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Abstract

In supervisor synthesis achieving nonblockingness is a major computational challenge
when a target system consists of a large number of local components. To overcome
this difficulty we propose an approach to synthesize a coordinated distributed supervi-
sor, where the plant is modeled by a collection of nondeterministic finite-state automata
and the requirement is modeled by a collection of deterministic finite-state automata.
The synthesis is based on a previously developed automaton abstraction technique. We
provide a sufficient condition, which guarantees the maximum permissiveness of the syn-
thesized coordinated distributed supervisor. In addition, we show that the problem of
finding a coordinator with the minimum number of states is NP-hard.



1 Introduction

In the Ramadge/Wonham supervisory control paradigm [1] [2] one of the main challenges
of supervisor synthesis is to achieve nonblockingness when a target system has a large
number of states, often resulted from synchronous product of many relatively small local
components. To overcome this difficulty, many approaches have been proposed recently,
e.g. state-feedback control based on state-tree structures [5], hierarchical interface-based
control [4] and modular/distributed control [26] [24] [14] [22] [25] [23] [6] [8] [18] [16] [15]
[17].

The modular/distributed approaches with decomposable requirements are particular in-
teresting for two reasons: potentially low synthesis complexity and high implementation
flexibility. The low complexity is achieved through local synthesis, and implementation
flexibility refers that, a structural change of the target system may result in only a small
number of relevant local controllers to be updated. In this paper we propose an approach
to synthesize a coordinated distributed supervisor. We adopt the basic setting of dis-
tributed supervisory control described in [11], where the plant is modeled by a collection
of nondeterministic finite-state automata and the requirement is modeled by a collection
of deterministic finite-state automata. The synthesis goal is to compute a collection of
deterministic local nonblocking state-normal supervisors such that the global requirement
satisfaction and nonblockingness can be achieved. We make three contributions in this
paper. First, we present an approach to synthesize a coordinated distributed supervi-
sor. Second, we show that the problem of computing a coordinator with the minimum
number of states is NP-hard. Finally, we provide a sufficient condition, which guarantees
the maximum permissiveness of the synthesized coordinated distributed supervisor. To
illustrate the effectiveness of the proposed approach we apply it to a realistic problem.

The synthesis approach utilizes an automaton abstraction technique proposed in [10],
which is different from the language-based abstraction technique presented in, e.g. [6]
[18] [7] [16], and different from other automaton-based abstraction techniques provided
in, e.g. [8] [19] [13] [15] [17]. In short, the proposed abstraction technique may potentially
result in smaller abstracted models than those obtained by using the above mentioned
language or automaton-based techniques. More detailed explanations about the compar-
ison of abstraction techniques can be found in [10]. Since this paper is about distributed
synthesis, its focus is completely different from that of [10] and [13], which are about cen-
tralized synthesis. Although the setting of distributed supervisory control of this paper
is the same as that of [11], the latter aims to compute a distributed supervisor by using
an aggregative approach. As a contrast, this paper is about computing a coordinated
distributed supervisor. In a certain sense, the aggregative approach is a special instance
of the approach proposed in this paper, where each coordinator is treated as a local su-
pervisor. This paper also presents several results about distributed supervisor synthesis
that have not been mentioned in [11] and all other aforementioned papers about modu-
lar/distributed synthesis. More explicitly, we first show the NP-hardness of computing a
coordinator with the smallest state set, then provide a sufficient condition to guarantee
the maximum permissiveness of the synthesized distributed supervisor (including the one
obtained by using the aggregative approach) when partial observation and nondetermin-
ism may be present in the plant model. Although in [26] [24] [14] [22] [25] [6] [16] some
sufficient conditions for maximum permissiveness are also presented, they aim at a deter-
ministic system with full observation. Furthermore, the concept of model abstraction is
not used in them except for [6] and [16]. In [6] the authors assume that the plant is a shuf-
fle system, in which the alphabets of subsystems are disjoint. They provide a sufficient
condition to guarantee the maximum permissiveness of a modular supervisor computed
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based on an abstracted plant model. In [16] the authors consider a general plant model,
which need not be a shuffle system. To achieve the maximum permissiveness, the authors
adopt the concept of mutual controllability defined in [14]. In this paper we also assume
that the plant is not a shuffle system, and it is modeled by nondeterministic finite-state
automata. In addition, the partial observation may be present. We extend the concepts
of local control consistency defined in [16] and the mutual controllability defined in [14]
so that they are applicable to a nondeterministic system. It turns out that the results of
[16] and [14] about maximum permissiveness become special cases of the general results
obtained in this paper.

This paper is organized as follows. In Section II we review relevant concepts, automaton
operations and the general setting of distributed supervisory control described in [11].
Then in Section III we first present a synthesis approach which computes a coordinated
distributed supervisor based on abstractions of nondeterministic automata, then show
that the problem of finding a coordinator with the minimum number of states is NP-
hard, and finally provide a sufficient condition to guarantee the maximum permissiveness
of the synthesized coordinated distributed supervisor. A realistic example is provided in
Section IV and conclusions are stated in Section V.

2 Necessary concepts and results of distributed su-

pervisor synthesis

In this section we review basic concepts and results of distributed supervisor synthesis
described in [10] [11], which will be used in the synthesis of coordinated distributed
supervisors discussed in the next section. Because these concepts and results have been
discussed in the literature, we will only provide simple explanations when we feel is
necessary. More details can be found in [10] [11].

2.1 Concepts of languages, nondeterministic finite-state automata and automaton ab-
straction

Let Σ be a finite alphabet, and Σ∗ denote the Kleene closure of Σ, i.e. the collection
of all finite sequences of events taken from Σ. Given two strings s, t ∈ Σ∗, s is called a
prefix substring of t, written as s ≤ t, if there exists s′ ∈ Σ∗ such that ss′ = t, where
ss′ denotes the concatenation of s and s′. We use ǫ to denote the empty string of Σ∗

such that for any string s ∈ Σ∗, ǫs = sǫ = s. A subset L ⊆ Σ∗ is called a language.
L = {s ∈ Σ∗|(∃t ∈ L) s ≤ t} ⊆ Σ∗ is called the prefix closure of L. L is called prefix
closed if L = L. Given two languages L,L′ ⊆ Σ∗, LL′ := {ss′ ∈ Σ∗|s ∈ L ∧ s′ ∈ L′}.

Let Σ′ ⊆ Σ. A mapping P : Σ∗ → Σ′∗ is called the natural projection with respect to
(Σ,Σ′), if

1. P (ǫ) = ǫ

2. (∀σ ∈ Σ)P (σ) :=

{

σ if σ ∈ Σ′

ǫ otherwise

3. (∀sσ ∈ Σ∗)P (sσ) = P (s)P (σ)

3 Necessary concepts and results of distributed supervisor synthesis



Given a language L ⊆ Σ∗, P (L) := {P (s) ∈ Σ′∗|s ∈ L}. The inverse image mapping of
P is

P−1 : 2Σ′∗

→ 2Σ∗

: L 7→ P−1(L) := {s ∈ Σ∗|P (s) ∈ L}

Given L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2, the synchronous product of L1 and L2 is defined as:

L1||L2 := P−1
1 (L1) ∩ P

−1
2 (L2) = {s ∈ (Σ1 ∪ Σ2)

∗|P1(s) ∈ L1 ∧ P2(s) ∈ L2}

where P1 : (Σ1 ∪Σ2)
∗ → Σ∗

1 and P2 : (Σ1 ∪Σ2)
∗ → Σ∗

2 are natural projections. Clearly, ||
is commutative and associative. Next, we introduce automaton product and abstraction.

A nondeterministic finite-state automaton is a 5-tuple G = (X,Σ, ξ, x0, Xm), where X
stands for the state set, Σ for the alphabet, ξ : X × Σ → 2X for the nondeterministic
transition function, x0 for the initial state and Xm for the marker state set. As usual [9],
we extend the domain of ξ from X × Σ to X × Σ∗. If for any x ∈ X and σ ∈ Σ, ξ(x, σ)
contains no more than one element, then G is called deterministic. Let

B(G) := {s ∈ Σ∗|(∃x ∈ ξ(x0, s))(∀s′ ∈ Σ∗) ξ(x, s′) ∩Xm = ∅}

Any string s ∈ B(G) can lead to a state x, from which no marker state is reachable, i.e.
for any s′ ∈ Σ∗, ξ(x, s′) ∩ Xm = ∅. Such a state x is called a blocking state of G, and
we call B(G) the blocking set. A state that is not a blocking state is called a nonblocking
state. We say G is nonblocking if B(G) = ∅. For each x ∈ X , we define another set

NG(x) := {s ∈ Σ∗|ξ(x, s) ∩Xm 6= ∅}

and call NG(x0) the nonblocking set of G, which is simply the set of all strings recognized
by G. For the notation simplicity, we use N(G) to denote NG(x0). It is possible that

B(G) ∩N(G) 6= ∅, due to nondeterminism. Let φ(Σ) be the collection of all finite-state
automata over Σ. Given a language K ⊆ Σ∗, we say G ∈ φ(Σ) is a recognizer of L, if G
is deterministic, nonblocking and N(G) = K.

Given two nondeterministic automata Gi = (Xi,Σi, ξi, x0,i, Xm,i) ∈ φ(Σi) (i = 1, 2), the
product of G1 and G2, written as G1 ×G2, is an automaton in φ(Σ1 ∪ Σ2) such that

G1 ×G2 = (X1 ×X2,Σ1 ∪ Σ2, ξ1 × ξ2, (x0,1, x0,2), Xm,1 ×Xm,2)

where ξ1 × ξ2 : X1 ×X2 × (Σ1 ∪ Σ2) → 2X1×X2 is defined as follows,

(ξ1 × ξ2)((x1, x2), σ) :=







ξ1(x1, σ) × {x2} if σ ∈ Σ1 − Σ2

{x1} × ξ2(x2, σ) if σ ∈ Σ2 − Σ1

ξ1(x1, σ) × ξ2(x2, σ) if σ ∈ Σ1 ∩ Σ2

As usual, ξ1 × ξ2 is extended to X1 ×X2 × (Σ1 ∪ Σ2)
∗ → 2X1×X2 . By a slight abuse of

notations, from now on we use G1 ×G2 to denote its reachable part. Next, we introduce
automaton abstraction.

Definition 2.1. [10] Given G = (X,Σ, ξ, x0, Xm), let Σ′ ⊆ Σ and P : Σ∗ → Σ′∗ be the
natural projection. A marking weak bisimulation relation on X with respect to Σ′ is an
equivalence relation R ⊆ X×X such that, R ⊆ {(x, x′) ∈ X×X |x ∈ Xm ⇐⇒ x′ ∈ Xm}
and

(∀(x, x′) ∈ R)(∀s ∈ Σ∗)(∀y ∈ ξ(x, s))(∃s′ ∈ Σ∗)P (s) = P (s′)∧ (∃y′ ∈ ξ(x′, s′)) (y, y′) ∈ R
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The largest marking weak bisimulation relation on X with respect to Σ′ is called marking
weak bisimilarity on X with respect to Σ′, written as ≈Σ′,G. �

Definition 2.2. [10] GivenG = (X,Σ, ξ, x0, Xm), let Σ′ ⊆ Σ. The automaton abstraction
of G with respect to the marking weak bisimulation ≈Σ′ is an automaton G/ ≈Σ′ :=
(Z,Σ′, δ, z0, Zm) where

1. Z := X/ ≈Σ′ := {< x >:= {x′ ∈ X |(x, x′) ∈≈Σ′}|x ∈ X}

2. z0 :=< x0 >

3. Zm := {z ∈ Z|z ∩Xm 6= ∅}

4. δ : Z × Σ′ → 2Z , where for any (z, σ) ∈ Z × Σ′,

δ(z, σ) := {z′ ∈ Z|(∃x ∈ z)(∃u, u′ ∈ (Σ − Σ′)∗) ξ(x, uσu′) ∩ z′ 6= ∅}

�

Definition 2.3. [10] Given Gi = (Xi,Σi, ξi, xi,0, Xi,m) (i = 1, 2), we say G1 is non-
blocking preserving with respect to G2, denoted as G1 ⊑ G2, if (1) B(G1) ⊆ B(G2), (2)

N(G1) = N(G2), and (3) (∀s ∈ N(G1))(∀x1 ∈ ξ1(x1,0, s))(∃x2 ∈ ξ2(x2,0, s))NG2
(x2) ⊆

NG1
(x1) ∧ [x1 ∈ X1,m ⇐⇒ x2 ∈ X2,m]. We say G1 is nonblocking equivalent to G2,

denoted as G1
∼= G2, if G1 ⊑ G2 and G2 ⊑ G1. �

To use the proposed automaton abstraction properly, we need to introduce the concept
of standardized automata, which is defined as follows. We bring in a new event symbol
τ , which does not belong to any alphabet, and is always treated as uncontrollable and
unobservable. We call an automaton Gτ = (X,Σ ∪ {τ}, ξ, x0, Xm) standardized if

1. x0 /∈ Xm ∧ (∀x ∈ X) [ξ(x, τ) 6= ∅ ⇐⇒ x = x0]

2. (∀σ ∈ Σ) ξ(x0, σ) = ∅

3. (∀x ∈ X)(∀σ ∈ Σ ∪ {τ})x0 /∈ ξ(x, σ)

A standardized automaton is nothing but an automaton, in which x0 is not marked, τ
is only defined at x0, which only has outgoing τ transitions and no incoming transition.
For notation simplicity, from now on we use Στ to denote Σ ∪ {τ}, where τ /∈ Σ, and
use φ(Στ ) to denote the collection of all standardized automata whose alphabets are Στ .
We can check that, abstraction of a standardized automaton is still standardized and the
product of two standardized automata is also standardized.

Proposition 2.4. [10] Given G1, G2 ∈ φ(Στ ), G3 ∈ φ(Σ′τ ), if G1 ⊑ G2 then G1 ×G3 ⊑
G2 ×G3. �

Proposition 2.5. [10] Given Στ
1 and Στ

2 , let G1 ∈ φ(Στ
1), G2 ∈ φ(Στ

2) and Σ′ ⊆ Σ1 ∪Σ2.
If Σ1 ∩ Σ2 ⊆ Σ′, then (G1 ×G2)/ ≈Σ′τ⊑ (G1/ ≈(Σ1∩Σ′)τ ) × (G2/ ≈(Σ2∩Σ′)τ ). �

5 Necessary concepts and results of distributed supervisor synthesis



In control engineering examples G usually consists of a large number of small automata,
namely G = G1 × · · ·×Gn for some very large number n ∈ N, where Gi ∈ φ(Στ

i ) for each
i = 1, 2, · · · , n. How to compute G/ ≈Σ′ imposes a great computational difficulty. To
overcome it, we propose the following algorithm. Let I = {1, · · · , n} for some n ∈ N. For
any J ⊆ I, let Στ

J := ∪j∈JΣτ
j .

Sequential Abstraction over Product: (SAP)
(1) Inputs: a collection {Gi ∈ φ(Στ

i )|i ∈ I} and an alphabet Σ′ ⊆ ∪i∈IΣ
τ
i with τ ∈ Σ′.

(2) For k = 1, 2, · · · , n, we perform the following computation.

• Set Jk := {1, 2, · · · , k}, Tk := Στ
Jk

∩ (Στ
I−Jk

∪ Σ′).

• If k = 1 then W1 := G1/ ≈T1

• If k > 1 then Wk := (Wk−1 ×Gk)/ ≈Tk

(3) Output of SAP: Wn �

Proposition 2.6. [12] Suppose Wn is computed by SAP. Then (×i∈IGi)/ ≈Σ′⊑Wn. �

SAP allows us to obtain an abstraction of G = ×i∈IGi in a sequential way. Thus, we can
avoid computing G explicitly, which may be prohibitively large for systems of industrial
size. Next, we discuss how to perform distributed supervisor synthesis.

2.2 Concepts and results of distributed supervisor synthesis

In this subsection we briefly review concepts and some results of distributed supervisor
synthesis described in [10] and [11]. We first provide concepts of state controllability,
state observability, state normality, and nonblocking supervisor, which are introduced in
[10]. Then we present a distributed supervisor synthesis problem. Finally, we provide
some results about distributed supervisor synthesis, whose proofs are given in [11].

Given G = (X,Σ, ξ, x0, Xm), for each x ∈ X let

EG : X → 2Σ : x 7→ EG(x) := {σ ∈ Σ|ξ(x, σ) 6= ∅}

Thus, EG(x) is simply the set of all events allowable at x in G. We now bring in the
concept of state controllability. Let Σ = Σc ∪Σuc, where the disjoint subsets Σc and Σuc

denote respectively the set of controllable events and the set of uncontrollable events.
From now on, whenever τ appears in an alphabet, it is treated as an uncontrollable
event. Let L(G) := {s ∈ Σ∗|ξ(x0, s) 6= ∅}.

Definition 2.7. [10] Let G = (X,Σ, ξ, x0, Xm), Σ′ ⊆ Σ, and A = (Y,Σ′, η, y0, Ym) ∈
φ(Σ′) and P : Σ∗ → Σ′∗ be the natural projection. A is state-controllable with respect to
G and Σuc if

(∀s ∈ L(G×A))(∀x ∈ ξ(x0, s))(∀y ∈ η(y0, P (s)))EG(x) ∩ Σuc ∩ Σ′ ⊆ EA(y)

�
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We now introduce the concept of state observability. Let Σ = Σo∪Σuo, where the disjoint
subsets Σo and Σuo denote respectively the set of observable events and the set of un-
observable events. Whenever τ appears in an alphabet, it is treated as an unobservable
event. Let Po : Σ∗ → Σ∗

o be the natural projection.

Definition 2.8. [10] LetG = (X,Σ, ξ, x0, Xm) ∈ φ(Σ), Σ′ ⊆ Σ, andA = (Y,Σ′, η, y0, Ym) ∈
φ(Σ′). A is state-observable with respect to G and Po if for any s, s′ ∈ L(G × A) with
Po(s) = Po(s

′), we have

(∀(x, y) ∈ ξ×η((x0, y0), s))(∀(x′, y′) ∈ ξ×η((x0, y0), s
′))EG×A(x, y)∩EG(x′)∩Σ′ ⊆ EA(y′)

�

Notice that, if Σo = Σ, namely every event is observable, A may still not be state-
observable, owing to nondeterminism. In many applications we are interested in an even
stronger observability property called state normality which is defined as follows.

Definition 2.9. [10] LetG = (X,Σ, ξ, x0, Xm) ∈ φ(Σ), Σ′ ⊆ Σ, andA = (Y,Σ′, η, y0, Ym) ∈
φ(Σ′) and P : Σ∗ → Σ′∗ be the natural projection. A is state-normal with respect to G

and Po if for any s ∈ L(G×A) and s′ ∈ P−1
o (Po(s)) ∩ L(G×A), we have

(∀(x, y) ∈ ξ×η((x0, y0), s
′))(∀s′′ ∈ Σ∗)Po(s

′s′′) = Po(s)∧ ξ(x, s
′′) 6= ∅ ⇒ η(y, P (s′′)) 6= ∅

�

We can check that state normality implies state observability. But the inverse statement
is not true. We now introduce the concept of supervisor.

Definition 2.10. [10] Given G ∈ φ(Σ) and H ∈ φ(∆) with ∆ ⊆ Σ′ ⊆ Σ, an automaton
S ∈ φ(Σ′) is a nonblocking supervisor of G underH , if S is deterministic and the following
conditions hold:

1. N(G× S) ⊆ N(G×H)

2. B(G× S) = ∅

3. S is state-controllable with respect to G and Σuc

4. S is state-observable with respect to G and Po �

By the first condition of Def. 2.10, the closed-loop system G × S complies with the
specification H in terms of language inclusion. Later we will use the term ‘nonblocking
state-normal supervisor’ (NSN), when we want to emphasize that S is state-normal with
respect to G and Po. From Prop. 4 in [10] we get that

CN (G,H) := {S ∈ φ(Σ)|S is a NSN supervisor of G under H ∧ L(S) ⊆ L(G)}

contains an element Ŝ such that for all S ∈ CN (G,H), we have N(S) ⊆ N(Ŝ). We call

Ŝ the supremal nonblocking state-normal supervisor of G under H . In practice it is of
our primary interest to compute such a supremal nonblocking state-normal supervisor.
A computational procedure for such a supervisor is provided in [11]. We now present the
concept of distributed systems.

7 Necessary concepts and results of distributed supervisor synthesis



Definition 2.11. [11] A distributed system with respect to given alphabets {Στ
i |i ∈ I} is a

finite collection of nondeterministic finite-state automata G := {Gi = (Xi,Σ
τ
i , ξi, xi,0, Xi,m) ∈

φ(Στ
i )|i ∈ I}. Each Gi (i ∈ I) is called the ith component of G, and Στ

i = Σi,c ∪ Στ
i,uc =

Σi,o ∪ Στ
i,uo, where disjoint subsets Σi,c and Στ

i,uc are the controllable and uncontrollable
alphabets respectively, and disjoint subsets Σi,o and Στ

i,uo are the observable and un-
observable alphabets respectively. For all i, j ∈ I with i 6= j, we have Στ

i,uc ∩ Σj,c =
Στ

i,uo ∩ Σj,o = ∅. The compositional behavior of G is specified by ×i∈IGi. �

The product of local components is the system of interest. Interaction among local compo-
nents is modeled by event sharing among local components. We now present a statement
of a control problem.

Distributed Supervisory Control Problem: [11] Given a distributed system G =
{Gi ∈ φ(Σi)|i ∈ I} and a set of specifications H = {Hj ∈ φ(∆j)|∆j ⊆ ∪i∈IΣi ∧ j ∈ J},
where J is a finite index set and each Hj is a deterministic automaton, synthesize a
collection of deterministic finite-state automata

S = {Sk ∈ φ(Γk)|Γk ⊆ ∪i∈IΣi ∧ k ∈ K}

where K is a finite index set, such that the following conditions hold,

1. N((×i∈IGi) × (×k∈KSk)) ⊆ N((×i∈IGi) × (×j∈JHj))

2. B((×i∈IGi) × (×k∈KSk)) = ∅

3. ×k∈KSk is state-controllable w.r.t. ×i∈IGi and ∪i∈IΣi,uc

4. ×k∈KSk is state-normal w.r.t. ×i∈IGi and Po : (∪i∈IΣi)
∗ → (∪i∈IΣi,uo)

∗
�

If such a collection S exists, then it is called a nonblocking distributed supervisor of G
under H, where each Sk is a local supervisor of G under H. There are many ways to com-
pute a nonblocking distributed supervisor. For example, in [11] an aggregative synthesis
approach is proposed. In this paper we will present a synthesis approach that computes
in parallel a set of local supervisors to take care of local specifications, then computes
one or several coordinators to solve potential conflict among local supervisors. We call
such a supervisor a coordinated distributed supervisor.

Before we discuss how to synthesize nonblocking coordinated distributed supervisors, we
would like to present one more result in [11]. Our general strategy for distributed synthesis
is to use automaton abstraction to simplify models. But the aforementioned automaton
abstraction can only be applied to standardized automata. Therefore, we need to devise
a procedure that allows abstraction-based distributed synthesis to be applicable to non-
standardized automata. To this end we first introduce the concepts of standardization
and de-standardization.

Definition 2.12. [11] Given G = (X,Σ, ξ, x0, Xm), we say Gτ = (X ′,Στ , ξ′, x′0, X
′
m) is

the standardized version of G if

1. X ′ = X ∪ {x′0}, where x′0 /∈ X
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2. X ′
m = Xm

3. For all x ∈ X ′ and σ ∈ Στ ,

ξ′(x, σ) :=







ξ(x, σ) if x ∈ X and σ ∈ Σ
{x0} if x = x′0 and σ = τ
∅ otherwise

�

The only difference between Gτ and G is that, the former contains a new state x′0 and
a new τ transition from x′0 to x0. From now on we use µ(G) to denote the standardized
version of G. Next, we introduce the concept of destandardization, which is used to con-
vert a standardized automaton into a nonstandardized one.

Definition 2.13. [11] Let Sτ = (Y,Στ , η, y0, Ym) be a deterministic standardized au-
tomaton. We say an automaton S = (Y ′,Σ, η′, y′0, Y

′
m) is the destandardized version of

Sτ if

1. Y ′ := Y − {y0}

2. Y ′
m := Ym

3. y′0 ∈ η(y0, τ)

4. η′ : Y ′ × Σ → 2Y ′

: (y, σ) 7→ η′(y, σ) := η(y, σ) �

Since Sτ is deterministic, η(y0, τ) contains only one element. Thus, the initial state y′0
of S is unique, which means S is well defined. The only difference between Sτ and its
destandardized version S is that, the latter contains no τ transition. From now on we
use ν(Sτ ) to denote the destandardized version of Sτ . We have the following result.

Theorem 2.14. [11] Given a distributed system G = {Gi ∈ φ(Σi)|i ∈ I} and a col-
lection of deterministic specifications H = {Hj ∈ φ(∆j)|∆j ⊆ ∪i∈IΣi ∧ j ∈ J}, let
Gτ := {µ(Gi)|i ∈ I} be the standardized distributed system and Hτ := {µ(Hj)|j ∈
J} for the standardized deterministic specifications. If there exists a nonblocking dis-
tributed supervisor Sτ := {Sτ

k ∈ φ(Γτ
k)|Γτ

k ⊆ ∪i∈IΣ
τ
i ∧ k ∈ K} of Gτ under Hτ , then

S := {ν(Sτ
k )|k ∈ K} is a nonblocking distributed supervisor of G under H. �

Theorem 2.14 allows us to synthesize a nonblocking distributed supervisor of a non-
standardized distributed system under deterministic specifications. At this point we can
see that, introducing the notion of τ and the concept of standardized automata, which
are crucially important for automaton abstraction, does not impose any restriction on
supervisor synthesis. For this reason, in the next section when we introduce synthesis of
coordinated distributed supervisors, we directly start with standardized automata.

9 Necessary concepts and results of distributed supervisor synthesis



3 Synthesis of a coordinated distributed supervisor

In this section we first describe how to synthesize a coordinated distributed supervisor.
Then we discuss under what conditions a coordinated distributed supervisor gains the
maximum permissiveness.

3.1 Coordinated distributed control

Given a distributed system G = {Gi ∈ φ(Στ
i )|i ∈ I = {1, 2, · · · , n} ∧ n ∈ N}, suppose

each local component Gi (i ∈ I) has its deterministic local specification Hi ∈ φ(∆τ
i ),

where ∆i ⊆ Σi. Furthermore, there is one deterministic specification H ∈ φ(∆τ ), where
∆ ⊆ ∪i∈IΣi. We would like to synthesize a nonblocking coordinated distributed supervi-
sor S of G under H := {H,Hi|i ∈ I}. To solve this problem we need the following results.

Proposition 3.1. Let G1, G2 ∈ φ(Σ) be two nondeterministic plant models and Ĥ ∈
φ(∆) a deterministic requirement with ∆ ⊆ Σ. Suppose G1 ⊑ G2. Then a nonblocking

state-observable (or state-normal) supervisor S ∈ φ(Σ) of G2 under Ĥ is also a nonblock-

ing state-observable (or state-normal) supervisor of G1 under Ĥ . �

Proof: Let Gi = (Xi,Σ, ξi, xi,0, Xi,m) (i = 1, 2) and S = (Y,Σ, η, y0, Ym).
(1) First, we have

N(G1 × S) = N(G1)||N(S)

= N(G2)||N(S) because G1 ⊑ G2

= N(G2 × S)

⊆ N(G2 × Ĥ) because S is a nonblocking supervisor of G2 under Ĥ

= N(G2)||N(Ĥ)

= N(G1)||N(Ĥ)

= N(G1 × Ĥ)

Therefore, we have N(G1 × S) ⊆ N(G1 × Ĥ).
(2) Since G1 ⊑ G2, by Prop. 2.4 we have G1 × S ⊑ G2 × S, which means B(G1 × S) ⊆

B(G2 ×S). Since S is a nonblocking supervisor of G2 under Ĥ , we have B(G2 ×S) = ∅.
Thus B(G1 × S) = ∅.
(3) We now show S is state-controllable with respect to G1 and Σuc. By Def. 2.7 we
need to show that

(∀s ∈ L(G1 × S))(∀x1 ∈ ξ1(x1,0, s))(∀y ∈ η(y0, P (s)))EG1
(x1) ∩ Σuc ⊆ ES(y)

To this end, let s ∈ L(G1 × S). Since we have shown that B(G1 × S) = ∅, we have

L(G1 × S) = N(G1 × S) = N(G2 × S) = L(G2 × S)

Clearly, EG1
(x1) ⊆ ∪x2∈ξ2(x2,0,s)EG2

(x2) because G1 ⊑ G2 implies that L(G1) ⊆ L(G2).
Since S is deterministic and state-controllable with respect to G2 and Σuc, we have

∪x2∈ξ2(x2,0,s)EG2
(x2) ∩ Σuc ⊆ ES(y)

which means EG1
(x1) ∩ Σuc ⊆ ES(y). Thus, S is state-controllable with respect to G1

and Σuc.
(4) Suppose S is state-observable with respect to G2 and Po. We need to show that S is
state-observable with respect to G1 and Po. By Def. 2.8 we need to show that, for any
s, s′ ∈ L(G1 × S) with Po(s) = Po(s

′), we have

(∀(x1, y) ∈ ξ1×η((x1,0, y0), s))(∀(x′1, y
′) ∈ ξ1×η((x1,0, y0), s

′))EG1×S(x1, y)∩EG1
(x′) ⊆ ES(y′)
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To this end, let s, s′ ∈ L(G1 × S) with Po(s) = Po(s
′). Since L(G1 × S) = L(G2 × S), we

have s, s′ ∈ L(G2 × S), and EG1×S(x1, y) ⊆ ∪(x2,y)∈ξ2×η((x2,0,y0),s)EG2×S(x2, y). Since
L(G1) ⊆ L(G2), we have EG1

(x′1) ⊆ ∪x′
2
∈ξ2(x2,0,s′)EG2

(x′2). Since S is deterministic and
state-observable with respect to G2 and Po, we have

(∪(x2,y)∈ξ2×η((x2,0,y0),s)EG2×S(x2, y)) ∩ (∪x′
2
∈ξ2(x2,0,s′)EG2

(x′2)) ⊆ ES(y′)

Thus, EG1×S(x1, y) ∩ EG1
(x′) ⊆ ES(y′), which means S is state-observable with respect

to G1 and Po.
(5) Finally, suppose S is state-normal with respect to G2 and Po. We need to show that
S is state-normal with respect to G1 and Po. By Def. 2.9 we need to show that, for any

s ∈ L(G1 × S) and s′ ∈ P−1
o (Po(s)) ∩ L(G1 × S), we have

(∀(x1, y) ∈ ξ1×η((x1,0, y0), s
′))(∀s′′ ∈ Σ∗)Po(s

′s′′) = Po(s) ⇒ [ξ1(x1, s
′′) 6= ∅ ⇒ η(y, s′′) 6= ∅]

To this end, let s ∈ L(G1 × S) and s′ ∈ P−1
o (Po(s)) ∩ L(G1 × S). Since L(G1 × S) =

L(G2 × S), we have s ∈ L(G2 × S) and s′ ∈ P−1
o (Po(s)) ∩ L(G2 × S). For any s′′ ∈ Σ∗,

if Po(s
′s′′) = Po(s) and ξ1(x1, s

′′) 6= ∅, we get that s′s′′ ∈ L(G1) ⊆ L(G2). Thus, there
exists (x2, y) ∈ ξ2 × η((x2,0, y0), s

′) such that Po(s
′s′′) = Po(s) and ξ2(x2, s

′′) 6= ∅. Since
S is deterministic and state-normal with respect to G2 and Po, we have η(y, s′′) 6= ∅.
Thus, S is state-normal with respect to G1 and Po.
From (1)-(5) we get that, S is a nonblocking state-observable (or state-normal) super-

visor of G2 under Ĥ implies that S is a nonblocking state-observable (or state-normal)

supervisor of G1 under Ĥ . �

Prop. 3.1 indicates that, if a plant G1 is nonblocking preserving with respect to G2, then
a nonblocking supervisor for G2 is also a nonblocking supervisor for G1. In many cases
it may be easier to obtain G2 than G1. For example, it is easier to use SAP to com-
pute an abstraction, than simply compute the product first then perform the abstraction
operation on the product. The latter abstracted model (denoted as G1) is nonblocking
preserving with respect to the former abstracted plant model (denoted by G2).

Proposition 3.2. Suppose we have a collection of alphabets {Στ
i |i ∈ I} for some finite

index set I, and a collection of components {Gi ∈ φ(Στ
i )|i ∈ I}. Let Σ′ ⊆ ∪i∈IΣ

τ
i such

that ∪i,j∈I:i6=jΣ
τ
i ∩ Στ

j ⊆ Σ′. Then (×i∈IGi)/ ≈Σ′⊑ ×i∈I(Gi/ ≈Στ
i
∩Σ′). �

Proof: We use induction on the size of I. When |I| = 2, by Prop. 2.5 the result holds.
Suppose it holds for |I| = n. We show that it also holds for |I| = n+ 1 as follows:

(×i∈IGi)/ ≈Σ′ = (×i∈I−{j}Gi ×Gj)/ ≈Σ′

⊑ ((×i∈I−{j}Gi)/ ≈(∪i∈I−{j}Στ
i
)∩Σ′) × (Gj/ ≈Στ

j
∩Σ′)

since Σj ∩ (∪i∈I−{j}Σi) ⊆ Σ′ and by Prop. 2.5

⊑ ×i∈I−{j}(Gi/ ≈Στ
i
∩Σ′) × (Gj/ ≈Στ

j
∩Σ′)

because |I − {j}| = n and by the induction hypothesis and Prop. 2.4

= ×i∈I(Gi/ ≈Στ
i
∩Σ′)

Thus, the proposition is true. �

Prop. 3.2 is an extension of Prop. 2.5 over the product of more than two standardized
finite-state automata. We will use this result in the following theorem, which is the first
main result of this paper.
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Theorem 3.3. Given a distributed system G = {Gi ∈ φ(Στ
i )|i ∈ I} and a collection

of requirements H = {Hi ∈ φ(∆τ
i )|∆τ

i ⊆ Στ
i ∧ i ∈ I} ∪ {H ∈ φ(∆τ )|∆τ ⊆ ∪i∈IΣ

τ
i },

suppose for each Gi we have a nonblocking state-observable (or state-normal) supervisor
Si ∈ φ(Στ

i ) under Hi. Let Σ′ ⊆ ∪i∈IΣ
τ
i such that ∪i,j:i6=jΣ

τ
i ∩ Στ

j ⊆ Σ′ and ∆τ ⊆ Σ′.

For each i ∈ I suppose we have Wi ∈ φ(Στ
i ∩ Σ′) such that (Gi × Si)/ ≈Στ

i
∩Σ′⊑ Wi.

Let S = (Y,Σ′, η, y0, Ym) ∈ φ(Σ′) be a nonblocking state-observable (or state-normal)
supervisor of ×i∈IWi under H . Then S ×i∈I Si is a nonblocking state-observable (or
state-normal) supervisor of ×i∈IGi under H ×i∈I Hi. �

Proof: Let Gi = (Xi,Σ
τ
i , ξi, xi,0, Xi,m) and Si = (Yi,Σ

τ
i , ηi, yi,0, Yi,m) for each i ∈ I, and

S = (Y,Σ′, η, y0, Ym). By Corollary 3.2 we get that (×i∈I(Gi × Si))/ ≈Σ′⊑ ×i∈I((Gi ×
Si)/ ≈Στ

i
∩Σ′). Since (Gi × Si)/ ≈Στ

i
∩Σ′⊑Wi, by Prop. 2.4 we get that

(×i∈I(Gi × Si))/ ≈Σ′⊑ ×i∈I((Gi × Si)/ ≈Στ
i
∩Σ′) ⊑ ×i∈IWi

Since S is a nonblocking state-observable (or state-normal) supervisor of ×i∈IWi underH ,
by Prop. 3.1 we get that, S is a nonblocking state-observable (or state-normal) supervisor
of (×i∈I(Gi × Si))/ ≈Σ′ under H . By Theorem 3 in [10] we get that, S is a nonblocking
state-observable (or state-normal) supervisor of ×i∈I(Gi × Si) under H , which means

N(×i∈IGi × S ×j∈I Sj) = N(×i∈I(Gi × Si) × S) ⊆ N(×i∈I(Gi × Si) ×H)

Since Si is a nonblocking supervisor of Gi under Hi, we have N(Gi × Si) ⊆ N(Gi ×Hi).
Thus,

N(×i∈IGi × S ×j∈I Sj) ⊆ N(×i∈I(Gi ×Hi) ×H) = N(×i∈IGi ×H ×j∈I Hj)

Furthermore, we have B(×i∈IGi × S ×j∈I Sj) = B(×i∈I(Gi × Si) × S) = ∅.
Next, we show that S ×i∈I Si is state-controllable with respect to ×i∈IGi and ∪i∈IΣ

τ
i,uc.

For notational brevity, let Ŝ = S ×i∈I Si, Ĝ = ×i∈IGi, ξ̂ = ×i∈Iξi, η̂ = η ×i∈I ηi and
Σuc = ∪i∈IΣi,uc. By Def. 2.7 we need to show that

(∀s ∈ L(Ĝ× Ŝ))(∀x̂ ∈ ξ̂(x̂0, s))(∀ŷ ∈ η̂(ŷ0, s))EĜ
(x̂) ∩ Στ

uc ⊆ E
Ŝ
(ŷ)

To this end, let s ∈ L(Ĝ× Ŝ), x̂ = (x1, x2, · · · , xn) and ŷ = (y, y1, y2, · · · , yn). For each
i ∈ I, let Pi : (∪j∈IΣ

τ
j )∗ → (Στ

i )∗ be the natural projection. For each σ ∈ E
Ĝ

(x̂) ∩ Στ
uc,

if σ ∈ Στ
i , then by the assumption (A1) we have σ ∈ Στ

i,uc. Furthermore, we get that
σ ∈ EGi

(xi) ∩ Στ
i,uc. Since Si is deterministic and state-controllable with respect to Gi

and Στ
i,uc, we get that ηi(yi, σ) 6= ∅. Thus, σ ∈ E×i∈I (Gi×Si)(x1, y1, · · · , xn, yn). Since

S is state-controllable with respect to ×i∈I(Gi × Si) and Στ
uc, if σ ∈ Σ′, we get that

η(y, σ) 6= ∅. Thus, η̂(ŷ, σ) 6= ∅, which means σ ∈ E
Ŝ
(ŷ). Therefore, E

Ĝ
(x̂) ∩ Στ

uc ⊆
E

Ŝ
(ŷ).

Next, assume that Si is state-observable with respect to Gi and Pi,o : (Στ
i )∗ → Σ∗

i,o, and
S is state-observable with respect to ×i∈I(Gi × Si) and Po : (∪i∈IΣ

τ
i )∗ → (∪i∈IΣi,o)

∗.

We need to show that Ŝ is state-observable with respect to Ĝ and Po. By Def. 2.8 we
need to show that, for any s, s′ ∈ L(Ĝ× Ŝ) with Po(s) = Po(s

′), we have

(∀(x̂, ŷ) ∈ ξ̂ × η̂((x̂0, ŷ0), s))(∀(x̂′, ŷ′) ∈ ξ̂ × η̂((x̂0, ŷ0), s
′))E

Ĝ×Ŝ
(x̂, ŷ) ∩ E

Ĝ
(x̂′) ⊆ E

Ŝ
(ŷ′)

To this end, let s, s′ ∈ L(Ĝ× Ŝ) with Po(s) = Po(s
′), x̂ = (x1, · · · , xn), x̂′ = (x′1, · · · , x

′
n),

ŷ = (y, y1, · · · , yn) and ŷ′ = (y′, y′1, · · · , y
′
n). For each σ ∈ E

Ĝ×Ŝ(x̂, ŷ)∩E
Ĝ

(x̂′), if σ ∈ Στ
i ,

then we get that σ ∈ EGi×Si
(xi)∩EGi

(x′i). Since Si is deterministic and state-observable
with respect to Gi and Pi,o, by the assumption (A1) we can derive that ηi(y

′
i, σ) 6= ∅.

Thus, σ ∈ E×i∈I (Gi×Si)(x
′
1, y

′
1, · · · , x

′
n, y

′
n). Since S is state-observable with respect to

×i∈I(Gi × Si) and Po, if σ ∈ Σ′, we get that η(y′, σ) 6= ∅. Thus, η̂(ŷ′, σ) 6= ∅, which
means σ ∈ E

Ŝ
(ŷ′). Therefore, E

Ĝ×Ŝ
(x̂, ŷ) ∩ E

Ĝ
(x̂′) ⊆ E

Ŝ
(ŷ′).

Finally, assume that Si is state-normal with respect to Gi and Pi,o, and S is state-normal

with respect to ×i∈I(Gi × Si) and Po. We need to show that Ŝ is state-normal with
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respect to Ĝ and Po. By Def. 2.9 we need to show that, for any s ∈ L(Ĝ × Ŝ) and

s′ ∈ P−1
o (Po(s)) ∩ L(Ĝ× Ŝ), we have

(∀(x̂, ŷ) ∈ ξ̂× η̂((x̂0, ŷ0), s
′))(∀s′′ ∈ Σ∗)Po(s

′s′′) = Po(s) ⇒ [ξ̂(x̂, s′′) 6= ∅ ⇒ η̂(ŷ, s′′) 6= ∅]

To this end, let s ∈ L(Ĝ× Ŝ) and s′ ∈ P−1
o (Po(s))∩L(Ĝ× Ŝ). Suppose Po(s

′s′′) = Po(s)

and ξ̂(x̂, s′′) 6= ∅. We need to show that η̂(ŷ, s′′) 6= ∅. Let x̂ = (x1, · · · , xn), ŷ =
(y, y1, · · · , yn), and Pi : (∪j∈IΣ

τ
j )∗ → (Στ

i )∗, P ′ : (∪j∈IΣτ
j )∗ → Σ′∗ be the natural projec-

tion. Then we have Pi(s) ∈ L(Gi × Si), Pi(s
′) ∈ P−1

o (Pi,o(Pi(s))) ∩L(Gi × Si). Further-
more, by the assumption (A1) we have Pi,o(Pi(s

′s′′)) = Pi,o(Pi(s)) and ξi(xi, Pi(s
′′)) 6= ∅.

Since Si is deterministic and state-normal with respect to Gi and Pi,o, we get that
ηi(yi, Pi(s

′′)) 6= ∅. Thus, ×i∈Iξi×ηi((x1, y1, · · · , xn, yn), s′′) 6= ∅. Since S is state-normal
with respect to ×i∈I(Gi×Si) and Po, we get that η(y, P ′(s′′)) 6= ∅. Thus, η̂(ŷ, s′′) 6= ∅.�

By Theorem 3.3 we can perform the following distributed synthesis, as illustrated in
Figure 1. We first synthesize a local supervisor Si for each component Gi so that the

Figure 1: Synthesis of Coordinated Distributed Supervisor

local specification Hi can be enforced. Then we compute an abstraction so that we can
synthesize a local supervisor to take care ofH . In practical applications sometimes a spec-
ification, say Hi, may cover several local components, say {Gil ∈ φ(Στ

il)|l = 1, · · · , r}, in
the sense that, ∆i ⊆ ∪r

l=1Σij . In this case, we can compute Gi := ×r
l=1Gil and treat it as

a local component so that Hi is defined for Gi. Thus, the setting in Theorem 3.3 is general
enough. The reason that we bring in Wi in Theorem 3.3 is because, when Gi consists of
many small components, e.g. {Gil ∈ φ(Στ

il)|l = 1, · · · , r}, computing (Gi × Si)/ ≈Στ
i
∩Σ′

may be feasible only through a sequential procedure, e.g. using the SAP. In that case, the
outcome of that procedure may not be exactly equal to (Gi ×Si)/ ≈Στ

i
∩Σ′ . The theorem

says that, as long as (Gi × Si)/ ≈Στ
i
∩Σ′ is nonblocking preserving with respect to Wi,

which is computed by an appropriate procedure, e.g. the SAP, then synthesizing a local
supervisor based on {Wi|i ∈ I} will result in a nonblocking supervisor for the original local
components. In Theorem 3.3 we call each Si a local supervisor of G and S a coordinator
of G, which is mainly used to coordinate local supervisors {Si|i ∈ I} to avoid conflict.
The existence of S gives rise to the term coordinated distributed supervisor. Of course, S
itself is a supervisor, which enforces the specification H . The structure in Figure 1 can
be treated as one module of a large system. Thus, a multiple-level multiple-coordinator
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distributed supervisor can be computed in the same spirit. For example, after obtaining
{Si|i ∈ I} ∪ {S}, we can compute an appropriate abstraction of ×i∈I(Gi × Si) × S (by
using the proposed SAP) so that high level local supervisors and/or coordinators can be
synthesized.

In Theorem 3.3 we only require that ∪i,j:i6=jΣ
τ
i ∩ Στ

j ⊆ Σ′, namely Σ′ should contain
every event that is shared by at least two components. Usually there is more than one
choice of Σ′, and each choice leads to a coordinator. It is interesting to know whether
we can find a nonempty coordinator, whose state set is the smallest one among those of
all possible nonempty coordinators. This can be formulated into the following problem.
Given an automaton G ∈ φ(Σ), we use |G| to denote the size of the state set of G.

Minimum Supervisor Synthesis Problem (MSS): Let G = {Gi ∈ φ(Στ
i )|i ∈ I} be

a distributed system and H ∈ φ(∆τ ) be a requirement with ∆τ ⊆ ∪i∈IΣ
τ
i , define a set

S(G, H) := {S|(∃Σ′ ⊆ ∪i∈IΣ
τ
i ) ∪i,j:i6=j Στ

i ∩ Στ
j ⊆ Σ′ ∧ ∆τ ⊆ Σ′ ∧ S ∈ φ(Σ′)∧

S is a nonblocking supervisor of G under H ∧ |S| > 0}

Find S ∈ S(G, H) such that, for all S′ ∈ S(G, H), we have |S| ≤ |S′|. Such a S is called
a minimum supervisor of G under H. �

In [20] the authors present the minimum supervisor reduction problem (MSR),
which says that given a deterministic plant G = (X,Σ, ξ, x0, Xm) and a supervisor S =
(Y,Σ, η, y0, Ym) of G, find a supervisor S′ = (Y ′,Σ, η′, y′0, Y

′
m) of G with the minimum

number of states, which is control equivalent to S with respect to G, i.e. N(G)∩N(S) =
N(G) ∩N(S′) and L(G) ∩ L(S) = L(G) ∩ L(S′). It has been proved in [20] that solving
the MSR is NP-hard. We will show that solving the MSS is as hard as solving the MSR.
To this end, we present a procedure that reduces the MSR to the MSS.

1. Inputs:

• a deterministic plant G = (X,Σ, ξ, x0, Xm)

• a nonempty supervisor S = (Y,Σ, η, y0, Ym) of G

2. Let G× S = (Z,Σ, ξ × η, z0 := (x0, y0), Zm), where

• Z := {(x, y) ∈ X × Y |(∃s ∈ Σ∗) (x, y) ∈ ξ × η(z0, s)}

• Zm := Z ∩ (Xm × Ym)

3. Enumerate elements of Z × Σ as {(z1, σ1), (z1, σ2), · · · , (z|Z|, σ|Σ|)}, where |Z| and
|Σ| denote the sizes of Z and Σ respectively.

4. Construct a new automaton

G′ = (Z∪X∪Z×Σ∪{d},Σ′ := Σ∪{γ(z1,σ1), · · · , γ(z|Z|,σ|Σ|)}, ξ
′, z0, Zm∪Xm∪{d})

where {γ(z1,σ1), · · · , γ(z|Z|,σ|Σ|)} ∩ Σ = ∅, Σ′
uc := Σuc ∪ {γ(z1,σ1), · · · , γ(z|Z|,σ|Σ|)}

and Σ′
o = Σ, namely events {γ(z1,σ1), · · · , γ(z|Z|,σ|Σ|)} are uncontrollable in G′ and

only events of G are observable in G′. For all w ∈ Z ∪ X ∪ Z × Σ ∪ {d} and all
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σ ∈ Σ ∪ {γ(z1,σ1), · · · , γ(z|Z|,σ|Σ|)}, define

ξ′(w, σ) :=



















ξ × η(w, σ) if w ∈ Z ∧ σ ∈ Σ ∧ ξ × η(w, σ) 6= ∅

ξ(x, σ) if w = (x, y) ∈ Z ∧ σ ∈ Σ ∧ η(y, σ) = ∅ ∨ w = x ∈ X
{(zi, σj)} if w = zi ∧ σ = γ(zi,σj)

{d} if w = (zi, σj) ∧ σ = σj

∅ otherwise

5. Solve the MSS with G = {G′} andH being a recognizer ofN(G×S). Suppose the so-
lution is S′ = (Y ′,Γ, η′, y′0, Y

′
m) whose alphabet is Γ ⊆ Σ∪{(z1, σ1), (z1, σ2), · · · , (z|Z|, σ|Σ|)}.

6. Construct a new automaton S∗ by simply remove all transitions from S′, whose
labels are in the set of {(z1, σ1), (z1, σ2), · · · , (z|Z|, σ|Σ|)} and selflooping events of
Σ − Σ′ at each state of S′.

7. Output: S∗
�

The key part of this procedure is how to construct G′ and H such that, the result-
ing controllable sublanguage of N(G′) under H is unique. If this is true, then no
matter what supervisor S′ we have, since the language N(G′ × S′) = N(G′ × S) and
L(G′ × S′) = L(G′ × S), S is control equivalent to S, which means, if we apply a
solver of MSS on this problem, the outcome is simply a solution to the MSR with G′

and S. Notice that in the above procedure, N(G × S) is the controllable sublanguage
of N(G) under some unspecified requirement. By adding those uncontrollable events
{(z1, σ1), (z1, σ2), · · · , (z|Z|, σ|Σ|)} we can see that, there is no smaller controllable sub-
language of N(G′) under H than N(G′ × S), because any removal of a string from
N(G′ × S) will result in a blocking state reachable by an uncontrollable event from the
set {(z1, σ1), (z1, σ2), · · · , (z|Z|, σ|Σ|)} when we try to achieve the state-normality prop-
erty. So applying a solver for MSS on this is equal to solving a MSS on G′ and S. The
only trick left is to convert a reduced supervisor for G′ and S back to a reduced supervisor
for G and S. But this can be achieved by simply removing all transitions labeled with
events of {(z1, σ1), (z1, σ2), · · · , (z|Z|, σ|Σ|)}, and selflooping all events of Σ − Σ′. Mode
details are provided in the proof of the following result.

Proposition 3.4. The procedure always has a nonempty output S∗, which is a solution
to the MSR. �

Proof: By the definition of G′, we can check that, S is a nonblocking supervisor of G′

under H . Furthermore, we have that, for any nonblocking state-normal supervisor S′ of
G′ under H , we have N(G′ × S′) = N(G′ × S) and L(G′ × S′) = L(G′ × S). This can
be shown as follows. Suppose it is not true. Then there exists a supervisor S′′ such that
N(G′ × S′′) ⊂ N(G′ × S), which means there exists s ∈ N(G′ × S) but s /∈ N(G′ × S′′).
Clearly, there exists s′σ ≤ s such that s′ ∈ N(G′ × S′) but s′σ /∈ N(G′ × S′′). Let
w ∈ ξ′(z0, s

′). Clearly, w /∈ Z × Σ because, otherwise, w will be a blocking state. Thus,
w ∈ Z. But since γ(w,σ) ∈ Σ′

uc∩Σ′
uo, the event σ at state w cannot be disabled - otherwise,

G′ × S′′ is not state-controllable with respect to G′ and Σ′
uc, and not state-normal with

respect to G′ and Po : Σ′∗ → Σ′∗
uo. This contradicts the assumption that s′σ /∈ N(G′×S′′)

but s′ ∈ N(G′×S′′). Thus, S′′ is control equivalent to S with respect to G′. Notice that,
N(G′) = N1(G

′) ∪ N2(G
′), where N1(G

′) contains all strings of N(G′), which contains
only events of Σ, and N2(G

′) contains the remaining strings of N(G′). We can check
that N(G′ × S) = N1(G

′)||N(S) ∪ N2(G
′)||N(S) = N(G × S) ∪ N2(G

′)||N(S). Simi-
larly, N(S′) = N1(S

′)∪N2(S
′). Thus, N(G′ ×S′) = N1(G

′)||N1(S
′)∪ (N2(G

′)||N1(S
′)∪

N1(G
′)||N2(S

′) ∪N2(G
′)||N2(S

′)). Clearly, N1(G
′)||N1(S

′) = N(G × S). We now show
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that N1(G
′)||N1(S

′) = N1(G
′)||N(S∗) = N(G × S∗), which is clear based on the defini-

tion of S∗. Similarly, we have L(G×S) = L(G×S∗). Thus, S∗ is control equivalent to S
with respect to G. Since removing and selflooping transitions will not create new states,
we have |S∗| ≤ |S′|. To show that S∗ is the minimum supervisor for the problem of the

MSR, suppose it is not true. Then there exists another supervisor S̃ ∈ φ(Σ) such that S̃

is control equivalent to S and |S̃| < |S∗|. We can easily check that S̃ is a nonblocking

supervisor of G under H , namely S̃ ∈ S(G, H). But this means |S̃| ≥ |S′| ≥ |S∗| - con-
tradiction. Thus, S∗ is a solution to the MSR. �

Corollary 3.5. Solving the MSS is NP-hard. �

Proof: We can check that, every step in the above procedure is polynomial-time. Thus,
the MSR can be polynomial-time reduced to the MSS. By Prop. 3.4 we know that the
above procedure can solve the MSR. If solving the MSS is not NP-hard, then so is solving
the MSR, which unfortunately has been shown in [20] to be NP-hard. Thus, solving the
MSS must be NP-hard. �

Corollary 3.5 simply confirms our intuition - it is computationally intensive to find a
coordinator with the minimum number of states in a general setting. It is an interesting
question whether there exists a heuristic rule that can lead to a small coordinator with
only polynomial-time computational effort.

3.2 Maximum permissiveness of coordinated distributed control

In general, given a distributed system G and a set of requirements H, a coordinated
distributed supervisor will not achieve the same permissiveness as that of a monolithic
supervisor, which is obtained by first computing the product of all components and the
product of all requirements, then performing centralized supervisor synthesis. The reason
is that, some local supervisor may be “over conservative” in the sense that, it tries to
prevent some “bad” string which exists only in some local component(s) but does not
exist in the compositional behavior of G. Such a bad string is called a phantom string,
which, if seen locally, exists, but, if seen globally, does not exist. For example, suppose
we have two components G1 ∈ φ(Σ1) and G2 ∈ φ(Σ2), where Σ1 = Σ1,uc = Σ1,o = {a},

Σ2 = Σ2,uc = Σ2,o = {a, b}, L(G1) = Lm(G1) = {ǫ, a} and L(G2) = Lm(G2) = {ǫ, b}.
Suppose the requirement is {H1 ∈ φ(∆1), H2 ∈ φ(∆2)} with ∆1 = {a}, ∆2 = {b},

L(H1) = N(H1) = {ǫ} and L(H2) = Lm(H2) = L(G2). Since a is uncontrollable, we
can easily see that, there is no local supervisor to control G1 such that H1 can be en-
forced. Thus, if we apply the aforementioned synthesis approach, there is no coordinated
distributed supervisor. But if we compute the composition of G1 and G2, we can see
that, string a will never appear. Thus, a monolithic supervisor exists, which recognizes
N(G2). Here, the reason that there is no coordinated distributed supervisor is because of
the existence of a phantom string a in G1. To achieve the same permissiveness between a
distributed supervisor and a monolithic supervisor, part of a sufficient condition is that,
there exist no phantom strings in any local component, which is captured by, e.g. the
concept of mutual controllability in the literature [14]. Since we use abstraction to derive
a local supervisor based on an abstract model, to guarantee that such a local supervisor
has the same permissiveness as the one based on the original model, we need to make sure
that abstraction will not reduce our means for control, namely if in the original model
we can remove an undesirable string by disabling a certain event, then in the abstract
model we can also disable the same event to remove (the projected image of) that string.
One simple condition is that, all controllable and observable events are included in the
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abstraction alphabet. Then it is guaranteed that, the supremal nonblocking supervisor
of the abstract model is also the supremal nonblocking supervisor of the original model
under the same requirement. An improvement on such an intuitive condition can be
found in the concept of output control consistency [6] or the concept of local control con-
sistency [16]. Those aforementioned concepts (i.e. mutual controllability, output control
consistency or local control consistency) are applicable to systems modeled by languages
(or equivalently, deterministic automata). In this section we will extend them to the
framework of nondeterministic finite-state automata.

Definition 3.6. [10] An automaton G = (X,Σ, ξ, x0, Xm) is marking aware with respect
to Σ′ ⊆ Σ, if

(∀x ∈ X −Xm)(∀s ∈ Σ∗) ξ(x, s) ∩Xm 6= ∅ ⇒ P (s) 6= ǫ

where P : Σ∗ → Σ′∗ is the natural projection. �

The concept of marking awareness is used to guarantee that the proposed automaton
abstraction will not create extra blocking behaviors. Thus, the maximum permissiveness
of a coordinated distributed supervisor can be achieved by using the proposed automaton
abstraction. This concept is not needed if we directly use the standard quotient construc-
tion based on the weak bisimilarity, as done in, e.g. [8].

Definition 3.7. Let G = (X,Σ, ξ, x0, Xm) and Σ′ ⊆ Σ. We say G is control consistent
with respect to Σ′ if for all x ∈ X and all s ∈ ((Σ − Σ′)∗(Σuc ∩ Σ′))∗,

ξ(x, s) 6= ∅ ⇒ (∃s′ ∈ ((Σuc − Σ′)∗(Σuc ∩ Σ′))∗)P (s) = P (s′) ∧ ξ(x, s′) 6= ∅

where P : Σ∗ → (Σuc ∩ Σ′)∗ is the natural projection. �

The concept of control consistency is a direct extension of the concept of local control
consistency presented in [16] to fit in the nondeterministic setting. If G is control consis-
tent, then at all state x and all string s, if s contains some uncontrollable event(s) in Σ′,
then there exists another string s′, which contains only uncontrollable events such that
its projected image over Σuc ∩ Σ′ is the same as the project image of s over Σuc ∩ Σ′.
Informally speaking, in s′ there is no controllable event not belonging to Σ′ that can
block the occurrence of an uncontrollable event in Σ′ by disabling itself. We can check
that, when G is deterministic, the concept of control consistency consumes the concept
of local control consistency.

Definition 3.8. Given a distributed system G = {Gi ∈ φ(Στ
i )|i ∈ I} and a deterministic

requirement H ∈ φ(∆τ ) with ∆τ ⊆ ∪i∈IΣ
τ
i , let Σ′ ⊆ ∪i∈IΣ

τ
i with ∆τ ⊆ Σ′, and

P : (∪i∈IΣ
τ
i )∗ → Σ′∗, Po : (∪i∈IΣ

τ
i )∗ → (∪i∈IΣi,o)

∗ and P ′
o : Σ′∗ → (Σ′ ∩ (∪i∈IΣi,o))

∗

be the natural projections. We say G is indistinguishable with respect to H and Σ′ if the
following holds: for all t ∈ N(×i∈I(Gi/ ≈Στ

i
∩Σ′) ×H) and t′ ∈ N(×i∈I(Gi/ ≈Στ

i
∩Σ′)) −

N(×i∈I(Gi/ ≈Στ
i
∩Σ′) ×H) or t′ ∈ B(×i∈I(Gi/ ≈Στ

i
∩Σ′) ×H), if P ′

o(t) = P ′
o(t

′) then for

all s, s′ ∈ L(×i∈IGi) with P (s) = t, P (s′) = t′, we have Po(s) = Po(s
′). �
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The concept of indistinguishableness specifies that, if there are two strings t and t′

not distinguishable based on observations in the abstracted model, where t is “good”,

i.e. t ∈ N(×i∈I(Gi/ ≈Στ
i
∩Σ′) ×H)), and t′ is “bad”, i.e. it does not satisfy the re-

quirement, namely either t′ ∈ N(×i∈I(Gi/ ≈Στ
i
∩Σ′)) − N(×i∈I(Gi/ ≈Στ

i
∩Σ′) ×H) or

t′ ∈ B(×i∈I(Gi/ ≈Στ
i
∩Σ′)×H)), then for all strings s and s′ with P (s) = t and P (s′) = t′,

they are not distinguishable based on the observations in the original plant model G. To
guarantee that G is indistinguishable with respect to H and Σ′, one simple condition is
∪i∈IΣi,o ⊆ Σ′, namely every observable event is contained in Σ′. When every event in G
is observable, G may not be necessarily indistinguishable with respect to H and Σ′, owing
to nondeterminism. In the case of full observation, we can impose the following concept,
which is derived from the concept of natural observer [3].

Definition 3.9. Given a nondeterministic automaton G = (X,Στ , ξ, x0, Xm) ∈ φ(Στ )
and an alphabet Σ′ ⊆ Στ with τ ∈ Σ′, we say G/ ≈Σ′ is an observer of G with respect
to Σ′ if

(∀t ∈ N(G/ ≈Σ′))(∀s ∈ L(G))(∀x ∈ ξ(x0, s))P (s) ≤ t⇒ (∃s′ ∈ Σ∗) ξ(x, s′)∩Xm 6= ∅∧P (ss′) = t

where P : Σ∗ → Σ′∗ is the natural projection. �

We can check that, if for every i ∈ I, Σi,o = Σi and Gi/ ≈Στ
i
∩Σ′ is an observer of Gi with

respect to Στ
i ∩Σ′, and ∪i,j:i6=j(Σ

τ
i ∩Στ

j ) ⊆ Σ′, then G is indistinguishable with respect to

H and Σ′. This can be easily shown that, for all t ∈ N(×i∈I(Gi/ ≈Στ
i
∩Σ′) ×H) and t′ ∈

N(×i∈I(Gi/ ≈Στ
i
∩Σ′)) − N(×i∈I(Gi/ ≈Στ

i
∩Σ′) ×H) or t′ ∈ B(×i∈I(Gi/ ≈Στ

i
∩Σ′) × H),

we have P ′
o(t) 6= P ′

o(t
′). We are still investigating whether there exists a condition to

guarantee that G is indistinguishable with respect to H and Σ′ no matter whether full or
partial observation presents. We now present our second major result.

Theorem 3.10. Given a distributed system G = {Gi ∈ φ(Στ
i )|i ∈ I} and a requirement

H ∈ φ(∆τ ) with ∆τ ⊆ ∪i∈IΣ
τ
i , let Σ′ ⊆ Στ with ∪i,j∈I:i6=jΣ

τ
i ∩ Στ

j ⊆ Σ′ and ∆τ ⊆ Σ′.

Let S ∈ φ(Σ′) be the supremal nonblocking state-normal supervisor of ×i∈I(Gi/ ≈Στ
i
∩Σ′)

under H . If G is indistinguishable with respect to H and Σ′, and for each i ∈ I, Gi is
marking aware with respect to Σ′∩Στ

i and control consistent with respect to Σ′∩Στ
i , then

a recognizer of ||i∈IN(Gi)||N(S) is the supremal nonblocking state-normal supervisor of
×i∈IGi under H . �

Proof: Let Gi = (Xi,Σ
τ
i , ξi, xi,0, Xi,m), Gi/ ≈Στ

i
∩Σ′= (Zi,Σ

τ
i ∩ Σ′, δi, zi,0, Zi,m), S =

(Y,Σ′, η, y0, Ym), S′ = (Y ′,∪i∈IΣ
τ
i , η

′, y′0, Y
′
m) and H = (W,∆τ , ψ, w0,Wm). Let Po :

(∪i∈IΣ
τ
i )∗ → (∪i∈IΣi,o)

∗, P ′
o : Σ′∗ → (Σ′ ∩ (∪i∈IΣ

τ
i,o))

∗ and P : (∪i∈IΣ
τ
i )∗ → Σ′∗ be

the natural projection. By Theorem 3 in [10] we know that, S is a nonblocking state-
normal supervisor of G under H . So we only need to show that S is supremal. If the
supremal nonblocking state-normal supervisor of ×i∈IGi under H is empty, then so is
S. We assume that the supremal nonblocking state-normal supervisor of ×i∈IGi under
H is not empty, and S is not supremal. Then there exists a nonblocking state-normal
supervisor S′ ∈ φ(∪i∈IΣi) of ×i∈IGi under H such that

(||i∈IN(Gi)||N(S′)) − (||i∈IN(Gi)||N(S)) 6= ∅

Let s ∈ (||i∈IN(Gi)||N(S′)) − (||i∈IN(Gi)||N(S)) 6= ∅. Since all automata are stan-
dardized, we know that, there exists s′ ∈ (∪i∈IΣ

τ
i )∗ and σ ∈ ∪i∈IΣi such that s′σ ≤ s,

s′ ∈ ||i∈IN(Gi)||N(S) but s′σ /∈ ||i∈IN(Gi)||N(S). Since s′σ ∈ ||i∈IN(Gi), we get
that, σ ∈ ∆τ ⊆ Σ′. Since S is a supervisor, we know that σ ∈ ∪i∈IΣi,c. Since
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s ∈ ||i∈IN(Gi)||N(H), we get that, P (s) ∈ ||i∈IN(Gi/ ≈Στ
i
∩Σ′)||N(H). Thus, P (s′σ) =

P (s′)σ ∈ ||i∈IN(Gi/ ≈Στ
i
∩Σ′)||N(H), which means there exist t ∈ ((∪i∈IΣ

τ
i,uc) ∩ Σ′)∗,

t′ ∈ Σ′∗, and z′ = (< x′1 >, · · · , < x′n >) ∈
∏

i∈I Zi such that z′ ∈ δ1 × · · · ×
δn((z1,0, · · · , zn,0), t

′), P (s′)σt ∈ L(Gi/ ≈Στ
i
∩Σ′), P ′

o(t
′) = P ′

o(P (s′)σt) and one of the

following cases hold. Without the loss of generality, let I = {1, 2, · · · , n}.
Case 1: there exists w ∈ W such that (z′, w) ∈ δ1 × · · · × δn × ψ((z1,0, · · · , zn,0, w0), t

′)
and for all t′′ ∈ Σ′∗,

δ1 × · · · × δn × ψ((z′, w), t′′) ∩ (Z1,m × · · · × Zn,m ×Wm) = ∅

In other words, t′ ∈ B((Gi/ ≈Στ
i
∩Σ′)×H). Since all Gi’s are marking aware with respect

to Στ
i ∩ Σ′, we get that, there exist x′′i ∈< x′i > (i ∈ I) and s′′ ∈ (∪i∈IΣ

τ
i )∗ with

P (s′′) = t′ such that (x′′1 , · · · , x
′′
n, w) ∈ ξ1 × · · · × ξn × ψ((x1,0, · · · , xn,0, w0), s

′′) and for
all s′′′ ∈ (∪i∈IΣ

τ
i )∗,

ξ1 × · · · × ξn × ψ((x′1, · · · , x
′
n, w), s′′′) ∩ (X1,m × · · · ×Xn,m ×Wm) = ∅

Since each Gi is control consistent with respect to Στ
i ∩Σ′, we get that, there exists s′′′′ ∈

(((∪i∈IΣτ
i,uc) − Σ′)∗(Σ′ ∩ (∪i∈IΣi,uc)))

∗ such that P (s′′′′) = t and s′σs′′′′ ∈ L(×i∈IGi).

There are two possibilities, either P (s′)σt ∈ N(×i∈I(Gi/ ≈Στ
i
∩Σ′) ×H), or P (s′)σt /∈

N(×i∈I(Gi/ ≈Στ
i
∩Σ′) ×H). If the latter case is true, then since all Gi’s are marking

aware with respect to Στ
i ∩ Σ′, we can derive that, s′σs′′′′ /∈ N(×i∈IGi ×H), which

means S′ is not state-controllable. If the former is true, since G is indistinguishable with
respect to H and Σ′, we have Po(s

′′) = Po(s
′σs′′′′). Since S′ is a nonblocking state-normal

supervisor of ×i∈IGi under H , we get that, s′σ /∈ ||i∈IN(Gi)||N(S′). But this contradicts

the assumption that s′σ ∈ ||i∈IN(Gi)||N(S′).

Case 2: t′ ∈ ||i∈IN(Gi/ ≈Στ
i
∩Σ′)−||i∈IN(Gi/ ≈Στ

i
∩Σ′)||N(H). Since ∪i,j∈I:i6=jΣ

τ
i ∩Στ

j ⊆
Σ′, and by a result in [10] we have

P (||i∈IN(Gi)) = ||i∈IP (N(Gi)) = ||i∈IN(Gi/ ≈Στ
i
∩Σ′)

and

P (||i∈IN(Gi)||N(H)) = ||i∈IP (N(Gi))||N(H) = ||i∈IN(Gi/ ≈Στ
i
∩Σ′)||N(H)

we have t′ ∈ P (||i∈IN(Gi))−P (||i∈IN(Gi)||N(H)). Thus, there must exist s′′ ∈ ||i∈IN(Gi)−

||i∈IN(Gi)||N(H) such that P (s′′) = t′. By using a similar argument as for Case 1, we

get that s′σ /∈ ||i∈IN(Gi)||N(S′) - contradiction.
Thus, we have that (||i∈IN(Gi)||N(S′))− (||i∈IN(Gi)||N(S)) = ∅, meaning a recognizer
of the language ||i∈IN(Gi)||N(S) is the supremal nonblocking state-normal supervisor of
×i∈IGi under H . �

Theorem 3.10 is about the maximum permissiveness of a supervisor computed based on
an abstracted model. In Theorem 3.10 the sufficient condition consists of three parts:
(1) G is indistinguishable with respect to H and Σ′; (2) each component Gi is marking
aware with respect to Στ

i ∩ Σ′; (3) each component Gi is control consistent with respect
to Στ

i ∩Σ′. Among those parts, (1) is used to deal with partial observation (or the state-
normality property). Without this part, we can find a counter example, in which the
supremal nonblocking state-normal supervisor of an abstract plant is not the supremal
nonblocking state-normal supervisor of the original plant. (2) is to guarantee that the
projections of marked behaviors in the original plant (i.e. ×i∈IGi) are also marked be-
haviors in the abstracted model (i.e. ×i∈I(Gi/ ≈Στ

i
∩Σ′)). This condition is used only for

the special automaton abstraction proposed in this paper. If we use a standard quotient
approach to construct an abstraction, e.g. automaton abstractions defined in [8] [19],
then (2) can be dropped from Theorem 3.10. (3) is an extension of the local control
consistency proposed in [16] in order to deal with nondeterminism. Compared with the
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results in [6] and [16], Theorem 3.10 drops the requirement of L-observer because the
automaton abstraction will ensure some necessary properties. Furthermore, it deals with
partial observation and nondeterminism. Thus, it is a significant extension of the results
in [6] and [16].

It is interesting to know under what conditions a nonblocking distributed supervisor
achieves the maximum permissiveness. To this end we first extend the concept of mutual
controllability so that it is applicable to nondeterministic models.

Definition 3.11. Given a distributed system G = {Gi = (Xi,Σ
τ
i , ξi, xi,0, Xi,m) ∈

φ(Στ
i )|i ∈ I}, for each i, j ∈ I let Pij : (Στ

i )∗ → (Στ
i ∩ Στ

j )∗ be the natural projec-
tion. We say G is mutually controllable if for each i, j ∈ I with i 6= j, for all si ∈ (Στ

i )∗

and sj ∈ (Στ
i )∗ with Pij(si) = Pji(sj), and for all xi ∈ ξi(xi,0, si), xj ∈ ξj(xj,0, sj) and

σ ∈ Σi,uc ∩ Σj,uc, ξi(xi, σ) 6= ∅ if and only if ξj(xj , σ) 6= ∅. �

A distributed system G is mutually controllable if for every two different subsystems Gi

and Gj running together, Gi allows an uncontrollable event shared by both Gi and Gj to
be fired if and only if Gj also allows the same uncontrollable event to be fired. In other
words, there is no uncontrollable event, whose occurrence can be blocked simply by the
parallel composition of subsystems. Thus, to prevent the occurrence of an uncontrollable
event, an appropriate controllable event disabling must be taken. We now present our
last major result.

Theorem 3.12. Given a distributed system G = {Gi = (Xi,Σ
τ
i , ξi, xi,0, Xi,m) ∈ φ(Στ

i )|i ∈
I} and a collection of requirements H = {Hi = (Wi,∆

τ
i , ψi, wi,0,Wi,m) ∈ φ(∆τ

i )|∆i ⊆
Σi ∧ i ∈ I} ∪ {H ∈ φ(∆τ )|∆ ⊆ ∪i∈IΣi}, suppose for each Gi we have the supremal
nonblocking state-normal supervisor Si ∈ φ(Στ

i ) under Hi. Let Σ′ ⊆ ∪i∈IΣ
τ
i such that

∪i,j:i6=jΣ
τ
i ∩ Στ

j ⊆ Σ′ and ∆τ ⊆ Σ′. Let S = (Y,Σ′, η, y0, Ym) ∈ φ(Σ′) be the supremal

nonblocking state-normal supervisor of ×i∈I((Gi × Si)/ ≈Στ
i
∩Σ′) under H . If G is indis-

tinguishable with respect to H and Σ′, and for each i ∈ I, Σi,o ⊇ ∪j∈I,j 6=i(Σ
τ
i ∩ Στ

j ), Gi

is marking aware with respect to Στ
i ∩ Σ′, Gi × Si is control consistent with respect to

Στ
i ∩ Σ′, and G is mutually controllable with respect to {Hi|i ∈ I}, then S ×i∈I Si is the

supremal nonblocking state-normal supervisor of ×i∈IGi under H ×i∈I Hi. �

Proof: By Theorem 3.3 we know that, S×i∈I Si is a nonblocking state-normal supervisor
of ×i∈IGi under H×i∈I Hi. So we only need to show that it is supremal. To this end, let
S′ ∈ φ(∪i∈IΣ

τ
i ) be the supremal nonblocking state-normal supervisor of ×i∈IGi under

H ×i∈I Hi. It suffices to show that,

N(S′) ⊆ ||i∈IN(Si) (1)

because then by Theorem 3.10 we can derive that, S×i∈I Si is the supremal nonblocking
state-normal supervisor of ×i∈IGi under H ×i∈I Hi. For each i ∈ I let Pi : (∪j∈IΣ

τ
i )∗ →

(Στ
i )∗ be the natural projection. We will show that Pi(N(S′)) ⊆ N(Si). Suppose it is

not true. Then there exists s ∈ Pi(N(S′)) −N(Si). Since s ∈ Pi(N(S′)) ⊆ N(Gi), and
s /∈ N(Si), we can derive that, there exist s′ ≤ Pi(s), t ∈ (Στ

i,uc))
∗, t′ ∈ (Στ

i )∗, and
xi, x

′
i ∈ Xi such that x′i ∈ ξi(xi,0, t

′), Pi,o(t
′) = Pi,o(s

′t) and one of the following cases
hold. Without the loss of generality, suppose I = {1, 2, · · · , n}.
Case 1: there exists wi ∈ Wi such that (x′i, wi) ∈ ξi × ψi((xi,0, wi,0), t

′) and for all
t′′ ∈ (Στ

i )∗,
ξi × ψi((x

′
i, wi), t

′′) ∩ (Xi,m ×Wi,m) = ∅
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Since s′ ≤ Pi(s), there must exists ŝ ≤ s such that s′ = Pi(ŝ). Since t ∈ (Στ
i,uc)

∗

and G is mutually controllable, we get that ŝt ∈ ||j∈IL(Gj). Since Pi,o(t
′) = Pi,o(s

′t)
and Σi,o ⊇ ∪j∈I,j 6=i(Σ

τ
i ∩ Στ

j ) and G is mutually controllable, we get that, there ex-

ists ŝ′ ∈ ||j∈I,j 6=i{Pj(ŝ)}||{t
′} such that Po(ŝ

′) = Po(ŝt), where Po : (∪j∈IΣ
τ
j )∗ →

(∪j∈IΣj)
∗ is the natural projection. Clearly, there exist (x1, · · · , x′i, · · · , xn) ∈ ξ1 ×

· · · ξn((x1,0, · · · , xn,0), ŝ
′) such that for all u′ ∈ (∪j∈IΣτ

j )∗,

ξ1×· · ·×ξn×ψ1×· · ·×ψn((x1, · · · , x
′
i, · · · , xn, w1, · · · , wi, · · · , wn), u′)∩(Xm×Wm) = ∅

where Xm := X1,m × · · ·Xn,m and Wm := W1,m × · · · ×Wn,m. Thus, we can derive that

ŝ /∈ N(S′) because S′ is a state-normal nonblocking supervisor, which means s /∈ N(S′)
- contradiction.
Case 2: t′ ∈ N(Gi) − N(Gi)||N(Hi). By using a similar argument as for Case 1, we

can derive that, ŝ′ ∈ ||j∈IN(Gj) − ||j∈I(N(Gj)||N(Hj)) with Pi(ŝ
′) = t′. Then we can

derive that ŝ /∈ N(S′) because S′ is a state-normal nonblocking supervisor, which means
s /∈ N(S′) - contradiction.
Therefore, we have Pi(N(S′)) ⊆ N(Si), which means N(S′) ⊆ ||i∈IN(Si). �

In addition to the conditions prescribed in Theorem 3.10, to guarantee the maximum
permissiveness of a distributed supervisor, Theorem 3.12 also requires that G is mutually
controllable and furthermore, for each i ∈ I, Σi,o ⊇ ∪j∈I,j 6=i(Σ

τ
i ∩ Στ

j ), which means all
shared events are observable. The latter does not appear in the corresponding results in
[6] and [16] because they do not deal with partial observation (recall that nondetermin-
ism can be captured by partial observation). In the case of full observation the condition
Σi,o ⊇ ∪j∈I,j 6=i(Σ

τ
i ∩ Στ

j ) is automatically satisfied. Thus, Theorem 3.12 is an extension

of results in [6] and [16], and is valid for distributed supervisory control of a nondeter-
ministic distributed plant where partial observation may be present.

To illustrate the effectiveness of the proposed synthesis approach for computing coordi-
nated distributed supervisors, we apply it to the following cluster tool example.

4 Example - a cluster tool

A cluster tool is an integrated manufacturing system used for wafer processing. It con-
sists of load locks for wafer entering and leaving the system, chambers, where wafers are
processed, buffers between different clusters in the system, and transportation robots for
moving wafers in the system [21]. We consider the following cluster tool depicted in Fig-
ure 2, which consists of one entering load lock (Lin) and one exit load lock (Lout), nine
chambers (C11, C12, C21, C22, C31, C32, C41, C42, C43), three one-slot buffers (B1, B2,
B3), and four transportation robots (R1, R2, R3 and R4). Wafers are transported into
the system from the entering load lock by the robot R1, then moved through designated
chambers for processing based on pre-specified routing sequences by relevant robots lo-
cated in different clusters. Finally, processed wafers are transported out of the system
through exit load lock by R1. As an illustration, we choose the following routing sequence:
Lin → C11 → B1 → C21 → B2 → C31 → B3 → C41 → C42 → C43 → B3 → C32 →
B2 → C22 → B1 → C12 → Lout. Without supervision the system may be blocked owing
to wafers competing for buffer slots. Our goal is to synthesize a coordinated distributed
supervisor that can guarantee continuous wafer processing, namely blocking should never
happen. To this end, we first model the system as follows.
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Figure 2: Example 1: Structure of cluster tool

For simplicity we assume that the entering load lock Lin behaves like an infinite wafer
source and the exit load lock Lout like an infinite wafer sink. Figure 3 depicts the models
of load locks. We assume that in each chamber a wafer is first dropped in by a relevant

Figure 3: Example 1: Load locks

robot, then processed and finally picked up by the relevant robot. Since each chamber
has the same automaton model, except for different alphabets, we only provide the model
for one chamber, which is depicted in Figure 4, where, when i = 1, 2, 3, we have j = 1, 2,

Figure 4: Example 1: Model of chamber Cij

and when i = 4, we have j = 1, 2, 3. Notice that each chamber behaves like a one-slot
buffer, except that it contains an internal transition Processij . If robot Ri tries to pick
when the chamber is empty, or drop when the chamber is full, the component will become
deadlock. By modeling in such a way we will force a nonblocking supervisor to prevent
inappropriate pick or drop actions to happen. The models of robots are depicted in Figure
5. Finally we model each buffer Bi (i = 1, 2, 3) as a component, whose model is provided
in Figure 6. It says that, buffer overflow or underflow will result in deadlock. In these
models we assume that all events of the robots are controllable and observable, and events
{Processij |i = 1, 2, 3, 4 ∧ j = 1, 2} ∪ {Process43} are uncontrollable and unobservable.
The local requirements are depicted in Figure 7.
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Figure 5: Example 1: Models of robots

Figure 6: Example 1: Model of buffer Bi

To synthesize a coordinated distributed supervisor, we first partition the system into four
modules. Module 1 consists of Lin, Lout, C11, C12, B1 and R1. Module 2 consists of C21,
C22, B1, B2 and R2. Module 3 consists of C31, C32, B2, B3 and R3. Module 4 consists of
C41, C42, C43, B3 and R4. The system partition is depicted in Figure 8. With Module i
(i = 1, 2, 3, 4) we associate Hi1, Hi2, Hi3 and Hi4 as local specifications. For each module
we synthesize a local supremal nonblocking state-normal supervisor. For example, for
Module 1 we first compute the standardized plant model

Gτ
1 := µ(Lin) × µ(Lout) × µ(C11) × µ(C12) × µ(B1) × µ(R1)

then we compute the local requirement

Hτ
1 := µ(H11) × µ(H12) × µ(H13) × µ(H14)

Based on Gτ
1 and Hτ

1 we synthesize the local supervisor Sτ
1 . Then we apply the same

procedure to synthesize local supervisors for other modules. The computational results
are listed as follows:

Gτ
1 (73, 277) ; Hτ

1 (17, 65) ; Sτ
1 (58, 119)

Gτ
2 (285, 1229) ; Hτ

2 (17, 65) ; Sτ
2 (138, 327)

Gτ
3 (285, 1229) ; Hτ

3 (17, 65) ; Sτ
3 (138, 327)

Gτ
4 (209, 729) ; Hτ

4 (17, 65) ; Sτ
4 (112, 222)

where in each tuple (x, y), x denotes the number of states and y for the number of tran-
sitions.

Next, we compute a local coordinator for Module 1 and Module 2, and a local coordinator
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Figure 7: Example 1: Models of local requirements

Figure 8: Example 1: Partition of the system

for Module 3 and Module 4. To this end, we first compute an abstraction of each module.
We use a heuristic rule to choose an abstraction alphabet for each module, which is
described as follows: the alphabet should contain all “boundary” events, i.e. events
shared between the current module and other modules, and between the current module
and the environment. For example, the abstraction alphabet for Module 1 consists of
events shared between Module 1 and Module 2 (which are events of B1) and events
R1 − pick − Lin and R1 − drop − Lout because these two events describe how Module
1 gets input from the external world and generates output to the external world. The
abstraction alphabet for Module 2 is the set of all events shared between Module 2 and
its two neighbors Module 1 and Module 3. Similarly, we have the abstraction alphabets
for Module 3 and Module 4 respectively. As an illustration we describe how to obtain
the coordinator S12 for Module 1 and Module 2. We first compute two abstractions:

W1 := (Gτ
1 × Sτ

1 )/ ≈Σ̂1

τ (22, 58); W2 := (Gτ
2 × Sτ

2 )/ ≈Σ̂2

τ (53, 139)

where Σ̂i

τ
(i = 1, 2) is the local abstraction alphabet for Module i. Then we compute

the product of two abstractions Gτ
12 := W1 ×W2. Since there is no extra requirement for

Gτ
12, we create a nominal one, which simply allows all events of two abstractions. After

that, we synthesize the supremal nonblocking state-normal supervisor Sτ
12 of Gτ

12 under
the nominal requirement, which is treated as a coordinator of Module 1 and Module 2.
The computational results are listed as follows:
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Gτ
12 (363, 1418); Sτ

12 (102, 240)

Similarly, the computational results for synthesizing coordinator Sτ
34 are listed as follows:

W3 (53, 139); W4 (15, 24); Gτ
12 (241, 705); Sτ

12 (36, 58)

Finally, we compute a coordinator to prevent potential conflict among all four modules.
To this end, we first compute two abstractions

(Gτ
1 ×Gτ

2 × Sτ
1 × Sτ

2 × Sτ
12)/ ≈Σ̂τ

12

⊑W12 (127, 843)

(Gτ
3 ×Gτ

4 × Sτ
3 × Sτ

4 × Sτ
34)/ ≈Σ̂τ

34

⊑W34 (15, 24)

where Σ̂τ
12 and Σ̂τ

34 are abstraction alphabets for the composition of Module 1 and Module
2 and the composition of Module 3 and Module 4 respectively. Here, W12 and W34 are
computed by the SAP. Again, since there is no extra requirement, we create a nominal
one. Then we synthesize the supremal nonblocking state-normal supervisor for W12 ×
W34 under the nominal requirement, which is treated as the top-level coordinator. The
computational results are listed as follows:

W12 ×W34 (575, 3935); Sτ
1234 (28, 48)

Figure 9 depicts the local supervisors and coordinators with their corresponding modules.

Figure 9: Example 1: Computation of multiple-level coordinators

The final distributed supervisor is S = {ν(Sτ
1 ), ν(Sτ

2 ), ν(Sτ
3 ), ν(Sτ

4 ), ν(Sτ
12), ν(S

τ
34), ν(S

τ
1234)}.

We can check that, the maximum size of all computational results during the synthesis
is (575, 3935). As a comparison, the monolithic plant model has about 2.68× 108 states.
Thus, the proposed coordinated distributed synthesis approach is computationally more
effective than the monolithic synthesis approach.
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5 Conclusions

In this paper we have introduced a coordinated distributed supervisor synthesis approach
based on abstractions of nondeterministic finite-state automata. The main advantage of
this approach is its simplicity and potentially low computational complexity in contrast
to existent distributed synthesis approaches based on observers. When a module con-
tains a large number of components, we can apply the proposed SAP procedure to obtain
an abstraction, which may significantly reduce the computational complexity. Because
supervisor synthesis is done in a local fashion, high complexity incurred by synchronous
product of a large number of components may be avoided. In addition, a certain degree
of implementation flexibility can be achieved in terms of reusing some local supervisors
when the structure of a target system changes. Although it is practically attractive to
compute a coordinator with the minimum number of states, we have shown that find-
ing such a coordinator is NP-hard. In general, the coordinated distributed supervisor is
less permissive than a monolithic supervisor. In this paper we have provided a sufficient
condition that guarantees the maximum permissiveness of the synthesized coordinated
distributed supervisor when partial observation and nondeterminism may be present in
the plant model.
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tioned in this paper. We have used his code to generate the solution of the example of
Section IV.
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