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BERMAN-KONSOWA PRINCIPLE FOR REVERSIBLE MARKOV

JUMP PROCESSES

FRANK DEN HOLLANDER AND SABINE JANSEN

Abstract. In this paper we prove a version of the Berman-Konsowa principle

for reversible Markov jump processes on Polish spaces. The Berman-Konsowa
principle provides a variational formula for the capacity of a pair of disjoint

measurable sets. There are two versions, one involving a class of probability

measures for random finite paths from one set to the other, the other involving
a class of finite unit flows from one set to the other. The Berman-Konsowa

principle complements the Dirichlet principle and the Thomson principle, and

turns out to be especially useful for obtaining sharp estimates on crossover
times in metastable interacting particle systems.
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1. Introduction

Section 1.1 provides the motivation, Section 1.2 formulates the setting, Sec-
tion 1.3 states the main theorems, while Section 1.4 discusses these theorems and
places them in their proper context.

1.1. Motivation. The motivation for the present paper comes from the theory
of metastability for interacting particle systems, i.e., systems consisting of a large
number of interacting random components evolving according to a Markovian ran-
dom dynamics on a space of configurations. As time evolves, the system moves
through different subregions of its configuration space, corresponding to different
“thermodynamic phases”. Typically, in a metastable setting, on short time scales
the system reaches a quasi-equilibrium inside a single subregion, while on long time
scales it makes rapid transitions between different subregions, with crossover times
that are exponentially distributed on the scale of their mean. The task of math-
ematics is to analyze such systems in detail, and to explain the experimentally
observed universality in their metastable behavior. This is a conceptual program
of great challenge.

There are two main approaches to metastability: (1) the pathwise approach, ini-
tiated by Freidlin and Wentzell [14], in which a detailed description is given of the
trajectories of the system, and the focus is on identifying the most likely trajectories
and to estimate their probabilities; (2) the potential-theoretic approach, initiated by
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2 FRANK DEN HOLLANDER AND SABINE JANSEN

Bovier, Eckhoff, Gayrard and Klein [8], in which metastability is viewed as a se-
quence of visits of the trajectory to different metastable sets, and the focus is on
a precise analysis of the respective hitting probabilities and hitting times of these
sets with the help of potential theory. Phrased differently, the problem of under-
standing the metastable behavior of Markov processes is translated to the study of
equilibrium potentials and capacities of electric networks (Doyle and Snell [12]).

More precisely, the configurations of the system are viewed as the vertices of
the network and the transitions between pairs of configurations as the edges of the
network. The transition probabilities are represented by the conductances associ-
ated with the edges. In this language, the hitting probability of a target set of
configurations as a function of the starting configuration can be expressed in terms
of the equilibrium potential on the network when the potential is put to one on the
vertices of the target set and to zero on the starting vertex. The average hitting
time of the target set can then be expressed in terms of the equilibrium poten-
tial and the capacity associated with the target set and the starting vertex. For
metastable sets it turns out that the average hitting time is essentially the inverse
of the capacity.

A key observation in the potential-theoretic approach is the fact that capacities
can be estimated by exploiting powerful variational principles. In fact, dual vari-
ational principles are available that express the capacity both as an infimum over
potentials (Dirichlet principle) and as a supremum over flows (Thomson princi-
ple). This opens up the possibility to derive sharp upper bounds and lower bounds
on the capacity via a judicious choice of test functions. In fact, with the proper
physical insight, test functions can be found for which the upper bound and the
lower bound are asymptotically equivalent (in an appropriate limit corresponding
to a metastable regime). Consequently, with the help of the potential-theoretic
approach asymptotic estimates of the average crossover time can be derived that
are much sharper than those typically obtainable with the help of the pathwise
approach.

Both the Dirichlet principle and the Thomson principle have been key tools
in electric network theory for many years (Doyle and Snell [12]). More recently,
Berman and Konsowa [2] proved two variational formulas for finite electric net-
works, one in terms of probability measures on paths from one set to another (or
their associated flows) the other in terms of random cuts (or their associated co-
boundaries). The Berman-Konsowa principle has been instrumental in obtaining
sharp bounds for interacting particle systems with complex interactions (Bovier,
den Hollander and Nardi [6], Bianchi, Bovier and Ioffe [3], Bovier, den Hollander
and Spitoni [7]). In the present paper we generalize the Berman-Konsowa princi-
ple from finite spaces to Polish spaces for reversible Markov jump processes. Our
principal motivation is an application to metastability for continuum interacting
particle systems (den Hollander and Jansen [11]).

For an overview on the potential-theoretic approach to metastability we refer
the reader to the monograph by Bovier and den Hollander [5].

1.2. Setting. Let (Ω,F) be a Polish space. Let X = (Xt)t≥0 be a continuous-time
irreducible recurrent Markov jump process on Ω with transition rates k(x, dy) and
reversible invariant measure µ(dx) (Stroock [26]), i.e., k(x, dy) is the rate to jump
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from x to a neighborhood dy of y, and

µ(dx)k(x,dy) = µ(dy)k(y,dx). (1.1)

Define

K(dx, dy) = µ(dx)k(x, dy), (1.2)

which is a non-negative symmetric measure on Ω×Ω. We assume that K(Ω×Ω) <
∞ and that k(x,Ω) > 0 for µ-a.a. x. For measurable C,D ⊂ Ω, we think of
K(C × D) = K(D × C) as the conductance of X between C and D. As long as
X0 is drawn from a probability measure that is absolutely continuous w.r.t. µ, X
makes finitely jumps in every finite time-interval (see Appendix A).

For f : Ω→ R measurable and bounded, define

(Lf)(x) =

∫
Ω

[
f(y)− f(x)

]
k(x, dy) (1.3)

and

E(f) =

∫
Ω

[
−(Lf)(x)

]
f(x)µ(dx) =

1

2

∫
Ω×Ω

[
f(y)− f(x)

]2
K(dx, dy), (1.4)

which are the infinitesimal generator (with domain D(L)) and the Dirichlet form
(with domain D(E)) associated with X (see Appendix A for technical details).

Later we will exploit the fact that X can be constructed as a random time-change
of a discrete-time Markov chain Z = (Zn)n∈N with transition kernel

k(x, dy)

k(x,Ω)
. (1.5)

The finiteness of K (K(Ω × Ω) < ∞) is equivalent to Z being positive recurrent.
It is possible that Z is positive recurrent while X is null-recurrent (µ(Ω) = ∞).
See, in particular, the comments after Proposition A.4. At the end of Section 1.3
the case of recurrent X with null-recurrent Z and the case of transient X will be
included, i.e., the extension to K(Ω× Ω) =∞ will be made.

Throughout the sequel, A,B ⊂ Ω are disjoint and measurable. The harmonic
function and the capacity of the pair (A,B) associated with X are defined as

hAB(x) =

 Px(τA < τB), x ∈ (A ∪B)c,
1, x ∈ A,
0, x ∈ B,

(1.6)

and

cap (A,B) =

∫
A

(−LhAB)(x)µ(dx), (1.7)

where τC = inf{t > 0: Xt ∈ C} is the first hitting time of C, Px is the law of X
given X0 = x, and (−LhAB)(x) is the equilibrium charge at x ∈ A. The Dirich-
let principle says that the capacity satisfies the variational formula (Fukushima,
Oshima and Masayoshi [15])

cap (A,B) = inf
h∈VAB

E(h) (1.8)

with

VAB =
{
h : Ω→ R | h|A = 1, h|B = 0, 0 ≤ h ≤ 1 µ-a.e., E(h) <∞

}
, (1.9)

and has h = hAB as its unique minimizer. For completeness the proof is given in
Appendix A.
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1.3. Theorems. Let ΓAB be the set of finite paths from A to B, i.e.,

ΓAB =
⋃
n∈N

{
γ = (γ0, . . . , γn) | γ0 ∈ A, γn ∈ B, γi /∈ B for i = 1, . . . , n−1

}
. (1.10)

Write (x, y) ∈ γ when there is a j ∈ N such that (x, y) = (γj−1, γj). Let P be a
probability measure on ΓAB . Then there is a unique measure Φ = ΦP on Ω × Ω
such that for every bounded and measurable f : Ω× Ω→ [0,∞),

E

 ∑
(x,y)∈γ

f(x, y)

 =

∫
Ω×Ω

f(x, y)Φ(dx, dy), (1.11)

where γ is the random element of ΓAB whose law is P. Picking f(x, y) = 1C×D(x, y),
C,D ⊂ Ω, we see that Φ(C×D) is the expected number of edges (x, y) in the random
path γ with x ∈ C and y ∈ D. In particular, Φ is finite if and only if the expected
length of γ is finite.

Our first main result is the following theorem.

Theorem 1.1 (Berman-Konsowa principle: path version). Let PKAB be the set of
probability measures P on ΓAB such that ΦP is absolutely continuous with respect
to K. Then

cap (A,B) = sup
P∈PK

AB

E


 ∑

(x,y)∈γ

dΦP

dK
(x, y)

−1
 . (1.12)

This identity remains true when the supremum is restricted to the smaller set of
probability measures on finite self-avoiding paths from A to B.

In order to state our second main result we need the following definition of a
flow along edges.

Definition 1.2. A unit flow from A to B is a sigma-finite measure Φ on Ω × Ω
such that

(1) Φ(A× Ω) = 1 and Φ(Ω×A) = 0.
(2) Φ(Ω×B) = 1 and Φ(B × Ω) = 0.
(3) Φ(Ω× C) = Φ(C × Ω) for all measurable C ⊂ Ω\(A ∪B).
(4) There is a measurable χ ⊂ Ω × Ω such that Φ(χc) = 0 and (y, x) /∈ χ for

all (x, y) ∈ χ.

Conditions (1–2) say that the total flow out of A and into B is 1 while the total
flow into A and out of B is 0. Condition (3) says that the flow is divergence-free in
Ω\(A∪B), which we refer to as Kirchhoff’s law (the terminology used for discrete
spaces). Condition (4) says that an edge and its reverse cannot not lie in the
support of Φ simultaneously, i.e., the flow is oriented.

The flow is called loop-free when the set χ in condition (4) can be chosen such
that it contains no loops, i.e., if (γ0, . . . , γn) is a finite sequence with γn = γ0, then
(γj−1, γj) /∈ χ for some j = 1, . . . , n.

Let Φ be a unit flow from A to B, let ν(C) = Φ(C×Ω) be its left marginal, and let
`(x, dy) be any probability transition kernel such that Φ(dx,dy) = ν(dx)`(x, dy).
Let Y = (Yn)n∈N0 be the Markov chain with initial law PΦ(Y0 ∈ C) = ν(A ∩ C),
C ⊂ Ω measurable, and probability transition kernel `, and put τYB = min{n ∈ N |
Yn ∈ B}. In Section 2 we will show that the law of Yn conditioned on τYB > n
is absolutely continuous w.r.t. ν. Therefore changes of ` on ν-null sets do not
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affect the law of Y stopped in B, i.e., the law of the stopped process is uniquely
determined by the flow Φ. We also show that if Φ is finite, i.e., Φ(Ω × Ω) < ∞,
then EΦ[τYB ] < ∞, i.e., Y is positive recurrent. The latter implies that τYB < ∞
PΦ-a.s.

Theorem 1.3 (Berman-Konsowa principle: flow version). Let UKAB be the set of
unit flows from A to B that are absolutely continuous w.r.t. K and finite. Then

cap (A,B) = sup
Φ∈UK

AB

EΦ


 τY

B∑
n=1

dΦ

dK
(Yn−1, Yn)

−1
 . (1.13)

The identity remains true when the supremum is restricted to the smaller set of
loop-free unit flows.

An important example of a loop-free unit flow is the harmonic flow defined by

ΦAB(dx,dy) =
1

cap (A,B)

[
hAB(x)− hAB(y)

]
+
K(dx, dy). (1.14)

We will show that this flow has finite self-avoiding paths and is a maximizer of
(1.13). It is not necessarily the unique maximizer. Any P such that ΦP = ΦAB is a
maximizer of (1.12).

We close with the statement that the assumption of positive recurrence of Z,
which was made below (1.5), can be dropped. We only require that k(x, dy) admits
a sigma-finite measure µ(dx) satisfying (1.1), and do allow for K(Ω× Ω) =∞.

Theorem 1.4. Suppose that K((A ∪ B) × Ω) < ∞. Then Theorems 1.1 and 1.3
extend to K(Ω×Ω) =∞, i.e., to recurrent X with null-recurrent Z and to transient
X.

For transient X, capacity can be defined by (1.8), hAB can be defined as the unique
minimizer of (1.8), and (1.7) can be shown to hold (see Appendix A) . However, in
general no explicit expression is available for hAB in terms of hitting times, as in
(1.6) for recurrent X. In fact, the natural analogue of (1.6), namely, the function
gAB given by gAB(x) = Px(τA < τB , τA < ∞), is not the minimizer of (1.8) (see
Lemma A.7 below).

1.4. Discussion. We place the results from Section 1.3 in their proper context.

1. We have shown that the Berman-Konsowa principle holds for reversible Markov
jump process on general Polish spaces. It provides dual variational formulas for the
capacity, the first running over probability measures P on the set of finite paths
connecting A and B, the second running over unit flows Φ from A to B. Each
probability measure P gives rise to a unit flow Φ = ΦP. Conversely, each unit flow
Φ gives rise to a path measure P = PΦ, though not uniquely.

2. The Berman-Konsowa principle complements the Dirichlet principle in (1.8),
and also the Thomson principle, which says that

1

cap (A,B)
= inf

Φ∈UK
AB

∫
Ω×Ω

( dΦ

dK

)2

dK (1.15)

with the harmonic flow from (1.14) as the unique minimizer. For completeness, the
proof of the Thomson principle is given in Appendix A.
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3. Just as for finite state spaces, the Berman-Konsowa bound improves the Thom-
son bound. Indeed, for any P ∈ PKAB we have, by (1.11–1.12) and Jensen’s inequal-
ity,

cap (A,B) ≥ E


 ∑

(x,y)∈γ

dΦP

dK
(x, y)

−1
 ≥

E

 ∑
(x,y)∈γ

dΦP

dK
(x, y)

−1

=

(∫
Ω×Ω

dΦP

dK
dΦP

)−1

=

(∫
Ω×Ω

(
dΦP

dK

)2

dK

)−1

.

(1.16)

4. The Dirichlet principle and the Thomson principle complement each other:
upper bounds on capacities can be obtained by choosing test potentials, lower
bounds by choosing test unit flows. The Berman-Konsowa principle is stronger
than the Thomson principle in that it leads to better bounds, even though the
suprema are the same. This is particularly helpful for obtaining approximations of
capacities.

5. In order to derive approximations of capacities it is possible to work with “leaky
flows” instead of unit flows, i.e., flows for which the condition “flow out of A = flow
into B = 1” is fulfilled with a small error. Indeed, it is possible to quantify the
discrepancy between suprema for leaky flows and suprema for unit flows in terms
of this error, and this allows for greater flexibility in the approximation procedure.
We refer the reader to the monograph by Bovier and den Hollander [5] for further
details.

The remainder of this paper is organized as follows. In Section 2 we give the
proof of Theorems 1.1 and 1.3, and their extension in Theorem 1.4. In Appendix A
we list some technical facts about Dirichlet forms, give the proof of the Dirichlet
principle and the Thomson principle in the general setting considered in this paper,
and show that capacities can be approximated via truncation. In Appendix B we
give the interpretation of the three variational principles for finite electric networks.
The two appendices take up about half of the paper and rely on basic results from
the literature.

2. Proofs

Sections 2.1 and 2.2 state and prove a proposition and a lemma that are needed
in the proofs of Theorems 1.1 and 1.3 in Section 2.4. Section 2.3 looks at the
harmonic flow. Throughout this section, A and B are fixed disjoint measurable
subsets of Ω.

2.1. A preparatory proposition. The following proposition paves the way for
the proofs of Theorems 1.1 and 1.3.

Proposition 2.1. Let Φ be a unit flow from A to B, ν(C) = Φ(C × Ω), C ⊂ Ω
measurable, its left marginal, and `(x, dy) a probability transition kernel such that
Φ(dx, dy) = ν(dx)`(x, dy). Let Y = (Yn)n∈N0

be the Markov chain with initial law
PΦ(Y0 ∈ C) = ν(A ∩ C), C ⊂ Ω measurable, and probability transition kernel `,
and let τYB = min{n ∈ N | Yn ∈ B}. Then:
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(1) For all bounded non-negative measurable functions f ,

∫
Ω×Ω

f(x, y)Φ(dx, dy) ≥ EΦ

 τY
B∑

n=1

f(Yn−1, Yn)

 . (2.1)

(2) If Φ is absolutely continuous w.r.t. K, then the Berman-Konsowa bound
holds:

cap (A,B) ≥ EΦ


 τY

B∑
n=1

dΦ

dK
(Yn−1, Yn)

−1
 . (2.2)

(3) If the flow is loop-free, then the paths (Yn)0≤n≤τY
B

are self-avoiding PΦ-a.s.

(4) If Φ(Ω× Ω) <∞, then EΦ[τYB ] <∞ and so τYB <∞ PΦ-a.s.

Proof. First we check that the measure PΦ does not depend on the precise choice
of `. To this aim, we prove that for all n ∈ N the measure νn(C) = P(Yn ∈ C, τYB ≥
n+ 1) is absolutely continuous w.r.t. ν. The proof is by induction on n.

For n = 0, the statement is true by the definition of Y0. Suppose it is true for
some n ∈ N0. Because Φ(Ω×A) = 0, Y never returns toA and we have νn+1(A) = 0.
Hence we need only look at ν-null sets C ⊂ Ω\(A ∪ B). Thus, let C ⊂ Ω\(A ∪ B)
with ν(C) = 0. Kirchhoff’s law yields Φ(Ω× C) = Φ(C × Ω) = ν(C) = 0, and

νn+1(C) = P(Yn+1 ∈ C, τYB ≥ n+ 2) = P(Yn+1 ∈ C, τYB ≥ n+ 1)

=

∫
(Ω\B)×C

νn(dx)`(x, dy)

=

∫
(Ω\B)×C

dνn
dν

(x)Φ(dx, dy) =

∫
Ω\B

dνn
dν

(x)Φ(dx,C) = 0.

(2.3)

It follows that νn+1 is absolutely continuous w.r.t. ν. To conclude, we note that
the equation Φ(dx, dy) = ν(dx)`(x, dy) determines `(x,C) up to changes for x in
ν-null sets. Since Y does not see ν-null sets except possibly in B, the law of Y
stopped upon reaching B is unaffected by this ambiguity.

(1) Let f : Ω×Ω→ [0,∞) be bounded and measurable. We prove by induction on
n that ∫

Ω×Ω

f(x, y)Φ(dx,dy) = E

[
n∧τB∑
k=1

f(Yk−1, Yk)

]
+Rn (2.4)

with remainder term

Rn =

∫
Ω×(A∪B)c

Φ(dx0,dx1)Fn(x1), (2.5)

where

Fn(x1) =

∫
[(A∪B)c]n×Ω

`(x1,dx2)× · · · × `(xn,dxn+1)f(xn, xn+1). (2.6)
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For n = 0 the claim is obvious. Suppose that (2.4–2.5) hold for some n ∈ N0. Then

Rn =

∫
Ω×(A∪B)c

ν(dx0)`(x0,dx1)Fn(x1)

=

∫
(A∪B)×(A∪B)c

ν(dx0)`(x0,dx1)Fn(x1)

+

∫
Ω×[(A∪B)c]2

Φ(dx−1,dx0)`(x0,dx1)Fn(x1)

=

∫
(A∪B)×(A∪B)c

ν(dx0)`(x0,dx1)Fn(x1) +Rn+1,

(2.7)

where in the second equality we use Kirchhoff’s law to rewrite ν(dx0) as the right
marginal of Φ. Hence we obtain

Rn = E
[
f(Yn, Yn+1)1{τY

B≥n+1}

]
+Rn+1, (2.8)

where we use that Φ(B × Ω) = 0. The inequality in (2.1) follows by estimating
Rn ≥ 0 and letting n→∞ in (2.4).

(2) Recall (1.4). Let φ = dΦ/dK and estimate, for any h ∈ VAB ,

E(h) ≥ 1
2

∫
Ω×Ω

[
h(y)− h(x)

]2
1{φ(x,y)>0}K(dx, dy)

= 1
2

∫
Ω×Ω

[
h(y)− h(x)

]2
φ(x, y)

1{φ(x,y)>0}Φ(dx,dy)

≥ EΦ

 1
2

τY
B∑

n=1

[
h(Yn)− h(Yn−1)

]2
φ(Yn−1, Yn)

1{φ(Yn−1,Yn)>0}

 ,
(2.9)

where the second inequality uses (2.1). Take the infimum over h ∈ VAB and use
(1.8), to obtain

cap (A,B) ≥ EΦ

 inf
h∈VAB

1
2

τY
B∑

n=1

[
h(Yn)− h(Yn−1)

]2
φ(Yn−1, Yn)

1{φ(Yn−1,Yn)>0}

 . (2.10)

The infimum under the expectation can be easily computed, and equals τY
B∑

n=1

φ(Yn−1, Yn)

−1

(2.11)

because h(Y0) = 1 and h(YτY
B

) = 0 (see (2.27) below). Hence (2.2) holds.

(3) Let χ ⊂ Ω×Ω be a loop-free measurable set with Φ(χc) = 0. By construction,
the path (Y0, . . . , Yn) with n ≤ τYB has only transitions (Yj−1, Yj) ∈ χ a.s. Since χ
is loop-free, Y stopped upon reaching B is self-avoiding.

(4) Apply the inequality in (2.1) to the constant function f ≡ 1. This gives

EΦ
[
τYB
]

= EΦ

[∑
n∈N

1{τY
B≥n}

]
≤ Φ(Ω× Ω). (2.12)

If Φ is finite, then τYB has finite expectation and hence is finite PΦ-a.s. �
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2.2. A discrepancy lemma. To get equalities in (2.1–2.2) we need an extra ar-
gument, which is based on the following lemma.

Lemma 2.2. Let Φ be a unit flow from A to B that is finite, i.e., Φ(Ω×Ω) <∞,

and let Y = (Yn)n∈N0 be the associated Markov chain as in Proposition 2.1. Let Φ̃
and Ψ be the measures on Ω× Ω defined by∫

Ω×Ω

f(x, y)Φ̃(dx, dy) = EΦ

[∑
n∈N

f(Yn−1, Yn)1{τY
B≥n}

]
,

Ψ = Φ− Φ̃.

(2.13)

Then Φ̃ is a unit flow from A to B, and Ψ satisfies Kirchhoff’s law, i.e., Ψ(C×Ω) =
Ψ(Ω× C) for all C ⊂ Ω.

Proof. Proposition 2.1 tells us that Φ̃ ≤ Φ, and so Ψ is a non-negative measure on
Ω × Ω, satisfying Ψ ≤ Φ. Both Φ̃ and Ψ inherit Kirchhoff’s law on (A ∪ B)c from
Φ. They also inherit the properties Φ(Ω×A) = 0 and Φ(B×Ω) = 0. Furthermore,

Φ̃(A× Ω) = PΦ
(
(Y0, Y1) ∈ A× Ω

)
= 1, (2.14)

where we use that Y does not return to A after time 0. Thus, n = 1 is the only
summand contributing to (2.13). Similarly,

Φ̃(Ω×B) = PΦ(τYB <∞) = 1, (2.15)

where we use that the unit flow is finite and that by Proposition 2.1 the hitting
time τYB is PΦ-a.s. finite. Therefore Φ̃ is a unit flow from A to B. Moreover,

Ψ(A× Ω) = Φ(A× Ω)− Φ̃(A× Ω) = 1− 1 = 0 (2.16)

and Ψ(Ω × B) = 0. It follows that Ψ(C × Ω) = Ψ(Ω × C) for all measurable
C ⊂ Ω. �

2.3. The harmonic flow.

Lemma 2.3. ΦAB is a finite loop-free unit flow from A to B.

Proof. We check that properties (1)–(4) in Definition 1.2 hold for Φ = ΦAB .

(1) By (1.14), we have

ΦAB(Ω×A) =
1

cap (A,B)

∫
Ω×A

[
hAB(x)− hAB(y)

]
+
K(dx, dy) = 0 (2.17)

because hAB(x) ≤ 1 for x ∈ Ω and hAB(y) = 1 for y ∈ A. A similar argument
shows that ΦAB(B × Ω) = 0.

(2) By (1.2–1.3), (1.7) and (1.14), we have

ΦAB(A× Ω) =
1

cap (A,B)

∫
A

µ(dx)

∫
Ω

[
hAB(x)− hAB(y)]k(x, dy)

=
1

cap (A,B)

∫
A

µ(dx)
(
−LhAB

)
(x) = 1

(2.18)

because hAB(x) = 1 for x ∈ A and hAB(y) ≤ 1 for y ∈ Ω. The fact that ΦAB(Ω×
B) = 1 follows from the symmetry relations hBA = 1 − hAB , ΦAB(C × D) =
ΦBA(D × C) and cap (A,B) = cap (B,A).
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(3) Let C ⊂ Ω\(A ∪B). Because of the symmetry of K, we have

Φ(Ω× C) =

∫
Ω×C

[
hAB(x)− hAB(y)

]
+
K(dy,dx)

=

∫
C×Ω

[
hAB(x)− hAB(y)

]
−K(dx,dy).

(2.19)

Therefore, by (1.2–1.3) and the fact that [·]+ − [·]− = [·],

Φ(C × Ω)− Φ(Ω× C) =

∫
C×Ω

[
hAB(x)− hAB(y)

]
K(dx, dy)

=

∫
C

µ(dx)(−LhAB)(x) = 0,

(2.20)

because µ is invariant. Thus, Kirchhoff’s law holds.

(4) Define
χ =

{
(x, y) ∈ Ω× Ω | hAB(x) > hAB(y)

}
. (2.21)

Clearly, ΦAB(χc) = 0 and χ contains no loops. Hence ΦAB is a loop-free unit flow
from A to B. The flow is finite because

ΦAB(Ω×Ω) =
1

cap (A,B)

∫
Ω×Ω

[
hAB(x)− hAB(y)

]
+
K(dx, dy) ≤ K(Ω× Ω)

cap (A,B)
<∞,

(2.22)
where we use that hAB ≤ 1 and K(Ω× Ω) <∞. �

Lemma 2.4. Y with law PΦAB satisfies τYB < ∞ a.s., its paths are self-avoiding,
and equality holds in (2.2).

Proof. We proceed as in Lemma 2.2 and exploit the fact that (hAB(Yn))n∈N0
is

PΦAB -a.s. strictly decreasing. Define ΨAB as in Lemma 2.2 for Φ = ΦAB , i.e.,

ΨAB(f) =

∫
Ω×Ω

fdΨAB =

∫
Ω×Ω

fdΦAB − EΦAB

 τY
B∑

n=1

f(Yn−1, Yn)

 . (2.23)

We have to show that ΨAB = 0. We already know that ΨAB is a finite measure
satisfying Kirchhoff’s law in all of Ω. Suppose that ΨAB(Ω×Ω) > 0. Let ν̂(dx) be

its marginal and ˆ̀(x,dy) any probability transition kernel such that ν̂(dx)ˆ̀(x, dy) =

ΨAB(dx, dy). Without loss of generality we may assume that ν̂(Ω) = 1. Let Ŷ =

(Ŷn)n∈N be a stationary Markov process with probability transition kernel ˆ̀ and

initial distribution P(Ŷ0 ∈ C) = ν̂(C), C ⊂ Ω measurable. A Poincaré-recurrence-

type argument shows that Ŷ returns to C infinitely often for every C with ν̂(C) > 0.
On the other hand, we know that the set {(x, y) ∈ Ω× Ω | hAB(x) ≤ hAB(y)} has
ΦAB-measure 0. Since ΨAB(f) ≤ ΦAB(f), this set also has ΨAB-measure 0. It
therefore follows that there is an m > 0 such that

ΨAB

({
(x, y) ∈ Ω× Ω | hAB(x) > m > hAB(y)

})
> 0. (2.24)

Put C = {x ∈ Ω | hAB(x) > m}. Then ν̂(C) = 1 and ΨAB(C × C) = 0.

Therefore once Ŷ has left C it cannot come back to C, contradicting the fact that
it returns to C infinitely often. Thus, the assumption ΨAB(Ω × Ω) > 0 leads to a
contradiction. We conclude that ΨAB = 0, and so there is equality in (2.1).

To show that equality holds in (2.2), i.e., ΦAB is a maximizer of (1.13), we
compute the right-hand side of (2.2). Note that (dΦAB/dK)(x, y) = [hAB(x) −
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hAB(y)]+, and recall that PΦAB -a.s. (hAB(Yn))n∈N0
is strictly increasing (until it

reaches B). We have

1

cap (A,B)
EΦAB


 τY

B∑
n=1

dΦAB
dK

(Yn−1, Yn)

−1


= EΦAB


 τY

B∑
n=1

[
hAB(Yn−1)− hAB(Yn)

]−1


= EΦAB

[(
hAB(Y0)− hAB

(
YτY

B

))−1
]

= EΦAB

[
(1− 0)−1

]
= 1,

(2.25)

which is the desired result. �

2.4. Proof of Theorems 1.1 and 1.3.

Proof. Theorem 1.3 follows from Proposition 2.1(2–4) and Lemma 2.4. To prove
Theorem 1.1 we argue as follows.

Let P ∈ PKAB and put φ = dΦP/dK. Pick h ∈ D(E) such that h|A = 1 and
h|B = 0. Then, by (1.4) and (1.11),

E(h) ≥ 1
2

∫
Ω×Ω

[
h(y)− h(x)

]2
1{φ(x,y)>0}K(dx,dy)

= 1
2

∫
Ω×Ω

[
h(y)− h(x)

]2
φ(x, y)

1{φ(x,y)>0}ΦP(dx, dy)

= E

 1
2

∑
(x,y)∈γ

[
h(y)− h(x)

]2
φ(x, y)

1{φ(x,y)>0}


= E

 1
2

∑
(x,y)∈γ

[
h(y)− h(x)

]2
φ(x, y)

 ,

(2.26)

where in the last line we use that φ(x, y) > 0 for all (x, y) ∈ γ for P-a.a. paths γ.
The solution to the one-dimensional harmonic problem is trivial, namely, for every
γ = (γ0, . . . , γτ ) ∈ ΓAB we have

inf

 1
2

∑
(x,y)∈γ

[
h(y)− h(x)

]2
φ(x, y)

∣∣∣ h : γ → [0, 1], h(γ0) = 1, h(γτ ) = 0


=

 ∑
(x,y)∈γ

φ(x, y)

−1

.

(2.27)

Combining (2.26–2.27) and recalling (1.8), we get

cap (A,B) ≥ E


 ∑

(x,y)∈γ

dΦP

dK
(x, y)

−1
 . (2.28)
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Next, recall that PΦAB is the probability measure on ΓAB associated with the
harmonic flow ΦAB . We know that PΦAB is a probability measure on finite self-
avoiding paths from A to B, and so we have

EΦAB


 ∑

(x,y)∈γ

dΦAB
dK

(x, y)

−1
 = EΦAB


 τY

B∑
n=1

dΦAB
dK

(Yn−1, Yn)

−1


= cap (A,B),

(2.29)

where the first equality uses the definition of Y in Proposition 2.1 and the second
equality uses (2.25). Thus, equality is achieved in (2.28) for P = PΦAB . This
completes the proof of Theorem 1.1. �

2.5. Proof of Theorem 1.4. The extension of Theorems 1.1 and 1.3 from positive
recurrent X to null-recurrent and transient X proceeds via a truncation argument.
In Appendix A.4 we let (Ωn)n∈N be an increasing sequence of measurable subsets
of Ω with ∪n∈NΩn = Ω such that A∪B ⊂ Ωn and K(Ωn ×Ωn) <∞ for all n ∈ N.
We show that if cap n(A,B) denotes the capacity for the reversible Markov jump
process Xn obtained from X by suppressing jumps outside Ωn, then

lim
n→∞

cap n(A,B) = cap (A,B) (2.30)

when K((A ∪B)× Ω) <∞.
In order to prove the extension of Theorem 1.3, we argue as follows. Let hnAB be

the harmonic function on Ωn, and let ΦnAB be the harmonic flow on Ωn given by
(1.14):

ΦnAB(dx, dy) =
1

cap n(A,B)

[
hnAB(x)− hnAB

]
+

1Ωn(x)1Ωn(y)K(dx, dy). (2.31)

Note that, for all n ∈ N, ΦnAB � K and ΦnAB ∈ UKAB , where the latter is the set of
finite unit flows on Ω. Therefore, by Theorem 1.3, we have

cap n(A,B) = EΦn
AB


 τY

B∑
n=1

dΦnAB
dK

(Yn−1, Yn)

−1
 , (2.32)

where we use that, for all n ∈ N, Xn has finite total conductance (i.e., is positive
recurrent). Combining (2.30) and (2.32), we obtain

cap (A,B) ≤ sup
Φ∈UK

AB

EΦ


 τY

B∑
n=1

dΦ

dK
(Yn−1, Yn)

−1
 . (2.33)

But the reverse inequality was already proved in Proposition 2.1(2).
In order to prove the extension of Theorem 1.1, we argue as follows. Equation

(1.12) with ≥ instead of = is a consequence of Proposition 2.1(2). For the reverse
inequality, note that in (2.32) we have ΦnAB = ΦPn with Pn = PΦn

AB ∈ PKAB . Passing
to the limit n → ∞, we obtain (2.33) with Φ replaced by ΦP and the supremum
over Φ ∈ UKAB replaced by the supremum over P ∈ PKAB .
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Appendix A. Potential-theoretic ingredients

In Section A.1 we provide the details of the construction of the Markov jump
process X = (Xt)t≥0 introduced in Section 1.2. In Section A.2 we check that the
Dirichlet principle in (1.8) has a unique solution. In Sections A.3 and A.5 we give
the proof of the Dirichlet principle and the Thomson principle. In Section A.4 we
show that the capacity can be obtained as the limit of certain truncated capacities.
This is crucial for the extension from finite total conductances (K(Ω × Ω) < ∞,
corresponding to X with positive recurrent Z) to infinite total conductances (K(Ω×
Ω) =∞).

A.1. Jump process. Recall that a kernel on (Ω,F) (with Ω the state space and
F the Borel σ-algebra) is a map k : Ω × F → [0,∞) such that x 7→ k(x,B) is
measurable for every B ∈ F , and k(x, ·) is a measure for every x ∈ Ω. We assume
that k(x,Ω) < ∞ for all x ∈ Ω, and that k(x, dy) admits a σ-finite reversible
measure µ, i.e., µ(dx)k(x, dy) = µ(dy)k(x, dy) = K(dx,dy). Thus, K is the unique
measure on the product space Ω× Ω such that

K(C ×D) =

∫
C

µ(dx)k(x,D), C,D ⊂ Ω measurable. (A.1)

Set

λ(x) = k(x,Ω) (A.2)

and assume that λ(x) > 0 for µ-a.a. x ∈ Ω. The minimal jump process X = (Xt)t≥0

associated with k(x, dy) is defined as follows. Let (Qt(x, dy))t≥0 be the minimal
solution of the backward Kolmogorov equation (existence and uniqueness are proven
in Feller [13, Chapter 3]). Thus, Q0(x,dy) = δx(dy) is the identity kernel and, for
all t ≥ 0, x ∈ Ω and C ⊂ Ω measurable,

∂Qt
∂t

(x,C) = −λ(x)Qt(x,C) +

∫
Ω

k(x, dy)Qt(y, C). (A.3)

The right-hand side is written as (LQt(·, C))(x) with L the generator of X. The
minimal solution satisfies Qt(x,Ω) ≤ 1 for all x ∈ Ω, t ≥ 0 and therefore defines a
Markov process (Xt)t≥0 with a possibly finite lifetime ζ > 0.

Next, we specify the domains of the Dirichlet form and the generator, and check
that µ is a reversible measure. Let L0 be the operator in L2(Ω, µ) with domain

D(L0) =
{
f ∈ L2(Ω, µ) | ∃n ∈ N : µ

(
{x ∈ Ω | f(x) 6= 0, λ(x) > n}

)
= 0
}

(A.4)

and L0f = Lf as in (1.3). Let E∗ be the quadratic form with domain

D(E∗) =
{
f ∈ L2(Ω, µ) |

∫
Ω×Ω

[
f(y)− f(x)

]2
K(dx,dy) <∞

}
(A.5)

and E∗(f) = E(f) as in (1.4). Set

‖f‖1 =
(∫

Ω

f2dµ+ E(f)
)1/2

. (A.6)

Note that D(L0) ⊂ D(E). Indeed, if f ∈ L2(Ω, µ) is supported in {x ∈ Ω | λ(x) ≤
n}, then∫

Ω×Ω

[
f(y)− f(x)

]2
K(dx,dy) ≤ 4

∫
Ω

f(x)2λ(x)µ(dx) ≤ 4n

∫
Ω

f(x)2µ(dx) <∞

(A.7)
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by the inequality (a− b)2 ≤ 2(a2 + b2) and the symmetry of K. Let D(E) ⊂ D(E∗)
be the closure of D(L0) with respect to ‖ · ‖1.

For explosive processes the operator L0 can have several self-adjoint extensions.
The next proposition says that the generator L of the minimal jump process X is
the Friedrichs extension of L0. For discrete state spaces, this result was shown by
Silverstein [24], [23].

Proposition A.1. (Chen [10, Theorem 3.6]) The following hold:
(1) E with domain D(E) is a closed quadratic form in L2(Ω, µ).
(2) There is a unique self-adjoint operator L with domain D(L) ⊂ D(E) such that
E(f) =

∫
Ω
f(−Lf)dµ for all f ∈ D(L). The operator L is an extension of L0.

(3) Let (Qt)t≥0 be the minimal solution of the backward Kolmogorov equation in
(A.3). For all t ≥ 0 and all f ∈ L2(Ω, µ),

(Qtf)(x) =
(
etLf

)
(x) µ-a.e. (A.8)

Part (3) shows that (Qt)t≥0 is self-adjoint in L2(Ω, µ):

Corollary A.2. The measure µ is a reversible measure for the minimal jump
process X.

Finally, we cite the two conditions for non-explosion that we will need later.

Proposition A.3. (Chen [10, Corollary 3.7]) The following are equivalent:
(1) D(E) = D(E∗), i.e., D(L0) is dense in D(E∗) with respect to ‖ · ‖1.
(2) L0 has no self-adjoint extensions other than the operator L defined in Proposi-
tion A.1.
(3) X is non-explosive: Px(ζ < ∞) = 0 for µ-a.a. x ∈ Ω, with ζ denoting the
lifetime.

Proposition A.4. (Chen [10, Corollary 3.8]) If K(Ω × Ω) =
∫

Ω
λ(x)µ(dx) < ∞,

then X is non-explosive in the sense of Proposition A.3.

The non-explosion criterion of Proposition A.4 amounts to positive recurrence
of the underlying jump chain, which will appear in the analysis of the Dirichlet
problem given below. Indeed, let Z = (Zn)n∈N0 be the jump chain associated with
X, i.e., Z0 = X0 and Zn = Xtn+ with tn+ the time right after the (random) time
tn of the n-th jump of X. If λ(y) = 0 for some y then it is possible that X makes
only finitely a finite number N of jumps, in which case we set Zm = ZN , m ≥ N .
With this convention Z is a Markov chain with probability transition kernel

p(x,dy) =

{
λ(x)−1k(x, dy), λ(x) > 0,

δx(dy), λ(x) = 0,
(A.9)

We have k(x, dy) = λ(x)p(x, dy), and so ν(dx) = λ(x)µ(dx) is a reversible measure
for the jump chain Z. The condition K(Ω× Ω) <∞ holds if and only ν has finite
mass, which for irreducible Markov chains on discrete state spaces is equivalent
to positive recurrence (Stroock [26]). More generally, if K(Ω × Ω) < ∞, then a
Poincaré-recurrence-type argument shows Z, and hence also X, visits every set of
positive measure infinitely often.

A.2. Dirichlet problem. We say that f : Ω → R solves the Dirichlet problem
when

f = 1 on A, f = 0 on B, −Lf = 0 on Ω\(A ∪B). (A.10)
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We recall the definition of the hitting time τA = inf{t > 0 | Xt ∈ A}. Let
Z = (Zn)n∈N0 (with the convention inf ∅ = ∞) be the jump chain associated with
X = (Xt)t≥0, and set σC = inf{n ∈ N0 | Zn ∈ C} for C ⊂ Ω.

Proposition A.5. Let A,B ⊂ Ω be disjoint measurable sets. Then

gAB(x) = Px(τA < ζ, τA < τB) (A.11)

is the minimal non-negative solution of the Dirichlet problem. If Px(τA∪B <∞) = 1
for µ-a.a. x ∈ Ω, then gAB is the unique bounded solution of the Dirichlet problem
(up to µ-null sets).

Proof. First, note that gAB(x) = 1 for all x ∈ A and gAB(x) = 0 for x ∈ B. This is
because the jump rates λ(x) are finite, so that Px-a.s. there is an ε > 0 such that
Xt = x for all t ∈ [0, ε). Next, note that gAB can be written in terms of the jump
chain as

gAB(x) = Px(σA <∞, σA < σB). (A.12)

The reader may check that {τA < ζ} = {σA < ∞}: if X explodes before hitting
A or has infinite life-time and never hits A, then Z makes infinitely many jumps
without hitting A, and vice-versa. For x ∈ Ω\(A ∪B),

gAB(x) = Px(Z1 ∈ A)+

∫
Ω\A

p(x, dy)Py(σA <∞, σA < σB) =
(
pgAB

)
(x). (A.13)

Multiplying with λ(x), we get

0 = λ(x)
[
gAB(x)− (pgAB)(x)

]
=

∫
Ω

λ(x)
[
gAB(x)− gAB(y)] p(x,dy)

=

∫
Ω

[
gAB(x)− gAB(y)] k(x,dy) = (−LgAB)(x) = 0, x ∈ Ω\(A ∪B).

(A.14)
The proof that gAB is the minimal solution is analogous to the proof for discrete

state spaces (see e.g. Norris [21, Chapter 4.2]). Indeed, let h ≥ 0 be another solution
of the Dirichlet problem and x ∈ Ω\(A ∪ B). Induction on n shows that for all
n ∈ N0,

h(x) =

n∑
k=0

Px(σA = k, σB ≥ k + 1) + rn(x) (A.15)

with

rn(x) =

∫
[(A∪B)c]n×Ω

p(x, dy1)p(y1,dy2) · · · p(yn,dyn+1)h(yn+1). (A.16)

We estimate rn(x) ≥ 0, let n → ∞, and obtain h(x) ≥ gAB(x). Hence gAB is the
minimal non-negative solution.

Suppose that Px(σA∪B < ∞) = ∞, and let h be a bounded solution of the
Dirichlet problem. Then (A.15) holds and

|rn(x)| ≤ ‖h(x)‖∞Px
(
σA∪B ≥ n+ 1

)
, (A.17)

which tends to zero as n→∞. It follows that h(x) = gAB(x). �

Proposition A.5 shows that if K(Ω× Ω) <∞ and X is irreducible, then gAB is
the unique bounded solution of the Dirichlet problem. For transient X, the solution
is not unique: for example, new solutions are obtained by adding multiples of the
function x 7→ 1− Px(τA∪B < ζ) (see also (A.24) below).
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For non-explosive recurrent X, gAB is exactly the function hAB defined in (1.6),
and is equal to the unique minimizer in the Dirichlet principle. For transient X,
gAB is no longer the minimizer (see Lemma A.7 below).

A.3. Dirichlet principle. In this section we prove the Dirichlet principle. For
K(Ω × Ω) < ∞, i.e., positive recurrent X, the proof is simple and analogous to
proofs for finite state spaces. A key role is played by the Green identity

1
2

∫
Ω×Ω

[
f(x)− f(y)

][
g(x)− g(y)

]
K(dx,dy)

=

∫
Ω

f(x)
[
g(x)− g(y)

]
µ(dx)k(x, dy)

=

∫
Ω

f(x)
(
−Lg

)
(x)µ(dx),

(A.18)

which holds for all bounded f and g when K is finite. When K is infinite, i.e.,
when Z associated with X is null-recurrent or transient, the integrals in the (A.18)
need not be absolutely convergent and the identity may fail. (A formal analogue
is the identity

∫∞
−∞ f ′(x)g′(x)dx =

∫∞
−∞ f(x)[−g′′(x)]dx: the integration by parts

works only if there are no boundary terms from infinity.) Using Cauchy-Schwarz,
we see that the condition

∫
Ω
f(x)2λ(x)µ(dx) < ∞ is sufficient to ensure that the

Green identity stays true. But in general the minimizer of the Dirichlet principle
need not satisfy this condition and therefore we need to proceed with caution.

Our strategy is as follows. First we show that the variational formula in (1.8) has
a unique minimizer hAB (Lemma A.8 below). Next we check that the minimizer
solves the Dirichlet problem (Lemma A.7 below), and that the minimum is the
limit of “truncated” minima (Lemma A.8 below). Finally we show that E(hAB) =∫
A

(
−LhAB

)
dµ (Lemma A.9 below).

Recall the Dirichlet principle in (1.8), with the definition of VAB in (1.9). We
assume that VAB is non-empty or, equivalently, cap (A,B) <∞.

Lemma A.6. The Dirichlet form restricted to VAB has a unique minimizer hAB
i.e., there is a unique (up to µ-null sets) hAB ∈ VAB such that cap (A,B) = E(hAB).

Proof. The lemma is proved via standard convexity, lower semi-continuity and com-
pactness arguments. Note that VAB is a convex set. Since φ 7→ φ2 is strictly convex,
we have that E(tf + (1− t)g) ≤ tE(f) + (1− t)E(g) for all f, g ∈ VAB and t ∈ (0, 1),
and there is equality if and only if f(x)−f(y) = g(x)−g(y) for µ-a.a. x, y ∈ Ω. The
restriction f |A = 0 = g|A and the irreducibility of X therefore imply that f = g
almost everywhere. Hence E is strictly convex on VAB .

Now let (fn)n∈N be a minimizing sequence of functions in VAB for E . Then
(x, y) 7→ (fn(x) − fn(y))n∈N defines a sequence of functions in L2(Ω × Ω,K) that
is bounded in L2-norm. The Banach-Alaoglu theorem ensures the existence of a
subsequence (x, y) 7→ (fnj (x)− fnj (y))j∈N that converges weakly in L2(Ω×Ω,K),

i.e., there is a function H ∈ L2(Ω× Ω,K) such that

lim
j→∞

∫
Ω×Ω

[
fnj

(x)− fnj
(y)
]
G(x, y)K(dx, dy) (A.19)

=

∫
Ω×Ω

H(x, y)G(x, y)K(dx, dy) ∀G ∈ L2(Ω× Ω,K). (A.20)
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The limit function H inherits the following properties (all statements are up to
K-null sets):

• H(x, y) = 1 on A×B.
• H(x, y) = 0 on A×A and B ×B.
• H(x, y) ≥ 0 on A× Ω and Ω×B.
• H(x, y) +H(y, z) = H(x, z) almost everywhere.

Let b ∈ B be an arbitrary reference point, and set h(x) = H(x, b). Because of
the above properties and µ(B) > 0, we can choose b such that the following hold:
h = 1 on A, h = 0 on B, 0 ≤ h ≤ 1, and H(x, y) = h(x)− h(y) almost everywhere,
i.e., h ∈ VAB . Since the L2-norm is lower semi-continuous with respect to weak
convergence (see Lieb and Loss [18][Theorem 2.11]), we have

cap (A,B) ≤ E(h) ≤ lim inf
j→∞

E(fnj
) = inf

f∈VAB

E(f) = cap (A,B), (A.21)

so E(h) = cap (A,B) and h is a minimizer. Because of the strict convexity of E , it
follows that hAB is the unique minimizer. �

Lemma A.7. (1) The minimizer hAB solves the Dirichlet problem.
(2) If X is recurrent, then hAB(x) = Px(τA < τB).
(3) If X is transient, then hAB is different from the minimal solution x 7→ Px(τA <
ζ, τA < τB) of the Dirichlet problem.

Proof. (1) Suppose by contradiction that hAB does not solve the Dirichlet prob-
lem. Then we can find a function f ∈ L2(Ω, µ) such that f = 0 on A ∪ B and∫

Ω
(−LhAB)fdµ < 0. Set F (x, y) = f(x), x, y ∈ Ω. Then F ∈ L2(Ω × Ω,K)

Cauchy-Schwarz ensures that the integral
∫

Ω×Ω
f(x)

[
hAB(x) − hAB(y)

]
K(dx, dy)

is absolutely convergent, and

E(hAB + εf) = E(hAB) + ε

∫
Ω×Ω

f(x)
[
hAB(x)− hAB(y)

]
K(dx, dy) + ε2E(f)

= E(hAB) + ε

∫
Ω

f(x)
[
−LhAB

]
(x)µ(dx) + ε2E(f).

(A.22)
Choosing ε small enough we obtain that E(hAB + εf) < E(hAB), which is a con-
tradiction.

(2) If Px(σA∪B < ∞) = 1 for µ-a.a. x, then Proposition A.5 implies that the min-
imizer is equal to the unique solution of the Dirichlet problem hAB(x) = Px(τA <
τB).

(3) The bijection VAB 7→ VBA, h 7→ 1 − h leaves the Dirichlet form unchanged,
because E(h) = E(1− h). It follows that cap (A,B) = cap (B,A) and, because the
minimizer is unique,

hAB(x) = 1− hBA(x) for µ-a.a. x. (A.23)

On the other hand, the minimal solution gAB(x) = Px(τA < ζ, τA < τB) satisfies

1− gBA(x) = 1− Px
(
τB < ζ, τB < τA

)
= Px

(
τA < ζ, τA < τB

)
+ Px

(
τA∪B ≥ ζ

)
= gAB(x) + 1− Px

(
τA∪B < ζ

)
.

(A.24)
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It follows that 1 − gBA 6= gAB for transient X, and in view of (A.23) we have
gAB 6= hAB . �

A.4. Truncation approximation. Next we show that the capacity can be ob-
tained as the limit of certain truncated capacities. This will help us prove the
Berman-Konsowa principle for transient and null recurrent X, and provide the
missing step to show that cap (A,B) =

∫
A

(
−LhAB)dµ.

Throughout the sequel we assume that K((A ∪ B) × Ω) < ∞. Let (Ωn)n∈N be
an increasing sequence of measurable subsets of Ω with ∪n∈NΩn = Ω such that
A ∪ B ⊂ Ωn and K(Ωn × Ωn) < ∞ for all n ∈ N 1. Define the truncated kernel
kn(x, dy) = 1Ωn×Ωn

(x, y)k(x, dy), x, y ∈ Ω, and the truncated measure Kn as

Kn(C ×D) = K
(
(C ∩ Ωn)× (D ∩ Ωn)

)
=

∫
C×D

µ(dx)kn(x,dy), C,D ⊂ Ω.

(A.25)
Set

En(f) = 1
2

∫
Ω×Ω

[
f(x)− f(y)

]2
Kn(dx, dy) = 1

2

∫
Ωn×Ωn

[
f(x)− f(y)

]2
K(dx, dy).

(A.26)
The truncated kernel kn is associated with a reversible jump process for which
jumps outside Ωn are suppressed.

Remark. The theory of Mosco convergence (see Mosco [19]) can be used to show that
for non-explosive processes the truncated semi-groups and resolvents converge to
those of the full process (see Barlow, Bass, Chen and Kassmann [1] for references).
For our purpose, however, it will be enough to check that the truncated capacities
converge.

Let cap n(A,B) be the capacity of the truncated process and hnAB the corre-
sponding minimizer.

Lemma A.8 (Convergence of truncated capacities). Suppose that K((A∪B)×Ω) <
∞. Then the following hold:
(1) n 7→ cap n(A,B) is non-decreasing and converges to cap (A,B).
(2) (x, y) 7→ hnAB(x)− hnAB(y) converges weakly in L2(Ω× Ω,K) as n→∞, i.e.,

lim
n→∞

∫
Ωn×Ωn

[
hnAB(x)− hnAB(y)

]
G(x, y)K(dx, dy) (A.27)

=

∫
Ω×Ω

[
hAB(x)− hAB(y)

]
G(x, y)K(dx,dy) ∀G ∈ L2(Ω× Ω,K).

Proof. (1) We have En(f) ≤ En+1(f) ≤ E(f) for all f ∈ VAB . Hence

cap n(A,B) ≤ cap n+1(A,B) ≤ cap (A,B). (A.28)

Note that En(hnAB) = cap n(A,B) ≤ cap (A,B) < ∞. It follows that the sequence
of functions (x, y) 7→ (Hn(x, y))n∈N given by

Hn(x, y) =
[
hnAB(x)− hnAB(y)

]
1Ωn(x)1Ωn(y), x, y ∈ Ω, (A.29)

1When A ∪ B ⊂ Ωn fails, extend Ωn to Ω′
n = Ωn ∪ (A ∪ B) and note that K(Ω′

n × Ω′
n) <∞

because K(Ωn × Ωn) <∞ and K((A ∪B)× Ω) <∞.
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is bounded in L2(Ω × Ω,K). As in the proof of Lemma A.6, the Banach-Alaoglu
theorem and the lower semi-continuity of the L2-norm with respect to weak con-
vergence show that, upon passing to a subsequence, we may assume that Hn(x, y)
converges weakly in L2(Ω× Ω,K) to h(x)− h(y) for some h ∈ VAB , and

cap (A,B) ≤ 1
2

∫
Ω×Ω

[
h(x)− h(y)

]2
K(dx, dy)

≤ lim inf
n→∞

1
2

∫
Ω×Ω

Hn(x, y)2K(dx,dy) = lim
n→∞

cap n(A,B). (A.30)

Together with the inequality in (A.28), this implies that limn→∞ cap n(A,B) =
cap (A,B) and E(h) = cap (A,B), and hence h = hAB .
(2) We see from (A.30) that any accumulation point of Hn(x, y) equals hAB(x) −
hAB(y), which implies (A.27). �

Lemma A.9. The equilibrium charges defined by

QA =

∫
A

(
−LhAB

)
(x)µ(dx), QB =

∫
B

(
−LhAB

)
(x)µ(dx), (A.31)

satisfy QA = −QB = cap (A,B).

Proof. Write

E(hAB) = lim
n→∞

1
2

∫
Ωn×Ωn

[
hnAB(x)− hnAB(y)

][
hAB(x)− hAB(y)

]
K(dx, dy)

= lim
n→∞

∫
Ωn×Ωn

hAB(x)
[
hnAB(x)− hnAB(y)

]
K(dx,dy)

= lim
n→∞

∫
Ωn

hAB(x)
(
−LnhnAB

)
(x)µ(dx)

= lim
n→∞

∫
A

(
−LnhnAB

)
(x)µ(dx) =

∫
A

(−LhAB)(x)µ(dx),

(A.32)
where Ln is the generator of the truncated process on Ωn. The first equality
uses (A.27) with G(x, y) = hAB(x) − hAB(y), the fourth equality use that hnAB
and hAB solve the Dirichlet problem in (A.10), the fifth equality uses (A.27) with
G(x, y) = 1A(x). Thus we have shown that cap (A,B) = E(hAB) = QA. For QB
we apply (A.23) and note that

QB =

∫
B

(
−LhAB

)
dµ =

∫
B

(
LhBA

)
dµ = −cap (B,A) = −cap (A,B) (A.33)

(see the proof of Lemma A.7). �

A.5. Thomson principle. Let hAB be the unique minimizer in the Dirichlet prin-
ciple and ΦAB the associated flow.

Proposition A.10 (Thomson principle). For A,B ⊂ Ω disjoint,

1

cap (A,B)
= min

Φ∈UK
AB

[∫
Ω×Ω

dΦ

dK
(x, y)

]2

K(dx, dy) (A.34)

and the harmonic flow ΦAB in (1.14) is the unique minimizer.
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Proof. For finite K, we have already checked in Lemma 2.3 that ΦAB is a unit flow.
For infinite K the proof is similar. The conditions ΦAB(A×Ω) = ΦAB(Ω×B) = 1
follow from Lemma A.9.

Let hn = hnAB be the truncated harmonic function introduced in Section A.3. By
Lemma A.8, upon passing to a subsequence, we may assume that hn(x)−hn(y)→
hAB(x)− hAB(y) weakly in L2(Ω×Ω,K) as n→∞. Let Φ be a unit flow, and let

φ(x, y) =
dΦ

dK
(x, y)− dΦ

dK
(y, x) (A.35)

be the antisymmetrized Radon-Nikodým derivative of Φ with respect to K. Since
the flow is directed, we have

φ(x, y) =


dΦ
dK (x, y), (x, y) ∈ χ,
− dΦ

dK (y, x), (y, x) ∈ χ,
0, otherwise,

(A.36)

for some measurable χ ⊂ Ω× Ω chosen such that the cases are mutually exclusive
(see item (4) in Def. 1.2). Note that

E(Φ) =

∫
Ω×Ω

[
dΦ

dK
(x, y)

]2

K(dx, dy) =
1

2

∫
Ω×Ω

φ(x, y)2K(dx, dy). (A.37)

By a slight abuse of notation we use the same letter E for the quadratic forms on
flows and on functions. Assume that Φ has finite energy, i.e., φ ∈ L2(Ω × Ω,K).
Let hnAB(x) be as in the proof of Lemma A.8 and hn(x) := hnAB(x)1Ωn(x). We
have hn(x)−hn(y) ∈ L2(Ω×Ω,K) and hn ∈ L2(Ω, ν) with ν(dx) = λ(x)µ(dx) the
marginal of K. By exploiting the symmetry of K and the anti-symmetry of φ, we
get

1
2

∫
Ω×Ω

[
hn(x)− hn(y)

]
φ(x, y)K(dx,dy) =

∫
Ω×Ω

hn(x)φ(x, y)K(dx, dy)

=

∫
Ω×Ω

hn(x)MΦ(dx),

(A.38)

where MΦ(dx) is the anti-symmetrized marginal, i.e., MΦ(C) = Φ(C ×Ω)−Φ(Ω×
C), C ⊂ Ω measurable. Since Φ is a unit flow, we have MΦ(C) = 0 for all C ⊂
Ω\(A ∪B) and MΦ(A) = 1. It follows that∫

Ω×Ω

hn(x)MΦ(dx) = MΦ(A) = 1 (A.39)

and, taking the limit n→∞ in (A.38), we obtain

1
2

∫
Ω×Ω

[
hAB(x)− hAB(y)

]
φ(x, y)K(dx, dy) = 1. (A.40)

The Cauchy-Schwarz inequality yields[
cap (A,B)

]1/2[
E(Φ)

]1/2
≥ 1 (A.41)

with equality if and only if φ(x, y) = c(hAB(x)−hAB(y)) for some c > 0 and K-a.a.
(x, y). The unit flow condition fixes the constant as c = 1/cap (A,B), and so

dΦ

dK
(x, y) = φ(x, y)+ − φ(x, y)− =

1

cap (A,B)

[
hAB(x)− hAB(y)

]
+
. (A.42)
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Thus, we have found that E(Φ) ≥ 1/cap (A,B) for all unit flows, with equality if
and only if Φ = ΦAB . �

Appendix B. Physical interpretation of variational principles

The Dirichlet principle and the Thomson principle have well-known physical
interpretations in terms of electric networks (see e.g. Doyle and Snell [12], Peres [22],
Gaudillière [16]). In Section B.1 we recall these interpretations, while in Section B.2
we give an interpretation of the Berman-Konsowa principle that is based on three
ingredients: (1) resistances in series add up; (2) conductances in parallel add up;
(3) each network has an equivalent network that is richer but simpler, consisting
of chains of resistors in parallel. The latter interpretation, which was suggested in
Bovier [4], is worked out in detail.

B.1. Dirichlet and Thomson. For the sake of exposition we assume that Ω is
finite, and write Kxy for K({(x, y)}). Let G be the undirected graph with vertex
set Ω and edge set E′ = {{x, y} ∈ Ω × Ω | Kxy > 0}. For later purpose, we write
E for the corresponding set of directed edges, i.e., E = {(x, y) ∈ Ω | Kxy > 0}.
The network consists of a set of resistors: each edge {x, y} of G has resistance
Rxy = 1/Kxy. Recall Ohm’s law : voltages (Vx)x∈Ω induce currents (ixy)(x,y)∈E .
The current flows from high to low voltage, and the intensity of the current is
Kxy|Vx − Vy|. We adopt the convention that ixy = 0 when Vx < Vy, so that
ixy = Kxy(Vx − Vy)+.2 Furthermore, by the Joule effect, the current through the
resistor network dissipates energy at a rate

P =
∑

(x,y)∈E

ixy
(
Vx − Vy

)
+

= 1
2

∑
x,y∈Ω

Kxy

(
Vx − Vy

)2
=

∑
(x,y)∈E

Rxyi
2
xy, (B.1)

which is the electric power (measured in Watt). The factor 1
2 can be removed when

we replace (Vx − Vy) by (Vx − Vy)+. In (B.1) we recognize the Dirichlet form E(h)
in (1.4) applied to the function h(x) = Vx.

Now, let A and B be two disjoint subsets of Ω. We extend the network by
adding two points to Ω: the source s and the sink s′. The edge set is enriched
by connecting all points from A to s and all points from B to s′. The new edges
are assigned resistance zero (infinite conductivity). As a consequence, the vertices
in A and B have the same voltage as the source and sink (“wiring”). Moreover,
the flow through the new edges does not dissipate energy, so that the total energy
dissipation is still given by (B.1).

It is a standard problem from electrical engineering to determine the effective
resistance Reff (or effective conductance Ceff = 1/Reff) between the source and the
sink, defined as follows. Fix Vs and Vs′ , the voltages of the source and the sink,
assume Vs > Vs′ , and set U = Vs − Vs′ . Let(

(Vx)x∈Ω, (ixy){x,y}∈E
)

(B.2)

solve the following set of equations:

• Wiring to source and sink: Va = Vs for all a ∈ A, Vb = Vs′ for all b ∈ B.
• Ohm’s law: ixy = Kxy(Vx − Vy)+ for all {x, y} ∈ E.

2Another convention is to take ixy < 0 when Vx < Vy , so that the sign of i carries the

information of the direction of the current.
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• Kirchhoff’s law:

isz +
∑
x∈Ω:
{x,z}∈E

ixz = izs′ +
∑
y∈Ω:
{z,y}∈E

izy ∀ z ∈ Ω. (B.3)

For most networks there will be a unique solution, which satisfies Vs′ ≤ Vx ≤ Vs
for all x ∈ Ω. Ohm’s law implies that nothing flows into the source (or into A) and
nothing flows out of the sink (or out of B). The total flow out of the source is

I =
∑
a∈A

isa =
∑
a∈A

∑
y∈Ω

iay. (B.4)

On finite networks, Kirchhoff’s law implies that the current out of the source equals
the current into the sink, i.e.,

I =
∑
b∈B

ibs′ =
∑
b∈B

∑
x∈Ω

ixb. (B.5)

The effective resistance is

Reff =
U

I
=
Vs − Vs′

I
, (B.6)

which depends on the sets A and B, and on the conductances Kxy, but not on
the voltages Vs, Vs′ . Therefore we can evaluate the effective resistance for Vs = 1,
Vs′ = 0, in which case the voltage distribution (Vx)x∈Ω is equal to the harmonic
function hAB(x) in (1.6), and the “capacity” in (1.7) is equal to

cap (A,B) = −
∑
a∈A

∑
y∈Ω

Kay(Vy − Va) =
∑
a∈A

∑
y∈Ω

iay = I. (B.7)

Comparing this expression with (B.6) and remembering our choice U = Vs − Vs′ =
1− 0 = 1, we see that

cap (A,B) =
I

U
=

1

Reff
= Ceff, (B.8)

i.e., our mathematical capacity is equal to the effective conductance of the network.

Remark. The use of the word “capacity”, though legitimate from a mathematical
point of view, is not quite appropriate in the physical context of electric networks.
Indeed, the current-voltage relation of a capacitor is I(t) = C dU

dt (t) with C > 0 the
capacity: this is clearly inconsistent with our relation I = CeffU . The word “capac-
ity” becomes legitimate when the Dirichlet form is interpreted as an electrostatic
energy rather than a dissipation rate – but in this context the “conductances” must
be replaced by “dielectric permittivities”. The probabilist vocabulary is a hybrid
of two distinct physical pictures, and the physicist reader must be aware of this
potential source of confusion.

The electric power in (B.1), evaluated for the voltage and current distribution
solving the set of equations described above, equals

P = UI = CeffU
2 = ReffI

2. (B.9)

The Dirichlet principle says that minimization of the electric power over all volt-
age distributions with net voltage U = Vs − Vs′ yields the effective conductance,
while the Thompson principle says that minimization of the power over all current
distributions with net current I = 1 yields the effective resistance.
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B.2. Berman-Konsowa. The interpretation of the Berman-Konsowa principle is
more involved. We start with two simple examples.

The first example consists of a finite chain of resistors in series, e.g., Ω =
{0, 1, . . . , N}, A = {0}, B = {N}, Kxy > 0 for |x − y| = 1 and Kxy = 0 oth-

erwise. Resistances in series add up, hence Reff =
∑N
j=1Rj−1,j or, equivalently,

Ceff =

 N∑
j=1

1

Kj−1,j

−1

. (B.10)

We recognize the right-hand side of (1.12) from Theorem 1.1 evaluated for the
deterministic path γ = (0, 1, . . . , N).

The second example consists of resistors in parallel. Suppose that Ω = A∪B, so
that we may think of the network as a set of resistors Rab in parallel between the
source and the sink. Conductances in parallel add up, hence

Ceff =
∑
a∈A

∑
b∈B

Kab. (B.11)

On the other hand, let (pab)a∈A,b∈B be such that
∑
a∈A,b∈B pab = 1 and pab > 0

for all a ∈ A, b ∈ B. The weights pab determine a probability measure on “paths”
of length 1 from A to B. The right-hand side of (1.12) equals∑

a∈A, b∈B

pab

( pab
Kab

)−1

=
∑

a∈A, b∈B

Kab. (B.12)

Hence the Berman-Konsowa principle reproduces the additivity of resistances
(in series) or conductances (in parallel). Now consider an arbitrary finite network
and fix a probability measure P on ΓAB , the set of finite paths from A to B. Let
ΦP be the associated flow. We construct a new network as follows:

(1) With each path γ ∈ Γ, associate a chain of resistors in series with reduced
resistances Rγxy = RxyΦP(x, y)/P(γ), (x, y) ∈ γ. The effective conductance
of this chain is

CP
eff(γ) =

 ∑
(x,y)∈γ

Rγxy

−1

= P(γ)

 ∑
(x,y)∈γ

ΦP(x, y)

Kxy

−1

. (B.13)

(2) Put the chains in parallel, so that they do not overlap. As a consequence,
the equivalent network in general has more vertices than the original net-
work (Figure 1). The total conductance is

CP
eff =

∑
γ∈Γ

CP
eff(γ). (B.14)

The Berman-Konsowa principle says that

Ceff = max
P

CP
eff. (B.15)

Hence the effective conductance of the original network equals that of a simpler
equivalent network obtained by putting chains in parallel. The factors ΦP(x, y)/P(γ)
in the reduced resistances Rγxy compensate for the splitting of one edge (resistor)
in the original network into multiple edges (resistors) of the equivalent network.
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a x y b

Ray

Rax

Rxy Ryb

Rxb

(a) The original network has
four vertices a, x, y, b. Each
edge e = (ij) is associated with
a resistance Rij .

a x y b

Φ(a, y)

Φ(a, x)

Φ(x, y) Φ(y, b)

Φ(x, b)

(b) An ab-unit flow Φ(i, j)
determines a stochastic ma-
trix `(i, j) and a probability
measure P on paths from a
to b. E.g., `(a, x) = Φ(a, x),
`(x, b) = Φ(x, b)/M(x) with
M(x) = Φ(a, x), and P(a →
x→ b) = `(a, x)`(x, b).

a x1
y1 b

x2

y2 (c) The new network consists
of parallel chains of resistances;
each chain comes from a path
γ allowed under P. An edge
or vertex visited by more than
one path is split accordingly
(dashed boxes).

Figure 1. Electric network constructed out of a unit flow: (a)
the original network, (b) a unit flow, (c) the associated new net-
work.
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