduction
We consider a make-to-stock production-inventory model with one machine that pro-
duces stock in a buffer. The machine is subject to breakdowns. During up periods (ma-
chine working), the machine fills the buffer at a level-dependent rate α(x) > 0. During
down periods, the production rate is zero, and the demand rate is either β(x) > 0 or
γ(x) > 0 when the inventory level is x. Which of the two demand rates applies depends
on a hysteretic (a, b) control policy, with 0 < a < b. If the inventory level is x < a, the
demand rate during down periods is β(x). If the inventory level is x > b, the demand
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rate during down periods is γ(x). If the inventory level crosses a from above while the
demand rate function is γ(·), it instantaneously switches to β(·). If the inventory level
crosses b from below while the demand rate function is β(·), it instantaneously switches
to γ(·). See Figure 1 below.

The hysteretic control is motivated as follows. Suppose that the controller has the
choice to satisfy the demand of either one or two market destinations. Namely, he is able
to sell the product in two market centers, each having a state-dependent demand rate.
He then applies the following dynamic control policy. When the machine is working
(i.e., during the up periods) he will always sell the product in both markets so that the
input rate α(x) equals the production rate minus the accumulated demand rate in the
two markets. When the machine is in repair (down period) and the content level is low
(below level a) the controller sells the product only in the first market center in which
the demand rate is β(x) and temporarily abandons the second market. When the ma-
chine is in repair and the content level is high (above level b) the controller will sell the
product in both market centers, with accumulated demand rate γ(x). However, when
the content ∈ [a, b] the release rate is either β(x) or γ(x), according to the hysteretic
control described above. A decision problem for the present model may be to determine
a and b such that a particular objective function is minimized. That objective func-
tion will involve holding costs, production costs, and also switching costs. The reason
why a hysteretic control policy may be attractive is that it balances holding costs and
switching costs, and may in particular reduce switching costs. In this paper we focus on
a probabilistic analysis; that analysis may be used subsequently for optimization and
control purposes.

Related literature. There is a huge literature on production-inventory models and on
dam/storage processes. We restrict ourselves here to a few strands of research which
are close to the present study. One such strand is queueing/production/dam/storage
models with state-dependent increments/decrements. We refer to Dshalalow [12] for a
survey and bibliography on queueing models with state-dependent parameters. A more
recent queueing study is [4], which considers queues with workload-dependent arrival
and service rates; see also [18] for a study of exit times of M/G/1 type queues with
a general workload-dependent service rate. Contrary to queues, in storage processes
one may have up periods instead of upward jumps. The papers [5, 6, 21] consider the
stationary buffer content of a storage process with an underlying background Markov
process. In [5], the background process alternates between on and off, and accordingly
the buffer content increases or decreases at some state-dependent rate. In [21] the
background process can be in more than two different states, but the authors restrict
themselves to a finite buffer content. The background process has three states in [6]; in
one state, the buffer content increases in a workload-dependent way; in the other two
states, the workload decreases linearly, with different rates.

A second strand of related literature concerns hysteretic control. In [19] the authors
investigate a model that is similar to what we call the dam process (Figure 3). They
derive expressions for the distribution of the process at the first upcrossing of level b
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(see our Section 7) and use this result to specify and solve integro-differntial equations
for the stationary distribution (our Section 3). We note that the approach in [19] differs
from ours in that we study the more general mountain process (with level-dependent
jumps for the dam process).

Dshalalow and co-authors have published several papers on queues with hysteretic
control; see, e.g., [13]. Other interesting studies include [17] and [3]. In the latter paper,
which has a quite general set-up, Bekker considers a reflected Lévy process that can
be in two different states. The Lévy exponent is φi(·) in state i. The control rule is
specified by two levels 0 ≤ m2 ≤ m1. When the Lévy process upcrosses m1 while being
in state 1, the state switches to 2; when the Lévy process downcrosses level m2 while
being in state 2, the state switches to 1. Hence, like in our study, when the process
is between m2 and m1, the state can be either 1 or 2. This model contains several
classical queueing models with some oscillating behaviour (see, e.g., [10] and [20]) and
dam models where the input process is Brownian motion (see, e.g., [14] and [23]).

Finally, in the setting of production/inventory control, we mention Section 1.10 of
[22] for a discussion of a production/inventory control model with variable production
level and service level constraints, and the related papers [11, 16].
Main result. Our main result is the steady-state distribution of the inventory content
level. It is obtained by first finding the distribution of the inventory content in down
periods, which is done by splitting the down periods in 1-periods and 2-periods and
deriving the inventory content distributions in both periods. Finally we express the
density of the inventory content during up periods in its counterpart during down
periods, using a level crossing argument. Other contributions of the paper include the
distribution of the overshoot above hysteretic level b and, in the case of exponentially
distributed up periods, the number of switches from β(·) to γ(·) per busy period, and
the busy period distribution.
Organization of the paper. A detailed model description is presented in Section 2. In
Section 3 we derive the steady-state distribution of the inventory content level. The
conditions under which such a steady-state distribution exists are also discussed in this
section. In Sections 4, 5 and 6 we assume that the up periods (machine working) are
exponentially distributed. In that case, we subsequently obtain quite detailed results
for the steady-state inventory content level distribution, the number of switches in a
cycle, and the busy period distribution. Section 7 is devoted to a discussion of the
overshoot distribution above level b, for the case of generally distributed up periods.

2 Model description
We consider a make-to-stock production/inventory model with one machine that pro-
duces stock into a buffer. The successive periods during which the machine is up
(working) are independent and identically distributed (i.i.d.) with distribution func-
tion G and finite mean ν. The successive periods during which the machine is down
(under repair) are independent and exponentially distributed with mean 1/λ. Lengths
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of up and down periods are also independent. As mentioned in Section 1, the buffer
level increases at rate α(x) when it is at level x and the machine is working. It decreases
at rate β(x) or γ(x) when the machine is not working, dependent on a hysteretic (a, b)
control policy. In the motivating example of Section 1, we have that γ(x) ≥ β(x) for all
x. However, for the mathematical analysis this assumption is not necessary. A natural
choice for β(x) would be β(x) = k1 − α(x), as this corresponds to constant demand k1
and a production/filling rate of α(x), but we shall make no such restrictions. However,
we require α, β and γ to be left-continuous with right limits.

As a result of the above, we distinguish between three types of periods. α-periods
are the intervals of time in which the machine is working (the up periods). During an
α-period, the rate of increment is α(x) if the inventory level is x. The β-periods are the
intervals of time in which the machine is not working (under repair) and the buffer level
decreases at rate β(x); the γ-periods are the intervals of time in which the machine is
not working and the buffer level decreases at rate γ(x). It should be noted that the
buffer level may reach 0 only during β-periods; it then stays at 0 until the machine has
been repaired (an α-period starts).

We introduce the following definitions and assumptions:

A(x) =
∫ x

0

1
α(y)dy <∞, x ≥ 0, (1)

B(x) =
∫ x

0

1
β(y)dy <∞, x ≤ b, (2)

C(x) =
∫ x

a

1
γ(y)dy <∞, x ≥ a. (3)

The interpretation of A(x) is the following. It is the time it takes to reach level x,
starting from level 0, when the machine does not break down in the meantime. B(x)
and C(x) have similar interpretations. That is, B(x) (for x < b) is interpreted as the
time to reach level 0, starting from level x (where the demand rate is β(·)) and C(x)
is interpreted as the time it takes to reach level a, starting from level x (> a), if the
demand rate was γ(·). We assume that∫ ∞

0

1
α(y)dy =∞ (4)

to prevent explosions of the process and to obtain a proper distribution function for the
jumps in the dam model presented in the following.

The two finiteness assumptions in (2) and (3) imply that level 0 can be reached from
any level x ≤ b (whenever the output rate is β(·)), and that level a can be reached from
any level x > a (whenever the output rate is γ(·)), respectively.

3 Steady-state buffer level analysis
Let X = {X(t) : t ≥ 0} be the fluid content level process (we also call X the mountain
process, in line with a terminology that was already used for similar stochastic processes
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in, e.g., [7]), see Figure 1. X is a regenerative process with regeneration cycles starting
at down-crossings of level a.

Fig.1: The mountain process X(t) with decrease rates.

We call the process X stable if there is a stationary (or steady-state) distribution
FX and P(X(t) ≤ x) converges for t→∞ to FX(x) at all continuity points of FX , i.e.
X is ergodic. The following theorem provides a sufficient criterion for stability.

Theorem 1. The process X is stable if there is a z0 ≥ 0 such that

sup
z≥z0

λ
∫ ∞
z

Γ(z, u)
γ(u) du < 1, (5)

where Γ(x, y) = 1−G(A(y)−A(x)) is the probability that, when starting the process in
x in an α-period, the next switch happens after the process crosses y > x.

Proof. Let us assume first that α(x) = 1 and β(x) = γ(x). We consider the dam
process D which can be derived from X by deleting the α-periods and replacing them
by upward jumps which equal the increments of the deleted α-periods (see Figure 3
below). Then X is stable iff D is stable. The process D has decrease rate γ(x) and
jumps with the following distribution. If the process jumps at time t then

P(D(t+)−D(t−) ≤ y|D(t−) = x) = G(y),

independent of x (this is because we assume α(x) = 1). It follows that the process D is
a storage process as described in [9] and we may employ Proposition 11 there, stating
that D is stable if there is a w0 such that

sup
w≥w0

λ
∫ ∞

0

∫ w+y

w

1
γ(u) duG(dy) < 1. (6)

Now turn to the case where α(x) is arbitrary but still γ(x) = β(x). We introduce the
process X∗ defined by X∗(t) = A(X(t)) and note that during up times

d

dt
X∗(t) = d

dt
A(X(t)) = 1

α(X(t))
d

dt
X(t) = 1

α(X(t))α(X(t)) = 1,
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so X∗(t) has increase rate 1. Moreover, during decrease times we have

d

dt
X∗(t) = d

dt
A(X(t)) = 1

α(X(t))
d

dt
X(t) = γ(X(t))

α(X(t)) ,

so that the modified process X∗(t) has decrease rate γ∗(x) = γ(A−1(x))
α(A−1(x)) . Using Condition

(6) we conclude that X∗ is stable if there is a w0 such that

sup
w≥w0

λ
∫ ∞

0

∫ w+y

w

α(A−1(u))
γ(A−1(u)) duG(dy) < 1. (7)

The criterion of the theorem then follows from

λ
∫ ∞

0

∫ w+y

w

α(A−1(u))
γ(A−1(u)) duG(dy)

= λ
∫ ∞

0

α(A−1(u+ w))
γ(A−1(u+ w)) (1−G(u)) du

= λ
∫ ∞
A−1(w)

1
γ(u)(1−G(A(u)− w)) du,

using w = A(z) and noting that, since stability depends on the decrease rate only for
large x, the stability property will not change if we allow β(x) 6= γ(x), x < b and that
X∗ is stable iff X is stable.

Corollary 2. The process X is stable if there is a z0 ≥ 0 such that

sup
z≥z0

α(z)
γ(z) <

1
λν
.

Proof. Recall the sufficient criterion (7). Then

sup
w≥w0

λ
∫ ∞

0

∫ w+y

w

α(A−1(u))
γ(A−1(u)) duG(dy) ≤ sup

w≥w0

α(A−1(w))
γ(A−1(w))λ

∫ ∞
0

y G(dy) < 1.

Let w = A(z) and w0 = A(z0).

From now on we assume that the steady-state distribution FX exists. Let X be a
random variable with distribution FX . Note that the distribution FX has an atom
πX = P(X = 0) at 0, but FX is an absolutely continuous distribution for all x > 0; we
denote the steady-state density by fX . The fact that fX exists can be shown by level
crossing theory (LCT). Throughout we assume that all appearing steady-state densities
are left-continuous.

Also by LCT, fX(x) can be interpreted as the long-run average number of up - and
downcrossings of level x per time unit. Define the conditional content level densities
during up periods (α-periods) and down periods (non α-periods) by fP and fD, respec-
tively. Since the fraction of time up equals λν/(1 + λν), we have:
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fX(x) = λν

1 + λν
fP (x) + 1

1 + λν
fD(x), x > 0. (8)

Note that
∫∞

0 fP (x)dx = 1; there is no atom at zero, because the inventory level is always
positive during up periods. fP can be interpreted as the density of the process which is
obtained by deleting the down periods from the mountain X and gluing together the
successive up periods (see Figure 2).

Fig.2: The production process R(t) corresponding to the process
X(t) given in Figure 1.

Similarly, fD can be interpreted as the density of the level of the dam which is
generated by deleting the α-periods from the mountain X and gluing together the non
α-periods, see Figure 3. Note that in the latter dam both the jumps and the release
rates are state dependent. It is easily seen that

πD = P(X = 0|non α-period) = P(X = 0)
P(non α-period) = (1 + λν)πX .

Fig.3: The dam processD(t) corresponding to the processX(t) given
in Figure 1.
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It follows from Equation (8) that fX(·) is found once we have obtained fP (·) and
fD(·). Later in this section we shall indicate how one may express fP (·) in terms of
fD(·), so that it suffices to obtain fD(·). Therefore we now restrict ourselves to non α-
periods, taking a closer look at the density fD(·). The dam process D = {D(t) : t ≥ 0}
whose steady-state distribution is given by

FD(x) = πD +
∫ x

0
fD(y)dy,

is a regenerative process. For the sake of convenience, we define a regenerative cycle as
the time between two consecutive epochs at which the release rate switches from γ(·)
to β(·). We further split the regenerative cycles into two sub-cycles, which are called
the 1-periods and the 2-periods. 1-periods start with a downcrossing through a that
gives rise to a switch from γ(·) to β(·); the release rate is β(a) at the beginning of a
1-period. Each 1-period lasts until the first downcrossing through b. The process must
have upcrossed b some time earlier in the 1-period, giving rise to a switch from β(·) to
γ(·). Now we disassemble the process D into two regenerative processes: the successive
1-periods, which glued together yieldD1 = {D1(t) : t ≥ 0} and the successive 2-periods,
which glued together yield D2 = {D2(t) : t ≥ 0}. See also Figure 4.

Fig.4: The Processes D1(t) and D2(t) corresponding to the process
X(t) given in Figure 1.

Let f1 and f2 be the steady-state densities of D1 and D2, respectively (we denote
the respective distributions by F1 and F2).

Obviously, the density fD is a weighted sum of f1 and f2. The next lemma specifies
the weight factors.
Lemma 3. We have

fD(x) = κf1(x) + (1− κ)f2(x), x > 0, (9)

where κ, the fraction of time the process is in a 1-period, given it is in a down period,
equals

κ = γ(a+)f2(a+)
γ(a+)f2(a+) + γ(b+)f1(b+) . (10)
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Proof. In steady state the long-run average number of switches from β(·) to γ(·) is equal
to the long-run average number of switches from γ(·) to β(·). A switch from β(·) to γ(·)
occurs in each 1-period at the first upcrossing of level b (recall that level b is upcrossed
only once during a cycle of D1). Similarly, a switch from γ(·) to β(·) occurs each time
that D2 downcrosses level a (recall that level a is downcrossed only once during a cycle
of D2). We thus obtain

κγ(b+)f1(b+) = (1− κ)γ(a+)f2(a+), (11)

yielding (10).

Remark 1. A related, but slightly different, way of deriving (10) is based on the
following observation. Since level b is downcrossed only once during a 1-period, it
follows by LCT that the mean length of a 1-period equals 1/(γ(b+)f1(b+)). Similarly,
level a is downcrossed only once during a 2-period, so that the mean length of a 2-period
equals 1/(γ(a+)f2(a+)). As a result,

κ = 1/(γ(b+)f1(b+))
1/(γ(b+)f1(b+)) + 1/(γ(a+)f2(a+)) = γ(a+)f2(a+)

γ(a+)f2(a+) + γ(b+)f1(b+) .

We shall now employ LCT to obtain the densities f1(·) and f2(·), thus yielding fD(·) via
Lemma 3. Once we have those densities, LCT will be employed once more, to provide
relations that determine fP (·) in each of the three intervals (0, a), (a, b) and (b,∞).
Observing that the ratio of the lengths of α-periods and non α-periods equals ν : 1

λ
, so

that the process spends proportions of time λE[G]
1+λE[G] and

1
1+λE[G] in α-periods and non

α-periods, respectively, we have:

λνα(x)fP (x) =


β(x)fD(x) ; x < a,

κβ(x)f1(x) + (1− κ)γ(x)f2(x) ; a < x < b,

γ(x)fD(x) ; x > b.

Recall that the probability that, when starting the process in x in an α-period, the next
switch happens after the process crosses y > x, is given by Γ(x, y) = 1−G(A(y)−A(x)).

Lemma 4. Let π1 = 1/κ be the probability of an empty system, given that the process
is in a 1-period. The following balance equations hold for f1:

β(x)f1(x) = λ
∫ x

0
Γ(w, x)f1(w) dw + λπ1Γ(0, x), 0 < x ≤ a,

β(x)f1(x) = λ
∫ x

0
Γ(w, x)f1(w) dw + λπ1Γ(0, x)− γ(b+)f1(b+) a < x ≤ b,

γ(x)f1(x) = λ
∫ x

0
Γ(w, x)f1(w) dw + λπ1Γ(0, x), x > b.
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The balance equations for f2 are given by:

γ(x)f2(x) =


λ
∫ x

a
Γ(w, x)f2(w) dw + γ(a+)f2(a+), a < x ≤ b,

λ
∫ x

a
Γ(w, x)f2(w) dw, x > b.

(12)

Proof. (i) First consider f1. Clearly, in the region (0, a] the long-run average number of
downcrossings is equal to the long-run average number of upcrossings. For x ∈ (0, a],
β(x)f1(x) is the long-run average number of downcrossings of level x byD1. Since level
x can only be upcrossed by jumps, every upcrossing must be a jump. Condition on the
state just before the jump. If it is w > 0, then a jump is an upcrossing if and only if
the jump is greater than A(x)−A(w). The probability of the latter event is Γ(w, x). If
it is w = 0, the jump is an upcrossing if and only if the jump is greater than A(x). The
latter event occurs with probability Γ(0, x), and the probability of the event {w = 0}
is π1.

When x ∈ (a, b] the case is similar to the previous case x ∈ (0, a] with a slight
modification. Still, the release rate is β(x), but in this case the long-run average number
of downcrossings is not equal to the long-run average number of upcrossings. In fact, in
each cycle ofD1 the number of upcrossings minus the number of downcrossings is equal
to 1. The number of upcrossings of level b is also equal to 1. Dividing by the mean of
a 1-period, it follows that the downcrossing rate for D1 equals the upcrossing rate for
D1 minus 1 divided by the mean 1-period. The latter ratio equals the upcrossing rate
of level b in D1.

When x ∈ (b,∞) the case is again similar to the case x ∈ (0, a] under another slight
modification. Here the number of upcrossings and downcrossings is the same for each
cycle, but the release rate is γ(x), not β(x).

(ii) Next consider f2. For x ∈ (a, b], γ(x)f2(x) is the long-run average number of
downcrossings of level x by D2. In each cycle the number of downcrossings minus the
number of upcrossings of level x is equal to 1. The number of downcrossings of level
a in each cycle is also equal to 1. That means that the long-run average number of
downcrossings of level x is equal to the long-run average number of upcrossings plus
the long-run average number of downcrossings of level a. The latter number is equal to
γ(a+)f2(a+).

Finally, for x ∈ (b,∞) the number of downcrossings in each cycle is equal to the
number of upcrossings, which means that the long-run average number of downcrossings
is equal to the long-run average number of upcrossings.

Below we shall indicate how one can determine f1(·) and f2(·) from the integral
equations in Lemma 4. All those integral equations are Volterra integral equations of
the second kind, the solution of which is straightforward. We refer to, e.g., Harrison
and Resnick [15] for a detailed analysis of similar integral equations for queueing and
storage processes with non-constant release rate, and for a discussion of convergence of
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the ensuing infinite sums. We first define

B(x, y) = λΓ(y, x)
β(x)

and

C(x, y) = λΓ(y, x)
γ(x)

for x > y.
(i) The first equation of Lemma 4 (0 < x ≤ a) becomes:

f1(x) =
∫ x

0
B(x,w)f1(w)dw + π1B(x, 0), (13)

which is a Volterra integral equation of the second kind on (0, a]. Such an equation
is known to be uniquely solvable by a Neumann series (in the space of continuous
functions), via a Picard iteration. Let us briefly indicate that iteration.

We define B(1)(x, y) = B(x, y), and

B(n+1)(x, y) =
∫ x

y
B(x, z)B(n)(z, y)dz, B∗(x, y) =

∞∑
n=1

B(n)(x, y). (14)

In order to guarantee convergence of B∗(x, 0), we are going to show by induction that
for n ≥ 1

B(n)(x, 0) ≤ λn

(n− 1)!β(x)B(x)n−1. (15)

For n = 1 this bound is obviously true. If the assertion were correct for n− 1 then

B(n)(x, 0) ≤ λn

(n− 2)!β(x)

∫ x

0

Γ(z, x)Γ(0, z)
β(z) B(z)n−2dz

≤ λn

(n− 1)!β(x)

∫ x

0

(n− 1)B(z)n−2

β(z) dz = λn

(n− 1)!β(x)B(x)n−1.

from which (15) follows. Hence B∗(x, 0) is well defined and B∗(x, 0) ≤ λ
β(x)e

λB(x).
Iterating f1(·) for 0 < x ≤ a we get

f1(x) = π1B
∗(x, 0). (16)

(ii) The second equation of Lemma 4 (a < x ≤ b) becomes:

f1(x) =
∫ a

0
B(x,w)f1(w)dw +

∫ x

a
B(x,w)f1(w)dw + π1B(x, 0)− k

β(x) , (17)

where
k = β(b)

∫ b

0
B(b, w)f1(w)dw + π1β(b)B(b, 0). (18)
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Let

hβ(x) =
{ ∫ a

0 B(x,w)f1(w)dw + π1B(x, 0)− k
β(x) , a < x ≤ b,

0, 0 < x ≤ a.

Then hβ(·) is a known function except for the constants π1 and k; note that only given
functions and parameters and f1(w) restricted to (0, a] appear in the definition of hβ(·),
so that

f1(x) = hβ(x) +
∫ x

a
B(x,w)f1(w)dw, a < x ≤ b, (19)

is another Volterra integral equation of the second kind. f1(x) for x ∈ (a, b] can be
written as

f1(x) = hβ(x) +
∫ x

a
B(x,w)

[
hβ(w) +

∫ w

a
B(w, y)f1(y)dy

]
dw

= hβ(x) +
∫ x

a
B(x,w)hβ(w)dw +

∫ x

a
B(2)(x, y)f1(y)dy

= . . .

= hβ(x) +
∞∑
n=1

∫ x

a
B(n)(x,w)hβ(w)dw = hβ(x) +

∫ x

a
B∗(x,w)hβ(w)dw.

(iii) The third equation of Lemma 4 becomes:

f1(x) =
∫ x

0
C(x,w)f1(w)dw + π1C(x, 0) = s(x) +

∫ x

b
C(x,w)f1(w)dw,

where s(x) =
∫ b

0 C(x,w)f1(w)dw + π1C(x, 0). Similarly to (13) we define C(1)(x, y) =
C(x, y), and

C(n+1)(x, y) =
∫ x

y
C(x, z)C(n)(z, y)dz, C∗(x, y) =

∞∑
n=1

C(n)(x, y). (20)

Note that similar to the derivation of (15) we can show that C∗(x, y) is well defined.
Then the solution of f1(x) for x > b is

f1(x) = s(x) +
∫ x

b
C∗(x,w)s(w)dw. (21)

We have determined f1(x) except for the constants π1 and k. These unknowns can
now be computed from the two equations

f1(b−) = 0

and ∫ ∞
0

f1(x)dx = 1− π1.

Summarizing, we have found:

12



Theorem 5. The density f1(·) of the inventory content level during 1-periods is given
by

f1(x) =



π1B
∗(x, 0), 0 < x ≤ a,

hβ(x) +
∫ x

a
B∗(x,w)hβ(w)dw, a < x ≤ b,

s(x) +
∫ x

b
C∗(x,w)s(w)dw, x > b,

(22)

where the unknown constants π1 and k (which also feature in hβ(x)) are determined as
indicated above.

Now we turn to the determination of f2(x). The fourth equation of Lemma 4 becomes:

f2(x) =
∫ x

a
C(x,w)f2(w)dw + g(x),

where

g(x) = γ(a+)f2(a+)
γ(x) . (23)

The solution of this equation is

f2(x) = g(x) +
∫ x

a
C∗(x,w)g(w)dw. (24)

Finally consider the fifth equation of Lemma 4, which becomes:

f2(x) =
∫ x

a
C(x,w)f2(w)dw =

∫ b

a
C(x,w)f2(w)dw +

∫ x

b
C(x,w)f2(w)dw.

Using (24) it follows that

f2(x) =
∫ b

a
C(x,w)[g(w) +

∫ w

a
C∗(w, y)g(y)dy]dw +

∫ x

b
C(x,w)f2(w)dw

= hγ(x) +
∫ x

b
C(x,w)f2(w)dw

where

hγ(x) =
∫ b

a
C(x,w)[g(w) +

∫ w

a
C∗(w, y)g(y)dy]dw, x > b.

Thus we get

f2(x) = hγ(x) +
∫ x

b
C∗(x,w)hγ(w)dw.

Note that the unknown constant f2(a) is included in g(x). However, it can be computed
from the normalizing condition ∫ ∞

a
f2(x)dx = 1.

Summarizing, we have found:
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Theorem 6. The density f2(·) of the inventory content level during 2-periods is given
by

f2(x) =


g(x) +

∫ x

a
C∗(x,w)g(w)dw, a < x ≤ b,

hγ(x) +
∫ x

b
C∗(x,w)hγ(w)dw, x > b.

(25)

Remark 2. In order to obtain a regular probability density f1 one still needs to show
that under the stability condition (5) the solution f1 is integrable, i.e. that∫ ∞

w0
f1(x) dx =

∫ ∞
w0

s(x) dx

+
∫ ∞
w0

∫ w0

b
C∗(x,w)s(w)dw dx+

∫ ∞
w0

∫ x

w0
C∗(x,w)s(w)dw dx (26)

is finite. Assuming that (5) holds there is a w0 > 0 such that

sup
w≥w0

∫ ∞
w

C(x,w) dx = c < 1. (27)

The first integral in the right-hand side of (26) can be written as∫ ∞
w0

s(x) dx =
∫ b

0
f1(w)

∫ ∞
w0

C(x,w) dx dw + π1

∫ ∞
w0

C(x, 0) dx.

Note that by definition C(x, y) = λ(1 − G(A(x) − A(y)))/γ(x) is non-decreasing in y,
implying that ∫ b

0
f1(w)

∫ ∞
w0

C(x,w) dx dw + π1

∫ ∞
w0

C(x, 0) dx

≤
∫ b

0
f1(w)

∫ ∞
w0

C(x,w0) dx dw + π1

∫ ∞
w0

C(x,w0) dx,

which is finite due to (27). The second integral in (26) is equal to∫ w0

b
s(w)

∫ ∞
w0

C∗(x,w) dx dw ≤
∫ w0

b
s(w)

∫ ∞
w0

C∗(x,w0) dx dw,

and hence is finite, too. Finally, for the third integral in (26) note that since∫ ∞
w

C(2)(x,w) dx =
∫ ∞
w

∫ x

w
C(x, z)C(z, w) dz dx =

∫ ∞
w

C(z, w)
∫ ∞
z

C(x, z) dx dz,

it follows that supw≥w0

∫∞
w C(2)(x,w) dx < c2 and more generally (by induction) that

supw≥w0

∫∞
w C(n)(x,w) dx < cn, implying

sup
w≥w0

∫ ∞
w

C∗(x,w) dx < c

1− c.

Consequently ∫ ∞
w0

s(w)
∫ ∞
w

C∗(x,w) dx dw <
c

1− c

∫ ∞
w0

s(w) dw <∞,

showing that f1 is indeed a valid probability density.
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Theorem 7. Suppose that β(x) and γ(x) are continuous at a(x) and b(x). Then the
densities f1(x) and fD(x) are discontinuous at x = a and at x = b, while f2(x) is
discontinuous at x = b.

Proof. We have by Lemma 4

f1(a) = λ

β(a)

∫ a

0
Γ(w, a)f1(w) dw + λ

β(a)π1Γ(0, a),

f1(a+) = f1(a)− γ(b)
β(a)f1(b+),

f1(b) = 0

and

f1(b+) = λ

γ(b)

∫ b

0
Γ(w, b)f1(w) dw + λ

γ(b)π1Γ(0, b).

It follows that f1(x) is discontinuous at x = a iff f1(x) is discontinuous at x = b iff
f1(b+) 6= 0, which follows from the fact that b is downcrossed once every cycle and
γ(b) <∞. For f2 we obtain

f2(b) = λ
∫ b

a
Γ(w, b)f2(w) dw + γ(a)f2(a+),

f2(b+) = λ
∫ b

a
Γ(w, b)f2(w) dw,

so that f2 is continuous at b iff f2(a+) = 0. This is always true since a is downcrossed
once every cycle and γ(a) < ∞ (alternatively use (11) and the fact that f1(b+) 6= 0).
Finally note that fD(x) is a weighted sum of f1(x) and f2(x).

4 Exponential α-period
In this section we assume that the up periods are exponentially distributed, so that
G(x) = 1 − e−µx, x > 0. In this case we can obtain more explicit expressions for the
various buffer level densities. Substituting Γ(w, x) = e−µ(A(x)−A(w)) into the results of
Lemma 4 we obtain the integro-differential equation

f1(x) =



λ

β(x)e
−µA(x)

∫ x

0
eµA(w)f1(w) dw + λπ1

β(x)e
−µA(x); 0 < x ≤ a,

λ

β(x)e
−µA(x)

∫ x

0
eµA(w)f1(w) dw + λπ1

β(x)e
−µA(x) − k

β(x) , a < x ≤ b,

λ

γ(x)e
−µA(x)

∫ x

0
eµA(w)f1(w) dw + λπ1

γ(x)e
−µA(x), x > b,

where the (yet) unknown constant (see also (18)) k = λ
∫ b

0 e
−µ(A(b)−A(w))dF1(w).
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Theorem 8. The stationary density f1 is given by

f1(x) =



λπ1

β(x)e
λB(x)−µA(x), 0 < x ≤ a,

1
β(x)ζ(x), a < x ≤ b,

1
γ(x)e

λ(C(x)−C(b))−µ(A(x)−A(b)) (ζ(b) + k) , x > b,

where

ζ(x) = eλB(x)−µA(x)
(
λπ1 − keµA(a)−λB(a) − kµ

∫ x

a

eµA(w)−λB(w)

α(w) dw

)
.

The density f2 is given by

f2(x) = f2(a+)γ(a+)
γ(x) e

λC(x)−µA(x)

×


eµA(a)−λC(a) + µ

∫ x

a

eµA(w)−λC(w)

α(w) dw, a < x ≤ b,

eµA(a)−λC(a) − eµA(b)−λC(b) + µ
∫ b

a

eµA(w)−λC(w)

α(w) dw, x > b,

where the constant f2(a+) follows from the normalization
∫∞
a f2(u) du = 1.

Proof of Theorem 8. Before we start, notice that for 0 < x ≤ y∫ y

x

λeλA(w)

α(w) dw = eλ(A(y)−A(x))

and likewise
∫ y
x
λeλB(w)

β(w) dw = eλ(B(y)−B(x)) and
∫ y
x
λeλC(w)

γ(w) dw = eλ(C(y)−C(x)). Let h(x) =
β(x)eµA(x)f1(x). Then

h(x) =



λ
∫ x

0

h(w)
β(w) dw + λπ1; 0 < x ≤ a,

λ
∫ x

0

h(w)
β(w) dw + λπ1 − keµA(x), a < x ≤ b,

λ
β(x)
γ(x)

∫ x

0

h(w)
β(w) dw + λπ1β(x)

γ(x) , x > b.

(28)

It follows that h(x) = λπ1e
λB(x) for 0 < x ≤ a. For a < x ≤ b we obtain after

substituting the above expression for h(x), 0 < x ≤ a, into the second line of (28),

h(x) = λπ1

∫ a

0

λeλB(w)

β(w) dw + λ
∫ x

a

h(w)
β(w) dw + λπ1 − keµA(x)

= λπ1e
λB(a) − keµA(x) + λ

∫ x

a

h(w)
β(w) dw.
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It follows that h′(x) = −kµeµA(x)/α(x) + λh(x)/β(x) and hence

h(x) = eλ(B(x)−B(a))
(
h(a+)− k

∫ x

a

µ

α(w)e
−λ(B(w)−B(a))+µA(w) dw

)

= eλB(x)
(
λπ1 − keµA(a)−λB(a) − k

∫ x

a

µ

α(w)e
µA(w)−λB(w) dw

)
.

Finally, plugging this into the third equation in (28) leads, for x > b, to

γ(x)
β(x)h(x) = λπ1e

λB(a) +
(
λπ1 − keµA(a)−λB(a)

) ∫ b

a

λeλB(w)

β(w) dw

− λk
∫ b

a

eλB(w)

β(w)

∫ w

a

µ

α(u)e
µA(u)−λB(u) du dw + λ

∫ x

b

h(w)
β(w) dw

= λπ1e
λB(a) +

(
λπ1 − keµA(a)−λB(a)

)
(eλB(b) − eλB(a))

− k
∫ b

a

µ

α(u)e
µA(u)−λB(u)

∫ b

u

λeλB(w)

β(w) dw du+ λ
∫ x

b

h(w)
β(w) dw.

Letting K(x) = h(x)γ(x)/β(x) = γ(x)eµA(x)f1(x) for x > b, we obtain

K(x) = K(b+) + λ
∫ x

b

K(w)
γ(w) dw, x > b,

with

K(b+) = eλB(b)
(
λπ1 + keµA(b)−λB(b) − keµA(a)−λB(a) − k

∫ b

a

µ

α(u)e
µA(u)−λB(u) du

)
.

It follows that K(x) = K(b+)eλ(C(x)−C(b)) which in turns yields the desired result for
the density f1(x).

For f2 we have, according to Lemma 4,

γ(x)f2(x) =


λe−µA(x)

∫ x

a
eµA(w)f2(w) dw + γ(a+)f2(a+), a < x ≤ b,

λe−µA(x)
∫ x

a
eµA(w)f2(w) dw, x > b.

Letting m(x) = γ(x)eµA(x)f2(x) we obtain for a < x ≤ b

m(x) = m(a+)eµ(A(x)−A(a)) + λ
∫ x

a

m(w)
γ(w) dw

leading to

m(x) = m(a+)eλC(x)
(
e−λC(a) + e−µA(a)

∫ x

a

µ

α(w)e
µA(w)−λC(w) dw

)
.
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which results in the asserted equation for f2(x) for a < x ≤ b. It follows that for x > b

m(x) = λ
∫ b

a

m(a+)eλC(w)

γ(w)

(
e−λC(a) + e−µA(a)

∫ w

a

µ

α(u)e
µA(u)−λC(u) du

)
dw

+ λ
∫ x

b

m(w)
γ(w) dw

= m(a+)(eλ(C(b)−C(a)) − 1) + λm(a+)e−µA(a)
∫ b

a

µ

α(u)e
µA(u)−λC(u)

∫ b

u

eλC(w)

γ(w) dw du

+ λ
∫ x

b

m(w)
γ(w) dw = ĉeλC(b)−µA(a)m(a+) + λ

∫ x

b

m(w)
γ(w) dw

where ĉ = eµA(a)−λC(a) − eµA(b)−λC(b) +
∫ b
a

µ
α(u)e

µA(u)−λC(u) du . Consequently m(x) =
ĉeλC(b)−µA(a)m(a+)eλ(C(x)−C(b)) and hence

f2(x) = ĉeλC(b)−µA(a)m(a+)
γ(x) eλ(C(x)−C(b))−µA(x) = ĉf2(a+)γ(a)

γ(x)e
λC(x)−µA(x).

5 Number of switches in a busy cycle
An important performance measure in the hysteresis model is the number of switches,
N , from release rate β(·) to release rate γ(·) – which equals the number of switches
from release rate γ(·) to release rate β(·). Indeed, there could be costs involved in
such switches, and it is not attractive to have a large number of such switches in a
short time interval. In this section we shall determine the probability distribution of
N , for the case of exponentially distributed α-periods. In the analysis, a key role is
played by D̂max, the cycle maximum (i.e., the largest value of the workload process in a
busy cycle) of a related dam process D̂. We shall derive its distribution in Theorem 9.
The distribution of N , which turns out to be a modified geometric distribution, then
follows in a straightforward manner; it is given in Theorem 10. We make the following
preparatory observations.
(i) Under the stability condition of Theorem 1, each time the mountain exceeds b, it
will return below b, and eventually below a. When it returns below a, the release rate
switches back from γ(·) to β(·). Subsequently, there is a fixed probability that the
mountain reaches b again, before returning to 0. That probability does not depend on
γ(·), because all this time until either b or 0 is reached, the rate is β(·) or α(·). Note
that we also use the memoryless property of the exponential(λ) down periods, allowing
us to ignore the history before the mountain process crossed a from above. The above
implies that the distribution of N , given that N ≥ 1, is geometric; it also implies that
the distribution of N does not depend on γ(·). To determine the parameter of the
geometric distribution, we can therefore work with a slightly simpler mountain process
X̂ without hysteresis. The only difference between X̂ and the original mountain process
X is that in X̂ the release rate during down periods is always equal to β(x) when x < b;
the release rate during down periods still equals γ(x) when x ≥ b (hence the stability

18



condition of Theorem 1 is satisfied).
(ii) In determining the parameter of the geometric distribution of the number N of
switches in a cycle, it is crucial to have the distribution of the cycle maximum of X̂.
Here cycle maximum means: highest point of the process during a busy cycle. In
particular, we need to know whether the cycle maximum exceeds b. In [7] we have
studied the cycle maximum of the mountain process X̂ (i.e., without hysteresis, and
with exponential up- and down-periods). In [7] we modified the mountain process X̂
into a dam process D̂ by replacing the increments during the exponential(α) up periods
by state-dependent jumps. We subsequently observed that the cycle maxima of X̂ and
D̂ coincide. In the next theorem we shall determine the distribution of this cycle
maximum, using results from [7].

In what follows we denote by Px(·) a probability under the condition that the process
starts in level x and is going down. We write P↑x(·) for a probability under the condition
that the process starts in level x, but with an upward jump. We further denote the
cycle maximum of process D̂ (and hence of process X̂) by D̂max.

Theorem 9. Suppose that the α-periods have an exponential distribution. For y > z
the probability distribution of the cycle maximum D̂max is given by

P
↑
z(D̂max > y) =

1 + µ
∫ z

0
1

α(u)e
µA(u)−λB(u) du

1 + µ
∫ y

0
1

α(u)e
µA(u)−λB(u) du

(29)

and

Pz(D̂max > y) =
1 + µ

∫ z
0

1
α(u)e

µA(u)−λB(u) du− eµA(z)−λB(z)

1 + µ
∫ y

0
1

α(u)e
µA(u)−λB(u) du

. (30)

Proof. Observe that the cycle maximum of D̂ occurs at a moment of a jump and it
must be the last record value of the cycle. In other words, level x is the cycle maximum
of D̂ iff it is a record value and in addition, after reaching level x the dam D̂ will reach
level 0 before upcrossing x again. Let θ(x) be the probability of the latter event.

We have translated the problem of finding the distribution of the cycle maximum
in the mountain process X̂ to that of finding the distribution of the cycle maximum
D̂max in a dam process with exponential up- and down periods. In Section 2 of [7] the
following results were obtained:
(i) Let r(x) be the hazard rate function of D̂max at x. Since the α-periods are exp(µ)
distributed, µ dx/α(x) is the infinitesimal probability that an arbitrary record value of
D̂ lands in [x, x+ dx). But D̂max ∈ [x, x+ dx) if and only if the latter record value is
the last record value in the busy period and the probability of the latter event is θ(x).
By the strong Markov property, we find r(x) by taking the product of µ/α(x) and θ(x)
and obtain

r(x) = µ
θ(x)
α(x) . (31)
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(ii) θ(x) is given by the following expression:

θ(x) = eµA(x)−λB(x)

1 + µ
∫ x

0
eµA(u)−λB(u)

α(u) du
.

By (31) it now follows that

r(x) = µeµA(x)−λB(x)/α(x)
1 + µ

∫ x
0
eµA(u)−λB(u)

α(u) du
.

It is easily seen that the numerator of the above expression is the derivative of the
denominator. Hence, defining

W (x) = 1 + µ
∫ x

0

eµA(u)−λB(u)

α(u) du,

we have:

r(x) = W ′(x)
W (x) .

Since the hazard rate function r of D̂max is independent of the starting point, it follows
that P↑z(D̂max > y) = e−

∫ y
z
r(u)du = e−

∫ y
z

log(W (u))′ du = W (z)/W (y), which leads to (29).
Equation (30) follows from the fact that

Pz(D̂max > y) = (1− θ(z))P↑z(D̂max > y)

= P
↑
z(D̂max > y)

1− eµA(z)−λB(z)

1 + µ
∫ z

0
1

α(u)e
µA(u)−λB(u) du


=

1 + µ
∫ z

0
1

α(u)e
µA(u)−λB(u) du− eµA(z)−λB(z)

1 + µ
∫ y

0
1

α(u)e
µA(u)−λB(u) du

. (32)

Here the first equality is seen as follows: when the process starts at z and is going
down, then with probability 1− θ(z) it returns to z from below before reaching 0, and
the probability of subsequently exceeding y is equal to the probability of eventually
exceeding y if the process starts with a jump upward from z (because of the memoryless
property of the exponential α (up) periods).
Theorem 10. Suppose that the α-periods have an exponential distribution. Then the
number of switches in a busy cycle has distribution

P(N = n) =

P
↑
0(D̂max ≤ b); n = 0,

P
↑
0(D̂max > b)Pa(D̂max > b)n−1

Pa(D̂max ≤ b); n = 1, 2, . . . .
(33)

Proof. N = 0 if the cycle maximum stays below b. If the cycle maximum exceeds b, there
is at least one switch. The strong Markov property implies thatN , conditionally onN ≥
1, is geometricially distributed, with "success" probability the probability Pa(D̂max ≤ b)
that, after going below a, the process does not exceed b again before reaching 0.
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6 Total Up Period and Busy Period Analysis
In this section we restrict the attention to the case that α(x) = α, β(x) = β and
γ(x) = γ. We also assume that the up periods (which are also the α-periods) are
exponential(µα), the β-periods are exponential(λβ) and the γ-periods are exponential(λγ).

Let TM be the busy period of the mountain; this is the interval of time in which
the mountain is strictly positive. During TM the mountain alternates among its three
possible components: the α-periods, the β-periods and the γ-periods. During a busy
period of the mountain, Tα designates the duration of the α-periods, Tβ the duration
of the β-periods and Tγ the duration of the γ-periods, so that TM = Tα + Tβ + Tγ.
To construct Tα from TM just take β = γ ' ∞ so that the decreasing slopes become
negative jumps. Alternatively, by taking α ' ∞ we construct an hysteretic dam with
alternating release rates β and γ.

Let

E[e−ωTM ],E[e−ωTα ],E[e−ω(Tβ+Tγ)]

be the Laplace transforms (LSTs) of TM , the total up period Tα during TM , and the
total down period Tβ + Tγ, respectively. It should be noted that

E[e−ωTM ] 6= E[e−ωTα ]E[e−ω(Tβ+Tγ)],

since Tα and Tβ + Tγ are not independent. If α ' ∞ the mountain can be interpreted
as an hysteretic dam whose wet period analysis (including the LST E[e−ω(Tβ+Tγ)]) has
already been analyzed in Bar-Lev and Perry (1993). Accordingly, for completeness, in
this study we focus on the analysis of E[e−ωTα ] (Subsection 6.1) and E[e−ωTM ] (Subsec-
tion 6.2).

6.1 Analysis of the Total Up Period
Our goal in this subsection is to determine this LST. Taking x = 0 then gives us the
LST of the total up period. As was mentioned above, each decreasing slope (of either
rate β or γ) becomes a negative jump. The negative jump sizes, obtained by the above
construction, are either exponential(λβ/β) or exponential(λγ/γ), respectively. As a re-
sult of the above construction some negative jumps in the α-period that downcross level
a (but not all of them) start as exponential(λγ/γ) jumps and after a downcrossing of
level a the undershoots below level a change their law and become exponential(λβ/β).

Consider the production process R from Section 3. For any 0 ≤ x < a define the
stopping time

L = inf{t > 0 : R(t) ≤ 0 or R(t) = b}. (34)

Note that up to time L the negative jumps are exponential(λβ/β) and independent.
We now introduce an equation based on a renewal argument:

Ex[e−ωTα ] = Ex[e−ωL1{R(L)=0}] +Ex[e−ωL1{R(L)=b}]Eb[e−ωTα ], (35)
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where the first term on the right of (35) says that if the event {R(L) = 0} occurred,
the α-period is terminated, but if the event {R(L) = b} occurred, the jump sizes of
the α-period after time L become exponential(λγ/γ) and are independent of L by the
strong Markov property.

We are done when we have determined the three components of the right hand side
of (35). The first two are given in [2]:

Ex[e−ωL1{R(L)=0}] = e−ξ0(ω)(b−x) − e−ξ1(ω)(b−x)

λβ/β

λβ/β+ξ0(ω)e
−ξ0(ω)b − λβ/β

λβ/β+ξ0(ω)e
−ξ1(ω)b

(36)

and

Ex[e−ωL1{R(L)=b}] = e−ξ0(ω)(b−x) − λβ/β

λβ/β + ξ0(ω)e
−ξ0(ω)b

Ex[e−ωL1{R(L)=0}], (37)

where

ξ0(ω) =
(µa/α− λβ/β + ω) +

√
(µa/α− λβ/β + ω)2 + 4ωλβ/β

2 ,

ξ1(ω) =
(µa/α− λβ/β + ω)−

√
(µa/α− λβ/β + ω)2 + 4ωλβ/β

2 .

We now turn to the third term, viz., Eb[e−ωTα ]. The first component of the time Tα,
from the moment b is upcrossed, is the time τα, which is defined as follows.

On the event {R(L) = b} let L + τα = inf{t > 0 : R(t) < a}. Then, since
{R(t) : 0 ≤ t ≤ τα} can be interpreted as the Attained Waiting Time process of the
M/M/1 queue (see, e.g., [1]) lifted at the origin to level x, τα can be interpreted as
the busy period of a special M/M/1 queue with arrival rate λγ/γ and service rate
µα/α (with λγ/γ < µα/α) in which the first service of the busy period is b−a

α
+ Z1

where Z1 is a regular service time, namely, Z1 is exponential(µα/α). By the strong
Markov property the latter busy period is the convolution of a regular busy period of
theM/M/1 queue (with arrival rate λγ/γ and service rate µα/α in which λγ/γ < µα/α)
and a special busy period of the same queue in which the first service is the constant
b−a
α
. Accordingly, we get

E[e−ωτα ] = ϕα(ω)e−
(b−a)
α

[ω+(λγ/γ)(1−ϕα(ω))]

where ϕα(ω) is the LST of the latter M/M/1 queue. That is

ϕα(ω) =
(λγ/γ + µα/α + ω) +

√
(λγ/γ + µα/α + ω)2 − 4λγµα/(γα)

2λγ/γ
. (38)

Next we have

Eb[e−ωTα ] = E[e−ωτα ]
[
e−(λβ/β)a +

∫ a

y=0
(λβ/β)e−(λβ/β)(a−y)

Ey[e−ωTα ]dy
]
. (39)
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To understand the idea behind (39) note that the left hand side of (39) is the LST
of the time from the moment that level b is reached until the end of the α-period. It
is equal to the time until level a is downcrossed plus the residual time until level 0 is
downcrossed. However, with probability e−(λβ/β)a a downcrossing of level a is also a
downcrossing of level 0, and the latter residual time is equal to 0. If a downcrossing of
level a is not a downcrossing of level 0, then the negative jump after downcrossing of
level a lands at some level y according to the density (λβ/β)e−(λβ/β)(a−y) and from that
moment the residual time until the end of the busy period is Ey[e−ωTα ].

To solve for Ey[e−ωTα ] we set

K =
∫ a

y=0
(λβ/β)e−(λβ/β)(a−y)

Ey[e−ωTα ]dy.

Now multiply both sides of (35) by (λβ/β)e−(λβ/β)(a−y) and integrate with respect to y
on (0, a). We get in (35)

K =
∫ a

y=0
(λβ/β)e−(λβ/β)(a−y)

Ex[e−ωL1{R(L)=0}]dy (40)

+Eb[e−ωTα ] ·
∫ a

y=0
(λβ/β)e−(λβ/β)(a−y)

Ey[e−ωL1{R(L)=b}]dy

and substituting (39) in (40) we get

K =
∫ a

y=0
(λβ/β)e−(λβ/β)(a−y)

Ey[e−ωL1{R(L)=0}]dy (41)

+E[e−ωτα ]
[
e−(λβ/β)a +K

]
.
∫ a

y=0
(λβ/β)e−(λβ/β)(a−y)

Ey[e−ωL1{R(L)=b}]dy.

We use the notation

c0 =
∫ a

y=0
(λβ/β)e−(λβ/β)(a−y)

Ey[e−ωL1{R(L)=0}]dy, (42)

and
cb =

∫ a

y=0
(λβ/β)e−(λβ/β)(a−y)

Ey[e−ωL1{R(L)=b}]dy, (43)

to get

K = c0 +E[e−ωτα ]e−(λβ/β)acb
1−E[e−ωτα ]cb

. (44)

To compute K we need to find c0, cb; we already have determined E[e−ωτα ]. c0 and
cb follow by integrating over the functionals Ey[e−ωL1{R(L)=0}] and Ey[e−ωL1{R(L)=b}],
which are given in (36) and (37). By (42)

c0 = λβ/β

λβ/β + ξ0(ω)
[
e−ξ0(ω)(b−a) − e−(λβ/β)a−ξ0(ω)b

]
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and by (43) we express cb in terms of c0. After some elementary algebra we get

cb = (λβ/β)e−ξ0(ω)(b−a) − (λβ/β)e−(λβ/β)(a+ξ0(ω)) − (λβ/β)e−ωbc0

λβ/β + ξ0(ω) .

Having determined c0 and cb we have foundK, which constitutes the missing component
in the right hand side of (39); and thus we have found Eb[e−ωTα ], the only term that
remained to be determined in the right hand side of (35).

6.2 The busy period of the mountain process
We are now in position to determine the LST E[e−ωTM ] of the busy period of the
mountain process X = {X(t) : t ≥ 0}. For this, we exploit the LST Ex[e−ωTα ] as
an important building block. Notice that this LST is given by (35), where the three
building blocks of that expression are all specified in the previous subsection. Define
the stopping time

ϑy = inf{t > 0 : X(t) = 0 or X(t) = y},

allowing y to be infinite, so that TM = ϑ∞. We use the abbreviation E↑x[·] = E[· |
X(0) = x,X ′(0) = α] and E↓x[·] = E(· | X(0) = x,X ′(0) = −β), where E↑x[·] (E↓x[·]),
means that the starting point is x and the direction of the mountain at time 0 is up
[down], so that the LST of the busy period of the mountain is E[e−ωTM ] = E

↑
0[e−ωTM ].

Our goal in this subsection is to determine that LST. We first write

E
↑
0[e−ωTM ] = E

↑
0[e−ωϑa1{X(ϑa)=0}] +E

↑
0[e−ωϑa1{X(ϑa)=a}]E↑a[e−ωTM ]

= E0[e−ω(1+α
β

)L
1{R(L)=0}] +E0[e−ω((1+α

β
)L− a

β
)
1{R(L)=a}]E↑a[e−ωTM ]. (45)

The right hand side of the first step of (45) says that, on the event {X(ϑa) = 0}, TM is
equal to ϑa, and on the event {X(ϑa) = a}, TM is equal to ϑa plus the residual period
it takes to the end of the busy period, where the starting state of the residual extra
period is a. Also, by the strong Markov property, the latter extra period that starts at
state a is independent of the time until level a is reached from state 0. The second step
of (45) follows from the fact that on the event {X(ϑa) = 0} we get by construction of R
from X that ϑa = (1 + α

β
)L (on the event {R(L) = 0}) and on the event {X(ϑa) = a}

we have ϑa = (1 + α
β
)L− a

β
(on the event {R(L) = a}).

There are three terms that we need to determine in the rightmost side of (45). The
two functionals E0[e−ω(1+α

β
)L
1{R(L)=0}] and E0[e−ω((1+α

β
)L− a

β
)
1{R(L)=a}] are already given

in (36) and in (37), respectively, but under a special replacement of parameters; y is
replaced by 0 and b is replaced by a. It remains to determine E↑a[e−ωTM ]. We first write:

E
↑
a[e−ωTM ] = E

↑
a[e−ωϑb1{X(ϑb)=0}]
+E

↑
a[e−ωϑb1{X(ϑb)=b}]E

↑
b [−ωϑa]E↓a[e−ωTM ]

= Ea[e−ω((1+α
β

)L− a
α

)
1{R(L)=0}]

+Ea[e−ω((1+α
β

)L− b−a
β

)
1{R(L)=b}]E↑b [e−ωϑa ]E↓a[e−ωTM ]. (46)
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The first step of (46) says that if at the origin the starting state is a and the direction
is up then the stochastic behavior of TM can evolve according to two disjoint events.
On the event {X(ϑb) = 0} the mountain reaches level 0 before it reaches level b and
TM = ϑb. On the event {X(ϑb) = b} the mountain reaches level b before it returns to
level 0. Then, after reaching level b it takes time ϑa to go from level b down to level a
and later it takes time TM to go from level a down to level 0, where the direction of the
mountain after reaching level a is down.

For the second step of (46) we use the fact that on the event {X(ϑb) = 0} the stopping
time ϑb can be expressed as (1 + α

β
)L− a

α
on the event {R(L) = 0} and on the event

{X(ϑb) = b} the stopping time ϑb can be expressed as ((1 + α
β
)L − b−a

β
) on the event

{R(L) = b}.
It remains to determine the four terms in the rightmost side of (46). For the two

functionals with indicator functions in the rightmost side of (46), we again refer to (36)
and (37).

To compute the functional E↑b [e−ωϑa ] we first note that if during ϑa the α-periods are
deleted and the down periods are glued together the mountain becomes a dam with the
constant release rate γ. Let ϑ∗a be the modified version of ϑa after the deletion of the
α-periods. Then, ϑ∗a can be also interpreted as the busy period of a special M/M/1
queue with arrival rate λγ/γ and service rate µα/α in which the first service of the busy
period is equal to b− a+ Z where Z ∼ exp(µα/α) is a generic service.

Lemma 11. E
↑
b [e−ωϑa ] = eω

b−a
α ϕα(ω(1 + γ

α
))e−

b−a
α

(ω(1+ γ
α

)+(λγ/γ)(1−ϕα((ω(1+ γ
α

)))).

Proof. If the first service of the dam (after deleting the α-periods from the mountain)
is b − a + Z it follows by the strong Markov property that the busy period can be
expressed as a convolution of two busy periods; the first is the regular busy period of
the M/M/1 queue and the second is a busy period whose first service is the constant
b− a. We thus have

E[e−ωϑ∗a ] = ϕα(ω)e−(b−a)([ω+(λγ/γ)(1−ϕα(ω))])

where ϕα(ω) is given in (38). However, by construction we have

ϑa = (1 + γ

α
)ϑ∗a −

b− a
α

.

Thus,

E
↑
b [e−ωϑa ] = E[e−ω[(1+ γ

α
)ϑ∗a− b−aα ]]

and the lemma is proven.

The functional E↓a[e−ωTM ] is the only remaining unknown term in the rightmost side
of (46). For its determination we construct the renewal equation (in terms of LSTs)

E
↓
a[e−ωTM ] = E

↓
a[e−ωϑb1{X(ϑb)=0}] +E

↓
a[e−ωϑb1{X(ϑb)=b}]E

↑
b [e−ωϑa ]E↓a[e−ωTM ]. (47)
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The argument used in (47) is similar to that used before. If the event {X(ϑb) = 0}
occurs we have TM = ϑb. But if the event {X(ϑb) = b} occurs the mountain regenerates
itself at state b and from this point the LST of time until the end of the busy period is
E
↑
b [e−ωτM ]E↓a[e−ωTM ]. Solving for E↓a[e−ωTM ] in (47) we get

E
↓
a[e−ωTM ] = E

↓
a[e−ωϑb1{X(ϑb)=0}]

1−E↓a[e−ωϑb1{X(ϑb)=b}]E
↑
b [e−ωϑa ]

. (48)

To find the functionals E↓a[e−ωϑb1{X(ϑb)=0}] and E↓a[e−ωϑb1{X(ϑb)=b}], let V = {V (t) :
t ≥ 0)} be the work process of the M/M/1 queue with arrival rate λβ/β and service
rate µα/α and define the stopping time L∗ = inf{t > 0 : V (t) = 0 or V (t) ≥ b}.
Then (see [2]):

EA[e−ωL∗1{V (L∗)>b}] = e−ξ̂0(ω)(b−a) − e−ξ̂1(ω)(b−a)

µα/α
µα/α+ξ0(ω)e

−ξ̂0(ω)b − µα/α
µα/α+ξ0(ω)e

−ξ̂1(ω)b

where

ξ̂0(ω) =
−(µa/α− λβ/β − ω) +

√
(µa/α− λβ/β − ω)2 + 4ωµa/α

2 ,

ξ̂1(ω) =
−(µa/α− λβ/β − ω)−

√
(µa/α− λβ/β − ω)2 + 4ωµa/α

2 ,

and

Ea[e−ωL
∗
1{V (L∗)=0}] = e−ξ̂0(ω)(b−a) − µα/α

µα/α + ξ0(ω)e
−ξ̂0(ω)b

Ea[e−ωL
∗
1{V (L∗)>b}].

Finally, by a similar argument used above we have

E
↓
a[e−ωϑb1{X(ϑb)=0}] = E

↓
a[e
−ω[(1+α

β
)L∗− b−a

α
]
1{V (L∗)=0}]

and

E
↓
a[e−ωϑb1{X(ϑb)=b}] = E

↓
a[e
−ω[(1+α

β
)L∗− b−a

β
]
1{V (L∗)>b}].

Substitution in (48) yields E↓a[e−ωTM ]. Substituting the result in (46), we finally obtain
the law of the busy period of the mountain.

7 Overshoot above level b
In the previous section, we determined the LST of the busy period and of the total
up period in a busy period. We made the simplifying assumption that the α-periods
are exponentially distributed. In such a case, the overshoot above level b is also expo-
nential. In the present section, we determine the distribution of the overshoot of the
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mountain above level b in the case of general (not necessarily exponential) α-periods.
That overshoot distribution is of importance when one wants to study, e.g., the distri-
bution of the time above level b, or the time from an upcrossing above b until for the first
time level a is reached again. It is the first step towards determining the busy period
LST for generally distributed α-periods; however, such a determination is extremely
cumbersome, and falls outside the scope of the present paper.

By construction, the overshoot of the mountain above level b is equal to the (only)
overshoot of D1 above the same level b in a 1-period. Accordingly, we define the
stopping time T = inf{t > 0 : D1(t) ≥ b} and construct a modified regenerative process
D̃1 = {D̃1(t) : t ≥ 0} such that {D̃1(t), 0 ≤ t ≤ T} = {D1(t), 0 ≤ t ≤ T}, but after
the upcrossing of level b by D̃1 the arrival process is stopped and the release rate is
equal to 1. Then, D̃1 is a regenerative process whose cycle is terminated whenever D̃1
reaches level b. That is, up to time T the sample paths of D1 and D̃1 are the same,
however, after T the process D̃1 decreases at rate one until it reaches level b, so that
the cycle is T +R where R is interpreted as the overshoot of D̃1 above level b.

Fig.5: The process D̃1(t) corresponding to the process X(t) given in
Figure 1.

Let f̃1 be the steady-state density of D̃1, with distribution F̃1. By LCT we obtain
the following balance equations:

β(x)f̃1(x) = λ
∫ x

0
Γ(w, x)f̃1(w) dw + λπ̃1Γ(0, x), 0 < x ≤ a,

β(x)f̃1(x) = λ
∫ x

0
Γ(w, x)f̃1(w) dw + λπ̃1Γ(0, x)− f̃1(b+), a < x ≤ b,

f̃1(x) = λ
∫ x

0
Γ(w, x)f̃1(w) dw + λπ̃1Γ(0, x), x > b,

where π̃1 = 1−
∫∞

0 f̃1(w) dw.
Notice that the three above equations differ from those for f1(x) in Lemma 4 only

marginally; another constant π̃1 appears instead of π1, and the equations for x > b
differ; γ(x) is there replaced by 1. Hence we obtain almost identical formulas for f̃1(x)
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as for f1(x), for x ≤ b. For x > b, the determination of f̃1(x) is slightly easier than that
of f1(x). The function

f̃1(x+ b)∫∞
0 f̃1(x+ b) dx

, x > 0,

is the conditional density of D̃1 given that D̃1 > b. Now, by deleting the time periods in
which D̃1 ≤ b and gluing together the time periods in which D̃1 > b we obtain a typical
sample path of the forward recurrence time of a renewal process whose interrenewal
times have the same distribution as Y . We designate the distribution of Y by HY . The
proof of the next theorem makes use of the fact that

he(x) = 1−HY (x)
E[Y ]

where he(·) is interpreted as the equilibrium density associated with HY .

Theorem 12. The distribution function of Y is given by

HY (x) = 1− f̃1(x+ b)
f̃1(b)

.

Proof. From the explanation above we have

f̃1(x+ b)∫∞
0 f̃1(u+ b)du

= 1−HY (x)
E[Y ] . (49)

Substituting x = 0 in (49) we get

E[Y ] =
∫∞

0 f̃1(u+ b)du
f̃1(b)

. (50)

The theorem follows by substituting (50) into (49).
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