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Ultrasonic Array Doppler Sensing for Human
Movement Classification

Ruud J. G. van Sloun, Sriram Srinivasan, Senior Member, IEEE, Ashish Pandharipande, Senior Member, IEEE,
and Piet C. W. Sommen

Abstract— Classification of human movements is an important
problem in healthcare and well-being applications. An ultra-
sonic array Doppler sensing method is proposed for classifying
movements from a given set. The proposed method uses veloc-
ity and angular information derived from Doppler frequencies
and direction-of-arrival (DoA) by processing the signals at the
receiver sensor array. Doppler frequency estimation is done by
obtaining an initial estimate based on the Fourier transform in
conjunction with a predictive tracker. A Root-MUSIC algorithm
is used at the estimated Doppler frequencies to obtain DoA
corresponding to the dominating moving object. Using speed,
direction, and angle as features, a Bayesian classifier is employed
to distinguish between a set of movements. The performance
of the proposed method is evaluated using an analytical model
of arm movements and also using experimental data sets. The
proposed ultrasonic Doppler array sensor and processing meth-
ods provide a new, compact solution to human arm movement
classification.

Index Terms— Ultrasonic array, Doppler and DoA processing,
movement classification.

I. INTRODUCTION

UMAN movement classification is of interest in a num-

ber of healthcare and personal well-being applications.
In the healthcare domain, monitoring of a patient’s recu-
peration from a Cerebrovascular Accident (CVA) or stroke
has been shown to increase the effectiveness of rehabilitative
interventions [1], [2]. The study in [3] considered the use
of kinematic data - i.e. dynamics of arm movements (e.g.
shoulder flexion and horizontal adduction), to characterize
motor deficits in CVA patients. Currently, intensive physical
and mental rehabilitation to allow patients to re-participate
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in society is performed by trained therapists in specialized
rehabilitation centers. An upcoming approach that aims to
resolve the future shortage of rehabilitation spaces and thera-
pists is tele-rehabilitation [4]. With a growing shift from acute
to chronic illnesses, rising healthcare costs due to population
ageing [5], and the preference of people to live independently,
such approaches are especially becoming important. Gaining
insights into human movements is an important aspect that
determines the efficiency of these remote monitoring solu-
tions [6], [7]. In this paper, we consider an ultrasonic array
Doppler sensing solution for classification of movements from
a given set.

In [8] and [9], a wearable triaxial accelerometer was used
as sensor for monitoring physical activities. In [10], subject-
specific electromyography pattern classification techniques
were studied to identify their functional tasks and differentiate
these from the muscle activation patterns of stroke survivors.
A sensor platform solution with a wearable sensor was
presented in [11] for elderly health monitoring applications.
A detailed review of ambulatory monitors for different clinical
applications was done in [12]. It was reported that while wear-
able ambulatory monitoring sensor solutions are attractive,
minimally obtrusive sensors are preferred in a number of home
healthcare applications. In [13], methods for markerless pose
recovery and human movement classification were presented
using cameras from 3-D reconstructed volume data. However,
privacy issues relating to the use of vision sensors remain
a concern [14]. A radar sensor was used to estimate human
motion features using a Boulic model in [15]. Ultrasound as
a sensor modality for activity monitoring and classification
has been shown to be effective, while being unobtrusive
and addressing privacy concerns [16]-[18]. In [19], multiple
ultrasonic sensors operating on time-of-flight principle were
used to analyze human interactions for potential psychological
applications. An acoustic Doppler sonar consisting of a single
transmitter and distributed receivers was presented in [17]
for single arm gestures. In these works, the receiver setup
does not permit the use of beamforming, and as such angular
information cannot be extracted.

The configuration considered in this paper is one where the
sensor is placed in front of the human. Such a configuration is
typical in scenarios where a patient in tele-rehabilitation needs
to perform specific movements. The proposed sensor consists
of an ultrasonic transmitter and a co-located linear receiver
array, thereby allowing extraction of directional information
from a correlation analysis of the received signals. Such an

1530-437X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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ultrasonic Doppler array sensing solution permits extraction of
speed, direction and angular information which serve as rich
features in movement classification. Furthermore, the array
based approach yields a compact solution, in comparison to the
distributed systems considered in previous works, and allows
enhancement of the signal-to-noise ratio (SNR) for Doppler
estimation.

The signals reflected from the human and the environ-
ment are processed at the receiver array. We first obtain an
initial estimate of the Doppler frequency by processing the
short time Fourier transform (STFT) of the signal spatially
averaged over the array elements. This Doppler frequency
estimate is then tracked over a time segment to obtain an
improved estimate. The Doppler frequency in turn provides
speed and direction of the human movement. A Root-MUSIC
algorithm is then used to obtain angular information. The
obtained speed, direction and angle are used as features
to describe a movement class. A naive Bayes estimator is
employed to classify human movements. For evaluating the
proposed techniques, we constrain our attention to single-arm
movements. Since rehabilitative interventions often focus on
motor control of individual limbs and up to 85% of stroke
patients initially show a motor deficit in the arm [20], we
focus on arm movements. The performance of the Doppler
estimation technique is evaluated using Doppler frequency
profiles generated with an analytical model for human arm
movement. Finally, the performance of the movement classifier
is evaluated by experimental data using a four-element 1D
array. The proposed ultrasonic Doppler array sensor and
processing methods provide a new, compact solution to the
arm movement classification problem, with its effectiveness
evaluated with an analytical model and in an experimental
setting.

II. SYSTEM DESCRIPTION
A. Ultrasonic Doppler Sensor

Consider an ultrasonic array consisting of a single transmit-
ter, with center frequency f;, and co-located linear receiver
array with P sensor elements. This choice is determined by
the constraint of designing a sensor solution based on com-
mercially available components; an array can be constructed
at the receiver side at an operating frequency of f; = 40 kHz,
but commercially available transmitters at this frequency have
larger component size and a half-wavelength separation is not
possible to realize, thereby necessitating a single transmitter.
The receiver has a narrow band-pass frequency response with
center frequency f;. The distance between two consecutive
sensor elements is 4,/2, where A; = vg/f; and vy is the speed
of sound in air.

B. Signal Model

A wave traveling with velocity vs, when reflecting off an
object that is moving at a constant velocity » in the direction
of the wave, undergoes a frequency shift due to Doppler effect.
The resulting reflected frequency fis given by

- 2
F=tl a2y, (1)

Dy — 0
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Fig. 1. System level overview of the receiver processing described
in Section III.

where the above approximation holds since vy > v. The
received signal r(¢) has a phase shift a(f) given by
t
aty =27 [ e, @
=0
and using the approximation in (1), it follows that
2 t
a) =2afli+ - [ o 3)
Vs Jr=
from which we arrive at
2 t
r(t) = sinQx f [t + —/ v(r)dr]). 4)
Vs Jr=i

Now, the received signal at the p-th sensor element in the
array as a result of N reflecting moving objects, where object
i has velocity v;(¢) and vy > |v;(t)|. Following (4), we then
have the expression of the received signal at sensor element
p as follows

N—1 ’ !

sp0)= 2 ap@sinQafile+— [ o], el + pup@)
i=0 Sr:()
+ () 4+ w,(1). 5)

Here, a; ,(t) and f; ,(¢) are respectively the amplitude and
phase of the reflected wave from object i at time ¢, and ¥ () is
the contribution due to the reflections from stationary objects.
The term w, ~ N(0, 0,12) models the noise using a normal
distribution having mean zero and standard deviation o,. The
Doppler velocity vl/., p(t) is the component of v;(¢) in the
direction of sensor element p.

III. RECEIVER PROCESSING

The processing at the receiver array is divided into three
modules that are illustrated in Fig. 1 and described in the
following sections.
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A. Doppler Estimation and Predictive Doppler Tracking

We first consider exploiting the received signals at multi-
ple sensor elements to yield an improved Doppler velocity
estimate. For this, consider the average of the P received
signals

| P
Savg(t) = P Zsp(t) (6)
p=0
N-1 ) !
= 3 awsin@afl+ = / oj(@)de] + i (1))
i=0 S‘[ZO
+ () +ult), )
where u(r) = %Z;:é wp,(t) and (7) follows under the

assumption that a; , (1), vl/., p(t) and f; ,(t) are independent
of p. Since Doppler estimation is performed in the time-
frequency domain, where the temporal resolution is limited by
the desired spectral information, relative time delays due the
array spacing are much smaller than the temporal resolution.
Furthermore, the radius of propagation is much larger than the
size of the array. Therefore, in this domain, the assumption in
equation (7) is justified. Recalling that the sum of two indepen-
dent normally distributed random variables X ~ N (uy, axz)
and ¥ ~ N (uy, 03) is given by

X+Y =Z~N(u+py, 0l +0)), ®)

we have that u ~ N(0, a,% / P). The averaging operation keeps
the signal power unchanged but reduces the variance of the
noise by a factor P, thus improving the signal-to-noise ratio
(SNR).

By inspection of equation (7), we observe that s4,g(?) is in
fact a frequency modulated (FM) version of the transmitted
signal s;(t) = sin(2z f;t). The FM message of s4,,(t) is
hence directly related to the object’s velocity. We therefore
frequency demodulate s, (¢) by applying the following steps.
First 540g(¢) is differentiated: y(f) = %sm}g(r). Then, y(¢) is
heterodyned to f,, to reduce the required bandwidth but not
lose directionality: y,,(¢) = y(¢) sin(Rz (f; — f,,)t)- Finally, a
low pass filter is applied: s,,(t) = LP F(y,,(t)). Although the
processing up till here is implemented in the digital domain,
it is presented in analog form for the sake of clarity.

The STFT is then calculated by segmenting the data into
frames of length T [sec], corresponding to W = f;T samples,
that overlap by 50%. Here, f; is the sample frequency. This
allows the spectrogram to have sufficient temporal resolution
to describe the movements, while obtaining enough spectral
information. To reduce spectral leakage, a Hamming window
is chosen. The short time Fourier transform of s, , (t) in frame
n is denoted by ST FT|[ f, n]. The discrete form of the power
spectral density for every frame is then given by:

_ISTFT[f,n]?
SUfnl = —— = ©)

We compress the power spectral density by a logarithm:

SdB[f’ n] = 1010g10 S[f, n]
|STFTL[f,nl|

w

201og;, (10)
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Fig. 2. Doppler tracking for two nearby time frames. In both Fig. 2(a) and
(b), the top plot shows the power spectrum in a certain frame (blue) and the
upper envelope of the static transmitter spectrum (red), the center plot shows
the processed spectrum /[ f, n] and the bottom plot shows the weights. In the
upper two plots, the tracked Doppler shifts are indicated by a vertical line.

Then, an upper envelope of the static spectrum is deter-
mined by applying a rank order filter [21] to the log power
spectrum of the initial frames, when there is no movement
yet. The result of this operation is shown in the top plot of
Fig. 2(a) and Fig. 2(b). Here f,, is 4000 Hz. Because the
captured energy from the static reflections is typically high
compared to its dynamic counterpart, for each frame the trans-
mitter envelope is subtracted from the log power spectrum,
clipped and subsequently processed using another rank order
filter:

I1f, n] = ¢p,4(max(0, Sag[ £, n] — Sap)) (11)

where Sgp is the upper envelope of the static spectrum and
{B,q denotes the rank order filtering operation having rank
g and window (structuring element) B. Here, ¢ = [0.9 x
cardinal(B)]. The resulting spectrum /[ f, n] is shown in the
center plot of Fig. 2(a) and Fig. 2(b). A naive Doppler shift
estimate in frame 7 is then one that maximizes /[ f, n] over f

Sanln] = mjr;lx I[f, n]. (12)

The naive approach assumes that the desired object
always causes the Doppler shift having the highest power.
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In real-world body movement applications, this is not neces-
sarily the case. As the reflecting surface of the desired object
(e.g. a hand) changes over time, its power at the Doppler
frequency also varies. During that movement, another object
with a large reflecting surface (e.g. the torso) may also be
producing Doppler shifts. These movements are typically slow
and hence cause small Doppler shifts, i.e. frequencies close to
fya- Due to surface inconsistency, the power of these small
Doppler shifts can sometimes be higher than the power of
the desired object however, which causes the naive approach
to fail. This effect is exemplified in Fig. 2. By inspecting the
center plot of Fig. 2(a), one can easily identify the dominating
Doppler shift located at 3631 Hz. Here, maximization of
I[ f, n] would yield that frequency. However, when analyzing
the spectral information obtained in a nearby later frame,
shown in Fig. 2(b), the problem becomes evident. Here, max-
imization of I[f, n] yields a Doppler frequency at 3912 Hz,
which would imply that its Doppler shift changed abruptly
w.r.t the previous frame. This situation is very unlikely to
occur, as we know that human limb velocities and hence their
Doppler shifts do not change abruptly during a movement.
One would expect the current Doppler frequency to be close
to the previous Doppler frequency. Taking into account that
I[ f, n] shows a prominent local maximum in this region, leads
us to reject the frequency obtained using the naive approach.
In order to also enable Doppler detection in these situations,
we consider a method which uses physical predictability of
movements. For the sake of clarity, the method is divided
into three steps which are repeated for each frame n. First,
a probability density function, reflecting our belief that a
trustworthy Doppler frequency is found at a certain frequency
fmin < f < fmax and frame n < m < n+ M, is derived based
on the Doppler frequencies found in the past. Then the PDF is
transformed into a weighting function. This weighting function
is applied to the processed spectrum [ f, m] after which the
result is maximized over f and m. Finally, the algorithm is
designed such that it tracks negative fy;— and positive fy;+
Doppler frequencies independently, using two distinct weight-
ing functions and maximizers. This allows velocity estimation
of objects moving towards and away from the sensor array at
the same time. For tracking of fy;4, finin is set to f,,. For
Sdi—, fmax 1s set to f,,. The tracker is described in detail in the
following.

1) AR Prediction and Probability Modeling: The algo-
rithm tracks the Doppler frequency fy:[n] of each frame by
exploiting information about Doppler shifts in the previous
frames. Since body movement is continuous and its velocity
changes slowly w.r.t. the frame size, the Doppler frequency
in the next frame will be close to the shift in the current
frame. To incorporate this idea, we assign probabilities to the
possible frequencies, thereby reflecting our state of belief. This
probability density function (PDF) is modeled as a Gaussian,
with standard deviation oy and mean value fd,[nlpast], the
predicted Doppler frequency based on the past Doppler shifts.
The prediction is performed by employing an autoregressive
model of order k:

farlnlpast] = faln — 11+ Afnln —k,...,n — 1] (13)
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with

k
Aflnln—k,...,n—1]= ZAf[n—i]){,- +e  (14)

i=1
where Af[n —i] = fa:[n —il— fa:[n — 1 —i] is the Doppler
shift change between frames n — i and n — 1 — i, its initial
condition fy4[0] = f,,, € 1is white noise and yi,..., xk
are the model parameters, found using the Yule-Walker

equations [22, Chapter 3].

Patients suffering from movement impairments may pro-
duce rather inconsistent Doppler shifts. To further increase
robustness, we extend the search algorithm to the time domain

by modeling the PDF as a truncated bivariate Gaussian,
Mrunc(ﬂ; Y), where

= [n, failn|past1] (15)
is the mean vector and
2
o7 O
=7 2] 1o

is the covariance matrix. Here, o, and oy denote the time
(in frames) and frequency standard deviations respectively.
Truncation assigns a probability of zero to finding the Doppler
frequency in time frames m < n. This approach allows the
Doppler tracker to find the nearest frame at which I[f, m]
reveals a trustworthy Doppler shift.

2) Weighting Function: The Gaussian PDF is reflected on
the data by the frame-frequency weighting function W, [ f, m],
given by

Zolf,ml, for fuin < f < fmax (17)
Wl f, m] = andn<m<n+M
0, else (18)
where
—( (mfrzz)z + F=Ffar lnépastl)2
Zlfiml=e ¥ (19)

The weighting function obtained at two nearby frames n is
shown in the bottom plot of Fig. 2(a) and Fig. 2(b).

3) Detection: The Doppler frequency in frame m is then
obtained by evaluating equation (20):

[f*[n], m*[n]] = arg Y}I%X(Wn[f, mlI[f, m]). (20)

Applying W,[f, m] incorporates the past information and
knowledge of the system into the detection phase, addressing
the issues discussed earlier. After finding the Doppler fre-
quency at frame m, the Doppler shift at frame »n is found
by simple linear interpolation

J*n] — failn — 1]

Jatln] = .
m*[n] —n+1

Note that in Fig. 2(b), using the proposed method the correct
Doppler frequency (at 3444 Hz) is detected although I[f, n]
is not a global maximum here.

From the tracked Doppler frequencies, the normal velocities
v’ can be calculated using (1) as

21

= ZD—;}(fdl‘[n] - f;ld)’

v'[n] (22)
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TABLE I
ALGORITHM PARAMETERS

Parameter Description Value
Vg Speed of sound 340.29 m/s
ft Transmitter frequency 40000 Hz
Ihd Heterodyne frequency 4000 Hz
fs Sample frequency 96000 Hz
fmin Minimum search frequency 3000 Hz
fmaz Maximum search frequency 5000 Hz
T Frame size 32 ms
B Rank order window 3 frames
k AR model order 5
M Search range time 10 frames
of Standard deviation frequency 200 Hz
ot Standard deviation time 1 frame

where fy:[n] — f,, is the Doppler shift (given by f — fr in
(1)) of the moving object.

B. Direction of Arrival Estimation

Since the radius of propagation is much larger than the size
of the array, the far field assumption is valid. In that case,
propagation can be described by plane waves. If the angle of
incidence is not equal to zero, each array element will receive
a slightly delayed version of the signal. Under the assumption
that the signal is narrow banded, this delay corresponds to a
phase shift, leading to the following array response vector:

o S o M 11
a(y) _ [1,ej277.'21)x Sm)’,“.,312”205 [P 1]smy]T (23)

where y is the angle of incidence and f is the incoming wave’s
frequency.

As described in (5), each sensor measures the reflecting
ultrasonic signal from both static (e.g. the room walls) and
moving objects, collected in s(t) = [s1(¢),...,sp()]. As we
are just interested in the latter, directly applying direction of
arrival estimation to the measured signals is unsuitable, as it
would not be able to distinguish between the reflections caused
by moving and static objects. In this section we describe
a DoA estimation algorithm, which is able to estimate the
angular position of a moving object with respect to the array.

Our method exploits the fact that moving objects cause a
Doppler shift, which distinguishes them from static objects.
For each frame n, a single sided bandpass FIR filter b is
applied to all W x P samples of s(¢) belonging to n, such that
we obtain P narrow-band signals with center frequency equal
to the Doppler frequency fy;[n] at that frame. This enables the
DoA estimation algorithm Root-MUSIC, described below, to
focus only on the moving object. Denote the resulting narrow
band-pass filtered signal vector of frame n by h,(¢).

Root-MUSIC [23], a variant of spectral MUSIC [24],
replaces the costly iterative search of the latter by a fast poly-
nomial rooting procedure, while having a higher spectral res-
olution. We first define the array correlation matrix Ry[n] by:

Ry[n] = E[h,()RE (1)]. (24)

The algorithm relies on the property of Rj[n] that its
eigenspace can be portioned in two orthogonal subspaces,

IEEE SENSORS JOURNAL, VOL. 14, NO. 8, AUGUST 2014

TABLE 11
CLASS DESCRIPTIONS: RIGHT SHOULDER

Class || Description
1 Horizontal abduction: left to center
2 Horizontal adduction: right to center
3 Extension: top to center
4 Horizontal adduction: center to left
5 Horizontal abduction: center to right
6 Flexion: center to top

the signal with added noise subspace and the noise only
subspace. In our case, there is only one signal and the signal
with added noise subspace thus corresponds to the highest
eigenvalue. We then compute C(z) by:

C(z) = U,UH (25)

where U, is the noise subspace. The Root-MUSIC algorithm
identifies the root of C(z) closest to the unit circle. The
angular direction of arrival in degrees is then estimated using

Vs
—ImJl .
7 At far[n] ml Og(Z)D

For each frame, a new DoA is estimated using the above
described procedure, thereby tracking the moving object.

7 [n] = arcsin(— (26)

C. Segmentation and Classification

Segmentation is based on the velocity feature as described in
equation (22), and relies on the assumption that arm activities
are separable in multiple movements when its velocity com-
ponent in the direction of the ultrasound array is zero. The
beginning and ending of a segment are defined as the times
at which the normal velocity rises above or falls below 10%
of the peak normal velocity, respectively. After segmentation,
activities are classified based on the average DoA [)[l ],
positive velocity o4 [/] and negative velocity o_[/] features in
each segment /.

Denote the extracted dataset D by

D={(g,t),...,(g,tL)}

where the inputs g, = [E[l],er[l],zL[l]] € R? are the
features and #; indicates the class in segment /. We use a
1-of-K coding scheme [25, Ch. 4], such that

y = L,
Ik = 0.

is the binary class selection variable, which groups data of
the same class. We assume Gaussian class-conditional distri-
butions with a constant covariance matrix,

p(gICk, ) = N(glmyg, Zo),

and a multinomial prior on the classes, p(Cy). Since prior
class probability differences may not be present, we consider
p(Cr) = 1/K, where K denotes the total number of classes.
For building the classifier, we use Maximum Likelihood to
estimate the model parameters 2 = {u,, X.} from the data D:

€1V

27)

if #; in class Cy (28)

else (29)

(30)

A

Q= argmsezlx log p(D|2)
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where

log p(DIR) = > 1 log N(g;lme Ee)
ING

(32)

We assume the features f)[l], 04[/] and o_[/] to be mutually
independent given Ci, and thus use naive Bayes [26] to
estimate the probability distributions. The distributions
p(D|Cr) obtained for a measured dataset are shown in Fig. 3.

After training, we use the estimated model parameters to
find the posterior class probability p(Ck|g,e. ). The class
of a new segment is then found as

k* = arg m]?x P(Ck18news ). (33)

D. Reference Method

As reference for Doppler estimation, we use a method
for characterizing the frequency response to quantify velocity
from the Doppler shifts by considering the 5th and 95th
Percentiles as described in [15]. The percentiles are determined
by first evaluating

Z;::fm[n S(f’ l’l)
Z?:;m[n S(f’ l’l)

where f,in and f4x limit the evaluation to the frequency
region of interest. The frequencies f for which P(f,n) is
equal to 5% and 95%, correspond to the negative and positive
Doppler shifts respectively.

P(f,n) = (34)

IV. MOVEMENT MODEL AND NUMERICAL RESULTS
A. Movement Model

In this Section, we consider a simple model for human arm
movement to generate Doppler frequency profiles, that serve as
ground-truth. The generated profiles will be used to compare
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Fig. 4. The velocity vector of point 7;(¢) is shown in red and the vector
7' —7 in the direction of the p-th ultrasonic receiver element is shown in blue.

the proposed Doppler estimation method and the reference
method [15]. Arm movements are modeled by a feedback
control loop consisting of a plant and a Proportional-Integral-
Derivative (PID) controller. The plant dynamics, derived by
analyzing a lumped model of the human arm are given by

Fy(r) — bO(t) = x0(t) (35)
0@t) = —%9‘(:) + %Fg (1) (36)
and
Fy(t) — bd(1) = k(1) 37)
$(1) = —%q‘ﬁ(r) + %Fw), (38)

where b and x are the damping and mass of the arm respec-
tively and the inputs Fyp(r) and Fy(r) represent the applied
force due to muscle contraction in the & and g$ direction
respectively. We incorporate noise in the motor commands as
signal-dependent, with standard deviation increasing linearly
with the magnitude of the motor command signal (control
signal). This noise model has also been used in [27] and [28]
and is consistent with empirical findings [29]. The complete
plant dynamics in state space representation X g can then be
written as:

(39)

[5:(;) = Ax(t) + BU +oeu()
EH :
(40)

y(@) = Cx(1)

where the plant’s state vector x (r) = [0(z), (1), ¢ (1), p()]7,
the input F(t) = [Fy(t), Fy]" and the output y(r) =
[wo(t), wg (1)]T. The matrix I represents an identity matrix,
€ is zero-mean Gaussian white noise with identity covariance
matrix, and ¢ is the standard deviation. The above state space
representation may be considered to be a generalization in
two dimensions of the one-dimensional arm movement model
considered in [27]. The system matrix is given by

0 1 0 0
0 —b/k 0 0

A= : A1)
0 0 0 1
0 0 0 —b/x
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Fig. 5. Comparison of methods for Doppler tracking and velocity estimation,
applied to a noiseless dataset generated using the movement model. The
top plot shows the spectrogram with the detected Doppler shift, the center
plot shows the estimated velocity (blue) compared to the ground truth (red)
and the bottom plot shows the absolute error. (a) Reference method [15],
equation (34). (b) Naive method, equation (12). (c) Proposed method,
equation (21).

the input matrix

0 O
1/k 0O
B = , (42)
0 O
0 1/
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Fig. 6. Comparison of methods for Doppler tracking and velocity estimation,
applied to a noisy dataset with ¢ = 0.3 generated using the movement
model. The top plot shows the spectrogram with the detected Doppler shift,
the center plot shows the estimated velocity (blue) compared to the ground
truth (red) and the bottom plot shows the absolute error. (a) Reference
method [15], equation (34). (b) Naive method, equation (12). (c) Proposed
method, equation (21).

and the output matrix

01 0 0
C= .
|: 0 0 0 1 ]
Although X g is a simple approximation of the real, much
more complex arm dynamics (see [28] for more sophisticated

models), its behavior in the control loop suffices for simulation
purposes. The PID controller’s input is the position error vector

(43)
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Fig. 7. Results for a dataset generated using the movement model. The top
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as described in Table II. The detected segments are indicated by bars.

Frequency[Hz]

Timel[s]

2 4 : . : :

E 2 1
QOJMJ\MMWW\W
82 1
L4

o 2 4 6 8 10
Time[s]
()
N
o =
3 4500 PR R S e
g 3500 3= VL/' & W“" \f
(£ 30005 2 4 6 8 10
Time[s]
2 4 . T . .
£ 2 g
8 NN NN
82 1
o _
> 2 4 6 8 10
Time([s]
- (b)
L -
P i
2 3500 V \f \f V \f V
(2 3000, 2 4 6 8 10
Time[s]
2 4 . T . .
£ 2 g
g °W\/\f
82 i
o _
> 2 4 6 8 10
Time([s]

(©)

Fig. 8. Comparison of methods for Doppler tracking and velocity estimation,
applied to an experimental dataset. The top plots show the spectrogram with
the detected Doppler shift and the bottom plots show the estimated velocity.
(a) Reference method [15], equation (34). (b) Naive method, equation (12).
(c) Proposed method, equation (21).

e(t) = [0(r) — Oues(1), (1) — pues ()], where 0(r) and $(7)
are found by integration of y(¢) and 6., (¢) and ¢ges(¢) denote
the desired position.
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Finally, the received sensor array signals are determined
by applying equation (5), where the velocity vector v;(¢) is
denoted by:

i (t) = i ()7 + riwg(t)p + riwp (1) sin ()0 (44)
= riwy (t)ngS ~+ riwg(t) sin (/ﬁ(t)é, (45)
and the normal vector 71; ,(t) is given by:
A~ _ _p - 7i (t)
A Tk o

Here, 7, and 7;(¢) = [ri, ¢ (1), 8(¢)] are the vectors indicating
the receiver’s and object’s position respectively, as illustrated
in Fig. 4.

B. Numerical Results

The model allows us to validate Doppler tracking and
velocity sensing since the ground truth velocity is known.
We describe the moving arm by three reflecting surfaces
at spherical positions [ry, (1), p(t)], [r2,0(t), (1)1,
[r3,0(t), $(t)]. Static objects and sensor noise, with power
levels comparable to real measurements, are also added. The
mass x and damping b are set to 3 kg and 20 [%] respectively.
The PID parameters K, K; and Ky are set to 50, 1 and 1
respectively. A comparison between Doppler tracking and
velocity estimation methods is shown in Fig. 5 and Fig. 6 for
the noiseless case and with ¢ = 0.3 respectively. The results
are shown when applying:

(a) The reference method described in equation (34)

(section III-D).
(b) Naive Doppler frequency estimate, given in equa-
tion (12).
(c) Doppler frequency estimate with tracking, given in equa-
tion (20).
By inspection of the bottom plots in Fig. 5(a)-(b), one can
see that the naive method’s error distribution is more spiky
compared to the reference method’s. Employing a tracker can
yield drastic improvement in this particular scenario, as is
verified in Fig. 5. Similar observations hold for the plots
in Fig. 6.

Fig. 7 shows a section of the complete numerical results for
a dataset simulated using the combined movement and signal
model. By combining the acquired velocity and DoA features,
all classes described in Table II are detected correctly.

V. MEASUREMENT RESULTS

Several experimental datasets were acquired, using an ultra-
sound array consisting of P = 4 receivers. The algorithm
parameters are given in Table I. For each set, the user
stood in front of the horizontally oriented array, moved his
arm in a specific pattern and the ultrasonic reflections were
captured. Table II shows the six classes of movement and their
description. All movements were performed with the user’s
right arm. A comparison of the reference and proposed method
for Doppler and velocity sensing is shown in snapshot results
in Fig. 8(a), Fig. 8(b) and Fig. 8(c). Note that the reference
method fails to detect the largest velocities due to the surface
inconsistency effects described in Section III-A. The proposed
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TABLE III
CONFUSION MATRIX SHOWING CLASSIFICATION RESULTS

Class index | (Est.) 1 | (Est)2 | (Est)3 | (Est)4 | (Est)5 | (Est.)6
(Actual) 1 201 1 7 0 1 0
(Actual) 2 0 210 4 0 1 0
(Actual) 3 3 0 212 0 1 0
(Actual) 4 0 0 0 205 3 6
(Actual) 5 0 0 0 0 209 7
(Actual) 6 0 0 0 0 1 203

Doppler estimate on the other hand is able to better track
Doppler, based on the performed arm movement.

The results of the proposed classification algorithm applied
to one of the recorded datasets are visualized in Fig. 9.
In this case, the following pattern was repeated using the
right arm: {1,6,3,5,2,6,3,4}. As can be seen from Fig. 9,
all six classes are clearly distinguishable using the velocity
and DoA features.

To analyze the classification performance, we show the con-
fusion matrix to evaluate correct and incorrect classifications
using the entire experimental dataset. We note that the exper-
iments were done by a healthy user emulating tremors and
other distortions when making arm movements under different
conditions: at normal speed, movements with tremors, and
very slow arm movements with tremors.

The overall misclassification probability was 2.7%. We note
that the classification errors occur largely due to degraded
quality of DoA estimation when arm movements are very slow
and ridden with tremors.

VI. CONCLUSION AND DISCUSSION

A compact ultrasonic array sensor, consisting of a contin-
uous wave signal transmitter and a co-located receiver array,
and associated signal processing methods were proposed for

human movement classification. The proposed method used
predictive Doppler tracking and DoA estimation to classify
a set of arm movements. By testing the method on both
simulated and experimental datasets, we showed that the
designed algorithm is able to extract velocity and angular
information, allowing accurate classification from a set of arm
movements.

Further testing of the proposed method in a clinical context
is required to evaluate its use for healthcare monitoring appli-
cations. A complete monitoring solution in a tele-rehabilitation
context would need movement type classification as well as
movement quality estimation. The latter could be obtained by
further analyzing the information provided from the features.
Also, as suggested in [3] and [30], other than range of motion
and peak velocity of the joint movement, movement time and
velocity smoothness could be exploited to characterize motor
quality and are topics of future investigation.
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