

Reduction operator for wide-SIMDs reconsidered

Citation for published version (APA):
Waeijen, L. J. W., She, D., Corporaal, H., & He, Y. (2014). Reduction operator for wide-SIMDs reconsidered. In
Proceedings of the 51st Annual Design Automation Conference (DAC '14), 1-5 june 2014, San Francisco CA,
United States Association for Computing Machinery, Inc. https://doi.org/10.1145/2593069.2593198,
https://doi.org/10.1145/2593069.2593198

DOI:
10.1145/2593069.2593198
http://dx.doi.org/10.1145/2593069.2593198

Document status and date:
Published: 01/01/2014

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1145/2593069.2593198
https://doi.org/10.1145/2593069.2593198
https://doi.org/10.1145/2593069.2593198
https://doi.org/10.1145/2593069.2593198
https://research.tue.nl/en/publications/7a03e401-bb97-4bd2-87c6-0fa1e3e8afe1

Reduction Operator for Wide-SIMDs Reconsidered

Luc Waeijen†, Dongrui She†, Henk Corporaal† and Yifan He†‡

† Eindhoven University of Technology, Den Dolech 2, The Netherlands
‡ Recore Systems B.V., 7500 AB Enschede, The Netherlands

{l.j.w.waeijen, d.she, h.corporaal, y.he}@tue.nl

ABSTRACT
It has been shown that wide Single Instruction Multiple
Data architectures (wide-SIMDs) can achieve high energy
efficiency, especially in domains such as image and vision
processing. In these and various other application domains,
reduction is a frequently encountered operation, where mul-
tiple input elements need to be combined into a single ele-
ment by an associative operation, e.g. addition or multipli-
cation. There are many applications that require reduction
such as: partial histogram merging, matrix multiplication
and min/max-finding. Wide-SIMDs contain a large number
of processing elements (PEs) which in general are connected
by a minimal form of interconnect for scalability reasons.
To efficiently support reduction operations on wide-SIMDs
with such a minimal interconnect, we introduce two novel
reduction algorithms which do not rely on complex commu-
nication networks or any dedicated hardware. The proposed
approaches are compared with both dedicated hardware and
other software solutions in terms of performance, area, and
energy consumption. A practical case study demonstrates
that the proposed software approach has much better gener-
ality, flexibility and no additional hardware cost. Compared
to a dedicated hardware adder tree, the proposed software
approach saves 6.8% in area with a performance penalty of
only 7.1%.

1. INTRODUCTION
Reduction is a higher order function which combines a

given list of input elements through the use of an associa-
tive operation, construction a single return value. Examples
of reduction are calculating the sum of the elements of a
vector, finding the maximum or minimum element in a list
and logic operations such as and, or and xor over a vector.
Reduction is encountered so frequently that many program-
ming languages such as C++, python, perl and ruby, have
built in support for it, although often under different names
including accumulate, fold, aggregate, compress and in-

ject.

.

Reduction is also often encountered in the video, image
and signal processing domains, which are the target domains
of wide-SIMDs. Amongst others, reduction is required for
kernels such as Partial Histogram Merging, Convolution,
Sum of Absolute Differences, Row Projection, Min/Max-
finding and Matrix Multiplication.

Because the operator used in reduction is associative, the
different combine operations can be performed independently.
Thus, reduction inherently possesses a large amount of DLP.
This DLP can be exploited by wide-SIMDs. Given that re-
duction is such an important part of the target domains of
wide-SIMDs, it is imperative to support reduction in an ef-
ficient manner on wide-SIMDs.

One of the main difficulties of wide-SIMDs is the inter-
connect between the PEs. PEs need to be able to commu-
nicate in order to synchronize or exchange data. Given that
there are hundreds of PEs, any form of complex interconnect
soon hits a scalability wall. Therefore wide-SIMDs typically
only have a very limited form of interconnect, which puts
constraints on the amount and type of communication be-
tween the PEs. This complicates the exploitation of the
DLP present in reduction.

In this paper two novel reduction algorithms optimized for
wide-SIMDs with minimal interconnect are proposed. These
algorithms do not rely on any additional hardware and re-
quire only local communication with short wires, making
this approach extremely scalable. Furthermore this soft-
ware approach is completely flexible in type of combining
operation. To demonstrate the effectiveness of the proposed
algorithm, we compare an implementation on a wide-SIMD
with limited connectivity, with both a straightforward map-
ping and a solution with dedicated hardware. Furthermore
a practical case study shows that for a practical case dedi-
cated hardware is only 7.1% faster, while it consumes 6.8%
more chip area.

The remaining parts of this paper are organized as follows;
First the experimental setup including the target platform
and data layout are discussed in Section 2. Next a straight-
forward and two novel reduction algorithms are presented
in Section 3. The novel reduction algorithms are analysed
and compared with the reference approaches in Section 4,
including the results of a practical case study. Finally re-
lated work and conclusions can be found in Sections 5 and
6 respectively.

2. EXPERIMENTAL SETUP
This section describes the target platform used to bench-

mark the novel reduction algorithms. Furthermore the data

layout on this platform and a dedicated hardware approach
are described.

2.1 Target Architecture
The architecture used to benchmark the novel reduction

algorithms is a wide-SIMD with limited interconnect. In
particular this SIMD has both an array with NPE RISC-like
processing elements to exploit data level parallelism, and in
parallel to that a Control Processor (CP). The CP handles
the program flow and the PE Array runs in lock-step with
the CP. A high level overview of the architecture is shown
in Figure 1.

Vector Data Mem

Instr. Mem

CP Op. PE Op.

DecodeDecode

CP PE PE PE

Scalar
Data Mem

Data
Mem

Data
Mem

Data
Mem

...
Circular

Neighbourhood
Network

Figure 1: High level overview of the target SIMD

Neighbourhood Network
In order to communicate between PEs and the CP, the ar-
chitecture has a neighbourhood network, which is one of the
minimal types of interconnect possible. In this network, all
PEs are connected in a circular fashion. To communicate, a
PE is able to access one of its neighbouring PEs’ operands.
The neighbourhood network is illustrated in Figure 2.

PE PE

CP

...

Left PE Right PE

Op A

RF & Bypass

PE

Figure 2: The Neighbourhood Network enables each
PE to access it’s direct neighbours’ operands

The CP can be a part of the loop or not, depending on the
configuration of the first and last PE. It is also possible to
‘break’ the loop and let the boundary PEs read a predefined
value. This configuration can be changed at runtime.

All the wires are local and there is no complex network
control involved, which is very scalability friendly. This scal-
ability comes at the price of degraded performance for long
distance communication. The key concept here is that when
a PE needs to exchange data with a PE not directly adjacent
to it, that data will have to pass through all PEs in between.
Every hop in this chain takes one cycle, hence long distance
communication is slow and inefficient. Therefore the chal-
lenge of this network is to map algorithms in such a way
that communication is kept local as much as possible.

Processing Elements
The Processing Elements are RISC-like architectures with 4
pipeline stages. An instruction can either perform a memory
or an arithmetic operation. The memory operations operate
on a private data memory (DMEM) with addressing that is
independent of the rest of the PE Array. Furthermore each
instruction can be predicated to be able differentiate the
execution between the PEs.

2.2 Data Layout
The goal of the reduction techniques is to combine the el-

ements of a vector which is distributed over the data memo-
ries of the PE Array. In particular we assume NV ect vectors
of size Vsize elements are stored in the NPE data memories
of the target SIMD. The NV ect reduced outputs have to end
up in the CP. In terms of data layout in the PE Array two
cases can be distinguished:

case 1, Vsize ≤ NPE:
If the vector size is smaller or equal to the number of PEs,
each vector has at most one element in the DMEM of each
PE. The vectors are assumed to be stored in rows, and in
case Vsize < NPE the last PEs in the array are assumed
to hold no elements and can be left out of consideration. In
Figure 3 the position of 4 vectors in the DMEM of the target
architecture is illustrated.

PE0

Dmem
[4]
[6]
[1]
[9]

PE1

Dmem
[2]
[8]
[1]
[5]

PE2

Dmem
[2]
[7]
[0]
[6]

PE3

Dmem
[7]
[8]
[3]
[1]

1

2

3

4

Figure 3: Case 1: Vsize ≤ NPE

case 2, Vsize > NPE:
If the vector has more elements than there are PEs, a wrap
around is required. Therefore the DMEM of a PE will con-
tain at least one element of the vector and possibly more.
It is relatively easy to convert this case to case 1, by letting
each PE locally reduce all elements associated to the same
vector in its private DMEM. This leads to the same layout
as in case 1 where each PE has one element per vector. The
conversion from case 2 to case 1 is illustrated in Figure 4.

PE0

Dmem
[3]
[1]
[3]
[3]

PE1

Dmem
[2]
[0]
[7]
[1]

PE2

Dmem
[1]
[1]
[7]
[x]

PE3

Dmem
[7]
[4]
[4]
[x]

1

2

(a) Initial situation

PE0

Dmem
[4]
[6]
[x]
[x]

PE1

Dmem
[2]
[8]
[x]
[x]

PE2

Dmem
[2]
[7]
[x]
[x]

PE3

Dmem
[7]
[8]
[x]
[x]

1

2

(b) After column reduction

Figure 4: Conversion from case 2 to case 1 Vsize >
NPE. N.B. here summation is arbitrarily chosen as
the combine operator for illustration purposes. The
choice of operation is completely free.

The conversion from case 2 to case 1 is a simple proce-
dure, since there is no communication required between PEs.
Given that a PE contains a maximum of dVsize

NPE
e elements

of a single vector, converting case 2 to case 1 would take
dVsize
NPE

e loads, dVsize
NPE

e − 1 combine operations and 1 store

operation. This gives a total of 2× dVsize
NPE

e.

All the algorithms and techniques discussed hereafter as-
sume a data layout as shown in Figure 3. To compensate
for the conversion from a layout such as in Figure 4a, an
additional 2× dVsize

NPE
e cycles should be added to all running

times given in this work.

2.3 Dedicated Reduction Hardware
To benchmark the novel reduction algorithms, they are

compared with dedicated reduction hardware. Although
dedicated hardware is not as scalable as a software approach,
and fixes the supported combine operation at design time, it
has been used in the past in wide-SIMDs as will be discussed
in Section 5. Therefore it is important to compare the novel
algorithms with such an approach.

Since dedicated hardware fixes the type of supported com-
bine operations, a choice has to be made on what to support.
Calculating the sum of the elements of a vector is one of the
most common types of reduction, and can be found in many
kernels. Therefore the focus is on this type of reduction and
an adder tree is added to the target architecture as dedicated
hardware.

The used adder tree is fully pipelined and can start a new
computation every cycle. It is as wide as the PE Array
and contains dlog2NPEe stages. The adder tree inputs and
output are memory mapped. The PEs can input elements
and the sum of those elements can be accessed by the CP.

3. SOFTWARE APPROACHES
This section contains three software approaches to map

reduction to the target architecture. Straightforward reduc-
tion is an attempt to exploit the DLP within a single reduc-
tion operation, and is intended as a reference for the novel
algorithms. The pipelined reduction and diagonal access
reduction are the two novel algorithms that map reduction
efficiently to the target architecture using no dedicated hard-
ware extensions or complicated interconnect requirements.

3.1 Straightforward Reduction
In typical cases the DLP in a reduction operation is ex-

ploited by performing the operations in a tree-like fashion,
i.e. all operations in one layer of a binary reduction tree are
executed in parallel. The mapping of such a tree to the PE
Array is illustrated in 5. As can be seen in Figure 5, directly

PE1PE0 PE2 PE3 PE4 PE5 PE6 PE7

1 1 1 1

2 2

4

Figure 5: Reduction tree mapped to the PE Ar-
ray. The numbers indicate the number of required
cycles to perform the communication. Red lines re-
quire more than one step and severely degrade the
performance of the reduction tree.

mapping such a reduction tree onto the target architecture
results in a mismatch with the neighbourhood network. Per
cycle, data can only be transferred either one PE to the left

or to the right. The red arrows in Figure 5 require com-
munication over more than one PE, resulting in additional
cycles to perform the communication. Per layer of the tree,
the branches become longer and the overhead increases. The
number of operations for layer i, consisting of one reduction
operation plus communication operations is given in formula
1.

OperationsPerLayer(i) = 2i,with i = 0, 1, ... (1)

The number of layers in a reduction tree for vectors of size
Vsize is given in formula 2.

layers(Vsize) = dlog2Vsizee (2)

Combining formula 1 and 2, the number of required opera-
tions can be calculated, as is shown in inequality 3.

Operations(Vsize) =

=

layers(Vsize)−1∑
i=0

OperationsPerLayer(i)

=

dlog2Vsizee−1∑
i=0

2i

= 2dlog2Vsizee − 1

≥ Vsize − 1

(3)

From this inequality it can be concluded that the number of
cycles required by the straightforward implemented reduc-
tion tree is the same or even more than using a sequential
algorithm that simply performs the Vsize − 1 combinations
required to reduce one vector.

From inequality 3 it can be concluded that instead of map-
ping the reduction tree to the SIMD, it would be just as fast,
or even faster, to implement a sequential type of algorithm.
This is accomplished by shifting the elements to the CP and
in parallel combine them one by one as they arrive. The
pseudo code for this straightforward method is given in Al-
gorithm 1. In the pseudo code right(x) is used to indicate
that element x is being read from the right neighbouring
PE.

Algorithm 1 Straightforward Approach

LoadAddr ← addressF irstV ector
for i = 0 to NV ect do
v ← load(loadAddr)
for j = 0 to Vsize − 1 do
v ←right(v)
CP: combine(right(v))

end for
LoadAddr ← LoadAddr + 1

end for

3.2 Pipelined Reduction
Since it is impossible to exploit the DLP within a single

vector with a neighbourhood network as shown in the pre-
vious section, the parallelism has to be found elsewhere. In
this section the novel pipeline reduction and diagonal access
reduction algorithms are introduced that exploit parallelism
in the number of vectors that have to be reduced. Using this
parallelism the communication pattern is transformed such
that only local transactions are required, and the whole PE
Array can perform combine operations on the input data.

The pseudo code for the pipelined reduction algorithm is
given in Algorithm 2. The key of this algorithm is that it
operates on multiple vectors in parallel, i.e. at any given
moment in time, all the PEs perform combine operations
for different vectors. After a PE has performed a combine
operation, the result is passed to the next PE. This PE will
then load the element from its DMEM that corresponds to
the vector of the received data, and repeat the process. For
clarity a visualisation is given in Figure 6. In this pipelined

Algorithm 2 Pipelined Reduction

LoadAddr ← addressF irstV ector
for i = 0 to NV ect + Vsize − 1 do

if (PEid ≥ Vsize−i) and (loadAddr < endAddr) then
v ← load(loadAddr)
s←combine(left(s), v)
CP: store(left(s)) {if i > Vsize − 1}
loadAddr ← loadAddr + 1

end if
end for

PE3

Dmem
[7]
[8]
[3]
[1]

RF
[7]

CP

Dmem
[0]
[0]
[0]
[0]

RF
[]

(a) Last PE loads top element.
Rest of the PEs is disabled by
predicating their instructions
based on the ID of the PE.

PE2

Dmem
[2]
[7]
[0]
[6]

PE3

Dmem
[7]
[8]
[3]
[1]

RF
[7]

RF
[0]

Dmem
[0]
[0]
[0]
[0]

RF
[]

CP

(b) Increase load address in
active PEs, enable next PE
and shift loaded value to the
left.

PE2

Dmem
[2]
[7]
[0]
[6]

PE3

Dmem
[7]
[8]
[3]
[1]

RF
[2+7]

RF
[0+8]

Dmem
[0]
[0]
[0]
[0]

RF
[]

CP

(c) Load next value and re-
duce it with the element just
received.

PE0

Dmem
[4]
[6]
[1]
[9]

PE1

Dmem
[2]
[8]
[1]
[5]

PE2

Dmem
[2]
[7]
[0]
[6]

PE3

Dmem
[7]
[8]
[3]
[1]

RF
[15]

RF
[23]

RF
[3]

RF
[1]

Dmem
[0]
[0]
[0]
[0]

RF
[]

CP

(d) Repeat until all PEs are
active. The ’pipeline’ is now
filled.

PE0

Dmem
[4]
[6]
[1]
[9]

PE1

Dmem
[2]
[8]
[1]
[5]

PE2

Dmem
[2]
[7]
[0]
[6]

PE3

Dmem
[7]
[8]
[3]
[1]

RF
[4]

RF
[7]

RF
[0]

RF
[0]

Dmem
[15]
[29]
[0]
[0]

RF
[]

CP

(e) When a PE is done with all
vectors in its DMEM, disable it
again.

PE0

Dmem
[4]
[6]
[1]
[9]

RF
[0]

Dmem
[15]
[29]
[5]
[21]

RF
[]

CP

(f) Repeat until all sums have
ended up in the CP.

Figure 6: Visualisation of the pipelined reduction
Algorithm. For this Figure summation is used as
the combine operator.

reduction algorithm, three phases can be recognized:

1. Filling the pipeline:
In this phase not all PEs are active. It takes NPE steps

before PE0 receives its first element. This phase corresponds
with Figure 6a to 6c.
2. Maximum occupancy:
If NV ect ≥ Vsize, then there will be a point where all the
PEs are active. In this phase Vsize PEs will perform a useful
combine operation per step in the algorithm. See Figure 6d.
3. Emptying the pipeline:
Once the last PE in the array has processed the last vector, it
can be disabled. From this point on the remaining PEs will
finish one by one until the first PE in the array completes.
This corresponds with Figure 6e to 6f.

3.3 Diagonal Access Reduction
If NV ect < Vsize, the pipelined reduction algorithm never

enters the most efficient phase (phase 2). Therefore, if NV ect

is much smaller than Vsize it is better to take a different
approach. By accessing the elements in a diagonal pattern
from the start and using wrap-around, efficient reduction is
possible for all situations where NV ect ≤ Vsize. The pseudo
code for the diagonal access reduction algorithm is given in
Algorithm 3. A visualization is given in Figure 7.

Algorithm 3 Diagonal Access Reduction (NV ect < NPE)

LoadAddr ← addressF irstV ector + (PEID mod NV ect)
s← load(loadAddr)
for i = 0 to NV ect − 1 do
loadAddr ← wrap(loadAddr+1) {no modulo required!}
v ← load(loadAddr)
s← combine(v + right(s))

end for
for i = 0 to Vsize do
s← right(s)
CP: combine(Result[i mod NV ect],right(s))

end for

4. ANALYSIS AND EVALUATION
In this section the two novel reduction methods and the

reference methods are analysed and evaluated in terms of
running time, chip area and energy consumption.

First running times of the various approaches are obtained
by using a cycle accurate simulator which is verified against
RTL code. The measured running times are plotted as con-
tinuous lines in Figure 8. The vector size (Vsize) is fixed at
128 elements. Apart from the measured values, the specific
constants for the complexity formulas of the algorithms are
derived from the source code to approximate the running
times for any combination of NV ect and Vsize (equations: 4,
5, 6 and 7). To demonstrate the accuracy of the formulas,
the approximated lines also plotted in Figure 8.

Straigthforward(Vsize, NV ect) =

10 + 12×NV ect +
11

8
× Vsize ×NV ect

(4)

Pipelined(Vsize, NV ect) = 26 + Vsize × 4 +NV ect ×
19

8
(5)

DiagonalAccess(Vsize, NV ect) =

12 + 11×NV ect + log2

Vsize

NV ect
× (37.5 +NV ect)

+ Vsize × 0.5

(6)

PE0

Dmem
[4]
[6]
[1]

PE1

Dmem
[2]
[8]
[1]

PE2

Dmem
[2]
[7]
[0]

PE3

Dmem
[7]
[8]
[3]

RF
[4]

RF
[8]

RF
[0]

RF
[7]

CP

Dmem
[0]
[0]
[0]

RF
[x]

(a) Set load address to PEID

mod NV ect (red circles) and
load first element.

PE0

Dmem
[4]
[6]
[1]

PE1

Dmem
[2]
[8]
[1]

PE2

Dmem
[2]
[7]
[0]

PE3

Dmem
[7]
[8]
[3]

RF
[8]

RF
[0]

RF
[7]

RF
[0]

Dmem
[0]
[0]
[0]

RF
[4]

CP

(b) Shift left.

PE0

Dmem
[4]
[6]
[1]

PE1

Dmem
[2]
[8]
[1]

PE2

Dmem
[2]
[7]
[0]

PE3

Dmem
[7]
[8]
[3]

RF
[6+8]

RF
[1+0]

RF
[2+7]

RF
[8+0]

Dmem
[0]
[0]
[0]

RF
[4]

CP

(c) Increase load address and
use warp-around if required
(PE2). Load element and com-
bine with shifted value. CP:
store received value.

PE0

Dmem
[4]
[6]
[1]

PE1

Dmem
[2]
[8]
[1]

PE2

Dmem
[2]
[7]
[0]

PE3

Dmem
[7]
[8]
[3]

RF
[1]

RF
[9]

RF
[8]

RF
[0]

Dmem
[4]
[0]
[0]

RF
[14]

CP

(d) Shift left.

PE0

Dmem
[4]
[6]
[1]

PE1

Dmem
[2]
[8]
[1]

PE2

Dmem
[2]
[7]
[0]

PE3

Dmem
[7]
[8]
[3]

RF
[11]

RF
[15]

RF
[3]

RF
[0]

Dmem
[4]
[14]
[2]

RF
[x]

CP

(e) Repeat until every input
element is touched.

PE0

Dmem
[4]
[6]
[1]

PE1

Dmem
[2]
[8]
[1]

PE2

Dmem
[2]
[7]
[0]

PE3

Dmem
[7]
[8]
[3]

RF
[11]

RF
[15]

RF
[3]

RF
[0]

Dmem
[4]
[14]
[2]

RF
[x]

CP

(f) Shift left. CP: combine in-
coming with stored elements.

PE0

Dmem
[4]
[6]
[1]

PE1

Dmem
[2]
[8]
[1]

PE2

Dmem
[2]
[7]
[0]

PE3

Dmem
[7]
[8]
[3]

RF
[15]

RF
[3]

RF
[0]

RF
[0]

Dmem
[15]
[14]
[2]

RF
[x]

CP

(g) Shift left. CP: combine in-
coming with stored elements.

PE0

Dmem
[4]
[6]
[1]

PE1

Dmem
[2]
[8]
[1]

PE2

Dmem
[2]
[7]
[0]

PE3

Dmem
[7]
[8]
[3]

RF
[0]

RF
[0]

RF
[0]

RF
[0]

Dmem
[15]
[29]
[5]

RF
[x]

CP

(h) Repeat until all elements
are reduced.

Figure 7: Visualisation of Diagonal Access Reduc-
tion, again summation is chosen as the combine op-
eration.

adderTree(NV ect, NPE) = 14 + α+NV ect ×
(

6

α
+ 2

)
with α = nextPowerOfTwo(dlog2NPEe)

(7)

Since the adder tree requires exactly the same amount of
cycles for 64 < Vsize ≤ 128, the same line would hold for
Vsize = 65. The software approaches would however need
to do less work and would thus finish faster. To illustrate
this a purple line is added for the pipelined algorithm for
Vsize = 65. This line can thus be compared directly to
line of the adder tree, indicating how much the performance
difference can vary if Vsize is between two consecutive powers
of two.

As can be seen in Figure 8 the pipelined and Diagonal
Access algorithms provide an enormous speed up compared
to the straightforward method for more than a couple of
vectors. The pipelined approach has a high initial cost and
is slow for a small Nvect. This effect is partly mitigated by
using the Diagonal Access algorithm in this region.

The interesting part however, is that the running time of
the adder tree grows at about the same rate as the pipelined
reduction algorithm. In fact, as can be derived from the
running time formulas, in the current implementation the
pipelined reduction algorithm grows at about 2.38 cycles
per vector while the adder tree grows at 2.75. At some

20 40 60 80 100
Number of Input Vectors (Nvect)

200

400

600

800

1000

Nu
m

be
r o

f C
yc

le
s

Vsize=65

Running Time (Vsize=128)

Adder Tree (sim)
Diagonal Access (sim)
Pipelined Vsize=65 (sim)
Pipelined (sim)
straightforward (sim)

Pipelined (Approx.)
AdderTree (Approx.)
Diagonal Access (Approx.)
StraightFwd (Approx.)

Figure 8: Measured and approximated running
times of the various methods for varying number
of vectors (NV ect) and fixed vector size (Vsize)

point the software reduction would thus actually be faster
than the dedicated adder tree.

This effect though is dependent back to the target archi-
tecture. Both algorithms have the same complexity and are
theoretically able to grow at a rate of one cycle per vec-
tor. In the current target architecture however, one cycle is
required to load the vector from memory, one to do the ac-
tual reduction and the rest is control overhead shared over a
number of vectors. An expansion of the target architecture
with zero overhead loop support and dual issue PEs would
enable a growth of only one cycle per vector for both the
dedicated hardware, and the pipelined reduction method.

Table 1 shows the area overhead, and energy results for
a fixed input size. These numbers are obtained by synthe-
sizing the SIMD for 400MHz with a 40nm TSMC library.
Post synthesis simulation is used to obtain the power and
energy results. As can be seen in the table, the adder tree

Nvect = 100 and Vsize = NPE = 128
Approach Area Speed Power Energy

Overh. (cycles) (µW) (pJ)
Straightfwd. 0% 18814 51 2398
Diagonal 0% 1377 63 217
Pipelined 0% 786 56 110
Adder Tree 6.5% 294 82 60

Table 1: Area Overhead, Running Time, Power and
Energy comparison for the various approaches ob-
tained by post-synthesis simulation.

consumes less energy, but these numbers are excluding mem-
ories. If the data memories are chosen to be 16 bit wide, 1KB
large and also built in 40nm technology, the cacti memory
tool [6] calculates an access energy of 0.7564pJ . For the
tested configurations this would result in an additional en-
ergy of 9758pJ , making the energy difference between dedi-
cated hardware and the novel algorithms negligible.

Case Study - Fast Focus on Structures
To evaluate the effectiveness of the novel reduction algo-
rithms in a practical application, the Fast Focus on Struc-

Application Adder Tree Novel Algorithm
CH/CIAcalculation 2580 2540
Row Projection 379 970

Table 2: Cycles times for both the adder tree and
the novel reduction algorithms for FFoS on a 120x45
input image

tures application [2] was mapped to the target platform as
a case study.

In the FFoS algorithm the centres of OLEDs have to be
detected from an image. In order to do so, reduction is
used in two parts of the algorithm. Once to merge partial
histograms and convert them to a Cumulative Histogram
(CH) and Cumulative Intensive Area, and once to obtain
the sum of the rows of the image and detect peaks in that
projection.

The cycle counts for the various parts of the application
with both the novel software techniques and a dedicated
adder tree are given in Table 2. As is shown in the table,
for this practical example, the software reduction technique
is even faster for the CH/CIA calculation. This is due to
the flexibility of the software approach. Where the adder
tree always gives its result directly to the CP, the software
approach is able to do some post processing in parallel with
the CP, reducing the running time. For row-projection, the
detection of peaks in the row projection on the CP takes
so much time that the reduction operations on the PEs are
completely hidden. It is only the initial start up cost that
makes the software reduction technique slower here. Overall
the FFoS application with dedicated hardware is only 7.1%
faster than with the software reduction techniques.

5. RELATED WORK
Reduction is encountered frequently in the target domains

of wide-SIMDs and multiple solutions to support reduction
have been proposed in the past. The most common approach
is to implement dedicated hardware to support a fixed type
of reduction. For example S.Seo et al. [5] suggest a dedicated
adder tree as an extension to AnySP [7] in order to support
the H.264 video codec efficiently. Other examples of SIMDs
optimized for video processing that include dedicated hard-
ware include SIMD-2D [3] and the work by Don-Xiao Li et
al. [4].

In the SLiM-II [1] a dedicated interconnect is used to sup-
port reduction. Essentially the red lines in Figure 5 are im-
plemented as direct, one cycle latency, connections between
PEs. To perform one reduction operation with this network
dlog2 Vsizee communication steps are required. This ap-
proach is flexible in type of operation, but a single reduction
operation takes O(dlog2 Vsizee) operations, as consecutive
operations cannot be pipelined. Furthermore implement-
ing the red lines as connections would result in PE0 having
dlog2 Vsizee additional connections, which the instruction set
must support selecting from.

It is clear that efficient reduction support for wide-SIMDs
is a relevant topic for many applications. The proposed
solutions in the related works all use additional hardware
to support reduction causing them to either lose general-
ity, or end up with an inherently slower and more complex
design. The novel reduction algorithms introduced in this
paper avoid the downsides of dedicated hardware and offer

an interesting trade-off between pure performance, flexibil-
ity, scalability and chip area.

6. CONCLUSIONS
In this paper we have introduced 2 novel reduction al-

gorithms optimized for highly scalable, low-power intercon-
nects that provide only minimal connectivity. It has been
shown that the algorithms are much more effective than a
straightforward approach and can even compete with ded-
icated hardware solutions. The added flexibility of the al-
gorithms can in practical cases give an edge over hardware
solutions. Since there is no additional hardware involved
and only short local wires for communication are required,
these software approaches are cheaper in area and can scale
virtually unlimited. As almost all types of interconnect pro-
vide the required connectivity, these algorithms could be
mapped to existing processors that lack hardware support
and for future designs it should be a reason to reconsider
adding hardware support at all.

For future work, it would be an interesting topic to see if a
slightly more complex network with a few long connections
could help to minimize the start up cost of the software
approaches. For example a network that allows blocks of 8
PEs to be skipped with a single hop.

7. REFERENCES
[1] H. Chang, S. Ong, C. Lee, M. Sunwoo, and T. Cho. A

general purpose SliM-II image processor. In Computer
Architecture for Machine Perception, 1997. CAMP 97.
Proceedings. 1997 Fourth IEEE International Workshop
on, pages 253–259, 1997.

[2] Y. He, Z. Ye, D. She, R. Pieters, B. Mesman, and
H. Corporaal. 1000 fps visual servoing on the
reconfigurable wide SIMD processor. In Proceedings of
the 16th Annual Conference of the Advanced School for
Computing and Imgaging 2010, pages 302–309, 2010.

[3] S. Perri, M. Lanuzza, P. Corsonello, and G. Cocorullo.
SIMD 2D convolver for fast FPGA-based image and
video processors. In Military Aerospace Programmalbe
Logic Devices, 2003 (MAPLD’2003), 2003.

[4] D. -X. Li, W. Zheng, and M. Zhang. Architecture
design for H.264/AVC integer motion estimation with
minimum memory bandwidth. Consumer Electronics,
IEEE Transactions on, 53(3):1053–1060, 2007.

[5] S. Seo, M. Woh, S. Mahlke, T. Mudge, S. Vijay, and
C. Chakrabarti. Customizing wide-SIMD architectures
for H.264. In Systems, Architectures, Modeling, and
Simulation, 2009. SAMOS ’09. International
Symposium on, pages 172–179, 2009.

[6] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and
N. Jouppi. cacti 5.3, rev 174, March 2014. Available at
http://quid.hpl.hp.com:9081/cacti/.

[7] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner. AnySP: Anytime Anywhere Anyway
Signal Processing. Micro, IEEE, 30(1):81 –91, jan.-feb.
2010.

