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A simple mechanical model of planar fibrous materials with mesoscopic disorder is introduced and an-

alyzed. In this scalar model a shear modulus controls the stress transfer in the transverse direction. The
system is studied using the effective medium approximation and computer simulations; the comparison
between them is quite favorable. In the disorder-controlled regime the stress-strain relation, the number
of broken cells at the onset of crack propagation, and the length of the final crack scale with the system
size as L, L",and L, respectively. The mechanical properties are controlled by the interplay between
disorder and shear modulus, which is studied in detail.

I. INTRODUCriON

Disorder plays a central role when mechanical proper-
ties of materials are considered. The subject of fracture
behavior of disordered materials has been under extensive
study especially during the last decade. ' The interest is
easily understandable on the basis of numerous applica-
tions from space technology to paper making. The effect
of disorder depends on the properties under investigation.
The strength and breakdown properties are highly
dependent on disorder, ' while elastic properties are not.
The breakdown process itself enhances the effects of in-
homogeneity.

Several models have been used in simulations of disor-
dered materials. The most widely studied are the random
fuse network, ' ' elastic models such as the Born mod-
el' '" and different bond-bending' and beam models. '

These studies have revealed many interesting properties,
such as scaling ' and multifractality ' even universal-
ity ' has been proposed. However, the comparison of
these models with experimentally studied systems is non-
trivial and thus the practical counterparts of model pa-
rameters are ambiguous. ' Nevertheless, phenomena
such as gelation' and fracture of reservoir rocks' have
been explained with the help of such simulation models.

Among disordered materials we focus our attention on
planar fibrous materials, e.g., glass fiber networks, short
fiber composites, and specifically ordinary paper. In a
typical random fiber network there is disorder at two
different length scales. At the microscopic length scale
determined by the fiber length, disorder arises from the
arrangement of fibers; their positions and orientations
(sometimes also their lengths) are random. Thus a micro-
scopic random fiber network corresponds to a lattice
where the lattice constant and coordination number are

random variables. On the other hand, at the mesoscopic
length scale the local density varies and obeys Poisson
distribution in the absence of spatial interfiber correla-
tions.

The microscopic structure of the fiber network shows
up in the mesoscopic elastic and fracture properties. In a
high-density network the fiber segments are short and
transmit stresses far ahead of a propagating crack, while
at low densities the network is flexible and tolerates large
crack deformations without failing. Thus at the mesos-
copic level the fracture behavior should depend on the
elastic properties, particularly on the shear stiffness. At
high shear stiffness disorder is irrelevant, while at low
shear stiffness it dominates the fracture process. We
study the interplay between elastic stress transfer and
mesoscopic disorder using computer simulations and
effective-medium approximation. Duxbury and Li' have
already shown that a similar change in the fracture
behavior can be afFected by assigning residual strength to
broken elements. In homogeneous materials the stress
transfer mechanisms and residual strength affect the frac-
ture toughness but do not change the nature of the frac-
ture process (see, e.g., Ref. 15).

In order to confine the investigation to bare essentials,
we have devised an elastic scalar model in terms of a lat-
tice of adjoined (side-to-side) cells. These cells can be
stretched in the longitudinal direction but they are not al-
lowed to contract in the transverse direction. It is ex-
pected that, in any case, local variations in the contrac-
tion would not, if allowed, qualitatively change the frac-
ture process. Our model resembles the random fuse net-
work models ' but its parameters are more closely relat-
ed to those of real materials.

This paper is arranged as follows. In Sec. II we present
the model. Then we describe the efFective-medium theory
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in Sec. III, followed by our results of finite-size scaling at
strong disorder in Sec. IV. We present the results of the
mechanical properties in Sec. V, and of the breaking
characteristics and the related strength diagram. Section
VI is dedicated to the discussion and conclusions.

II. THE MODEL

Our starting point is a microscopic random network
consisting of fibers bonded to each other at interfiber
crossings. The crossings divide the fibers into segments.
If the bondings are stiff, the elastic energy of the network
is given by the segment strains c, . For slender fibers or a
low-density fiber network, the strains are predominantly
axial, i.e., in the longitudinal x direction. The elastic en-

ergy of the network can be written as a sum over a11 the
segments,

where the sum runs over all fiber segments in the kth cell
and 1;" is the part of the fiber segment i that is inside the
kth cell. The random network structure implies that the
cell density lk has quenched disorder. We assume that lk

is uniformly distributed, Il, E [ 1 —p, 1+p]. Thus the
mean half-width p defines the density distribution. Simi-
larly the cell strain is defined as the average strain of the
fiber segments in cell k weighed by length:

lk

Because of the random orientation of the fibers, the strain
E„ is equal to one-half of the longitudinal (or areal) dila-
tion of the cell.

As a first approximation it can be assumed that only
the longitudinal degrees of freedom need to be con-
sidered, though the model can be readily generalized. In
particular, different constitutive relations for the cells
could be used. Therefore, we write the elastic energy of
the lattice as

W = —g al, lqeq+ —g (lq+ll, y)(ej, —c.l,y )
1 J 2

2 k 8
y —nn

~k ~kx
x —nn

(4)

The parameter ak describes the damage of the kth cell:
ak = 1 for the cell that is intact and cxk =0 for the broken
cell. The cells are assumed linearly elastic up to a thresh-
old strain c.,& at which they break completely and irrever-

where l; is the ith segment length and the fiber moduli are
taken equal to unity. Despite its fibrous structure, the
network can be considered continuous at a coarser
mesoscopic level. It can be conveniently described by di-
viding it into a lattice of adjoined cells. The density of
such a cell can be defined as

ik
k

sibly (aI, =0 if s„has ever exceeded c,,„).
The three energy terms in Eq. (4) are the self-energy of

the cells, the coupling between transverse neighbors (ky)
and the transmission of an external force h (Lagrange
multiplier) to the longitudinal neighbors (kx). The first
and third term describe the fact that —in the absence of
transverse couplings —the stress along a longitudinal
chain of cells should be constant. The stretching of a cell
costs no energy if the cell is broken (al, =0), and no
stress is transferred across the cell boundary from a bro-
ken longitudinal neighboring cell. The second term ac-
counts for the fact that transverse neighbor pairs have a
common boundary which —in the absence of longitudinal
couplings —would prevent elongation differences between
them. This would be the case even if the cells in question
were broken, hence there is no o; in the second term. It is
clear that the model written in terms of local strains can-
not describe global phenomena. For example, there is no
penalty if adjacent longitudinal rows of cells are displaced
by a constant amount relative to one another. However,
the model captures, e.g. , such essential features as stress
concentration at crack tips and stress relaxation at crack
boundaries. In addition, the cracks turn out to be
straight lines which simplifies the scaling behavior of this
model.

The only material parameter is the "shear modulus" J
which is large at which densities of the underlying fiber
network and small at low densities. Thus the model al-
lows us to study how the flexibility of the fiber network
affects the fracture behavior. This provides a direct link
to real materials and to standard fracture mechanics. ' A
large J corresponds to a material with low fracture
toughness and vice versa. Strength, on the other hand,
goes up when J increases as will be shown below. The
effect of J on the fracture process is easy to demonstrate
by pulling apart, e.g. , sheets of tissue paper (low density,
hence small J) and tracing paper (high density, hence
large J). We note that, as opposed to our cell model, in

many of the ordinary lattice "bond" models ' ' the stress
transfer capacity cannot be varied independent of the
Young's modulus. In many others' ' ' the model pa-
rameters have no counterparts in the properties of a con-
tinuum material, or the relationship between the model
and a continuum material can be defined in several ways.

The local equilibrium is determined by BW/BEI, =O.
The equilibrium configuration for a given external force h

is solved by using conjugate gradient method, ' which is
found to be computationally quite effective. Periodic
boundary conditions are applied in the longitudinal and
transverse directions. The adiabatic load-elongation
behavior is determined in the usual manner. First the
cell that has the largest strain is broken (i.e., we set al, =0
for that cell). Then the new equilibrium strain
configuration is calculated and the next chosen cell is
erased. This process is continued until a crack crosses
the sample. The stress-strain curve of the system is cal-
culated from

0., =2 W'+ —h g c,„al,„
x —nn
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where the quantity in parenthesis is the internal energy
and e = (ek ) is the macroscopic strain. For the numeri-
cal results we have taken averages over 1000 samples for
the system size L =10, 250 samples for L =20—70, 100
saxnples for L = 100, and 20 samples for L = 150.

ken cell and its immediate nearest neighbors.
It is easy to see from Eq. (9) that if p is small or J is

large, then the strain ck next to the first broken cell is
larger than the strains in all the other unbroken cells.
This happens when the following holds

III. EFFECTIVE-MEDIVM APPROXIMATION
3C —2J C
J+2 1 —p+J (10)

One expects intuitively that an effective-medium ap-
proximation (EMA) would be good as long as the local
strain variations are small and no cells have failed. ' This
is the case in the elastic regime provided that the cell
densities are uncorrelated and do not vary too much (p is
small). A particular version of EMA may also work for
the initial stages of fracture when only a small number of
cells have failed. '

First we consider the elastic case, i.e., ak ——1 for all k.
The equilibrium configuration of cell strains is deter-
mined by BW/Bek =0, or

C

k

where ek~ has been replaced with (sk ) in the spirit of
EMA. The proper value of C =J +h ( ek ) ' depends on
the distribution of cell densities f (lk ) as the self-

consistency condition fdlkf (lk)ek=(ek ) requires.
Then a uniform distribution with Ik 6 [1—p, 1+p] yields

C =2p/ln[(1+p+ J)/(1 —p+ J)] .

According to Eq. (6), the cells with the lowest density
are strained most. The effect of cell density is strongest
when the transverse coupling J is small. It is obvious
that correlations between neighbor cells may cause sub-
stantial deviations from Eq. (6) and statistically
significant simulation results would be difficult to obtain
for comparison with EMA. On the other hand, for a uni-
form f (lk) the EMA distribution of cell strains g (sk ) is
simple:

In this case the first failure triggers crack propagation
across the system, a situation that might be called
"single-crack" fracture. The (p, J) phase space for this
behavior is shown in Fig. 1.

The extreme opposite to the case of single-crack frac-
ture is that of strong disorder. In this case no crack
propagation occurs. Instead new failures appear at ran-
dom locations, and a finite fraction of the cells have to be
broken before the system fails. In considering the phase
boundary between the strong disorder and the single-
crack cases we assume that the cell failures affect only
their immediate nearest neighbors but all other cells
remain intact, i.e., ck =c, . In order to describe the situa-
tion let n, be the critical number of broken cells in a
crack that are needed before the crack becomes unstable
(of course, at the same time many more cells have to be
broken elsewhere in the system}. The solid line in Fig. 1

corresponds to n, =1 and the dotted line to n, =2. When
J=0, the critical size n, diverges as n, =2p/(1 —p), for
p~1. Thus EMA predicts that the strong disorder
behavior occurs only when J=0 and p = l.

The values for the stress and strain at which the first
cell fails, 0.;„;,and c,;„;„respectively, are to a good approx-
imation linear functions of the half-width p of the density
distribution: 0 jgjt Ejgjt 1 const Xp The positive con-
stant depends on J and it is different for the two quanti-
ties, but becomes unity when J~O. On the other hand,
the elastic modulus is a nonlinear function of p with a
logarithmic singularity E——2/ln(1 —p), when J =0
and p~1. For all these results the density distribution is
assumed to be uniform.

g (ek ) =const X ek
~ . (8)

This result is found to agree with the simulation results
irrespective of the values of J and p. Thus the intercell
strain correlations are irrelevant. It is interesting that the
EMA strain distribution in Eq. (8) is independent of J ex-
cept for the normalization constant. Thus the geometric
structure of the network, i.e., the spatial distribution of
mass, totally determines the strain distribution.

Next we consider what happens when the first cell fails.
This cell k must have the largest strain and according to
Eq. (6) the smallest density, or lk= 1 —p. After the
failure the strains of the broken cell k and its longitudinal
and transverse neighbors are

Ek = [(C —J)/J] E„+sky,

Ek„=[(C+J)/(2J+2)]e„,

sk~ =[(3C—2J)/(J+2)]s„.
These values follow from the assumption that the strain
deviates from the mean value e„=( ek ) only in the bro-

1.0

0.8

0.6

0.4

0.2-

0.0
0.0 2.0 4.0 6.0 8.0 10.0

FIG. 1. EMA phase diagram, the first single crack is unstable
below the solid line and the first twin crack below the dotted
line.
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IV. FINITE-SIZE SCALING AT STRONG DISORDER

The effective-medium approximation describes, by
definition, infinitely large systems L ~~. Nevertheless,
in analogy with several other studies ' nontrivial finite-
size effects are to be expected when disorder is sufficiently
strong (J—+0 or p~ 1 ). The fracture process can then be
divided into three size-dependent regimes: the initial
fracture process dominated by the quenched disorder, the
process of correlated but still nonlocalized failures, and
the ultimate failure through crack propagation. The na-
ture of the fracture process can be determined by moni-
toring certain characteristics for the first two phases.
However, the description of the last phase is complicated
by the fact that it is difficult to see, how much the propa-
gation of the final, "fatal, " crack is affected by cracks
that already existed in the network. In our case the situa-
tion is simpler since the final crack always appears to go
straight across the system.

One of the relevant quantities is the number of broken
cells during the fracture process. The initial cracking at
small external strain c.„,should be random when the dis-
order is relevant. ' Thus the external load F on the net-
work should obey the following scaling relation as a func-
tion of the number of broken cells N:

F-L4(N/L ) .

This is indeed the case, since there is the data collapse to
a single line for all N below some critical size-dependent
value N, as depicted in Fig. 2. Furthermore, 4 is a linear
function which follows directly from the fact that the re-
sidual stiffness and external strain of the system are both
analytic functions of N/L 2 &( l.

The crack propagation begins at the point of the max-
imum stress rr,„=(F/L ),„, denoted by
N=N~, „(&N, ). This would correspond to the macro-
scopic rupture of a real sample. According to Herrmann,
Hansen, and Roux, ' N, „should scale as N,„-L'
Our simulation results (for p= 1,J =0.05) are within er-

ror bars consistent with this showing an exponent
1.70+0.06, as Fig. 3 illustrates. However, it is conceiv-
able that the exponent could be larger in the limit J~O.
In any case, the exponent value less than two shows that
at the "thermodynamic" limit, L ~~, the fraction of
broken cells at the onset of crack propagation vanishes
when p=—1 and J & 0. %ith increasing L and for smaller

p values Fig. 3 also shows a crossover from this weak dis-
order behavior to the single-crack behavior. In the latter
case the crack propagation starts from the first micro-
crack and thus N,„~1for L ~~.

Another quantity of interest is the total number of cells

t that have to be broken in order to break the samp le

into two parts. Because of the local nature of our scalar
model, cracks are always straight transverse lines. There-
fore, we expect N„, to be given by

(12)

where n, is the critical crack size defined above (see Sec.
III, i.e., n, cells of the final crack are already counted for
by N,„). As Fig. 3 shows, Eq. (12) holds quite well, with

n, )2 for p= l. Again it can be seen that when L ~ ~,
the single-crack behavior is obtained for p&1. Thus

N,„=n,=1 and iY„t~L for L~ oo.

The result given by Eq. (12) can be regarded as a spe-
cial case of Ntot Nmax c+Ncrack &

where Ncrack is the
number of broken cells in the final macroscopic crack.
This intuitively clear fact appears to have remained unap-
preciated. Since in our case the final crack appears al-
ways straight, the number of cells in it, N„„k, is larger
than L only because some of the cracks created prior to
the final crack happen to lie on its path. The number of
them is in the first approximation equal to 2AL

10
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L=10 10
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0.18

0.12

0.06
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5
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2

10
lib
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0.0
0.0

I I g
- '-w~N

g

0.036 0.072 0.108 0.144 0.18
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FIG. 2. Stress (o.=F/L) against the number of broken cells

for p= 1,J=0.05 at different system sizes.

FIG. 3. Number of broken cells at the maximum stress

(N,„,filled symbols) and the total number of cell failures {X„„
open symbols) as a function of system size for J=0.05 and

p= 1.0, 0.9, and 0.5 (bullets, triangles, and squares, respective-

ly). Solid line corresponds to X,„-L' and dotted line to Eq.
{12)with n, =2.



49 9457CTURE IN MESQSCOPIC DISORDERED SYSTEMS

0.30 I

L=20
— L=30

L=50
- L=100

0.24-

0.18

0.12

1

inc uded:

F- 0
h(A. /L ')

where 0 =i
—- 1.0+0. 1, $=0. 1

f'll'"' fro th
b L th

e anal sis

r . Howe
}1

r . wever, in ord

studied.
eral orders of m

on-

s o magnitude should be

0.06

0.00
0.0

0.40

0.32-

0.24-

0.16

I

-- L=20
-- L=30

L=50
- L=100

—L=150

V. M. MECHANICAL PL PROPERTIES

where A =0 4w —. is the sc
Therefore in then

A

beh N
.. H.„ pariso, de

crack L". un fractal

h 1

cracks to

mp oyed wou
rger systems

'db d d
se is indeed li

crac

1 1S CO

ess-strain6

is independe

1S

h
rbabi' hav

system size.
1C

ave recentl y argued that a y

I

2.2
I

3.3

l~
~ 'L~

~ ~

j
P

~a ~~ ~ ~

~gal \ ~

I

4.4

(b)

5.5

In addition to the si
t e disord

p
d system

ence, the

JThe sween p and
are affecte

de densit -'
ear cou lin

, increasin J
s rain variati

0

ry t e casein t
ectively smaller

„+J[ f. Eq (6)] The co bi ed ffe ectof Jan ' ' s-

y rom single crackto we kd
he E A result (Fi .

1 'th '

F'

fa
e stress-strain curve ls Il

h ob bok
on inear

e breakin stress is st o 1

ale found f
ng y size d

b h

ment with K Iahng et al I s,In contrast

trength whe

of k

de

e etermines t
th t s th

e strain distribution)
t th.

Fi . 7( ). Th e linear d
reaking streess is shown in

o single-crac
max with incre

ck fracture and a r
om the effecti pp

is case 0 initmax
=+init )'

0.08

0.00
0.0 0.2 0.3

I

0.5
I

0.6 0.8

70 ii

60

50

x Q0
E

30

20

10,

02 9

FIG. 5. Nu rok

J

Number of brok
max) as a functi

roken cells at
ion of Jand

a t e maximu
size L =20.

FIG. 4. - ain

E'

Stress-strain curves di
0 d f (b)

at iff s em sizes for (a)



9458 M. E. J. KARTTUNEN, K. J. NISKANEN, AND K. KASKI 49

0.55

0.5-

0.45-

~ ~

0.8

04-
&

0.35-

0.3-
'L

p=1.0
p=0.9
p=0.5

0.6

0.4

0.25-

0.2
0 20 40

k
'~ ' ~ ~

e ~
I I I I I

60 80 100 120 140 160
L

0.2

0.0
0.0

0.0
0.0 0.2

I

0.5

0.4

1.0

0.6 0.8 1.0
FIG. 6. Breaking stress (o. ,„)as a function of system size L

for J=0.05 and p=1.0, 0.9, and 0.5 (bullets, triangles, and
squares, respectively). Dotted line corresponds to
g,„-1/(lnL) ' .

1.0

0.8

The plateau at large p and small J corresponds to weak
disorder behavior. As the inset in Fig. 7(a} shows, the
transition from single crack to weak disorder occurs for
ever larger p when the system size grows. Also, the strain
values pertinent to the fracture process follow closely the
linear trend implied by EMA, except in the limit of p~1
[Fig. 7(b)]. When p=1 weak disorder behavior is ob-
tained for all J and hence o. ,„and c,;„;t are size depen-
dent. If J is small the stress-strain curve is nonlinear
[Fig. 4(a}] and thus e;„;,(o,„even though the elastic
modulus of the system is always less than or equal to uni-

ty. On the other hand, when J grows, the stress-strain
curve becomes linear [Fig. 4(b)].

0.6

0.4

0.2

0.0
0.0
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0.2 0.4 0,6 0.8 1.0

VI. DISCUSSION

In this paper, we have reported results for a scalar
model with disorder at mesoscopic length scale at which
the materials of interest —such as disordered fiber
networks —can be considered continuous. Hence the
elastic energy of the system is defined using as indepen-
dent variables the strains of lattice cells instead of the
strains of, e.g., lattice bonds. The approach proves quite
useful and illustrative. Furthermore, this approach is
solvable with the effective-medium approximation, which
in turn is capable of explaining a good deal of the
behavior of the model.

Depending on its parameters the model exhibits
single-crack and weak disorder fracture. In addition,
strong disorder fracture is suggested by the nontrivial
finite-size scaling, N,„-L' but only when (p~i),
(1~0), and (L ~ oo ). Because of the straight cracks the
model yields, the total number of ce11 failures is given by
Eq. (12). This is a special case of
Ntot N „A +Ncrack, where %crack is the number of
broken cells in the final macroscopic crack. The intui-

FIG. 7. (a) Breaking stress (o. ,„)and (b) the strain at which
the first cell fails (c;„,) as a function of p for J=0.05, 1.0, and
10.0 (bullets, triangles, and squares, respectively) at L =20. The
insets show the result at J =0.05 for system sizes L =20, 50,
and 100.

tively clear relationship explains the crossover in the
finite-size scaling of N„t from the single-crack to the
strong disorder behavior. In our case N„„klL ~1 when
L ~ oo even in the case of strong disorder.

Our model illustrates also how sufficiently 1arge elastic
systems always fail through a single crack except for
sufficiently strong disorder p~1. The precise location of
the phase boundary between single crack and weak disor-
der fracture remains unclear in the present case but a
reasonable estimate for L~~ is obtained from the
effective-medium approximation. Experimentally the
crossover in the fracture mode can be demonstrated with,
e.g., paper samples. Small samples fail gradually with a
"post-fracture tail" in the stress-strain curve whereas
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large samples tear apart. The same crossover can also
be effected by increasing the shear coupling (relative to
Young's modulus) as given by J in the model: A strong
coupling leads to high stress concentrations at the crack
tip and thus favors crack propagation. In real paper this
happens, e.g., when the average mass per unit area is in-
creased. '

It should be noted that even in the case of weak disor-
der a dominant crack emerges eventually and its growth
controls the ultimate failure. The stability of crack
growth can be analyzed using the standard concepts of
fracture mechanics such as fracture toughness. ' Disor-
der is generally irrelevant in such considerations. On the
other hand, the onset of the macroscopic failure process
or crack propagation is controlled by different factors
and then the role of disorder is important. For example,
the above results show that if disorder is irrelevant (i.e.,
the first crack is unstable), the breaking stress decreases
with increasing disorder: 0. ,„-1—constXp. On the
other hand, if disorder is large enough, and thus relevant,
then cr,„ is independent of p. This perhaps surprising
situation has apparently not been realized before when
the strength of disordered materials such as paper has
been analyzed. Rather than studying what happens as a

function of disorder —which is often diScult to
control —it appears better to consider the size depen-
dence of the breaking characteristics.

This investigation has been motivated by the desire to
model the behavior of continuous disordered materials,
especially fiber networks with mesoscopic disorder. In
that respect several questions remain open. For example,
what are the physical dimensions of the lattice cells? Dis-
order becomes weaker if cells are made larger but they
fail more gradually which enhances the effect of disor-
der. ' Another issue of interest is the effect of the plastic
deformations that occur in real materials. %'ork is in

progress to address these questions.
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