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1. DATA PROCESSING 

The purpose of all analytical methods is to obtain information. A gas 
chromatograph may be seen as an information source that sends the informa
tion as an encoded signal. The data processor acting as the receiver, has to 
decode the signal and deliver the information in a form intelligible to the 
person (or thing) asking for it. Data processing thus consists of two parts: 
- to extract the information from a signal that contains also irrelevant and 

interfering components; 
- to bring the information in a useful form. 

The subject of the present work is to investigate the automation of the data 
processing and to develop a suitable computer program for it. The primary 
aim is that this program can be applied to any chromatographic signal. In 
order to cope with the most exacting cases, three requirements are implied: 
- low detection limits, 
- optimum accuracy and precision, 
- automatic processing. 
Low detection limits are required because it is generally unknown, a priori, 
which peaks are relevant. Optimum accuracy and precision are desired in order 
that the quality of the results is not unnecessarily limited by the quality of the 
processing. Automatic processing is necessary to make the performance inde
pendent of the user's skill. However, a "blackbox" design offers additional ad
vantages: 
- it minimizes the working knowledge, making the program easy to use; 
- the consistency of the results is improved by excluding external interference 

which is often irreproducible and arbitrary; 
- the performance can be specified rigorously, as it does not depend on 

the user's skill. 
The design also has a number of drawbacks: 
- prior knowledge available to the user is also excluded; 
- the processing will be too sophisticated and inefficient for many chromato-

grams. 
It may appear contradictory to conceive a "general" program, if such a pro
gram is implicitly inefficient for most applications. The explanation is that the 
appropriate simplifications for a particular application can be readily made 
from a well-designed general program. 

The function of data processing is to bridge the gap between the information 
as it is contained in the chromatographic signal and the form in which it is 
desired. This transformation is commonly effected in three steps, as illustrated 
in fig. 1.1. 

In the data-extraction step the irrelevant components of the signal and the 
redundancy are eliminated. The information is concentrated in parameters that 
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Fig. 1.1. 

characterize the peaks. 
In the identification step the peaks are identified from the retention value. 

Names and structures of the compounds can be found by comparison with 
tabulated values. Generalized structure-retention relations may aid in the eluci
dation of an unknown compound. 

In the interpretation step the results of the identification are linked to operative 
consequences. The content of this step may vary from straightforward decision 
making to involved statistical analysis. 

In the present work only the first two steps will be investigated. The inter
pretation step is closely related to particular applications and. therefore. less 
suited to a general discussion. 

1.1. Survey of literature 

Generally. data processing for chromatography will be similar to the data 
prQcessing for other instrumental techniques giving a peak-like signal on a 
noisy background. Most of the applied methods will be identical. In detail, 
however. a number of distinct features leads to special requirements: 
- Chromatographic analysis gives one peak for each compound. Being so 

little redundant. complete extraction of the information is essential. 
The shape of the peaks and the background is rather variable. 

- Chromatography is mainly used for quantitative analysis, so that accurate 
background correction and precise calculation of the peak areas is required. 

The cumulative effect of these details is that chromatographic-data processing 
requires a specially designed program. As the data processing is often the most 
time-consuming part of chromatographic analysis, it is obvious that its auto
mation has already received great interest. Comprehensive reviews were 
recently given by Leathard1- 7) and Ziegler1 - 8). We will mention here only 
those sources that have some relevance for the present work. Moreover, this 
section is confined to a discussion of the investigations that reported a program 
for integral processing. 

Littlewood et ai. 1- 1 •2 •3) described a program specially aiming at the separa
tion of overlapping peaks by curve fitting. Detection methods able to find 
shoulder peaks were given. A number of processing parameters must be preset 
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by the user. Accuracy and precision were studied experimentally by running 
samples with known ratios of the compounds. 

Westerberg 1 -4} discussed the peak-detection and resolution methods for a 
computer system that handles several concurrently operating on-line gas 
chromatographs. Limits for the detectability of overlapping peaks were derived. 
The errors for area calculation by triangulation and perpendicular drop were 
evaluated; it is concluded that these methods are too inaccurate so that curve 
fitting should be used. No details on the operation of the system were given. 

Wijtvliet 1 - 5) developed a computer program having as prime design goals: 
easy to use, failsafe and foolproof. Considerable effort was put in determining 
the peak-top location with utmost accuracy. The program however requires 
well separated peaks and a stable baseline. No detection limits were reported. 
Although the program may be run on standard values, presetting of some proc
essing controls is required for obtaining optimum results. 

Brouwer and Jansen 1 - 6 ) described a program for automatic evaluation of 
complex spectra, using a combination of correlation detection and curve fitting. 
The method cannot be applied directly to chromatography because a known, 
invariable peak shape is assumed. 

1.2. Scope of this work 

Although not radically different, we believe that our approach is uncommon 
by a combination of two aspects: 

the explicit aim of optimum information extraction, and 
- extended automation. 
Parts of the problem have been investigated, either in the papers mentioned 
above or in papers concentrating on certain topics such as detection, accuracy 
and precision, curve fitting, etc. 

The subject of the present work may be summarized as 
adaptation of existing techniques, 

- development of new methods, 
- integration of both in an operational program. 

In chapter 2 the data extraction will be surveyed in greater detail in order 
to identify the elements of the problem. After reviewing the methods that have 
been applied, an outline of the selected techniques is given. 

Chapter 3 gives a detailed account of the development of the algorithms. 
Special emphasize is given to the evaluation of the performance of the adopted 
methods, such as detection limits or potential accuracy and precision. 

Chapter 4 is made up of three parts: it summarizes the performance speci
fications for readers who preferred to skip chapter 3; the application of the 
program to a "difficult" chromatogram is discussed; the possibilities for making 
the program more efficient and for simplifications are mentioned. 

Chapter 5 is concerned with computer-aided identification. A matching crite-
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rion is proposed for identification by "table matching", and its use is demon~ 
strated by some examples. The use of structure~retentionrelations foridentifica~ 
tion is briefly discussed. 
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2. SURVEY OF DATA EXTRACTION 

Data extraction consists of the separation of the peaks from the background 
and the concentration of the information in parameters that characterize the 
peaks. The purpose of this chapter is to examine the elements of this problem 
in more detail in order to conceive a framework for a suitable program. 

2.1. Peak models 

To be able to separate the peaks from the background, it is necessary to 
know their characteristics. Usually the signal is taken as a superposition of 
three components, viz. peaks, a deterministic baseline and random noise, as 
illustrated in fig. 2.1. The way how prior information about the characteristics 
of the components is used in the data extraction was extensively discussed by 
Kelly and Harris 2 - 1). Two examples show how different prior information 
leads to different approaches : 

If the shape of the baseline is known and the contribution can be determined 
over the entire chromatogram, the peaks emerge as the residues after sub
traction of this contribution. The peaks can then be characterized by the 
area under the curve, the location of the top and the centre of gravity, the 
width, etc. Thus almost nothing is assumed about the peak shape. Noise 
is considered as a source of uncertainty, causing that the true values of the 
peak parameters cannot be determined. This approach was among others 
followed by Wijtvliet 2 - 2), who approximated the baseline by a horizontal 
line. 

- Another approach is made if the peak shape is known and the baseline is 
less well defined. Now one can look for the presence of profiles in the signal 
that are congruent to the model profile. Brouwer and Jansen 2 - 3) evaluated 
complex spectra in this way by taking a Gaussian peak model of fixed width 
and assuming that the baseline is a slowly varying function of time that 
can be eliminated by differentiation. 

+ 
01""" '\P• '*' ""V"ll> ..., • .-. • • *w , ••• _, .. 

= + 

--------Time 
Fig. 2.1. A chromatogram is conceived of a superposition of peaks, random noise and a 
slowly drifting baseline. 
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The amount of information that can be obtained from a given signal depends 
to a large extent on the prior knowledge. Accurate peak parameters can only 
be obtained if an accurate background correction can be made. Overlapping 
peaks can only be dissected if an accurate peak model is available. In the 
following some relevant peak models are discussed. 

A chromatographic peak is the residence-time distribution of the molecules 
of a certain compound. The distribution function might thus be derived from 
equations that describe the transport of the molecules through the column. 
Unfortunately, a realistic description of the transport leads to a complex set 
of differential equations that generally cannot be solved. There are various 
levels of simplification. 

The simplest model 2 -4) yields that the peaks rapidly approximate a Gaussian 
distribution: 

g(t, A, p, w) A [ (t- "')2] ----exp -t --
w (2n)112 w · 

(2.1) 

This distribution is completely characterized by three parameters, viz. the area A 
under the peak, the location of the top p and the parameter w as a measure 
for the width. Often, in chromatography, the width is taken at half height, so 
that for a Gaussian peak w112 w (8ln 2)112 RO 2·35 w. However, unless stated 
otherwise we will denote w as the peak width. 

From an analytical point of view, the area and the location are the parameters 
that carry relevant information. The location, or retention time, is specific for 
the chemical identity of the compound. The area is related to the amount of 
the compound. With a linear detector response, the absolute quantity can be 
calculated if the sensitivity factor is known. The peak width is largely determined 
by the instrumental system and bears only minor specific information. Thus for 
a given analysis the areas and the retention times are free parameters from 
which generally nothing is known in advance, while the widths are approxi
mately proportional to the retention times, the proportionality constant being 
largely determined by the chromatograph. 

The Gaussian model gives only in few cases an accurate description of ex
perimental peaks. For one thing, peaks are often asymmetric. An extension 
takes some instrumental factors into account. It is assumed 2

- 5) that the 
chromatographic process yields a Gaussian shape, but mixing volumes in the 
injection port or in the detector modify this in a convolution with an exponential 
function, as illustrated in fig. 2.2. The resultant peaks will show a degree of 
tailing that depends on the time constant .,; in the exponential function. 

As most chromatographic peaks show some degree of tailing, this seems a 
plausible model. However, a purely instrumental contribution implies that the 
time constant is equal for all peaks. In practice some peaks show more tailing 



7-

Fig. 2.2. Modification of a Gaussian peak by a first-order system. 

than others. The reason is that tailing is mostly due to a competing non-linear 
retention mechanism, e.g. adsorption, which is dependent on the presence of 
certain specific groups. 

Instead of deriving models which give a more realistic account of the physical 
processes in chromatography, one can also search pragmatically for functions 
that do simulate real peaks. Some parameters in such a function serve only for 
an adequate fit and have no pertinent physical meaning. The purpose of these 
"models" is that, if they are specific enough so that on-peaklike configurations 
are not exhibited, they can be applied for separating peaks from the background 
or for apportioning a composite peak. The models are often derived from the 
Gaussian function. A number of them were proposed by Fraser and Suzuki 2 - 6). 

A frequently mentioned model is the hi-Gaussian function, listed in table 2-1. 
This is a Gaussian function with different widths at the leading and at the 
trailing edge. Obviously this is not a correct physical model, but it is useful 
for simulating various asymmetrical shapes. 

Another possibility is to take as a model the product of the Gaussian func
tiong(t) and a correction function h(t): f(t) = g(t) h(t). If h(t)is developed 2 - 7) 

in a series of Hermite polynomials and terms are grouped in decreasing order 
of magnitude, one obtains Edgeworth's series (with 'YJ (t- p)/w): 

f(TJ) g(n)-(Yt g<3>(TJ)) + (Y2 g<4)(rJ) 10yt2 g<6)(rJ)) + ... 
3! 4! 6! 

= g(TJ) (t Yt (TJ3- 31]) + Y2 (rJ4- 6rJ2 3) + 
6 24 

(2.2) 

The additional parameters y 1 and y 2 are the coefficients of skewness and ex
cess, as discussed below. This model, which was also proposed by Kelly and 
Harris 2 - 1), has the advantage over the well-known 2 - 8) Gram-Charlier A-



TABLE 2-I 
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series that the order of magnitude of the terms is steadily decreasing so that 
less terms are required. In fact, the model (2.2) is already so flexible that for 
certain values of the additional parameters y1 and y2 an un-peaklike two-topped 
shape results, as shown by Kroon 2 - 9). This implies that this function cannot be 
used for separating overlapping peaks unless the parameter values are bounded 
to some ranges. 

A function which is so flexible that virtually any shapecan be approximated, 
e.g. a series of orthogonal polynomials, cannot be considered as a peak model 
in the sense that it generalizes chromatographic phenomena. Such a function 
might be used for describing an unknown peak because the parameters in the 
function do characterize the peak uniquely. However, it is more convenient to 
characterize the peak by a set of quantities that can be calculated directly, the 
"moments" 2 - 10). Let the observed signal be f(t). The area under the peak is 

00 

A= f f(t)dt. 
-00 

In principle the integration should be carried out over the entire time axis, 
but in practice integration is restricted to the interval in which f(t) differs 
noticeably from zero. The peak location is indicated by the centre of gravity: 

1 00 

J tf(t) dt. 
A oo 

(2.3) 

A characterization of the shape which is independent of the area and the loca
tion is given by the "central moments" or "moments around the mean". The 
nth central moment is defined as 

1 00 

mn =- J (t- p)n f(t) dt. 
A -oo 

(2.4) 

The area and the gravity centre are often called the zeroth and first moments. 
The second central moment is known as the variance and its square root as the 
standard deviation. It has several advantages to characterize the shape by 
dimensionless numbers, such as 

- the plate number N 

m3 
the skew: y 1 --;;z• 

mz 

"'2 

m4 
- the excess: Yz = 3. 

mz2 

(2.5) 
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The interpretation of the higher moments in analytical information, e.g. 
physicochemical quantities such as diffusion coefficients, is still intricate 2

-
8
). 

It is possible to calculate the moments of the peak models mentioned above 
by integration of eq. (2.4). This is summarized in table 2-I. For the higher 
moments of the Gaussian function the following relation can be derived: 

mn = (n 1) w2 ~-2• 

The parameters y1 and y2 in the Edgeworth series turn out to be identical to 
the skew and excess in (2.5). 

Summarizing, in this section we discussed various ways to characterize the 
peaks. An unknown peak may be characterized by its moments or by a series 
of orthogonal functions, e.g. Hermite polynomials. However, often a peak 
model must be assumed, e.g. to dissect overlapping peaks or to distinguish 
peaks from the background. Suitable peak models are compiled in table 2-I. 

2.2. Background models 

Background is used here as a collective term for all components of the signal 
that carry no analytical information. These include both deterministic and 
random components. We shall first discuss their origin. 

The signal of a chromatograph originates from the measurement of a certain 
physical property of the column effluent by the detector. A steady contribution 
comes from the carrier gas, including impurities, and the bleed of the stationary 
phase. With instrumental instabilities, e.g. due to flow controllers or thermostat, 
or with programmed changes of conditions, this contribution will be fluctuating 
or slowly drifting. 

A second contribution may come from the injected substances. In trace 
analysis the column is often overloaded with solvent. The solvent peak is 
characterized by a steep front and an extended tail on which the trace peaks 
are superimposed (cf. fig. 2.3a). Usually the solvent peak is irrelevant and, there
fore, considered as part of the background. In natural samples, as a rule of 
thumb, the number of compounds above a certain concentration is inversely 
proportional to the ratio of this concentration over the concentration of the 
largest peak. If the level at which the chromatogram becomes crowded with 
peaks is above the level of other noise contributions, the conglomerate of over
lapping peaks forms a "hilly" background, called "compound noise" (cf. 
fig. 2.3b). 

A third contribution is of electric origin. The noise from detector, amplifier, 
power supplies, etc., is mainly high-frequency noise. Spikes and steps may also 
be present. Noise from a flame-ionization detector is known to vary with the 
signal amplitude. 

A fourth contribution is due to the recording. In digital sampling the signal 
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a) b) 

Fig. 2.3. Background contributions from the injected sample: (a) solvent peak, (b) compound 
noise. 

will be distorted in two ways 2 - 11). First, sampling means that the signal is 
only known at distinct times. Shannon's criterion 2 - 12) states that the sam
pling rate must be higher than twice the highest frequency contained in the signal, 
otherwise the higher frequencies are "folded" over the lower, leading to dis
tortions. Second, digitization means that the signal is rounded to the nearest 
discrete value, introducing an error of about half the least-significant digit unit. 

A given background can be divided into random noise and a non-random 
baseline, as illustrated in fig. 2.4a. The baseline is usually approximated by a 

+139/i.r~ Signal 

t 
+1019 

+2750 

Auto-
correlation 

0 2() 110 60 80 
-Time 

\ 
1. 

t 0 
i 

1510 b) 
0 2() lj() 

-Lag 

Fig. 2.4. Separation of a background trace in a polynomial baseline and random noise; (a) a 
real trace of background is approximated by a first-degree polynomial and random noise, 
(b) autocorrelation of the random noise. 
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low-degree polynomial, either a single function over the entire chromatogram 
or piecemeal functions if the background is discontinuous or wavy. 

Random noise is described by its statistical characteristics, see e.g. Bendat 
and Piersol 2

-
12

). Since deterministic components are comprised in the base
line, the noise has a zero mean. Suppose a random noise signal n(t) is sampled 
after intervals L1: Nk = n(k L1 ). The autocorrelation function R(r) shows the 
average dependence of the noise amplitudes at a time lag -,;: 

1 m 

R(dLl) = R 4 = (n(t)n(t + dLl)) !":::!-I NkNk+d· (2.6) 
m k=1 

The approximation is the more precise the larger the number of samples, m. 
Figure 2.4b shows the autocorrelation of the random noise in 2.4a. By defini
tion, R 4 has a maximum ford= 0; this value 

1 m 

Ro =-I Nk2 
m k=1 

is called the variance or power of the noise. Its square root is called the (mean) 
amplitude. The magnitude of R 4, relative to R0 , indicates how strongly samples 
over the interval d L1 are related: if R4 differs appreciably from zero, this 
means that if the value at a certain moment is known, the value d L1 later is 
to some extent predictable. Unless the noise has some periodic component, 
e.g. caused by a thermostat cycle, the autocorrelation drops down to zero from 
the maximum R0 • A special type of noise is "white noise", for which R 4 = 0 
for all d > 0. The assumption that noise of successive samples is uncorrelated 
is a simple and very convenient noise model. 

So far, an explicit noise model has not been applied in chromatography, 
except by Kelly and Harris 2 - 1) who used the power-density spectrum. This 
is the frequency-domain equivalent of the autocorrelation function. These 
authors also discussed the validity of the assumption of stationary noise, which 
was implicitly made above. 

2.3. Peak detection 

With no prior knowledge about the locations or sizes of the relevant peaks, 
the amount of extracted information increases with the number of detected 
peaks. Hence the aim to detect as many peaks as possible, including trace peaks 
and overlapping peaks. Pushing this too far is likely to yield spurious peaks 
due to noise or to assign single peaks erroneously as composite. Clearly, the 
more the available knowledge about the peak shape is used in the detection, 
the better genuine peaks can be sorted out. This knowledge includes that peaks 
are more or less Gaussian, having a width varying approximately linearly with 
the location. 
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Existing detection methods in chromatography do not exploit much of the 
knowledge about the peak shape and the background. Conceiving a peak as 
"a signal that goes up and comes down", commonly the first or second deriva
tive of the signal is compared with a threshold. A peak is detected if the thresh
old is exceeded. 

Instead of deciding on the presence or absence of a peak on the momentary 
values of the signal or its derivatives, it appears more sensible to scan the signal 
for profiles that are congruent to the model profile. Let g(r) denote the reversed 
standardized - i.e. unit area and located in the origin - peak model. It is 
known from communication theory 2 - 13) that optimum peak detection in a 
signal with superposed uncorrelated noise is achieved by what is known as 
matched filtering, i.e. convolution of the signal y(t) and g( r): 

z(t) = J y(t- r)g(r)d-r. 
-00 

Matched filtering is a very selective means of distinguishing peaks from other 
components in the signal: a sort of resonance occurs where the local signal 
profile matches the shape of the peak model. Maxima in the filter output z(t) 
are likely peak locations. 

Detection is essentially a decision on the presence or absence of a peak. 
Two types of errors may be committed: 
- a "miss" by deciding that a peak is not present when it is; 
- "false alarm" by deciding that a peak is present when it is not. 
Clearly, these errors are mutually antagonistic: if one wants to avoid a miss, 
the decision in favour of the presence will be made at the slightest indication, 
incurring many false alarms. A rule for decisions will therefore balance the 
"costs" associated with each type of error. Several such rules exist, differing 
in the adopted criterion (cf. ref. 2-13). For our purpose there is no clear ap
preciation of the costs. Since the aim was to detect as many peaks as possible, 
it appears sensible to minimize the probability of a "miss" for a fixed (small) 
probability of "false alarm". 

Two types of detection limits should be distinguished. The first type is the 
limit at which a peak disappears in the background. The second limit specifies 
when overlapping peaks come so close that the composite peak cannot be dis
tinguished from a single peak. 

The detection limit due to background noise has not received much attention 
in chromatographic-data processing. Commonly an inflated threshold serves 
to suppress all minor peaks. In sec. 3.2.2 we will optimize the matched-filter 
detection, using a threshold based on the noise amplitude of the actually proc
essed signal. The pertinent minimum detectable amount is derived. 

To distinguish between single peaks and composite peaks is, to a large extent, 
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arbitrary because true single peaks do not exist. The point at which one starts 
to consider a peak as composite depends on the peak concept. Usually, the 
existence of two maxima is taken as the evidence of a composite peak. It has 
also been proposed to take the existence of more than two inflection points on 
the composite curve as evidence of overlap 2

-
14

). This criterion is more sen
sitive and can also detect shoulder peaks. By making more-detailed assumptions 
about the peak shape, the detection limit for composite peaks can be pushed 
further down 2 - 15 •16). However, this is rather speculative as the accuracy of 
the peak model cannot be checked due to the composite nature of all real 
peaks and the specificity of each shape. 

2.4. Baseline correction 

Baseline correction directly affects the peaks and is therefore of paramount 
importance to the quality of the peak parameters. Surprisingly, many investiga
tions on accuracy and precision of parameter estimation 2

-
1

•
17

•
18

•
19

) did not 
report the method of baseline correction. 

Commonly the baseline correction is made as follows: having determined 
the peak positions, the boundaries of each peak are located. The segments out
side the peak regions, labelled b in fig. 2.5, are used to fit a baseline. This may 
be a continuous function over the whole chromatogram (global baseline, fig. 2.5 
above) or a piecemeal correction to each peak or peak group (local baseline). 

A global baseline is based on more data points and therefore less sensitive 
to erroneous location of the peak boundaries. However, it is difficult to fit a 
global baseline to a wavy or discontinuous background. 

A local baseline is better suited to changing conditions but it hinges on the 
correct location of the peak boundaries. A simple constant or linear function 
will give a sufficiently accurate approximation. Commonly 2 - 20 •21 •22) the 
minima before and after the peak are taken as boundaries and these are con
nected by a straight line, as shown in fig. 2.6a. A cwm between overlapping 

I 

f,.l.. 
I 
I 
I 
I 
I 
I 
I 
I 

Fig. 2.5. Baseline approximation by fitting a function to the background segments, labeled b. 
A global baseline is a single function over the whole chromatogram (above). A local base
line is a piecemeal approximation to the segments bracketing each peak group (below). 
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Fig. 2.6. Two methods of local baseline correction; (a) connection of valleys in a chromato
gram, (b) least-squares fitting of a polynomial to the background segments. 

peaks must be skipped 2 - 22). Baan 2 - 23) fitted a polynomial to the baseline 
segments bracketing a peak group, raising the degree of the polynomial until 
a satisfactory fit is obtained (cf. fig. 2.6b). The peak boundaries were determined 
by a threshold for the second derivative. 

Considering these approaches it appears that the local-baseline approxima
tion is able to cope with a greater variety of chromatograms and therefore better 
suited to our aims. The fitting of a polynomial will give a more accurate approxi
mation as it is based on more data points and able to follow a curvature in the 
background. The crucial problem is the location of the peak boundaries. The 
minima before and after the peak are incorrect on a sloping baseline. A threshold 
for the signal or its derivatives also yields incorrect boundaries. We will elab
orate an improved method for locating the boundaries. 

2.5. Parameter estimation 

Determinate and random errors from all stages of a chromatographic analysis, 
including sampling and injection, separation, recording and signal processing, 
are accumulated on the peak-parameter estimates. The errors in sampling and 
separation were comprehensively investigated by Rijks 2 -

24
). The errors in 

recording were discussed by Kelly and Horlick 2 - 11). In studying the errors in 
signal processing we will ignore the errors from previous stages, although it 
should be kept in mind that however clever the processing, the inherent errors 
cannot be reduced and thus may eventually be the quality-determining factor. 

A distinction should be made between systematic error and random error, 
or, as it is usually called, between accuracy and precision. Accuracy is a measure 
how close a result comes to the true value, neglecting the spread due to random 
errors. Precision is a measure how exactly the result is determined and thus 
characterizes the spread. In practice accuracy and precision are often mixed up 
with reproducibility, as a way to determine the spread is to repeat the experi
ment. This is not readily possible for studying the errors in signal processing 
as repeating the analysis will also change the errors in previous stages. However, 
suppose that a particular analysis can be repeated several times under virtually 
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constant conditions, so that the true values for each chromatogram are identical. 
The results will spread due to the non-reproducible, stochastic components in 
the signal. The standard deviation of the distribution of the results, (f, is thus 
determined by the noise. Conversely, if the statistical characteristics of the 
noise are known, it is possible to estimate the standard deviation without 
repeating the analysis: 

Let some parameter p be a function of n data Y1 , Y2 , ••• , Y11 : p 
g(Y1, ••• , Y11). We will assume that the random noise superposed on the data is 
"white", i.e. uncorrelated, having mean amplitude (f)' = VRo (cf. (2.6)). The 
standard deviation (fP of the parameter p, follows from the standard deviation 
of the data according to the so-called error-propagation expression: 

II 

(2.7) 

Therefore, if the amplitude of the noise is known, the standard deviation of 
the parameters can be calculated without repeating the analysis. 

Another source of error is associated with the estimation procedure. For 
example, if the peak top is located at the highest data point over the peak, 
the random error in the top location will be about one quarter of the sample 
interval, even in the absence of noise. 

Often the random error and the systematic error have an antagonistic charac
ter. The estimation procedure can be designed to achieve a compromise. Con
sider fig. 2. 7 of a Gaussian peak with superposed white noise. If the area of the 
area of the peak is determined by numerical integration of the sampled signal 
Y1, i.e. 

Signal 

i 
-Time 

][ 

-Area A 

Fig. 2. 7. Effect of the integration limits on the accuracy and precision of the estimated peak 
area A. On extending the integration limits (I -+ II), the mean of the probability distribution 
p(A) shifts closer to the true value A* (A1 -->- An), but the standard deviation increases 
(al -+ O'u)· 
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b 

A=IY,Ll, 
l=a 

and the integration interval (a, b) and sample interval L1 are fixed, the lost area 
outside the boundaries causes a systematic error. The accuracy increases on 
extending the integration limits, but the precision decreases, as it follows from 
(2.7) that 

As remote samples do not contribute substantially to the area, it is obvious 
that after some distance the gain in accuracy is overridden by the loss in precision. 
The integration limits may be adjusted to obtain a compromise. 

Generally, let the systematic error ("bias") f-lp- f-lp 0 and the standard de~ 
viation aP(K) of some parameter p be a function of a variable K (in the above 
example the integration limits may be at a distance K from the top). The mean 
squared error is 

The error is minimized if 

Usually f-lp 0 is unknown, so that this is not a practical condition. In a region 
where both the bias and the standard deviation are monotonic functions, it 
seems sensible to choose K so that 

()(f p lbf-tpl----0. 
bK bK 

(2.8) 

In the case of area integration this condition implies that the integration limits 
are extended until the value of the integral changes less than that of the stand~ 
ard deviation. 

Accuracy and precision have been mainly studied experimentally from com
puter~generated peaks and random noise 2 - 17•18•19). We will apply eq. (2.7) to 
obtain analytical expressions for the errors. These have the advantage over 
experimental relationships that the role of involved factors is better understood 
and, most important, that they can be used in eq. (2.8) to calculate a balance 
between accuracy and precision. The opposing trend in accuracy and precision 
has been recognized previously 2 - 17), but no explicit condition for a trade-off 
has been reported. 

Two methods of peak characterization were distinguished in sec. 2.1. 
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First a given peak can be characterized by its moments, without assuming 
anything about the shape. 

The second method is to determine the parameters in a function that simulates 
more or less real peaks. This technique is usually called "curve fitting". The aim 
is to determine the parameters p (pl> ... , Pm) in a functionf(t, p) so that 
it fits best to the set of data Yl> ... , Y, over the peak (Yk is the baseline-cor
rected signal value at t = tk). It can be shown that with white noise on the 
data it is sensible to minimize the sum S of the squared discrepancies between 
the function values and the data: 

II 

minS L [J(tk, p)- Yk]2; (2.9) 
p k= 1 

Sis thus a function of the parameters p. A necessary condition for the minimum 
is that the partial derivatives of S to the parameters are equal to zero: 

II 

oS I - = 2 [f(tk, p) 
()pi 

i = 1, ... , n. (2.10) 

k=l 

These are called the normal equations. The stated condition is necessary but 
not sufficient, because it also holds for a maximum inS and does not distinguish 
between local minima and the global minimum. Some problems encountered 
in curve fitting are: 
- The choice of a suitable peak model that is both general and specific. This 

subject was already broached in sec. 2.1. 
To find a procedure which solves condition (2.9) or (2.10). As peak models 
are non-linear, the optimum parameter values must be approached iteratively, 
starting from some initial estimates. A good algorithm for optimization 
should require few amounts of computation and storage, and assure that 
the optimum values are attained. 

- According to eq. (2.9) the optimum parameter values minimize the sum of 
squares. Whether this is physically a sensible condition depends on the cor
rectness of the assumed peak model and noise model. Often additional 
relationships are known between the parameter values (e.g. peak width 
increases with retention time) or the values are restricted to some feasible 
regions (e.g. peak areas are positive). The formulation and the way to account 
for the constraints is described in chapter 3. 

- Suppose that the optimal parameters p have been found that yield a global 
minimum and satisfy all constraints. If the peak model is correct, the resi
dues 

k 1, ... , n, 
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should be entirely due to the noise on the data. Hence the residues should 
show almost the same characteristics as the random noise before and after 
the peaks. If this is not the case, the model is likely to be incorrect. A problem 
is how it can be deduced from the shape of the residues in which way the 
model should be modified to improve the fit. 

- If the optimal parameters give a satisfactory fit, it is interesting to know how 
significant the values are. General expressions for the standard deviation of 
the parameters are known. We will apply these general expressions to some 
particular peak models to obtain analytical forms for the errors in the 
parameters. These errors are compared with the errors from the moment 
calculation. 

Since the article by Fraser and Suzuki 2 - 25) curve fitting has predomi
nantly been applied for the calculation of the parameters of overlapping 
peaks 2

-
14

•
23

•
26

•
27

). The fitting function is then the sum of several displaced 
peaks with different areas, widths, etc. The standard deviation of the parameters 
has never been studied in chromatographic applications. Therefore several 
wrong ideas have pervaded: 
- Littlewood 2

- 26) thought about replacing chromatography as far as pos
sible with mathematics, by using shorter columns. The goal was to "reduce 
the column to the point of virtual extinction". We will show that the stand
ard deviation of the peak parameters increases rapidly with decreasing 
resolution. 

- Chesler and Cram 2- 18) alleged that their complex peak model was excel
lently suited as a model for dissecting overlapping curves. However, this 
general model will give excessively large covariances of the parameters, 
which implies that the precision is very low. 

- Attempts have been made to push the detection limits down, by moments 
analysis 2 - 15) or slope analysis 2- 16), because it was believed that this was 
the limiting factor in the dissection of overlapping peaks. Apart from being 
unpractical, these attempts are also rather meaningless, as the parameters 
of closely spaced peaks cannot be determined precisely. 

2.6. Filtering 

Filtering is understood here as a certain operation on the signal. The aim 
of filtering may be to attenuate the random noise ("smoothing") or to 
obtain some derivative of the signal (differentiation). Since Savitzky and 
Golay 2 - 28) gave a clear statement of the filtering problem, the polynomial filters 
proposed by them have gained an unassailed monopoly in the processing of 
analytical data. While these are convenient general-purpose filters, other 
filters are known which cause less distortion for the signal at hand or require 
less amounts of computation. We shall briefly discuss some types of filters. 

As the signal is available in sampled and digitized form, our main interest lies 
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in the properties and design of digital filters. However, the result of the filtering 
is often more easily understood from the analogue form, as our peak models 
are also continuous. 

Let Y~o i = 1, ... , n, be the equidistantly sampled signal. The operation of a 
symmetric linear filter can be written as 

m 

Yt* = 2: Fk Yt-k• m ;;:: 0. (2.11) 
k=-m 

In this expression, Fk is the weighting factor for the contribution of Y1_k to 
the filtered signal at point i, Y1 *. Expression (2.11) is the discrete form of a 
convolution of the (unsampled) signal y(t) and a filter function f(•): 

00 

y*(t) J y(t-7:)f(7:)d7:. (2.12) 

If the sampling interval Ll is small, it is usually valid to assume that, if 
Y1 y(i Ll) and Fk = Ll f(k Ll) then Y1* ~ y*(i Ll). This is very convenient 
because (2.12) is more easily evaluated when y(t) is a peak model. On the other 
hand, (2.11) leads to a very simple result when Y1 is purely white noise. Sym
metrical filtering according to (2.11) or (2.12) can only be performed off-line 
or on a delayed signal. 

The filter (2.11) is a non-recursive filter because it operates only on the input 
signal. If the filter also acts on its own output, it is said to be recursive. A linear 
recursive filter is specified by 

P m 

Yt* L Gj Yt-/ + L Fk Yl-k• m,p ;:::o. (2.13) 
i= 1 k=-m 

Often a filter can be put in both forms, e.g. the moving average: 

m 

(2.14) 

k=-m 

The non-recursive form requires the summation of 2m 1 terms, whereas 
the recursive form requires only the summation of 3 and gives therefore great 
computational savings with a high m. In some cases the recursive filter achieves 
results for which a simple filter would require a very large or potentially infinite 
number of operations. Consider the discrete form of the analogue exponential 
filter: 
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1-1 

Y,* "\' ~ exp (-kf•) Yt-k = ~ Y, + exp (-1/•) Y1-1 *. (2.15) 
~. "( 

k=O 

Here, the non-recursive form requires i multiplications and additions against 
just 2 for the recursive form. For large •, 

yielding 

1 
exp (-1/•) ~ 1--, 

"( 

1 
Y1* Y1_ 1* + -(Y1 Y1_ 1 *). 

"( 

(2.16) 

This equation states that the old filtered value is updated by a fraction of the 
difference between itself and the new sample. The time constant • controls 
the degree of smoothing, e.g. if • = 1 there is no smoothing. Expression (2.16) 
can be generalized by allowing • to be a function of i. For example, if 1: = i 
we have an expression for the "current mean": 

} I 

Yt-1*) =-:- L Yk. 
l k=l 

(2.17) 

Having given some forms of linear filters, we will now discuss the effect of 
these filters on the deterministic components and the random component in 
the signal. For a linear filter these effects are independent. Among the trans
formations of the signal that a linear filter can perform, we are mainly interested 
in smoothing and differentiation. 

Smoothing is effected by replacing the sampled value at a point by a weighted 
mean of the neighbouring samples. To leave a constant signal unaffected, the 
weights of a smoothing filter must satisfy the relation 

m 00 

or J /(7:) dt' 1. (2.18) 
k=-m 00 

The first row in fig. 2.8 illustrates various smoothing filters; a way to calculate 
their effect on the noise is discussed below. 

For obtaining the derivative of a continuous signal y(t), we consider the 
following: let/(•) be a function satisfying (2.18); if instead of convoluting y(t) 
with f('~:) it is convoluted with the first derivative /'(7:), integration by parts 
shows: 

00 

y*(t) = J /'(7:) y(t- 't) d'Z' f f('r) y'(t- 't) d1:. (2.19) 
-oo -oo 
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Fig. 2.8. Profiles of digital filters for smoothing and differentiation. Filters in one column 
are derivatives of the smoothing filter. 

Thus the result of convoluting y(t) and the derivative of f('r:) is identical with 
the smoothing of y'(t) by the filter-response function f('r:). Or, in order to 
obtain the smoothed derivative of the signal y(t), we merely have to convolute 
it with the derivative of a smoothing filter function. A number of digital filters 
for calculation of smoothed derivatives is illustrated in fig. 2.8, middle row. 
The requirement that a linear function is differentiated correctly implies that 
the filter weights must satisfy the conditions 

m m 

O· 
' 

(2.20) 

The same reasoning can be made for the higher derivatives: a quasi n-fold 
differentiation of the signal y(t) is performed by convoluting y(t) and the nth 
derivative of f(-r:). The digital form must satisfy n + 1 conditions: 

m 

L k 1 Fk 0, i = 0, 1, ... , n- 1 
k=-m 

and 
m 

L knFk = n! 
k=-m 

Some filters for calculation of the second derivative are illustrated in fig. 2.8, 
last row. 

The effect of a linear filter on random noise can be seen from the autocor
relation function, as defined in eq. (2.6). Let N" i = 1, ... , m, be the sampled 
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noise signal, characterized by the autocorrelation function 

1 m 

Rd = L N, Ni+tJ· 
m t=1 

The filtered signal 
a 

is characterized by the autocorrelation function 

1 m 2a min(a,a+ I) 

R/' L N,* Nt+tl* = L Ra+t L Fk Fk-t 
m l=l i=-2a k=max(-a,i-a) 

2a 

L Rd+i 'lf'-i• (2.21) 
t=-2a 

This result shows that the autocorrelation function is transformed by a similar 
linear "filtering" operation. If the original noise is white, i.e. R#o = 0, 
eq. (2.21) reduces to 

mln(a,a-tl) 

R,/ = R0 L Fk Fk+d· (2.22) 
k=max(-a,-d-a) 

This result is important in two aspects. First it allows the mean amplitude of 
the noise after filtering to be calculated: 

a 

R0* Ro L F,/. (2.23) 
k=-a 

The noise attenuation of the filter is thus determined by the sum of the squared 
filter weights. It can be shown that for a fixed number of weights, the moving 
average has the greatest noise attenuation. Secondly it shows that a filtered 
white-noise signal will be correlated. The reverse, i.e. filtering in such a way 
that after filtering the noise is white, is called "whitening". 

2. 7. Outline of the program 

Having made a survey of the elements of the data extraction, it must be 
considered how to organise these elements in a smoothly running program. 
For this purpose it may be inspiring to look at the way how a chromatogram 
is processed by a skilled analyst. This way is found to be a curious mixture of 
training, experience, a priori information and research. It appears that the 
processing does not proceed according to a fixed scheme, but by adapting a 
basic strategy to the information obtained in the course of the processing. 
Several stages of detailing can be distinguished. An initial scan reveals a quali-
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tative impression of peak density, peak shape, signal-to-noise ratio, baseline 
trend, etc. These features serve to typify the chromatogram. Having gained an 
overall impression, attention is given to segments in order to recognize charac
teristic confignrations, like solvent peak, overlapping peaks, shoulders, etc. 
Finally the individual peaks are scrutinized and qualitative impressions are 
quantified by interpolation, approximation and measurements. 

The process of perception and mental processing is quite complex and is only 
roughly described as a cyclic sequence of sensing, hypothesis casting, search for 
supporting evidence, hypothesis modification and decision making. Generally, 
the processing is very powerful in the qualitative aspects, because it is able to 
cope with a wide variety of chromatograms and insufficient prior information 
is compensated by oriented research, hypothesis testing and decision making. 
Each chromatogram receives a matched treatment. On the other hand, the 
quantitative aspects are rather poor. The precision is limited owing to the 
inability or reluctance to do large amounts of measurements and calcula
tions. For example, rapid but imprecise geometrical constructions such as 
tangents or perpendiculars are often preferred to numerical integration. An
other drawback is that many arbitrary decisions are made, so that the proces
sing and the results are irreproducible. 

Imitation of this approach in a computer program would result in a very 
complex program: a few alternatives in each decision rapidly lead to a com
binatorial explosion. In order to keep the program manageable - in size, in 
time and in mind - the number of alternatives must be restrained. This means 
that one program structure useful for achieving adaptivity, viz. pathway selec
tion (fig. 2.9a), should only be considered for incompatible processing modes. 
A requirement for dynamic setting of processing controls (fig. 2.9b) is that the 
relation between the characteristic of the signal, e.g. S/N ratio, and the appro
priate control setting, e.g. threshold value, is well defined. Iterative approxima
tion (fig. 2.9c) is the method to be used if the relation between signal character
istics and optimum controls is not well defined, but some criterion for judging 
the quality of the processing is available. The optimum is approached by 
repeated adjustment of the controls. It is now important that the iteration will 
converge. Algorithms of this type are treated in detail by Tsypkin 2

-
29

). These 
three structures can be applied for small processing steps or wide ranging opera
tions. By inserting one into another a powerful adaptive program structure 
can be obtained. 

The usual way to design a program for solving a certain task is to make a 
top-down decomposition. This means that the task is divided into a number 
of sub-tasks, which are again decomposed in simpler sub-tasks, etc. The object 
of this decomposition is to arrive either at basic operations that can be pro
grammed straightforwardly or at standard procedures for which ready-made 
algorithms are available. The decomposition is rather functional than time-
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b) 

signal result 

C) 

Fig. 2.9. Adaptive programming structures: (a) pathway selection, (b) dynamic setting of 
processor controls, (c) iterative approximation. 

sequentional, that is, attempts are made to arrive at functionally simple sub
tasks. To arrive at an efficient and flexible program it may be worthwhile to 
structure the sub-tasks in a different way. Accordingly, the original top-down 
decomposition is complemented by a bottom-up assemblage which is not 
necessarily isomorphic. 

In our program the processing is performed in three stages, viz. inspection, 
detection and estimation: 

By inspection some of the lacking information about the signal is obtained. 
The mean noise amplitude should be known for setting a threshold level in 
the peak detection. The peak width should be known for matched-filter 
detection. 

- Peak detection locates the positions of the peaks, including trace peaks and 
overlapping peaks. Spikes, which interfere in the peak detection, are filtered 
out first. Peak boundaries are located so that peak regions can be separated 
from baseline segments. 

- Estimation includes the baseline correction and the peak-parameters esti
mation. The latter can be done by calculation of the moments or by curve 
fitting. 

Figure 2.10 shows a flow chart of the program. The modules, indicated by 
blocks in fig. 2.10, will be designed and described in the next chapter. 
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noise am litude 

Fig. 2.10. Flow chart of the program for processing of a chromatographic signal. 
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3. ALGORITHMS 

In this chapter the algorithms of the program, as outlined in sec. 2.7, are 
described. The fact that no coded algorithms are presented does not imply that 
coding is straightforward, even in a so-called high-level language. However, 
the difficulties of programming are not specific for the present work. 

As our prime objective is to obtain optimum information extraction, this 
aspect will be stressed in the present treatment. To get efficient algorithms it 
was often necessary to structure them in a different way. Thus the actually 
implemented algorithms may have a different form. 

3.1. Inspection 

As illustrated in fig. 2.10, the inspection stage consists of the random-noise 
estimation and the initial-peak detection. 

3.1.1. Random-noise estimation 

Random noise can be described by its autocorrelation function, as defined 
by eq. (2.6). Its mean amplitude must be known in order to set a threshold in 
the peak detection. The mean noise amplitude, denoted as ay, is also used 
to calculate the standard deviations of the parameter estimates. 

The random noise amplitude can be derived from the scattering of the sampled 
data around a local polynomial fit. Let p,.(t) be an nth degree polynomial fitted 
to m data (t;, Y1), i = 1, ... , m. If p,.(t) accounts sufficiently for the non
random components in the signal, the mean squared error provides an estimate 
for the power of the noise: 

1 
a, 2 

l"::;j ---- 2: [Y,- pn(t1)]2. 
m 11=1 

m 

The simplest case is to fit a zeroth-degree polynomial to two successive 
samples Y1_ 1 and Y1: 

Summing the mean squared differences over all data points yields the expres
sion for the random-noise amplitude: 

(3.1) 

A constant baseline is eliminated in this way. If the signal is purely random 
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noise, evaluation of (3.1) and substitution of (2.6) yields 

This shows that for white noise the amplitude is accurately estimated. 
As actually the squared first differences are summarized in (3.1), the result 

will be biased owing to large contributions of points on the peaks. These con
tributions can be eliminated iteratively, assuming that random noise is almost 
normally distributed. The differences Y1 - Y1_ 1 will also be distributed nor
mally, so that it may be assumed that differences which exceed the range between 
-3av V2 and +3av V2 are points on a peak. Hence the following algorithm 
(k is the iteration number): 

(i) (k 0): calculate from eq. (3.1) the mean amplitude a/; 
(ii) recalculate, by discarding the differences outside the range (-3av k V2, 

+ 3a / V2), yielding a/+ 1 ; 

(iii) if O'v I<+ 1 differs significantly from a/ (more than I 0 %), k is raised by 1 
and (ii) is repeated. 

The procedure was tested with computer-generated uncorrelated noise. As 
expected, accurate estimates were obtained. For correlated noise, obtained by 
filtering the uncorrelated noise with a moving average filter, the bias was in 
close agreement with the predicted value. Superposition of peaks of varying 
width and size showed that the iterative procedure successfully discarded these 
contributions. 

3.1.2. Initial peak location 

Peak detection by matched filtering requires the knowledge of the peak shape 
and the peak widths. As all peaks have a more or less Gaussian shape, it is 
obvious to use this model. The peak width in chromatography increases with 
the location. Commonly a linear relationship is accepted as a reasonable 
approximation. In the following procedure the coefficients in the linear relation 
are estimated from the widths of the major peaks by regression. For a Gaussian 
peak the width is defined as the distance between the top and the inflection 
points. We will generalize this definition to other peak shapes. This implies 
that the width at the leading edge may be different from the width at the trailing 
edge. 

The top of a peak is located where the first derivative (f.d.) changes its sign 
from positive to negative. The maximum of the f.d. before the top and the 
minimum after it are the inflection points. Let Y1<

1> denote the f.d. at the ith 
data point. The f.d. can be calculated efficiently with a linear differentiating 
filter: 

(3.2) 
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This expression can also be put in a recursive form which is easier to calculate 
for large m: 

Y (1) 
1-1 

1 
---(YI+m- Yt-m-1), 
2m+ 1 

1 
[(2m+ 1) Yt* m Yt-m-1- (m + 1) Yl+m1· 

,Lk2 

The filter width m controls the noise attenuation. According to eq. (2.23) the 
mean amplitude of the filtered noise is 

q* y (3.3) 

If the signal contains a linear baseline and random noise, the f. d. will be within 
the dual threshold 5qy *. The start of a peak is detected where the positive 
threshold is first exceeded; the end of the peak is where the f.d. returns from 
below the negative threshold. In between, the top and the inflection points 
can be found. 

It may appear from eq. (3.3) that the noise amplitude can be attenuated at 
will by increasing the value of m. However, it can also be demonstrated that 
the extrema in the f.d. shift outwards on increasing m. This is undesirable for 
three reasons. First the apparent widths would be too large. Second, fusing of 
partially resolved peaks may occur. Third, the magnitude of the f.d. at the 
extrema decreases, which reduces the minimum detectable amount. 

It can be shown that a value m = wP (peak width) gives a negligible 
broadening, while maximizing the signal-to-noise ratio in the f.d. At first, 
m = wP seems not a very practical condition because the peak width is un
known. However, by using an adaptive mechanism both the peak-width regres
sion and the filter-width optimization can be done concurrently. Suppose a few 
peaks have been detected using a provisional value of m. They are plotted as 
points in a location-width (p-wp) graph, cf. fig. 3.1. One could now take a 
value for m corresponding to the linear regression to these points. However, 
if some of the peaks happen to be very broad, the too large value of m would 
broaden future peaks, inducing a still larger value of m, etc. It is necessary to 
take a safety margin. Assuming a Student T-distribution, the spread about the 
regression line is used to calculate a confidence interval (dashed curves) 3 - 1). 

The lower curve is used to calculate the appropriate value of m and the point 
where this value can be updated. Upon detection of an additional peak, the 
regression line and the confidence limits are recalculated. 

Outliers, due to composite peaks or spikes, bias the regression line and the 
confidence limits, thus blocking the filter updating mechanism. A test for out-
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Fig. 3.1. Linear regression of the peak width and the peak location (drawn line). Crosses 
indicate peaks detected (ft1 - w1). The appropriate filter width m and the updating point 
(m _,.. m + 1) are calculated from the lower confidence limit (dashed curves). 

Hers compares the sums of squares from the regression including and excluding 
each peak. If significant differences are found, the peak is temporarily dropped 
(until the regression is repeated for a newly added peak). 

Simulated chromatograms with both uncorrelated and correlated noise and 
peaks of various sizes, showed that the widths were estimated quite accurately. 
Spikes and broad composite peaks were effectively removed. Only in the case 
that all peaks were very broad, i.e. widths order of magnitude larger than the 
initial value of m, and the S/N ratio was low, did the procedure fail to detect 
any peaks, as the high threshold was never surpassed. 

3.2. Detection 

The detection stage is made up of two parts, viz. spike filtering and peak 
detection. 

3.2.1. Spike filtering 

A spike superposed on the baseline is easily distinguished from genuine peaks 
because its width is much smaller than expected from the linear regression. A 
spike superposed on a peak, however, distorts the profile of the output of the 
matched filter. It requires a complex detection logic if this type of distortion 
must be taken into account. It is easier to remove the spikes in advance by 
non-linear filtering. This means that the outlying value is replaced by a value 
interpolated from neighbouring samples. The procedure presented here is de
signed with special care not to discard sharp peak tops or steep peak sides. 

Consider a segment of five successive samples: Y;-2' Yt-1> Yt. Yt+ 1 , Yt+2· 
To find out whether the central sample Y1 is a spike, a parabola, 

f(i + k) =a+ b k c k 2
, 

is fitted to the neighbouring samples. The coefficients of the parabola are 
found as 
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a 1 (-Yt-2 + 4Yt-1 + 4Yt+I 
b =to (-2Yt-2- Y1-1 + Yt+1 
c = 1 (+Yt-2- Y;-1 Yt+1 

yl+2), 
2Yt+2), 

Yt+2). 

The discrepancy at the central point is denoted as L'1 1 = Y1 a. For a signal 
of purely white noise, Ll 1 is a statistical quantity with zero mean and standard 
deviation a .d 1·4 ay. Two ratios serve as test quantities. 

The ratio R1 = Ll tfav compares the discrepancy with the mean noise ampli~ 
tude. If the central sample is a spike, R 1 will be very large. For white noise 
on a smoothly varying baseline, R1 will be almost normally distributed with 
zero mean and s.d. 1·4, so that a spike threshold may be set at IR1 1 > 5. 
However, R 1 may also be very large where the parabola gives a bad fit, as on 
sharp peak tops and steep peak sides. These cases are generally characterized 
by a strong curvature in the signal. 

The second test quantity R2 Ll 1jc1 compares the discrepancy with the 
local curvature. A small value of R2 indicates a strong curvature. A large 
value of R2 is, in itself, not indicative of a spike, as c1 has zero mean for pure 
noise. However, if both R1 and R2 are large, a spike will be present. A thresh~ 
old for R2 is derived by considering a number of cases. 
- The top of a sharp peak can be simulated by the case Y1_ 2 = Yl+ 2 = 0; 

Y1_ 1 Yi+ 1 = p; Y1 4p (pis an arbitrary value). This yields L'1 1 = iP· 
and c = tp. The condition for a spike is: R 2 > 8. 
To avoid that Y1 is taken as a spike if Y1+ 1 is a spike, the case 
Y1-2 = Yt- 1 Y1 = Y1+2 = 0; Yl+ 1 = p, yields R2 > 4. 

- A damped oscillation may be simulated as Y1_ 2 = Yt- 1 = Y1+2 0; 
Y1 = p; YH 1 = fp. This yields R2 = 4 6/f It is sensible to reject Yt 
if -1 </ < 0, or, lO < R2 < oo. 

Combining these results, a spike is detected if IR1 1 > 5 and Rz > 10. 
A test with Gaussian peaks and superposed white noise showed that peaks 

having the width w v > 0·4 (sample interval units) were not affected. 

3.2.2. Peak detection by matched filtering 

The matched~filter detection was briefly outlined in sec. 2.3. Straightforward 
application is not possible because two other contributions must be taken into 
account, viz. random noise, with known amplitude, and an unknown deter
ministic baseline. In the following sections these factors are investigated. 

3.2.2.1. Elimination of the baseline 

The following method for elimination of the baseline is an elaboration of the 
detection by correlation used by Brouwer and Jansen 3

-
2

) for the processing 
of complex spectra. It is assumed that the baseline in the neighbourhood of a 
peak is approximately a linear function. Let y'(t) denote the first derivative 
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of the signal. In the differentiated signal the assumed peak shape g("r) is modi
fied to g'(r). Hence the modified matched filter becomes: 

z*(t) J y'(t- r) g'(r) dr. (3.4) 
-oo 

Integration by parts in either direction proves the identity 

z*(t) J y"(t r) g(r) dr, (3.5) 
-00 

=- f y(t r) g"(r) dr. (3.6) 
-oo 

Expression (3.5) shows that the effect of the modified matched filter is, in 
fact, a smoothing of the second derivative of the signal. A linear baseline is 
therefore eliminated. 

Expression (3.6) shows that the two operations in (3.4), viz. differentiation of 
y(t) and convolution, can be conveniently combined into a single operation, 
viz. convolution with the second derivative of the peak model. 

So far no particular model was assumed. As all peaks are more or less Gauss
ian, it is obvious to use 

We call wf the width of the matched filter. For a sampled signal the operation 
(3.6) is replaced by a summation: 

m 

(3.8a) 
1=-m 

The weighting factors are calculated from (3.7) (LI is sampling interval): 

G1 = Ll g"(i Ll). (3.8b) 

The value of m was set to m 4wffLI; beyond this value the weights are 
almost zero. 

3.2.2.2. Optimization of the filter width 

Optimum detection is attained for the filter width that maximizes the signal
to-noise ratio after filtering, defined as 

height of the filtered peak 
S/N* = ----------

mean noise amplitude after filtering 
(3.9) 



-33-

(a marking "*" denotes an attribute of theJiltered signal). 
The mean noise amplitude before filtering, ay, was estimated in (3.1). Assum

ing the random noise to be uncorrelated, the attenuated amplitude after filtering 
is found, using (2.23): 

(3.10) 

The sum of the squared filter weights may be approximated, using eqs (3.7) 
and (3.8b): 

(3.11) 

Let the signal contain a Gaussian peak, eq. (2.1), having area A and width 
Wp, i.e. y(t) = g(t, A, p, Wp). Inserting this and (3.7) in (3.6) and evaluating 
the integral shows that the filtered signal is indeed the second derivative of 
this peak, but its width is increased to 

wp* = (w/ + w,2)112. 

Let K = w,jwP. The filtered peak is thus apparently broadened by a factor 
(1 K 2

) 112• The height of the filtered peak is equal to the magnitude of the 
second derivative at t = p: 

A 

Substitution of this, (3.10) and (3.11) in (3.9) yields (using K = w1fwu): 

(3.12) 

The first term in (3.12) is the signal-to-noise ratio before filtering. The second 
term contains the ratio f = wpjLI which may be seen as a dimensionless sam
pling density (number of samples over the peak width). The third term can be 
optimized. As a function of K this term reaches the optimum at K = 5, as 
graphed in fig. 3.2. This means that for optimum peak detection the width of 
the matched filter should be proportional to the width of the peaks in the signal, 
viz. w, = Wu Vs. Figure 3.2 shows that this is not a sharp optimum, so that 
a smaller value of K, which is advantageous from the point of resolution and 
amount of computation, does not entail a great loss, e.g. with K = 1·4, 
S/N* is only 10% less. 
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Fig. 3.2. Signal-to-noise ratio in the output of the modified matched filter, as a function of 
the filter width (cf. eq. (3.12)). 

3.2.2.3. Threshold level and detection limit 

From the filter output Zk * it must be decided whether a peak is present. 
With a peak in the signal, the second derivative becomes negative, so that a 
negative threshold level must be exceeded. Without assuming any particular 
distribution for the filtered noise, the Bienaym6-Chebychev inequality states 
that for a signal of purely random noise with variance a, *2 , 

(3.13) 

Hence, the probability of detecting a spurious peak due to noise using a thresh
old 5a, * is less than 0·04. In fact this probability will be considerably smaller 
because the noise is almost normally distributed. For the threshold 5a.v * and 
K = 1·4, in order to be detectable, a peak must have a minimum signal-to
noise ratio before filtering: 

5 
S/Nmln =-. 

VI 
(3.14) 

The minimum peak area required for detection, which is directly proportional 
to the minimum detectable amount, is 

(3.15) 

By comparison, the commonly accepted limit with no filtering is S/N > 5, 
yielding Am1n 12 a, wP' The optimum limit if the differentiation of the 
signal were not required is 
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or 

These limits are illustrated in fig. 4.1. 

3.2.2.4. Fusing limits 

The fusing limit is defined as the minimum resolution between two peaks at 
which the two can be detected separately. Resolution is expressed as the distance 
in location over the mean peak width: 

Rs 

~ \./ \,,,/ 

G) 

I 
I 
I 
I 

\ I ,_, 

(3.16) 

d) 
Fig. 3.3. Second derivatives of two overlapping Gaussian peaks (dashed curves) and of the 
composite curve (drawn curve). 
(a) Two almost separated peaks. Detection by minima in the second derivative yields a 
spurious peak at 1'-*· (b) Fusing limit for detection by multiple pairs of inflection points (zeros 
in the second derivative). (c) Fusing limit for the detection by minima in the second derivative: 
upon closer spacing the minima will coincide. (d) Two overlapping peaks giving one positive 
minimum in the second derivative of the composite curve. 
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The output of the matched filter can be seen as the smoothed second derivative 
of the signal. For two overlapping Gaussian peaks the filter output is the sum 
of the, broadened, second derivatives of the peaks, cf. fig. 3.3a. If peaks are 
detected where the filter output exceeds a certain negative threshold, the limit 
of separability is attained when the end of the first peak and the start of the 
second peak coincide, cf. fig. 3.3b. If the threshold is close to zero, i.e. large 
S/N, this limiting case is described by two conditions, as derived by Wester
berg 3 - 3): 

o2y(t) o3y(t) 
--=--=0. 

bt2 ot3 
(3.17) 

This fusing limit depends on the ratio of the areas of the two peaks. In fig. 4.2, 
curve b, the limit for two Gaussian peaks of equal width is plotted. 

Clearly, other methods of detection have different fusing Jimits. Often the 
existence of two tops in the signal is taken as the evidence of a composite peak. 
The fusing limit for this criterion, evaluated from the conditions 3 - 3) 

by(t) () 2y(t) 
--=--=0, 

ot bt 2 

is plotted in fig. 4.2, curve a. A more sensitive detection method counts the 
minima in the second derivative 3

-
4
), or, equivalently, the zeros in the third 

derivative 3 - 5
). If the two minima coincide, cf. fig. 3.3c, the conditions apply 

We solved these conditions numerically; the limit is plotted in fig. 4.2, curve c. 
A complication is that not all minima correspond to real peaks, e.g. the mini
mum marked p* in fig. 3.3a. Morrey 3 - 5 ) proposed as an extra condition that 
both minima must be on the negative side. Taking this into account, the fusing 
limit follows the left branch of curve c (until area ratio 2·3) and then the right 
branche of b. Figure 3.3d illustrates a case of a discarded minimum from a real 
peak. We propose another condition, by which most of the positive minima 
from real peaks are retained: 
(i) a single positive minimum between two negative minima is discarded; 

(ii) if two positive minima are found between two negative minima, the smaller 
minimum is discarded. 

These fusing limits were evaluated for Gaussian peaks with no noise. It is 
known, however, that the second derivative is very prone to noise. Smoothing 
is required to prevent noise from causing accidental minima, so that a single 
peak would be erroneously assigned as composite. The smoothing by the 
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matched filter depends on the filter width, becoming optimum with K vs. 
A side effect is the broadening of peaks by a factor (1 K 2

)
1

'
2

, which results 
in a loss of resolution in the filtered signal: 

Rs 
(3.18) 

This expression shows that the loss is small if K < 1. In the algorithm described 
in the following section, the value K 0·5 is used, which gives the fusing limit 
(fig. 4.2, drawn curve) shifted by a factor H with respect to the noise-free 
limit. 

3.2.2.5. Implementation 

In the detection procedure the mean noise amplitude estimated in sec. 3.1 
and peak-width regression estimated in sec. 3.1.2 are used. As the width of the 
matched filter should be taken proportional to the peak width, we had the 
choice between two alternatives: either, to adapt the filter weights continuously, 
or, to put the data on a logarithmic scale on which all peaks have eqnal width. 
The amounts of computation are roughly equal. However, because the linear 
relationship is only approximately valid, it is not necessary to have a strict 
proportionality. Updating the filter weights intermittently, after 10% changes 
of the width, gave no appreciable loss in detection, but reduced the amount of 
computation drastically. The filter weights are calculated from eqs (3.8b) and 
(3.7). A small correction of the calculated weights is usually necessary to ensure 
that the conditions for the proper differentiation of a second-degree polynomial 
are satisfied, i.e. 

m Ill m 

L i G; = 0; L j2 G; = 2. (3.19) 
i=-m 1=-m 

The smallest set of weights which satisfies these conditions is ( + 1, -2, + 1 ). 
These weights are approximately obtained if w f = 0·6, which is therefore a 
minimum filter width. 

To combine a sensitive detection of trace peaks and a sensitive detection of 
overlapping peaks, a two-step filtering was designed: 
(i) Using a matched filter with K = 1·5, the start of a peak, t 8 , is detected 

where the filter output first exceeds the threshold -Say*: the end t6 where 
the output returns within the threshold. The width of the detected peak is 
provisionally estimated as 

Wp = t (te- ts)/(1 K2)112; 

the location is estimated from the minimum between t8 and t6 ; the area 
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is estimated from the amplitude h at the minimum: 

(ii) The filtering is repeated over the regions of the large peaks (S/N > 20) 
with K = 0·5; appropriate minima are taken as the locations of peaks. 

The estimates of the location, width and area are needed as initial values in the 
iterative curve fitting, in case of overlapping peaks. 

3.3. Estimation 

The estimation includes three operations, viz. location of the peak bound
aries, baseline correction and peak-parameter estimation. 

3.3.1. Location of peak boundaries 

The importance of accurate peak boundries was discussed in sec. 2.4. 
The location is based on the assumption that the slope of the background 

in the neighbourhood of a peak is constant. The boundaries are defined as 
the point on the leading edge and the point on the trailing edge, at the smallest 
distance, where the signal slopes are equal. This definition implies that the 
boundaries are correct on a linear background. 

The inaccuracy of the boundaries on a curved background could be reduced 
by assuming a parabolic shape, but a conflict between accuracy and precision 
results. We justify the linearity assumption by three arguments: 

the inaccuracy on the curved background will be small, because the back
ground is a slowly varying function of time (compared with the peaks); 

- if the background segments bracketing a peak are small compared with the 
base width of the peak, a curved baseline cannot be fitted because it is likely 
to yield large interpolation errors under the peak; 
if the bracketing segments are large compared with the base width, the effect 
of inaccurate boundaries on the fitted baseline is negligible. 

The procedure for locating the boundaries is illustrated in fig. 3.4. 
(i) starting from the peak top, the minimum and the maximum in the first 

derivative are located; 
(ii) alternately at each side, the first derivative at the next point is calculated, 

using eq. (3.2), until the f.d. at the trailing edge becomes larger than the 
f. d. at the leading edge; 

(iii) it is checked whether a different pair at a closer distance can be found. 
If peaks overlap, the derived boundaries will be tangential to the coombs 

between the peaks. The boundaries of the peak group are determined by the 
above procedure, starting from the maximum in the f.d. on the first peak and 
the minimum in f.d. on the last peak. 
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Fig. 3.4. Location of the peak boundaries as the first points on either side of the top where 
the slopes are equal. 

3.3.2. Baseline correction 

The peak regions are staked out by the determined boundaries. The remaining 
background segments are used to interpolate the baseline correction. To each 
peak or group of overlapping peaks a local baseline is fitted. 

The least-squares fitting of a polynomial is done iteratively, starting with a 
zeroth-degree function and increasing the degree until a satisfactory fit is ob
tained. In this way the baseline function has the lowest degree required to 
follow the trend in the segments. Higher-degree terms add progressively to the 
uncertainty in the correction interpolated under the peak. 

It is very attractive to use a set of orthogonal polynomials 3 - 6). Let Pk(t) 
be a polynomial of degree k in the independent variable t; two members of the 
set of orthogonal polynomials over the data (t~o Y1), i 1, ... , m, satisfy the 
condition 

m 

LPk(t;)PI(t;) = o if k l. (3.20) 
1=1 

The function 

J,.(t) aoPo(t) + a1p1(t) ... + anpn(t) 

is then a polynomial of degree n. Least-squares fitting of this function to the 
data leads to the set of n + l normal equations: 

n m m 

k = 0, ... , n. (3.21) 

Using the property (3.17), these equations reduce to separate equations: 
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ak=---
m 

(3.22) 

The generation of the orthogonal polynomials is described by Forsythe 3 - 6 ). 

An obvious advantage of orthogonal polynomials is that no involved matrix 
equations need to be solved. For our purpose it is very convenient that the 
coefficient of the current highest-degree term can be added or withdrawn 
without changing the coefficients of the lower-degree terms. This facilities the 
iterative raising of the degree of the polynomial. 

The improvement of the fit can be studied from the sum of squared residuals. 
Let Sn denote the sum after fitting the nth-degree function: 

m 

s,. =I [Yt- fn(tt)F. (3.23) 
1=1 

Substitution of (3.20) and (3.22) yields: 

m n m 

S,. =I Y/- I ak IPk2(tt). 
l=l k=O 1=1 

We assume the noise to be uncorrelated, so that the F-test for an additional 
term can be used. The ratio 

(3.24) 

follows an F distribution with 1 and m n- 1 degree(s) of freedom. The 
ratio is a measure of how much the additional term has improved the fit. The 
significance of the calculated ratio can be seen from tables or from approximat
ing functions 3 - 7 ). 

3.3.3. Peak-parameter estimation 

Single peaks are most conveniently characterized by its moments. Tradition
ally, the coordinate of the maximum is taken as the retention time. Overlapping 
peaks must be dissected by curve fitting. 

3.3.3.1. Peak-top location 

The coordinate of the largest sample provides an initial estimate of the top. 
The associated random error is about one quarter of the sampling interval for 
a noise-free signal. In the presence of noise the error may be several intervals. 
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Attempts to improve upon this estimate are based on a reconstruction of the 
top from the sampled data. Wijtv1iet 3 - 8) and Goedert and Guiochon 3 - 9 ) 

estimated the location from the maximum of a parabola fitted to samples 
around the top. Two errors are associated with this estimate: 
- a random error from noise on the samples; 
- a systematic error due to the incorrectness of the parabolic model. 

Assuming uncorrelated noise, the random error can be evaluated by applying 
the error-propagation expression (2.7). Let the parabola 

f(p + i) = a i 2 + b i + c 

be fitted to 2m + 1 samples yp- m' .•. ' YP+ m; yp is the centre of the fit. The 
maximum of the parabola is at 

The standard deviation is derived by variance analysis on the coefficients: 

If the fit is properly positioned, lb/2al < t; the second term between square 
brackets becomes negligible for m > 2. The coefficient a can be estimated 
as the curvature at the top of a Gaussian peak with area A and width wP: 

-A 
2a = LJ2. 

w/ (2n)112 

Introducing the signal-to-noise ratio 

A 
S/N=---

ay wP (2:z)ll2 

and the sampling density f= wPfiJ, eq. (3.25) simplifies to 

IYtop J ( 3 )
112 

--;;;:- = S/N 2 m3 + 3 m2 + m • 

The random error decreases as the value of m increases. 

(3.26) 
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The systematic error, on the contrary, increases as m is increased, because 
only the top part of a peak has approximately a parabolic shape. Wijtvliet 3 - 8) 

showed that the bias between the maximum of a Gaussian peak and the maxi
mum of the fitted parabola depends on the value of m, the width of the peak 
and the off-centredness, i.e. the distance between the centre of the fit and the 
maximum of the peak. 

The optimum value of m that balances the two errors will be a complex 
function of the peak shape, the signal-to-noise ratio and the sampling density. 
This optimum can be approached however: 
- The systematic erorr will be related to the closeness of the fit, measured by 

the standard deviation of the fit: 

( 
1 m )1/2 

s = L: [Yp+i-f(p +OF . 
2m-2i=-m 

(3.27) 

- If the region used for fitting is approximately parabolic, s provides an 
accurate estimate for the random-noise amplitude, independent of m. The 
systematic error will also be small and independent of m. 

- Increasing m so far that the signal shape becomes non-parabolic, the value 
of s will increase due to lack of fit. The systematic error will also increase. 

The effect of substituting ay by s in eq. (3.25) is that the first term, sj2a, reflect
ing the systematic error, will first be constant as m is increased and increases if 
non-parabolic parts of the peak are included. The competition with the decreas
ing square-root term results in a minimum in the calculated value of a1w The 
value of m at the minimum is taken. Although this will not exactly be the 
optimum value, it satisfies two requirements: 
- the derived value of m will increase with decreasing S/N; 
- on asymmetrical peaks the lack of fit will result in a narrow fitting region, 

so that the bias is small. 
The procedure for locating the peak top with iterative adjustment of the 

fitting region is: 
(i) p is set equal to the index of the largest sample; starting value of m = maxi

mum (2, !f); 
(ii) a parabola is fitted to 2m+ 1 samples Yp-m• ... , Yp+m; the maximum 

of the parabola is located: top = (p- bf2a) iJ.; atop is calculated from 
(3.25), using ay = s (eq. (3.27)); 

(iii) if lb/2al >! + atop• the fitting region is shifted: p = p ± 1, in order to 
centre the fit properly, and (ii) is repeated; 

(iv) if the standard deviation atop has decreased, m is increased by 1, and (ii) 
is repeated. 

Wijtvliet 3 - 8) elaborated a method for reducing the systematic error from 
off-centredness. Although reducing the error by an order of magnitude, typically 
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from 0·01 wp to 0·001 wp, it appears of limited analytical interest because real 
peaks are always composite so that the top is shifted 3 - 10). 

Figure 4. 7 shows the resultant error after adjustment of the fitting region, 
for a Gaussian peak, as a function of the signal-to-noise ratio, at some sampling 
densities. The error was determined with simulated Gaussian peaks and various 
sequences of superposed white noise. The off-centredness was varied randomly 
between -! and +!. The curves represent average values. 

3.3.3.2. Moments calculation 

The definition of the moments was given in sec. 2.1. The moments of a 
sampled peak are calculated by numerical integration. Let the peak boundaries 
be at t = a L1 and t = b L1 ; Y1 is the baseline-corrected signal. The simplest 
procedure is to perform a summation: 

, 
zeroth moment, or peak area A 2: Y1 L1 ; 

l=a 

- first moment, or centre of gravity p. 
1 b 

L iLl Y1LI; 
A i=a 

1 b 

- nth central moment mn = - 2: (iLl - p. )" Y1 A. 
A l=a 

(3.28) 

(3.29) 

(3.30) 

The precision of the numerical integration is increased by differently weight
ing samples near to the boundaries 3 - 11). Generally, a curved integrand is 
more precisely integrated by a parabolic form, e.g. 

The systematic error and the random error in the moments are dependent on 
the signal-to-noise ratio, the sampling density and the integration limits 3

-
12

•
13

). 

For a given signal only the limits can be adjusted to minimize the errors. 
The random error in the area is derived by applying the error-propagation 

expression (2. 7): 

(3.32) 

If the integration limits are taken at the distance k wP from the top, 

b a 2kwPfLI. 

Substituting the signal-to-noise ratio S/N and the sampling density f, (3.32) 
can be rewritten as 
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aA- 1 ( k )1!2 ---- --
A SfN fn 

(3.33) 

This error is plotted in fig. 3.5 as a function of k, for various S/N andf 
The systematic error in the area, L1 A• is equal to the area outside the integration 

limits. For a Gaussian peak: 

(3.34) 

erf (x) denotes the well-known error function. The systematic error is also 
plotted in fig. 3.5, drawn curve. 

As a function of k, the systematic error and the random error have opposing 
trends. From the derived expressions (3.33) and (3.34) the value of k that 
minimizes the mean squared error may be calculated. Generally, however, the 
systematic error is unknown as it depends on the peak shape. A practical con
dition for optimizing the integration limits is to increase k until the value of 
the integral changes less than standard deviation, i.e. until 

'baA > I?JA I· 
?Jk ?Jk 

(3.35) 

Applying this condition, cf. eq. (2.8), to the area integration of a Gaussian 
peak, the error curves in fig. 4.4 (drawn curves) are derived: 

eA = (aA2 + LJA2)112. 
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Fig. 3.5. Systematic error (drawn curve) and random errors (dashed curves) in the area of a 
Gaussian peak, as a function of the integration limits. The limits are taken symmetrically to 
the top. Signal-to-noise ratio S/N and sampling densities f as indicated. 
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A virtue of this procedure for iterative optimization of the integration limits 
is that it does not assume a certain peak shape; it only assumes an expression 
for the random error such as (3.32). The derived error curves are, approximately, 
also valid for non-Gaussian shapes. Only peaks with extended flat tails will 
have a larger systematic error contribution. 

The random error in the centre of gravity is derived as 

Taking (b Ll p) = (p aLl)= k wP, and substituting S/N and f yields 

(3.37) 

Studying the systematic error in the centre of gravity and the effect of the inte
gration limits thereupon, it is, of course, not reasonable to assume symmetrical 
extension of the integration limits. Instead, one limit is fixed, k = kt> and 
the other is varied: 

1 u+kwp 

J t g(t) dt 
A Jl-klWp 

(3.38) 

and 

(3.39) 

The condition ?JIYJL/bk lbp/bkl was solved numerically (the "solution" k 0 
is of course omitted), for a Gaussian peak. The resulting error is plotted in 
fig. 4.5 (drawn curves). For Gaussian peaks the systematic error is zero. For 
non-Gaussian shapes the relationships may be assumed to be qualitatively 
valid. 

The procedure for calculation of the moments is 
(i) the peak area and the centre of gravity are provisionally calculated by 

numerical integration between the peak boundaries; 
(ii) starting from the provisional centre, the integration limits are iteratively 

extended at each side until the increment of the sum is less than the change 
in the standard deviation; 

(iii) samples near the integration limits are weighted as in (3.31). 

3.3.3.3. Curve fitting 

In this section, expressions for the errors in the estimated parameters are 
derived and an outline of the algorithm is given. The theory of curve fitting 
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is well known, cf. ref. 3-11. The following account serves to have the appropriate 
expressions available. 

Let the signal be sampled at n points (t1" Y~c). The function to be fitted is 
f(t, p); p (p1 , ••• , Pm) is the vector of m optimizable parameters. The 
least-squares criterion requires minimization of 

n 

S(p) L [f(tk, p)- Yk]2. (3.40) 
k~l 

If the function is non-linear in the parameters, the optimum parameter vector p, 
i.e. the vector that minimizes S, must be approached iteratively, starting from 
initial estimates p0 • In the hth iteration a correction vector tl.p" is calculated: 

(3.41) 

Let ".f~c represent f(t~c> ph). The corrections are found by solving the set of 
normal equations 

ZJl.ph = b, 

where 
n n 

k=l k= 1 

The solution can be found by matrix inversion: 

"tl.p = z-l b. 

(3.42a) 

i,j = 1, ... , m. 

(3.42b) 

If the noise over the sampled data is uncorrelated, having mean amplitude a1 , 

the error-propagation expression (2. 7) can be invoked to determine the standard 
deviation of the parameter corrections, and hence the standard deviations of 
the estimated parameters (a1 denotes the standard deviation of p1): 

(3.43) 

The standard deviation of the parameter estimates is determined by the noise 
amplitude and by the diagonal elements in the inverse of the matrix of the 
normal equations. The diagonal elements become available in most algorithms 
for solving matrix equations. The noise amplitude can also be estimated from 
the sum of squares, taking the lost degrees of freedom into account: 

( 
1 )1/2 

a, f':::i --S(p) • 
n-m 

(3.44) 
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Expression (3.43) is a well established part of the theory of parameter estima
tion. Yet, surprisingly, in chromatography no one has made use of it for 
estimating the errors. 

3.3.3.3.1. Errors for a single Gaussian peak 

Expression (3.43) is quite general, assuming only uncorrelated noise. In order 
to obtain more-tangible expressions for the errors, the fitting of a single Gauss
ian peak is considered, i.e. f(t, p) g(t, A, p, w). Let the peak be sampled 
at equally spaced intervals Ll. 

First, it is assnmed that the position and width are known, e.g. from previous 
analyses. This yields a 1 X 1 matrix equation; the single element in the matrix 
can be approximated analytically: 

Hence, 

yielding 

n 

Zu = "\' ( l:Jhjk )2 !:::::1 1 /«>( bf(t, p) )2 dt = !_ _1-. 
~ bA Ll bA Ll 2w Vn 

-CI:l 
k=l 

(3.45) 

Substituting the signal-to-noise ratio S/N and the sampling density, this can 
be rewritten to 

(3.46) 

This expression may be compared with the expression for the random error in 
the zeroth moment (3.33). It may appear from (3.46) that for a given S/N the 
error can be made arbitrarily small by increasing the sampling density. However, 
actual physical signals are always bandwidth-limited so that beyond a certain 
sampling density successive noise contributions will not be uncorrelated and 
the error does not decrease further. From the correlation width of the noise, 
cf. sec. 2.2, this limiting density can be assessed. 

Generally, the location of the peak and the width are also unknown. By 
approximating the matrix elements in a similar way as in (3.45), the matrix of 
the normal equations is obtained: 
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1 -A 

2w Ll Vn 0 
4w2 Ll Vn 

Az 
0 0 

4w3 Ll Vn 
(3.47a) 

-A 3A2 

4w2 Ll Vn 
0 

8w3 Ll Vn 

3w Ll Vn 0 
2w2 Ll Vn 

A 

inverse: 0 
4w3 Ll Vn 

0 
Az 

(3.47b) 

2w2 Ll Vn 
0 

4w3 Ll Vn 
A Az 

This yields the expressions for the relative errors 

(3.48) 

These errors are plotted in figs 4.4 and 4.5 (dashed curves). Comparing these 
with the error for area-only fitting, eq. (3.46), it appears that the sensitivity 
to noise is enhanced. The cause is a covariance between the area and the width. 
The degree of interdependence is measured by the normalised off-diagonal term 

(3.49) 

The magnitude of the normalized off-diagonal terms ranges between -1 and 
+ 1. If two parameters are strongly correlated leiil R:1 1, and neither param
eter can be pointed down precisely. In such case knowledge of the value 
of one parameter considerably improves the precision of the other. As shown, 
knowledge of the peak width decreases the standard deviation of the area by a 
factor 0·81. 

3.3.3.3.2. Errors for overlapping Gaussian peaks 

For two overlapping peaks of equal width w, at positions p,1 and p,2 and 
areas A 1 and A2 , the standard deviations become a function of the resolution 

Rs 
w 



-49-

First, it is assumed that the positions and widths are known in advance. This 
is a realistic assumption in many routine analyses where the location and shape 
of the peaks are known and only the concentrations vary. The diagonal terms 
are as for single peaks: 

1 
Zu = Z22 ~ V . 

2w Ll n 

The off-diagonal terms can be approximated: 

1 
---exp(-!Rs2

). 

2w Ll Vn 
(3.50) 

The effect of the resolution on the standard deviation is best expressed relative 
to the standard deviation at "infinite" resolution, i.e. two single peaks: 

aA(Rs) = Yz11 -
1(Rs) = 

aA(oo) Z11- 1(oo) 
(3.51) 

This "loss factor" gives the multiplication factor for the error in the area of 
single peaks. 

Generally, both the locations, areas and widths of two overlapping peaks will 
be unknown. Simultaneous fitting of all parameters gives a 6 X 6 matrix. 
Although it might be possible, as before, to obtain analytical expressions for 
the matrix elements, it is virtually impossible to invert the involved 6 X 6 matrix 
in closed form. Therefore, for Rs increasing from 0·25 to 10 in steps of 0·25, 
the matrix elements were calculated numerically and the matrices were inverted. 
The calculated loss factors for area, location and width are plotted in fig. 4.7. 
These curves substantiate two important conclusions: 
- The precision of parameter estimates of overlapping peaks decreases rapidly 

with decreasing resolution, e.g. if S/N = 20 and 2, the relative error 
in the area of a single peak is 3 %; for a doublet with Rs 1·5 the error 
increases to 20% (loss factor= 6). Hence, little significant information 
can be obtained from the composite curve of closely spaced peaks. 

- The precision also decreases with increasing number of optimizable param
eters, e.g. if Rs 1 the area-only fitting is attributed with a loss factor 1·6 
while the simultaneous fitting of all parameters yields a loss factor 20. 
Loosely speaking, the larger the number of unknowns over which the 
information contained in the experimental data must be distributed, the less 
significant the derived values. 

These conclusions are useful for assessing the errors for non-Gaussian models 
in curve fitting. These models contain additional parameters to account for 
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asymmetry, excess, etc. The preceding results indicate that for single peaks the 
errors increase with the number of interdependent parameters. The skew and 
excess in Edgeworth series are nearly independent. The time constant on the 
exponentially convoluted Gaussian is strongly correlated with the location 
parameter, the correlation coefficient (3.49) becoming nearly 1 for small values 
of the time constant. For overlapping peaks, even independent parameters in 
a peak model will become correlated due to mutual interference of the peaks. 
As a result the errors will sharply rise when using more-complex peak models. 
For dissecting overlapping peaks it is therefore important to have an accurate 
peak model which has as few degrees of freedom as possible. 

3.3.3.3.3. Implementation 

Peak model: the 4 peak models compiled in table 2-I are available in the 
curve-fitting procedure. The preceding error discussion showed that the number 
of optimizable parameters should be restricted. Therefore, a Gaussian model is 
assumed initially. After convergence of the fit of Gaussian peaks, the residues 
are examined to see whether the introduction of additional peaks or an exten
sion of the peak model can improve the fit significantly. 

The test on the introduction of an additional peak is identical to matched
filter detection on the residues. Differentiation is not necessary because the base
line is already eliminated. The threshold is derived from the mean amplitude 
of the residues, eq. (3.44). 

The test on extension of the peak model is based on the assumption that the 
extended peak model f (t, p, Pm+ 1) is approximately linear in the additional 
parameter Pm+ 1 • Let p denote the optimum vector. Hence, 

Let the residues after convergence be denoted as 

E" = Y~c-f~<{j)) 

Minimization for Pm+ 1 of 
11 

" 2: [jk(i,Pm+l) 
k=l 

k=l 
yields 

" L Ek ()jkfbpm+ 1 

k=1 

Pm+1 
11 

.L; (oh,/bPm+1)2 

k= 1 

(3.52) 

(3.53) 

(3.54) 
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The corresponding reduction of the sum of squares is 

II 

(3.55) 

k=l 

The significance of the reduction is measured by the F-test for an additional 
term (cf. (3.24)) 

F (n-m I) ScP)-= ScP,Pm+l) 

S(p,Pm+l) 
(3.56) 

The calculated F-values for each of the three extended models are compared 
with tabulated values. If the values are significant, the fitting function is ex
tended using the model with the highest F-value. The curve-fitting procedure 
is then repeated until the convergence test is satisfied. The test on the intro
duction of a new peak is similar to the extension of the model, if Pm+ 1 is con
sidered as the area of the additional peak. 

Initial estimates: Initial estimates are derived in the detection procedure, as 
described in sec. 3.2.2.5. The contiguity of the initial estimates is very important 
for fast convergence to the global minimum. Tests proved that the derived 
values are sufficiently close to give fast convergence. With simulated peaks no 
trapping into local minima was observed. 

Algorithm: Marquardt's modification of Newton's algorithm 3 - 14) was ap
plied. This algorithm is safeguarded against divergence. If the calculated cor
rections lead to divergence, the diagonal elements in the matrix of the normal 
equations are increased, which brings about a shift of the corrections in the 
sense of the gradient. A drawback is that the matrix equations must be solved 
once again. However, the algorithm usually converged at once from the derived 
initial estimates. Choleski's algorithm 3 - 15) is used to invert the matrix equa
tions. 

Constraints: To keep the parameter values within feasible ranges the updated 
values were tested after each iteration whether 

areas, widths and time constants are positive; 
the peak location is within the fitting region; 

- the width of an individual peak does not deviate more than 20% from the 
mean peak width. 

Although often trivial, these constraints are essential for fast convergence and 
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for avoiding unrealistic "solutions". To account for the inequality constraints, 
we developed the following iterative scheme: 
(i) the unconstrained correction vector is calculated .dp0 = Z- 1 • b; 

(ii) suppose that k calculated corrections Pt> ... , Pk exceed the maximum 
allowable corrections max1, ••• , maxt respectively. 

(iii) Lagrange's method of undertermined multipliers yields k additional equa-
tions: .A.1 (Lip1 - max1) 0. Solving these together with the normal equa-
tions leads to the modified equation: 

(3.57) 

E. (e1, e2, ... , ek) is an mxkmatrix oftheunitvectorsoftheconstrained 
parameters, 0 is a k x k matrix of zeros and Ap1 is the constrained solution. 
It is postulated that the inverse matrix is of the form 

As the product of the two matrices is the identity matrix, 

F Z- 1 £HFZ-t, 
G -HF z-1, 
H -(F Z- 1 £)- 1 • 

Substitution yields 

Ap1 

A 
.dp0 - z-t E. H (max- F .dp0), 

H (max- F .dp0). 

(3.58) 

(3.59) 

(3.60) 

This is very convenient because only the matrix H must be calculated, 
which is the inverse of a kxk submatrix of Z- 1 . Usually the number of 
constraints k is much lower than the number of parameters m, so that the 
calculation of H requires considerably less time than the solution of (3.57) 
by direct inversion. 

(iv) It is checked whether in the constrained solution other parameters exceed 
their maximum allowable correction. If so, then (iii) is repeated including 
constraints for the parameters in question. 

Convergence test: The curve-fitting algorithm has converged if each of the 
following criteria is satisfied: 
- The sum of squares between two iterations changes less than 5 %-
- The damping factor in Marquardt's algorithm is less than 2. 
- For each parameter: 
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or I I 1
;Zu- 1 S(p) 

,dpi < * v n-m 

ea and er are respectively an absolute tolerance and a relative tolerance. 
For the area only a relative tolerance was used, i.e. ea = 0, e. = 0·005, 
and for the location and width an absolute tolerance was set, ea = 0·05 
(sample interval). The term under the radical sign is an estimate for the 
variance of the parameter p1, cf. (3.43) and (3.44). 
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4. RESULTS AND APPLICATIONS 

The purpose of this chapter is threefold: 
To summarize the performance specifications of the program, especially to 
the potential users who may not be acquainted with or interested in the 
techniques discussed in chapter 3. 

- To discuss the application of the program to one chromatogram selected as 
representative for a wide range of analyses. 

- To discuss the tailoring of the program to processing with different priorities 
such as speed and low cost. 

4.1. Performance specifications 

The program was developed with three major aims: 
automatic processing, 
low detection limits, 
optimum accuracy and precision of the results. 

We discuss below to what extent these aims have been attained. In order to 
make the discussion self-contained and comprehensible for non-experts in data 
processing, the performance data will be presented without reference to the 
underlying mechanisms developed in chapter 3. 

We will try to compare our results with those reported in literature but it 
should be stated right away that such comparisons are quite limited. Owing to 
the lack of standard tests and criteria, most of the reported results stem from 
ad hoc tests. Extrapolation to our standards often needs some speculation. 
Moreover, some programs are constructed with quite different aims in view 
so that the results are hard to compare by any standards. 

4.1.1. Automatic processing 

In addition to the chromatogram, five data must be specified as input to the 
computer, viz. (1) the number of chromatograms for processing, (2) an upper 
bound for the number of samples in one chromatogram, (3) the time of the 
first sample relative to the injection time, (4) the sampling interval, (5) the 
format of the plot output. Specification of these data giving pertinent informa
tion about the data acquisition or the output format, requires no understanding 
of the program. 

By comparison, Wijtvliet's program 4 - 1) requires a similar number of data for 
standard processing, but to obtain the best results ten odd parameters must be 
preset. Littlewood's program 4 - 2 •3.4) requires the specification of plate number, 
threshold value for spurious peak filtering and filter widths. 

4.1.2. Detection limits 

The detection of peaks is limited for two reasons: 
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- Small peaks may get lost in random noise or submerged in a mass of small 
neighbouring peaks. This will be called the "delectability limit". 

- Two peaks may come so close that the composite peak cannot be distinguish
ed from a single peak, by the applied detection method. Thls will be referred 
to as the "fusing limit". 

The detectability limit results from a balance between maximizing the de
tection of real peaks and minimizing that of spurious peaks such as noise spikes 
or baseline bumps. The limit is a function of the signal-to-noise ratio (S/N), 
whlch is the ratio of the peak height over the mean noise amplitude, and the 
peak width w (expressed in sample intervals): SfN > 5JVw. Since, for a fixed 
height, the area is proportional to the width, the minimum area required for 
detection, and hence the minimum detectable amount, increases proportionally 
to the square root of the width, as illustrated in fig. 4.1, drawn curve. This limit, 
attained by the program, is only slightly higher than the optimum limit (lower 
dashed curve). Littlewood's program 4 -

2
) detects peaks when the slope of the 

signal is greater than a certain threshold. Becalilse the knowledge of the peak 
width is not exploited, the minimum area will increase linearly with the width 
(upper dashed curve). Wijtvliet's method of detection uses a threshold for the 
signal obtained in the course of the "average-below-average" baseline approxi
mation. As the threshold in this way depends on the peak density and the peak 
heights, it is not possible to assess the delectability limit generally. In the most 
favourable case it will approach the upper dashed curve. 

The fusing limit depends on the area ratio of the overlapping peaks. Figure 
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Fig. 4.1. Detection limits of Gaussian peaks in white noise. Drawn curve: limit attained by 
the program; lower dashed curve: limit for matched-filter detection; upper dashed curve: 
limit for slope detection with fixed filter width. 
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4.2, drawn curve, depicts the minimum resolution between two Gaussian peaks 
required for separate detection, in our program. Figure 4.3 illustrates some 
cases near the limit: it appears that the method is as discriminative as the 
expert's eye. The lower dashed curve in fig. 4.2 indicates the limit that could be 
attained, in principle, by our method if no noise were present. The discrepancy 
results from a loss in resolution due to filtering of the noise necessary to prevent 
the detection of spurious peaks. The limit of our method is almost the lowest 
meaningful limit, because actual pure peaks show nearly the same profile as the 
composites in fig. 4.3. It will also be discussed in the next section that the preci
sion of parameter estimates of overlapping peaks decreases rapidly with reso
lution. By comparison, the upper dashed curve in fig. 4.2 indicates the minimum 

4 .;;:""' 
// 

i / 

v ~ a..., l-/" i / 

3·5 

/ 

~V 
/ // 

( /' 
/ 

I Vb"v / 

/./ 
/ 

,' i /: 

17' /'I L/ 

'/'( "':...v} 
"c 

I i 
1 2 5 10 20 50 1CiJ 

-ArE'a ratio 

Fig. 4.2. Fusing limits for overlapping Gaussian peaks of equal width. Drawn curve: limit 
attained by the program; curve a: limit to two maxima on the composite peak (shoulder 
limit); curve b: limit to two pain of inflection points; curve c: limit to two maxima in the 
second derivative. 

fifP.!Jf:!Jl1i.U.t limit for fused Gaussian peaks 

area ratio .,1 area ratio=2 area ratio=3·7 area ratio =10 
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Fig. 4.3. Separability limit for fused peaks. 
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resolution for the existence of two tops on the composite peak. Curve b 
is the limit pertaining to Westerberg's method of counting pairs of 
inflection points 4 - 5). The detection methods of Morrey 4 -

6
) and Brouwer and 

Jansen 4
-

7
) will attain the left branch of curve c below the area ratio 2·25, 

and curve b above this ratio. Littlewood's second method 4
-

2
) is able to 

attain the same limit as our method, but it detects additional spurious peaks 
between almost separated doublets. 

4.1.3. Accuracy and precision 

The systematic and random errors that will be discussed are associated with 
the estimation of peak parameters. Errors from preceding steps in the analysis, 
e.g. sampling, injection, separation, detection and recording, are ignored. 
However, no matter how clever the data processing, the inherent errors cannot 
be corrected or reduced generally. Rather, the estimation errors pile up on top 
of these errors. This should be reminded when interpreting the presented error 
curves. A low error figure usually means that the preceding steps will be the 
quality-determining factors. 

The estimation errors can be attributed to two causes: 
- random noise on the signal; the estimated parameter values are consequently 

also random quantities with associated standard deviations; 
inexactness or model errors in the calculation procedure. 

4.1.3.1. Peak area 

The area of a single peak is determined by numerical integration of the base
line-corrected signal. No particular peak shape is assumed. The result is also 
free from errors commonly associated with the determination of peak height, 
inflection points, halfwidth, etc. The precision depends on the signal-to-noise 
ratio, on the sampling density and on the integration limits. The former two 
are fixed for a given signal, but in our calculation procedure the limits are 
adjusted for a trade-off between accuracy and precision. The resultant error, 
i.e. the root of the sum of the squared random and systematic errors, for a 
Gaussian peak, is plotted in fig. 4.4 (drawn curves) as a function of the signal
to-noise ratio S/N, at various sampling densities f (expressed as the number of 
samples per peak width, or, equivalently, as the peak width expressed in sample 
intervals). The systematic part in the plotted error is one order of magnitude 
smaller than the random part. Because in the limits adjustment no peak shape 
is assumed, these curves may be considered as representative for all peaks, 
except those with a very extended tail. Similar curves were given previously by 
Chesler and Cram 4 - 8 •9) and by Goedert and Guiochon 4 - 10•

11
). These authors 

did not mention a criterion or procedure for balancing accuracy and precision. 
The results in fig. 4.4 are comparable to those given in ref. 4-10, except that 
our results are not limited by a systematic error from fixed integration limits. 
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Fig. 4.4. Relative area error, as a function of the signal-to-noise ratio, at the sampling den
sities indicated, for a Gaussian peak. Drawn curves: resultant error with numerical integra
tion; dashed curves: random error with curve fitting. 

Although, in onr program, curve fitting is not used for single peaks, the 
random errors with curve fitting are also plotted in fig. 4.4 (dashed curves). 
These errors are largely insensitive to the limits of the fitting region. If the peak 
model is correct then there is no systematic error. The slight difference between 
the error curves from integration and from curve fitting shows that the tedious 
computations for curve fitting do not pay off, the more so as curve fitting hinges 
on the correctness of the peak model. 

Commonly, quantitative chromatographic analysis is associated with relative 
errors from 0· 5 to 5 %, in the experimental part. This means that only at very 
low S/N estimation errors will be a limiting factor. 

4.1.3.2. Centre of gravity 

The centre of gravity is calculated by numerical integration. The error is 
dependent on the same factors as in the area calculation. The integration limits 
are chosen so as to balance the systematic and random errors. The resulting 
error in the centre of gravity relative to the peak width is plotted in fig. 4.5, 
drawn curves. 

The error from fitting of a Gaussian peak is plotted by the dashed curves. 
At high S/N the errors differ by a factor of 3. The reason is that with curve 
fitting the peak location is predominantly determined by samples on the peak 
body, whereas in the integration samples are weighted by their distance to the 
centre. Remote samples, where the ratio of signal amplitude to noise amplitude 
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Fig. 4.5. Error in the centre of gravity relative to the peak width, as a function of the signal
to-noise ratio, at the sampling densities indicated, for a Gaussian peak. Drawn curves: 
resultant error with numerical integration; dashed curves: random error with curve fitting. 

is low, therefore contribute more heavily. At low S/N, the integration limits 
contract so that these remote samples are omitted, resulting in a convergence 
of the errors from the two methods. For the calculation of the location param
eter of a single peak we preferred the integration method because it is com
putationally simpler and does not require a suitable peak model. Moreover, 
the difference between the errors is insignificant in view of the possible peak 
shift for fused peaks. 

4.1.3.3. Peak top 

The top location is determined by the maximum of a parabola fitted to 
the top section of a peak, as described by Wijtvliet 4

- 1) and Goedert and 
Guiochon 4 -

11
). Additional refinements included are the iterative centring and 

adjustment of the fitting section for improving accuracy and precision. The 
resulting error for Gaussian peaks and white noise is depicted in fig. 4.6. 

Comparison of figs 4.5 and 4.6 shows that the errors are of the same order 
of magnitude, so that from this point of view there is no preference for one 
parameter over the other. For asymmetrical peak shapes the width of the fitting 
section is automatically reduced, to avoid large systematic errors. The error 
will however be higher than in fig. 4.6. 
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Fig. 4.6. Error in the peak-top location relative to the peak width, as a function of the signal
to-noise ratio, at the sampling densities indicated, for a Gaussian peak. 
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Fig. 4.7. Multiplication factors for the standard deviations of the parameters of overlapping 
peaks as a function of the resolution, derived for Gaussain peaks, of equal width (A = area, 
p, = location, w = width). 

4.1.3.4. Multi pie peaks 

Overlapping peaks are dissected by curve fitting. The peak parameters are 
derived from the parameters in the model for fitting. For well-resolved peaks 
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(resolution > 5), the precision of the parameters is dependent on the signal-to
noise ratio and the sampling density. The errors are identical to the errors for 
curve fitting of single peaks (dashed curves in figs 4.4 and 4.5). 

With decreasing resolution the errors are enhanced. The factors by which the 
errors for single peaks are multiplied at decreasing resolution are plotted in 
fig. 4.7. The dramatic increase of these factors at resolutions below 2 explains 
why it is meaningless to push the fusing limit further down: little significant 
information can be obtained from a composite curve of closely spaced peaks. 

4.2. Application 

Real chromatograms are not very expedient for demonstrating the correct
ness of the approach, because the true results are usually unknown. Real 
chromatograms are however very suitable to expose flaws in the design. They 
will also show the tolerances for deviations from the "model" form (i.e. uncor
related noise, Gaussian peaks, smooth baseline) and the reliability of the results. 
We discuss the processing of one such deviating chromatogram in detail: this 
reveals the limitations of the present chromatogram more clearly than drawing 
examples from various chromatograms. 

The chromatogram in fig. 4.8 incorporates a number of interesting features: 
- correlated noise, 
- solvent peak, 

closely spaced peaks riding on the solvent tail mask the background level, 
background signal does not return to its initial level, 
trace peaks. 

2IXJ 300 1100 500 600 ;100 

Fig. 4.8. Pesticide chromatogram. Bolds arrows indicate peaks detected. Broken-tail arrows 
indicate additional peaks detected during the curve fitting. Small arrows indicate neglected 
peaks. 
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4.2.1. Experimental 

The chromatogram in fig. 4.8 is an analysis of pesticides in blood-serum 
extract, on a glass capillary column, with electron-capture detection. The 
chromatogram was provided by Franken, who described the chromatographic 
procedure extensively in ref. 4-12. 

The detector signal, after amplification, was sampled, digitized and punched 
on paper tape. The data-acquisition system was assembled and described by 
Wijtvliet 4 - 1). Sampling rate: 1 samplefs; in total 743 samples. 

The chromatogram was processed on the Burroughs B6700 computer. The 
program is written in Algol-60. Figure 2.10 gives a scheme of the program's 
main procedures. The source length is about 20K words. 

Processing time for this chromatogram was 60 seconds. A timetable is given 
in table 4-I. Although processing times on different computers are hard to 
compare, the processing time, excluding curve fit, is estimated to be 5-10 times 
longer than Wijtvliet's program on the same computer. 

TABLE 4-1 
Processing time for chromatogram 4·8 (seconds) 

noise estimation 
initial peak detection 
spike filtering 
peak detection 
boundaries location 
baseline correction 
peak-top location (13 peaks) 
moments calculation (13 peaks) 
curve fitting 

4.2.2. Results 

0·3 
1·8 
0·2 
4·4 
0·5 
3·2 
1·5 
2·6 

45·9 

Initial inspection: The noise amplitude was estimated 40 (arbitrary units). 
This agrees closely with the autocorrelation function of the first 80 samples, 
depicted in fig. 2.4b. Initial detection revealed 13 peaks; positions on time axis: 
88, 124, 134, 169, 264, 288, 308, 457, 473, 442, 687. These are indeed the major 
peaks in the chromatogram. From these peaks the linear regression of the peak 
width against retention time was found: w 0·5 + 0·008 tR. The linear cor
relation coefficient was high ( ~ 0·9) if the peak at 88 was omitted. 

Peak detection: The 26 peaks detected are indicated in fig. 4.8 by bold arrows. 
Two additional peaks found in the curve-fitting procedure are marked by 
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broken-tail arrows. Positions 333, 402 and 436 appear to be spurious peaks. 
A serious omission is the peak at 295. Further omissions, surmised by visual 
inspection, are indicated by small arrows. The intermediate output showed that 
109 peaks were provisionally detected from which 83 were subsequently rejected, 
being below the noise threshold. Most of the suggested omissions could be 
recovered with a slightly lower threshold, but at the expense of a larger number 
of spurious peaks. 

Baseline correction: Figure 4.9 is a typical plot output. Below, the raw 
chromatogram is drawn together with the fitted baseline. The baseline-corrected 
signal is plotted on top on a 5-fold enlarged scale. The baseline is fitted piecemeal 

Fig. 4.9. Plot output of chromatogram 4.8. Below: chromatogram with fitted baseline; above: 
baseline-corrected chromatogram on 5-fold enlarged scale. 

to each peak group. Under the peak conglomerates on the start of the solvent 
tail the fitted baseline has an unrealistic angularity. This is a consequence of the 
local baseline approximation: the traces of the background bracketing the peak 
groups are too small for indicating the curved trend, so that a linear approxima
tion was used. Although a human operator might conjecture a smoother base
line by interpolation and extrapolation, it seems that in this part of the chroma
togram any baseline is largely arbitrary. 

On the whole the fitted baseline seems quite reasonable, although some minor 
details may be questioned, e.g. at 80, 200, 225, 315, 445. 
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Parameter estimation: The results are displayed in table 4-II. The column 
"specification" lists the type of the peak, i.e. whether a single peak or the model 
for curve fitting in case of overlap. A number of asterisks indicating the peak 
magnitude in a logarithmic measure facilitates the retrieval of the major peaks 
in an otherwise monotonous list of :figures. To the major peak parameters an 
estimated standard deviation is added. Although these values only indicate the 
estimation errors, their specification was found useful to avoid that the com-
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puter output is attended by unwarranted significance. The plate numbers, under 
the heading "plates", show a large spread. This may be explained partially be
cause the ratio of retention time to peak width is not strictly constant and also 
because the outliers come from the trace peaks whose widths are subject to large 
errors. The columns "skew" and "excess" list the quantities that carry additional 
information about the shape. For reasons of space the standard deviations are 
not listed. Generally these quantities are significant only for large peaks. 

Six groups of overlapping peaks were found, viz. (86,92,99), (123,133), 
(188,194), (457,473), (599,617) and (687,698). The other peaks were supposed 
to be single. The baseline under the solvent peak is arbitrary so that a discus
sion of the first group is not meaningful. In any case, the large errors indicate 
that the results are unreliable. Figure 4.10a (below) shows the group (123,133) 
after fitting of two peaks to the baseline-corrected signal. For the larger peak 
the convolution model was found to give the best fit. However, the residuals 
(i.e. the discrepancies between the signal and the sum of the fitted peaks, plotted 
on top in fig. 4.10a) greatly exceed the random-noise amplitude. The shape of 
the residual signal leads to the introduction of an additional peak at 141. 
Although this improves the fit, cf. fig. 4.10b, the residuals are still too large 
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Fig. 4.1 0. Plot output of curve fit of overlapping peaks. Below: baseline-corrected signal and 
the fitted peaks. Above: residues (on the same scale); (a) fit of two initially detected peaks; 
(b) after introduction of an additional peak. 
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Fig. 4.12. Plot output of curve fit of overlapping peak groups in chromatogram 4.8. 
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owing to the questionable baseline. Figure 4.11 shows the same pattern for the 
peak group (188,194). Here, after introduction of an extra peak at 183, the mean 
of the residuals agrees with the noise amplitude. Figure 4.12 depicts the curve 
fits of the other peak groups. It is interesting to compare the results of the last 
two groups. In the groups (599,617) the signal-to-noise ratio S/N = 6 (for the 
largest peak); in the group (687,698) S/N 12. As the errors are inversely 
proportional to S/N, the errors for the last group would be expected half of 
those in the former. However, in the first group the resolution Rs 3·2 and 
in the last Rs = 2·3. Figure 4.7 indicates that the error factors for these reso
lutions differ by a factor 2 which explains why the errors in table 4-II are almost 
equal (cf. column "%error"). 

4.3. Tailoring to constraints 

The sheer size of the program and the processing time will be prohibitive in 
many applications. The following modifications will be discussed: 
- ways of speeding up the present program without affecting the quality of 

the results; 
simplification, taking some loss in detection and precision into account. 

None of these modifications were actually tested, so the effects can only be 
roughly estimated. 

4.3.1. Reduction of processing time 

Generally, processing time depends on the number of samples, on the number 
and widths of the peaks and on the number of overlaps. Roughly speaking, the 
time for initial inspection and spike filtering is only proportional to the number 
of samples. The time for peak detection is proportional to the product of samples 
and mean peak width. The time for calculation of the moments and for peak
top location is proportional to the number of peaks and the mean peak width. 
The time for curve fitting is proportional to the number of samples in the fitting 
region, and also increases with the third power of the number of peaks in the 
peak group. 

The program can be speeded up by a different arrangement of some process
ing stages and combination of similar operations, e.g. combination of initial 
peak detection and spike filtering, or combination of peak detection and 
boundary location. The gain will be about 10% of the processing time before 
curve fitting. 

As most of the processing time is devoted to curve fitting, savings here will 
be more rewarding. The time for curve fitting depends on 
- the number of iterations, 
- the number of operations in each iteration. 
The number of iterations depends on the quality of the initial estimates, the 
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optimization algorithm and the convergence criteria. There is no easy way to 
improve these. The number of operations depends on the number n of peaks 
to be fitted, on the number m of parameters in the peak model and on the 
number p of samples for fitting. Generally, p will be in the range 1·5 mn to 
3 mn. Set-up of the point equations costs the evaluation of 2 mnp function 
values if the derivatives are calculated numerically or the equivalent of 1·5 mnp 
function evaluations for analytical derivatives. The conversion to the normal 
equations takes !P (mn)2 multiplications of matrix elements. Inversion of 
a symmetrical mn x mn matrix with Choleski's algorithm takes about 
! (mn)3 + 2 (mn)2 multiplications 4

-
13

). From these expressions it follows 
that the reduction of either m, n or p will drastically reduce the number of 
operations: 
- n may be temporary reduced by fitting first the larger peaks, adding the 

smaller peaks after convergence; 
- by starting with a simple model (Gaussian peak, fixed width), the number 

of parameters is small in the initial iterations; 
the function values and the partial derivatives are not evaluated at all p 
samples, but only at samples on the peak body; 
p may be varied during the iterations, starting with a very low value, e.g. 
1·2 nm, and increasing gradually until in the final iteration all samples are 
taken into account; 
parameters may be optimized sequentially instead of simultaneously, as will 
be elaborated below. 

Some preliminary tests showed that these strategies may reduce the time for 
curve fitting by a factor 2-4. 

4.3.2. Simplification 

Often the sophisticated data processing is unnecessary because the accuracy 
and precision of the experimental part are an order of magnitude worse. With 
some loss in precision, the program may be considerably reduced in length and 
required processing time. 

Initial inspection: Iterative noise estimation can be speeded up by larger 
thresholds. Initial peak detection may be done without the intricate regression 
procedure for filter-width updating. 

Peak detection: The matched filter becomes tedious for broad peaks because 
of the large number of iterations. An almost equally effective filter, depicted 
in fig. 4.13, requires in its recursive form only 4 multiplications, irrespective 
of the filter width. Using inflection-point pairs, shoulder peaks can still be 
detected. 
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Fig. 4.13. Profile of a filter for calculating second derivatives. 

Baseline correction: Instead of fitting a polynomial, the boundaries of the peak 
group can be connected by a straight line. 

Parameter estimation: For single peaks the moments can be calculated by 
numerical integration between the peak boundaries. The top location is estimat
ed by fitting a single parabola over the region (-1·2 w, + 1·2 w). For all except 
the very smallest peaks the precision will be satisfactory. 

Curve fitting is still the only accurate means of apportioning overlapping 
peaks. A bi-Gaussian peak model is able to cover a wide range of actual 
shapes. A simplified, fast procedure for curve fitting is based on the following 
considerations: 

If an unredundant number of samples is taken, i.e. p = mn, the point equa
tions need not be converted to the normal equations. 

- The samples for fitting are taken near the positions where the parameters 
are most sensitive (optimum in partial derivatives). 

- Similar parameters are optimized simultaneously, while other parameters 
are kept constant. For example, the areas are optimized while positions and 
widths are kept constant, then the positions are optimized while areas and 
widths are constant, etc. Because each peak is supposed to interfere only 
with its direct neighbours, this results in a set of tri-diagonal equations that 
can be solved with 5 mn multiplications (Choleski: t (mn)3 + 2 (mn)2). 

These simplifications are estimated to reduce the program length to one third 
and the processing time to about one tenth, thus bringing it on a par with 
Wijtvliefs program while maintaining a number of important advantages: 

automatic, by requiring no presetting of processing parameters; 
- detection of overlapping peaks and shoulder peaks; 
- local baseline to each peak group; 
- separation of overlapping peaks by curve fitting. 
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5. IDENTIFICATION 

5.1. Introduction 

A general review of techniques for identification by chromatography, includ
ing ancillary techniques, is given by Leathard and Shurlock s-1). This chapter 
will be confined to computer-aided identification from chromatographic data 
only. 

It is convenient to distinguish between primary and secondary identification. 
Primary identification means structural elucidation of an unknown compound, 
without relying on tabulated data. Secondary identification is based on recogni
tion: the compound must have been identified before and analysed under the 
same conditions. As chromatographic analysis provides only one quantity 
specific for an eluted compound, which does not allow interesting inferences 
about molecular structure, it is mainly suitable for secondary identification. 

Secondary identification is unreliable, without further evidence. Due to its 
limited precision, a retention value should not be considered as a point on a 
uni-dimensional scale but as the mean of a probability distribution extending 
over a range of values. Probability distributions are bound to overlap to some 
extent, so that identification is always uncertain. More fundamentally, identi
fication is unreliable because data from only a small number of the myriad of 
chemical compounds will be available in the data collection. Circumstantial 
evidence, such as sample origin and pretreatment steps, are essential for reliable 
identification. For these reasons, we believe that computerized table searching 
should be based on a probabilistic matching criterion, and the circumstantial 
evidence should be reflected in the selection of certain classes of compounds 
and, possibly, different a priori ratings for each of these classes. 

The reliability can be increased by analysing the sample on different stationary 
phases or at different temperatures. Coinciding retention data may be resolved, 
and structural information can be obtained. The matching criterion should 
therefore be able to combine the results of different analyses. 

Attempts have been made to establish relations between molecular structure 
and retention values, so that chromatography can also be used for primary 
identification. Two aims can be distinguished: 
- the identification of structural features from retention data of one compound 

on different stationary phases; 
- the prediction of the unknown retention value of a compound from the 

known values of related compounds on one stationary phase. 
The first method is based on a clustering of compounds with a common specific 
group if the retention values on different phases are plotted in a multi-dimen
sional space s-2

). At present, this still requires a lot of inspired guesswork and, 
at best, contributes pieces of information. The prediction of retention values is 
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based on the assumption that the contributions of structural elements are addi
tive s-3). 

In the following sections some aspects of computer-aided identification will 
be discussed. A probabilistic matching criterion is presented in sec. 5.2. Sec
tion 5.3 discusses the structuring of the data collection, necessary for efficient 
searching. In sec. 5.4 some examples are given that demonstrate the application 
of the matching criterion. In sec. 5.5 a method for predicting retention values 
is investigated. 

5.2. Matching criterion 

Due to the finite precision of both the measured retention value and the 
retention values in the data collection ("library"), unique identification is im
possible. It is the function of the matching criterion to weigh the evidence 
between possible candidates. 

There is also the possibility that the true compound is not present in the 
library. This possibility may not be neglected even if there is perfect agreement 
between the measured value and some library value, although it becomes more 
likely if no suitable library value can be found. To assess this would require 
knowledge of the number of possible compounds and the distribution of the 
retention values. These are not available, so only the compounds in the file 
are considered. 

Let Rm represent the measured retention value, and Rt. i = 1, ... , N the 
N values in the library; they are both random quantities with variances am 2 

and a? characteristic of the precision of measurement. A certain compound A 
in the library is the more likely the right compound, the closer Ra is to Rm. 
It seems reasonable to asume that if A is the right compound, then the dis
crepancy 

Lla = Rm-Ra 

will be normally distributed with zero mean and variance equal to the sum of 
the variances of both retention values: 

In other words, the conditional probability density of a discrepancy Lla for a 
given substance A is 

p(Lla I A) (5.1) 

The conditional probability of A, given the discrepancy Aa, follows from 
Bayes' rule: 
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P(A I Lla) 
p(Lla I A) P(A) , 

p(Lla) ' 
(5.2) 

P(A) is the a priori probability of compound A. The denominator p(L1 4 ) is the 
unconditional probability density of the observed discrepancy, and this is 
assumed to be uniform and constant for all library compounds. If A and B 
are two possible candidates, the likelihood ratio Lab characterizes numerically 
the support by the measurement Rm for A as against B: 

A)P(A) 

B)P(B) 
(5.3) 

The likelihood ratio expresses the relative merit of two compounds. An absolute 
merit is expressed by the two-sided excess probability for the observed dis
crepancy: 

ro 

P(> IL1all A) = 2 J p(Ll I A) dLI 
l..:lal 

1-erf(~). 
tY4 V2 

(5.4) 

where erf (x) denotes the well-known error function. 
So far only a single measurement was considered. The criterion can easily be 

extended for multiple measurements of the same compound under different 
conditions. Let there ben measurements, R"'·"' k = 1, ... , nand hence n dis
crepancies for a candidate compound. The likelihood ratio for two compounds A 
and B contains the product of the conditional probability densities: 

P(A) TI p(Lia,k I A) 
n 

P(B) Ilp(Liz,,k B) 
n 

Then standardized discrepancies for a compound A 

R k-R k .L'J * _ rn, a. 
a,k - ( 2 2)1/2 

tYm,k tYa,k 

(5.5) 

(5.6) 

are assumed to be n independent normally distributed variables with zero mean 
and unit variance. Accordingly, the sum of the squared standardized discrepan
cies follows a x2-distribution with n degrees of freedom. Consistent with the 
definition in (5.4), the absolute merit of a compound A is expressed by the 
integral probability for a x2-distribution with n degrees of freedom of exceeding 

n 

k= 1 

Values for this probability are found in ref. 5-4. 
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5.3. File structure and search 

Identification by searching in a library of retention data is well suited to be 
done by a computer. The method described below was developed for an EL-X8 
computer, having a core store capacity of 48K words of 27 bits and 512K drum 
capacity. Retention indices are used for identification s-s). 

In an unstructured library a certain value can only be found by searching 
sequentionally through the whole library. This is obviously not very efficient 
if the library is large. Three methods are used to improve the efficiency of the 
search: 

classification of the data, to limit the scope of the search; 
~ coding of the information, to reduce the size of the searched classes; 
~ sorting of the values, so that more-rapid searching methods can be used. 

A classification is made at three levels. Primary classes are based on chemical 
nature, e.g. hydrocarbons, steroids, alcohols, etc. It is assumed that it is known 
from circumstantial evidence which class must be searched. A second classifica
tion is made according to the conditions of the analysis (stationary phase, tem
perature). This will also be known in advance. Further subclassification is made 
for related compounds, e.g. hydrocarbons are subdivided in aliphatic, aromatic, 
cyclic, unsaturated, etc. By selecting certain subclasses for searching and, pos
sibly, giving them different a priori ratings, further circumstantial evidence can 
be introduced. 

Coding is especially important for computer search, because of the limited 
capacity of the high-speed random-access store. Data transports between dif
ferent stores usually take considerable time. Retention indices range between 
100 and 4000, and the state-of-the-art precision is about 0·05 unit in the lower 
range ( < 1000) and about 0·2 in the upper range. So 5 digits or 16 bits are 
sufficient. By putting the coded classifications (1 digit for each level) before the 
index value, the limitation of the search is automatically obtained. For example, 
3,4,4 trimethyl cis-pentene-2 has the index 747·08 on squalane at 70 o C (code 

3). Hydrocarbons are coded 1 and alkenes are coded 2, so the stored value 
is 13274708. Because the names of many chemical compounds are quite bulky, 
they were put in an auxiliary name file. The position in the name file ("address") 
must be stored together with the coded index. In this way the search file is 
small, and the names need only to be stored once. The standard deviation of 
the retention index must also be stored together with the coded index, because 
it is used in the matching criterion. 

By putting the coded retention indices in ascending order, the binary search 
method can be used. This is much faster than sequentional search (for N data: 
1 + ln2 Nvs N comparisons). 

The library structure is pictured in table 5-L Each record in the search file 
consists merely of two words.- The key word is the coded retention index. The 
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TABLE 5-I 

Search file Name file 
serial key name address number name key -label key -label 
number address address 

code index precision address 
) I 1 I 

r~~ 
1 0()() 40000 000 00001 1 n-butane 1 standard 205 standard 
2 000 41170 005 00014 2 c-butene-2 87 sq,50,gr 253 sq,70,ry 
3 0()() ..... 

14 22 dM Pr 2 sq.50.to 206 sq.70 ,ry 

t I 87 001 40661 005 00002 

"' 
88 001 ..... 

" . 
0 

.Q 

~~ 
010 40000 000 00001 .... 

~ 010 41290 002 00014 
010 * " ••• ]. 253 011 40630 002 00002 

254 011 ... 

100 ..... 

other word contains the precision and the name address. The records in the 
name file have a variable length. Each record contains the name of the com
pound and one or more pointers to its retention values in the search file. To 
each pointer a label is attached that contains additional information such as 
literature source, instrumental conditions, etc. The effect of the structuring is 
that the entire search may be done in the search file. If one or more matching 
values have been found, the name of the compound and further information 
can be retrieved via the link address. Via the key addresses, other retention 
values of this compound can be directly retrieved, which is very useful for 
further investigations. 

The search proceeds as follows: The library, stored on magnetic tape, is read 
into the computer store at the start of the processing. The retention index for 
identification is provided with an estimated precision and the coded conditions. 
The primary class must also be specified. For the relevant subclasses an a priori 
rating must be specified, which is used in the matching criterion (5.3). Finally, 
a threshold for the excess probability (5.4) must be specified. The index and 
the classifications are combined to one value, composed in a similar way to the 
coded values in the library. From this value, the precision of measurement and 
the specified threshold level, the range is calculated in which appropriate library 
values must be situated. The centre of the range is located by binary search. 
The matching criterion is applied to the values in the range, and those having 
a probability above the threshold, if any, are listed with the likelihood ratio 
to the most probable reference and the excess probability. Names and further 
information are printed out. 
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TABLE 5-11 

a 

index: 759·8, standard deviation 0·8, squalane, 50 "C, hydrocarbon 
compounds above threshold 0· 5%: 
759·4 2,3,3 trimethyl pentane; s.d. 0·1 

likelihood ratio: 0·95 
excess probability: 61·7% 

760·1 2,3 dimethyl hexane; s.d. 0·1 
likelihood ratio : 1 
excess probability: 71·8% 

761·4 2 methyl, 3 ethyJ pentane; s.d. 0·1 
likelihood ratio : 0·14 
excess probability: 4·5% 

b 

index: 764·1, standard deviation 0·8, squalane, 70 "C, hydrocarbon 
compounds above threshold 0·1 % 
761·5 2,3 dimethyl hexane; s.d. 0·1 

likelihood ratio: 0·007 
excess probability: 0·12% 

763·4 2,3,3 trimethyl pentane; s.d. 0·1 
likelihood ratio: 0·90 
excess probability: 38·2% 

763·5 2 methyl, 3 ethyl pentane; s.d. 0·1 
likelihood ratio: 1 
excess probability: 45·4% 

Combined results 
- 2,3,3 trimethyl penJane 

likelihood ratio: 1 
excess probability: 70% 

2 methyl, 3 ethyl pentane 
likelihood ratio: 0·14 
excess probability: 5% 

- 2,3 dimethyl hexane 
likelihood ratio: 0·007 
excess probability: 0·12% 

c 
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5.4. Examples 

Retention data of hydrocarbons on squalane, taken from Rijks s-6), were 
compiled in the library. As a test, the index 759·8 measured by Tourres s-7) 

for 2,3,3 trimethyl pentane on squalane at 50 oc was introduced. The estimated 
standard deviation is 0·8. All hydrocarbon subclasses were given equal a 
priori rating. The probability threshold was set at 0·5 %. The results of the 
search are given in table 5-IIa. There appears to be no clear-cut choice. Then 
the index 764·1 of this compound on the same phase but at 70 oc was used. 
Again a number of candidates is found (table 5-Ilb). Combining both results, 
the ambiguity is resolved (table 5--IIc). 

In practice usually a mixture of unknown compounds will be analysed. The 
precision estimate must take a possible peak shift from overlapping peaks into 
account s-6). If the same mixture is analysed on a second stationary phase, 
it is unknown which peaks do correspond to the same compound. Consider a 
hypothetical mixture which gives three peaks on squalane and on citroflex 
(table 5-III, data taken from Rijks s-6)). Only one peak can be identified 
directly, assuming that the library is complete. For the other peaks more can
didates are listed. If the results of the two analyses are combined by eliminating 
those references that do not occur on both lists, most peaks are uniquely iden
tified. Only the presence of 3,4 dimethyl pentene-1 cannot be decided from the 
given data (in this case the peak areas will decide). 

This example demonstrates that the combination of analyses enhances the 
identification. However, this identification is based on elimination: a candidate 
from one analysis shows to be absent because the other chromatogram is empty 
at the corresponding position. With increasing peak density the number of 
candidates that can be eliminated will decrease progressively. For complex mix
tures the combination of analyses does not yield much additional information. 

TABLE 5-III 

squalane, 50 oc 
index 

637·5 

666·5 
693·0 

candidates 

3,4 dimethyl pentene-1 --------benzene 
2,4 dimethyl pentene-1 
2 methyl hexane 
2,2 dimethyl t-hexene-3 
3 methyl c-hexene-2 

citroflex, 50 oc 
index 

667·0 

729·5 

775·0 

candidates 

2 methyl hexane 
3,4 dimethyl pentene-1 --------4,4 dimethyl c-pentene-2 
3 methyl c-hexene-2 
2,5 dimethyl hexane 
3 methyl heptane 
benzene 
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5.5. Structure-retention relations 

The prediction of retention values is based on the assumption that contribu
tions of structural elements are additive. Schomburg s-s) elaborated a system 
of increments for substituent groups on a given backbone structure. Fairly 
accurate predictions can be made for single substituents, but if more substituents 
are used, their interaction must be accounted for by second- and third-order 
corrections so that the system becomes complicated and obscure. 

A more general approach is to define a set of structural units from which all 
molecules from a certain class of compounds can be assembled. If there are m 
such units, each molecule is described by an m-dimensional vector 

n1 denotes the number of units j. If the retention contribution of unit j is 
denoted as c1, the additivity assumption predicts the retention value of a com
pound as 

111 

R = 2: n1 cJ nT. c. (5.7) 
J= 1 

The increment vector c can be calculated if for a sufficient number of members 
of the class the retention value is known. Let for p molecules nb k = 1, ... , p, 
the retention value be Rk. This provides a set of p equations: 

nkT. c Rk. 

In matrix notation: 

N.c=R. (5.8) 

If the set is overdetermined (p m), and the molecular description is not 
redundant, the increment vector c can be calculated by the least-squares method: 

(5.9) 

We made some calculations on the basis of sets of structural units for aliphatic 
alkanes, described by Walraven 5 - 2). 

The four-digit set distinguishes primary, secondary, tertiary and quaternary 
carbon atoms: (np, n8 , nt, nq). This set is however redundant, as it is easily 
seen that for alkanes nP = 2 nt 2nq. So three units are sufficient: 
n = (n8 , nt, nq)· Calculation of the increment vector from a set of 25 alkanes, 
randomly chosen, showed that the reproduction accuracy (i.e. for compounds 
used in the calculation set) was about 20 index units. The prediction accuracy 
for another 25 alkanes was about 35 i.u. However, a comparabe prediction 
accuracy could be obtained from a calculation set of 10 alkanes. 

A refined description set is the bond-type coding. Nine types of bonds exist 
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between carbon atoms in alkanes (primary-primary, primary-secondary, etc.). 
The reproduction accuracy was found to be about 5 i.u. and the prediction 
accuracy about 8 i.u. 

An even more detailed set was constructed by differentiating between different 
neighbourhoods for each carbon atom (e.g. a tertiary carbon connected to two 
secondary carbons and one primary carbon). This set contains 69 units. 
Removing the redundant units, 35 units occur in alkanes up to C9 • This implies 
that at least 35 well-selected compounds are required for the calculation. The 
reproduction accuracy for a set of 45 compounds was about 0·8 i.u. and the 
prediction accuracy was 1·5 i.u. 

These results show a basic dilemma: for an accurate prediction a large number 
of structural units must be distinguished, so that a large number of compounds 
is required for the calculation and few remain for a true prediction. 

Takacs et al. s-9) proposed a set of about 600 units! Although a number of 
them cannot occur in reality, the number actually used 130) is larger than 
the number of alkanes measured at present. As the set of equations is under
determined (and the description set contains a number of redundant units), it 
appears that most of the increments are arbitrarily assigned. 

For other classes, such as alkenes, the greater structural variety necessitates 
the introduction of a larger number of structural units to attain a comparable 
accuracy of prediction. At present the number of available data is too small for 
predictions of interesting accuracy (i.e. < 5 i.u.). In these cases the more 
limited approach of Schomburg s-s) is still the appropriate method. 
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List of main symbols 

A 
a 

a" 
b 
b 
c 
d 
E., 
f 

F 

F" 
f(r:) 
g('r:) 

G" 
i,j, k 
K 
m,n 
mn 
n(t) 
N 

N" 
p 
p 
lip 
p(x) 
p,.(t) 
Rs 
S, S(p) 

S/N 
t 
tR 
wr 
w, w, 
yk 
y(t) 

z" z 
z-1 
z(t) 

peak area 
coefficient 
coefficient of kth term in a polynomial 
coefficient 
vector, left-hand side of normal equations 
coefficient 
integer 
discrepancy between measurement and fitted function at t = t" 
number of samples over the peakwidth (or, peakwidth expressed in 
number of samples) 
F-test value 
sampled filter weight function/(<) at T = k L1 
filter weight function 
normalised peak model (unit area and centred in the origin) 
sampled value of g(T) at T k L1 
integer values 
proportionality constant 
integer values 
nth central moment 
random noise signal (zero mean) 
plate number/number of objects in a set 
sampled value of n(t) at t = k L1 
parameter 
parameter vector 
correction vector for p 
probability distribution of statistical quantity x 
polynomial of degree n 
resolution 
sum of squares, for parameter vector p 
signal-to-noise ratio 
time 
retention time 
width of the matched filter 
peakwidth (distance between maximum and inflection point) 
sampled signal y(t) at t = t" 
signal, made up of peaks, baseline and noise 
filtered sampled signal at t t" 
matrix of normal equations (symmetrical) 
inverse of Z 
filtered signal 
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ijth element of Z 
ijth element of z-l 
skew (eq. (2.5)) 
excess (eq. (2.5)) 
sample interval 
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combined error in the area (root of the sum of squared systematic 
error and variance) 
combined error in the centre of gravity 
centre of gravity ' , ... 
mean value of estimated quantity p 
true value of quantity p 
normalised time ('YJ = (t- p,)fw) 
standard deviation (of parameter p) 
mean noise amplitude (rms) 
dummy parameter/time constant in first-order system response 
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Summary 

Data processing may be understood as the transformation of a chromatogram 
into operative information. This transformation is commonly effected in three 
steps, viz. extraction, identification and interpretation. The present work is 
confined to extraction and identification. 

For the extraction our aim was to design a computer program which satisfies 
three requirements, viz. low detection limits, optimum accuracy and precision 
of the results and automatic processing. This combination of requirements is 
uncommon because so far high-quality data processing has demanded a consid
erable amount of judgement from the user. 

The goal was achieved, on the one hand, by elaborating existing techniques and 
developing new methods for the program parts and, on the other hand, by 
integrating these parts into a program in such a way that information obtained 
from each part is used to adapt the subsequent parts more closely to the pro
cessed signal. 

The main improvements in the parts are: 
Application of matched-filter detection, which is known to yield an optimum 

detection. The threshold level is adjusted to the noise amplitude in the signal. 
The resolution limit at which a composite peak can be distinguished from a 
single peak is evaluated. 

A method of peak-boundary location is described which yields correct 
boundaries on a sloping baseline. This eliminates an important source of error 
in subsequent baseline correction and in the area estimation. 

A local baseline correction to each peak group is obtained by fitting a 
polynomial to the bracketing baseline sections. 

The coordinate of the peak maximum is calculated by fitting a parabola to 
points around the top. An iterative procedure is described which adjusts the 
number of points to the noise amplitude and the peak shape, so as to minimize 
the sum of systematic and random errors. 

For single peaks the area and the centre of gravity are calculated by numer
ical integration. An iterative procedure is developed which adjusts the integra
tion limits for optimum accuracy and precision. 

Overlapping peaks are separated by curve fitting. The peak model is selected 
according to the actual shape of the peaks. 

An analysis of the systematic and random errors for a Gaussian peak showed 
that the accuracy and precision equal that of the best methods used so far. 

Further advantages are that the program is easy in use, and that the results 
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are consistent, independent of the user's skill. 
The main drawbacks are that large amounts of storage are used and that the 

processing time is long. Some possibilities are indicated for a more efficient 
programming. It is also assessed that a number of simplifications can be made 
which reduce the processing time to that of other programs, while maintaining 
a number of important advantages. 

Identification based on comparison of the measured retention value with 
tabulated values is described. A matching criterion is proposed which takes the 
precision of the measured value and the tabulated values into account and al
lows for the introduction of further evidence. Applying this criterion yields 
both an absolute and a relative measure for the likelihood of matching com
pounds. Results of different analyses can be combined into a total score. 

Data structuring for efficient search and direct retrieval of coherent informa
tion is described. 

The possibilities and limitations of relations between structure and retention 
as an aid to identification are demonstrated. 
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Samenvatting 

Het onderwerp van dit proefschrift is de verwerking van gaschromatografische 
gegevens. Men kan deze gegevensverwerking zien als een transformatie van het 
chromatogram tot bruikbare informatie. De transformatie vindt gewoonlijk in 
drie stappen plaats: van het geregistreerde signaal tot analytische gegevens 
(extraktie), vervolgens tot chemische gegevens (identifikatie) en tenslotte tot 
praktisch bruikbare informatie (interpretatie). In dit proefschrift komen alleen 
extraktie en identifikatie aan de orde. 

Voor de gegevens extraktie stelden we ons tot doel om een computerprogramma 
te ontwerpen dat, uitgaande van het bemonsterde en gedigitaliseerde signaal, 
zonder verdere informatie over de kenmerken van het signaal, de analytisch 
relevante gegevens (piekoppervlakken, retentietijden, etc.) bepaalt met zo groot 
mogelijke nauwkeurigheid. De kombinatie van deze eisen is uniek: tot nu toe 
ging automatisering veelal ten koste van de kwaliteit van de resultaten en was 
voor uiterste nauwkeurigheid een veel aandacht kostende procedure nodig. 

We hebben geprobeerd dit doel te bereiken door enerzijds voor de onderdelen 
van de verwerking, zoals piekdetektie, basislijnkorrektie en berekening van 
piekparameters, bestaande methoden te verfijnen of betere methoden te ont
werpen, en anderzijds door deze onderdelen z6 in een programma te integreren 
dat de resultaten van elk onderdeel in de daaropvolgende delen worden benut 
voor een betere, aan het signaal aangepaste bewerking. Door de verwerking in 
stappen te doen, namelijk eerst globaal en vervolgens steeds gedetailleerder, 
krijgt elk chromatogram een zo goed mogelijk aangepaste behandeling. 

De belangrijkste verbeteringen in de onderdelen zijn de volgende: 
Voor piekdetektie wordt de "matched filter" methode gebruikt, waarvan be

kend is dat hiermee optimale detektie wordt verkregen. De drempelwaarde voor 
de detektie wordt aangepast aan de ruisintensiteit in het signaal. De grens waar
bij twee overlappende pieken nog apart kunnen worden gedetekteerd is bere
kend. 

De piekgrenzen worden zodanig bepaald dat ze ook op een hellende basislijn 
korrekt zijn. Dit voorkomt fouten bij de basislijnkorrektie en bij berekening 
van het piekoppervlak. 

De basislijnkorrektie wordt voor iedere piek of groep van overlappende pie
ken apart bepaald. Dit is nodig om ook bij een golvende of diskontinue basislijn 
de juiste korrektie te krijgen. 

De plaats van de piektop wordt bepaald door een parabolische interpolatie 
tussen punten rond de top. Een iteratief mechanisme zorgt ervoor dat het aantal 
punten aangepast wordt aan de ruisintensiteit en aan de piekvorm (hoe sterker 
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de ruis hoe meer punten; hoe groter de asymmetrie hoe minder punten). Op deze 
marrier wordt de som van de systematische en toevallige fouten verminderd. 

Voor enkelvoudige pieken worden het oppervlak en het zwaartepunt bere
kend door numerieke integratie. De geldigheid van de resultaten is dus niet 
beperkt tot bepaalde piekvormen, zoals bij vele meetkundige benaderingen. De 
integratiegrenzen worden weer iteratief aangepast aan de ruisintensiteit en de 
werkelijke piekvorm, zodanig dat de som van de systematische en toevallige 
fouten wordt geminimaliseerd. 

De gegevens van overlappende pieken worden door "curve fitting" berekend. 
Hierbij wordt de keuze van het meest geschikte piekmodel gemaakt op grond 
van de vorm van de pieken in het chromatogram. 

Een analyse van de systematische en toevallige fouten voor een Gaussische piek
vorm laat zien dat de bereikte resultaten tenminste die van de beste methoden 
tot nu toe evenaren. Verder verklaart deze analyse enkele bekende studies die 
experimenteel vonden dat de toevallige fouten omgekeerd evenredig zijn met de 
signaal-ruis verhouding en evenredig met de wortel uit het bemonsterings
interval, zolang opeenvolgende ruisbijdragen ongekorreleerd zijn. Bovendien 
laat de analyse zien dat de toevallige fouten bij curve fitting exponentieel 
toenemen naarmate de scheiding tussen twee pieken afneemt. Dit betekent dat 
uit de som-curve van slecht gescheiden pieken weinig significante informatie 
kan worden verkregen. 

Naast de grote nauwkeurigheid heeft het ontwikkelde programma twee belang
rijke voordelen. Allereerst is het eenvoudig te gebruiken omdat voor verwerking 
geen extra informatie over het chromatogram nodig is. Verder zijn de resultaten 
consistent en niet afhankelijk van de kennis van de gebruiker. 

Het programma heeft als nadeel dat het zeer veel geheugenruimte en rekentijd 
vergt. Er worden daarom enkele mogelijkheden opgesomd voor meer efficiente 
programrnering. Daarnaast wordt aan de hand van een ruwe analyse geconclu
deerd dat het mogelijk is om door vereenvoudigingen de rekentijd terug te bren
gen tot die van andere programma's met behoud van een aantal essentiele voor
delen. 

V oor identifikatie door vergelijking van een gemeten retentiewaarde met ge
tabelleerde waarden wordt een kriterium op basis van kansen voorgesteld. 
Hiermee kan zowel de nauwkeurigheid van de gemeten en getabelleerde waar
den in rekening worden gebracht als de aanwezige extra informatie, bv. over 
het soort monster. Met het kriterium kan zowel een absolute maat voor de kans 
van potentiele kandidaat-stoffen worden berekend als een relatieve maat. 
Bovendien kunnen de resultaten van verschillende analyses worden gekombi
neerd tot een totaal-waardering. 
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Een ander aspect dat aan de orde komt is bet struktureren van de tabellen in 
bet computergeheugen zodat enerzijds bet zoeken efficient kan verlopen en 
anderzijds op elkaar betrekking hebbende gegevens direkt kunnen worden 
teruggevonden. 

Tenslotte wordt aan de hand van een voorbeeld duidelijk gemaakt hoe 
struktuur-retentie-verbanden als hulpmiddel voor identifikatie kunnen dienen. 
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De direktie van bet Natuurkundig Laboratorium van de N.Y. Philips' Gloei
lampenfabrieken ben ik zeer erkentelijk voor de gelegenheid die mij geboden 
is om bet werk dat in dit proefschrift is beschreven uit te voeren aan de 
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Levensbericht 

Op verzoek van het college van dekanen volgt hier een kort levensbericht van 
de schrijver. 

Hij werd geboren te Tienray op 31 juli 1948. Na het behalen van het H.B.S.-b 
diploma aan het R.K. Lyceum voor Jongens (Boschveld colleg;}) te Venray in 
1965, begon hij met de ingenieursstudie scheikundige technologic aan de Tech
nische Hogeschool te Eindhoven. Ret afstudeerwerk in de groep Instrumentele 
Analyse werd gedeeltelijk uitgevoerd in het Instituut voor InstrumenteleAnaly
tische Chemie van de Tsechoslowaakse Akademie van Wetenschappen te Brno. 
Injanuari 1971 werd het ingenieursexamen afgelegd. Op 1 februari 1971 trad hij 
in dienst van de N.V. Philips. Hierna werd in de sectie Instrumentele Analyse 
van de Technische Hogeschool een aanvang gemaakt met het werk dat leidde 
tot dit proefschrift. 



STELLING EN 

M. H. J. van Rijswick 3 december 



I 

Tegen het gebruik van de Gauss funktie als piekmodel bij curve fitting van 
niet gescheiden elutiekurven kan als bezwaar worden aangevoerd dat het model 
te eenvoudig is. Het hanteren van dit argument door degenen die loodlijnme
thoden toepassen doet echter hypocriet aan. 

J. J. M. Wijtvliet, Proefschrift T.H. Eindhoven, 1972, Stelling 1. 
B. Weimann, Chromatographia 7.472.1974. 
G. Schomburg, F. Weeke, B. Weimann, E. Ziegler, Chromato
graphia 7,477,1974. 

II 

Het door Rijks et al. ontwikkelde systeem voor kraanloze serieschakeling van 
kolommen kan worden gebruikt als pyrolyse-detektor, door voor de tweede 
kolom het pyrolysesysteem op te nemen. De hoeveelheid informatie en de mo
gelijkheden voor identifikatie worden hierdoor aanzienlijk vergroot. 

J. A. Rij ks, J. H. M. van den Berg, J.P. Diependaal, J. Chromatog. 
91, 603, 1974. 

III 

De interpretatie van massaspectra van steroiden met patroonherkennings
methoden, zoals gepresenteerd door Varzuma et al., kan worden verbeterd door 
een oneven aantal (> 1) beslissingsvektoren te trainen, elk vanuit een verschil
lend startpunt en te klassificeren bij meerderheid van stemmen. 

K. Varzuma, H. Rotter, P. Krenmayr, Chromatographia 7, 522, 
1974. 
N. J. Nillson, Learning Machines, McGraw-Hill, New York, 1965, 
Ch.6. 

IV 

De konklusie van Matsushima en Enyo, dat de waterstofelektrodereaktie 

H 2 2B? 2H+B 2e 

in zuur (B = H20) en alkalisch milieu (B OH-) volgens hetzelfde reaktie
mechanisme verloopt wordt niet overtuigend gesteund door hun experimenten. 

T. Matsushima, M. Enyo, Electrochimica Acta 19, 125, 1974. 

v 
In het door McVitie en Wilson beschreven "stable marriage problem" is het 
zinvol om het begrip "bi-stabiele kombinaties" in te voeren voor paren van 
stabiele kombinaties die bij onderlinge partnerruil eveneens stabiel zijn. Men 
kan het volgende aantonen: bi-stabiele kombinaties zijn aileen mogelijk als 
beide leden van de ene soort tevreden zijn met hun huidige partner, terwijl van 
de andere soort heiden elkaars partner prefereren hoven hun huidige partner. 

D. G. McVitie, L. B. Wilson, Comm. of the ACM 14,484, 1971. 



VI 

Konsekwente toepassing van de richtlijnen van de Union Internationale des 
Associations d'Alpinisme voor moeilijkheids-klassifikatie bij rotsklimmen kan 
een einde maken aan de misvatting dat "artificiel" klimmen een graad moei
lijker is dan vrij klimmen. 

F. Wiessner, UIAA Schwierigkeitsbewertung und Routenbeschrei· 
bung, 1971. 

VII 

Gezien het belang dat grote groepen van de bevolking bij het inflatieproces 
hebben, is het gewenst dat er politieke partijen opkomen voor dit belang. 

VIII 

V oor wetenschappelijke publikaties dient een verjaringstijd van maximaal 
10 jaar te worden aangehouden waarna de auteurs niet meer mogen worden 
aangevallen op hun fouten. Proefschriften moeten in dit opzicht als jeugdzon· 
den worden beschouwd met een versnelde verjaringstijd. 

Eindhoven, 3 december 1974 M. H. J. van Rijswick 


