Dynamics and equilibria under incremental horizontal differentiation on the Salop circle

Citation for published version (APA):

Vermeulen, B., Poutré, La, J. A., \& Kok, de, A. G. (2013). Dynamics and equilibria under incremental horizontal differentiation on the Salop circle. (BETA publicatie : working papers; Vol. 436). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/01/2013

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Research School for Operations
Management and Logistics

Dynamics and equilibria under incremental horizontal differentiation on the Salop circle

B. Vermeulen, J.A. La Poutré, A.G. de Kok

Beta Working Paper series 436

BETA publicatie	WP 436 (working paper)
ISBN	
ISSN	
NUR	982
Eindhoven	November 2013

Dynamics and equilibria under incremental horizontal differentiation on the Salop circle

B. Vermeulen ${ }^{\text {a,b,1,*, }}$, J.A. La Poutrééc,d A.G. de Kok ${ }^{\text {a }}$
${ }^{a}$ Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, The Netherlands.
${ }^{b}$ Institute of Economics, University of Hohenheim, Stuttgart, Germany.
${ }^{c}$ CWI: Centre for Mathematics and Computer Science, Amsterdam, The Netherlands.
${ }^{d}$ Department of Information and Computing Science, Utrecht University, Utrecht, The Netherlands.

Abstract

We study product differentiation on a Salop circle when firms relocate incrementally due to bounded rationality. We prove that, under common assumptions on demand, firms relocate only when two or more firms target the same niche. In any other case, there is no incentive for any firm to relocate incrementally. We prove that all distributions in which firms are sufficiently far apart in product space are unstable Nash equilibria. We prove, in particular, that the classical equidistant distribution is an unstable Nash equilibrium that cannot emerge from another distribution. However, we show that if each firm is engaged in head-on rivalry with one other competitor, the industry converges to a 'equidistantesque' equilibrium of clusters of rivals.

Keywords: product differentiation, bounded rationality, Salop circle, equidistant equilibrium, maximum differentiation
JEL: D43, L13, D50, C73, L22

1. Introduction

Firms differentiate their products to exploit differences in consumers' preferences. By producing a product in a niche that differs from the niches that competitors target, firms enjoy local monopolies. Product differentiation models are extensively applied to industry and service sectors of various sorts, used in policy studies, and extended upon in fundamental economic and economic geography research.
In a prominent body in product differentiation research literature, products are represented as locations in a low-dimensional space of product characteristics like the Hotelling line or the Salop circle. These models capture real-world situations like shops located on the main street or different sweetness of cider (Hotelling, 1929), shops located along the

[^0]ring road (Gupta et al., 2004) or departure times of flights at airports (Borenstein and Netz, 1999). However, the findings on locations of firms in product space in equilibrium are also taken as indications of rational product-market divisions in more complex (reallife) situations.
In the classical two-stage game (pick location, then price or quantity), firms maximize their profit by maximum differentiation. Firms are then evenly spread across the Salop circle in a so-called equidistant equilibrium. However, in this classical game, firms act perfectly rational and are perfectly informed on location decisions of competitors. In this paper, we follow up on the call of Anderson et al. (1992) to study product differentiation under bounded rationality. We assume that firms have imperfect information on locations and strategies of competitors and display boundedly rather than perfectly rational (re)location behavior. We assume that, given the inherent incapabilities of poor information and uncertainties about competitors' moves, firms reposition incrementally over the product landscape following a myopic strategy. We study the dynamics and emerging equilibria in firm locations on the Salop landscape. In contrast to the classical findings, we find that the equidistant equilibria are in fact unstable and do not emerge dynamically. Moreover, we find that when firms are randomly scattered over the product space, even relocation is not very likely.

2. Literature

Product differentiation is a competitive positioning strategy that exploits consumer heterogeneity. If consumers differ in that they prefer different products and have different willingness to pay depending on the extent to which their preferences are met, firms can soften competition by providing a product to niches of consumers that are yet underserviced. Literature provides several models to study product differentiation equilibria (See Anderson et al. (1992) for a detailed discussion of the various streams). One stream of product differentiation models studies so-called location models that require a specification of both product features and consumer preferences in terms of a location in a product characteristics landscape. Particularly popular location models are the Hotelling line and Salop circle in which the product space is a line piece and a circle respectively. Consumers experience disutility from a mismatch of 'product specifications' with 'product preferences', so the models feature an 'attractiveness', 'utility', or 'travel cost' measure to reflect the fit of characteristics with preferences. The greater the distance from product (or firm) to preference (or consumer), the greater the consumption disutility or 'traveling costs'. Utility is generally assumed to decrease linearly (Hotelling, 1929) or quadratically (D'Aspremont et al., 1979; Perloff and Salop, 1985; Tabuchi and Thisse, 1995; Tyagi, 1999; Tirole, 1988). Common assumptions are that consumers maximize their utility (i.e. pick one of the products with the best fit) and that firms select product specifications that maximize profit given the product specifications selected by competitors. To assure that product specifications chosen by firms are not due to asymmetries in the consumer preference distribution, but purely due to strategic positioning vis-a-vis competitors, it is common to assume that all possible consumer preferences occur equally often. In both of these location models, researchers have studied whether and when the equilibrium is that of minimum or maximum differentiation or neither one (see Lerner and Singer, 1937; Graitson, 1982; Anderson et al., 1992; Economides, 1986; D'Aspremont et al., 1979; Böckem, 1994).

In the Salop model of product differentiation, consumers are distributed uniformly across the perimeter of a circle. Products (or firms offering the products) are positioned on the circle as well. Each period, each consumer purchases one of the products based on the attractiveness of the various products on offer. The attractiveness of a product to a consumer is a decreasing function of the arc distance from consumer to product. A common assumption is that demand is inelastic, i.e. all consumers buy a product every period (See e.g. Hotelling, 1929; D'Aspremont et al., 1979; Perloff and Salop, 1985). In the classical Salop circle model, firms pick a location on the circle (given firms already present and future entrants' location picking strategy) and a price to optimize their expected profit. The typical results are that the equidistant distribution of firms across the circle is a location-price equilibrium (Economides, 1989) (under inelastic demand with quadratic disutility), a location-quantity equilibrium (Pal, 1998; Yu, 2007) (under firm-borne transportation costs), and maximally entry deterring (Salop, 1979). Recently, Gupta et al. (2004) discovered a further wide range of non-equipriced non-equidistant Nash equilibria. In the models discussed, firms are perfectly rational and make an optimal location choice. Given that competitors are perfectly rational, a firm can anticipate the competitors' strategies in its own price and location decisions (see e.g. Häckner, 1995; Capozza and Order, 1980).

However, this perfect rationality is merely a 'normative model of an idealized decision maker, not a description of the behavior of real people' (Tversky and Kahneman, 1986, p.S251). People suffer bounded rationality and this hampers people in deciding optimally (Simon, 1955). Bounded rationality also affects managerial cognition and thereby (strategic) decisions (see e.g. Johnson and Hoopes, 2003). As such, management resorts to heuristics and routines (see e.g. Nelson and Winter, 1982).
We follow the call by Anderson et al. (1992) to study product differentiation under such bounded rationality. In this case, firms have imperfect information on locations and strategies of competitors and display boundedly rational (re)location behavior. Given that bounded rationality and competitive pressures have firms focus on immediate competitors (Johnson and Hoopes, 2003), relocation is expected to occur merely locally and -given the uncertainty about competitors' moves- incrementally. With such deviations from perfect rationality, we expect structurally different equilibria than the classical results (see e.g. Akerlof and Yellen, 1985).

3. Product differentiation model

In this paper, we study the Salop circular product differentiation model in which both (product preferences of) customers and (specifications of products made by) firms are associated with locations on the circle perimeter. We study the industry dynamics and equilibria when firms make boundedly rational (re)location decisions. We study a repeated two-stage game consisting of a sales round in which consumers buy a unit of product and a relocation round in which firm may pick a new location on the circle perimeter. Prior to the first game round, we place M firms uniform randomly on the circle. During the repeated game, firms do not enter or exit. We operationalize imperfect information by having firms not anticipate competitors relocation strategy. Firms relocate on sales prospects, which is affected by the locations of the other firms. To reflect imperfect information on the relocation decision of competitors, we assume firms
(re)locate simultaneously. We operationalize bounded rationality by having firms not (re)locate somewhere on the circle freely, but by having them do so incrementally. Firms move in the clockwise or counterclockwise direction step by step through a myopic, ceteris paribus strategy. We assume that the steps taken by firms are of size $2 \pi / N$, thereby dividing the Salop circular landscape in N discrete 'niches' (cf. Krugman, 1992; Huang and Levinson, 2007; Camacho-Cuena et al., 2005, for other discretized landscapes). Variable $\theta_{i}(t)$ is the location of firm i on the circle during period t. To study the industry dynamics and equilibrium outcome caused by the incremental nature of relocation and not mediated by other factors, we assume that firms charge the same price ('equal price at the mill') and have the same relocation strategy. We furthermore assume that consumers -rather than firms- suffer disutility from the distance to the firms ('consumers pay the travel costs to the mill'). To study firm relocation dynamics that is not affected by asymmetries in consumer distributions, we assume that consumers are uniformly distributed over the circle.

Each period starts with a sales round in which each consumer purchases a single unit of product, hereby sensitive to local attractiveness of products (related to arc distances to the firms and their prices). As is common in spatial competition models, we assume that consumers are uniformly distributed over the landscape, buy a single unit of product each period and are anchored to their location (i.e. their preferences do not change over time). We study the case that consumers maximize their utility. In period t, firm k thus sells:

$$
\begin{equation*}
s_{k}(t)=\sum_{1 \leq n \leq N} d_{k n}(t) \tag{1}
\end{equation*}
$$

where $d_{k n}$ is the demand realization of consumers at location n purchasing product k. We assume that sales and production equal demand.

In the relocation round, all of the M firms make a move simultaneously. The relocation step is dictated by a myopic strategy taking into account sales prospects without accounting for competitors' moves. The firm relocates into the direction that increases the expected sales most, ceteris paribus. As consumers are utility maximizers, each firm gets demand exclusively from consumers in niches up and until halfway to neighboring competitors. As consumers maximize their utility, they pick one of the nearest products. So, a consumer located at niche n simply picks the product k^{*} that is at minimum distance:

$$
\begin{equation*}
k^{*}=\underset{k}{\arg \min } \Delta\left(\theta_{k}, n\right) \tag{2}
\end{equation*}
$$

The distance function $\Delta(\theta, n)$ on a circular landscape is the minimum number of steps, clockwise and counterclockwise, between niche n and niche θ. In analysis, we also use the distance function $\vec{\Delta}(\theta, n)$, which is the number of steps in clockwise direction (see Figure 1).
Since a consumer maximizes its utility (minimizes the travel distance), it picks the (product of) the firm nearest to it. As such, firms only compete directly with head-on rivals at the same niche and the nearest neighbor(s) in clockwise and the nearest neighbor(s) in counterclockwise direction. In case products ${ }^{2}$ reside at the same distance to certain

[^1]consumers (or even at the same location), consumers have no further preference for one or the other and each of the products gets an equal fraction of the consumers. The thus deterministic demand $d_{k n}$ from consumers at niche n for the product (of firm) k is:
\[

d_{k n}:= $$
\begin{cases}\left|M^{*}(n)\right|^{-1} & \text { if } k \in M^{*}(n) \\ 0 & \text { else }\end{cases}
$$
\]

Without loss of generality, we assume that each niche contains only one consumer. The set $M(n, \delta):=\left\{1 \leq j \leq M \mid \Delta\left(\theta_{j}, n\right)=\delta\right\}$ is the set of firms at distance δ from n, and the set $M^{*}(n):=M\left(n, \Delta^{*}(n)\right)$ with $\Delta^{*}(n)=\min _{j} \Delta\left(\theta_{j}, n\right)$ is the set of products (firms) at the minimum distance from n. Figure 2 gives an illustration of the demand curves. The height of the demand curve to the circle reflects the demand for that product in that particular niche.

4. Analysis of incremental differentiation behavior

We prove several basic lemmas on dynamics and emerging equilibria under boundedly rational relocation that show how most initial distributions are in fact already equilibria and prove that the classical equidistant equilibrium cannot emerge dynamically but has to be initialized as such. We furthermore show the existence of an 'equidistantesque' equilibrium of clusters of firms.
To explain firm behavior, we need two variables: the number $m(n)$ of firms residing at niche n (where these firms are then head-on rivals) and the distance Δ of our focal firm θ_{k} to the neighbor(s) in clockwise and counterclockwise direction. We call firms (and their products) 'head-on rivals' if they reside at the same niche. We say that one firm 'imitates' another firm if it moves into the niche of that other firm.

4.1. Conditions for relocation to occur

We prove that for any relocation to occur in an industry, some firms need to be already engaged in head-on rivalry or need to imitate another firm to then engage in head-on rivalry.
Suppose firm k is located at θ_{k}, while the nearest neighbors on either side are located at $\theta_{L}<\theta_{k}-1$ and $\theta_{R}>\theta_{k}+1$ (see the illustration in Figure 1). Note that since $\vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \geq 2 \leq \vec{\Delta}\left(\theta_{k}, \theta_{R}\right)$, firm k cannot end up in niche θ_{L} or θ_{R} in one step.

From the range of niches $\left[\theta_{L}, \ldots \theta_{k}\right]$, firm k gets the consumers from the rightmost $\left(\vec{\Delta}\left(\theta_{L}, \theta_{k}\right)+1\right) / 2$ niches if $\vec{\Delta}\left(\theta_{L}, \theta_{k}\right)$ is odd, and the rightmost $\vec{\Delta}\left(\theta_{L}, \theta_{k}\right) / 2$ niches plus a fraction $1 /\left(1+m\left(\theta_{L}\right)\right)$ of the consumers in the middle niche if $\vec{\Delta}\left(\theta_{L}, \theta_{k}\right)$ is even. If the firms at θ_{L} and θ_{R} now remain at their location -as firm k assumes in its relocation consideration-, a step by firm k does change the number of consumers served in at most two niches. The actual change in number of consumers depends on the numbers $m\left(\theta_{L}\right)$ and $m\left(\theta_{R}\right)$ of firms in the niches of neighboring firms. While a single step by firm k may create more sales, any subsequent step (in either direction) ceteris paribus would lower the sales to the initial level. The following lemma formalizes that in a ceteris paribus situation, firm k would indeed move at most only once.

Lemma 1 (Relocate at most only once) Ceteris paribus, a firm located at θ_{k} at distance of at least two of other firms relocates at most only once. A necessary condition

Figure 1: Illustration of firm locations $\theta_{L}, \theta_{k}, \theta_{R}$ and distance $\vec{\Delta}\left(\theta_{L}, \theta_{k}\right)$.
for a relocation is that $m\left(\theta_{L}\right)>1$ or $m\left(\theta_{R}\right)>1$, i.e. there is head-on rivalry in at least one of the niches θ_{L} or θ_{R}.

Proof: We study when firm k moves toward θ_{R}, which is the case when $s_{k}^{+}>s_{k}$. Following the sales division insights described above, we find:

$$
s_{k}=\frac{\vec{\Delta}\left(\theta_{L}, \theta_{R}\right)}{2}-1+\left\{\begin{array}{lll}
\frac{1}{m\left(\theta_{L}\right)+1} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \text { even } \\
\frac{1}{2} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \text { odd }
\end{array}+ \begin{cases}\frac{1}{m\left(\theta_{R}\right)+1} & \text { if } \vec{\Delta}\left(\theta_{k}, \theta_{R}\right) \text { even } \\
\frac{1}{2} & \text { if } \vec{\Delta}\left(\theta_{k}, \theta_{R}\right) \text { odd }\end{cases}\right.
$$

while
$s_{k}^{+}=\frac{\vec{\Delta}\left(\theta_{L}, \theta_{R}\right)}{2}-1+\left\{\begin{array}{ll}\frac{1}{2} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \text { even } \\ \frac{1}{m\left(\theta_{L}\right)+1} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \text { odd }\end{array}+ \begin{cases}\frac{1}{2} & \text { if } \vec{\Delta}\left(\theta_{k}, \theta_{R}\right) \text { even } \\ \frac{1}{m\left(\theta_{R}\right)+1} & \text { if } \vec{\Delta}\left(\theta_{k}, \theta_{R}\right) \text { odd }\end{cases}\right.$
We find the following conditions under which firm k will move toward θ_{R}, i.e. $s_{k}^{+}>s_{k}$:

Case	$s_{k}-\frac{\Delta\left(\theta_{L}, \theta_{R}\right)}{2}+1$	$s_{k}^{+}-\frac{\Delta\left(\theta_{L}, \theta_{R}\right)}{2}+1$	When is $s_{k}^{+}>s_{k}$
$\begin{aligned} & \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \text { even, } \\ & \vec{\Delta}\left(\theta_{k}, \theta_{R}\right) \text { odd } \\ & \hline \end{aligned}$	$\frac{1}{m\left(\theta_{L}\right)+1}+\frac{1}{2}$	$\frac{1}{2}+\frac{1}{m\left(\theta_{R}\right)+1}$	$m\left(\theta_{R}\right)<m\left(\theta_{L}\right)$
$\begin{aligned} & \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \text { even, } \\ & \vec{\Delta}\left(\theta_{k}, \theta_{R}\right) \text { even } \end{aligned}$	$\frac{1}{m\left(\theta_{L}\right)+1}+\frac{1}{m\left(\theta_{R}\right)+1}$	$\frac{1}{2}+\frac{1}{2}$	$m\left(\theta_{R}\right)+m\left(\theta_{L}\right)>2$
$\begin{aligned} & \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \text { odd, } \\ & \vec{\Delta}\left(\theta_{k}, \theta_{R}\right) \text { even } \end{aligned}$	$\frac{1}{2}+\frac{1}{m\left(\theta_{R}\right)+1}$	$\frac{1}{m\left(\theta_{L}\right)+1}+\frac{1}{2}$	$m\left(\theta_{L}\right)<m\left(\theta_{R}\right)$
$\begin{aligned} & \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \text { odd, } \\ & \vec{\Delta}\left(\theta_{k}, \theta_{R}\right) \text { odd } \end{aligned}$	$\frac{1}{2}+\frac{1}{2}$	$\frac{1}{m\left(\theta_{L}\right)+1}+\frac{1}{m\left(\theta_{R}\right)+1}$	Never

If a condition in the last column of the table is met (which requires head-on rivalry in either θ_{L}, θ_{R} or both), a move is made, thereby increasing θ_{k} with one. This flips the odds and evens, and with that the condition to be met to make a move in the same direction. Ceteris paribus, this last condition can never be met as it is the logical counterpart of the first condition. Ceteris paribus, after such a move, moving from $\theta_{k}+1$ back to θ_{k} does not occur as $s^{-}\left(\theta_{k}+1\right)=s\left(\theta_{k}\right)<s^{+}\left(\theta_{k}\right)=s\left(\theta_{k}+1\right)$.
The analysis for a move toward θ_{L} is analogous and yields the same conclusions.

(a) Firm X will move to Y to share region A and B rather than to just monopolize region A

(c) Any move will improve sales of firm Z

(b) Firms X and Y are co-located and move clockwise

(d) Firms X and Y can improve after move of Z

Figure 2: Plots of simple demand curves d_{k} (continuous), $\mathbb{E} d_{k}^{+}$(dashed) and $\mathbb{E} d_{k}^{-}$(dotted) in case consumers are utility maximizers, here $M=3$ and $N=20$. The height of the curves to the circle reflects that demand.

Lemma 1 implies that to have more than one period in which firms relocate, it is a necessary condition that firms in different niches relocate; otherwise there would be relocation at most in the first period. We also see that for relocation to happen, some head-on rivalry is required. This head-on rivalry need not be initialized as such, as the relocation in the first period may also cause one firm to imitate another and thereby establish head-on rivalry. The following lemma concerns the formal conditions under which imitation occurs. We assume that $m\left(\theta_{L}\right), m\left(\theta_{R}\right) \leq 2$ to simplify further analysis.

Lemma 2 (Imitation) Let firms k and $k+1$ be located at niches $\theta_{k}=\theta_{k+1}-1$ with $m\left(\theta_{k}\right)=m\left(\theta_{k+1}\right)=1$. Hereby θ_{L} is the first niche counterclockwise of firm k and θ_{R} is the first niche clockwise of firm $k+1$ containing one or multiple firms.
Firm $k(k+1)$ located at $\theta_{k}\left(\theta_{k+1}\right)$ will imitate the immediate neighbor located at θ_{k+1} $\left(\theta_{k}\right)$ if the distance from θ_{k+1} to θ_{R} (from θ_{L} to θ_{k}) is larger than the distance from θ_{k+1} to θ_{L} (from θ_{k} to θ_{R}). Firm k will not imitate $k+1$ if the distance is smaller.

Proof: We prove θ_{k} imitates θ_{k+1} if $\vec{\Delta}\left(\theta_{k+1}, \theta_{R}\right)>\vec{\Delta}\left(\theta_{L}, \theta_{k+1}\right)$ by showing that $s_{k}<s_{k}^{+}$, such that firm k indeed relocates to niche θ_{k+1}. The proof for the counterpart $\left(\theta_{k+1}\right.$ imitating θ_{k}) is analogous.
Define $\delta:=\vec{\Delta}\left(\theta_{L}, \theta_{k+1}\right)-\vec{\Delta}\left(\theta_{k+1}, \theta_{R}\right)$, which is the difference in the number of niches counterclockwise and clockwise of θ_{k+1}. As $\vec{\Delta}\left(\theta_{L}, \theta_{k}\right)=\vec{\Delta}\left(\theta_{k+1}, \theta_{R}\right)-1+\delta$:

$$
\begin{aligned}
s_{k} & =\frac{\vec{\Delta}\left(\theta_{L}, \theta_{k}\right)}{2}+ \begin{cases}\frac{1}{m\left(\theta_{L}\right)+1} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \text { even } \\
\frac{1}{2} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \text { odd }\end{cases} \\
& =\frac{1}{2} \vec{\Delta}\left(\theta_{k+1}, \theta_{R}\right)-\frac{1}{2}+\frac{\delta}{2}+ \begin{cases}\frac{1}{m\left(\theta_{L}\right)+1} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \text { even } \\
\frac{1}{2} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \text { odd }\end{cases}
\end{aligned}
$$

As furthermore $\vec{\Delta}\left(\theta_{L}, \theta_{R}\right)=2 \vec{\Delta}\left(\theta_{k+1}, \theta_{R}\right)+\delta$, we know that if firm k at niche θ_{k} moves to niche $\theta_{k+1}=\theta_{k}+1$, this would change sales for firm k to:

$$
\begin{aligned}
s_{k}^{+} & =\frac{\vec{\Delta}\left(\theta_{k+1}, \theta_{R}\right)}{2}+\frac{\delta}{4}-\frac{1}{2} \\
& +\left\{\begin{array}{ll}
\frac{1}{4} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{k+1}\right) \text { odd } \\
\frac{1}{m\left(\theta_{L}\right)+2} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{k+1}\right) \text { even }
\end{array}+ \begin{cases}\frac{1}{4} & \text { if } \vec{\Delta}\left(\theta_{k+1}, \theta_{R}\right) \text { odd } \\
\frac{1}{m\left(\theta_{R}\right)+2} & \text { if } \vec{\Delta}\left(\theta_{k+1}, \theta_{R}\right) \text { even }\end{cases} \right.
\end{aligned}
$$

Under the assumption that $m\left(\theta_{L}\right), m\left(\theta_{R}\right) \leq 2$:

$$
\begin{aligned}
s_{k}^{+}-s_{k} & =-\frac{\delta}{4}+\left\{\begin{aligned}
\frac{1}{4}-\frac{1}{m\left(\theta_{L}\right)+1} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{k+1}\right) \text { odd } \\
\frac{1}{m\left(\theta_{L}\right)+2}-\frac{1}{2} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{k+1}\right) \text { even }
\end{aligned}\right. \\
& +\left\{\begin{array}{ll}
\frac{1}{4} & \text { if } \vec{\Delta}\left(\theta_{k+1}, \theta_{R}\right) \text { odd } \\
\frac{1}{m\left(\theta_{R}\right)+2} & \text { if } \vec{\Delta}\left(\theta_{k+1}, \theta_{R}\right) \text { even }
\end{array}= \begin{cases}>0 & \text { if } \delta<0 \\
\geq 0 & \text { if } \delta=0 \\
\leq 0 & \text { if } \delta>0\end{cases} \right.
\end{aligned}
$$

So, if the number of niches clockwise of firm $k+1$ is higher than the the number of niches counterclockwise of him, firm k will imitate firm $k+1$. If the number is lower, it will not.

Remark 1 Lemma 2 concerns only cases when the number of niches counterclockwise of firm $k+1$ is different from the number of niches clockwise of firm $k+1$. Given that $s_{k}^{+}-s_{k} \geq 0$ when $\delta=0$, there are cases in which firm k imitates firm $k+1$ even if the number of niches counterclockwise is equal to the number of niches clockwise. After all, this depends on the number of firms at both θ_{R} and θ_{L}. As $\delta=0$, the number counterclockwise and clockwise might be both odd, or both even. In the odd-odd case, $s_{k}^{+}>s_{k}$ only if $-\delta / 4+\left(1 / 4-1 /\left(m\left(\theta_{L}\right)+1\right)\right)+1 / 4>0$, i.e. only if $m\left(\theta_{L}\right)>1$. In the even-even case, $-\delta / 4+\left(1 /\left(m\left(\theta_{L}\right)+2\right)-1 / 2\right)+1 /\left(m\left(\theta_{R}\right)+2\right)>0$, we see that $s_{k}^{+}>s_{k}$ only if $1 /\left(2+m\left(\theta_{L}\right)\right)+1 /\left(2+m\left(\theta_{R}\right)\right)>1 / 2$.

We now know that one firm decides to imitate another if the number of niches on the other side of the immediate neighbor is higher or equal but with fewer remote competitors. A simultaneous imitation by two neighboring firms would have them trade places. However, close inspection of the conditions required for this reveals this is not possible. This is formalized in the following lemma.

Lemma 3 Imitation never has two firms trade places.
Proof: From remark 1 and lemma 2, we know that for firm k to imitate firm $k+1$, at least $\vec{\Delta}\left(\theta_{k+1}, \theta_{R}\right) \geq \vec{\Delta}\left(\theta_{L}, \theta_{k+1}\right)$ (ignore further restrictions in the equality case). Similarly, for firm $k+1$ to imitate $k, \vec{\Delta}\left(\theta_{L}, \theta_{k}\right) \geq \vec{\Delta}\left(\theta_{k}, \theta_{R}\right)$. Suppose θ_{k} and θ_{k+1} are such that firm k and firm $k+1$ trade places, then:

$$
\vec{\Delta}\left(\theta_{k}, \theta_{R}\right)-1=\vec{\Delta}\left(\theta_{k+1}, \theta_{R}\right) \geq \vec{\Delta}\left(\theta_{L}, \theta_{k+1}\right)=\vec{\Delta}\left(\theta_{L}, \theta_{k}\right)+1 \geq \vec{\Delta}\left(\theta_{k}, \theta_{R}\right)+1
$$

This is a contradiction. There are not θ_{k} and θ_{k+1} such that firms k and $k+1$ trade places.

An illustration of imitation is given in figure 2a. Firms Y and Z cannot improve sales, but firm X can do so by moving toward the niche of Y. Firm X gives up its monopoly in region A with three full niches, to then share region A and region B with firm Y and increase sales to 9 half niches and 2 one-third niches.

4.2. Head-on rivals and equidistantesque equilibria

If firms are engaged in head-on rivalry or get engaged in head-on rivalry through imitation, multiple steps of relocation may follow. If firms are head-on rivals, they both face the same industry conditions and take the same decisions. As they do not take into account the strategic interaction with the head-on rival, they end up relocating in the same way toward or away from the nearest neighboring firms. In fact, in moving away form his head-on rival, each of the rivals moves away from the nearest neighbor(s) to divide up the niches between him and move toward the immediate neighbor(s) furthest away. The following lemma formalizes that the two rivals thus move toward the middle of the nearest niches with neighbors on either side.

Lemma 4 (Head-on rivalry drives differentiation from nearest neighbors) Two firms k and $k+1$ rivaling at the same niche θ move toward the niche(s) in the middle of the niches $\theta_{L}\left(\theta_{L}+1<\theta\right)$ and $\theta_{R}\left(\theta_{R}-1>\theta\right)$ with the nearest competitors in the counterclockwise and clockwise direction.

If the distance from θ_{L} to θ_{R} is odd, there are two middle niches. If the two rival firms are in one of these two niches, the two rival firms jump from one to the other middle niche if $m\left(\theta_{L}\right)=m\left(\theta_{R}\right)$, i.e. the number of competitors at θ_{L} and θ_{R} are equal. If $m\left(\theta_{L}\right) \neq m\left(\theta_{R}\right)$, the two rivals end up in the right or left one of the two middle niches, closer to θ_{L} if $m\left(\theta_{L}\right)<m\left(\theta_{R}\right)$ and closer to θ_{R} if $m\left(\theta_{L}\right)>m\left(\theta_{R}\right)$.

Proof: Firms k and $k+1$ are head-on rivals, so both have sales s. Suppose that θ is closer to θ_{L} than to θ_{R}, we then prove that the sales upon moving clockwise s^{+}is larger than the current sales s and larger than s^{-}to establish that both firms k and $k+1$ indeed move in direction of the middle niche(s). The analysis for the counterpart in which θ is closer to θ_{R} is analogous.
Note that:

$$
s=\frac{\vec{\Delta}\left(\theta_{L}, \theta_{R}\right)}{4}-\frac{1}{2}+\left\{\begin{array}{ll}
\frac{1}{m\left(\theta_{L}\right)+2} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta\right) \text { even } \\
\frac{1}{4} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta\right) \text { odd }
\end{array}+ \begin{cases}\frac{1}{m\left(\theta_{R}\right)+2} & \text { if } \vec{\Delta}\left(\theta, \theta_{R}\right) \text { even } \\
\frac{1}{4} & \text { if } \vec{\Delta}\left(\theta, \theta_{R}\right) \text { odd }\end{cases}\right.
$$

The sales s^{+}each of the firms naively expects to get upon a move to niche $\theta+1$ is:

$$
s^{+}=\frac{\vec{\Delta}\left(\theta, \theta_{R}\right)}{2}+ \begin{cases}-\frac{1}{2}+\frac{1}{m\left(\theta_{R}\right)+1} & \text { if } \vec{\Delta}\left(\theta+1, \theta_{R}\right) \text { even } \\ 0 & \text { if } \vec{\Delta}\left(\theta+1, \theta_{R}\right) \text { odd }\end{cases}
$$

Firstly, we show that $s^{-}<s^{+}$, hence that firms k and $k+1$ both prefer moving in the clockwise direction over moving in the counterclockwise direction. The sales s^{-}upon a move to niche $\theta-1$ is:

$$
s^{-}=\frac{\vec{\Delta}\left(\theta_{L}, \theta\right)}{2}+ \begin{cases}-\frac{1}{2}+\frac{1}{m\left(\theta_{L}\right)+1} & \text { if } \vec{\Delta}\left(\theta_{L}, \theta\right) \text { odd } \\ 0 & \text { if } \vec{\Delta}\left(\theta_{L}, \theta\right) \text { even }\end{cases}
$$

By assumption $\vec{\Delta}\left(\theta_{L}, \theta\right)<\vec{\Delta}\left(\theta, \theta_{R}\right)$. As $m\left(\theta_{L}\right) \geq 1$, we find:

$$
s^{+} \geq \frac{\vec{\Delta}\left(\theta, \theta_{R}\right)}{2}-\frac{1}{2} \geq \frac{\vec{\Delta}\left(\theta_{L}, \theta\right)}{2}+\frac{1}{2}>\frac{\vec{\Delta}\left(\theta_{L}, \theta\right)}{2} \geq s^{-}
$$

Secondly, we show that $s<s^{+}$, hence that firms k and $k+1$. Using $\vec{\Delta}\left(\theta_{L}, \theta\right)<$ $\vec{\Delta}\left(\theta, \theta_{R}\right)$, there is some $\delta \in \mathbb{N}$ for which:

$$
\vec{\Delta}\left(\theta, \theta_{R}\right)=\vec{\Delta}\left(\theta_{L}, \theta_{R}\right) / 2+ \begin{cases}\frac{1}{2}+\delta & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{R}\right) \text { odd } \\ 1+\delta & \text { if } \vec{\Delta}\left(\theta_{L}, \theta_{R}\right) \text { even }\end{cases}
$$

We use this to rewrite s^{+}and find:

Case	s	s^{+}
$\begin{aligned} & \vec{\Delta}\left(\theta_{L}, \theta\right) \quad \text { odd, } \\ & \vec{\Delta}\left(\theta, \theta_{R}\right) \text { odd } \end{aligned}$	$\vec{\Delta}\left(\theta_{L}, \theta_{R}\right) / 4$	$\begin{aligned} & \vec{\Delta}\left(\theta, \theta_{R}\right) / 2-\frac{1}{2}+\frac{1}{m\left(\theta_{R}\right)+1}= \\ & \vec{\Delta}\left(\theta_{L}, \theta_{R}\right) / 4+\frac{\delta}{2}+\frac{1}{m\left(\theta_{R}\right)+1} \end{aligned}$
$\begin{aligned} & \vec{\Delta}\left(\theta_{L}, \theta\right) \quad \text { odd, } \\ & \vec{\Delta}\left(\theta, \theta_{R}\right) \text { even } \end{aligned}$	$\vec{\Delta}\left(\theta_{L}, \theta_{R}\right) / 4-\frac{1}{4}+\frac{1}{m\left(\theta_{R}\right)+2}$	$\begin{aligned} & \vec{\Delta}\left(\theta, \theta_{R}\right) / 2=\vec{\Delta}\left(\theta_{L}, \theta_{R}\right) / 4+ \\ & \frac{1}{4}+\frac{\delta}{2} \end{aligned}$
$\begin{aligned} & \vec{\Delta}\left(\theta_{L}, \theta\right) \text { even, } \\ & \vec{\Delta}\left(\theta, \theta_{R}\right) \text { even } \end{aligned}$	$\begin{aligned} & \vec{\Delta}\left(\theta_{L}, \theta_{R}\right) / 2-\frac{1}{2}+\frac{1}{m\left(\theta_{L}\right)+2}+ \\ & \frac{1}{m\left(\theta_{R}\right)+2} \end{aligned}$	$\begin{aligned} & \vec{\Delta}\left(\theta, \theta_{R}\right) / 2=\vec{\Delta}\left(\theta_{L}, \theta_{R}\right) / 4+ \\ & \frac{1}{2}+\frac{\delta}{2} \end{aligned}$
$\begin{aligned} & \vec{\Delta}\left(\theta_{L}, \theta\right) \text { even, } \\ & \vec{\Delta}\left(\theta, \theta_{R}\right) \text { odd } \end{aligned}$	$\vec{\Delta}\left(\theta_{L}, \theta_{R}\right) / 4-\frac{1}{4}+\frac{1}{m\left(\theta_{L}\right)+2}$	$\begin{aligned} & \vec{\Delta}\left(\theta, \theta_{R}\right) / 2-\frac{1}{2}+\frac{1}{m\left(\theta_{R}\right)+1}= \\ & \vec{\Delta}\left(\theta_{L}, \theta_{R}\right) / 4-\frac{1}{4}+\frac{\delta}{2}+\frac{1}{m\left(\theta_{R}\right)+1} \end{aligned}$

For the first three cases, the inequality $s<s^{+}$clearly holds. In the last case, the inequality only holds if $\delta>0$, i.e. if firms k and $k+1$ are far enough from the middle two niches. This proves the first part of the lemma.
For the second part of the lemma, about when firms are already in one of the two middle niches, we use the derived results in the table. If $\delta=0$, firms k and $k+1$ are in the left one of the two middle niches. If $m\left(\theta_{L}\right) \leq m\left(\theta_{R}\right)$, firm k (and $k+1$) moves toward θ_{L} (but stay otherwise). If firm k and $k+1$ move toward the right one of the two middle niches, we get into the counterpart case where θ is closer to θ_{R}. In that case, whether or not $s^{-}>s$ determines whether or not the two firms move back to the left one of the two middle niches. This is the case if $m\left(\theta_{R}\right) \leq m\left(\theta_{L}\right)$. Consequently, if $m\left(\theta_{L}\right)=m\left(\theta_{R}\right)$, the two firms jump to the other of the two middle niches. In any other case, ceteris paribus, they stay in either the left or the right one of the two middle niches. Given that the jump will be made toward the niche θ_{R} or θ_{L} with the lowest number of firms, the head-on rivals end up, ceteris paribus, on the left or right one of the two middle niches closer to the niche with the fewest competitors.

Note that by assuming $\theta_{L}<\theta-1$ and $\theta_{R}>\theta+1$, we need not evaluate the case that the rivaling firms consider imitating the firms at θ_{L} or θ_{R}. In case of imitation, we also need information on the firms and number of niches clockwise of θ_{R} or counterclockwise of θ_{L}.
In real cases, the neighboring competitors in niches θ_{L} or θ_{R} may also decide to relocate. This would change the situation for the two rivals, but not the actual rule that they move toward the niches in the middle of θ_{L} and θ_{R}.

An illustration for $M=3$ of the dynamics is given in Figure 2. In Figure 2a, we see that firm X imitates firm Y as it prefers sharing its currently monopolized region A to also share region B, in line with lemma 2. As soon as firm X and Y share the location, they have the same incentives vis-a-vis consumers and (other) competitors, so, in line with lemma 4 , differentiate from firm Z. Due to the number of niches being even, there is a dynamic equilibrium. Firm Z can improve sales by moving either clockwise or counterclockwise (see Figure 2c), after which firm X and Y can again improve their sales by moving in the same direction (see Figure 2d).

According to Lemma 4, head-on rivals are engaged in relocating to the middle of their immediate neighbors. If each firm is engaged in head-on rivalry, each firm displays 'middle seeking' behavior. If all firms are engaged in head-on rivalry with only one other firm, and these 'clusters of rivals' are at distance more than one of each other, these clusters all seek the middle of the immediately neighboring clusters. So, under these conditions the industry converges to equidistantly distributed clusters. However, in general, this does not yield a static equilibrium with all the inter-cluster distances equal to $N /(2 M)$ even if $N /(2 M) \in \mathbb{N}$. Often, this yields a dynamic equilibrium. As relocation by multiple firms at once reset industry conditions for the other in the next round, the clusters might relocate in opposite directions, thereby resetting the condition for one another to revert the step just taken. This then gives rise to a dynamic equilibrium with a periodicity of two. With $N=20$ and $M=8$ (4 clusters of 2 rivals), an example of this is the alternation between inter-cluster distances $(6,4,6,4)$ and $(4,6,4,6)$. Another example is the alternation between inter-cluster distances $(6,3,6,5)$ and $(4,5,4,7)$. We refer to such emerging (dynamic) equilibria as 'equidistantesque'; the clusters of rivals seek maximum differentiation (equidistance).

4.3. Equidistant equilibrium

While an 'equidistantesque' equilibrium emerges under the specific conditions that each firm engages in head-on rivalry, in the absence of head-on rivalry or imitation, there is no relocation, as we show in this subsection. For further analysis, we study cases with $m\left(\theta_{j}\right)=1$ for all j and in which firms are still at a distance of at least two to other firms. In that case, the table of conditions for a singular move presented in the proof of Lemma 1 can be used immediately to establish that this situation is a Nash equilibrium. After all, it is obvious that moving one step to either side, moves this firm toward one of his single neighbors and away from the other immediate single neighbor. This move thereby decreases the number of niches served by these two firms by half a niche on one side, and increases the number of niches served on the other side with an equal number, so the net increase in sales is zero and there is no incentive to move. The following lemma formalizes this result.

Lemma 5 Each distribution of firms over the circle with distance between two firms no less than two niches is a Nash equilibrium.

Proof: The necessary condition in lemma 1 is not met. Using the table in lemma 1 with $m\left(\theta_{L}\right)=m\left(\theta_{R}\right)=1$, we see that none of the conditions for $s_{k}^{+}>s_{k}$ is ever met. The same holds for s_{k}^{-}. As the conditions are similar for each of the firms, no firm has a unilateral incentive to move.

So, in our model, there is no incentive for a firm to relocate if there are no head-on rival(s) and if no firm will imitate a competitor. As firms relocate only under specific conditions, the classical equidistant equilibrium found in literature is very rare. The exact condition under which such an equilibrium occurs is formalized in the following theorem.

Theorem 1 For $\frac{N}{M} \in \mathbb{N}^{+}$, an equidistant equilibrium emerges only if the initial distribution is equidistant.

Proof: If condition $\frac{N}{M} \in \mathbb{N}^{+}$is not met, there is no equal distance between firms, so there is no equidistant equilibrium. According to Lemma 5, an equidistant distribution is a (Nash) equilibrium, if it occurs. Clearly, once $m\left(\theta_{k}\right)>1$, the firms residing at θ_{k} have similar interests and will also act similarly. So, equidistance does not emerge once there is head-on rivalry. Consequently, there may not be head-on rivalry and conditions should not be so that imitation occurs. Using lemma 2 with $m\left(\theta_{L}\right)=m\left(\theta_{R}\right)=1$, we know that there either is imitation if two firms are in consecutive niches or they do not move at all (which further stifles convergence to equidistance). So, firms should not be in consecutive niches or in the same niche. Furthermore, one of the firms should not have an incentive to relocate immediately next to another firm. From lemma 1, we know that a necessary but not sufficient condition is that $m\left(\theta_{L}\right)>1$ or $m\left(\theta_{R}\right)>1$ for relocation to occur. In case $m\left(\theta_{L}\right)=m\left(\theta_{R}\right)=1$, none of the conditions for a relocation in the table of the proof of lemma 1 is ever met.
So, as the initial industry conditions must be such that there is no head-on rivalry or imitation, there are no incentives to move at all and an equidistant equilibrium does never dynamically emerge, but must be initialized as such.

The probability that an equidistant equilibrium is installed when firms' initial locations are drawn uniform randomly is $N^{-M+1}(M-1)$!. For large N and small M, this probability is very small and rapidly decreasing in N and M. Note that the industry does not converge back to an equidistant distribution upon any incremental perturbation of the firm away from that equidistant distribution (but without violating the conditions of Lemma 5). The equidistant equilibrium hence even is an unstable Nash equilibrium. Note that even a single step of relocation is not very likely to occur: it may happen only if at least some firms are head-on rivals or imitate another. When firms are randomly placed on the circle one by one, the probability that at least one firm is placed in the same niche or in a niche immediately next to another firm is approximately $N^{-M} \Pi_{i=1}^{M-1}(N-3 i)$. This probability becomes ever more accurate with increasing N. This expression reveals that the probability that at least one firm relocates after initialization is small whenever N is large and M is small.

5. Conclusions and further research

In product differentiation literature, authors commonly (implicitly) assume firms are perfectly rational, endowed with prior information on competitors' strategies and as such capable of positioning and pricing their product to maximize profit. In game-theoretic approaches to product differentiation, the equidistant distribution of firms on the onedimensional circular product characteristic landscape often emerges as the ultimate outcome in which firms cannot improve profit unilaterally by relocating or changing price. In our research, we answered a call by Anderson et al. (1992) to study product differentiation under bounded rationality. We operationalized this by having firms relocate incrementally purely on ceteris paribus sales prospects, without anticipating moves by competitors. We show that when consumers are utility maximizers, their demand is inelastic and firms charge uniform prices, the distribution of firms changes only if two or more firms (are) engage(d) in head-on rivalry. In any other case, there is no incentive for any firm to relocate incrementally. An equidistant distribution thus is an unstable Nash equilibrium as it can and does not develop from another industry state. In fact, all distributions in which firms have a distance >1 to other firms are (unstable) Nash equilibria. Consequently, the random scattering of firms at the onset of the mature phase is also often the emerging static equilibrium.
Arguably, the completely free relocation strategy in the perfectly rational case and the incremental relocation strategy in the boundedly rational case are both extreme cases. Further research should shed light on what type of information on competitors' relocation strategy is known and what realistic entry location and relocation strategies are followed. Another interesting avenue for further research is the type of dynamics and equilibria when the utility maximization of consumers is relaxed.

References

Akerlof, G., Yellen, J., 1985. Can small deviations from rationality make significant differences to economic equilibria? The American Economic Review 75, 708 - 720.
Anderson, S., de Palma, A., Thisse, J., 1992. Discrete Choice Theory of Product Differentiation. M.I.T. Press.
Böckem, S., 1994. A generalized model of horizontal product differentiation. The Journal of Industrial Economics 42 (3), 287 - 298.

Borenstein, S., Netz, J., 1999. Why do all the flights leave at 8 am?: Competition and departure-time differentiation in airline markets. International Journal of Industrial Organization 17, 611 - 640.
Camacho-Cuena, E., Garcia-Gallego, A., Georgantzis, N., Sabater-Grande, G., 2005. Buyer-seller interaction in experimental spatial markets. Regional Science and Urban Economics 35, $89-108$.
Capozza, D., Order, R. V., 1980. Unique equilibria, pure profits, and efficiency in location models. The American Economic Review 70 (5), 1046 - 1053.
D'Aspremont, C., Gabszewicz, J., Thisse, J., 1979. On Hotelling's "stability in competition". Econometrica 47 (5).
Economides, N., 1986. Minimal and maximal product differentiation in hotelling's duopoly. Economics Letters 21, $67-71$.
Economides, N., 1989. Symmetric equilibrium existence and optimality in differentiated product markets. Journal of Economic Theory 47, 178-194.
Graitson, D., 1982. Spatial competition à la Hotelling: a selective survey. The Journal of Industrial Economics 31 (1/2), $11-25$.
Gupta, B., Lai, F., Pal, D., Sarkar, J., Yu, C., 2004. Where to locate in a circular city? International Journal of Industrial Organization 22 (6), 759-782.
Häckner, J., 1995. Endogenous product design in an infinitely repeated game. International Journal of Industrial Organization 13, $277-299$.
Hotelling, H., 1929. Stability in competition. The Economic Journal 39 (153), 41-57.
Huang, A., Levinson, D., 2007. An agent-based retail location model on a supply chain network. Tech. rep.
Johnson, D., Hoopes, D., 2003. Managerial cognition, sunk costs, and the evolution of industry structure. Strategic Management Journal 24, 1057 - 1068.
Krugman, P., 1992. A dynamic spatial model. Working Paper 4219, NBER.
Lerner, A., Singer, H., 1937. Some notes on duopoly and spatial competition. Journal of Political Economy $45,145-186$.
Nelson, R. R., Winter, S. G., 1982. An Evolutionary Theory of Economic Change. Harvard University Press.
Pal, D., 1998. Does Cournot competition yield spatial agglomeration? Economics Letters 60, 49 - 53.
Perloff, J., Salop, S., 1985. Equilibrium with product differentiation. The Review of Economic Studies 52 (1), 107-120.
Salop, S., 1979. Monopolistic competition with outside goods. Bell Journal of Economics 10, 141 - 156.
Simon, H., 1955. A behavioral model of rational choice. The Quarterly Journal Of Economics 69 (1), 99 - 118.

Tabuchi, T., Thisse, J., 1995. Asymmetric equilibria in spatial competition. International Journal of Industrial Organization 13, 213-227.
Tirole, J., 1988. The Theory of Industrial Organization. The MIT Press.
Tversky, A., Kahneman, D., 1986. Rational choice and the framing of decisions. The Journal of Business 59 (4), S251-S278.
Tyagi, R., 1999. Pricing patterns as outcomes of product positions. The Journal of Business 72 (1), 135 -157.
Yu, C., 2007. Price and quantity competition yield the same location equilibria in a circular market. Papers in Regional Science 86 (4), 643-655.

nr. Year Title	Author(s)
4362013 Dynamics and equilibria under incremental Horizontal differentiation on the Salop circle	B. Vermeulen, J.A. La Poutré, A.G. de Kok
4352013 Analyzing Conformance to Clinical Protocols Involving Advanced Synchronizations	Hui Yan, Pieter Van Gorp, Uzay Kaymak, Xudong Lu, Richard Vdovjak, Hendriks H.M. Korsten, Huilong Duan
4342013 Models for Ambulance Planning on the Strategic and the Tactical Level	J. Theresia van Essen, Johann L. Hurink, Stefan Nickel, Melanie Reuter
Mode Allocation and Scheduling of Inland Container Transportation: A Case-Study in the 4332013 Netherlands	Stefano Fazi, Tom Van Woensel, Jan C. Fransoo
Socially responsible transportation and lot sizing: 4322013 Insights from multiobjective optimization	Yann Bouchery, Asma Ghaffari, Zied Jemai, Jan Fransoo
4312013 Inventory routing for dynamic waste collection	Martijn Mes, Marco Schutten, Arturo Pérez Rivera
4302013 Simulation and Logistics Optimization of an Integrated Emergency Post	N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans
Last Time Buy and Repair Decisions for Spare 4292013 Parts	S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm
A Review of Recent Research on Green Road 4282013 Freight Transportation	Emrah Demir, Tolga Bektas, Gilbert Laporte
Typology of Repair Shops for Maintenance 4272013 Spare Parts	M.A. Driessen, V.C.S. Wiers, G.J. van Houtum, W.D. Rustenburg
A value network development model and 4262013 Implications for innovation and production network management	B. Vermeulen, A.G. de Kok
Single Vehicle Routing with Stochastic Demands: 4252013 Approximate Dynamic Programming	C. Zhang, N.P. Dellaert, L. Zhao, T. Van Woensel, D. Sever

Approximations for the waiting time distribution 4112013 In an $M / G / C$ priority queue

4102013 To co-locate or not? Location decisions and logistics concentration areas

4092013 The Time-Dependent Pollution-Routing Problem

Scheduling the scheduling task: A time
4082013 Management perspective on scheduling

4072013 Clustering Clinical Departments for Wards to Achieve a Prespecified Blocking Probability

4062013 MyPHRMachines: Personal Health Desktops in the Cloud

4052013 Maximising the Value of Supply Chain Finance

4042013 Reaching 50 million nanostores: retail distribution in emerging megacities

4032013 A Vehicle Routing Problem with Flexible Time Windows
$4022013 \frac{\text { The Service Dominant Business Model: A }}{\text { Service Focused Conceptualization }}$
$4012012 \frac{\text { Relationship between freight accessibility and }}{\text { Logistics employment in US counties }}$
A. Al Hanbali, E.M. Alvarez, M.C. van der van der Heijden

Frank P. van den Heuvel, Karel H. van Donselaar, Rob A.C.M. Broekmeulen, Jan C. Fransoo, Peter W. de Langen

Anna Franceschetti, Dorothée Honhon,Tom van Woensel, Tolga Bektas, GilbertLaporte.
J.A. Larco, V. Wiers, J. Fransoo
J. Theresia van Essen, Mark van Houdenhoven, Johann L. Hurink

Pieter Van Gorp, Marco Comuzzi

Kasper van der Vliet, Matthew J. Reindorp, Jan C. Fransoo

Edgar E. Blanco, Jan C. Fransoo

Duygu Tas, Ola Jabali, Tom van Woensel

Egon Lüftenegger, Marco Comuzzi, Paul Grefen, Caren Weisleder

Frank P. van den Heuvel, Liliana Rivera,Karel H. van Donselaar, Ad de Jong, Yossi Sheffi, Peter W. de Langen, Jan C.Fransoo

Qiushi Zhu, Hao Peng, Geert-Jan van Houtum

3882012 The Impact of Product Complexity on Ramp-
Up Performance

3872012 Co-location synergies: specialized versus diverse logistics concentration areas

3862012 Proximity matters: Synergies through co-location of logistics establishments

3852012 Spatial concentration and location dynamics in logistics:the case of a Dutch province

3842012 FNet: An Index for Advanced Business Process Querying

3832012 Defining Various Pathway Terms
$3822012 \frac{\text { The Service Dominant Strategy Canvas: }}{} \begin{aligned} & \underline{\text { Defining and Visualizing a Service Dominant }} \\ & \underline{\text { Strategy through the Traditional Strategic Lens }}\end{aligned}$

3812012 A Stochastic Variable Size Bin Packing Problem With Time Constraints
$3802012 \frac{\text { Coordination and Analysis of Barge Container }}{\text { Hinterland }}$ Hinterland Networks

Proximity matters: Synergies through co-location
3792012 of logistics establishments

A literature review in process harmonization: a
3782012 conceptual framework

A Generic Material Flow Control Model for
3772012 Two Different Industries

Frank P.v.d. Heuvel, Peter W.de Langen,
Karel H. v. Donselaar, Jan C. Fransoo

Frank P.v.d. Heuvel, Peter W.de Langen,

Karel H. v.Donselaar, Jan C. Fransoo

Frank P. v.d.Heuvel, Peter W.de Langen
Karel H.v. Donselaar, Jan C. Fransoo

Zhiqiang Yan, Remco Dijkman, Paul Grefen
W.R. Dalinghaus, P.M.E. Van Gorp

Egon Lüftenegger, Paul Grefen, Caren Weisleder

Stefano Fazi, Tom van Woensel, Jan C. Fransoo
K. Sharypova, T. van Woensel, J.C. Fransoo

Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C.

Fransoo

Heidi Romero, Remco Dijkman, Paul Grefen, Arjan van Weele
S.W.A. Haneya, J.M.J. Schutten,
P.C. Schuur, W.H.M. Zijm
H.G.H. Tiemessen, M. Fleischmann,
G.J. van Houtum, J.A.E.E. van Nunen,

Shipments	
3612011 Approximating Multi-Objective Time-Dependent Optimization Problems	Said Dabia, Stefan Röpke, Tom Van Woensel, Ton de Kok
Branch and Cut and Price for the Time Dependent 3602011 Vehicle Routing Problem with Time Window	A.G. Karaarslan, G.P. Kiesmüller, A.G. de Kok
3592011 Analysis of an Assemble-to-Order System with Different Review Periods	Ahmad Al Hanbali, Matthieu van der Heijden
3582011 Interval Availability Analysis of a Two-Echelon, Multi-Item System	Felipe Caro, Charles J. Corbett, Tarkan Tan, Rob Zuidwijk
3572011 Carbon-Optimal and Carbon-Neutral Supply Chains	Sameh Haneyah, Henk Zijm, Marco Schutten, Peter Schuur
$3562011 \frac{\text { Generic Planning and Control of Automated }}{\text { Material Handling Systems: Practical }} \text { }$	M. van der Heijden, B. Iskandar
3552011 Last time buy decisions for products sold under	Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo
3542011 Spatial concentration and location dynamics in logistics: the case of a Dutch provence	Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo
3532011 Identification of Employment Concentration Areas	Pieter van Gorp, Remco Dijkman
3522011 BOMN 2.0 Execution Semantics Formalized as Graph Rewrite Rules: extended version	Frank Karsten, Marco Slikker, GeertJan van Houtum
3512011 Resource pooling and cost allocation among independent service providers	E. Lüftenegger, S. Angelov, P. Grefen
3502011 A Framework for Business Innovation Directions	Remco Dijkman, Irene Vanderfeesten, Hajo A. Reijers
3492011 The Road to a Business Process Architecture: An Overview of Approaches and their Use	K.M.R. Hoen, T. Tan, J.C. Fransoo G.J. van Houtum
$\begin{aligned} 3482011 \\ \\ \text { Effect of carbon emission regulations on transport } \\ \text { mode selection under stochastic demand } \end{aligned}$	Murat Firat, Cor Hurkens
3472011 An improved MIP-based combinatorial approach for a multi-skill workforce scheduling problem	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
3462011 An approximate approach for the joint problem of	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten

	Ton G. de Kok
$3452011 \frac{\text { Joint optimization of level of repair analysis and }}{\text { spare parts stocks }}$	
$3442011 \frac{\text { Inventory control with manufacturing lead time }}{\underline{\text { flexibility }}}$	Frank Karsten, Marco Slikker, GeertJan van Houtum
Analysis of resource pooling games via a new 3432011 extenstion of the Erlang loss function	Murat Firat, C.A.J. Hurkens, Gerhard J. Woeginger
3422011 Vehicle refueling with limited resources	Bilge Atasoy, Refik Güllü, TarkanTan
3412010 Optimal Inventory Policies with Non-stationary Supply Disruptions and Advance Supply Information	Kurtulus Baris Öner, Alan Scheller-Wolf Geert-Jan van Houtum
$3392010 \frac{\text { Redundancy Optimization for Critical Components }}{\text { in High-Availability Capital Goods }}$	Joachim Arts, Gudrun Kiesmüller
3382010 Analysis of a two-echelon inventory system with two supply modes	Murat Firat, Gerhard J. Woeginger
3352010 Analysis of the dial-a-ride problem of Hunsaker and Savelsbergh	Murat Firat, Cor Hurkens
3342010 Attaining stability in multi-skill workforce scheduling	A.J.M.M. Weijters, J.T.S. Ribeiro
3332010 Flexible Heuristics Miner (FHM)	P.T. Vanberkel, R.J. Boucherie, E.W. Hans, J.L. Hurink, W.A.M. van Lent, W.H. van Harten
3322010 An exact approach for relating recovering surgical patient workload to the master surgical schedule	Peter T. Vanberkel, Richard J. Boucherie, Erwin W. Hans, Johann L. Hurink, Nelly Litvak
Efficiency evaluation for pooling resources in health care 3312010	M.M. Jansen, A.G. de Kok, I.J.B.F. Adan
The Effect of Workload Constraints in Mathematical Programming Models for Production 3302010 Planning	Christian Howard, Ingrid Reijnen, Johan Marklund, Tarkan Tan

3162010		Pieter van Gorp, Rik Eshuis.
	Design for Availability: Creating Value for Manufacturers and Customers	
3152010		Bob Walrave, Kim E. van Oorschot, A.
	Transforming Process Models: executable rewrite rules versus a formalized Java program	Georges L. Romme
3142010		S. Dabia, T. van Woensel, A.G. de Kok
	Getting trapped in the suppression of exploration: A simulation model	
3132010	A Dynamic Programming Approach to Multi-	
	Objective Time-Dependent Capacitated Single	
	Vehicle Routing Problems with Time Windows	
3122010	Tales of a So(u)rcerer: Optimal Sourcing Decisions	
	Under Alternative Capacitated Suppliers and General Cost Structures	Osman Alp, Tarkan Tan
	In-store replenishment procedures for perishable	
3112010	inventory in a retail environment with handling costs and storage constraints	R.A.C.M. Broekmeulen, C.H.M. Bakx
3102010	The state of the art of innovation-driven business models in the financial services industry	E. Lüftenegger, S. Angelov, E. van der Linden, P. Grefen
3092010	Design of Complex Architectures Using a Three Dimension Approach: the CrossWork Case	R. Seguel, P. Grefen, R. Eshuis
3082010	Effect of carbon emission regulations on transport mode selection in supply chains	K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J. van Houtum
$3072010 \frac{1}{r}$	Interaction between intelligent agent strategies for real-time transportation planning	Martijn Mes, Matthieu van der Heijden, Peter Schuur
3062010 Internal Slackening Scoring Methods		Marco Slikker, Peter Borm, René van den Brink
3052010 Vehicle Routing with Traffic Congestion and Drivers' Driving and Working Rules		A.L. Kok, E.W. Hans, J.M.J. Schutten, W.H.M. Zijm
3042010 Practical extensions to the level of repair analysis		R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
Ocean Container Transport: An Underestimated 3032010 and Critical Link in Global Supply Chain Performance		Jan C. Fransoo, Chung-Yee Lee
3022010 Capacity reservation and utilization for a manufacturer with uncertain capacity and demand		Y. Boulaksil; J.C. Fransoo; T. Tan
3002009 Spare parts inventory pooling games		F.J.P. Karsten; M. Slikker; G.J. van Houtum
2992009 Capacity flexibility allocation in an outsourced supply chain with reservation		Y. Boulaksil, M. Grunow, J.C. Fransoo
2982010 A	An optimal approach for the joint problem of level of repair analysis and spare parts stocking	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
2972009	Responding to the Lehman Wave: Sales	Robert Peels, Maximiliano Udenio, Jan
	Forecasting and Supply Management during the Credit Crisis	C. Fransoo, Marcel Wolfs, Tom Hendrikx

2962009	An exact approach for relating recovering surgical patient workload to the master surgical schedule	Peter T. Vanberkel, Richard J. Boucherie, Erwin W. Hans, Johann L. Hurink, Wineke A.M. van Lent, Wim H. van Harten
2952009	An iterative method for the simultaneous optimization of repair decisions and spare parts stocks	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
2942009	jaba hits the Wall(-e)	Pieter van Gorp, Ruben Jubeh, Bernhard Grusie, Anne Keller
2932009	Implementation of a Healthcare Process in Four Different Workflow Systems	R.S. Mans, W.M.P. van der Aalst, N.C. Russell, P.J.M. Bakker
2922009	Business Process Model Repositories - Framework and Survey	Zhiqiang Yan, Remco Dijkman, Paul Grefen
2912009	Efficient Optimization of the Dual-Index Policy Using Markov Chains	Joachim Arts, Marcel van Vuuren, Gudrun Kiesmuller
2902009	Hierarchical Knowledge-Gradient for Sequential Sampling	Martijn R.K. Mes; Warren B. Powell; Peter I. Frazier
2892009	Analyzing combined vehicle routing and break scheduling from a distributed decision making perspective	C.M. Meyer; A.L. Kok; H. Kopfer; J.M.J. Schutten
2882009	Anticipation of lead time performance in Supply Chain Operations Planning	Michiel Jansen; Ton G. de Kok; Jan C. Fransoo
2872009	Inventory Models with Lateral Transshipments: A Review	Colin Paterson; Gudrun Kiesmuller; Ruud Teunter; Kevin Glazebrook
2862009	Efficiency evaluation for pooling resources in health care	P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak
2852009	A Survey of Health Care Models that Encompass Multiple Departments	P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak
2842009	Supporting Process Control in Business Collaborations	S. Angelov; K. Vidyasankar; J. Vonk; P. Grefen
2832009	Inventory Control with Partial Batch Ordering	O. Alp; W.T. Huh; T. Tan
2822009	Translating Safe Petri Nets to Statecharts in a Structure-Preserving Way	R. Eshuis
2812009	The link between product data model and process model	J.J.C.L. Vogelaar; H.A. Reijers
2802009	Inventory planning for spare parts networks with delivery time requirements	I.C. Reijnen; T. Tan; G.J. van Houtum
2792009	Co-Evolution of Demand and Supply under Competition	B. Vermeulen; A.G. de Kok
2782010	Toward Meso-level Product-Market Network Indices for Strategic Product Selection and (Re)Design Guidelines over the Product Life-Cycle	B. Vermeulen, A.G. de Kok
2772009	An Efficient Method to Construct Minimal Protocol Adaptors	R. Seguel, R. Eshuis, P. Grefen

2762009 Coordinating Supply Chains: a Bilevel	Ton G. de Kok, Gabriella Muratore
$2752009 \frac{\text { Inventory redistribution for fashion products under }}{\text { demand parameter update }}$	G.P. Kiesmuller, S. Minner
2742009 Comparing Markov chains: Combining aggregation and precedence relations applied to sets of states	A. Busic, I.M.H. Vliegen, A. SchellerWolf
2732009 Separate tools or tool kits: an exploratory study of	I.M.H. Vliegen, P.A.M. Kleingeld, G.J. van Houtum
An Exact Solution Procedure for Multi-Item Two2722009 Echelon Spare Parts Inventory Control Problem with Batch Ordering	Engin Topan, Z. Pelin Bayindir, Tarkan Tan
2712009 Distributed Decision Making in Combined Vehicle Routing and Break Scheduling	C.M. Meyer, H. Kopfer, A.L. Kok, M. Schutten
Dynamic Programming Algorithm for the Vehicle 2702009 Routing Problem with Time Windows and EC Social Legislation	A.L. Kok, C.M. Meyer, H. Kopfer, J.M.J. Schutten
2692009 Similarity of Business Process Models: Metics and Evaluation	Remco Dijkman, Marlon Dumas, Boudewijn van Dongen, Reina Kaarik, Jan Mendling
2672009 Vehicle routing under time-dependent travel times:	A.L. Kok, E.W. Hans, J.M.J. Schutten
2662009 Restricted dynamic programming: a flexible framework for solving realistic VRPs	J. Gromicho; J.J. van Hoorn; A.L. Kok; J.M.J. Schutten;

Working Papers published before 2009 see: $\underline{h t t p: / / b e t a . i e i s . t u e . n l ~}$

[^0]: *Corresponding author. Eindhoven University of Technology, Department of Industrial Engineering and Innovation Sciences, IPO 1.16, Den Dolech 2, P.O. Box 513, Eindhoven, The Netherlands. Telephone number: +31-40-2473184. Email: b.vermeulen@tue.nl.
 ${ }^{1}$ The first author gratefully acknowledges financial support of the Dutch science foundation NWO, grant 458-03-112, and of the German science foundation DFG, grant PY 70/8-1.

[^1]: ${ }^{2}$ As firms have only one product, we use k and θ_{k} as index and location respectively for both the product and the firm.

