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In this paper, we present a DSS that generates schedules for the transportation of containers by barge in the hin-
terland, in particular from sea terminals to an inland terminal. As a case study, we propose the transportation
from the ports of Rotterdam and Antwerp to a terminal in the south of the Netherlands, where the problem is
typical. This problem is modeled as a heterogeneous fleet vehicle routing problem. The main decision is based
on the trade-off of either consolidating containers to generate economies of scalewith barges or alternatively dis-
patch, expensively and quickly, single containers by truck. The DSS is flexible as it can be applied to different set-
tings by properly tuning the several parameters in the model. With numerical experiments, based on real world
data, we evaluate the effectiveness of this system and its applicability.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, traffic of containers has increased considerably.
Global trade favors the use of containers, as standardized handling
units are necessary for the different logistic systems worldwide, and
lead to a lower cost of transportation [2]. One of the main advantages
of this standardization is the encouragement of multimodal transport,
that favors economies of scale in transport, and can reduce congestion
and emissions [12].

Recently, the transportation of containers in the hinterlands is draw-
ing considerable attention for several reasons. This transportation leg
has been acknowledged to be themost costly in many container supply
chains; 40% to 70% of the total transportation cost is in the hinterland
[26].Moreover, an excessive use of trucks between sea ports and hinter-
land causes issues of congestion andpollution [38]. Promoting theuse of
alternative modes of transport is one of the primary measures to de-
crease the drawbacks of inland transportation and generate economies
of scale [12,15].

In Europe, especially in the Northwestern area where the flow of
containers is the highest, the problem is relevant [22]. The hinterland
is mostly affected by import container flows; the imbalance with the
outbound traffic has been estimated to be in the ratio of 2:1 [32].
Therefore, inbound road traffic around the sea ports is becoming unsus-
tainable and several expedients are being considered. Trains and barges
are favored for the fact that they can generate economies of scale and
can push large bundles far in the hinterland. Also port authorities
and governments are supporting their use. For instance, the Port of
Rotterdamdefined a target for the 2035modal split. The goal is to trans-
port at least 45% of the volumes by barge, at least 20% by train, and at
most 35% by truck. The modal shift will not be achieved easily and will
require increasing performance from barge and train services [22].

In the Netherlands, many inland terminals provide transport
services to and from the Port of Rotterdam and Antwerp. In the Brabant
region (Southern Netherlands), tributaries of the river Meuse can
connect the hinterland with the sea ports and also provide connections
with other waterways. These geographical conditions are considerably
favorable to the use of barges, such that inland terminals are providing
their customers regular barge services in addition to trucks. For
instance, this is the case for a terminal located in Veghel, which is the
case study of this research. Additionally, many receivers prefer barge
transport not only for its lower costs, but also for facilitation at customs
and more flexibility in terms of dwelling time at the terminal premises
[13]. Finally, the barge service is becoming more and more reliable due
to new bundling policies within the ports that can limit complex routes
among quays [27].

As the competitiveness of barge transport is increasing in this region,
its demand has grown substantially. By the Port of Rotterdam, it is
estimated that from 1985 to 1995 barge traffic grew from 200,000 TEU
to about 1 million TEU; in 2005 the volume was about 2 million TEU,
approximately a market share of 31% [21]; in 2014, a share of 36%
against 53% of truck and only 11% of rail [30]. While trains are usually
utilized for long distances and their services are mostly pre-scheduled,
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for barges planners have to deal with large and complex scheduling
problems. The challenge is to consolidate containers with different ne-
cessities related to time. In fact, time constraints, such as due dates and
different release dates, make the consolidation complex. Besides, other
factors, asmultiple quays,where to pickup containers andminimumuti-
lization level, increase the complexity for the scheduler. All these compo-
nents can somehow limit the use of barges and favor the use of trucks.

The aim of this paper is to develop a DSS for the optimal allocation of
import containers to a heterogeneous fleet composed by barges and
trucks; besides the paper aims to explore different aspects in this
decision making process and to give managerial insights. The validity
of the model is supported by a case study conducted at an inland
terminal in theNetherlands. TheDSS eases the creation of the schedules.
It takes data concerning the availability, due dates and locations
from the internal data base. Then, it feeds the algorithm which
computes the schedule. Besides, different parameters can be adjusted
by the planner to generate schedules with different features. Finally,
the output is translated andmade readable to the planner. The research
questions we want to address are: How to model and solve the trans-
portation of import containers in the hinterland?What is the incidence
of due dates in the planning process? To what extent the level of barge
utilization affects the allocation and the total cost? To what extent is it
possible to reduce multiple visits of port quays in each tour? How the
availability of information in the time horizon can affect the planning
process?

This paper is organized as follows: Section 2 provides the related lit-
erature; Section 3 presents the problem and the case study; Section 4
formulates themathematicalmodel and a relaxed version; Section 5 de-
scribes the heuristic used to generate the schedules; Section 6 presents
numerical experiments based on instances drawn from real data; finally
Section 7 concludes the paper with our final recommendations.

2. Related literature

Relevant literature with concern to container supply chain systems
and the development of DSS's can be grouped into two main areas:
operations at container terminals and transportation. As the traffic of
containers has grown exponentially in the last two decades worldwide,
and the related supply chains have becomemore and more complex, it
is crucial to make effective decisions. Therefore, the topic caught the
interest ofmany researchers to develop decision support tools for differ-
ent aspects of the supply chain.

With concern to the first area, operations at container terminals,
some main problems arise: berth, yard and crane allocation at the
quay side and container packing. We refer to [5] for a thorough review
of typical problems and related scientific papers. With a DSS point of
view, we can find several papers treating the topic. In [36], Ursavas pro-
posed a DSS to optimally allocate berths and cranes considering two
conflicting parties: shipping companies and terminal operators. The au-
thor provides a multi-objective integer programming model that aims
to achieve acceptable service level for the shipping companies and
lower operational costs for terminal operators. Murty et al. [24] devel-
oped a DSS to analyze a set of inter-related daily operational decisions
at a container terminal. The goal is to optimize berthing times of vessels,
resources for handling operations, waiting times of trucks and to make
the best use of the storage space. Ngai et al. [25] proposed a radio
frequency identification (RFID) prototype system that is integrated
with mobile commerce in a container depot. The system is implement-
ed to keep track of the locations of stackers and containers, to provide
greater visibility of the operations data, and to improve the control
over the process. Finally, Chien and Deng [6] proposed a container
packing support system. The system incorporates an algorithm, a graph-
ic interface and a simulation program that guides the user step by step
in the packing process.

The second area, related to transportation, has mainly tackled the
problem of empty container management (ECM). We refer to [33]
for a review. In [31], Shen and Khoong developed a DSS to solve
empty container repositioning for a shipping company, using a network
optimizationmodel. The system considers demand and supply of empty
containers over amultiperiod planning horizon and optimizes the flows
of containers both on a local and regional level. In [2], Bandeira et al. in-
tegrated decisions upon flows of full and empty containers in a single
system. They consider a network of suppliers, demand points, harbors
and warehouses, and the problem is modeled as a Multiple Depot
Vehicle Scheduling Problem; the aim is to minimize global distribution
costs. The DSS is composed of a static and dynamic model. The static
model optimizes a network flow problem and considers the input
given by the dynamic model, which heuristically selects the containers
and gives them priority according to transportation times and original
dates of order.

Specific literature related to barge transport has recently seen a
moderate growth due to the increasing predominance of this modality
in some regions, especially Northwestern Europe. In [9], Douma et al.
developed a Multi-Agent system to improve the coordination between
barge and terminal operators for the Port of Rotterdam. After a sequence
of terminals to visit, so-called rotation (which is tackled in our paper), is
decided by barge operators, the terminal operator receives the appoint-
ments and has to schedule the visit of barges at the quays considering
practical constraints. The system is meant to align such activities in an
optimal way for both parties. In [13], Frémont and Franc conducted a
study on the competitiveness of barge transport for the Port of Le
Havre. They claim that in such a setting with lower volumes than
Rotterdam and Antwerp, competitiveness can be achieved with
additional logistic services to make the barge more appealing: more
flexibility with the custom, warehousing and extended detention free
periods. Other relevant studies have a simulation perspective and aim
to give insights on the network of the ports. In [22], Konings et al. point-
ed out that a hub-and-spoke network can be beneficial for ports such as
Rotterdam as to decrease the number of calls and waiting times. They
show with a simulation study that with such a network improvements
can be achieved when the cross-docking hub is located at a greater
distance, as this can favor economies of scale. Finally, Caris et al. [4]
proposed a simulation study that analyzes the impact of different
cross-docking facilities on waiting times and capacity utilization for
the Port of Antwerp.

To the best of our knowledge literature related to the treated prob-
lem is quite scarce, as it mainly focuses on the ECM problem. Somehow,
ECMdrewmore attention to the detriment of the study of the full trans-
portation leg, as this is seen bymost as amere allocationmodel [2]. As a
consequence, we are not able to find any relevant literature that ad-
dresses our problem and emphasizes the complexity of the consolida-
tion with a time perspective and also considers the features of barge
transport. Somehow, this is surprising. The full container management
puts a lot of pressure on planners as the need of respecting deadlines
on one hand and the need to consolidate containers to generate econo-
mies of scale on the other hand clash with each other. Therefore, this
paper aims to fill this gap and the case study is meant to provide an ac-
tual motivation for this DSS.

To model this particular hinterland transportation of containers, we
need to address the heterogeneous fleet vehicle routing problem
(HVRP); while, for a relaxation of the problem, we address the variable
size bin packing problem (VS-BPP), see [19] for definitions and [16] for a
comparison of different solution methods. With concern to the HVRP,
we refer to [1] for a review and to [17] for a survey of its industrial ap-
plications. On this problem the literature is indeed quite scarce [11].
Two main variants have been proposed, with a limited and unlimited
number of vehicles. As stated by Baldacci et al. [1], for HVRP exact
methods have not been developed yet. All the existing studies have
focused on developing heuristics. The best performing heuristics
appear to be a tabu search algorithm developed in [14], a heuristic
column generation method in [34] and a threshold accepting algorithm
in [35].
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3. Problem description

We define hinterland transportation as the movement of containers
from a sea port to the hinterland (inbound) and vice versa (outbound).
In the Northwestern Europe supply chain, there is an imbalance be-
tween import and export containers [32]; inbound flows are dominant
in such a supply chain and they drive the scheduling decisions.

For inbound flows, containers usually arrive at the sea ports by
means of ocean vessels. After the containers are unloaded from the
ships, they are temporarily stacked on the quay and subsequently they
are moved to the hinterland. With regard to the case study, two main
options are available for this transportation leg: trucks and barges. The
transport planner decides how to pick up containers from the sea termi-
nal considering the following information: release dates and due dates;
composition of the fleet and transport capacity; travel times and costs.
In general, the planner tries to reduce transportation costs by preferring
barges to trucks. However, this entails more complex planning. The
barges should be filled to a high percentage of their capacity in order
to achieve an economy of scale. Besides, the planner will prefer to
bundle containers located at the same quay in order to limit the number
of calls, additional handling operations, and transportation time. In fact,
a routing problem has to be considered. We refer to this operational
problem as hinterland allocation problem (HAP).

3.1. A simpler plan due to new port strategies

Port competition ismoving from competition between ports to com-
petition between transport chains. As a consequence, ports increasingly
aim to improve the quality of hinterland transport services and the
access to the hinterland [37]. Coordination among ports and inland
terminals, together with new bundle strategies within the ports, lead
to a leaner system. As described in [22], a hub-and-spoke network for
hinterland services would change the current situation in the sea port
– consisting of separate collection and distribution – into a system
where barges need to visit only one terminal. Containers would first
be collected from different sea terminals and second grouped according
to their destinations. This hub-and-spoke setting would generate trans-
port services focused on a small set of terminals and would lead to
simpler routes with few stops. Since barges would shuttle between
the inland terminal and a dedicated hub, the routing problem could be
neglected and HAP would change into a variable size bin packing
problem (VS-BPP) with time features.

In this study, we propose a relaxation of the basic planning problem,
where the barge is allowed to visit only one dock where all the
containers are assumed to be located. As the network under study is
dense with few main clusters, we expect a fair approximation. More-
over, when a hub-and-spoke strategy will be fully applied in the future
this relaxed model can replace the HAP based on routings.

3.2. Time horizon and scheduling against available information

Decisions are made considering the available information. As the
container system is highly dynamic and the exchange of actual informa-
tion between sea terminals and planning systems is not always in real
time, the planner faces critical decisions in a planning horizon window.

A planning horizonwindowmeans that the planner uses the data that
cover a certain time window to make the plan. Therefore, the availability
and the accuracy of advanced information play a crucial role to determine
good schedules. When information does not cover large windows, the
planner can miss opportunities for bundling. Clearly, also the time when
the planner decides to close a scheduling process is critical.

In the numerical section, some results for the HAP compared with
the real planning show these particular drawbacks. Moreover, we
solve a set of instances with planning horizon windows to show how
information from extensive coverage of time can contribute, generally,
to better schedules.
3.3. Case study management and related assumptions

The case study has been conducted on a close collaboration with
Inland Terminal Veghel (ITV), its managers and its planners. ITV was
established in 2004 and since 2009 is part of the joint venture Brabant
Intermodal, where a set of inland terminals in the Brabant region are
cooperating. The analysis of the system was first conducted on site for
a period of twomonths, on average 3 days per week. Afterward, weekly
meetings were held for complementary information and data sharing.

Considering solely theDutch territory, it is possible to find at least 20
inland terminals with the same features in terms of provided services,
destinations and connection with the ports; see [29] for a list of inland
terminals and a description of services and links. This demonstrates
the validity of this study and its relevance and applicability for many
different contexts.

According to the information obtained from ITV, we are able tomake
the following assumptions for our model:

(i) A sea terminal is defined as a cluster. Within a cluster all the
quays are equidistant from each other (1 h). The distance from
any quay of a cluster to the inland terminal or to another sea
terminal is defined as the distance from the cluster itself.

(ii) Barges depart from the inland terminal only when every
allocated container is released at the sea terminals.

(iii) The inland terminal is considered the final destination for both
trucks and barges.

(iv) Due dates are defined at the inland terminal.
(v) The fleet is limited and immediately available for transportation.

With the first assumption, the routing problem becomes trivial to
solve (see Section 4). Themodel is notmuch affected in comparison to re-
ality. This is a consequence of a system that is composed of dense clusters
and is quite flexible in terms of time. Delays of hours are a matter of
course. Hence, planners are used to estimating average times by rule of
thumb.

With regard to the second assumption, barges are not allowed to
sojourn at the sea terminal waiting for containers to be released.
Besides, it is common practice that containers are booked when they
are physically available and the booking is made before the barge sails
to the port. In order to ensure this, we require barges to depart only
when all allocated containers are available for pick-up.

With respect to the third assumption, a container can be either pick-
ed up by the customer at the inland terminal or an additional short leg
must be performed by a truck. In this study, we assume the inland
terminal is the final destination.

Regarding the fourth assumption, the definition of due dates can be
ambiguous. Usually, they are not very rigid and can be negotiated by the
transport providers. Moreover, they can be defined either at the inland
terminal or at the customer site. This depends onwhether the receiver is
picking up the container or the terminal is responsible for bringing it to
the customer premises. In this study, we define all the due dates at the
inland terminal.

With the fifth assumption, we impose a limited fleet. For trucks we
assume an amount equal to the number of containers. For barges, we
find the amount by dividing the total load of containers to be processed
by the minimum convenient load (see Section 6).
4. Mathematical model

We study the allocation of containers to a heterogeneous fleet for
transportation from the seaside to the hinterland. The objective is to
minimize the cost for transportation. We formulate the HAP as a classic
HVRP, given that the inland terminal serves as a depot and the
containers as nodes of a network each to be visited exactly once. The



Fig. 1.Maasvlakte and Rotterdam city terminal are two of the major sea terminals in the
Port of Rotterdam and they have several quays, as well as the Port of Antwerp. The case
study provides in total 36 possible quays, where containers are picked up.
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proposed HVRP formulation is favorably adapted to the network under
study. Then, we relax it in order to provide a lower bound.

4.1. Tailoring the HVRP formulation for the network under study

We define the Hinterland Allocation Problem (HAP) on a complete
graph G ¼ ðN ; EÞ , with N the set of vertices and E the set of arcs. G
consists of three main clusters (i.e. sea terminals) each containing a set
of quays where containers are located, see Fig. 1. The specific network
under study can be used advantageously to develop a formulation that
avoids the typical sub-tour elimination constraints of the HVRP [7]. Due
to the particular network being divided in clusters and the assumption
(i) of equidistance between the quays of each cluster, we can push the
route to follow a pre-determined master route that visits all the quays,
sorted per cluster.

Let N = 0…I define the set of nodes of the network; where 0
represents the inland terminal and indexes from 1 to I represent the
containers.1 Let Vi,j be the travel time between nodes i; j ∈N . Hence,
we order the set N by non-decreasing values of V0,j and we sort the
containers by sea terminal and quay. Specifically, we build the set N
such that

• Containers belonging to the same sea terminal are contiguous.
• The sequence of the sea terminals in the list is from the closest to the
farthest from the inland terminal.

• Containers belonging to the same quay are contiguous.

We can nowbuild amaster route that follows the order of containers
of the setN . Such a master route is then short-cut according to the con-
tainers belonging to the route and can be shown to be optimal in this
setting. In order to show the optimality, let us define a two layer
graph (see Fig. 2). In the first layer, we have three nodes representing
each sea terminal. An optimal route through these nodes can be found
by enumeration; in the case study, the optimal sequence is from the
closest to the farthest. In the second layer, we need to find the optimal
route within each sea terminal. Due to the equidistance assumption
(assume a value L) within a cluster (i), when some containers belonging
to the same sea terminal are allocated to a barge, there is no specific
1 Quays are not taken into account in the models. Each container is represented by its
own node, which can overlap the ones of other containers when these belong to the same
quay. This feature is necessary as each container has its own characteristics (weight, re-
lease date, due date) that have to be considered with a unique node.
optimal path needed to visit their quays. This is because every path
within quays of a sea terminal would have the same length. The proof
is trivial, as every path between |δ| quays is composed of |δ| − 1
edges, the total length is necessarily L(|δ| − 1) for every path. Hence,
every possible path between a subset of quays within a sea terminal is
optimal. Therefore, a route that follows a sequence of allocated
containers according to the order of set N is necessarily optimal.

Although we cannot claim this result to be generally applicable, it is
particularly relevant for the container system under study, where sea
ports usually have a dense network [28] and inland terminals deal
with a very limited number of sea terminals.

4.2. Model formulation

With the results provided in the previous section, we can now
present a mathematical formulation adapted to the case study.

Consider a set I = {1,…,I} of containers with the ith with size
wi, release date at the port Ai, and due date at the inland terminal Di.
LetK ¼ f1;…;Kgbe a set of means of transport, each onewith a certain
capacity Qk N 0 and cost per hour of traveling Ck N 0 (€/h) and let B be
the set of barges withB⊂K. InG ¼ ðN ; EÞ the nodes represent both the
locations of the containers and the inland terminal. Hence, the set of
nodes N has size N = I + 1. Let Vi, j be the travel time – expressed in
barge travel times – for each pair i; j ∈N . ϕi, j

k is a constant converting
V to truck travel times for edge (i, j). When the containers are located
on the same quay, their nodes overlap and, consequently, the travel
time between them is 0. We define a binary parameter Zi,j, i, j ∈ I , that
equals 1 when containers i and j are on different quays, 0 otherwise.
Let α be the time required to dock/park at a quay, and let L be the
time needed to load each container.

To characterize the allocation, let Xi,k be the binary decision variable,
with i ∈ I and k ∈K, that indicates whether container i is assigned to a
certainmeans of transport k; moreover, let uk, withk ∈K, denote the bi-
nary variable that equals 1 if k is used, 0 otherwise. The variable tk keeps
track of the time when a barge k is back to the inland terminal after its
tour. When a means of transport is used to pick up containers, it covers
a cycle that starts/ends from/to the inland terminal and goes only
through the selected containers (nodes). A tour is defined by the binary
variable ei, j

k , with i; j ∈N and k ∈K; we set it to 1 when a means of
transport k covers the edge (i, j). The travel time to cover the edges of
the route of a means k ∈K is represented by Pk.

Finally, we define a penaltyGB for every time a barge arrives at a new
quay and a penalty γ for unused capacity of the barges. With these
penalties we model elements of the cost structure of the transportation
system that are outside the exact modeling scope, but still impact the
solution. For instance, the penalty for multiple stops, GB , leads the
barge to visit fewer quays to load its bundle. Hence, this represents
the costs for setting up quay-cranes and may reduce queuing issues at
the docks. The penalty for unused capacity, γ, may reduce the number
of barges sent to the terminals by increasing their level of utilization.
This may lead to less congestion at the sea terminal on water, fewer
setups required for the quay-cranes and a more efficient use of the
fleet as barges entail a higher fixed cost than trucks with regard to
fuel, personnel, and administration. All sets, data, parameters and
variables are summarized respectively in Table 1.

We propose the following HVRP formulation:

Min
X
k∈K

CkPk þ
X
k∈B

G
B X

i∈I

X
j∈I ; j≠i

eki; jZi; j

0
@

1
Aþ γ

X
k∈B

Qkuk−
X
i∈I

wiXi;k

 !

ð1Þ

X
k∈K

Xi;k ¼ 1 ∀i ∈ I ð2Þ



Fig. 2.A two layer graph. In thefirst layer,we show the optimal route through the sea terminals found by enumeration. In the second layer, the optimal route through the quays; due to the
equidistance assumption any path is optimal.

37S. Fazi et al. / Decision Support Systems 79 (2015) 33–45
X
i∈I

wiXi;k ≤ Qkuk ∀k ∈K ð3Þ

X
j∈N ; jN i

eki; j ¼
X

j∈N ; jbi

ekj;i ¼ Xi;k ∀i ∈ I ;∀k ∈K ð4Þ

X
j∈I

ek0; j ¼ uk ∀k ∈K ð5Þ

X
j∈I

ekj;0 ¼ uk ∀k ∈K ð6Þ

Pk≥
X
i∈N

X
j∈N ; j≠i

ϕk
i; jV i; jeki; j ∀k ∈K ð7Þ
Table 1
Elements of the model.

Sets:
I Set of containers 1,…,I
N Set of nodes 0,…,I
K Set of means of transport 1,…,K
B Set of barges 1,…,B

Data:
wi Size of container i (TEU), ∀ i ∈ I
Di Due date of container i, ∀ i ∈ I
Ai Release date of container i, ∀ i ∈ I
Vi, j Travel distances considering barge travel times, ∀i; j ∈N
ϕi, j
k Constant converting Vi, j to truck travel times for arc (i,j), ∀k ∈K, ∀i; j ∈N

Zi, j Takes value 1 when containers i and j are on different quays, 0 otherwise,∀ i, j ∈ I
Ck Transportation cost for means of transport k (€/h), ∀k ∈K
Qk Capacity of means of transport k (TEU), ∀k ∈K
α Fixed setup time when a quay is reached
L Time for loading each container

Parameters:
γ Cost for unused capacity

GB Docking cost for barges (sea terminal site)

M A large value

Variables:
Xi,k Binary decision variable, set to 1 if container i is allocated to k, ∀ i ∈ I , ∀k ∈K
uk Binary variable, set to 1 if means of transport k is used, 0 otherwise, ∀k ∈K
tk Arrival time of barge k back at the inland terminal, ∀ k ∈ B
Pk Travel time of means of transport k to cover the edges of the route, ∀k ∈K
ei, j
k Binary variable; Set to 1 if means k goes from i to j, 0 otherwise,∀i; j ∈N , k ∈K
tk ≥ AωXω;k þ α uk þ
X
i∈I

X
j∈I ; j≠i

eki; jZi; j

0
@

1
Aþ L

X
i∈I

Xi;k þ Pk ∀ω ∈ I ;∀k ∈ B

ð8Þ

tk≤Di þ 1−Xi;k
� �

M ∀i ∈ I ;∀k ∈ B ð9Þ

uk ∈ 0;1f g ∀k ∈K ð10Þ

Xi;k ∈ 0;1f g ∀i ∈ I ;∀k ∈K ð11Þ

eki; j ∈ 0;1f g ∀i; j ∈N ;∀k ∈K: ð12Þ

The objective function (1) minimizes the cost for transportation
(first term), the penalty for docking a barge at more than one quay
(second term), and the penalty for under-utilization of barges (last
term). Analogously to bin packing constraints, inequalities (2) ensure
that each container i is loaded, while Eq. (3) impose that the capacities
of themeans of transport are not exceeded. Inequalities (4), (5) and (6)
are the flow conservation constraints. In particular, constraints (4)
relate Xi,k with ei,j

k and they impose the route to follow the master route
described in the previous section. For example, in the first term we
impose that in the route all successors j of i respect j N i, with i; j ∈N .

With Eq. (7) we calculate the travel time according to the routing.
With constraints (8), we construct the return time tk of barges according
to assumptions (ii) and (iii). Specifically,we impose that the return time
is greater than the latest release date of the allocated containers
summed up to the transportation time to visit them (Pk); moreover,
for each stop at a quay, we wait a time α to dock/park and a time L to
load each container. Inequalities (9) impose that the containers are
delivered on time when transported by barge. Constraints (8) and (9)
are defined only for barges, as trucks are expected to deliver containers
on time.

4.3. A lower bound for HAP

The lower bound consists of assigning to each barge (i.e. bin) a cer-
tain delivery time tk; this will correspond to the time to reach one of
the allocated container and come back; the chosen container is the



Table 2
Parameters for the instances.

Parameters:

GB €50
γ €100
wi 2 for 2 TEU containers, 1.01 for 1 TEU containers
Di From data set
Ai From data set
Vi,j 0 h for same quay, 1 h within same sea terminal

4 h between Maasvlakte and Rotterdam City Terminal
16 h from Antwerp to the other 2 sea terminals
13 h from Veghel to Antwerp
11 h from Veghel to Maasvlakte and Rotterdam City Terminal

Ck 74 €/h for trucks, 80 €/h for barges
Qk 2 TEU for trucks (no combination of two 1 TEU containers allowed),

28.3 TEU for barges
α 10 min
L 6 min
ϕi,j
k 1 for barges, 0.2 for trucks ∀i; j ∈N
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farthest one. Due to the particular network under study, being made of
few clusters containing nodes, we expect an accurate approximation.

Specifically, the lower bound is obtained by relaxing constraints (8)
with

tk ≥ Ai þ 2 V0;i
� �� �

Xi;k ∀i ∈ I ;∀k ∈ B: ð13Þ

The routing cost is computed again by following the master route;
nevertheless, the exact calculation for the respect of the due dates –
constraints (9) – is affected, as tk is now independent from the routings.
This approximation can reduce the number of trucks, when these are
needed for HAP to avoid relatively small delays. Moreover, the model
becomes less accurate in case of routes that require the visit of multiple
quays and, even less, in case of multiple sea terminals. However, the
largest gap between arrival times in HAP and its relaxed version can
occur when all sea terminals need to be visited in a route. In the case
study this can bring a maximum difference of around 20 h. Besides, it
is clear that when all the containers are grouped in one quay and if we
consider the time for docking and loading negligible, the proposed
lower bound would match the HAP.

The reason we propose this lower bound is twofold. First of all, we
want to provide a benchmark bound to assess the performances of the
heuristic we develop for HAP. Second, such an approximation fits in
those settingswhere the nodes of the graph are not scattered, as VRP in-
stances found in the literature, but grouped inmain clusters; it can even
matchwhen the collection is concentrated in one single node. Indeed, as
the new trend in container hinterland chains is toward a more central-
ized collection (hub-and-spoke) [22] –with onemain collection point –
such a lower bound can emerge as a valid future model for practice.
Fig. 3.Trends of thedifferent temperatures in each run for thefirst 1,000,000 iterations. The x-ax
depicts the trend of the smallest and the largest temperatures.
In fact, from a modeling perspective, the transportation time would
be a fixed quantity, Pk, independent from the transported containers. As
a consequence, therewould be a fixed cost,Ck, to be paidwhen ameans
of transport is used. Hence, constraints (4), (5), (6) and (7) can be re-
moved and the minimization of the travel cost in the objective function
becomesMin∑

k∈K
Ckuk, in the same way as bin packing problems.

5. The solution method

For the proposed model, we develop a Metropolis algorithm. The
Metropolis algorithm [23], is a methodology very similar to Simulated
Annealing (SA) and Threshold Acceptance algorithms (see [20]). SA
has beenwidely used in the literature formany combinatorial optimiza-
tion problems and it is a practical tool for industrial applications, due to
the ease of its parametrization and fast and effective performance [18].

SA makes use of a single parameter, called temperature, that varies
throughout the procedure according to a cooling scheme. A Metropolis
algorithm can be defined as SA with a fixed temperature, and it has
been applied satisfactorily for many combinatorial problems, see [10].
In general, the higher the temperature, the more likely a move to a
worse solution is accepted. Alternatively, a too low temperature could
lead to local minima, though the convergence to these minima is really
fast. Such a characteristic of the Markov Chain is well-known in the lit-
erature as themetastability problem, see [3]. At themoment, there is no
strong evidence of the superiority of onemethod over another; besides,
there is no theoreticalmethod to find anoptimal cooling schemeor con-
stant temperature.

The choice for a Metropolis algorithm is driven by its ease of
parametrization and is motivated by the well performing Threshold
Accepting local search heuristic developed in [35] for the HVRP, which
provides a similar mechanism. Another motivation comes from the
deployment of the DSS for a real world application. Planners need a
tool able to give good solutions for large scale problems in relatively
little time, with an easy parametrization; this heuristic fulfills such an
important requirement.

5.1. A metropolis algorithm for HAP

The algorithm starts by generating an initial feasible solution with a
greedy procedure. Then, a set of temperatures are tried in parallel. At the
end of the parallel runs, the best result from those is given as output. See
Section 6.1 for more details on the parametrization.

5.1.1. Generating the initial solution: greedy algorithm
Let K be a list of means of transport sorted by decreasing values of

their capacity. Let I be a list of containers sorted according to the order
of N. Then the algorithm selects the first container and the first means
is represents the iterations, the y-axis represents the current solution. The graph on the left



Table 3
Results for HAP/0/0/0/.

Heuristic

Instance N Value # Barges # Trucks

1 28 3920 2 0
2 41 6470 3 1
3 42 6960 3 0
4 47 7700 3 2
5 47 6880 3 0
6 50 7160 2 8
7 58 8620 4 0
8 68 9900 4 6
9 90 13,360 7 0
10 109 14,150 7 2
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on the list. The selected container is inserted in the selected means, if it
fits. Otherwise, the algorithm chooses the next on the list of means of
transport until the container fits.

The greedy algorithm is meant to allocate all containers to the
barges. As we seek to transport containers primarily by barge, this
type of solution is necessary because the ratio between the costs of
barges and trucks is large: about 6:1. In fact, moving a container from
a truck to an empty barge entails a very large “opening” cost that is
unlikely to be accepted by the heuristic; according to our data, the
cost increases by about 1400: the cost of the barge to visit one container
minus the cost of the removed truck. On the other hand, moving a
container from a barge to a truck should be accepted either when the
container has a delay or when the barge can be emptied because of a
small carried load.
5.1.2. Local search
After obtaining an initial solution s, the algorithm starts a local

search in the neighborhood of s, by using two operators to generate
new solutions, O1 and O2 , which are selected randomly in every
iteration. Starting from solution s, we find s′ either by switching the
allocation of a single randomly selected container to a different means
of transport (O1 ) or swapping two randomly selected containers
assigned to different means (O2).

2

When a new solution is found and it is feasible for the capacity
constraints (3), we need to find an optimal tour. This is calculated by
generating a route that follows the sequence of allocated containers
according to the order of set N , as previously described. As the new
solution s′ is created and calculated, we accept it according to the prob-

ability PðTÞ ¼ minfeð f ðsÞ− f ðs0 Þ
T Þ;1g [18]. During the local searchwe allow

the algorithm to go through infeasible solutions with late containers on
barges. Such infeasibility is punished in the objective function by a cost
greater than the dispatch by truck of the container. Hence, in case of a
late container, the algorithm is driven to move it to a truck in order to
avoid the delay.
Table 4
Results for HAP/D/0/0/.

Heuristic Planner

Inst. I Value # B # T Value Gap % # B # T

1 28 3930 2 1 4970 26 2 4
2 41 8180 2 12 9750 19 2 16
3 42 13,760 2 28 14,460 5 0 42
4 47 12,190 2 21 16,050 31 0 47
5 47 12,620 2 24 16,290 29 0 47
6 50 12,130 3 17 15,070 24 3 27
7 58 11,370 3 13 14,590 28 2 32
6. Numerical analysis and tests on case study data

In this section we present numerical experiments on a set of
instances drawn from real data. The data set dates from July 2011 to
September 2011. The actual schedules made by the planner were also
available in the data set. The planner was not assisted by any decision
support system.We test four scenarios in order to evaluate thedecisions
of the model from a practical perspective, to get insights for the real
world application and to compare the solutions of the model with the
actual decisions of the planner. The instances were tested with the pa-
rameters that are summarized in Table 2, obtained from the case study.
2 In [35], Tarantilis et al. use analogous neighborhoods named “Exchange 1–0 move”
and “Exchange 1–1 move”.
Regarding transport capacity, inland terminals can deal with a variety
of different barges. However, larger barges cannot always be processed
due to physical limitations of canals and locks. For instance, the inland
terminal under study can receive barges with capacity up to 28 TEU,
due to canal restrictions. For trucks, the terminal policy is to carry one
container each time, either a 1 TEU container or a 2 TEU container. In
order to avoid a truck carrying two 1 TEU containers, we parameterize
the weight of 1 TEU containers as 1.01 and truck capacity as 2. Hence, in
order to allow any possible combination of 1 TEU containers and 2 TEU
containers for barges, we parameterize barge capacity as 28.3.

With regard to costs, the exact cost for a barge is tricky to estimate
due to different rental agreements with barge providers. As trucks are
owned by the terminal, their cost is more transparent. Specifically, it is
estimated by the company that an amount of €330 is needed to make
a round trip by truck, passing through the port of Rotterdam. On
average, a truck takes 4.5 h to cover the distance, incurring a cost of
74 €/h. Planners of the terminal assume that an amount of six containers
shipped by barge competes with six trucks. As a barge takes about 22 h
for a round trip visiting a single quay, we assume for the barges a cost of
80 €/h in order to ensure aminimum load of six containers. Note that no
constraints are generated in the model to force such a minimum level,
which is therefore an output of the model. Moreover, the cost is
expressed in €/h, so such a minimum level can vary according to the
locations of the containers. If more locations are visited, a larger consol-
idation is needed.

We could not base our analysis on real values for GB and γ as they
describe aspects of the decision process related to common practices,
rather than real costs. However, we tried several values for every in-
stance and we considered as maximum possible value the average
cost for transporting a container by truck; as a result, the parameters
do not make the cost for barging too expensive when compared to
trucking.We report here the two values that, overall, produced tangible
and sensible results on the solutions.

FromaDSSperspective, the user can interactively set the parameters
of the models to get different solutions. Besides, D can change overtime
as the containers are subject to continuous bargains between planners
and customers. Other parameters are more related to the preference
of the planners or to a particular situation. In case of a congested termi-
nal, the planner would prefer less stops (increasing GB).

The four scenarios derive from the combination of the hard con-
straints (9) on the due dates and the different costs in the objective
function (1); we use the following notation “HAP/D/GB/γ/”. Specifically,
we first solve HAP without any accessory cost but the transportation
one and without hard constraints on delays; we denote this as “HAP/
0/0/0/”. We then solve “HAP/D/0/0/”, “HAP/D/GB/0/”, and “HAP/D/0/γ/”.

The numerical section is composed as follows. In Section 6.1, we give
details on the parameterizations of the heuristic, on the performances,
and on the quality of the lower bound. In Section 6.2, we show several
experiments on 10 real world instances. In Section 6.3, we give an ex-
ample of how this algorithm can be implemented in planning horizon
8 68 10,390 4 7 14,840 42 5 16
9 90 16,850 5 20 20,540 21 6 27
10 109 16,940 7 6 28,700 69 7 44



Table 6
Results “HAP/D/0/γ/”.

Heuristic

Instance I Value # B # T % % with HAP/D/0/0/

1 28 4241 2 1 94 94
2 41 8180 2 12 100 100
3 42 14,460 0 42 – 37
4 47 13,480 2 21 78.5 75
5 47 13,340 1 32 100 69.6

Table 5
Results for “HAP/D/GB/0/”.

Heuristic

Instance I Value # B # T # Stops # Stops HAP/D/0/0/

1 28 3980 2 1 3 3
2 41 8430 2 12 7 7
3 42 14,010 2 28 7 7
4 47 12,640 2 21 11 11
5 47 12,870 2 24 7 7
6 50 12,680 3 17 14 14
7 58 12,170 3 14 14 15
8 68 10,640 4 9 7 11
9 90 17,430 5 21 13 15
10 109 17,880 7 7 24 27
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windows. All experiments were run on an Intel(R)Core(TM)i3-3220
CPU machine with 3.30 GHz and 8.00 GB RAM memory and the algo-
rithm is coded in C with a limit of 20 million iterations. We calculated
lower bounds by means of CPLEX 12.6 and with a time limit of 4 h.

6.1. Settings for the heuristic and performances

Aswemake use of a single temperature throughout the local search,
we run simultaneously the algorithmwith different temperatures, mul-
tiples of 10, in the range from 10 to 100; then, we repeat this process 5
times.3 The range of temperatures was preliminarily tested and found
sensible for the treated problem. At the end of each process, we keep
the best solution found and the time needed to find it. After the 5 pro-
cesses are performed, we calculate standard deviation, average of the
best solutions found and average time to find them; these statistics
can be found in Appendix A (Table A.1), while the best solutions are
reported in the tables in Section 6.2.

In general, each temperature shows a different trend. As described
by [8], when applying the Metropolis algorithm to the Quadratic
Assignment Problem:“…if the system is kept too ‘hot’ then too many
bad uphill moves are accepted for any good solution to be reached
while if it is too ‘cold’ then the scheme will quickly drop into a local
optimum and the remainder of the search will be a fruitless attempt
to escape from it”. See Fig. 3 for an example of the trends for a set of tem-
peratures. The different trends are displayed in distinct graphs for better
visualization.

Concerning the performances of the heuristic and the quality of the
lower bound, we report in Appendix B a summary of the results. We
solve the relaxedmodel bothwith the heuristic and CPLEX andwe com-
pare the results in order to assess the performance of the algorithm.
Then we report the results of the heuristic on HAP in order to evaluate
the quality of the bounds. For CPLEX, we provide the best integer
(upper bound) and best node (lower bound) found and the time
when computation was stopped by the solver.4 The results show that
the heuristic provides good performance in terms of: average gap with
the best nodes found by CPLEX, standard deviation and time. The max-
imum average gap is 2.7%. However, for all the experimentation the gap
is spoiled by the results of instance 10, whose gap between best integer
and best node is, in some cases, large to provide an accurate benchmark.
Therefore, we report also the gap considering only those instances for
which CPLEX found the optimal solution. In those cases the maximum
average gap is 1%. Concerning speed, the algorithm obviously outper-
forms CPLEX, especially for the largest instances. Finally, we can appre-
ciate that the relaxed model provide a fair approximation for HAP; the
maximum gap with the heuristic, performed on HAP, is 4.9%, and 3.4%
when not considering instance 10. For “HAP/D/0/0/” the gaps are re-
spectively 3.1% and 1.9%. In the following section,we provide the details
of the solutions of the heuristic performed on HAP.

6.2. Results based on real-world instances

We now show the results of the experiments performed on real
world instances, provided by ITV.

6.2.1. Solving “HAP/0/0/0/”
We propose this experiment to show that without constraints (9)

the solutions will be mainly composed by barges in order to generate
economies of scale. This is evident from the results shown in Table 3
when compared with the results of the other scenarios (for example
see Table 4).
3 This amount was considered sufficient for the proposed tests, given the good stability
of the algorithm (low standard deviation).

4 CPLEX stops the computation either when an optimal solution is found or when it
reaches an out-of-memory status or a time limit of 4 h.
In some instances, trucks are still used and the reason is twofold;
firstly, if the majority of the cargo is picked up in Rotterdam, it is not
convenient to pick up few containers in Antwerp; secondly, if some
barges are full and there are not enough containers left for bundling –
in order to generate an economy of scale by barge – these would be
trucked.

6.2.2. Solving “HAP/D/0/0/”
In this experimentationwe test themodel that considers transporta-

tion costs and hard constraints on the delays. In Table 4, we show the
results of the experimentation and the actual solutions of the planner.
By comparing these results with the ones of Table 3, we can notice
thatHAP/D/0/0/makes use ofmore trucks. The planner solutions always
have higher costs and make use of more trucks.

The results show an average improvement in the cost of 31% using
the heuristic. The 10th instance is the one with the largest gap. From
an analysis of this instance, we can understand that the containers
were located on many different quays. We conducted an interview at
the terminal planning board andwe learned that the common behavior
of the planner is to avoid the bundling of containers when these are
stored in many different locations. Sometimes this way of scheduling
is preferred to facilitate the trip, as well as the complexity of the alloca-
tion and the routing. As a consequence, this attitude produced a sched-
ule with many barges under-utilized but with few stops: 61% average
utilization and a total of 12 stops. Both the utilization and the number
of stops in the heuristic solution are much higher (respectively 94.7%
and 27). We encountered a similar issue for instances 3, 4 and 5, al-
though the loss in terms of costs is less evident due to the smaller
sizes of the instances.

Some discrepancies were also due to deficiencies of the information
system used by the planner. Sometimes, either wrong or late informa-
tion is the cause of poor schedules. For example, in instance 1, three con-
tainers could easily be bundled. Due to scarce information on their
availability, the planner decided to eventually dispatch them by truck.
Roughly €1000 could have been saved with better information in this
case.
6 50 15,118 2 25 55.3 48.8
7 58 12,300 3 15 91 91
8 68 10,390 4 7 100 100
9 90 18,270 5 20 97.85 97.85
10 109 18,058 7 6 94.9 94.9



Table 7
Comparison of the results for the different models.

Heuristic

Instance I HAP/0/0/0/ HAP/D/0/0/ HAP/D/Gℬ/0/ HAP/D/0/γ/

1 28 3920 3930 3930 3930
2 41 6470 8180 8180 8180
3 42 6960 13,760 13,760 14,460
4 47 7700 12,190 12,190 12,270
5 47 6880 12,620 12,620 13,340
6 50 7160 12,130 12,130 12,610
7 58 8620 11,370 11,620 11,710
8 68 9900 10,390 10,490 10,390
9 90 13,360 16,850 17,030 17,100
10 109 14,150 16,940 17,030 17,020
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6.2.3. Solving “HAP/D/GB/0/”
Wenow test themodel by penalizingmultiple visits of barges to dif-

ferent quays. This behavior is limited by the parameterGB. The objective
function we minimize is

Min
X
k∈K

CkPk þ
X
k∈B

GB X
i∈I

X
j∈I ; j≠i

eki; jZi; j

0
@

1
A: ð14Þ

In Table 5,we report the number of stops for this scenario and for the
model “HAP/D/0/0/” (column “# Stops HAP/D/0/0/”). We can notice
that the number of stops reduces only for four instances. This is not
surprising because multiple visits are already penalized in the basic
formulation for the distance to be covered between the quays. Note
that the parameter GB limits the visit to multiple quays but it does not
take into account the distance between them. Therefore, this cost can
be related to the will of the planner to avoid multiple dockings for the
barge. As there is no practical limit for the number of stops considered
by the planner, we prefer this approach rather than constraining a
maximum number of stops allowed.

6.2.4. Solving “HAP/D/0/γ/”
The results of Table 6 show how the parameter γ changes the

solutions. The column “%” shows the average utilization of the barges,
while in “% with HAP/D/0/0/” we report the percentages of model
“HAP/D/0/0/” from Table 4. The objective function we minimize is

Min
X
k∈K

CkPk þ γ
X
k∈I

Qkuk−
X
i∈I

wiXi;k

 !
: ð15Þ

In general,γ forces the removal of bargeswhich are not fully utilized.
Heuristically, the algorithm tries to remove a barge – assigning to trucks
all its containers – when the level of utilization is lower than 50%. The
result of instance 3 is peculiar; all the containers are trucked, while in
themodel “HAP/D/0/0/”, the barges are highly under-utilized. However,
if we look at the solution of the planner in Table 4,we can notice that the
Table 8
Results for the planning horizon window experimentation, with instance 10.

Sub Information Span 48 h Information Span 72 h

Instance I Value # B # T I Value # B #

1 3 1170 0 3 6 2080 1 0
2 16 4770 1 3 30 5090 2 3
3 17 2830 1 3 7 2430 0 7
4 6 2040 0 6 56 8650 3 7
5 21 4730 1 7 10 2080 1 0
6 36 4630 2 1 – – – –
7 10 2080 1 0 – – – –
Total 109 22,250 6 23 109 20,330 7 1
containers were also all trucked. Hence, γ can help in reproducing this
planning strategy.

6.2.5. Summarizing the results
In Table 7, we show a comparison between the different perspec-

tives of the model we proposed in this numerical section. We remove
from the numerical solutions the extra costs we added to the transpor-
tation cost in order to get a fair detail.We observe how the threemodels
that consider the hard constraints on delays produce similar results. The
“HAP/0/0/0/” model has the lowest transportation cost but the alloca-
tion is made without considering due dates. Due to the small difference
between the models “HAP/D/0/0/”, “HAP/D/0/γ/”, and “HAP/D/GB/0/”,
we are inclined to suggest the latter for practical purposes, as the
attitude to avoid multiple stops is meant to reduce the possibility of
technical problems while docking and to increase security and reliabil-
ity in the barge transport. Moreover, it is interesting to notice that by
trying to follow common guidelines that planners use, namely reducing
number of stops or increasingutilization levels, the solutions are atmost
equal or worse than “HAP/D/0/0/”. This can show that by scheduling
containers according to their locations and by trying to achieve certain
targets of the utilization, there is a risk of obtaining more costly
schedules.

6.3. A planning horizon window optimization

Aswe are not aware of the exact information that the planner had at
the time of his decision, the actual results could be actually better than
the ones reported, in the case of complete information. Therefore, the
aim of this section is to show how the availability of the information
can affect the quality of the schedules.

We present the results for instance 10. We take the earliest time a
container is available as point 0 in time. We then make the hypothesis
that the planner decides the schedules everyΔ hours and that the infor-
mation covers exclusively the next Δ hours. For instance, when Δ= 48
the planner every 48 h makes a decision of the upcoming containers in
the system. In the remaining experiments we extend the horizon to
72 h, 96 h and 120 h. We test according to scenario HAP/D/0/0/; the
results are shown in Table 8.

In the instances previously shown (Table 4), the information was
complete; therefore, the planner is aware of all coming containers. In
that case the total cost was €16,940. With a planning horizon window
perspective, information is partial and the total cost will always be
higher. However, we can notice from the experimentation that, in
some cases, shorter time spans can result in better schedules. For
instance, a time span of 72 h produces a better schedule than a span
of 96 h. This can be explained by the fact that different time spans cut
the total information at different points. In the example, the time span
of 96 h does not consider containers that are available right after the
end of a cut, and that can be successfully bundled with the ones in the
range before. Consequently, this can be translated to the fact that the
moment when planning is “closed” plays a critical role. In Appendix C,
Table C.1, we report the results for the other instances. In general, the
Information Span 96 h Information Span 120 h

T I Value # B # T I Value # B # T

19 5100 2 2 31 6860 3 2
23 4310 2 1 32 6460 2 6
57 9040 3 8 46 6470 3 1
10 2080 1 0 – – – –
– – – – – – – –
– – – – – – – –
– – – – – – – –

7 109 20,530 8 11 109 19,790 8 9
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largest time span produces better results; however, intermediate ones
can again generate ambiguous results as shown for instance 10.

Finally, with these experiments, we aim to emphasize that advanced
information is crucial to generate good schedules. This implies that in-
formation sharing between sea terminals and transport providers
must be strengthened. Sea terminals are aware for in advance of incom-
ing vessels, but the data are often shared just a few hours before their
arrival. Improving the global information system is necessary to pro-
mote multimodality and make it more efficient in such a setting.

7. Conclusions

In the last decade, global trade and the movement of large quantities
of goods are more and more associated with container supply chains. In
some crucial logistic areas of the world, the increase of container flows
has generated drawbacks related to CO2 emissions, traffic jams around
port areas and shortage of capacity. These issues are interrelated. It has
been acknowledged that an effective use of high capacitymeans of trans-
port, as barges, can simultaneously relieve traffic jams [38] and reduce
CO2 due to intensive trucking [13], limit the need of additional capacity
and finally, provide good accessibility to the hinterland of sea ports [37].

In this paper, we developed a DSS that facilitates the creation of
schedules for barges by means of a heuristic approach. Planners can
set different parameters to drive the decision and create schedules
with certain features, such as increasing the level of utilization of barges
or reducing the number stops at the quays. In order to assess the perfor-
mance of the algorithmwithin the DSS, we compared the results of the
system with the schedules generated by the planners. We tested real
world instances under four scenarios that showed some features of
the planning process. We observed that logistic planners try to avoid
routes visitingmany quays. As further evidence of this fact, the planners
do not often consider the available containers as a whole, but they sort
them according to their location and then they make a separate optimi-
zation. This evidently leads to fewer chances for bundling and, as a con-
sequence, using barges in a less efficient way.

The contribution of this paper to the literature is twofold. Firstly, the
paper gives an emphasis to the full transportation leg and to the impor-
tance, from an operational point of view, of certain factors that we
Table A.1
Statistics for the different models.

HAP/0/0/0 HAP/D/0/0

Instance I Average St. dev. Time (s) Average St. dev.

1 28 3920 0 0.1 3930 0
2 41 6470 0 0.1 8180 0
3 42 6960 0 0.1 13,760 0
4 47 7700 0 0.1 12,190 0
5 47 6880 0 1.1 12,620 0
6 50 7160 0 4.1 12,130 0
7 58 8620 0 14 11,370 0
8 68 9900 0 19.2 10,390 0
9 90 13,360 0 0.2 16,850 0
10 109 14,316 178 35 17,182 207

Appendix A. Results and statistics for the heuristic on HAP
showed are accounted for in the planning: due dates, utilization level
and number of stops. In fact, most of the literature is focused on empty
container management and does not address in detail the complexity
of planning for inbound containers. Secondly, we integrate a set of stud-
ies on barge transport that focus mainly on strategical and tactical level
decisions. In fact, this paper gives an emphasis on the operational aspects
and on the complexity of the bundling process when a set of different
containers with different needs must be processed. Besides, the paper
dovetails with these studies as it provides an additional model that can
be implemented with the proposed networks, such as hub-and-spoke.

An important issue is the exchange of information between sea ports
and inland terminals. It is crucial for transport providers to have
advanced and accurate information. Lack of information can result in
failing good opportunities for bundling, as a certain utilization level for
barges must be reached. Sea terminals should unveil their data earlier,
in order to provide accurate information for the planners. Therefore
the stakeholders should also consider investments on information sys-
tems, data sharing, on-line databases and forecasting systems. Besides,
a better coordination between these parties, as also suggested by [9],
can be beneficial in terms of water congestion at the sea terminals. In
fact, this may lead to routes for barges with fewer stops and less delays,
as sea terminals could move in advance cargoes to specific docks. Final-
ly, as the access of sea ports to the hinterland has become a crucial point
of competition between ports [37], a smart and quick planning is re-
quired to improve performances and flexibility of the transport chain.
We believe the proposed DSS is a first step toward an easier, faster
andmore automaticway to generate schedules for theproposed setting.
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HAP/D/GB/0/ HAP/D/0/γ/

Time Average St. dev. Time Average St. dev. Time

0.1 3930 0 0.1 3930 0 0.1
0.43 8180 0 0.1 8180 0 0.1
1.2 13,760 0 0.5 14,460 0 3.1
0.1 12,190 0 0.1 12,270 0 0.1
0.1 12,620 0 0.1 13,340 0 0.1
0.1 12,130 0 0.1 12,610 0 0.1
4.1 11,620 0 27.7 11,710 0 6
2.3 10,490 0 4.1 10,390 0 0.5
0.1 17,030 0 6 17,100 0 0.1
5.6 17,142 156 17.2 17,152 164 29.8
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Appendix B. Heuristic performances against lower bound solutions and assessment of lower bound approximation

Table B.1
Results for HAP/0/0/0/.With “Average †”we calculate the averages considering only the instances for which the optimal solutionwas found by CPLEX. The gaps are related to the averages
of CPLEX. The time limit is set to 14,400 s. CPLEX can stop beforehand in case the optimal solution is found (Best integer(UB)=Best node(LB); if so, both are reported in boldface) or in case
of an out-of-memory status. (*) indicates that the heuristic found an optimal solution. In the column “Heuristic on HAP”we report the results previously shown of the heuristic performed
on HAP, in order to assess the quality of the bound.
1
2
3
4
5
6
7
8
9
1
A

1
2
3
4
5
6
7
8
9
1
A

1
2
3
4
5
6
7
8
9
1
A

1
2
3
4
5

CPLEX on the relaxed model
 Heuristic on the relaxed model
 Heuristic on HAP
Inst.
 I
 Best integer
 Best Node
 Time (s)
 Value
 Time
 St. dev.
 Value
28
 3920
 3920
 1
 3920*
 0.1
 0
 3920

41
 6470
 6470
 19
 6470*
 0.1
 0
 6470

42
 6960
 6960
 23
 6960*
 0.1
 0
 6960

47
 7700
 7700
 31
 7700*
 1.1
 0
 7700

47
 6880
 6880
 40
 6880*
 0.1
 0
 6880

50
 7160
 7160
 29
 7160*
 0.1
 0
 7160

58
 8540
 8540
 80
 8620
 0.1
 0
 8620

68
 9900
 9900
 3432
 9900*
 2.7
 0
 9900

90
 13,440
 12,502.5
 6258
 13,360
 1.4
 0
 13,360
0
 109
 14,150
 13,982.2
 2764
 14,150
 45.5
 121
 14,150

verage
 8401
 8512 (0.1% gap)
 8512 (0.1% gap)

verage†
 7781
 7885 (0.1% gap)
 7885 (0.1% gap)
A
Table B.2
Results for HAP/D/0/0/.
CPLEX on the relaxed model
 Heuristic on the relaxed model
 Heuristic on HAP
Inst.
 I
 Best integer
 Best node
 Time (s)
 Value
 Time
 St. dev.
 Value
28
 3930
 3930
 1
 3930*
 0.1
 0
 3930

41
 8030
 8030
 30
 8180
 0.1
 0
 8180

42
 13,620
 13,620
 3
 13,760
 1
 0
 13,760

47
 11,610
 11,610
 34
 11,940
 0.1
 0
 12,190

47
 12,620
 12,620
 18
 12,620*
 0.1
 0
 12,620

50
 12,130
 12,130
 90
 12,130*
 0.1
 0
 12,130

58
 10,800
 10,800
 46
 11,210
 1.2
 0
 11,370

68
 9980
 9980
 45
 10,390
 0.8
 0
 10,390

90
 16,770
 16,770
 8731
 16,770*
 65
 0
 16,850
0
 109
 16,780
 15,224
 2221
 15,940
 24
 169.89
 16,940

verage
 11,471
 11,687 (0.1% gap)
 11,836 (3.1% gap)

verage†
 11,054
 11,214 (0.1% gap)
 11,268 (1.9% gap)
A
Table B.3
Results for HAP/0/GB/0/.
CPLEX on the relaxed model
 Heuristic on the relaxed model
 Heuristic on HAP
Inst.
 I
 Best integer
 Best node
 Time (s)
 Value
 Time
 St. dev.
 Value
28
 3980
 3980
 2
 3980*
 0.1
 0
 3980

41
 8430
 8430
 125
 8430*
 0.1
 0
 8430

42
 13,920
 13,920
 50
 13,920*
 0.1
 0
 14,010

47
 12,071
 12,071
 112
 12,440
 1.7
 0
 12,640

47
 12,870
 12,870
 45
 12,870*
 0.1
 0
 12,870

50
 12,680
 12,680
 28
 12,680*
 1.1
 0
 12,680

58
 11,400
 11,400
 200
 11,710
 2.3
 0
 12,170

68
 9980
 9980
 2021
 10,480
 0.1
 0
 10,640

90
 17,230
 17,230
 5312
 17,410
 43.1
 52
 17,430
0
 109
 18,590
 15,433
 2703
 16,540
 10.3
 38
 17,880

verage
 11,799
 12,046 (2% gap)
 12,273 (4% gap)

verage†
 11,395
 11,546 (1.3% gap)
 11,650 (2.2% gap)
A
Table B.4
Results for HAP/0/0/γ/.
CPLEX on the relaxed model
 Heuristic on the relaxed model
 Heuristic on HAP
Inst.
 I
 Best integer
 Best node
 Time (s)
 Value
 Time
 St. dev.
 Value
28
 4230
 4230
 1
 4230*
 0.1
 0
 4241

41
 8180
 8180
 10
 8180*
 1
 0
 8180

42
 14,460
 14,460
 23
 14,460*
 0.1
 0
 14,460

47
 12,321
 12,321
 25
 12,950
 0.5
 0
 13,480

47
 13,340
 13,340
 34
 13,340*
 0.1
 0
 13,340
(continued on next page)
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able B.4 (continued)
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le C.1
ults for the planning horizon win

st. Informatio

4590
9030

13,950
15,100
13,780
14,200
12,310
12,620
19,700

0 22,250
CPLEX on the relaxed model
dow experimentation.

n span 48 h Inf. span 72 h

3930
9020

14,010
13,120
13,030
12,960
12,840
11,490
19,290
20,330
Heuristic on the relaxed model
Inf. span 96 h Inf. span 120 h

3930 3930
8180 8210

13,760 14,010
13,020 12,770
13,120 12,620
13,870 12,130
11,900 11,650
11,240 11,560
18,520 17,610
20,530 19,790
Heuristic on HAP
st.
 I
 Best integer
 Best node
 Time (s)
 Value
 Time
 St. dev.
 Value
50
 15,110
 15,110
 37
 15,110*
 0.1
 0
 15,118

58
 11,300
 11,300
 187
 11,820
 1.4
 0
 12,300

68
 10,280
 10,280
 1036
 10,390
 1.4
 0
 10,390

90
 16,870
 16,870
 5973
 16,870*
 1.8
 0
 18,270
0
 109
 17,860
 15,667
 2974
 17,738
 20.5
 32
 18,058

verage
 12,176
 12,508 (2.7% gap)
 12,783 (4.9% gap)

verage†
 11,787
 11,927 (1.1% gap)
 12,197 (3.4% gap)
A
Appendix C. Planning horizon window
Complete inf.

3930
8180

13,760
12,190
12,620
12,130
11,370
10,390
16,850
16,940
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