

Modeling and enacting complex data dependencies in
business processes
Citation for published version (APA):
Meyer, A., Pufahl, L., Fahland, D., & Weske, M. H. (2013). Modeling and enacting complex data dependencies
in business processes. (Technische Berichte; Vol. 74). Hasso-Plattner-Institut für Softwaresysteemtechnik an
der Universität Potsdam.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/6ad11d2f-b8e6-4154-8e43-8618bc2484cb

Technische Berichte Nr. 74

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Modeling and

Enacting Complex

Data Dependencies in

Business Processes

Andreas Meyer, Luise Pufahl, Dirk Fahland,
Mathias Weske

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 74

Andreas Meyer | Luise Pufahl | Dirk Fahland | Mathias Weske

Modeling and Enacting Complex
Data Dependencies in Business Processes

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2013
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2013/6510/
URN urn:nbn:de:kobv:517-opus-65103
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65103

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-245-2

mailto:verlag@uni-potsdam.de

Modeling and Enacting Complex Data Dependencies in
Business Processes

Andreas Meyer1, Luise Pufahl1, Dirk Fahland2, and Mathias Weske1

1 Hasso Plattner Institute at the University of Potsdam
{Andreas.Meyer,Luise.Pufahl,Mathias.Weske}@hpi.uni-potsdam.de

2 Eindhoven University of Technology
d.fahland@tue.nl

Abstract. Enacting business processes in process engines requires the coverage
of control flow, resource assignments, and process data. While the first two aspects
are well supported in current process engines, data dependencies need to be added
and maintained manually by a process engineer. Thus, this task is error-prone and
time-consuming. In this report, we address the problem of modeling processes with
complex data dependencies, e.g., m:n relationships, and their automatic enactment
from process models. First, we extend BPMN data objects with few annotations
to allow data dependency handling as well as data instance differentiation. Sec-
ond, we introduce a pattern-based approach to derive SQL queries from process
models utilizing the above mentioned extensions. Therewith, we allow automatic
enactment of data-aware BPMN process models. We implemented our approach
for the Activiti process engine to show applicability.

Keywords: Process Modeling, Data Modeling, Process Enactment, BPMN, SQL

1 Motivation

The purpose of enacting processes in process engines or process-aware information
systems is to query, process, transform, and provide data to process stakeholders. Process
engines such as Activiti [4], Bonita [5] or AristaFlow [12] are able to enact the control
flow of a process and to allocate required resources based on a given process model in
an automated fashion. Also simple data dependencies can be enacted from a process
model, for example, that an activity can only be executed if a particular data object is in
a particular state. However, when m:n relationships arise between processes and data
objects, modeling and enactment becomes more difficult.

For example, Fig. 1 shows a typical build-to-order process of a computer manu-
facturer in which customers order products that will be custom built. For an incoming
Customer order, the manufacturer devises all Components needed to build the product.
Components are not held in stock, but the manufacturer on demand creates and executes
a number of Purchase orders to be sent to various Suppliers to procure the Components
required. To reduce costs, Components of multiple Customer orders are bundled in
joint Purchase orders. The two subprocesses of Fig. 1 handle complex m:n relationships

mailto:Andreas.Meyer@hpi.uni-potsdam.de;Luise.Pufahl@hpi.uni-potsdam.de;Mathias.Weske@hpi.uni-potsdam.de
mailto:d.fahland@tue.nl

2 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

C
o
m

p
u
te

r
M

a
n
u
fa

c
tu

re
r Create and

execute purchase

orders (C)

Process incoming

customer orders

(P)

Component
III

Customer

Supplier

Customer

order

III

III

Purchase

order

Fig. 1: Build-to-order process, where subprocess P
collects multiple orders from several Customers in
an internal loop and where C sends multiple Pur-
chase orders to several Suppliers using a multi in-
stance subprocess internally.

between the different orders: one Pur-
chase order contains Components of
multiple Customer orders and one Cus-
tomer order depends on Components
of multiple Purchase orders.

Widely accepted process model-
ing languages such as BPMN [16] do
not provide sufficient modeling con-
cepts for capturing m:n relationships
between data objects, activities, and
processes. As a consequence, actual
data dependencies are often not de-
rived from a process model. They are
rather implemented manually in ser-
vices and application code, which yields high development efforts and may lead to
errors.

Explicitly adding data dependencies to process models provides multiple advantages.
In contrast to having data only specified inside services and applications called from the
process, an integrated view facilitates communication with stakeholders about processes
and their data manipulations; there are no hidden dependencies. With execution semantics
one can automatically enact processes with complex data dependencies from a model
only. Finally, an integrated conceptual model allows for analyzing control and data flow
combined regarding their consistency [11, 23] and correctness. Also different process
representations can be generated automatically, for instance, models showing how a
data object evolves throughout a process [9, 13].

Existing techniques for integrating data and control flow follow the “object-centric”
paradigm [3, 6, 10, 14]: a process is modeled by its involved objects; each one has a life
cycle and multiple objects synchronize on their state changes. This paradigm is beneficial
when process flow follows from process objects, e.g., in manufacturing processes [14].
However, there are many domains, where processes are rather “activity-centric” such as
accounting, insurance handling, or municipal procedures. In these, execution follows an
explicitly prescribed ordering of domain activities, not necessarily tied to a particular
object life cycle. For such processes, changing from an activity-centric view to an
object-centric view for the sake of data support has disadvantages. Besides having to
redesign all processes in a new paradigm and training process modelers, one also has to
switch to new process engines and may no longer be supported by existing standards.
This gives rise to a first requirement (RQ1-activity): processes can be modeled in an
activity-centric way using well-established industrial standards for describing process
dynamics and data dependencies.

In this paper, we address the problem of modeling and enacting activity-centric
processes with complex data dependencies. The problem itself was researched for more
than a decade revealing numerous requirements as summarized in [10]. The following
requirements of [10] have to be met to enact activity-centric processes with complex
data dependencies directly from a process model:

Modeling and Enacting Complex Data Dependencies in Business Processes 3

(RQ2-data integration) The process model refers to data in terms of object types,
defines pre- and post-conditions for activities (cf. requirements R01 and R14 in [10]),
and
(RQ3-object behavior) expresses how data objects change (cf. R04 in [10])
(RQ4-object interaction) in relation and interaction with other data objects; objects are
in 1:1, 1:n, or m:n relationships. Thereby, process execution depends on the state of its
interrelated data objects (cf. R05 in [10]) and
(RQ5-variable granularity) an activity changes a single object, multiple related objects
of different types, or multiple objects of the same type (cf. R17 in [10]).

In this paper, we propose a technique that addresses the requirements (RQ1)-(RQ5).
The technique combines classical activity-centric modeling in BPMN [16] with relational
data modeling as known from relational databases [20]. To this end, we introduce few
extensions to BPMN data objects: Each data object gets dedicated life cycle information,
an object identifier, and fields to express any type of correlation, even m:n relationships,
to other objects with identifiers. We build on BPMN’s extension points ensuring confor-
mance to the specification [16]. These data annotations define pre- and post-conditions
of activities with respect to data. We show how to automatically derive SQL queries from
annotated BPMN data objects that check and implement the conditions on data stored in
a relational database. For demonstration, we extended the Activiti process engine [4] to
automatically derive SQL queries from data-annotated BPMN models.

The remainder of this paper is structured as follows. In Section 2, we discuss the
current data modeling capabilities of BPMN including shortcomings. Then, in Section 3,
we present our technique for data-aware process modeling with BPMN, which we give
operational semantics in Section 4. There, we also discuss the SQL derivation. Section 5
introduces all patterns required to apply the semantics in the presented setting. We
discuss our implementation in Section 6 before we review related work in Section 7 and
conclude in Section 8.

2 Data Modeling in BPMN

BPMN [16], a rich and expressive modeling notation, is the industry standard for business
process management and provides means for modeling as well as execution of business
processes. In this section, we introduce BPMN’s existing capabilities for data modeling
and its shortcomings with respect to the requirements introduced above.

So far, we used the term “data object” with a loose interpretation in mind. For the
remainder, we use the terminology of BPMN [16], which provides the concept of data
objects to describe different types of data in a process. Data flow edges describe which
activities read or write which data objects. The same data object may be represented
multiple times in the process distinguishing distinct read or write accesses. A data flow
edge from a data object representation to an activity describes a read access to an
instance of the data object, which has to be present in order to execute the activity. A
data object instance is a concrete data entry of the corresponding data object. A data
flow edge from an activity to a data object representation describes a write access, which
creates a data object instance, if it did not exist, or updates the instance, if it existed

4 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

before. Fig. 2 shows two representations of data object D, one is read by activity A and
one is written. Data object representations can be modeled as a single instance or as
a multi instance (indicated by three parallel bars) that comprises a set of instances of
one data object. Further, a data object can be either persistent (stored in a database) or
non-persistent (exists only while the process instance is active). Our approach focuses
on persistent single and multi instance data objects.

Activity A

D

[state X]

D

[state Y]

Fig. 2: Object life cycle of data ob-
ject D with two representations.

The notion of an object life cycle emerged over
the last years for giving data objects a behavior. The
idea is that each data object D can be in a number of
different states. A process activity A reading D may
only get enabled if D is in a particular state; when A
is executed object D may transition to a new state. To
express this behavior, BPMN provides the concept of
data states, which allows to annotate each data object
with a [state]. Fig. 2 shows an example: Activity A may
only be executed when the respective object instance is indeed in state X; after executing
the activity, this object instance is in state Y.

The BPMN semantics is not sufficient to express all data dependencies in a process
model with respect to the following four aspects. The annotations to data object repre-
sentations in Fig. 2 do not allow to distinguish different object instances of D in the same
process instance, e.g., two different customer orders. Likewise, we cannot express how
several instances of different data objects relate to each other. Further, the type of a write
access on data objects, e.g., creation or update, is not clear from the annotations shown
above. Finally, the correlation between a process instance and its object instances is not
supported. Next, we propose a set of extensions to BPMN data objects to overcome the
presented shortcomings.

3 Extending BPMN Data Modeling

In this section, we introduce annotations to BPMN data objects to overcome the short-
comings utilizing extension points, which allow to extend BPMN and still being standard
conform. With these, we address requirements (RQ1)-(RQ5) from the introduction. In
the second part, we illustrate the extensions on a build-to-order process.

3.1 Modeling Data Dependencies in BPMN

To distinguish and reference data object instances, we utilize proven concepts from
relational databases: primary and foreign keys [20]. We introduce object identifiers as an
annotation that describes the attribute by which different data object instances can be
distinguished (i.e., primary keys). Along the same lines, we introduce attributes, which
allow to refer to the identifier of another object (cf. foreign keys in [20]).

Fig. 3 shows annotations for primary key (pk) and foreign key (fk) attributes in
BPMN data object representations. Instances of D are distinguishable by attribute d id
and instances of E by attribute e id. In Fig. 3a, each instance of D is related to one
instance of E by the fk attribute e id, i.e., a 1:1 relationship. The activity A can only

Modeling and Enacting Complex Data Dependencies in Business Processes 5

Activity A

D

[state X]

D

[state Y]

E

[state Z]

pk: e_id

pk: d_id
fk: e_id

pk: d_id
fk: e_id

(a)

D

[state X]

D

[state Y]

pk: d_id
fk: e_id

pk: d_id
fk: e_id

III III

Activity A

E

[state Z]

pk: e_id

(b)

D

[state X]

D

[state Y]

pk: d_id
fk: e_id, *f_id*

pk: d_id
fk: e_id, *f_id*

III III

Activity A

E

[state Z]

pk: e_id

(c)

Fig. 3: Describing object interactions in (a) 1:1, (b) 1:n, and (c) m:n cardinality.

execute when one instance e of E is in state Z and one instance d of D is in state X that
is related to e exist. Upon execution, d enters state Y whereas e remains unchanged. A
multi instance representation of D expresses a 1:n relationship from E to D as shown in
Fig. 3b, e.g., several computer components for one customer order. To execute activity A,
all instances of D related to e have to be in state X; the execution will put all instances
of D into state Y. We allow multi-attribute foreign keys to express m:n relationships
between data objects as follows. Assume, data objects D, E, F have primary keys d id,
e id, f id, respectively, and D has foreign key attributes e id, f id. Each instance of D
(e.g., a component) refers to one instance of E (e.g., a customer order it originated from)
and one instance of F (e.g., a purchase order in which it is handled). Different instances
of D may refer to the same instance e of E (e.g., all components of the same customer
order) but to different instances of F (e.g., handled by different purchase orders) and vice
versa. This yields an m:n relationship between E and F via D. We allow to all-quantify
over foreign keys by enclosing them in asterisks, e.g., *f id* in Fig. 3c. Here, activity A
updates all instances of D from state X to state Y if they are related to the instance e
of E and to any instance of F , that is, we quantify over *f id*. A foreign key attribute
can be null indicating that the specific reference is not yet set. A data object may have
further attributes, however, these are not specified in the object itself but in a data model,
possibly given as UML class diagram [17], accompanying the process model.

In order to derive all data dependencies from a process model, we need to be able to
express the four major data operations: create, read, update, and delete for a data object
instance (see Fig. 4). Read and update are already provided through BPMN’s data flow
edges. To express create or delete operations, we need to add two annotations shown in
the upper right corner: [new] expresses the creation of a new data object instance having

create

D

[state X]

[new]

read

D

[state X]

update

D

[state Y]

delete

D

[delete]

pk: d_id pk: d_id pk: d_id pk: d_id

Fig. 4: Describing create, read, update, and delete of a data object.

6 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

a completely fresh identifier and [delete] expresses its deletion. Note that one activity
can apply several data operations to different data objects. For example, activity A in
Fig. 3a reads and updates an instance of D and reads an instance of E.

D

[state X]

pk: d_id
fk: e_id, null

III

[new]

Fig. 5: Extended data ob-
ject representation.

The introduced extensions require that a data object contains
a name and a set of attributes, from which one needs to describe
a data state, an object identifier (primary key), and a set of
relations to other data objects (foreign keys). Fig. 5 summarizes
these extensions for a data object representation. Based on
the informal considerations above, we formally define such
extended representation of a BPMN data object as follows.

Definition 1 (Data object representation). A data object representation r = (name,
state, pk ,FK ,FK ∗, η, ω) refers to the name of the data object, has a state, a primary
key (pk), a finite set FK of foreign keys, a set FK ∗ ⊆ FK of all-quantified foreign keys,
and a data operation type η ∈ {new , delete,⊥}. ω ∈ {singleInstance,multiInstance}
defines the instance multiplicity property. �

⊥ as element of set η refers to a blank data operation description for which the data
access is derived from the data flow: an input data flow requires a read operation while
an output data flow requires an update operation.

To let a specific process instance create or update specific data object instances, we
need to link these two. For this, we adopt an idea from business artifacts [15] that each
process instance is “driven” by a specific data object instance. We call this object case
object; all other objects have to be related to it by means of foreign keys. This idea
naturally extends to instances of subprocesses or multi-instance activities. Each of them
defines a scope which has a dedicated instance id. An annotation in a scope defines
which data object acts as case object. A case object instance is either freshly created
by its scope instance based on a new annotation (the object instance gets the id of its
scope instance as primary key value). Alternatively, the case object instance already
exists and is passed to the scope instance upon creation (the scope instance gets the id of
its case object instance). By all means, a case object is always single instance. For the
presentation of our approach in Section 3 and 4, we assume that all non case objects are
directly related to the case object. In Section Section 5, lift our approach to the general
case such that data objects can be also indirectly related to the case object, i.e., via an
other data object. We make data objects and case objects part of the process model as
follows, utilizing a subset of BPMN [16].

Definition 2 (Process model). A process model M = (N,R,DS,C, F, P, typeA,
case, typeG , κ) consists of a finite non-empty set N ⊆ A∪G∪E of nodes being activi-
tiesA, gatewaysG, and eventsE, a finite non-empty setR of data object representations,
and the finite set DS of data stores used for persistence of data objects (N,R,DS are
pairwise disjoint).C ⊆ N×N is the control flow relation, F ⊆ (A×R)∪(R×A) is the
data flow relation, and P ⊆ (R×DS)∪(DS×R) is the data persistence relation; typeA :
A → {task , subprocess,multiInstanceTask ,multiInstanceSubprocess} gives each
activity a type; case(a) defines for each a ∈ A where typeA(a) 6= task the case ob-
ject. Function typeG : G → {xor , and} gives each gateway a type; partial function
κ : F 9 exp optionally assigns an expression exp to a data flow edge. �

Modeling and Enacting Complex Data Dependencies in Business Processes 7

An expression at a data flow edge allows to refer to data attributes that are neither state
nor key attribute, as we show later. As usual, a process model M is assumed to be
structural sound, i.e., M contains exactly one start and one end event and every node
of M is on a path from the start to the end event. Further, each activity has at most one
incoming and one outgoing control flow edge.

3.2 Example

In this section, we apply the syntax introduced above to model the build-to-order scenario
presented in the introduction. The scenario consists of two interlinked process models
and the corresponding data model. The scenario comprises the collection of customer
orders, presented in Fig. 7, and the arrangement of purchase orders based on the customer
orders received, presented in Fig. 8. Each customer order can be fulfilled by a set of
purchase orders and each purchase order consolidates the components required for
several customer orders. This m:n relationship is expressed in the data model in Fig. 6.

Processing Cycle (ProC)

-proc_id : string

-state : string

Customer Order (CO)

-co_id : string

-proc_id : string

-state : string

Purchase Order (PO)

-po_id : string

-proc_id : string

-state : string

Booking (B)

-b_id : string

-po_id : string

-state : string

Component (CP)

-cp_id : string

-co_id : string

-po_id : string

-state : string

-supplier : string

1

1..*

1..*

1 1

1

1..*

1

Fig. 6: Data model.

Data model. The process-
ing cycle (ProC) contains
information about customer
orders (CO) being placed
by customers and purchase
orders (PO) used to orga-
nize the purchase of com-
ponents within a particular
time frame. Data object com-
ponent (CP) links CO and
PO in an m:n-fashion, i.e., CP has two foreign keys, one to CO and one to PO. CO and
PO each have one foreign key to ProC. Accounting of the manufacturer is performed
utilizing data object booking (B). For simplicity, we assume that all data is persisted in
the same data store, e.g., the database of the manufacturer, and omit representations of
the data store in the process diagrams.

Customer order collection process. In Fig. 7, the first task starts a new processing
cycle allowing customers to send in orders for computers. By annotation new, a new
ProC object instance is created for each task execution. As this is the case object of the

C
o
m

p
u
te

r
M

a
n
u
fa

c
tu

re
r

Start

processing

cycle

Close CO

retrieval
Customer

orders >= 3

Customer

orders < 3

case object: ProC

ProC

[created]

pk: proc_id

[new]

ProC

[received]

pk: proc_id

CO

Customer
III

case object: COReceive

customer

order
Create

component

list

Set supplier

for CP

numberOfItems = 13

ProC

[created]

pk: proc_id

CO

[created]

pk: co_id
fk: null

CO

[received]

pk: co_id
fk: proc_id

CP

[created]

pk: cp_id
fk: co_id, null

III

[new]

CP

[updated]

pk: cp_id
fk: co_id, null

III

III

case object: CP

CO

[received]

pk: co_id
fk: proc_id

CP

[created]

pk: cp_id
fk: co_id, null

III

Fig. 7: Build-to-order scenario: customer order collection.

8 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

C
o
m

p
u
te

r
M

a
n
u
fa

c
tu

re
r

Create

purchase

order

Specify

$supplier
Book purchase

orders

Send purchase

orders

Finalize

purchase

III

case object: ProC

numberOfItems = 5

case object: PO

CP.supplier

= $supplier

Assign CP

to PO

PO

[created]

pk: po_id
fk: proc_id

III

[new]

ProC

[received]

pk: proc_id

PO

[created]

pk: po_id
fk: proc_id

III

PO

[created]

pk: po_id

PO

[created]

pk: po_id
fk: proc_id

III

PO

[sent]

pk: po_id
fk: proc_id

III

B

[created]

pk: b_id
fk: po_id

III

[new]

PO

[created]

pk: po_id
fk: proc_id

III

PO

[sent]

pk: po_id
fk: proc_id

III

ProC

[purchased]

pk: proc_id
III

Supplier
III

PO

ProC

[purchasing]

pk: proc_id

CP

[updated]

pk: cp_id
fk: *co_id*, null

III

CP

[assigned]

pk: cp_id
fk: *co_id*,po_id

III

III

case object: PO

III

case object: PO

CP.supplier

= $supplier

Fig. 8: Build-to-order scenario: purchase order arrangement.

process, the primary key proc id gets the id of the process instance as value. Next, COs
are collected in a loop structure until three COs have been successfully processed. Task
Receive customer order receives one CO from a customer and correlates this CO instance
to the ProC instance of the process instance (annotation fk: proc id) before it is analyzed
in a subprocess. CO is the case object of the subprocess, which gets its instance id from
the primary key of the received CO instance. Task Create component list determines the
components needed to handle the CO: several CP instances are created (annotation new
on a multi instance object representation). Each CP instance has a unique primary key
value; the foreign key attribute co id referring to CO is set to the current CO instance; the
foreign key attribute referring to PO is still null. The number of CP instances to create is
given in the expression on the data output flow edge. Here, we give an explicit number,
but it could also be a process variable holding the result of the task execution (e.g., user
input, result of a service invocation). Next, an user updates the attribute CP.supplier
for each component (CP) to indicate where it can be purchased, e.g., by using a form.
The loop structure is conducted for each received CO and repeated until three COs are
collected. CO retrieval is closed by moving the current ProC to state received.

Purchase order arrangement process. The second process model in Fig. 8 describes
how components (extracted from different COs) are associated to purchase orders (POs),
building an m:n relationship between POs and COs. Object ProC links both processes,
the process in Fig. 8 can only start when there is a ProC object instance in state received.

Create purchase order creates multiple PO object instances correlated to the ProC
instance. All PO instances are handled in the subsequent multi instance subprocess: for
each PO instance one subprocess instance is created, having the PO instance as case
object and the corresponding po id value as instance identifier. Per PO, first, one supplier
is selected that will handle the PO; here we assume that the task Select supplier sets
a process variable $supplier local to the subprocess instance. Task Assign CP to PO
relates to the PO all CP instances in state updated that have no po id value yet and where
attribute CP.supplier equals the chosen $supplier. The relation is built by setting the
value of CP.po id to the primary key PO.po id of the case object. The update quantifies
over all values of co id as indicated by the asterisks.

Modeling and Enacting Complex Data Dependencies in Business Processes 9

The execution of the multi instance subprocess results in several CP subsets each
being related to one PO. The POs along with the contained information about the CPs
are sent to the corresponding supplier. In parallel, Book purchase orders creates a new
booking for each PO; it may start when either all POs are in created or in sent.

created received purchasing purchasedinit Start
processingcycle

Close CO
retrieval

Createpurchaseorder

Finalize
purchase

(a)
init Create

componentlist

created updated assignedSetsupplierfor CP

Assign CPfor PO

(b)

Fig. 9: Object life cycles of objects (a) ProC
and (b) CP derived from the process model.

Object life cycle. Altogether, our extension
to BPMN data objects increases the expres-
siveness of a BPMN process model with
information about process-data-correlation
on instance level. As such, it does not inter-
fere with standard BPMN semantics.

In addition, our extension is compati-
ble with the object life cycle oriented tech-
niques allowing to derive object life cycles
from sufficiently annotated process models [9, 13]. Taking our build-to-order process,
we can derive the object life cycles shown in Fig. 9.

4 Executing Data-annotated BPMN Models

This section presents operational execution semantics for the data annotated process
models defined in Section 3. Aiming at standardized techniques, we refine the standard
BPMN semantics [16, Section 13] with SQL database queries (see Section 4.1) that are
derived from annotated input and output data objects (see Section 4.2).

4.1 Process Model Semantics

Our semantics distinguishes control flow and data flow aspects of a process model M .
A state s = (C,D) of M consists of a control flow state C describing a distribution of
tokens on sequence flow edges and activities and a database D storing the data objects
of M in tables. To distinguish the states of different process instances, each token in C
is an identifier id . The data model of the process is implemented in a relational database
D (shared by all processes). Each data object is represented in D as a table; columns
represent attributes, having at least columns for primary key, foreign keys (if any), and
state. Each row in a table describes an instance of this data object with concrete values.

An activity A has several input and output data object representations, grouped
into input sets and output sets; different input/output sets represent alternative pre-
/postconditions for A. A representation R of an input object is available in instance
id if the corresponding table in D holds a particular row. We can define a select query
QR(id) on D and a guard gR(id) that compares the result of QR(id) to a constant or
to another select query; gR(id) is true iff R is available in id . A representation R of an
output object of A has to become available when A completes. We operationalize this
by executing an insert, update, or delete query QR(id) on D depending on R.

Activity A is enabled in instance id in state s = (C,D) iff a token with id id is on
the input edge of A and for some input set {R1, . . . , Rn} of A, each guard gRi

(id) is
true. If A is enabled in C, then A gets started, i.e., the token id moves “inside” A in
step (C,D)→ (C ′,D) and depending on the type of activity services are called, forms

10 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

are shown, etc. When this instance of A completes, the outgoing edge of A gets a token
id and the database gets updated in a step (C ′,D)→ (C ′′,D′), where D′ is the result
of executing queries QR1

(id), . . . , QRm
(id) for some output set {R1, . . . , Rm} of A.

The semantics for gateways and events is extended correspondingly. If activity A is a
subprocess with case object D, and A has D as data input object, then we create a new
instance of subprocess A for each entry returned by query QD(id). Each subprocess
instance is identified by the primary key value of the corresponding row of D. Next, we
explain how to derive queries from the data object representations.

4.2 Deriving Database Queries from Data Annotations

The annotated data object representations defined in Section 3 describe pre- and post-
conditions for the execution of activities. In this section, we show how to derive from a
data object representation R (and its context) a guard gR or a query QR that realizes this
pre- or post-condition.

In a combinatorial analysis, we considered the occurrence of a data object as case
object, as single dependent object with 1:1 relationship to another object, and as multiple
dependent object with 1:n or m:n relationship in the context of a create, read, update,
and delete operation. Additionally, we considered process instantiation based on existing
data and reading/updating object attributes other than state. Altogether, we obtained a
complete collection of 43 parameterized patterns regarding the use of data objects as
pre- or post-conditions in BPMN (see Section 5). For each of these patterns, we defined
a corresponding database query or guard. During process execution, each input/output
object is matched against the patterns. The guard/query of the matching pattern is then
used as described in Section 4.1. Here, we present the five patterns that are needed to
execute the subprocess in the model in Fig. 8; Tab. 1 and 2 list the patterns and their
formalization that we explain next. All 43 patterns and their formalization are given in
Section 5.

As introduced in Section 3, we assume that each scope (e.g., subprocess) is driven
by a particular case object. Each scope instance has a dedicated instance id. The symbol
$ID refers to the instance id of the directly enclosing scope; $PID refers to the process
instance id.
Read single object instance. Pattern 1 describes a read operation on a single data object
D1 that is also the case object of the scope. The activity is only enabled when this case
object is in the given state s. The guard shown below P1 in Tab. 1 operationalizes this
behavior: it is true iff table D1 in the database has a row where the state attribute has
value ‘s’ and the primary key d1 id is equal to the scope instance id.
Read multiple object instances. Pattern 2 describes a read operation on multiple data
object instances of D2 that are linked to the case object D1 via foreign key d1 id. The
activity is only enabled when all instances of D2 are in the given state t. This is captured
by the guard shown below P2 in Tab. 1 that is true iff the rows in table D2 that are linked
to the D1 instance with primary key value $ID are also the rows in table D2 where state
= ‘t’ (and the same link to D1); see Section 5 for the general case of arbitrary tables
between D1 and D2. For example, consider the second process of the build-to-order
scenario (see Fig. 8). Let us assume that activity Create purchase order was just executed

Modeling and Enacting Complex Data Dependencies in Business Processes 11

Tab. 1: SQL queries for patterns 1 to 3 for subprocess in Fig. 8.

P1 P2 P3

Activity

D1

[s]

pk: d1_id

case object: D1

Activity

D2

[t]

pk: d2_id
fk: d1_id

III

case object: D1

D2

[t]

pk: d2_id
fk: d1_id

III

Subprocess

case object: D2

III

case object: D1

guard :
(SELECT COUNT(d1 . d1 id)
FROM d1
WHERE d1 . d1 id = $ID
AND d1 . s t a t e = ’ s ’) ≥ 1

guard :
(SELECT COUNT(d2 . d2 id)
FROM d2
WHERE d2 . d1 id = $ID
AND d2 . s t a t e = ’ t ’) =
(SELECT COUNT(d2 . d2 id)
FROM d2
WHERE d2 . d1 id =$ID)

For each d2 id ∈ (
SELECT d2 . d2 id
FROM d2
WHERE d2 . d1 id = $ID)

s t a r t subprocess
wi th i d d2 id

Tab. 2: SQL queries for patterns 4 and 5 for subprocess in Fig. 8.

Data model P4 P5

-d1_id : string
-state : string

D1

-d3_id : string
-d1_id : string
-state : string

D3

-d4_id : string
-d1_id : string
-state : string

D4

-d2_id : string
-d3_id : string
-d4_id : string
-state : string

D2

1

1..*1..*

1 1

1..*

Activity

D2

[t]

pk: d2_id
fk: *d3_id*,null

III

case object: D4

case object: D1

D2.attr = $var

Activity
D4

[q]

pk: d4_id

D2

[t]

pk: d2_id
fk: *d3_id*, null

III

D2

[r]

pk: d2_id
fk: *d3_id*,d4_id

III

case object: D4

case object: D1

D2.attr = $var

guard :
(SELECT COUNT(d2 . d2 id)
FROM d2
WHERE d2 . s t a t e = ’ t ’
AND d2 . d4 id IS NULL
AND d2 . a t t r = $var
AND d2 . d3 id = (

SELECT d3 . d3 id
FROM d3
WHERE d3 . d1 id = $PID)

) >= 1

UPDATE d2
SET d2 . d4 id = (

SELECT d4 . d4 id
FROM d4
WHERE d4 . d4 id = $ID) ,

s t a t e = ’ r ’
WHERE d2 . s t a t e = ’ t ’
AND d2 . d4 id IS NULL
AND d2 . a t t r = $var
AND d2 . d3 id = (

SELECT d3 . d3 id
FROM d3
WHERE d3 . d1 id = $PID)

for process instance 6 and the database table of the purchase order (PO) contains the
entries shown in Fig. 10a. All rows with proc id = 6 are in state created, i.e., both
queries of pattern 2 yield the same result and the subprocess gets instantiated.

Instantiate subprocesses from data. Pattern 3 deals with the instantiation of a multi
instance subprocess combined with a read operation on the dependent multi instance
data object D2. As described in Section 4.1, we create a new instance of the subprocess
for each id returned by the query shown below P3 in Tab. 1. For our example, where

12 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

Update CP SET CP.po_id = (SELECT PO.po_id FROM PO

WHERE PO.po_id = 17), CP.state = ‘assigned‘

WHERE CP.co_id = (SELECT CO.co_id FROM CO

WHERE CO.proc_id = 6) AND CP.state = ‘updated‘

AND CP.po_id IS NULL AND CP.supplier = ‘B‘;
Subprocess with $ID = 17

(inside of process instance $PID = 6)

„Specify $supplier“ picks $supplier = ‘B‘

(a) Before update (b) After update

CP

co_id = 30

state = assigned

cp_id = 126

po_id = 17

supplier = B

CO

proc_id = 6

state = received

co_id = 30

CO

proc_id = 6

state = received

co_id = 35

PO

proc_id = 6

state = created

po_id = 17

PO

proc_id = 6

state = created

po_id = 18

CP

co_id = 35

state = assigned

cp_id = 127

po_id = 17

supplier = B

CP

co_id = 30

state = updated

cp_id = 125

po_id = null

supplier = A

PO

proc_id = 5

state = sent

po_id = 16

CP

co_id = 30

state = updated

cp_id = 126

po_id = null

supplier = B

CO

proc_id = 6

state = received

co_id = 30

CO

proc_id = 6

state = received

co_id = 35

PO

proc_id = 6

state = created

po_id = 17

PO

proc_id = 6

state = created

po_id = 18

CP

co_id = 35

state = updated

cp_id = 127

po_id = null

supplier = B

CP

co_id = 30

state = updated

cp_id = 125

po_id = null

supplier = A

PO

proc_id = 5

state = sent

po_id = 16

Fig. 10: Setting missing foreign key relation of m:n object Component: Concrete update statement
of subprocess 17 to relate all CPs referring to supplier B to the PO with ID 17 indicated by arrows.

process instance 6 is currently executed, the subprocess having the PO as case object
is instantiated twice, once with id 17 and once with id 18. In each subprocess instance,
control flow reaches activity Select supplier for which pattern 1 applies. For the subpro-
cess instance with id 17, the guard of Pattern 1 evaluates to true of the state in Fig. 10a:
activity Select Supplier is enabled.

Transactional properties. Patterns 4 and 5 illustrate how our approach updates m:n-
relationships. Pattern 4 describes a read operation on multiple data object instances D2
that share a particular attribute value and are not related to the case object (in contrast
to Pattern 2). We have to ensure that another process instance does not interfere with
reading (and later updating) these instances of D2, that is, we have to provide basic
transactional properties. We achieve this by accessing only those instances of D2 that
are in some way related to the current process instance. Therefore, this read operation
assumes a data model as shown in Tab. 2(left): D2 defines an m:n relationship between
D3 and D4 via foreign keys d3 id and d4 id; D3 and D4 both have foreign keys to D1
which is the case object of the process; see Section 5 for the general case. The guard
shown below P4 in Tab. 2 is true iff there is at least one instance of D2 in state t, with a
particular attribute value, not linked to D4, and where the link to D3 points to an instance
that itself is linked to the case object instance of the process (i.e., foreign key of D3
points to $PID). The link to D3 ensures that the process instance only reads D2 instances
and no other process instance can read. In our example, the pattern occurs at task Assign
CP to PO reading all instances of object component (CP), which are not yet assigned to
a PO (i.e., null value as foreign key) and where CP .supplier = $supplier . Assume the
state shown in Fig. 10a and that $supplier = B was set by task Select $supplier for the
subprocess instance with ID 17. In this state, the queries of pattern 4 return two rows
having a null value for po id, B as supplier value, and updated as state value: the activity
is enabled.

Updating m:n relationships. Finally, pattern 5 describes an update operation on mul-
tiple data object instances of D2, which sets the foreign key d4 id that is not set yet

Modeling and Enacting Complex Data Dependencies in Business Processes 13

and moves them to state r. All instances of D2 get as value for d4 id the instance id of
the current instance of case object D4. Semantically, this turns the select statement of
pattern 4 into an update statement that sets attributes d4 id and state for all rows where
the pre-condition holds; see the SQL query of pattern 5 in Tab. 2. In our example, pattern
5 occurs at task Assign CP to PO for assigning a specific set of components (CP) to
a purchase order (PO) based on the chosen supplier. As assumed for the subprocess
instance with ID 17, the process variable $supplier has the value B. The entire derived
query is shown in Fig. 10b (top right); executing the query gives components with ID
126 and ID 127 concrete references to PO (po id = 17), and the state assigned. The
resulting state of the database in Fig. 10b shows the m:n relationship that was set.

5 Patterns

This section is dedicated to introduce all patterns required to derive data dependencies
from a process model and enact them on a process engine. A relational database is used
for persistence. For each pattern, the corresponding generic SQL pattern is presented;
Tab. 3 provides an overview about the assignment of each pattern to the following
classification schema. The patterns are classified with respect to two dimensions: (i) type
of data condition (horizontally) and (ii) data object function (vertically). Horizontally,
they are classified into pre- and post-conditions of an activity with respect to the data
operation. While the fulfillment of pre-conditions decides about the enablement of an
activity, post-conditions must apply at termination of an activity (cf. Section 3.1). Pre-
conditions (guards, cf. Section 4.1) are logical expressions, which consist of one or more
select statements. Post-conditions are further subdivided into insert, update, and delete
statements.

Vertically, the patterns are classified regarding whether the operation is executed on
the case object (that is bound to the process instance), on a single dependent data object
(being in 1:1 relationship with another object), or multiple dependent data objects (being

Tab. 3: Pattern classification overview.

Data operation Case object
(Section 5.1)

Dependent 1:1
(Section 5.2)

Dependent 1:n
(Section 5.3)

Dependent m:n
(Section 5.4)

select CR1 D1:1R1 D1:nR1 Dm:nR1
CR2 D1:1R2 D1:nR2 Dm:nR2

D1:1R3 D1:nR3 Dm:nR3
Dm:nR4

insert CC1 D1:1C1 D1:nC1 Dm:nC1
CC2 D1:1C2 D1:nC2 Dm:nC2

update CU1 D1:1U1 D1:nU1 Dm:nU1
CU2 D1:1U2 D1:nU2 Dm:nU2

D1:1U3 D1:nU3 Dm:nU3
Dm:nU4

delete CD1 D1:1D1 D1:nD1 Dm:nD1
Dm:nD2

instantiation I1, I2, I3, I4
(Section 5.5)

attribute A1, A2
(Section 5.6)

14 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

in 1:n or m:n relationship with another object). In our running example, ProC is the case
object, customer order directly depends on ProC in 1:1-fashion, booking data objects
indirectly depend on ProC in 1:n-fashion via purchase order objects, and component
objects indirectly depend on ProC in m:n-fashion via purchase order and customer order
objects.

Further, we need patterns to distinguish different cases of instantiation, i.e., which
object is used as a case object and how identifiers of case object and process instance
are set. Finally, data objects may contain more attributes than those shown in a data
object representation (cf. Definition 1). Thus, we also provide means to use data object
attributes for control flow decisions and to automatically update these attributes. For
example, activity Update supplier to $supplier in Fig. 7 updates the supplier attribute of
CO to the value specified in the process variable $supplier.

The remainder of this section presents the patterns for each vertical category as
well as the two final mentioned ones in separate subsections starting with the patterns
for the case object in 5.1. Referring to Section 3.1, an activity might also be of type
multi instance. Basically, this is a short form of the multi instance subprocess such that
each multi instance activity can be remodeled as multi instance subprocess containing
the activity and the corresponding data objects in their single type. The corresponding
procedure is presented in Section 5.7.

5.1 Patterns for Case Object

-d1_id

-state

D1

Fig. 11: Corresponding data
model for case object.

In this section, all patterns and their SQL queries for
the case object are presented. The corresponding data
model, shown in Fig. 11, consists only of the case ob-
ject D1 being in the focus of the subsequent queries.
Thereby, the case object has the following by our ap-
proach required attributes: a primary key attribute d1 id
and a state attribute state.

Tab. 4: Patterns for case object.

CR1 – Read single state

Activity

D1

[s]

pk: d1_id

case object: D1

guard :
(SELECT COUNT(d1 id)
FROM d1
WHERE d1 id = $ID
AND s ta te = ’ s ’) ≥ 1

CR2 – Read multiple states

Activity

D1

[s1]

pk: d1_id

case object: D1

D1

[s2]

pk: d1_id

guard :
(SELECT COUNT(d1 id)
FROM d1
WHERE d1 id = $ID
AND s ta te = (’ s1 ’ OR ’ s2 ’)) ≥ 1

Modeling and Enacting Complex Data Dependencies in Business Processes 15

Tab. 4: Patterns for case object (ctd.).

CC1 – Create single state

Activity

D1

[s]

pk: d1_id

case object: D1 [new]

INSERT INTO d1
(d1 id , s t a t e)
VALUES ($ID , ’ s ’)

CC2 – Create multiple states

Activity

D1

[$stateVar]

pk: d1_id

case object: D1
[new]

INSERT INTO d1
(d1 id , s t a t e)
VALUES ($ID ,$s ta teVar)

CU1 – Update

Activity

D1

[s]

pk: d1_id

case object: D1

UPDATE d1
SET s ta te = ’ s ’
WHERE d1 id = $ID

CU2 – Update with required input

Activity

D1

[s2]

pk: d1_id

case object: D1

D1

[s1]

pk: d1_id

UPDATE d1
SET s ta te = ’ s2 ’
WHERE d1 id = $ID
AND s ta te = ’ s1 ’

CD1 – Delete

Activity

D1

[s]

pk: d1_id

case object: D1 [delete]

DELETE FROM d1
WHERE d1 id = $ID
AND s ta te = ’ s ’

CR1 – Read single state. The pattern describes a read operation on the case object of the
surrounding scope. Read requires that the corresponding instance (i.e., the case object
instance, which is related to the current scope instance via its primary key value) being
in state s is available. This is checked by the SQL statement to the right returning all
rows of the respective database table for the case object which are related to $ID and
have state s. The guard ensures that the activity is only enabled if the result set of the
query returns 1 or more rows.

CR2 – Read multiple states. The pattern describes a read operation on the case object
similar to CR1, but it allows that the data object can be present in different states. In the

16 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

pattern, the corresponding instance has to be available either in state s1 or in state s2. As
described in the SQL statement to the right, all rows of the case object table are selected
which are related to $ID and have s1 or s2 as state value. The activity is enabled as soon
one or more rows are returned.

CC1 – Create single state. The pattern describes a create operation on the case object.
Create results in a new entry in the case object table with $ID of the current instance as
primary key value and s as state value. This is achieved by the SQL query to the right
executed at the termination of the activity.

CC2 – Create multiple states. The pattern describes a create operation on the case object
similar to CC1, but the state is not statically given by the process model; it is dynamically
set during activity execution by means of a process variable. So, a new entry is added to
the case object table with $ID as primary key value and the process variable value of
$stateVar as state value covered by the corresponding SQL query.

CU1 – Update. The pattern describes an update operation on the case object. At the
termination of the activity, a new state is set for the corresponding case object instance.
In terms of database design, the state value of the corresponding row in the case object
table related to $ID is updated to s as shown in the SQL statement. Alternatively, also the
process variable $stateVar can be used in the update statement for dynamically setting
the state during activity execution as done in pattern CC2.

CU2 – Update with required input. The pattern describes an update operation on the
case object similar to pattern CU1, but it additionally requires that the current case object
instance is in the given state of the data input. The corresponding SQL statement selects
only the row related to $ID with the state value s1 and updates it to s2.

CD1 – Delete. The pattern describes a delete operation on the case object. At the
termination of the activity, the corresponding case object instance is deleted, whereby
the instance has to be in the given state. This is covered by the SQL statement, which
considers as well the given state s in the WHERE-clause in order to avoid the deletion of
wrong data object instances.

5.2 Patterns for Dependent1:1 Objects

This section describes the patterns and their SQL queries for single instance data objects,
which are in 1:1 relationship with another object and which are dependent to the case
object. These patterns consider the generalized case where the dependent data object
D2 has no foreign key directly pointing to the case object D1 but rather to another data
object D3, which itself points to D1, directly or indirectly. The data dependencies are
expressed in the data model shown in Fig. 12. In the data model, the case object has the
following attributes required by our approach: a primary key attribute d1 id and a state
attribute state. The dependent single instance data object D2, which is in the focus of the
subsequent queries, has besides the primary key attribute d2 id and the state attribute
state also a foreign key attribute d3 id pointing to D3. This holds as well for the other

Modeling and Enacting Complex Data Dependencies in Business Processes 17

-d1_id

-state

D1

-d1_id

-state

D1
-PK: dn_id

-FK: d1_id

-state

Dn

1 1

-PK: d3_id

-FK: d4_id

-state

D3

-PK: d2_id

-FK: d3_id

-state

D2

-PK: dN_id

-FK: d1_id

-state

Class3

1 11 1

...

-d1_id

-state

D1
-PK: dn_id

-FK: d1_id

-state

Dn

1 1

-PK: d3_id

-FK: d4_id

-state

D3

-PK: d2_id

-FK: d3_id

-state

D2

1 1..*1 1

...

-d1_id

-state

D1
-PK: dn_id

-FK: d1_id

-state

Dn

1 1

-PK: d3_id

-FK: d5_id

-state

D3

-PK: d2_id

-FK: d3_id

-FK: d4_id

-state

D2
1

1..*

1 1

...

-PK: d4_id

-FK: d6_id

-state

D4

1

1

...

1

1..*

Fig. 12: Corresponding data model for dependent1:1 objects.

dependent data objects D3, ..., Dn. From the data model, we can find a path D2, D3, ...
Dn, D1 of data objects (or tables) from D2 to D1 along the foreign key relations. In terms
of a database design, the inner join on all tables D2, D3, ..., Dn, D1 connects entries
in D2 with entries in D1 using the respective identifiers as join attribute. We define the
JOINALL statement to build this join for our queries, e.g., JOINALL(D2, D3, D4, D1)3.

Tab. 5: Patterns for dependent1:1 objects.

D1:1R1 – Read single state

Activity

D2

[t]

pk: d2_id

case object: D1

fk: d3_id

guard :
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID
AND d2 . s t a t e = ’ t ’) ≥ 1

D1:1R2 – Read multiple states

Activity

D2

[t1]

pk: d2_id

case object: D1

D2

[t2]

pk: d2_id

fk: d3_id

fk: d3_id

guard :
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID
AND d2 . s t a t e =
(’ t1 ’ OR ’ t 2 ’)) ≥ 1

D1:1R3 – Read without foreign key

Activity

D2

[t]

pk: d2_id

case object: D1

fk: null

D3

[s]

pk: d3_id

guard :
(SELECT COUNT(d2 id)
FROM d2
WHERE d3 id IS NULL
AND s ta te = ’ t ’) ≥ 1

3 (((d2 INNER JOIN d3 USING d3 id) INNER JOIN d4 USING d4 id)
INNER JOIN d1 USING d1 id)

18 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

Tab. 5: Patterns for dependent1:1 objects (ctd.).

D1:1C1 – Create single state

Activity

D2

[t]

pk: d2_id

case object: D1

D3

[s]

pk: d3_id
fk: d3_id

[new]

fk: d4_id

INSERT INTO d2
(d2 id , d3 id , s t a t e)
VALUES (DEFAULT, (SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID) , ’ t ’)

D1:1C2 – Create multiple states

Activity

D2

[$stateVar]

pk: d2_id

case object: D1

D3

[s]

pk: d3_id
fk: d3_id

[new]

fk: d4_id

INSERT INTO d2
(d2 id , d3 id , s t a t e)
VALUES (DEFAULT , (SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID) ,
$s ta teVar)

D1:1U1 – Update

Activity

D2

[t]

pk: d2_id

case object: D1

fk: d3_id

UPDATE d2
SET s ta te = ’ t ’
WHERE d3 id = (

SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID)

D1:1U2 – Update with required input

Activity

D2

[t2]

pk: d2_id

case object: D1

D2

[t1]

pk: d2_id
fk: d3_idfk: d3_id

UPDATE d2
SET s ta te = ’ t2 ’
WHERE d3 id = (

SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID)

AND s ta te = ’ t1 ’

D1:1U3 – Update missing foreign key

Activity

D2

[t2]

pk: d2_id

case object: D1

D2

[t1]

pk: d2_id

fk: d3_idfk: null

D3

[s]

pk: d3_id
fk: d4_id expression

UPDATE d2
SET d3 id = (

SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID) ,

s t a t e = ’ t2 ’
WHERE d3 id IS NULL
AND s ta te = ’ t1 ’

Modeling and Enacting Complex Data Dependencies in Business Processes 19

Tab. 5: Patterns for dependent1:1 objects (ctd.).

D1:1D1 – Delete

Activity

D2

[t]

pk: d2_id

case object: D1 [delete]

fk: d3_id

DELETE FROM d2
WHERE d3 id = (

SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID)

AND s ta te = ’ t ’

D1:1R1 – Read single state. This pattern describes a read operation on a dependent
single instance data object. Read requires that the respective instance of the data object
D2 being in state t is available. Using the statement JOINALL(D2, D3, ..., D1), we
can build the join-table between D2 and D1 by means of the foreign key relations. In
the join-table, each row with d1 id = $ID describes an instance of D2 that is related to
the case object instance of the corresponding scope instance. This is used by the SQL
statement to return all rows of the respective database table for D2 which are related to
$ID and have state t. The guard ensures that the activity is only enabled if the result set
of the query returns 1 or more rows.

D1:1R2 – Read multiple states. The pattern describes a read operation on a dependent
single instance data object similar to D1:1R1, but it allows that the data object can be
present in different states. In the pattern, the corresponding instance has to be available
either in state t1 or in state t2. As described in the SQL statement, all rows of the data
object table of D2 are selected which are related to $ID and have t1 or t2 as state value.
The activity is enabled as soon as one or more rows are returned.

D1:1R3 – Read without foreign key. The pattern describes a read operation on a dependent
single instance data object for which the foreign key value is not yet set, i.e., the data
object instance is not yet correlated to a scope instance. The activity is enabled, if any
instance of D2 exists with an empty foreign key relationship and being in state t. Covered
by the corresponding SQL statement, all rows of the data object table of D2 are selected
which have a null-value for the foreign key d3 id and t as state value. If one or more
rows are returned, the activity can be started.

D1:1C1 – Create single state. The pattern describes a create operation on a dependent
single instance data object. Create results in a new entry in the data object table of
D2 with a default primary key value, the respective D3 primary key value as foreign
key value, and t as state value. The respective D3 primary key value is extracted by
joining the table of D3 with the case object table D1 with the JOINALL statement and
selecting the d3 id value of the row with d1 id = $ID, which is related to the current
scope instance. This select statement is considered from the SQL query inserting a new
row for D2 at the termination of the activity.

20 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

D1:1C2 – Create multiple states. The pattern describes a create operation on a dependent
single instance data object similar to D1:1C1, but the state is not statically given by the
process model; it is dynamically set during activity execution by means of a process
variable. A new entry is added to the data object table of D2 with a default primary key
value, the respective D3 primary key value as foreign key value, and the process variable
value of $stateVar as state value covered by the corresponding SQL query.

D1:1U1 – Update. The pattern describes an update operation on a dependent single
instance data object. At the termination of the activity, a new state is set for the cor-
responding data object instance. In terms of database design, the state value of the
corresponding row in the data object table of D2 related to $ID is updated to t. For the
update, the data table row of D2 is selected where the foreign key value d3 id points to
an entry in the table of D3 which is related to $ID determined by means of the JOINALL
statement from D3 until the case object D1. This is covered by the corresponding SQL
statement. Alternatively, also the process variable $stateVar can be used in the update
statement for dynamically setting the state during activity execution as done in pattern
D1:1C2.

D1:1U2 – Update with required input. The pattern describes an update operation on
a dependent single instance data object similar to pattern D1:1U1, but it additionally
requires that the respective data object instance is in the given state of the data input. The
corresponding SQL statement only selects the row related to $ID with the state value t1
and updates it to t2.

D1:1U3 – Update missing foreign key. The pattern describes an update operation on a
dependent single instance data object, which has a not yet specified foreign key. Goal
of this pattern is to link an uncorrelated data object instance of D2 to a scope instance
by setting the corresponding foreign key value. The assignment is done randomly: The
uncorrelated instance is taken and processed by this scope instance which is currently
running. Thereby, the foreign key value is extracted by selecting the primary key value
of the corresponding data object instance of D3 shown as input data. For the select
statement, the JOINALL statement is used to join the table of D3 with the case object
table D1 and to choose the d3 id value of the row with d1 id = $ID, which is related
to the current scope instance. For the update, the row of the data object table of D2
is selected which has currently a null-value for d3 id and t1 as state value. Then, the
foreign key d3 id is set to a concrete value and the state is set to t2. This is covered by
the corresponding SQL statement, which is executed at the termination of the activity.

D1:1D1 – Delete. The pattern describes a delete operation on a dependent single instance
data object. At the termination of the activity, the corresponding data object instance is
deleted, whereby the instance has to be in the given state. This is covered by the SQL
statement, which also considers the given state t in the WHERE-clause in order to avoid
the deletion of wrong data object instances. For the deletion, the data table row of D2 is
selected where the foreign key value d3 id points to an entry in the table of D3 which is
related to $ID determined by means of the JOINALL statement from D3 until the case
object D1. This is covered by the corresponding SQL statement.

Modeling and Enacting Complex Data Dependencies in Business Processes 21

-d1_id

-state

D1
-PK: dn_id

-FK: d1_id

-state

Dn

1 1

-PK: d3_id

-FK: d4_id

-state

D3

-PK: d2_id

-FK: d3_id

-state

D2

1 1..*1 1

...

Fig. 13: Corresponding data model for dependent1:n objects.

5.3 Patterns for Dependent1:n Objects

This section describes the patterns and their SQL queries for multi instance data objects,
which are in 1:n relationship with another object and which are dependent to the case
object. These patterns consider the generalized case where dependent data object D2
has no foreign key directly pointing to the case object D1 but rather to another data
object D3, which itself points to D1, directly or indirectly. The data dependencies are
expressed in the data model shown in Fig. 13. In the data model, the case object D1 has
the following attributes required by our approach: a primary key attribute d1 id and a
state attribute state. The dependent multi instance data object D2, which is in the focus of
the subsequent queries, has besides the primary key attribute d2 id and the state attribute
state also a foreign key attribute d3 id pointing to D3. This holds as well for the other
dependent data objects D3, ..., Dn. For the following queries, we will use the JOINALL
statement for joins with the case object as described in Section 5.2.

Tab. 6: Patterns for dependent1:n objects.

D1:nR1 – Read single state

Activity

D2

[t]

pk: d2_id

case object: D1

fk: d3_id

III

guard :
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID
AND d2 . s t a t e = ’ t ’) =
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 id = $ID)

D1:nR2 – Read multiple states

Activity

D2

[t1]

pk: d2_id

case object: D1

D2

[t2]

pk: d2_id

fk: d3_id

fk: d3_id

III

III

guard : (
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID
AND d2 . s t a t e = ’ t1 ’) =
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 id = $ID))
xor (
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID
AND d2 . s t a t e = ’ t2 ’) =
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID))

22 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

Tab. 6: Patterns for dependent1:n objects (ctd.).

D1:nR3 – Read without foreign key

Activity

D2

[t]

pk: d2_id

case object: D1

fk: null

III

guard :
(SELECT COUNT(d2 id)
FROM d2
WHERE d3 id IS NULL
AND s ta te = ’ t ’) ≥ 1

D1:nC1 – Create single state

Activity

D2

[t]

pk: d2_id

case object: D1

fk: d3_id

[new]

III

#items

D3

[s]

pk: d3_id

fk: d4_id

INSERT INTO d2
(d2 id , d3 id , s t a t e) VALUES
(DEFAULT, fk , ’ t ’)
. . .
(DEFAULT, fk , ’ t ’)
//# i tems t imes

f k = SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id=$ID

D1:nC2 – Create multiple states

Activity

D2

[$stateVar]

pk: d2_id

case object: D1

fk: d3_id

[new]

III

#items

D3

[s]

pk: d3_id

fk: d4_id

INSERT INTO d2
(d2 id , d3 id , s t a t e) VALUES
(DEFAULT, fk , $s ta teVar)
. . .
(DEFAULT, fk , $s ta teVar)
//# i tems t imes

f k = SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID

D1:nU1 – Update

Activity

D2

[t]

pk: d2_id

case object: D1

fk: d3_id

III

UPDATE d2
SET s ta te = ’ t ’
WHERE d3 id = (

SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID)

Modeling and Enacting Complex Data Dependencies in Business Processes 23

Tab. 6: Patterns for dependent1:n objects (ctd.).

D1:nU2 – Update with required input

Activity

D2

[t2]

pk: d2_id

case object: D1

D2

[t1]

pk: d2_id
fk: d3_idfk: d3_id

IIIIII

UPDATE d2
SET s ta te = ’ t2 ’
WHERE d3 id = (

SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id=$ID)

AND s ta te = ’ t1 ’

D1:nU3 – Update missing foreign key

Activity

D2

[t2]

pk: d2_id

case object: D1

D2

[t1]

pk: d2_id

fk: d3_idfk: null

D3

[s]

pk: d3_id
fk: d4_id

III III

UPDATE d2
SET d3 id = (

SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID) ,

s t a t e = ’ t2 ’
WHERE d3 id IS NULL
AND s ta te = ’ t1 ’

D1:nD1 – Delete

Activity

D2

[t]

pk: d2_id

case object: D1 [delete]

fk: d3_id

III

DELETE FROM d2
WHERE d3 id = (

SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID)

AND s ta te = ’ t ’

D1:nR1 – Read single state. This pattern describes a read operation on a dependent
multi instance data object. Read requires that the respective set of instances of the data
object D2 being in state t is available. Using the statement JOINALL(D2, D3, ..., D1),
we can build the join-table between D2 and D1 by means of the foreign key relations. In
the join-table, each row with d1 id = $ID describes an instance of D2 that is related to
the case object instance of the corresponding scope instance. This is used by the SQL
statement to return all rows of the respective database table for D2 which are related to
$ID and have state t (first select) and to return all rows of this table which are related to
$ID independently from the state attribute (second select). The guard ensures that the
activity is only enabled if all instances related to $ID are in state t.

D1:nR2 – Read multiple states. The pattern describes a read operation on a dependent
multi instance data object similar to D1:nR1, but it allows that the data object can
be present in different states. In the pattern, the corresponding instances have to be
available either in state t1 or in state t2; a mixture of states is not allowed due to BPMN

24 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

semantics [16]. This is ensured by the guard expression to the right. For state t1, all rows
of the data object table of D2 are selected which are related to $ID and have state t1.
These are compared to all rows being related to $ID independently from the state. If both
return the same number, the condition holds true. A similar check is done for other state
where all rows related to $ID and have state t2 are compared to all rows being related to
$ID. The activity is enabled as soon as one of the conditions holds true.

D1:nR3 – Read without foreign key. The pattern describes a read operation on a dependent
multi instance data object for which the foreign key value is not yet set, i.e., the data
object instances are not yet correlated to a scope instance. The activity is enabled, if
any set of instances of D2 exists, where each instance has the same empty foreign key
relationship and is in state t. Covered by the corresponding SQL statement, all rows of
the data object table of D2 are selected which have a null-value for the foreign key d3 id
and t as state value. If one or more rows are returned, the activity can be started.

D1:nC1 – Create single state. The pattern describes a create operation on a dependent
multi instance data object. Create results in new entries in the data object table of D2,
each with a default primary key value, the respective D3 primary key value as foreign
key value, and t as state value. The respective D3 primary key value is extracted by
joining the table of D3 with the case object table D1 with the JOINALL statement and
selecting the d3 id value of the row with d1 id = $ID, which is related to the current
scope instance. This select statement is executed at first and the returned foreign key
value is saved in the variable fk. The variable is used by the SQL query for each insertion
of a new row for D2 at the termination of the activity. The number instances to be created
is determined by the process variable #items, which is attached to the output data flow
edge.

D1:nC2 – Create multiple states. The pattern describes a create operation on a dependent
multi instance data object similar to D1:nC1, but the state is not statically given by the
process model; it is dynamically set during activity execution by means of a process
variable. Each new entry is added to the data object table of D2 with a default primary
key value, the respective D3 primary key value as foreign key, and the process variable
value of $stateVar as state value covered by the corresponding SQL query. Similar to
D1:nC1, the number instances to be created is determined by the process variable #items,
which is attached to the output data flow edge.

D1:nU1 – Update. The pattern describes an update operation on a dependent multi
instance data object. At the termination of the activity, a new state is set for each of the
corresponding data object instances. In terms of database design, the state value of the
corresponding rows in the data object table of D2 related to $ID is updated to t. For the
update, all data table rows of D2 are selected where the foreign key value d3 id points to
an entry in the table of D3 which is related to $ID determined by means of the JOINALL
statement from D3 until the case object D1. This is covered by the corresponding SQL
statement. Alternatively, also the process variable $stateVar can be used in the update
statement for dynamically setting the state during activity execution as done in pattern
D1:nC2.

Modeling and Enacting Complex Data Dependencies in Business Processes 25

-d1_id

-state

D1
-PK: dn_id

-FK: d1_id

-state

Dn

1 1

-PK: d3_id

-FK: d5_id

-state

D3

-PK: d2_id

-FK: d3_id

-FK: d4_id

-state

D2
1

1..*

1 1

...

-PK: d4_id

-FK: d6_id

-state

D4

1

1

...

1

1..*

Fig. 14: Corresponding data model for dependentm:n objects.

D1:nU2 – Update with required input. The pattern describes an update operation on
a dependent multi instance data object similar to pattern D1:nU1, but it additionally
requires that the respective data object instances are in the given state of the data input.
The corresponding SQL statement only selects the rows related to $ID with the state
value t1 and updates it to t2.

D1:nU3 – Update missing foreign key. The pattern describes an update operation on a
dependent multi instance data object, which has a not yet specified foreign key. Goal
of this pattern is to link uncorrelated data object instances of D2 to a scope instance
by setting the corresponding foreign key value. The assignment is done randomly: The
uncorrelated instances are taken and processed by this scope instance which is currently
running. Thereby, the foreign key value is extracted by selecting the primary key value
of the corresponding data object instance of D3 shown as input data. For the select
statement, the JOINALL statement is used to join the table of D3 with the case object
table D1 and to choose the d3 id value of the row with d1 id = $ID, which is related
to the current scope instance. For the update, all rows of the data object table of D2
are selected which have currently a null-value for d3 id and t1 as state value. Then, the
foreign key d3 id is set to a concrete value and the state is set to t2. This is covered by
the corresponding SQL statement, which is executed at the termination of the activity.

D1:nD1 – Delete. The pattern describes a delete operation on a dependent multi instance
data object. At the termination of the activity, the corresponding data object instances
are deleted, whereby the instances have to be in the given state. This is covered by the
SQL statement, which also considers the given state t in the WHERE-clause in order to
avoid the deletion of wrong data object instances. For the deletion, all data table rows of
D2 are selected where the foreign key value d3 id points to an entry in the table of D3
which is related to $ID determined by means of the JOINALL statement from D3 until
the case object D1. This is covered by the corresponding SQL statement.

5.4 Patterns for Dependentm:n Objects

This section describes the patterns and their SQL queries for multi instance data objects,
which represent a m:n relationship between two other data objects to which they are
dependent. Additionally, these two data objects are in 1:n relationship with another
object. Both are dependent to the case object and may point directly or indirectly to the
case object. The data dependencies are expressed in the data model shown in Fig. 14. In

26 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

the data model, the case object D1 has the following attributes required by our approach:
a primary key attribute d1 id and a state attribute state. The dependent multi instance
data objects D3 and D4 have besides the primary key attribute d3 id respectively d4 id
and the state attribute state also a foreign key attribute d3 id respectively d4 id. This
applies for the other dependent data objects D5, ..., Dn as well. The dependent m:n data
object D2, which is in the focus of the subsequent queries, has a primary key attribute
d2 id, a state attribute state, and additionally a set of two foreign key attributes d3 id
and d4 id. For the following queries, we will use the JOINALL statement for joins with
the case object as described in Section 5.2.

As shown in the data model, several data object instances of D3 (respectively D4) are
related indirectly to one case object instance and in turn, each instance of D3 (respectively
D4) relates to multiple instances of D2. Thus, several instance subsets of D2 can be
observed each belonging to one instance of D3 (respectively D4). For queries on such
a m:n data object, the process modeler can decide if the set of all data object instances
is needed or specific subsets. We differentiate between all subsets and a specific subset
by means of asterisks. If a foreign key is surrounded by these asterisks, all subsets are
utilized for the query and if not, only one specific subset is utilized. We will use this
notation in the following patterns.

Tab. 7: Patterns for dependentm:n objects.

Dm:nR1 – Read subset

Activity

D2

[t]

pk: d2_id
fk: d3_id,*d4_id*

III

case object: D3

case object: D1
guard :

(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3)
WHERE d3 . d3 id = $ID
AND d2 . s t a t e = ’ t ’) =
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3)
WHERE d3 . d3 id = $ID)

Activity

D2

[t]

pk: d2_id
fk: *d3_id*,d4_id

III

case object: D4

case object: D1
guard :

(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d4)
WHERE d4 . d4 id = $ID
AND d2 . s t a t e = ’ t ’) =
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d4)
WHERE d4 . d4 id = $ID)

Modeling and Enacting Complex Data Dependencies in Business Processes 27

Tab. 7: Patterns for dependentm:n objects (ctd.).

Dm:nR2 – Read multiple subset

Activity

D2

[t]

pk: d2_id
fk: *d3_id*,*d4_id*

III

case object: D1
guard :

(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3 , . . , dn , d1)
WHERE d1 . d1 id = $ID
AND d2 . s t a t e = ’ t ’) =
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID)

Dm:nR3 – Read multiple states

Activity

D2

[t1]

pk: d2_id

case object: D1

D2

[t2]

pk: d2_id
III

III

case object: D3

fk: d3_id,*d4_id*

fk: d3_id,*d4_id*

guard : (
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3)
WHERE d3 . d3 id = $ID
AND d2 . s t a t e = ’ t1 ’) =
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3)
WHERE d3 . d3 id = $ID))
xor (
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3)
WHERE d3 . d3 id = $ID
AND d2 . s t a t e = ’ t2 ’) =
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3)
WHERE d3 . d3 id = $ID))

Dm:nR4 – Read without foreign key

Activity

D2

[t]

pk: d2_id
fk: *d3_id*,null

III

case object: D4

case object: D1

D2.attribute

= $variable

guard :
(SELECT COUNT(d2 . d2 id)
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID
AND d2 . s t a t e = ’ t ’
AND d2 . d4 id IS NULL
AND d2 . a t t r i b u t e = $v a r i a b l e) >= 1

Dm:nC1 – Create single state

Activity

D3

[s]

pk: d3_id

D2

[t]

pk: d2_id
fk: d3_id ,null

III

case object: D3

case object: D1

#items

INSERT INTO d2
(d2 id , d3 id , d4 id , s t a t e) VALUES
(DEFAULT, fk , NULL, ’ t ’)
. . .
(DEFAULT, fk , NULL, ’ t ’)
//# i tems t imes

f k = SELECT d3 id
FROM d3
WHERE d3 id = $ID

28 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

Tab. 7: Patterns for dependentm:n objects (ctd.).

Dm:nC2 – Create multiple states

Activity

D3

[s]

pk: d3_id

D2

[$stateVar]

pk: d2_id
fk: d3_id ,null

III

case object: D3

case object: D1

#items

INSERT INTO d2
(d2 id , d3 id , d4 id , s t a t e) VALUES
(DEFAULT, fk , NULL, $s ta teVar)
. . .
(DEFAULT, fk , NULL, $s ta teVar)
//# i tems t imes

f k = SELECT d3 id
FROM d3
WHERE d3 id=$ID

Dm:nU1 – Update subset
case object: D1

Activity

D2

[t]

pk: d2_id
III

case object: D3

fk: d3_id,*d4_id*

UPDATE d2
SET s ta te = ’ t ’
WHERE d3 id = (

SELECT d3 id FROM d3
WHERE d3 id = $ID)

Dm:nU2 – Update multiple subsets

case object: D1

Activity

D2

[t]

pk: d2_id
III

fk: *d3_id*,*d4_id*

case object: D1

[delete]

UPDATE d2
SET s ta te = ’ t ’
WHERE d3 id = (

SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID)

Dm:nU3 – Update with required input

Activity

D2

[r]

pk: d2_id
fk: d3_id ,null

III

case object: D3

case object: D1

Activity

D2

[t2]

pk: d2_id
III

case object: D3

D2

[t1]

pk: d2_id
fk: d3_id ,*d4_id*

III

fk: d3_id ,*d4_id*

UPDATE d2
SET s ta te = ’ t2 ’
WHERE d3 id = (

SELECT d3 id FROM d3
WHERE d3 id = $ID)

AND s ta te = ’ t1 ’

Modeling and Enacting Complex Data Dependencies in Business Processes 29

Tab. 7: Patterns for dependentm:n objects (ctd.).

Dm:nU4 – Update missing foreign key

Activity
D4

[q]

pk: d4_id

D2

[t1]

pk: d2_id
fk: *d3_id*, null

III

D2

[t2]

pk: d2_id
fk: *d3_id*,d4_id

III

D2.attribute

= $variable

case object: D4

case object: D1

D2.attribute

= $variable

UPDATE d2
SET d4 id = (

SELECT d4 id
FROM d4
WHERE d4 id = $ID) ,

s t a t e = ’ t1 ’
WHERE d3 id = (

SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $PID)

AND s ta te = ’ t2 ’
AND d4 id IS NULL
AND a t t r i b u t e = $v a r i a b l e

Dm:nD1 – Delete subset
case object: D1

Activity

D2

[t]

pk: d2_id
III

case object: D3

fk: d3_id,*d4_id*

[delete] DELETE FROM d2
WHERE d3 id = (

SELECT d3 id FROM d3
WHERE d3 id = $ID)

AND s ta te = ’ t ’

Dm:nD1 – Delete multiple subsets

case object: D1

Activity

D2

[t]

pk: d2_id
III

fk: *d3_id*,*d4_id*

[delete]
DELETE FROM d2
WHERE d3 id = (

SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1))
WHERE d1 . d1 id = $ID)

AND s ta te = ’ t ’

Dm:nR1 – Read subset. This pattern describes a read operation on a specific instance
subset of a dependent m:n data object. In the upper pattern, the foreign key d3 id is not
surrounded by asterisks; this indicates that a subset is requested belonging to a particular
data object instance of D3 being the case object of the surrounding scope. Read requires
that the respective instance subset of the data object D2 being in state t is available.
Using the statement JOINALL(D2, D3), we can build the join-table between m:n data
object D2 and the case object D3 by means of their foreign key relation. In the join-table,
each row with d3 id = $ID describes an instance of D2 that is related to the case object
instance of the corresponding scope instance. This is used by the SQL statement to
return all rows of the respective database table for the m:n data object D2 which are
related to $ID and have state t (first select) and to return all rows which are related to $ID
independently from the state attribute (second select). The guard ensures that the activity
is only enabled if the instance subset related to $ID is in state t. The same applies if a

30 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

subset of the m:n data object D2 belonging to a particular data object instance of D4 is
requested as it is shown in the lower pattern.

Dm:nR2 – Read multiple subsets. This pattern describes a read operation on all instance
subsets of a dependent m:n data object. Both foreign key attributes of the data object
D2 are surrounded by asterisks; this indicates that no specific instance subset of D2
is requested but rather all subsets relating to the case object D1 of the surrounding
scope. Read requires that the respective instance subsets of the data object D2 being in
state t are available. Using the statement JOINALL(D2,D3,...Dn,D1), we can build the
join-table between m:n data object D2 and the case object D1 by means of their foreign
key relation. For the join, both foreign key relations of D2 can be used supposing that the
related data object D3 as well as D4 are in turn in a direct or indirect relation with the
case object D1. Thus, the SQL query compares the number of rows in table D2 related
to $ID and being in state t to all rows being related to $ID independently from the state.
As soon as both selects return the same number, the activity can be started.

Dm:nR3 – Read multiple states. The pattern describes a read operation on a specific
instance subset of a dependent m:n data object similar to Dm:nR1, but it allows that the
data object can be present in different states. In the pattern, all instances of the subset of
D2 corresponding to a particular instance of D3 have to be available either in state t1
or in state t2; a mixture of states is not allowed due to BPMN semantics [16]. This is
ensured by the guard expression to the right. For the state t1, all rows of the data object
table of D2 are selected which are related to $ID and have the state value t1. These are
compared to all rows being related to $ID independently from the state. If both return
the same number, the condition holds true. A similar check is done for other state where
all rows related to $ID and have the state value t2 are compared to all rows being related
to $ID. The activity is enabled as soon as one of the conditions holds true.

Dm:nR4 – Read without foreign key. The pattern describes a read operation on a specific
instance subset of a dependent m:n data object which instances have one not yet specified
foreign key value. Due to the missing foreign key value, a join with case object D4 of the
directly surrounding scope cannot be created. However, we have to assure that only data
object instances of D2 are selected which belong to the process execution. The process
is the top-level of a scope hierarchy and has in this pattern D1 as case object. We assume
that data object D3, to which D2 has already an existing second foreign key relation,
is directly related to the process case object. This foreign key relation to D3 is used to
select the respective rows of table D2. In terms of database design, the rows of D2 are
selected where the foreign key value d3 id points to rows in the table D3 which are in
turn related to $PID – the current process instance – over their foreign key relation to the
process case object. Additionally, these rows of D2 have to be in state t and have to have
a null-value for the second foreign key attribute. Furthermore, the process designer can
provide an expression at the input data flow edge specifying a specific set of all instances
with no foreign key relation being read by the activity. This expression compares a given
data object attribute with a process variable being set during process execution. If the
expression is not further specified, it will not be further considered. All these aspects are

Modeling and Enacting Complex Data Dependencies in Business Processes 31

captured by the SQL query to the right. The activity is enabled as soon as one or more
rows are in the result set.

Dm:nC1 – Create single state. The pattern describes a create operation on a dependent
m:n data object. Create results in a specific subset of entries belonging to a particular
instance of D3 in the data object table of D2, each entry with a default primary key value,
the values for the specified foreign keys, and t as state value. The m:n relations presented
by the data object D2 have to be set in two steps because an activity instance can only
relate one instance of D3 (respectively D4) to an instance subset of D2. Therefore, a
particular value is set for the foreign key attribute d3 id and a null-value for the other
foreign key attribute. The non-empty foreign key value of D2 is extracted by selecting
the primary key value d3 id from the row in the case object table D3 where d3 id = $ID.
This select statement is executed at first and the returned foreign key value is saved in
a variable fk. The variable is used by the SQL query for each insertion of a new row
for D2 at the termination of the activity. The number of object instances to be created
is determined by the process variable #items, which is attached to the output data flow
edge.

Dm:nC2 – Create multiple states. The pattern describes a create operation on a dependent
m:n data object similar to Dm:nC1, but the state is not statically given by the process
model; it is dynamically set during activity execution by means of a process variable.
Each new entry is added to the data object table of D2 with a default primary key value,
the values for the specified foreign keys, and the process variable value of $stateVar as
state value covered by the corresponding SQL query. Similar to Dm:nC1, the number
of object instances to be created is determined by the process variable #items, which is
attached to the output data flow edge.

Dm:nU1 – Update subset. The pattern describes an update operation on a specific
instance subset of a dependent m:n data object. At the termination of the activity, a
new state is set for the instance subset, where each object instance belongs to the same
particular data object instance of D3. In terms of database design, the state value of all
rows in the data object table of D2 related to the current case object instance with d3 id
= $ID is updated to t. Alternatively, also the process variable $stateVar can be used in
the update statement for dynamically setting the state during activity execution as done
in pattern Dm:nC2.

Dm:nU2 – Update multiple subsets. The pattern describes an update operation on all
instance subsets of a dependent m:n data object. Both foreign key attributes of the data
object D2 are surrounded by asterisks; this indicates that no specific instance subset of D2
is requested but rather all subsets relating to the case object D1 of the surrounding scope.
At the termination of the activity, a new state is set for the respective instance subsets. In
terms of database design, the state value of the corresponding rows in the data object
table of D2 related to $ID is updated to t. Therefore, the $ID is determined by means of
the JOINALL statement from one of the via foreign key related data objects (either D3
or D4) with the case object D1. Alternatively, also the process variable $stateVar can be
used in the update statement for dynamically setting the state during activity execution
as done in pattern Dm:nC2.

32 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

Dm:nU3 – Update with required input. The pattern describes an update operation on a
specific instance subset of a dependent m:n data object similar to pattern Dm:nU1, but
it additionally requires that all instances of the subset are in the given state of the data
input. The corresponding SQL statement only selects the rows related to $ID with the
state value t1 and updates it to t2.

Dm:nU4 – Update missing foreign key. The pattern describes an update operation on
a specific instance subset of a dependent m:n data object, which instances have one
not yet specified foreign key value. This pattern is the continuation of pattern Dm:nC1.
Thereby, the foreign key value for this instance subset of D2 is extracted by selecting
the primary key value of the corresponding data object instance of D4 as shown in the
corresponding SQL statement. This pattern uses an expression at the output data flow
edge for specifying which subset of all D2 instances should be assigned to one specific
instance of D4. This expression compares a given data object attribute with a process
variable, which is set during process execution. In the SQL statement, it is used for
the update WHERE-clause. Additionally, all data object instances of D2, which have a
missing foreign key, have to be selected in a similar manner as in pattern Dm:nR4 over
the WHERE-clause.

Dm:nD1 – Delete subset. The pattern describes a delete operation on a specific instance
subset of a dependent m:n data object. At the termination of the activity, the instance
subset being related to the current case object instance with d3 id = $ID is deleted,
whereby all instances of the subset have to be in the given state. This is covered by the
SQL statement, which also considers the given state t in the WHERE-clause in order to
avoid the deletion of wrong data object instances.

Dm:nD2 – Delete multiple subsets. The pattern describes a delete operation on all
instance subsets of a dependent m:n data object. Both foreign key attributes of the data
object D2 are surrounded by asterisks; this indicates that no specific instance subset of
D2 is requested but rather all subsets relating to the case object D1 of the surrounding
scope. At the termination of the activity, all instance subsets being related to the current
case object instance with d1 id = $ID are deleted, whereby all instances have to be in the
given state. This is covered by the SQL statement, which also considers the given state t
in the WHERE-clause in order to avoid the deletion of wrong data object instances. The
$ID is determined by means of the JOINALL statement from one of the via foreign key
related data objects (either D3 or D4) with the case object D1.

5.5 Instantiation Patterns

Process and activity instantiation is an essential part of the process execution. We specify
a set of four instantiation patterns to be able to link the data object instances with the
process or activity instance from those they are processed. These and the corresponding
SQL queries will be introduced in this section.

Modeling and Enacting Complex Data Dependencies in Business Processes 33

Tab. 8: Patterns for process and activity instantiation.

I1 – Process instantiation without data trigger

O
rg

a
n

iz
a

ti
o

n

case object: D1

S t a r t process ins tance
wi th new $ID

I2 – Process instantiation with data trigger

O
rg

a
n

iz
a

ti
o

n

D1

[s]

pk: d1_id

case object: D1

S t a r t process ins tance
wi th i d d2 id

I3 – Subprocess instantiation with single data trigger

D2

[t]

pk: d2_id
fk: d3_id

Subprocess

case object: D2

case object: D1
For d2 id ∈ (

SELECT d2 . d2 id
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID)

s t a r t subprocess
wi th i d d2 id

I4 – Subprocess instantiation with multiple data trigger

D2

[t]

pk: d2_id
fk: d3_id

III

Subprocess

case object: D2

III

case object: D1
For each d2 id ∈ (

SELECT d2 . d2 id
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID)

s t a r t subprocess
wi th i d d2 id

I1 – Process instantiation without data trigger. This pattern describes the instantiation of
a process without any data trigger by an arbitrary event. The instance of the process gets
an unique identifier (id), which is managed by the process engine. As soon an instance of
the case object is created within the process instance, it will receive the id of its process
instance as primary key value (see pattern CC1).

I2 – Process instantiation with data trigger. This pattern describes the instantiation of a
process triggered by a data object, which already exists and is received by the process.
At the same time, data object D1 is the case object of the process. Thus, the instantiated
process instance gets the primary key value of its case object instance as id in order to
correlate these two.

I3 – Subprocess instantiation with single data trigger. This pattern describes the in-
stantiation of a subprocess triggered by its case object D2. The instantiated subprocess
instance gets the primary key value of the respective case object instance as id. This is
captured by the SQL query that selects the primary key value of the row of the database

34 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

table for D2 being related to $ID of the surrounding scope with D1 as case object.
Therefore, D2 and D1 are joined by using the JOINALL statement.

I4 – Subprocess instantiation with multiple data triggers. This pattern describes the
instantiation of a multi instance subprocess triggered by its multi instance case object D2.
For each data object instance of D2 related to the current scope instance, one instance of
the subprocess is created, which gets the primary key value of the respective instance
of D2 as id. This is captured by the SQL query that selects the primary key values for
all rows of D2 being related to $ID of the surrounding scope with D1 as case object.
Therefore, D2 and D1 are joined by using the JOINALL statement. This pattern also
applies for a multi instance task having a case object (see Section 5.7 for the support of
multi instance tasks).

5.6 Attribute Patterns

This section introduces pattern and the corresponding SQL queries to handle database
operations on data object attributes other than the ones specified in Definition 1.

Tab. 9: Patterns for attributes other than primary key, foreign keys, and state.

A1 – Update attribute

UPDATE

attribute to

value

D2

[t]

pk: d2_id

case object: D1

fk: d3_id

UPDATE d2 SET
a t t r i b u t e = ’ value ’

WHERE d3 id = (
SELECT d3 . d3 id
FROM JOINALL (d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID)

A2 – XOR gateway

A

B

d2.attribute =

expression

case object: D1

SELECT d2 . a t t r i b u t e
FROM JOINALL (d2 , d3 , . . . , dn , d1)
WHERE d1 . d1 id = $ID

A1 – Update attribute. This pattern describes the update of data object attributes other
than the primary key, foreign key and state. These attributes are not represented in
the BPMN data object, but are part of the data model that accompanies the process
model. Thus, the corresponding attribute and the value (respectively the process variable
holding the value), to which it shall be updated, is specified in the label of the task.
In the graphical representation, the task is shown as service task to indicate that it is
executed automatically without further human interference (after specifying the value to
put into the database). Usually, this information is derived dynamically extracted from
a process variable. The differentiation whether a process variable or a specific value is
given in the task label needs to be done by surrounding code and included into the query

Modeling and Enacting Complex Data Dependencies in Business Processes 35

accordingly. The output data object, here D2, indicates on which data object table the
update statement is executed. For the update, all data table rows of D2 are selected where
the foreign key value d3 id points to an entry in the table of D3 which is related to $ID
determined by means of the JOINALL statement from D3 until the case object D1. This
is covered by the corresponding SQL statement.

A2 – XOR gateway. This pattern describes how data object attributes can be utilized
to decide the path to be taken after an exclusive choice (represented in BPMN by the
XOR gateway) in the control flow. The SQL query delivers the current value of the
specified attribute belonging to the data object instance of D2, which relates to $ID of the
surrounding scope. The correlation to $ID is done by means of the JOINALL statement
with the case object D1. The value returned by the query can be checked against the
specified expression to reason about the truth value of the condition attached the upper
path.

5.7 Supporting Multi Instance Tasks

In the sections above, we specified several patterns affecting subprocesses. BPMN
also offers the concept of multi instance tasks, which are very similar to subprocesses
from an execution point of view: Several task instances are instantiated from which
each is executed independently. To allow the handling of multi instance tasks with the
introduced set of patterns, we transform each multi instance task representation into
a multi instance subprocess. Thereby, we require that each multi instance task only

Tab. 10: Transforming multi instance tasks to multi instance subprocesses.

read
Activity

D2

[t]

pk: d2_id

case object: D1

fk: d3_id

III

Activity

D2

[t]

pk: d2_id

case object: D2

case object: D1

D2

[t]

pk: d2_id
fk: d3_id

III

III

update

Activity

D2

[t]

pk: d2_id

case object: D2

case object: D1

D2

[t]

pk: d2_id
fk: d3_id

III

III

Activity

D2

[t]

pk: d2_id

case object: D1

fk: d3_id

III

delete

Activity

D2

[t]

pk: d2_id

case object: D2

case object: D1

D2

[t]

pk: d2_id
fk: d3_id

III

III

Activity

D2

[t]

pk: d2_id

case object: D1

fk: d3_id

III

[delete]

[delete]

36 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

contains data associations to multi instance data objects. So, multi instance tasks can not
be used for the creation of dependent multi instance data objects because they need their
related data object being sing-instance as input. Summarized, during the transformation,
the multi instance task is mapped to a single instance task that is then surrounded by
a multi instance subprocess. The associated case data object is associated as-is to the
subprocess as input (to specify the number of instances to be created; see pattern I4 in
Section 5.5). Additionally, all multi instance data objects are also mapped into single
instance data objects and associated with the single instance activity surrounded by the
multi instance subprocess; input and output properties are not changed. Details about the
transformation process are given in Tab. 10.

6 Implementation

We evaluated our approach for enacting process models with complex data dependencies
by implementation. In the spirit of adding only few data annotations to BPMN, we
made an existing BPMN process engine data-aware by only few additions to its control
structures. As basis, we chose Activiti [4], a Java-based, lightweight, and open source
process engine specifically tailored for a subset of BPMN. Activiti enacts process
models given in the BPMN XML format. Activiti supports standard BPMN control
flow constructs. Data dependencies are not enacted from the process model, but from
properties of model elements. We extended the Activiti engine with our concepts as
follows.

We extended the BPMN XML specification with our concepts introduced in Sec-
tion 3.1 by utilizing extension elements explicitly supported by BPMN [16] to add new
attributes to existing constructs. Then, we supplemented the BPMN parser of Activiti so
that for each activity in a process model the given sets of data object input and output
can be derived.

The actual execution engine was extended at just two points: before invoking the
execution of an activity to check the pre-conditions of an activity and before completing
an activity to realize the post-conditions, both with respect to data objects. At either
point, the engine checks and matches for all possible data input (data output) patterns
described in Section 4. For each matching pre-condition pattern (i.e., read statement), the
corresponding SQL select query is generated and executed on the database. If one of the
pre-conditions is not fulfilled the engine suspends process flow for this activity until the
condition evaluates to true. For each matching post-condition pattern, the respective SQL
insert, update, or delete query is generated and executed on the database. As instantiation
of processes and activities is completely handled by Activiti, we chose to not interfere
with the assignment of scope ids from case objects. We chose to introduce a separate
scope id variable that is set from case objects when needed and resolves to the instance
id given by the engine otherwise. The current implementation uses one shared database
for all processes.

After extending Activiti with these few concepts at only three points of the code base
(parser, activity start, activity termination), we successfully verified each of the patterns
we introduced with test processes. The extended engine, example process models, and
an appropriate database are set up in a virtual machine, which is available for download

Modeling and Enacting Complex Data Dependencies in Business Processes 37

together with the source code at http://bpt.hpi.uni-potsdam.de/Public/
BPMNData.

7 Related Work

In the following, we compare the contributions of this paper to other techniques for
modeling and enacting processes with data; our comparison includes all requirements
for “object-aware process management” described in [10] and three additional factors.

The requirements cover modeling and enacting of data, processes, activities, autho-
rization of users, and support for flexible processes. (1) Data should be managed in terms
of a data model defining object types, attributes, and relations; (2) cardinality constraints
should restrict relations; (3) users can only read/write data they are authorized to access;
and (4) users can access data not only during process execution. Processes manage (5)
the life cycle of object types and (6) the interaction of different object instances; (7)
processes are only executed by authorized users and (8) users see which task they may
or have to execute in the form of a task list; (9) it is possible to describe the sequencing
of activities independently from the data flow. (10) One can define proper pre- and
post-conditions for service activities based on objects and their attributes; (11) forms for
user-interaction activities can be generated from the data dependencies; (12) activities
can have a variable granularity wrt. data updates, i.e., an activity may read/write objects
in 1:1, 1:n, and m:n fashion. (13) Whether a user is authorized to execute a task should
depend on the role and on the authorization for the data this task accesses. (14) Flexible
processes benefit from data integration in various ways (e.g., tasks that set mandatory
data are scheduled when required, tasks can be re-executed, etc.).

In addition to these requirements, we consider factors that influence the adaption of a
technique, namely, (15) whether the process paradigm is activity-centric or object-centric,
(16) whether the approach is backed by standards, and (17) to which extent it can reuse
existing methods and tools for modeling, execution, simulation, and analysis. Table 11
shows existing techniques satisfy these requirements and requirements (RQ1)-(RQ5)
given in the introduction.

Classical activity-centric techniques such as workflows [1] lack a proper integration
of data. Purely data-based approaches such as active database systems [20] allow to
update data based on event-condition-action rules, but lack a genuine process perspective.
Many approaches combine activity-centric process models with object life cycles, but are
largely confined to 1:1 relationships between a process instance and the object instances
it can handle, e.g., [9, 13, 22] and also BPMN [16]; some of these techniques allow
flexible process execution [19].

Table 11 compares techniques that support at least a basic notion of data integration.
Proclets [3] define object life cycles in an activity-centric way that interact through
channels. In [21], process execution and object interaction are derived from a product
data model. CorePro [14], the Object-Process Methodology [8], Object-Centric Process
Modeling [18], and the Artifact-Centric approach [6] define processes in terms of object
life cycles with various kinds of object interaction. Only artifacts support all notions of
variable granularity (12), though it is given in a declarative form that cannot always be
realized [7]. In Case Handling [2], process execution follows updating data such that

http://bpt.hpi.uni-potsdam.de/Public/BPMNData
http://bpt.hpi.uni-potsdam.de/Public/BPMNData

38 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

Tab. 11: Comparison of data-aware process modeling techniques.

requirement [in [10]] P
ro

cl
et

s
[3

]

C
or

eP
ro

[1
4]

O
P

M
[8

]

O
bj

.-C
en

t.
[1

8]

P
B

W
S

[2
1]

A
rt

ifa
ct

s
[6

]

C
H

[2
]

B
P

M
N

[1
6]

P
H

.F
l.

[1
0]

th
is

data

1: data integration [R1] o o o o o + o - + + (RQ2)
2: cardinalities [R2] + o + + - + o o + +
3: data authorization [R10] - o - - - - o - + -
4: data-oriented view [R8] - o - - - o o - + o

process

5: object behavior [R4] o + + + - o o o + + (RQ3)
6: object interactions [R5] + + + + o o o o + + (RQ4)
7: process authorization [R9] + + + + + o + o + o
8: process-oriented view [R7] + + + + + + + + + +
9: explicit sequencing of activities + o o o - - - + o +

activity
10: service calls based on data [R14] + + + + + + o o + + (RQ2)
11: forms based on data/flow in forms [R15/R18] - - - - - o/- +/- - + -
12: variable granularity 1:1/1:n/m:n [R17] - - - - - o o - o + (RQ5)

users 13: authorization by data and roles [R11/R12] - - - - - - - - + -
flex 14: flexible execution [R3/R6/R13/R16/R19] - o - - o o o - + -

factors
15: process paradigm A D D D D D D A D A (RQ1)
16: standards o o o o - - o + - + (RQ1)
17: reusability of existing techniques + - o - - - - + - +

fully satisfied (+), partially satisfied (o), not satisfied (-), activity-centric (A), object-centric (D)

particular goals are reached in a flexible manner. PHILharmonic Flows [10] is the most
advanced proposal addressing variable granularity as well as flexible process execution
through a combination of micro processes (object life cycles) and macro processes
(object interactions); though variable granularity is not fully supported for service tasks
and each activity must be coupled to changes in a data object (limits activity sequencing).
More importantly, the focus on an object-centric approach limits the reusability of
existing techniques and standards for modeling, execution, and analysis.

The technique proposed in this paper extends BPMN with data integration, cardi-
nalities can be set statically in the data model and dynamically as shown in Section 3.2;
a data-oriented view is available by the use of relational databases and SQL. Object
behavior and their interactions are managed with variable granularity. Our work did not
focus on authorization aspects and forms, but these aspects can clearly be addressed in
future work. Our approach, as it builds on BPMN, does not support flexible processes,
and thus should primarily be applied in use cases requiring structured processes. Most
importantly, we combine two industry standards for processes and data, allowing to
leverage on various techniques for modeling and analysis. We demonstrated reusability
by our implementation extending an existing engine. Thus, our approach covers more
than the requirements (RQ1)-(RQ5) raised in the introduction.

8 Conclusion

In this paper, we presented an approach to model processes incorporating complex data
dependencies, even m:n relationships, with classical activity-centric modeling techniques
and to automatically enact them. It covers all requirements RQ1-RQ5 presented in the

Modeling and Enacting Complex Data Dependencies in Business Processes 39

introduction. We combined different proven modeling techniques: the idea of object life
cycles, the standard process modeling notation BPMN, and relational data modeling
together make BPMN data-aware. This was achieved by introducing few extensions to
BPMN data objects, e.g., an object identifier to distinguish object instances. Data objects
associated to activities express pre- and post-conditions of activities. We presented a
pattern-based approach to automatically derive SQL queries from depicted pre- and
post-conditions. It covers all create, read, update, and delete operations by activities on
different data object types so that data dependencies can be automatically executed from
a given process model. Further, we ensure that no two instances of the same process
have conflicting data accesses on their data objects. Through combining two standard
techniques, BPMN and relational databases, we allow the opportunity to use existing
methods, tools, and analysis approaches of both separately as well as combined in the
new setting. The downside of this approach is an increased complexity of the process
model; however, this complexity can be alleviated through appropriate tool support
providing views, abstraction, and scoping.

The integration of complex data dependencies into process execution is the first of
few steps towards fully automated process enactment from process models. We support
operations on single data attributes beyond life cycle information and object identifiers
in one step. In practice, multiple attributes are usually affected simultaneously during a
data operation. Further, we assumed the usage of a shared database per process model.
Multi-database support may be achieved by utilizing the concept of data stores. We
focused on process orchestrations with capabilities to utilize objects created in other
processes. Process choreographies with data exchange between different parties is one of
the open steps. Fourth, research on formal verification is required to ensure correctness
of the processes to be executed. In future work, we will address these limitations.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language.
Information Systems 30(4), 245–275 (2005)

2. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case Handling: A New Paradigm for
Business Process Support. Data & Knowledge Engineering 53(2), 129–162 (2005)

3. van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: A Framework for Lightweight
Interacting Workflow Processes. Int. J. Cooperative Inf. Syst. 10(4), 443–481 (2001)

4. Activiti: Activiti BPM Platform. https://www.activiti.org/
5. Bonitasoft: Bonita Process Engine. https://www.bonitasoft.com/
6. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business operations

and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)
7. Damaggio, E., Hull, R., Vaculı́n, R.: On the equivalence of incremental and fixpoint semantics

for business artifacts with guard-stage-milestone lifecycles. Inf. Syst. 38(4), 561–584 (2013)
8. Dori, D.: Object-Process Methodology. Springer (2002)
9. Eshuis, R., Van Gorp, P.: Synthesizing Object Life Cycles from Business Process Models. In:

Conceptual Modeling. pp. 307–320. Springer (2012)
10. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-aware

Process Management. J SOFTW MAINT EVOL-R 23(4), 205–244 (2011)
11. Küster, J., Ryndina, K., Gall, H.: Generation of Business Process Models for Object Life

Cycle Compliance. In: Business Process Management. pp. 165–181. Springer (2007)

https://www.activiti.org/
https://www.bonitasoft.com/

40 Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske

12. Lanz, A., Reichert, M., Dadam, P.: Robust and flexible error handling in the aristaflow bpm
suite. In: CAiSE Forum 2010. LNBIP, vol. 72, pp. 174–189. Springer (2011)

13. Liu, R., Wu, F.Y., Kumaran, S.: Transforming activity-centric business process models into
information-centric models for soa solutions. J. Database Manag. 21(4), 14–34 (2010)

14. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of large process
structures. In: OTM 2007. LNCS, vol. 4803, pp. 131–149. Springer (2007)

15. Nigam, A., Caswell, N.: Business artifacts: An Approach to Operational Specification. IBM
Systems Journal 42(3), 428–445 (2003)

16. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)
17. OMG: Unified Modeling Language (UML), Version 2.4.1 (2011)
18. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: A flexible, object-centric

approach for business process modelling. SOCA’10 4(3), 191–201 (2010)
19. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems.

ToPNoC 5460, 115–135 (2009)
20. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 4th Edition. McGraw-

Hill Book Company (2001)
21. Vanderfeesten, I.T.P., Reijers, H.A., van der Aalst, W.M.P.: Product-based workflow support.

Inf. Syst. 36(2), 517–535 (2011)
22. Wang, J., Kumar, A.: A Framework for Document-Driven Workflow Systems. In: Business

Process Management. pp. 285–301. Springer (2005)
23. Wang, Z., ter Hofstede, A.H.M., Ouyang, C., Wynn, M., Wang, J., Zhu, X.: How to Guarantee

Compliance between Workflows and Product Lifecycles? Tech. rep., BPM Center Report
BPM-11-10 (2011)

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

73 978-3-86956-

241-4

Enriching Raw Events to Enable Process
Intelligence

Nico Herzberg, Mathias Weske

72 978-3-86956-
232-2

Explorative Authoring of ActiveWeb
Content in a Mobile Environment

Conrad Calmez, Hubert Hesse,
Benjamin Siegmund, Sebastian
Stamm, Astrid Thomschke,
Robert Hirschfeld, Dan Ingalls,
Jens Lincke

71 978-3-86956-
231-5

Vereinfachung der Entwicklung von
Geschäftsanwendungen durch
Konsolidierung von Programmier-
konzepten und -technologien

Lenoi Berov, Johannes Henning,
Toni Mattis, Patrick Rein, Robin
Schreiber, Eric Seckler, Bastian
Steinert, Robert Hirschfeld

70 978-3-86956-
230-8

HPI Future SOC Lab - Proceedings 2011 Christoph Meinel, Andreas Polze,
Gerhard Oswald, Rolf Strotmann,
Ulrich Seibold, Doc D'Errico

69 978-3-86956-
229-2

Akzeptanz und Nutzerfreundlichkeit der
AusweisApp: Eine qualitative
Untersuchung

Susanne Asheuer, Joy
Belgassem, Wiete Eichorn, Rio
Leipold, Lucas Licht, Christoph
Meinel, Anne Schanz, Maxim
Schnjakin

68 978-3-86956-
225-4

Fünfter Deutscher IPv6 Gipfel 2012 Christoph Meinel, Harald Sack
(Hrsg.)

67 978-3-86956-
228-5

Cache Conscious Column Organization in
In-Memory Column Stores

David Schalb, Jens Krüger,
Hasso Plattner

66 978-3-86956-
227-8

Model-Driven Engineering of Adaptation
Engines for Self-Adaptive Software

Thomas Vogel, Holger Giese

65 978-3-86956-
226-1

Scalable Compatibility for Embedded
Real-Time components via Language
Progressive Timed Automata

Stefan Neumann, Holger Giese

64 978-3-86956-
217-9

Cyber-Physical Systems with Dynamic
Structure: Towards Modeling and
Verification of Inductive Invariants

Basil Becker, Holger Giese

63 978-3-86956-
204-9

Theories and Intricacies of
Information Security Problems

Anne V. D. M. Kayem,
Christoph Meinel (Eds.)

62 978-3-86956-
212-4

Covering or Complete?
Discovering Conditional Inclusion
Dependencies

Jana Bauckmann, Ziawasch
Abedjan, Ulf Leser, Heiko Müller,
Felix Naumann

61 978-3-86956-
194-3

Vierter Deutscher IPv6 Gipfel 2011 Christoph Meinel, Harald Sack
(Hrsg.)

60 978-3-86956-
201-8

Understanding Cryptic Schemata in Large
Extract-Transform-Load Systems

Alexander Albrecht,
Felix Naumann

59 978-3-86956-
193-6

The JCop Language Specification

Malte Appeltauer,
Robert Hirschfeld

58 978-3-86956-
192-9

MDE Settings in SAP: A Descriptive Field
Study

Regina Hebig, Holger Giese

ISBN 978-3-86956-245-2
ISSN 1613-5652

	Title
	Imprint

	Abstract
	Motivation
	Data Modeling in BPMN
	Extending BPMN Data Modeling
	Modeling Data Dependencies in BPMN
	Example

	Executing Data-annotated BPMN Models
	Process Model Semantics
	Deriving Database Queries from Data Annotations

	Patterns
	Patterns for Case Object
	Patterns for Dependent1:1 Objects
	Patterns for Dependent1:n Objects
	Patterns for Dependentm:n Objects
	Instantiation Patterns
	Attribute Patterns
	Supporting Multi Instance Tasks

	Implementation
	Related Work
	Conclusion
	References
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

