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Chapter 1: Introduction

Wave field extrapolation is a technique, which is used for all kinds of applications. It can be
used for acoustical modelling in enclosed spaces. To find out how sound waves behave in a
certain space. But is also used for source localization. This is often used to find vibrating
parts in machines, which produce noise and influence the performance of the machine. When
the sources are located is is possible try to decrease the vibrations. Another application can
be found in seismic imaging, where it is used for imaging earth’s surface characteristics. The
method used in this report for spatial propagation is adopted from this seismic imaging field
and is described in Berkhout’s paper [2].
In this report a start is made with wave field propagation in wavenumber-domain and in
spatial domain. These approaches can then be compared to determine which method gives
the most accurate results. The propagation problems for both approaches will be threaded
in half space.
First the theory of acoustic waves is briefly discussed. Secondly the theory behind spatial-
and wavenumber-domain propagation is studied. After which the numerical implementation
of this theory is explained. Then some numerical simulations are performed to improve the
implementations and to show their performance. Finally both approaches are compared, for
the specific setup that is considered.
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Chapter 2: Theory of wave propagation

In this chapter first the wave theory needed for deriving the theory of wave propagation is
discussed. Then the source used for the simulations is explained. And finally the theory of
propagation in wavenumber- and spatial-domain is explained.

2.1 Plane waves

A wavefield p(~r, t) satisfies the acoustic wave equation

∇2p(~r, t)− 1

c2

∂2p(~r, t)

∂t2
= 0. (2.1)

Here ~r represents the position in space and t represents the time. [1] Valid for a homogeneous
fluid with no viscosity and if there are no sources in the volume to which it is applied. The
speed of sound is represented by c. When the Fourier transform of the time domain wave
equation 2.1 is computed, then this results in

∇2p(~r, ω) + k2p(~r, ω) = 0, (2.2)

the Helmholtz equation [1]. This equation can be used to describe harmonic wave propaga-
tion. The wavenumber k is defined as

k =
ω

c
=

2π

λ
. (2.3)

The general solution of the Helmholtz equation will be considered here and is shown below

p(ω) = A(ω)ei(kxx+kyy+kzz). (2.4)

This equation represents a plane wave, which is illustrated in figure 2.1.1.
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Figure 2.1.1: Illustration of a plane wave

In this equation A is an arbitrary constant and kx, ky and kz are the wavenumbers in
respectively the x, y and z direction. Equation 2.4 satisfies the Helmholtz equation when
equation 2.5 is met.

k2 = (k2
x + k2

y + k2
z) (2.5)

Note that equation 2.4 can also be represented as

p(ω) = A(ω)ei(
~k·~r). (2.6)

Where ~r = xî+yĵ+zk̂ represents the position vector and ~k = kxî+ky ĵ+kzk̂ is representing
the direction of the wave propagation.

2.2 Acoustic monopole

In this report only a monopole source is used. A plane wave (equation 2.6) propagates in
one direction, so the wave direction ~k and the pressure field |p(ω)| are constant for every
position ~r = (x, y, z). Sound waves from a monopole source propagate in every direction.
When the origin of ~r is located at the position of the source, then the wave direction ~k is
always equal to the direction of the vector ~r. And now the amplitude of the pressure field
|p(ω)| is only dependent on the distance of the source |~r|. The monopole source is described
with

p(ω) =
A(ω)

|~r|
ei(|

~k|·|~r|) (2.7)
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and visualised in figure 2.2.1.

Figure 2.2.1: Visualisation of the acoustic monopole

2.3 Propagation in wavenumber-domain

Since k is defined as equation 2.3, in which ω is the frequency and c is the speed of sound,
the wavenumber k is constant. This means that the three directional wavenumbers are
dependent on each other. Maximum two variables are independent, therefore one variable
can be chosen dependent. Regarding the wavenumber domain in this document kz is chosen
as dependent variable, as

k2
z = k2 − k2

x − k2
y. (2.8)

Now a steady state wave field p(x, y, y, ω) is considered. This pressure field is a summation
of the plane waves present in the source-free half space. This summation is represented as

p(x, y, z, ω) = ΣkxΣky P (kx, ky)e
i(kxx+kyy+kzz) (2.9)

in which the exponential term can be recognized as a plane wave. When this pressure field
is considered at position z = 0, equation 2.10 is obtained;

P (kx, ky, 0) = FxFy [p(x, y, 0, ω)] (2.10)

this equation describes the Fourier transformation in x and y direction of the wave field, and
results in the wave field representation in wavenumber domain. The wave field description
in wavenumber domain is now used to do the propagation to another plane. This is possible
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because of the relation between z = 0 and z = constant. This results in the general
expression

P (kx, ky, z) = P (kx, ky, z
′)ei(kzz−z

′) (2.11)

used for forward propagation in wavenumber domain form plane z = z′ to plane z = z.
Equation 2.11 shows that the wave amplitudes only undergo a phase change, when kz is
real. These are propagating waves. When kz are imaginary the waves die out. After this
propagation the inverse Fourier transformation is needed to obtain the propagated wave field
p(x, y, z, ω).

2.3.1 Preconditioning

Because of the discrete Fourier transformation, which has to be applied to the wave field,
this implements some errors to the results in wavenumber domain. Those problems are due
to the the fact that the wave field is only known at specific discrete points and because the
aperture is finite.
Because the aperture is finite, nothing is known of the wave field outside of the plane borders.
When a fft is performed on this finite aperture, then this is equivalent to performing the
fft on an infinite signal created by replicating the measured aperture. This will result in a
wave field, which will most likely contain discontinuities at the position where the repetitive
planes are attached to each other, shown in figure 2.3.1.

Figure 2.3.1: Development of discontinuities

Those sharp discontinuities will result in a large frequency domain needed, to be able to
describe the wave field, using the fft. Therefore when a fft is applied to a sine wave of a
certain frequency, this should result in a single frequency line. But because of the finite
data this single frequency line will be spread out and form a wide peak. This issue is called
spectral leakage [5]. To reduce the effects of spectral leakage the discontinuities should be
reduced. This can be done by applying a window to the wave field. This window should
be some sort of function which smoothly reduces the wave field to zero at the plane border.
The window which will be used is specified in chapter 3.1.
A disadvantage of using a window function on the wave field is that a lot of information of
the wave field is lost. This loss of information can result in large errors when the wave field in
wavenumber space is propagated. A window with steep sides does not alter the information,
but it also gives a less smooth transition to zero at the border. This results in errors due
to the increase of spectral leakage. To retain as much information as possible and reduce
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spectral leakage, border padding is applied: the plane will be enlarged using the data values
of the wave field at the border of the plane, which is shown for 1 dimensions in figure 2.3.2.

Figure 2.3.2: Border padding

After border padding, the window is applied. The addition of border padding results in
less information loss of the original wave field. In figure 2.3.3 the idea of border padding
is shown. In this figure it is also visible that the use of border padding also introduces a
discontinuity, of which the effect is further discussed in 3.1.

Figure 2.3.3: Border padding

2.4 Propagation in spatial-domain

Huygen’s principle states that the propagation of a wave through a certain medium can
be described by adding the contributing of all secondary sources, positioned along a wave
front. Which means that the wave field inside a source free volume can be described using
secondary sources positioned at the boundary surface. These secondary sources are created
at the boundary surface as a result of the primary sources surrounding this boundary. This
property can be described by the Kirchhoff integral [2]:

PA =
1

4π

∮
S

[
e−jkr

r
ρ0jωVn + P

1 + jkr

r2
e−jkr cosϕ]n̂dS (2.12)

The Kirchhoff integral comes from the substitution of the wave equation in Green’s second
theorem;
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∮
V

[F∇2G−G∇2F ]dV =

∮
S

[P∇G−G∇P ]n̂dS. (2.13)

A closed surface of which the volume it encloses is source free is assumed. F is chosen as the
pressure field generated by the sources outside of the source free volume . So F is defined
as:

F = P (x, y, z, ω). (2.14)

P satisfies the Helmholtz equation 2.2. Now it is supposed that the Green function satisfies

G =
e−jkr

~r
, (2.15)

the Green’s function for infinite space [4] with

|~r| =
√

(x− x0)2 + (y − y0)2 + (z − z0)2. (2.16)

Because G satisfies

∇2G+ k2G = −4πδ(x− xα)δ(y − yα)δ(z − zα), (2.17)

this will make Green’s theorem, using the shift theorem, become equal to∮
S

[P∇G−G∇P ]n̂dS = −4πPA (2.18)

according to paper [3]. In which PA represents the pressure at a position A in the source
free volume.
The normal derivatives of G and P in this equation have to be de determined. The pressure
gradient is related to the velocity as;

∇P = −ρ0
∂V

∂t
. (2.19)

So for the normal derivative

∂P

∂~n
= −ρ0

∂V

∂t
(2.20)

is obtained. When is considered that V (x, y, z, t) = f(x, y, z)exp(−jωt) then the normal
derivation of the pressure is computed as

∂P

∂~n
= ρ0jωVn. (2.21)

When the normal direction is defined in the positive z direction , the normal derivation of
the Green’s function becomes
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∂G

∂~n
=
∂G

∂r

∂r

∂z
. (2.22)

The normal derivative of G can now be determined. Which leads to

∂G

∂n
= −1 + jkr

r2
e−jkr cosϕ, (2.23)

the complete derivation is described in appendix A. The rearrangement of equation 2.18
leads to

PA =
1

4π

∮
S

[G∇P − P∇G]n̂dS (2.24)

and the substitution of ∂P
∂n

, G and ∂G
∂n

in equation 2.24 will then result in

PA =
1

4π

∮
S

[
e−jkr

r
ρ0jωVn + P

1 + jkr

r2
e−jkr cosϕ]n̂dS. (2.25)

So equation 2.25 results in the Kirchhoff-Helmholtz integral, formulated in the space-frequency
domain, used in paper [2]. A representation of this integral is given in figure 2.4.1.

Figure 2.4.1: Visualisation of the Kirchhoff-Helmholtz integral

Using this equation the pressure can be calculated at any point inside of the surface S, when
all secondary sources are known. But because planar propagation is desired the Green’s
function G needs to be replaced by

G =
e−jkr

r
− e−jkr

′

r′
(2.26)

Which is the Green’s function that applies to plane screens. In this function r′ = r. The
normal derivation of r is now δr/δn = −δr′/δn. Therefore the normal derivation of the
Green’s function will now be equal to
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∂G

∂n
= −2

1 + jkr

r2
e−jkr cosϕ. (2.27)

Using Green’s function 2.26, equation 2.24 will result in a degenerated form of a closed
surface integral

P (r1, ω) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

[P (r0, ω)
1 + jkr

r2
e−jkr cosϕ]dxdy. (2.28)

This equation represents an infinite plate surface between the source and the receiver domain,
which is known as the Rayleigh II integral in three-dimensions, which forms the basis of the
wave-field extrapolation in spatial domain. r1 and r0 are related to the planes z1 and z0

respectively. The general representation of the Rayleigh II integral is

P (x1, y1, z1, ω) =

∫ ∞
−∞

∫ ∞
−∞

[W (x1 − x, y1 − y, z1 − z, ω)P (x0, y0, z0, ω)]dxdy (2.29)

of which a visualisation is shown in figure 2.4.2, where

W (x1 − x, y1 − y, z1 − z, ω) =
cosϕ

2π

1 + jkr

r2
e−jkr (2.30)

Figure 2.4.2: Visualisation of the RayleighII integral

In acoustic holography only discrete points of a finite pressure field are know, therefore
equation 2.28 is replaced by

P+(z1) = W+P+(z0) (2.31)

This equation consists of P+(z1), the unknown discrete pressure field in the receiver domain
at position z1, P+(z0), the known discrete pressure field at position (z0) and W+ the prop-
agation matrix containing all extrapolation components for all relevant combinations of r0

and r1. The exact realization of this propagation equation is explained in section 3.2.
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Chapter 3: Numerical implementation

In this chapter the numerical implementations of the propagation theory are discussed. At
first the wavenumber-domain is discussed and secondly the spatial-domain is discussed. Fi-
nally the error calculation is defined.
Both numerical implementations first determine the wave fields at the plane at z = zs and
at z = zh directly using the monopole equation 2.7. After this compilation both implemen-
tations propagate the wave field from the plane at z = zs to the plane at z = zh. After
which the difference, between the direct calculated pressure field zh and the pressure field
propagated from zs by both methods, is determined. The simulation configuration is shown
in figure 3.0.1.

Figure 3.0.1: Free-field configuration

3.1 Wavenumber-domain

The entire computation in wavenumber-domain is represented in figure 3.1.1.

Figure 3.1.1: Wavenumber-domain computation

Before applying the 2 dimensional fft to the pressure field pzs preconditioning is utilized.
Then the wave field Pzs(kx, ky) can be multiplied by the propagation matrix, which results
in the wave field Pzh,propagated(kx, ky). After the inverse 2 dimensional fft, the wave field in
frequency domain pzs,propagated is achieved.

3.1.1 Preconditioning

At first border padding is used. This will increase the size of the aperture using the data
values of the border of the wave field pzs . The amount of surface that is added to the
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border of the wave field can be varied, which will influence the error of the final wave field
pzs,propagated. Now a window is applied to the border padded plane. The Tukey window which
is used consists of three sections: taper, constant and taper. The tapers are defined as the
halves of a cosine and the parameter determines the fraction, between 0 and ±0.5, which is
used for these halve cosines. The space between the cosines is kept constant at the value 1.
The Tukey window is shown in figure 3.1.2. The windows vary from a rectangular window
(parameter = 0) to a Von Hann window (paramater = 1).

Figure 3.1.2: Windows used to reduce spectral leakage

3.1.2 Propagation matrix E

The propagation is based on equation 2.11, which represents the wave propagation of a point
(kx, ky) at plane z = z0 to the same point (kx, ky) at another plane at z = z1. Because a
whole plane needs to be propagated, equation 2.11 will now be written in matrix form which
results in;

P(kx, ky, z1) = P(kx, ky, z0) ◦ E (3.1)

This represents an element by element matrix multiplication, where E is the propagation
matrix. This means that these matrices are exactly the same size so an element wise multi-
plication is possible. The exact definition used in the implementation is shown below.

P(z0) =

 p(kx,1, ky,1, z0) · · · p(kx,N , ky,1, z0)
...

...
p(kx,1, ky,M , z0) · · · p(kx,N , ky,M , z0)

 (3.2)

P(z) =

 p(kx,1, ky,1, z1) · · · p(kx,N , ky,1, z1)
...

...
p(kx,1, ky,M , z1) · · · p(kx,N , ky,M , z1)

 (3.3)
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Every element of the propagation matrix can now be calculated using

E(p(kx, ky, (z1 − z0)) = eikz(z1−z0), (3.4)

where

kz =
√
k2 − k2

x − k2
y. (3.5)

3.2 Spatial-domain

The complete computation in spatial domain is visualised in figure 3.2.1.

Figure 3.2.1: Spatial-domain computation

The propagation is computed using equation 2.31. This equation consists of two arrays
~P+(z0) and ~P+(z1). ~P+(z0) contains the pressure at every discrete position of pzs and ~P+(z1)
contains (after the computation) the pressure at every discrete position of pzh,propagated. So
when the wave field matrices are of size N × M then the wave field arrays are of size
1 × R = 1 × (N × M). Equation 2.31 also contains the propagation matrix W+, which
consists of all propagation components for all combinations of the discrete positions of pzs
and pzh,propagated. Consequently the size of the propagation matrix is equal to R × R. The
exact definition of these pressure matrices and the propagation matrix are shown below.
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P+(z0) =



pzs,1(x1, y1, z0)
pzs,2(x2, y1, z0)

...
pzs,k(xj, yi, z0)

...
pzs,R−1(xj−1, yM , z0)
pzs,R(xN , yM , z0)


(3.6) P+(z1) =



pzh,1(x1, y1, z1)
pzh,2(x2, y1, z1)

...
pzh,m(xi, yj, z1)

...
pzh,R−1(xj−1, yM , z1)
pzh,R(xN , yM , z1)


(3.7)

W+ =


W (pzh,1, pzs,1) · · · W (pzh,1, pzs,k) · · · W (pzh,1, pzs,R)

...
...

...
W (pzh,m, pzs,1) · · · W (pzh,m, pzs,k) · · · W (pzh,m, pzs,R)

...
...

...
W (pzh,R, pzs,1) · · · W (pzh,R, pzs,k) · · · W (pzh,R, pzs,R)

 (3.8)

3.2.1 Propagation matrix W+

Now the computation method to calculate a single component of the propagation matrix
needs to be determined.

Method 1

The first method that will be used is shown below;

W (r1, r0) = W (x1 − x0, y1 − y0, z1 − z0, ω)∆x∆y, (3.9)

where
W (x1 − x0, y1 − y0, z1 − z0, ω) =

cosϕ

2π

1 + jkr

r2
e−jkr. (3.10)

In this equation ∆x and ∆y are equal to the distance between two neighbouring positions.
This method can be compared to a Riemann sum, of which the accuracy of the approximation
is dependent on the resolution of the volume above the surfaces of size A = ∆x×∆y.

Method 2

The second method used for the calculation of a propagation matrix component is

W (r1, r0) =

∫ x0+∆x/2

x0−∆x/2

∫ y0+∆y/2

y0−∆y/2

W (x1 − x0, y1 − y0, z1 − z0, ω) dxdy. (3.11)
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This method gives a better approximation of the volume above the surfaces A = ∆x×∆y.
A better result is expected when using this method, but this method takes much longer to
compute than method 1. Every point of the plane pzs is used to calculate one pressure point
of the plane pzh,propagated. So in the propagation matrix W+ every row is needed to calculated
one pressure point of plane pzh,propagated.
Therefore a lot of calculations are needed to calculate every component, especially when
the resolution is increased, which leads rapidly to a very large propagation matrix. But the
whole matrix consist of repeating elements. The propagation matrix consists namely out of
M different toeplitz matrices which are themselves arranged in toeplitz order as;

W+
order =



a b c | e f g | i j k
b a b | f e f | j i j
c b a | g f e | k j i

e f g | a b c | a b c
f e f | b a b | b a b
g f e | c b a | c b a

i j k | e f g | a b c
j i j | f e f | b a b
k j i | g f e | c b a


(3.12)

This repetition pattern is used the speed up calculation. Only the components of the first
row of the matrix are calculated and all the other rows are build using the components of
the first row.

3.3 Error definition

The difference between the plane pzh and the plane pzh,propagated can now be determined.
Three errors are used for this evaluation.
First the error if a single point in the middle of the plane is considered. The error of the
amplitude and the error of the phase are calculated. The relative error of the amplitude is
defined as

εamplitude =
|pzh,prop| − |pzh|

|pzh|
· 100%. (3.13)

The definition of the relative phase error is a bit more complicated, because the phase is
only defined from −π to π. Only the phase difference will be considered, therefore the error
is defined as
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εphase =


|arg(pzh )−2π−arg(pzh,prop)|

π
· 100% if arg(pzh) ≥ 0 ∧ arg(pzh,prop) < arg(pzh)− π

|arg(pzh,prop)−arg(pzh )|
π

· 100% if arg(pzh) ≥ 0 ∧ arg(pzh,prop) ≥ arg(pzh)− π
|arg(pzh )+2π−arg(pzh,prop)|

π
· 100% if arg(pzh) < 0 ∧ arg(pzh,prop) > arg(pzh) + π

|arg(pzh,prop)−arg(pzh )|
π

· 100% if arg(pzh) < 0 ∧ arg(pzh,prop) ≤ arg(pzh) + π

.

(3.14)
The last error considered is the error over the entire plane;

εRMS =

√√√√ M∑
j=1

N∑
i=1

|pzh(i, j)− pzh,prop(i, j)|2
|pzh|2

1

R
· 100%. (3.15)

So the root of the mean of the squared error is calculated.
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Chapter 4: Numerical simulation

The completed implementations can now be subjected to some simulations, by which the
correctness of the implementation for different parameters can be checked. In these tests the
parameters zs, zh, f , ∆x, ∆y and the size of zs and zh will be kept constant when not stated
differently. The values of these parameters are stated below.

• zs = 0.1m

• zh = 0.2m

• f = 100Hz

• ∆x = 0.1m

• ∆y = 0.1m

• Aperture size at z = zs: Lx = Ly = 4.0m

• Aperture size at z = zh: Lx = Ly = 4.0m

4.1 Wavenumber-domain: determine preconditioning pa-
rameters

The simulations performed in wave-domain are used to determine optimal parameter values.
In this case, because the wavenumber-domain will also be compared with the spatial-domain,
it is chosen to optimize the parameter values for a range of the position of plane at z = zh.
The enlargement of the plane, using border padding, is varied for the parameter B, which
determines how much the length of both sides of the aperture is increased. side of the plane
is increased. The range of the parameter is;

B = [1, 2, 3, 4, 5, 6]. (4.1)

The other parameter which is varied is the steepness of the Tukey window, see section 3.1.
The variation range of this parameter is;

Steepness− parameter = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. (4.2)

Finally also the position of the plane at z = zh is varied, namely for

zh = [0.2, 1.0, 10]. (4.3)

This is done to assure that the parameters can be chosen such that always a reasonable
result is obtained, or to see that this is impossible to obtain. The results of changing the
border padding size an the slope of the window are shown in figure 4.1.1 for zh = 0.2m, in
figure 4.1.2 for zh = 1.0m and in figure 4.1.3 for zh = 10m.
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Figure 4.1.1: Relative error versus window steepness-parameter for varying the border
padding width at zh = 0.2m

Figure 4.1.2: Relative error versus window steepness-parameter for varying the border
padding width at zh = 1.0m

Figure 4.1.3: Relative error versus window steepness-parameter for varying the border
padding width at zh = 10m
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Now the average of these errors is determined and the results are shown in figure 4.1.4. These
graphs show that 3 times increasing the aperture gives the best result, but this is probably
due to the fact that at zh = 1.0m the error is really small. Because the error at zh = 1.0m is
very different compared to the other errors, it might be a coincidence that the error is this
small. Therefore this parameter of value 3 is not taken into account. Now 4 times increasing
the aperture gives the best result. The steepness parameter is chosen at 0.95, because this
gives for al positions of the plane at zh a reasonable result. Therefore these parameters will
be used when the implementation of wave- and spatial-domain are compared in section 4.3.
For spatial domain no preconditioning is used.

Figure 4.1.4: Average relative error versus window steepness-parameter for varying the border
padding width at zh = 0.2m, zh = 1.0m and zh = 10m

4.2 Spatial-domain

First simulations are done in spatial-domain to validate the implementation and determine
the differences in performance between method 1 and method 2 described in chapter 3.2.

4.2.1 Position of the hologram plane

The height of the hologram plane, the plane at z = zh, is varied, which will show the
difference between near-field and far-field propagation in spatial domain. The simulation
setting is shown in figure 4.2.1.
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Figure 4.2.1: Simulation setting: varying zh

In this setting two contrasting cases can occur. First increasing the height zh will result in a
less detailed hologram, because the wave field produced by the monopole will tend towards
a plain wave at infinity. This means that the propagation is easier, because less detail is
needed. However the propagation is also made more difficult when increasing the height,
because a single wave field is extrapolated to a plane which is located much further away.
So it is not clear which case will get the upper hand until the simulations are performed.
The results are shown in figure 4.2.2. These figures show a general trend of an error which
increases when the distance from the source zh increases. When the distance from the source
increases more than zh = 10m all errors will tend to a constant value. The figures also show
that method 1 gives much worse results below zh = 0.2m. This can be explained by the
fact that method 1 doesn’t provide a good approximation, when the distance between the
discrete points becomes much larger then the distance between the planes. But than when
looking at the relative and the RMS error it shows that between zh = 0.2m and zh = 10m
method 1 gives a more accurate than method 2. The difference between the two methods
is however smaller than one percent and is therefore considered negligible. Also a flaw can
be spotted in the relative error between zh = 3m and zh = 7m where both methods show
a large dip in the graph. Some small effects of this can also be seen in the RMS error at
zh = 3m. But the exact cause of this flaw is yet to be determined.
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Figure 4.2.2: Errors versus the height zh of the hologram plane

4.2.2 Position of plane at z = zs

Now not only the hologram plane is moved but also plane at z = zs, while the distance
between these two planes will be kept constant. This will lead to two holograms which
become less detailed when the height is increased. But the extrapolation distance is kept the
same. Therefore a lower error is expected, than in the previous simulation. The simulation
setting is visualised in figure 4.2.3.

Figure 4.2.3: Simulation setting: varying zs

The results are shown in figure4.2.4, in which the distance between the planes is equal to
d = 0.1m. The most striking in these graphs is that below zs = 0.1m the error increases
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rapidly. This is due to the fact that the hologram is very detailed at this moment because
it is so close to the source. This detailed wave field seems to be very difficult to propagate
even over a short distance. Another conspicuous point in the relative error is shown between
zs = 0.8m and zs = 6m, where method 1 gives a better result then method 2. But also here
the error is less than one percent and is therefore neglected. An more conspicuous point is the
fact that method 1 gives a better result than method 2 in the RMS error for the entire range
of zs. But again the difference between the two methods is less than one percent. Moreover
the situation of the RMS error seems to be predictable, because some extra simulations
showed that it can related to the previous simulation (varying the position of the hologram
plane). When a position zh is chosen in the previous simulation, and the difference between
the RMS error of method 1 and method 2 is checked at a certain distance between the
planes, it appears that when keeping that same distance will doing this simulation that the
difference between the RMS errors remains roughly at the same level.

Figure 4.2.4: Errors versus the height of the plane at zs, while the distance between the
holograms is kept constant

4.2.3 Frequency of the source

Here the influence of different source frequencies is considered. Increasing the frequency
also increases the wavelength of the source, while decreasing the frequency does exactly the
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opposite. A shorter wavelength will results in a more detailed wave field, which might cause
problems when applying the propagation.
The simulation results are shown in figure 4.2.5. In every graph can be seen that the accuracy
of the propagation is gone when the frequency becomes higher than f = 1000Hz. This can
be acknowledged because the wavelength at this frequency is equal to λ = 0.343m, while
the resolution is equal to res. = 0.1m. And therefore an accurate representation of the
wave field is impossible. At the lower frequencies the error seems to remain approximately
equal. The relative angle error seems to have some trouble to be calculated correctly when
the frequency is increased. This can make sense, because the phase changes much faster at
higher frequencies. The only inexplicable error is found in the relative error at f = 600Hz,
where the error of method 1 is quite small, while method 2 is not effected.

Figure 4.2.5: Errors versus the frequency of the source

4.2.4 Size of the holograms

Earlier simulations resulted in plots like the one in figure 4.2.6.
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Figure 4.2.6: An example of a plot, that shows the quadratic error of every point in the
plane

This plot shows the quadratic errors and it usually showed that the center point of the plane
gave the most accurate results. And, while checking the plane from the center to the side,
it showed that the error kept increasing. This effect is probably caused by a combination of
two things. First there is the fact that the cosine in the propagation equation, creates the
effect that the information of the plane at z = zs directly below a point of the hologram
plane is much more important than the information which is not directly below that point.
This is shown in figure 4.2.7a.

(a) Center point (b) Border point

Figure 4.2.7: Influence of cosine
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This means that the center point of the hologram plane gets lots of information of the plane
below and probably does not even notice that the wave field at z = zs is finite. While a
point positioned further at the side only gets a part of the information it actually needs
for a correct propagation, shown in figure 4.2.7b. This effect will now be analysed by first
increasing the size of both planes. Secondly only the size of plane at z = zs is increased. In
both cases the center point receives the same information so it should give similar results,
while points at the side will receive more information when only plane at z = zs is increased.
Results of increasing the size of both planes are shown in 4.2.8 and results of increasing the
size of only the plane at z = zs are shown in figure 4.2.9. The relative error and relative
angle error do indeed show that the center point’s error is constant in both cases. When now
the RMS errors are compared it does clearly show that on average the error becomes much
lower when only the plane at z = zs is increased, resulting in more information for the sides
of the plane and thus a more accurate result. It also shows that the RMS error decreases
when both plane sizes are increased. This is caused by the fact that now more points, which
receive on average more information, are present in the plane.
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Figure 4.2.8: Errors versus the increase of the size of both planes

Figure 4.2.9: Errors versus the increase of only the size of the plane at pzs
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4.2.5 Resolution of the wave field

Finally the effect of the resolution, ∆x and ∆y, of the wave field is examined for method
1. It is expacted that increasing the resolution will result in a higher accuracy of method 1,
especially when the distance between the planes becomes smaller.
These results are shown in figure 4.2.10. This shows that the error does decrease for a higher
resolution. The relative error of the center point does even give better results than method
2. This can be explained by the fact that increasing the resolution also means that the plane
contains much more information of the wave field. But it also shows that when the distance
between the planes is small, method 1 can’t give an accurate propagation and can’t compete
against the integral of method 2. There is only a striking point in the relative angle error
at zh = 5m, when method 1 uses a resolution of 0.5m, it give a very low error. The other
graphs do not show this behaviour. It gives the same sort of result earlier noticed in the
relative error of the frequency simulation, of which no clear clarification is determined.

Figure 4.2.10: Errors versus the height zh of the hologram plane, for varying the the resolution
of method 1
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4.3 Comparison between wave- and spatial-domain prop-
agation

The spatial-domain implementation performances is now checked and the optimal wave-
domain preconditioning parameters are determined. So now both implementations can be
compared.
The results are shown in figure 4.3.1. These results show that, depending on the propagation
distance and which information is relevant, the best approach can be chosen. When far-field
propagation is needed the spatial-domain approach gives the best result judging by these
graphs. For near-field propagation both approaches are sufficient when accurate information
of the center point is important. The graphs show a difference between the approaches of less
then one percent. When accurate information over the entire plane is required it depends
again on the propagation distance. When the distance becomes lower than zh = 0.2m spatial-
domain approach gives a much more accurate result, whereas the wave-domain approach
gives a more accurate result from distances higher than zh = 0.2m in near-field.
The fact that the wavenumber-domain approach does not deliver the same results as the
spatial-domain approach in the far-field propagation, can be due to the fact that for the use
of the Fourier transform, preconditioning is required, which results in larger errors when the
extrapolation distance becomes very large.
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Figure 4.3.1: Errors versus the the height zh of the hologram plane, for spatial- and
wavenumber-domain implementation
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Chapter 5: Conclusion

The theory behind propagation in wavenumber-domain and in spatial domain has been
studied. Using this theory a numerical implementation is finalized, which is tested and
improved using simulations. After that the behaviour of the numerical implementation in
spatial-domain has been discussed, which resulted in a feasible outcome. Finally the both
approaches where compared.
In this study it has been tried to examine whether the spatial-domain approach, described by
Berkhout [2], can achieve the same results as the approach in wavenumber-domain, described
by Williams [1]. In this study this is only done for the forward propagation.
The study showed that both approaches give sufficient results for near-field forward propa-
gation. For far-field forward propagation the spatial-domain approach gives better results.
Probably caused by the fact that the wave field for wavenumber domain is adjusted, which
gives a larger error when propagation over a greater distance is needed.

Recommendation for a further study are first to adjust the implementation in spatial domain
so it is also able to calculate the back propagation. Also it is considered to use shape
functions,which can be used to improve the performance of the implementation, by making
a better approximation of the wave field using the discrete aperture points.
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Appendix A: Normal derivative of G

The Green function is defined as

G =
e−jkr

~r
, (A.1)

with

r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2. (A.2)

The derivative can be calculated using

∂G

∂~n
=
∂G

∂r

∂r

∂z
. (A.3)

The derivative of r is

∂r

∂z
=
z − z0

r
= cosϕ. (A.4)

Now the derivative of G results in

∂G

∂n
=
e−jkr · −jk ∂r

∂z
· r − ∂r

∂z
· e−jkr

r2
(A.5)

∂G

∂n
=
−e−jkrjkrcosϕ− e−jkrcosϕ

r2
(A.6)

∂G

∂n
= −jkr + 1

r2
e−jkrcosϕ (A.7)
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