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Abstract

We study product differentiation on a Salop circle when firms relocate incrementally due
to bounded rationality. We prove that, under common assumptions on demand, firms
relocate only when two or more firms target the same niche. In any other case, there
is no incentive for any firm to relocate incrementally. We prove that all distributions
in which firms are sufficiently far apart in product space are unstable Nash equilibria.
We prove, in particular, that the classical equidistant distribution is an unstable Nash
equilibrium that cannot emerge from another distribution. However, we show that if each
firm is engaged in head-on rivalry with one other competitor, the industry converges to
a ’equidistantesque’ equilibrium of clusters of rivals.

Keywords: product differentiation, bounded rationality, Salop circle, equidistant
equilibrium, maximum differentiation
JEL: D43, L13, D50, C73, L22

1. Introduction

Firms differentiate their products to exploit differences in consumers’ preferences.
By producing a product in a niche that differs from the niches that competitors target,
firms enjoy local monopolies. Product differentiation models are extensively applied to
industry and service sectors of various sorts, used in policy studies, and extended upon
in fundamental economic and economic geography research.
In a prominent body in product differentiation research literature, products are repre-
sented as locations in a low-dimensional space of product characteristics like the Hotelling
line or the Salop circle. These models capture real-world situations like shops located on
the main street or different sweetness of cider (Hotelling, 1929), shops located along the
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ring road (Gupta et al., 2004) or departure times of flights at airports (Borenstein and
Netz, 1999). However, the findings on locations of firms in product space in equilibrium
are also taken as indications of rational product-market divisions in more complex (real-
life) situations.
In the classical two-stage game (pick location, then price or quantity), firms maximize
their profit by maximum differentiation. Firms are then evenly spread across the Salop
circle in a so-called equidistant equilibrium. However, in this classical game, firms act
perfectly rational and are perfectly informed on location decisions of competitors. In
this paper, we follow up on the call of Anderson et al. (1992) to study product differ-
entiation under bounded rationality. We assume that firms have imperfect information
on locations and strategies of competitors and display boundedly rather than perfectly

rational (re)location behavior. We assume that, given the inherent incapabilities of poor
information and uncertainties about competitors’ moves, firms reposition incrementally

over the product landscape following a myopic strategy. We study the dynamics and
emerging equilibria in firm locations on the Salop landscape. In contrast to the classical
findings, we find that the equidistant equilibria are in fact unstable and do not emerge
dynamically. Moreover, we find that when firms are randomly scattered over the product
space, even relocation is not very likely.

2. Literature

Product differentiation is a competitive positioning strategy that exploits consumer
heterogeneity. If consumers differ in that they prefer different products and have dif-
ferent willingness to pay depending on the extent to which their preferences are met,
firms can soften competition by providing a product to niches of consumers that are
yet underserviced. Literature provides several models to study product differentiation
equilibria (See Anderson et al. (1992) for a detailed discussion of the various streams).
One stream of product differentiation models studies so-called location models that re-
quire a specification of both product features and consumer preferences in terms of a
location in a product characteristics landscape. Particularly popular location models are
the Hotelling line and Salop circle in which the product space is a line piece and a circle
respectively. Consumers experience disutility from a mismatch of ’product specifications’
with ’product preferences’, so the models feature an ’attractiveness’, ’utility’, or ’travel
cost’ measure to reflect the fit of characteristics with preferences. The greater the dis-
tance from product (or firm) to preference (or consumer), the greater the consumption
disutility or ’traveling costs’. Utility is generally assumed to decrease linearly (Hotelling,
1929) or quadratically (D’Aspremont et al., 1979; Perloff and Salop, 1985; Tabuchi and
Thisse, 1995; Tyagi, 1999; Tirole, 1988). Common assumptions are that consumers max-
imize their utility (i.e. pick one of the products with the best fit) and that firms select
product specifications that maximize profit given the product specifications selected by
competitors. To assure that product specifications chosen by firms are not due to asym-
metries in the consumer preference distribution, but purely due to strategic positioning
vis-a-vis competitors, it is common to assume that all possible consumer preferences oc-
cur equally often. In both of these location models, researchers have studied whether
and when the equilibrium is that of minimum or maximum differentiation or neither one
(see Lerner and Singer, 1937; Graitson, 1982; Anderson et al., 1992; Economides, 1986;
D’Aspremont et al., 1979; Böckem, 1994).
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In the Salop model of product differentiation, consumers are distributed uniformly across
the perimeter of a circle. Products (or firms offering the products) are positioned on the
circle as well. Each period, each consumer purchases one of the products based on the
attractiveness of the various products on offer. The attractiveness of a product to a con-
sumer is a decreasing function of the arc distance from consumer to product. A common
assumption is that demand is inelastic, i.e. all consumers buy a product every period (See
e.g. Hotelling, 1929; D’Aspremont et al., 1979; Perloff and Salop, 1985). In the classical
Salop circle model, firms pick a location on the circle (given firms already present and
future entrants’ location picking strategy) and a price to optimize their expected profit.
The typical results are that the equidistant distribution of firms across the circle is a
location-price equilibrium (Economides, 1989) (under inelastic demand with quadratic
disutility), a location-quantity equilibrium (Pal, 1998; Yu, 2007) (under firm-borne trans-
portation costs), and maximally entry deterring (Salop, 1979). Recently, Gupta et al.
(2004) discovered a further wide range of non-equipriced non-equidistant Nash equilib-
ria. In the models discussed, firms are perfectly rational and make an optimal location
choice. Given that competitors are perfectly rational, a firm can anticipate the competi-
tors’ strategies in its own price and location decisions (see e.g. Häckner, 1995; Capozza
and Order, 1980).

However, this perfect rationality is merely a ’normative model of an idealized decision
maker, not a description of the behavior of real people’ (Tversky and Kahneman, 1986,
p.S251). People suffer bounded rationality and this hampers people in deciding opti-
mally (Simon, 1955). Bounded rationality also affects managerial cognition and thereby
(strategic) decisions (see e.g. Johnson and Hoopes, 2003). As such, management resorts
to heuristics and routines (see e.g. Nelson and Winter, 1982).
We follow the call by Anderson et al. (1992) to study product differentiation under such
bounded rationality. In this case, firms have imperfect information on locations and
strategies of competitors and display boundedly rational (re)location behavior. Given
that bounded rationality and competitive pressures have firms focus on immediate com-
petitors (Johnson and Hoopes, 2003), relocation is expected to occur merely locally and
-given the uncertainty about competitors’ moves- incrementally. With such deviations
from perfect rationality, we expect structurally different equilibria than the classical re-
sults (see e.g. Akerlof and Yellen, 1985).

3. Product differentiation model

In this paper, we study the Salop circular product differentiation model in which
both (product preferences of) customers and (specifications of products made by) firms
are associated with locations on the circle perimeter. We study the industry dynamics
and equilibria when firms make boundedly rational (re)location decisions. We study a
repeated two-stage game consisting of a sales round in which consumers buy a unit of
product and a relocation round in which firm may pick a new location on the circle
perimeter. Prior to the first game round, we place M firms uniform randomly on the
circle. During the repeated game, firms do not enter or exit. We operationalize imper-
fect information by having firms not anticipate competitors relocation strategy. Firms
relocate on sales prospects, which is affected by the locations of the other firms. To
reflect imperfect information on the relocation decision of competitors, we assume firms
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(re)locate simultaneously. We operationalize bounded rationality by having firms not
(re)locate somewhere on the circle freely, but by having them do so incrementally. Firms
move in the clockwise or counterclockwise direction step by step through a myopic, ce-
teris paribus strategy. We assume that the steps taken by firms are of size 2π/N , thereby
dividing the Salop circular landscape in N discrete ’niches’ (cf. Krugman, 1992; Huang
and Levinson, 2007; Camacho-Cuena et al., 2005, for other discretized landscapes). Vari-
able θi(t) is the location of firm i on the circle during period t. To study the industry
dynamics and equilibrium outcome caused by the incremental nature of relocation and
not mediated by other factors, we assume that firms charge the same price (’equal price at
the mill’) and have the same relocation strategy. We furthermore assume that consumers
-rather than firms- suffer disutility from the distance to the firms (’consumers pay the
travel costs to the mill’). To study firm relocation dynamics that is not affected by asym-
metries in consumer distributions, we assume that consumers are uniformly distributed
over the circle.

Each period starts with a sales round in which each consumer purchases a single unit
of product, hereby sensitive to local attractiveness of products (related to arc distances
to the firms and their prices). As is common in spatial competition models, we assume
that consumers are uniformly distributed over the landscape, buy a single unit of product
each period and are anchored to their location (i.e. their preferences do not change over
time). We study the case that consumers maximize their utility. In period t, firm k thus
sells:

sk(t) =
∑

1≤n≤N

dkn(t) (1)

where dkn is the demand realization of consumers at location n purchasing product k.
We assume that sales and production equal demand.

In the relocation round, all of the M firms make a move simultaneously. The relo-
cation step is dictated by a myopic strategy taking into account sales prospects without
accounting for competitors’ moves. The firm relocates into the direction that increases
the expected sales most, ceteris paribus. As consumers are utility maximizers, each firm
gets demand exclusively from consumers in niches up and until halfway to neighboring
competitors. As consumers maximize their utility, they pick one of the nearest prod-
ucts. So, a consumer located at niche n simply picks the product k∗ that is at minimum
distance:

k∗ = argmin
k

∆(θk, n) (2)

The distance function ∆(θ, n) on a circular landscape is the minimum number of steps,
clockwise and counterclockwise, between niche n and niche θ. In analysis, we also use
the distance function ~∆(θ, n), which is the number of steps in clockwise direction (see
Figure 1).
Since a consumer maximizes its utility (minimizes the travel distance), it picks the (prod-
uct of) the firm nearest to it. As such, firms only compete directly with head-on rivals
at the same niche and the nearest neighbor(s) in clockwise and the nearest neighbor(s)
in counterclockwise direction. In case products2 reside at the same distance to certain

2As firms have only one product, we use k and θk as index and location respectively for both the
product and the firm.
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consumers (or even at the same location), consumers have no further preference for one
or the other and each of the products gets an equal fraction of the consumers. The thus
deterministic demand dkn from consumers at niche n for the product (of firm) k is:

dkn :=

{

|M∗(n)|−1 if k ∈ M∗(n)
0 else

Without loss of generality, we assume that each niche contains only one consumer. The
set M(n, δ) := {1 ≤ j ≤ M |∆(θj , n) = δ} is the set of firms at distance δ from n, and
the set M∗(n) := M(n,∆∗(n)) with ∆∗(n) = minj ∆(θj , n) is the set of products (firms)
at the minimum distance from n. Figure 2 gives an illustration of the demand curves.
The height of the demand curve to the circle reflects the demand for that product in that
particular niche.

4. Analysis of incremental differentiation behavior

We prove several basic lemmas on dynamics and emerging equilibria under boundedly
rational relocation that show how most initial distributions are in fact already equilibria
and prove that the classical equidistant equilibrium cannot emerge dynamically but has
to be initialized as such. We furthermore show the existence of an ’equidistantesque’
equilibrium of clusters of firms.
To explain firm behavior, we need two variables: the number m(n) of firms residing at
niche n (where these firms are then head-on rivals) and the distance ∆ of our focal firm
θk to the neighbor(s) in clockwise and counterclockwise direction. We call firms (and
their products) ’head-on rivals’ if they reside at the same niche. We say that one firm
’imitates’ another firm if it moves into the niche of that other firm.

4.1. Conditions for relocation to occur

We prove that for any relocation to occur in an industry, some firms need to be
already engaged in head-on rivalry or need to imitate another firm to then engage in
head-on rivalry.
Suppose firm k is located at θk, while the nearest neighbors on either side are located
at θL < θk − 1 and θR > θk + 1 (see the illustration in Figure 1). Note that since
~∆(θL, θk) ≥ 2 ≤ ~∆(θk, θR), firm k cannot end up in niche θL or θR in one step.

From the range of niches [θL, . . . θk], firm k gets the consumers from the rightmost

(~∆(θL, θk) + 1)/2 niches if ~∆(θL, θk) is odd, and the rightmost ~∆(θL, θk)/2 niches plus

a fraction 1/(1 + m(θL)) of the consumers in the middle niche if ~∆(θL, θk) is even. If
the firms at θL and θR now remain at their location -as firm k assumes in its relocation
consideration-, a step by firm k does change the number of consumers served in at most
two niches. The actual change in number of consumers depends on the numbers m(θL)
and m(θR) of firms in the niches of neighboring firms. While a single step by firm k may
create more sales, any subsequent step (in either direction) ceteris paribus would lower
the sales to the initial level. The following lemma formalizes that in a ceteris paribus
situation, firm k would indeed move at most only once.

Lemma 1 (Relocate at most only once) Ceteris paribus, a firm located at θk at
distance of at least two of other firms relocates at most only once. A necessary condition
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Figure 1: Illustration of firm locations θL, θk, θR and distance ~∆(θL, θk).

for a relocation is that m(θL) > 1 or m(θR) > 1, i.e. there is head-on rivalry in at least
one of the niches θL or θR .

Proof: We study when firm k moves toward θR, which is the case when s+k > sk.
Following the sales division insights described above, we find:

sk =
~∆(θL, θR)

2
− 1 +

{

1
m(θL)+1 if ~∆(θL, θk) even
1
2 if ~∆(θL, θk) odd

+

{

1
m(θR)+1 if ~∆(θk, θR) even
1
2 if ~∆(θk, θR) odd

while

s+k =
~∆(θL, θR)

2
− 1 +

{

1
2 if ~∆(θL, θk) even

1
m(θL)+1 if ~∆(θL, θk) odd

+

{

1
2 if ~∆(θk, θR) even

1
m(θR)+1 if ~∆(θk, θR) odd

We find the following conditions under which firm k will move toward θR, i.e. s
+
k > sk:

Case sk −
~∆(θL,θR)

2 + 1 s+k −
~∆(θL,θR)

2 + 1 When is s+k > sk
~∆(θL, θk) even,
~∆(θk, θR) odd

1
m(θL)+1 + 1

2
1
2 + 1

m(θR)+1 m(θR) < m(θL)

~∆(θL, θk) even,
~∆(θk, θR) even

1
m(θL)+1 + 1

m(θR)+1
1
2 + 1

2 m(θR) +m(θL) > 2

~∆(θL, θk) odd,
~∆(θk, θR) even

1
2 + 1

m(θR)+1
1

m(θL)+1 + 1
2 m(θL) < m(θR)

~∆(θL, θk) odd,
~∆(θk, θR) odd

1
2 + 1

2
1

m(θL)+1 + 1
m(θR)+1 Never

If a condition in the last column of the table is met (which requires head-on rivalry
in either θL, θR or both), a move is made, thereby increasing θk with one. This flips
the odds and evens, and with that the condition to be met to make a move in the same
direction. Ceteris paribus, this last condition can never be met as it is the logical coun-
terpart of the first condition. Ceteris paribus, after such a move, moving from θk + 1
back to θk does not occur as s−(θk + 1) = s(θk) < s+(θk) = s(θk + 1).
The analysis for a move toward θL is analogous and yields the same conclusions. �
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(a) Firm X will move to Y to share region A and
B rather than to just monopolize region A

(b) FirmsX and Y are co-located and move clock-
wise

(c) Any move will improve sales of firm Z (d) Firms X and Y can improve after move of Z

Figure 2: Plots of simple demand curves dk (continuous), Ed+k (dashed) and Ed−k (dotted)
in case consumers are utility maximizers, here M = 3 and N = 20. The height of the
curves to the circle reflects that demand.
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Lemma 1 implies that to have more than one period in which firms relocate, it is
a necessary condition that firms in different niches relocate; otherwise there would be
relocation at most in the first period. We also see that for relocation to happen, some
head-on rivalry is required. This head-on rivalry need not be initialized as such, as the
relocation in the first period may also cause one firm to imitate another and thereby
establish head-on rivalry. The following lemma concerns the formal conditions under
which imitation occurs. We assume that m(θL),m(θR) ≤ 2 to simplify further analysis.

Lemma 2 (Imitation) Let firms k and k + 1 be located at niches θk = θk+1 − 1 with
m(θk) = m(θk+1) = 1. Hereby θL is the first niche counterclockwise of firm k and θR is
the first niche clockwise of firm k + 1 containing one or multiple firms.
Firm k (k + 1) located at θk (θk+1) will imitate the immediate neighbor located at θk+1

(θk) if the distance from θk+1 to θR (from θL to θk) is larger than the distance from θk+1

to θL (from θk to θR). Firm k will not imitate k + 1 if the distance is smaller.

Proof: We prove θk imitates θk+1 if ~∆(θk+1, θR) > ~∆(θL, θk+1) by showing that sk < s+k ,
such that firm k indeed relocates to niche θk+1. The proof for the counterpart (θk+1

imitating θk) is analogous.

Define δ := ~∆(θL, θk+1) − ~∆(θk+1, θR), which is the difference in the number of niches

counterclockwise and clockwise of θk+1. As ~∆(θL, θk) = ~∆(θk+1, θR)− 1 + δ:

sk =
~∆(θL, θk)

2
+

{

1
m(θL)+1 if ~∆(θL, θk) even
1
2 if ~∆(θL, θk) odd

=
1

2
~∆(θk+1, θR)−

1

2
+

δ

2
+

{

1
m(θL)+1 if ~∆(θL, θk) even
1
2 if ~∆(θL, θk) odd

As furthermore ~∆(θL, θR) = 2~∆(θk+1, θR) + δ, we know that if firm k at niche θk moves
to niche θk+1 = θk + 1, this would change sales for firm k to:

s+k =
~∆(θk+1, θR)

2
+

δ

4
−

1

2

+

{

1
4 if ~∆(θL, θk+1) odd

1
m(θL)+2 if ~∆(θL, θk+1) even

+

{

1
4 if ~∆(θk+1, θR) odd

1
m(θR)+2 if ~∆(θk+1, θR) even

Under the assumption that m(θL),m(θR) ≤ 2:

s+k − sk = −
δ

4
+

{

1
4 − 1

m(θL)+1 if ~∆(θL, θk+1) odd
1

m(θL)+2 − 1
2 if ~∆(θL, θk+1) even

+

{

1
4 if ~∆(θk+1, θR) odd

1
m(θR)+2 if ~∆(θk+1, θR) even

=







> 0 if δ < 0
≥ 0 if δ = 0
≤ 0 if δ > 0

So, if the number of niches clockwise of firm k+1 is higher than the the number of niches
counterclockwise of him, firm k will imitate firm k + 1. If the number is lower, it will
not. �
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Remark 1 Lemma 2 concerns only cases when the number of niches counterclockwise
of firm k + 1 is different from the number of niches clockwise of firm k + 1. Given that
s+k − sk ≥ 0 when δ = 0, there are cases in which firm k imitates firm k + 1 even if
the number of niches counterclockwise is equal to the number of niches clockwise. After
all, this depends on the number of firms at both θR and θL. As δ = 0, the number
counterclockwise and clockwise might be both odd, or both even. In the odd-odd case,
s+k > sk only if −δ/4 + (1/4 − 1/(m(θL) + 1)) + 1/4 > 0, i.e. only if m(θL) > 1. In the
even-even case, −δ/4 + (1/(m(θL) + 2)− 1/2) + 1/(m(θR) + 2) > 0, we see that s+k > sk
only if 1/(2 +m(θL)) + 1/(2 +m(θR)) > 1/2.

We now know that one firm decides to imitate another if the number of niches on the
other side of the immediate neighbor is higher or equal but with fewer remote competi-
tors. A simultaneous imitation by two neighboring firms would have them trade places.
However, close inspection of the conditions required for this reveals this is not possible.
This is formalized in the following lemma.

Lemma 3 Imitation never has two firms trade places.

Proof: From remark 1 and lemma 2, we know that for firm k to imitate firm k+1, at least
~∆(θk+1, θR) ≥ ~∆(θL, θk+1) (ignore further restrictions in the equality case). Similarly,

for firm k + 1 to imitate k, ~∆(θL, θk) ≥ ~∆(θk, θR). Suppose θk and θk+1 are such that
firm k and firm k + 1 trade places, then:

~∆(θk, θR)− 1 = ~∆(θk+1, θR) ≥ ~∆(θL, θk+1) = ~∆(θL, θk) + 1 ≥ ~∆(θk, θR) + 1

This is a contradiction. There are not θk and θk+1 such that firms k and k + 1 trade
places. �

An illustration of imitation is given in figure 2a. Firms Y and Z cannot improve sales,
but firm X can do so by moving toward the niche of Y . Firm X gives up its monopoly
in region A with three full niches, to then share region A and region B with firm Y and
increase sales to 9 half niches and 2 one-third niches.

4.2. Head-on rivals and equidistantesque equilibria

If firms are engaged in head-on rivalry or get engaged in head-on rivalry through
imitation, multiple steps of relocation may follow. If firms are head-on rivals, they both
face the same industry conditions and take the same decisions. As they do not take into
account the strategic interaction with the head-on rival, they end up relocating in the
same way toward or away from the nearest neighboring firms. In fact, in moving away
form his head-on rival, each of the rivals moves away from the nearest neighbor(s) to
divide up the niches between him and move toward the immediate neighbor(s) furthest
away. The following lemma formalizes that the two rivals thus move toward the middle
of the nearest niches with neighbors on either side.

Lemma 4 (Head-on rivalry drives differentiation from nearest neighbors) Two
firms k and k + 1 rivaling at the same niche θ move toward the niche(s) in the middle
of the niches θL (θL + 1 < θ) and θR (θR − 1 > θ) with the nearest competitors in the
counterclockwise and clockwise direction.
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If the distance from θL to θR is odd, there are two middle niches. If the two rival firms
are in one of these two niches, the two rival firms jump from one to the other middle
niche if m(θL) = m(θR), i.e. the number of competitors at θL and θR are equal. If
m(θL) 6= m(θR), the two rivals end up in the right or left one of the two middle niches,
closer to θL if m(θL) < m(θR) and closer to θR if m(θL) > m(θR).

Proof: Firms k and k + 1 are head-on rivals, so both have sales s. Suppose that θ is
closer to θL than to θR, we then prove that the sales upon moving clockwise s+ is larger
than the current sales s and larger than s− to establish that both firms k and k+1 indeed
move in direction of the middle niche(s). The analysis for the counterpart in which θ is
closer to θR is analogous.
Note that:

s =
~∆(θL, θR)

4
−

1

2
+

{

1
m(θL)+2 if ~∆(θL, θ) even
1
4 if ~∆(θL, θ) odd

+

{

1
m(θR)+2 if ~∆(θ, θR) even
1
4 if ~∆(θ, θR) odd

The sales s+ each of the firms naively expects to get upon a move to niche θ + 1 is:

s+ =
~∆(θ, θR)

2
+

{

− 1
2 + 1

m(θR)+1 if ~∆(θ + 1, θR) even

0 if ~∆(θ + 1, θR) odd

Firstly, we show that s− < s+, hence that firms k and k + 1 both prefer moving in the
clockwise direction over moving in the counterclockwise direction. The sales s− upon a
move to niche θ − 1 is:

s− =
~∆(θL, θ)

2
+

{

− 1
2 + 1

m(θL)+1 if ~∆(θL, θ) odd

0 if ~∆(θL, θ) even

By assumption ~∆(θL, θ) < ~∆(θ, θR). As m(θL) ≥ 1, we find:

s+ ≥
~∆(θ, θR)

2
−

1

2
≥

~∆(θL, θ)

2
+

1

2
>

~∆(θL, θ)

2
≥ s−

Secondly, we show that s < s+, hence that firms k and k + 1. Using ~∆(θL, θ) <
~∆(θ, θR), there is some δ ∈ N for which:

~∆(θ, θR) = ~∆(θL, θR)/2 +

{

1
2 + δ if ~∆(θL, θR) odd

1 + δ if ~∆(θL, θR) even

We use this to rewrite s+ and find:
Case s s+

~∆(θL, θ) odd,
~∆(θ, θR) odd

~∆(θL, θR)/4 ~∆(θ, θR)/2 − 1
2 + 1

m(θR)+1 =

~∆(θL, θR)/4 +
δ
2 + 1

m(θR)+1

~∆(θL, θ) odd,
~∆(θ, θR) even

~∆(θL, θR)/4−
1
4 + 1

m(θR)+2
~∆(θ, θR)/2 = ~∆(θL, θR)/4 +
1
4 + δ

2

~∆(θL, θ) even,
~∆(θ, θR) even

~∆(θL, θR)/2 − 1
2 + 1

m(θL)+2 +
1

m(θR)+2

~∆(θ, θR)/2 = ~∆(θL, θR)/4 +
1
2 + δ

2

~∆(θL, θ) even,
~∆(θ, θR) odd

~∆(θL, θR)/4−
1
4 + 1

m(θL)+2
~∆(θ, θR)/2 − 1

2 + 1
m(θR)+1 =

~∆(θL, θR)/4−
1
4 +

δ
2 +

1
m(θR)+1
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For the first three cases, the inequality s < s+ clearly holds. In the last case, the
inequality only holds if δ > 0, i.e. if firms k and k + 1 are far enough from the middle
two niches. This proves the first part of the lemma.
For the second part of the lemma, about when firms are already in one of the two middle
niches, we use the derived results in the table. If δ = 0, firms k and k + 1 are in the left
one of the two middle niches. If m(θL) ≤ m(θR), firm k (and k + 1) moves toward θL
(but stay otherwise). If firm k and k + 1 move toward the right one of the two middle
niches, we get into the counterpart case where θ is closer to θR. In that case, whether or
not s− > s determines whether or not the two firms move back to the left one of the two
middle niches. This is the case if m(θR) ≤ m(θL). Consequently, if m(θL) = m(θR), the
two firms jump to the other of the two middle niches. In any other case, ceteris paribus,
they stay in either the left or the right one of the two middle niches. Given that the jump
will be made toward the niche θR or θL with the lowest number of firms, the head-on
rivals end up, ceteris paribus, on the left or right one of the two middle niches closer to
the niche with the fewest competitors. �

Note that by assuming θL < θ−1 and θR > θ+1, we need not evaluate the case that
the rivaling firms consider imitating the firms at θL or θR. In case of imitation, we also
need information on the firms and number of niches clockwise of θR or counterclockwise
of θL.
In real cases, the neighboring competitors in niches θL or θR may also decide to relocate.
This would change the situation for the two rivals, but not the actual rule that they
move toward the niches in the middle of θL and θR.

An illustration for M = 3 of the dynamics is given in Figure 2. In Figure 2a, we
see that firm X imitates firm Y as it prefers sharing its currently monopolized region
A to also share region B, in line with lemma 2. As soon as firm X and Y share the
location, they have the same incentives vis-a-vis consumers and (other) competitors, so,
in line with lemma 4, differentiate from firm Z. Due to the number of niches being even,
there is a dynamic equilibrium. Firm Z can improve sales by moving either clockwise
or counterclockwise (see Figure 2c), after which firm X and Y can again improve their
sales by moving in the same direction (see Figure 2d).

According to Lemma 4, head-on rivals are engaged in relocating to the middle of their
immediate neighbors. If each firm is engaged in head-on rivalry, each firm displays ’middle
seeking’ behavior. If all firms are engaged in head-on rivalry with only one other firm,
and these ’clusters of rivals’ are at distance more than one of each other, these clusters
all seek the middle of the immediately neighboring clusters. So, under these conditions
the industry converges to equidistantly distributed clusters. However, in general, this
does not yield a static equilibrium with all the inter-cluster distances equal to N/(2M)
even if N/(2M) ∈ N. Often, this yields a dynamic equilibrium. As relocation by multiple
firms at once reset industry conditions for the other in the next round, the clusters might
relocate in opposite directions, thereby resetting the condition for one another to revert
the step just taken. This then gives rise to a dynamic equilibrium with a periodicity
of two. With N = 20 and M = 8 (4 clusters of 2 rivals), an example of this is the
alternation between inter-cluster distances (6, 4, 6, 4) and (4, 6, 4, 6). Another example is
the alternation between inter-cluster distances (6, 3, 6, 5) and (4, 5, 4, 7). We refer to such
emerging (dynamic) equilibria as ’equidistantesque’; the clusters of rivals seek maximum
differentiation (equidistance).
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4.3. Equidistant equilibrium

While an ’equidistantesque’ equilibrium emerges under the specific conditions that
each firm engages in head-on rivalry, in the absence of head-on rivalry or imitation, there
is no relocation, as we show in this subsection. For further analysis, we study cases with
m(θj) = 1 for all j and in which firms are still at a distance of at least two to other firms.
In that case, the table of conditions for a singular move presented in the proof of Lemma
1 can be used immediately to establish that this situation is a Nash equilibrium. After
all, it is obvious that moving one step to either side, moves this firm toward one of his
single neighbors and away from the other immediate single neighbor. This move thereby
decreases the number of niches served by these two firms by half a niche on one side,
and increases the number of niches served on the other side with an equal number, so
the net increase in sales is zero and there is no incentive to move. The following lemma
formalizes this result.

Lemma 5 Each distribution of firms over the circle with distance between two firms no
less than two niches is a Nash equilibrium.

Proof: The necessary condition in lemma 1 is not met. Using the table in lemma 1
with m(θL) = m(θR) = 1, we see that none of the conditions for s+k > sk is ever met.
The same holds for s−k . As the conditions are similar for each of the firms, no firm has
a unilateral incentive to move. �

So, in our model, there is no incentive for a firm to relocate if there are no head-on
rival(s) and if no firm will imitate a competitor. As firms relocate only under specific
conditions, the classical equidistant equilibrium found in literature is very rare. The
exact condition under which such an equilibrium occurs is formalized in the following
theorem.

Theorem 1 For N
M

∈ N
+, an equidistant equilibrium emerges only if the initial distri-

bution is equidistant.

Proof: If condition N
M

∈ N
+ is not met, there is no equal distance between firms, so

there is no equidistant equilibrium. According to Lemma 5, an equidistant distribution
is a (Nash) equilibrium, if it occurs. Clearly, once m(θk) > 1, the firms residing at θk
have similar interests and will also act similarly. So, equidistance does not emerge once
there is head-on rivalry. Consequently, there may not be head-on rivalry and conditions
should not be so that imitation occurs. Using lemma 2 with m(θL) = m(θR) = 1, we
know that there either is imitation if two firms are in consecutive niches or they do not
move at all (which further stifles convergence to equidistance). So, firms should not be in
consecutive niches or in the same niche. Furthermore, one of the firms should not have
an incentive to relocate immediately next to another firm. From lemma 1, we know that
a necessary but not sufficient condition is that m(θL) > 1 or m(θR) > 1 for relocation to
occur. In case m(θL) = m(θR) = 1, none of the conditions for a relocation in the table
of the proof of lemma 1 is ever met.
So, as the initial industry conditions must be such that there is no head-on rivalry or
imitation, there are no incentives to move at all and an equidistant equilibrium does
never dynamically emerge, but must be initialized as such. �

12



The probability that an equidistant equilibrium is installed when firms’ initial loca-
tions are drawn uniform randomly is N−M+1(M − 1)!. For large N and small M , this
probability is very small and rapidly decreasing in N and M . Note that the industry
does not converge back to an equidistant distribution upon any incremental perturbation
of the firm away from that equidistant distribution (but without violating the conditions
of Lemma 5). The equidistant equilibrium hence even is an unstable Nash equilibrium.
Note that even a single step of relocation is not very likely to occur: it may happen only if
at least some firms are head-on rivals or imitate another. When firms are randomly placed
on the circle one by one, the probability that at least one firm is placed in the same niche
or in a niche immediately next to another firm is approximately N−MΠM−1

i=1 (N − 3i).
This probability becomes ever more accurate with increasing N . This expression reveals
that the probability that at least one firm relocates after initialization is small whenever
N is large and M is small.

5. Conclusions and further research

In product differentiation literature, authors commonly (implicitly) assume firms are
perfectly rational, endowed with prior information on competitors’ strategies and as such
capable of positioning and pricing their product to maximize profit. In game-theoretic
approaches to product differentiation, the equidistant distribution of firms on the one-
dimensional circular product characteristic landscape often emerges as the ultimate out-
come in which firms cannot improve profit unilaterally by relocating or changing price.
In our research, we answered a call by Anderson et al. (1992) to study product differ-
entiation under bounded rationality. We operationalized this by having firms relocate
incrementally purely on ceteris paribus sales prospects, without anticipating moves by
competitors. We show that when consumers are utility maximizers, their demand is in-
elastic and firms charge uniform prices, the distribution of firms changes only if two or
more firms (are) engage(d) in head-on rivalry. In any other case, there is no incentive
for any firm to relocate incrementally. An equidistant distribution thus is an unstable
Nash equilibrium as it can and does not develop from another industry state. In fact,
all distributions in which firms have a distance > 1 to other firms are (unstable) Nash
equilibria. Consequently, the random scattering of firms at the onset of the mature phase
is also often the emerging static equilibrium.
Arguably, the completely free relocation strategy in the perfectly rational case and the
incremental relocation strategy in the boundedly rational case are both extreme cases.
Further research should shed light on what type of information on competitors’ relocation
strategy is known and what realistic entry location and relocation strategies are followed.
Another interesting avenue for further research is the type of dynamics and equilibria
when the utility maximization of consumers is relaxed.
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