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Summary

Exploring the potential of acoustic energy transfer

AHANDFUL OF METHODS for the contactless transfer of energy are available
nowadays. The most common of these is the use of inductively coupled coils,

which is already being used extensively in various consumer electronics
and in industrial applications. Less commonly encountered species of contactless
energy transfer (CET) include capacitive coupling, far-field electromagnetic, optical,
and, as a very recent development, acoustic systems. The last-mentioned form is the
main topic of this thesis.

Acoustic energy transfer, or AET, is a method of contactless energy transfer that
makes use of sound waves as an intermediate energy carrier to transfer energy. A
transmitter converts electrical energy into vibrations, which are successively radiated
as a pressure wave. The medium which it propagates in can be of a gaseous, fluid or
a solid nature. A receiver at a point along the path of the sound wave extracts the
energy from the wave and converts it back into electrical energy. Unlike inductively
coupled CET, acoustic energy transfer can transfer energy at a high efficiency over
distances that are large in comparison to the transmitter and receiver sizes, owing
to the high directivity of the transmitter. The efficiency of inductive CET drops off
sharply when the distance becomes larger than the coil diameter. Acoustic energy
transfer has the additional advantage of not relying on electromagnetic fields for
the propagation of energy. Therefore it is ideally suited in situations where these
fields are undesirable; for instance in hazardous environments, in direct vicinity of
metallic objects, or in environments where the presence of strong electromagnetic
fields is a health and safety issue.

This thesis is aimed at creating understanding of the workings of acoustic energy
transfer in air. It starts from basic sound wave theory and through experiments
works its way forward. Its main purpose lies in providing an exploratory overview of
the subject, pointing out the main features, chances and limitations of the approach.

v
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It investigates a number of peculiarities of the system and describes various paths
that have been followed in the pursuit of optimised system performance. Topics that
are covered are the theoretical limit to the energy transfer efficiency, determination of
losses, modelling of effects that are encountered during measurements, and design
and implementation of impedance adaptation measures for transducers.

A model based on diffraction and attenuation predicts that energy transfer over a
distance of one metre is possible at an efficiency of 65 %, when the diameter of the
transmitter and receiver is limited to 20 cm. Optimal electrical loading conditions,
derived from this model, indicate that the receiving element has an efficiency of
50 % when maximum output power is desired. Even when these transducer losses
are included in the model, acoustic energy transfer still performs at least five to ten
times better in terms of efficiency than an inductively coupled system of the same
dimensions.

Experiments, in which a maximum output power of 40 mW was demonstrated,
reveal the occurrence, influence and importance of reflections on the energy transfer
of an AET system. Reflections greatly boost the output power, but only at distinct
distances from the transmitter, thereby preventing free placement of the receiving
element. These reflections are modelled both by means of finite element modelling,
and with a transmission line model in which a lumped element attenuation coef-
ficient is used to account for spreading of the sound wave and absorption in the
medium.

Impedance matching of the transmitting and receiving transducers to the medium is
investigated as a means for increasing the output power and reducing the influence
of reflections on the energy transfer. Two methods of impedance adaptation are
considered in this thesis. Stepped-exponential horns were designed, optimised and
constructed for both the transmitting and receiving transducers. Resonance in the
horns is used to obtain large impedance transformation ratios. Experiments show
that the horns increase the output power by a factor 3.1 and the efficiency by a
factor 7.5 at 10 cm distance between the transmitter and the receiver. However, the
modelled response deviates significantly from the measured behaviour. A second
impedance adaptation measure was found in radiating surface enlargement. It is
applied to bolt-clamped Langevin transducers in the form of aluminium plates that
can be screwed onto the transducer. It was found that the plates do not increase
the output power. Experiments also revealed significant nonlinearity of the trans-
ducer output with respect to the driving voltage, resulting in chaotic behaviour. A
maximum output power of 36.3 mW was measured. It can be shown that optimal
positioning of the transmitter is possible based on measurements of its electrical
impedance.

This thesis shows that acoustic energy transfer through air is feasible. Achieved
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power levels are adequate for small systems such as sensors, MEMS, et cetera, but
are insufficient for implementation in more power hungry applications such as
actuators or wireless charging. The transducers are the restricting factor. Transducer
modelling is shown to be of critical importance for accurate acoustic energy transfer
performance, since it is the element that connects the electrical, mechanical and
acoustic domains.
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1 Conventions

SEVERAL conventions have been adopted in this thesis, some of which will
be familiar to the reader, while others may not be so obvious at first glance.
To avoid any ambiguity in meaning and understanding of notations and

symbols, the notational conventions that are employed are discussed in this chapter.
A complete list of symbols and notation is added in Appendix A at page 169 for the
reader’s reference, in which all symbols and notation are grouped in tables for easy
reference.

1.1 Symbols

Considering that the work described in this dissertation deals with two different
domains of engineering, i.e. the electrical and the mechanical or acoustical domain,
there will inevitably be some overlap in the traditional symbol definitions of certain
quantities. For example, both mechanical speed and electrical voltage are normally
indicated with a small v or the capital V. To allow a distinction between the two
variables to be made, in this thesis voltages are always indicated with a v and the
mechanical speed is expressed as u. Likewise, pressure is represented by a small p,
and pressure amplitude by P, not to be confused with power, which will always be
indicated with a capital Π.

As mentioned earlier, the reader is kindly referred to Appendix A in case of any
doubt with respect to the meaning of certain variables or parameters.

1



2 CHAPTER 1 CONVENTIONS

1.2 Acoustic impedance

Although the concept of impedance was introduced by Oliver Heaviside in 1886, it
was only in 1919 that the term was first used in connection with acoustic problems
by Arthur Webster [128]. While originally the term ‘impedance’ implied a quantity
that impedes or restricts current flow, a more accurate description would be that
impedance impedes the flow of energy. This broader definition allows the concept to
be used in acoustics just as well as in electric problems.

Although Webster originally proposed to define the acoustic impedance as the ratio
of the excess pressure p to the volume displacement X in the medium; Za = p/X, this
definition is far from definite. Most works on acoustics define acoustic impedance
as pressure divided by volume velocity (for example [58, 85, 120]) although other
definitions exist, such as pressure divided by particle velocity (e.g. [57, 69]). Lastly,
the radiation impedance of a vibrating object is typically defined in the same manner
as a mechanical impedance, that is, as the ratio of force to velocity.

Obviously, each of these definition has its own merits. Electing the volume velocity to
be an equivalent of current allows to make use of continuity relationships. Choosing
force, on the other hand, as equivalent of voltage and velocity for current means
that the power relationship of the equivalent circuit is maintained. Moreover, this
choice has the advantage that it is the definition of mechanical impedance, which
conveniently expresses the radiation impedance of a loudspeaker for example.
In this dissertation, however, acoustic impedance is defined as the quotient of
pressure and particle velocity. Since this work uses the excess pressure and particle
velocity as principal acoustical quantities, it is only logical to choose these quantities
as equivalents for voltage and current respectively. Moreover, specific acoustic
impedance of a medium has the same definition [58]. The resulting unit of acoustic
impedance is N s/m3, for which often the Rayleigh or rayl unit is used.

1.3 Mathematical notation

Vectors represent quantities that do not only have a magnitude, but that also have a
direction. This directional dependency is indicated in this thesis by an arrow above
the symbol, so as to be able to distinguish them from scalar quantities, for example
the vector ~x, as opposed to the scalar x.

Special spatial derivatives of vector fields such as the gradient, divergence and curl
are denoted using∇, the ‘nabla’ or ‘del’ operator. It is defined in the Euclidian space
with coordinates (x1, x2, . . . , xn) and unit vectors x̂1, x̂2, . . . x̂n in the corresponding
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directions, as

∇ =
n

∑
i=1

x̂i
∂

∂xi
. (1.1)

For a standard three-dimensional Cartesian coordinate system with unit vectors x̂, ŷ
and ẑ this would be

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (1.2)

According to this notation, the gradient of a scalar field s, and the divergence and
curl of a vector field ~v = vx x̂ + vyŷ + vz ẑ are respectively given by

∇s =
∂s
∂x

x̂ +
∂s
∂y

ŷ +
∂s
∂z

ẑ (1.3a)

∇ ·~v =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
(1.3b)

∇×~v =

(
∂vz

∂y
−

∂vy

∂z

)
x̂ +

(
∂vx

∂z
− ∂vz

∂x

)
ŷ +

(
∂vy

∂x
− ∂vx

∂y

)
ẑ (1.3c)

Lastly, complex quantities are denoted by means of a bar notation, for example
a = α+ jβ. Complex variables are frequently used throughout this thesis to represent
harmonically varying quantities.
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2 Introduction

ENERGY is a truly elusive physical property. It is something that cannot be
observed directly, although one can observe the effects energy brings about—it
can be felt as heat, experienced as velocity, seen and heard as lightning and

thunder, or the crashing of waves onto the shore. This is probably the main reason
for many people finding it so fascinating a concept. It is shrouded in a bit of magic
and mystery, in a world that is thoroughly dissected, classified and (arguably) largely
understood.

Energy is often described as the ability of a system to perform work. Now work is a
much more comprehensible concept for most people. Mechanical work is performed
when a force is exerted on an object in order to move it. More precisely: the product
of the force in the direction of the movement, multiplied by the distance travelled,
equals the mechanical work done.

Energy exists in many forms: electrical, mechanical, thermal, nuclear, magnetic,
gravitational, chemical, et cetera. Mankind has used many of these forms of en-
ergy throughout history. Mechanical, thermal and chemical energy have long been
the energies of choice. Starting with the industrial revolution the use of energy
skyrocketed, and has continued its growth ever since. The advent of the electrical
era, starting from around the mid-1880s, brought a whole new source of energy
within reach of the common man. It meant constantly available lighting without the

This chapter is based on [96] and [97].

5



6 CHAPTER 2 INTRODUCTION

disadvantages of fire hazard, smell and smoke, all at the command of a button. Nu-
merous applications would follow, leading to the present day world were electrical
energy plays such a vital role that the whole society would collapse if the power
system were to fail. Man embraced electricity as its main energy carrier, not only in
his home, but for his portable devices as well. The amount of comfort and luxury
experienced because of this choice is unrivalled throughout history.

One of the inherent drawbacks of electricity, albeit a negligible one in most cases, is
the fact that a physical connection is necessary for the electrical energy to propagate.
Wire connections are a necessity for electric currents to flow efficiently from one point
to the other. As a result, copper must have never been in so high a demand since the
end of the bronze age around 1200BCE, relatively speaking. The requirement of a
physical connection can be somewhat alleviated through the use of a battery as a
power source, as is extremely common nowadays in portable devices, such as mobile
phones, cameras, laptop computers, et cetera. Recharging of these batteries, however,
still requires a connection to another source of electrical energy. Contactless energy
transfer (CET) has been envisaged by many to overcome the necessity of a physical
connection between an electrical energy source on one hand, and an electrical device
on the other hand. Some even dreamt dreams as bold as powering a whole world
wirelessly [1].

There are many applications were a physical connection between a device and a
power source is impractical or even impossible. In other cases it may only be a
matter of convenience. Contactless energy transfer is used to charge the batteries
of mobile devices or vehicles [119, 126], it is used in industry to power actuators in
which the disturbance force introduced by a cable slab is undesired [23, 118], it can
be used to charge implants without surgical intervention [25,88], or it can be used to
power sensor networks [55].

2.1 Background

2.1.1 Contactless energy transfer

A handful of methods for the contactless transfer of energy are available nowadays.
The most common of these is the use of inductively coupled coils, a coreless trans-
former if you will, which is being used already in various consumer electronics and
in industrial applications. Less commonly encountered species of CET include capa-
citive coupling, far-field electromagnetic, optical, and, as a very recent development,
acoustic systems. The last-mentioned form is the main topic of this thesis. Figure
2.1 schematically depicts the working area of these methods of contactless energy
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Figure 2.1 A very schematic survey of common CET methods shows that each
has its own area of application in terms of distance and frequency.
Acoustic energy transfer covers the medium distance, low frequency
region.

transfer. This is image is meant to serve purely illustrative purposes, and should
not be considered as a factual classification. In practice there will be some overlap
in working area between methods, as well as systems that operate in completely
different areas. Optimal performance, however, is approximately attained in the
areas indicated in the graph.

Inductive CET has been receiving considerable attention lately. It is used both in
consumer applications, such as mobile device charging [119, 126], and in industrial
applications [40, 118]. Recent publications relate of systems delivering energy over
distances up to 2 m at high efficiencies [53,68,107]. These systems are a very exciting
development, as they seem to promise unlimited freedom of movement, allowing
any device to be powered anywhere. There are unfortunately a number of drawbacks
to inductive CET. The distance that can be crossed with inductive CET at a reasonable
efficiency is of the same order of magnitude as (or smaller than) the size of the
transmitter and receiver [84, 127]. Large distances result in low coupling between
the transmitter and receiver coils, requiring large reactive currents. These currents
in turn cause high conduction losses. Furthermore, these systems are often driven at
frequencies ranging from hundreds of kHz to several MHz, causing high switching
losses in the driving power electronics.

Capacitively coupled CET is used far less often, which is largely due to the limited
distance that can be crossed with it. This is a consequence of the inverse proportion-
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ality of the capacitance with the distance, requiring high voltages and frequencies
for the transfer of a reasonable amount of energy. High voltages lead to difficulties in
prevention of electric breakdown. The advantage of capacitively coupled contactless
energy lies in the nature of the electric field, which, unlike the magnetic field used in
inductive CET, is much more constrained between the metal plates. As such there are
less electromagnetic compatibility issues to be expected [55]. The high frequencies,
on the other hand, may completely negate this advantage.

Far-field electromagnetic (EM) energy transfer, [16, 28, 81], often called RF energy
transfer or microwave energy transfer, is used occasionally for contactless energy
transfer as well. In contrast to inductive and capacitive energy transfer, far-field
CET, as the name implies, uses a radiative electromagnetic field to convey energy.
Hence microwaves and directional antennas have to be used. Both the transmitter
and receiver size will at least be of the order of a wavelength, if they are to have
a certain directivity. Consequently, when system dimensions lie in the centimetre
range, frequencies of the order of 10 GHz are necessary. Rectification of these high
frequency waves at the receiving end can be achieved at high efficiencies of 80 %–
90 % [81], but generation of the microwaves is much more difficult, especially when
a solid-state RF generator is used.

Optical energy transmission uses the same principle as far-field EM but here the
wavelengths lie in (or near) the visible spectrum. Lasers can be used to generate
the optical beam, and photovoltaic diodes can take care of the conversion back to
electrical energy [28, 93, 104]. So far, in both conversion steps between 40 and 50 %
of energy is lost [28]. Furthermore, the possible risks and hazards involved in the
use of high power laser beams should not be underestimated [45, 104].

2.1.2 Acoustic energy transfer

All of the previously described methods rely on electromagnetic fields for the transfer
of energy. One can divide them into energy transfer based on radiative (microwave
and optical CET) and nonradiative fields (inductive and capacitive CET). The former
type of energy transfer is not restricted to the use of electromagnetic waves alone;
any type of wave can be used for this purpose. The transport of energy by sound
waves instead of EM waves lies at the basis of acoustic energy transfer (AET).

The basic structure of an acoustic energy transfer (AET) system is depicted in figure
2.2; a power amplifier supplies electrical energy to a transmitting transducer, which
converts it into mechanical vibrations. The transmitter is coupled to a medium, in
which it generates a pressure wave. A receiving transducer, positioned at a point
along the path of the sound wave, converts the motion caused by the sound wave
back into electrical energy. A rectifier and a capacitor provide a usable steady DC
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Figure 2.2 An acoustic energy transfer system consists of a transmitting trans-
ducer that generates sound waves in a medium, and a receiving trans-
ducer that converts them back to electrical energy.

voltage that powers a load. The medium can be anything ranging from air to human
tissue or a solid; in principle any material that will propagate a pressure wave will
do.

Acoustic energy in its purest form is used in various applications, such as ultrasonic
cleaning, medical ultrasonography, nondestructive testing, distance measurement
(e.g. sonar), therapeutic ultrasound, ultrasonic welding, et cetera. These applications
are different from acoustic energy transfer in that they directly use the acoustic
energy for a specific purpose, without converting it back to electrical energy. Some-
what closer related to AET are piezoelectric energy harvesting and piezoelectric
transformers. Energy harvesters make use of available (vibrational) energy to gener-
ate electricity, and could be considered to be a non-driven AET system. Piezoelectric
transformers convert electric energy into vibrations, with the inverse process taking
place at the secondary side, which is the essence of AET. However, it lacks the
spatial separation of the transmitter and receiver that is desired for a contactless
energy transfer system. The ceramic of such a transformer is transmitter, receiver
and medium, all in one.

One of the advantages of acoustic energy transfer, in comparison to CET based on
electromagnetic fields, lies in the much lower speed of propagation c of pressure
waves in air with respect to the electromagnetic propagation velocity cEM. Therefore,
the sound waves have a smaller wavelength for a given frequency than their electro-
magnetic counterpart. This in turn means that the transmitter and receiver can be a
factor cEM/c smaller for a given directionality of the transmitter [25]. Alternatively, if
the desired transmitter and receiver dimensions are given (as is usually the case),
then the frequency that is used in an AET system can be a factor cEM/c smaller than
that of the electromagnetic system, while still achieving the same directionality.
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Accordingly, losses in the driving power electronics will be much lower. The design
of the electronics can be kept considerably simpler as well. Furthermore, because
acoustic energy transfer, in contrast to all other discussed methods, does not rely
on electromagnetic fields for the propagation of energy, it is ideally suited for situ-
ations where these fields are undesired, for instance in hazardous environments,
in direct vicinity of metallic objects, or environments where the presence of strong
electromagnetic fields is a health and safety issue.

2.1.3 Acoustic energy transfer versus inductive CET

The major competitor for acoustic energy transfer is of course inductively coupled
CET, being the de facto standard at this moment. Well designed systems can reach
total energy transfer efficiencies, including electronics, of over 95 %. However,
when the distance between the transmitter and receiver becomes much larger than
their radii, the efficiency of inductive CET decreases rapidly [127]. Mur-Miranda et
al. [84] presented a simplified model of inductive contactless energy transfer that
indicates that the efficiency decreases with the sixth power of distance. The model by
Waffenschmidt and Staring [127] shows that the efficiency of an inductively coupled
system can be very high, even when using coils that have a low quality factor, but
only up to a certain distance. The graphs of efficiency versus distance that they
present in their paper show a relatively flat efficiency curve up to a bending point,
after which the efficiency drops sharply.

Acoustic energy transfer performs much better in this respect [25,78,98] and can be a
good alternative when inductive CET falls short. It benefits from the focusing ability
of sound waves. The energy contained in the waves can therefore stay confined to a
narrow beam, without too much divergence. In the ideal case the sound beam does
not diverge at all, and the only losses in the propagation are due to absorption by
the medium. Chapter 4 will go into more detail about modelling of the losses in an
AET system and derivation of a theoretical limit to the energy transfer efficiency.

Figure 2.3 shows an example of how acoustic energy transfer is able to outperform
inductive CET. The two methods are compared based on the celebrated paper by
Kurs et al. [68]. The paper describes an inductive energy transfer system using two
self-resonant coils of 30 cm radius, which were used to transfer 60 W over a distance
of more than 2 m at an efficiency of 40 %. The measured energy transfer efficiencies
are indicated by the black dots in figure 2.3. As can be seen, they correspond
quite well to the theoretical limit, reproduced from [127]. The point where the
measured efficiency starts to decrease occurs at a higher distance between the coils,
but the drop in efficiency is just as sharp as predicted by Waffenschmidt and Staring.
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Figure 2.3 The measured efficiency η versus distance zd of an inductive CET

system from [68] shows a good resemblance with the theoretical limit
from [127]. For larger distances the theoretical efficiency limit of an
AET system of the same dimensions is much higher.

The theoretical efficiency limit for an acoustic energy transfer system1 of the same
dimensions (i.e. a transmitter and receiver radius of 30 cm) shows the advantage
that AET has at larger distances. The efficiency decreases much more gradually, and
outperforms the inductive system when the distance becomes greater than 1.5 m.
A typical operating frequency of 20 kHz was assumed for the AET system. The
efficiency of the AET system will be even higher when the frequency is optimised for
each distance.

This example illustrates the much reduced dependency on distance of acoustic
energy transfer in comparison to inductive energy transfer. AET is therefore a
good alternative whenever the distance to be crossed is larger than the size of the
transmitter and the receiver.

2.2 Research on AET

Acoustic energy transfer is not a new concept. The first application of AET dates
back thirty years, to 1985, when Cochran et al. described a piezoelectric implant used
for osteogenesis [19]. Their implant was a bit different from what was common at
that time, as it could be powered by a low intensity ultrasound source, making it the

1This efficiency limit is discussed in chapter 4.



12 CHAPTER 2 INTRODUCTION

first application of AET. After this publication it was silent for a long time around
the topic of AET. There was still only a handful of publications available on acoustic
energy transfer at the time of the start of the research that is described in this thesis.
At the present moment, however, the subject is starting to gain some momentum,
and the number of publications on the topic slowly but steadily increases. Many
research groups in various parts of the world picked up the research topic, not in
the least due to publications of the author, notably [97].

Examining the limited amount of literature that exists on acoustic energy transfer,
one can divide all publications into three groups on the basis of the propagation
medium that they use: fluid, metal, or air. The first two groups are by far the largest,
while the number of publications on acoustic energy transfer through air is fairly
limited.

Fluid medium or tissue

Many publications on acoustic energy transfer deal with biomedical applications,
where it is either used to power implants [9,25,54,70,72,73,78,80,88–91,108–112,114,
115], or the energy of the ultrasonic wave is used directly for the intended purpose
without intermediate conversion to electrical energy [19, 26, 27].

At the moment batteries make up the largest part of the volume of an implant [25]. In
an attempt to miniaturise the implants, wireless energy transfer is proposed, so that
the battery capacity can be reduced. An additional advantage of implant charging
by means of CET is that recharging is rendered a less invasive procedure. Acoustic
energy transfer is a good alternative to inductive CET in this case because of the
absence of electromagnetic fields and the possibility of using a miniature receiver.
Besides in vitro experiments, a number of authors have already shown the feasibility
of biomedical AET with in vivo experiments [70, 78].

As the characteristic impedance of tissue is very comparable to that of water, of-
tentimes experiments are conducted in a fluid medium, instead of using actual
tissue. The frequencies that are used in most publications lie in the megahertz range
(0.5–2.25 MHz). Ozeri et al. explain that the choice of frequency for a biomedical AET

system is a trade-off between attenuation losses, diffraction losses, and additionally
the receiving transducer’s thickness [88].

The maximum efficiency that was measured in these publications is 39.1 % [90]. The
power levels that are used are quite low (ranging from 29 µW to 100 mW electrical
output power), which is limited by the allowable ultrasound intensity in in vivo
applications, in combination with a small receiver size. This level is adequate for the
power supply of, for instance, a simple sensor and its supporting signal processing.
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Through-wall CET for metal enclosures

There are situations in which one would like to transfer energy wirelessly through
a metal wall. Examples that come to mind are sensors in nuclear waste contain-
ers, gas cylinders, vacuum chambers, pipelines, et cetera. Basically any system
qualifies where direct feed through of wires would severely complicate system
design, degrade the system’s performance, or is plainly impossible. Any form
of CET based on electromagnetic fields runs into a wall here, quite literally. The
metal wall of such an enclosure has a shielding effect that limits the coupling of
an electromagnetic CET system and eddy currents in the wall cause high losses.
Multiple authors have therefore proposed to use acoustic energy transfer as an
alternative [10, 43, 47, 48, 59, 71, 74, 76, 113, 116, 130, 131]. It is debatable whether this
category falls under the umbrella of CET, since it is not strictly a contactless method,
but it is acoustic energy transfer nonetheless.

Through-wall AET achieves high output power levels and efficiencies more easily
than it does with an air or tissue medium, because of the similarity in acoustic
impedance between the wall and piezoceramic material (approximately 45 Mrayl
for steel and 30 Mrayl for lead zirconate titanate (PZT)). A good match in impedance
implies optimal power throughput.

In [71] a through-wall acoustic energy transfer system is described that delivers
50 W at 51 % efficiency. Leung et al. transferred 62 W at 74 % efficiency, while Bao et
al. [10] even managed to transfer more than 1 kW at an efficiency of 84 % by using a
prestressed piezo actuator.

Air

The combination of acoustic energy transfer with a gaseous medium [18, 50, 60, 98–
100] is far less popular than biomedical or through-wall acoustic energy transfer
are. In [98] it was shown theoretically that AET has the potential of reaching high
efficiencies in comparison with inductively coupled CET. The maximum efficiency
that was measured was 17 % and the transferred power was very low (4 µW). It
should be noted that the authors indicated that the measurements were performed
with a non-optimised system and are meant to be nothing more than indicative.

2.3 Challenges

As mentioned, very few publications were available on acoustic energy transfer at
the moment that the research was initiated. The lack of preceding research puts it
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in an unique position, making it true pioneering work. Unfortunately, it makes it
a bit more difficult to give an overview of challenges than it is in well-established
research fields.

Of the publications on AET that were available at the start of the research, only
a handful takes an analytical approach, or even attempts to construct a model of
acoustic energy transfer at all. None of these were meant for air-based acoustic
energy transfer. Modelling is therefore one of the main challenges. Accurate models
of the energy transfer in an acoustic energy transfer system will give fundamental
insight into all effects that dominate AET behaviour. Models allow the right design
choices to be made to optimise the energy transfer and efficiency. Finite element
modelling could prove a useful tool in giving a comprehensive overview of the
effects at play. Various existing models can possibly be combined to come up with a
more comprehensive description of AET.

Overall, the thus far obtained output power levels in acoustic energy transfer are
low. In air based systems only microwatt levels were reached. While this can be
enough to power a very simple sensor, higher levels are desirable if acoustic energy
transfer is to become a serious competitor for inductively coupled CET. Transducer
design is therefore deemed a subject that deserves much attention as well. High
power transducers have already been developed by Bao et al., amongst others, for
through-wall AET, while biomedical AET does not require high power levels due
to health regulations. Acoustic energy transfer through air, however, asks for a
transducer design that is able to boost the received power to at least the level of
multiple Watts.

This thesis is aimed at creating understanding of the workings of acoustic energy
transfer in air. It starts from basic sound wave theory and simple initial experiments,
and works its way forward from there. Topics that are covered are a theoretical limit
to the energy transfer efficiency, determination of losses, modelling of effects that are
encountered during measurements, and design and implementation of impedance
adaptation measures for transducers.

2.4 Research goals and outline of the thesis

2.4.1 Research goals

Inductively coupled systems are able to transfer energy very efficiently over short
distances, but as soon as the distance becomes of the order of the size of the coils,
the efficiency plummets. The obvious question to ask is whether acoustic energy
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transfer can outperform these systems in such a case. The research therefore is aimed
at investigating the feasibility of acoustic energy transfer through air, and finding
out how it stacks up against contactless energy transfer through inductively coupled
coils. To this end it is necessary to set up (multiphysical) models of the energy
transfer by sound waves. Measurements on experimental setups are required, so
that the models can be validated.

If acoustic energy transfer is found to be a viable method for the transfer of energy,
there are several secondary questions to be answered:

• What are characteristic properties of an acoustic energy transfer system, and
how can these be modelled?

• What is the limit to the power that can be transferred with a particular system,
and what is the maximum efficiency that can be attained?

• What are the limiting factors in that case?

• How can the energy transfer and efficiency be increased?

It is important that the outcomes of the research have practical value, which is
achieved by choosing a realistic set of requirements. The coils used in the inductive
CET system of Kurs et al., for example, are very large at a diameter of 60 cm. Their
application will therefore be incredibly limited. Because the purpose of contactless
energy transfer is to power mobile devices, a transmitter and receiver size should
be chosen that reflect this mobility. The transmitter and receiver are therefore
restricted to a maximum cross-sectional diameter of 20 cm in this research. Since
acoustic energy transfer is expected to perform much better than inductively coupled
systems at distances that are large in comparison to the transmitter and receiver
dimensions, the goal is set to transfer energy efficiently over a distance of 1 m. This
is a distance that allows a considerable freedom in device mobility, if it is powered
contactlessly, and will certainly be of interest for many applications.

The power transfer efficiency of an inductively coupled CET system of the same
dimensions will be taken as a benchmark. According to [127] such a system is able
to reach approximately 2 % efficiency, although only in very favourable conditions,
i.e. a coil quality factor of 1000 and neglecting the losses in the accompanying power
electronics. Furthermore, the high frequencies involved introduce many difficulties
in the design of an efficient inverter [122].

2.4.2 Outline of the thesis

The outline of this thesis is as follows. Chapter 3 starts with a short introduction
to acoustics for the reader that is not yet familiar with this fascinating domain of
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physics. The research, and especially the models, described in this thesis lean heavily
on the theory of acoustic wave propagation, making it imperative to have a grasp of
basic acoustic concepts. The relations and equations, as well as simple wave types,
are discussed briefly. The chapter also introduces the concept of equivalent electrical
networks.

The first theory of acoustic energy transfer in air is subsequently discussed in chapter
4. A theoretical limit to the energy transfer efficiency of an AET system is derived,
and used to calculate the maximum attainable efficiency. Optimal electrical loading
conditions for the receiving transducer are derived. First experiments are discussed
and compared to the theoretical limit. To this end transducer losses are determined
from vacuum impedance measurements.

The modelling of reflections in acoustic energy transfer systems is successively
treated in chapter 5. A transmission line model that models the energy transfer by
means of plane waves is introduced. Power and efficiency equations are derived and
compared to measurements. Finite element analysis is used to construct a second
model, which gives more insight into the pressure distribution at various transmitter-
receiver distances. Sensitivity analysis is used to identify the most important model
parameters.

The next two chapters are dedicated to impedance adaptation measures. Chapter
6 deals with the use of horns in acoustic energy transfer, for adjustment of the
impedance of both the transmitter and the receiver. Stepped-exponential horns are
designed and optimised by means of finite element analysis. The second part of the
chapter is dedicated to analysis of parameter sensitivity of the horn drivers.

Chapter 7 deals with radiating surface enlargement as a means of impedance adapt-
ation for bolt-clamped Langevin transducers. Measurements of the power transfer
and the energy transfer efficiency are discussed. The chapter further delineates
several peculiarities of the setup that were encountered during the measurements.

Finally, chapter 8 presents the main conclusions and the contributions of the research
that is presented in this thesis. Lastly, it covers a number of recommendations for
future research on acoustic energy transfer in air.
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3 A short introduction to
acoustics

ACOUSTICS is the name given to the field of science that deals with the origin
and propagation of sound waves. A short introduction into this intriguing

field is given in this chapter for readers that may not be entirely familiar
with it. It introduces the basic concepts and equations relating sound pressure and
particle velocity. However, this chapter is by no means intended to give a complete
overview of the entire theory. Readers are kindly directed to text books on acoustics
such as [21, 34, 58, 69, 85, 120] for more information on the subject. This chapter is
largely based on these books. The reader will hopefully forgive not citing these
works continuously throughout the chapter.

3.1 Sound waves

What we normally call sound is the reception by the ear of variations in the air
pressure. The variation of pressure, particle velocity or medium density would be
a more accurate description of what sound actually is. This variation is produced
through vibration of particles of the medium in whichever way. Usually a sound
wave originates from a vibrating source, for instance a loudspeaker, a guitar string,
or the undesired vibration of machinery.

Probably the most important intrinsic property of sound is its capability to propagate
through media, whether they be of gaseous, fluid or solid nature. Sound propagates
in either longitudinal or transverse waves. While both types of waves can propagate

17
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Figure 3.1 A longitudinal wave consists of successive areas of rarefaction and
compression.

through solid materials, sound waves in air are purely of the longitudinal type.
Such a wave is depicted in figure 3.1. It is caused by application of a force to air
particles, for example by a loudspeaker, a musical instrument, or any other source of
mechanical vibrations. The particles in the direct vicinity of this sound source start to
move in the direction of the force that is exerted on them, causing an accumulation of
particles at a point farther ahead. If we assume a vibrating source, the force changes
direction at some point in time, pulling particles in the opposite direction, leaving
an area in which there are less particles. The various shades of grey in figure 3.1
indicate the density of the air. These local changes in density of the air correspond
to equivalent local changes in pressure and thus particle velocity, which is what a
sound wave is.

3.2 Particles, pressure and sound velocity

A fluid particle is a volume element that is much larger than a single molecule of the
medium in which the sound wave propagates, but still is small enough to be able
to consider all acoustic variables constant throughout it [58]. Particles, rather than
molecules, are considered in acoustics since molecules of a fluid or gas are always in
motion, even when there is no acoustic wave present. When we consider a particle,
on the other hand, we have a small volume in which—on average—the influx and
efflux of molecules is equal, meaning that the macroscopic properties of a particle
remain unchanged. Therefore, a particle, contrarily to a molecule, can have a fixed
equilibrium position, and hence is a much better element to study in the field of
acoustics.

We can now define the particle displacement from this equilibrium position as

~ξ = ξx x̂ + ξyŷ + ξz ẑ , (3.1)
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and consequently a particle velocity

~u =
d
dt

~ξ = ux x̂ + uyŷ + uz ẑ . (3.2)

The elements ux, uy and uz are the particle velocities, and x̂, ŷ and ẑ are the unit
vectors, in the x, y and z direction respectively.

3.2.1 The equation of state

Compressions and rarefactions normally follow each other so rapidly in sound
waves that there is virtually no heat exchange between adjacent sound particles.
Acoustic processes are therefore approximately adiabatic [58]. A perfect gas under
an adiabatic process behaves according to

pt

p0
=

(
ρt

ρ0

)γ

, (3.3)

in which pt and ρt are the pressure and the density of the gas respectively, and
p0 and ρ0 are the pressure and density of the gas in equilibrium. The constant γ

is the ratio of specific heats. This relation is slightly more complicated for a non-
perfect gas, requiring the relation between pressure and density variations to be
determined experimentally. Such a relationship can subsequently be expanded in a
Taylor approximation, as in

pt = p0 +
∂ pt

∂ρt

∣∣∣∣
ρ0

(ρt − ρ0) +
1
2

∂2 pt

∂ρ2
t

∣∣∣∣
ρ0

(ρt − ρ0)
2 + . . . (3.4)

Only the first order terms have to be retained if the variation of ρ is small. Let us
now introduce the variation of the pressure p = pt − p0 and the density ρ = ρt − ρ0.
This allows us to derive the equation of state from equation (3.4), obtaining

p = B ρ

ρ0

= c2ρ ,
(3.5)

where the adiabatic bulk modulus of the medium

B = ρ0
∂ pt

∂ρt

∣∣∣∣
ρ0

(3.6)

and a constant c2 = B/ρ0 are introduced. In case of an ideal gas these would be

B = p0γ (3.7a)

c2 =
p0

ρ0
γ . (3.7b)
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3.2.2 The continuity equation

Let us now consider a small rectangular cuboidal element that has a volume
∆V = ∆x∆y∆z, such as in figure 3.2, through which particles flow at a velocity
~u = ux x̂ + uyŷ + uz ẑ. Defining the density at any point as ρt(x, y, z), there is a net
influx of mass into the element in the x-direction equal to

(ρtux)
(

x′, t
)

∆y∆z− (ρtux)
(
x′ + ∆x, t

)
∆y∆z , (3.8)

where the positive term is the influx at the face at x = x′, and the second (negative)
term is the efflux at x = x′ + ∆x. Writing down similar equations for the y and
z-directions, we obtain a total net mass influx. Because of the conservation of matter,
this influx has to equal the rate ∂

∂t (ρt∆V) at which the mass of the element increases.
Since the volume of the element ∆V is time invariant, the equation can be written as

∂ρt

∂t
∆x∆y∆z =

[
(ρtux)

(
x′, t

)
− (ρtux)

(
x′ + ∆x, t

)]
∆y∆z +[(

ρtuy
)(

y′, t
)
−
(
ρtuy

)(
y′ + ∆y, t

)]
∆x∆z +[

(ρtuz)
(
z′, t
)
− (ρtuz)

(
z′ + ∆z, t

)]
∆x∆y .

(3.9)

The continuity equation is now obtained by dividing both the left and right hand
side by ∆V, and considering the limit ∆x → 0, ∆y → 0, ∆z → 0. Altogether this
yields the so-called exact continuity equation

∂ρt

∂t
= −

(
∂ (ρtux)

∂x
+

∂
(
ρtuy

)
∂y

+
∂ (ρtuz)

∂z

)
, (3.10)

which can be conveniently rewritten as

∂ρt

∂t
+∇ · (ρt~u) = 0 . (3.11)

Now the total density of the medium ρt = ρ0 + ρ can be divided into an equilibrium
density ρ0 and a change in density due to the acoustic field ρ. By means of this
substitution and the identity ∇ ·

(
ϕ~F
)
= (∇ϕ) · ~F + ϕ∇ · ~F, equation (3.11) can be

rewritten as

∂

∂t
(ρ0 + ρ) +∇ (ρ0 + ρ) · ~u + (ρ0 + ρ)∇ · ~u = 0 . (3.12)

In acoustics it is mostly a fair assumption that the major variation of the density of
the medium occurs due to the acoustic field, and that the medium is approximately
homogeneous in equilibrium. This means that its equilibrium density ρ0 is only a
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Figure 3.2 A rectangular cuboidal element with sides of length ∆x, ∆y and ∆z
through which there is a mass flow (ρ~u) can be used to derive the
continuity equation.

weak function of time and space, or ∂ρ0
∂t �

∂ρ
∂t and∇ρ0 � ∇ρ, which can be used to

simplify the equation even further, yielding

∂ρ

∂t
+∇ρ · ~u + (ρ0 + ρ)∇ · ~u = 0 . (3.13)

Lastly, we will neglect the cross term ∇ρ · ~u, and assume that the density variation
due to the acoustic field is small in comparison to the equilibrium density, ρ� ρ0,
to arrive at

∂ρ

∂t
+ ρ0∇ · ~u = 0 . (3.14)

Equation (3.14) is commonly referred to as the linearised continuity equation.

3.2.3 Euler’s equation

The linearised continuity equation that was derived in the previous section is in
itself not enough to describe acoustic phenomena, since it still contains two acoustic
variables; the density ρ and the particle velocity ~u. Another equation is to be derived
to be able to solve for both variables. To this end, let us examine again a fluid
element of dimensions (∆x, ∆y, ∆z), only now one that moves with the fluid. We
will consider the force balance on this element.

The surrounding fluid exerts a force pt(x′, t)∆y∆z x̂ on the face at x = x′ and a force
−pt(x′ + ∆x, t)∆y∆z x̂ on the face at x = x′ + ∆x. A similar expression holds for the
forces in the y-direction, but in the z-direction we also have to consider the force due
to the gravitational acceleration ρt~g∆V, with ∆V = ∆x∆y∆z. The total force exerted
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on the volume element in all directions is therefore

~F(x, y, z, t) =

(
pt(x′, t)− pt(x′ + ∆x, t)

∆x
x̂ +

pt(y
′, t)− pt(y

′ + ∆y, t)
∆y

ŷ +

pt(z
′, t)− pt(z

′ + ∆z, t)
∆z

ẑ + ρt~g

)
∆V .

(3.15)

This force causes an acceleration of the fluid element equal to~a = d~u/dt, which can
be expanded through application of the chain rule

~a =
∂~u
∂t

+ ux
∂~u
∂x

+ uy
∂~u
∂y

+ uz
∂~u
∂z

=
∂~u
∂t

+ (~u · ∇) u .
(3.16)

Equations (3.15) and (3.16) can be combined by means of Newton’s second law
~F = ρt∆V~a. Moreover looking at the limit ∆x → 0, ∆y→ 0, ∆z→ 0, one obtains

−∇pt + ρt~g = ρt

(
∂~u
∂t

+ (~u · ∇)~u
)

. (3.17)

In equilibrium we have that −∇p0 +~gρ0 = 0, which means that ∇pt = ∇p +~gρ0,
and therefore

−∇p + ρ~g = (ρ0 + ρ)

(
∂~u
∂t

+ (~u · ∇)~u
)

. (3.18)

Let us now assume that |ρ~g| � |∇p|, |ρ| � ρ0 and |(~u · ∇)~u| �
∣∣∣ ∂~u

∂t

∣∣∣. This yields
the linear Euler’s equation:

∇p + ρ0
∂~u
∂t

= 0 . (3.19)

3.2.4 The wave equation

The linearised continuity equation and the linear form of Euler’s equation can be
combined to arrive at a single equation describing sound waves of small amp-
litudes. Taking the time derivative of (3.14) and the divergence of (3.19) results in
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the equations

∂2ρ

∂t2 +∇ ·
(

ρ0
∂~u
∂t

)
= 0 (3.20a)

∇2 p +∇ ·
(

ρ0
∂~u
∂t

)
= 0 (3.20b)

in which ∇2 = ∇ · ∇ is the Laplacian. Combination of both equations yields

∇2 p− ∂2ρ

∂t2 = 0 , (3.21)

which can be simplified even further making use of the equation of state (3.5) to
arrive at the linearised lossless wave equation for propagation in fluids:

∇2 p− 1
c2

∂2 p
∂t2 = 0 , (3.22)

Assuming that all quantities vary at a single radial frequency ω, and thus p = Aejωt,
(3.22) can be written as the Helmholtz equation

∇2 p + k2 p = 0 , (3.23)

where k = ω/c is the angular wave number.

3.3 Simple types of sound waves

In this section, two simple types of sound waves are considered; the plane wave and
the spherical sound wave. Their simplicity is due to their one-dimensional nature in
their respective coordinate systems (Cartesian or spherical).

3.3.1 Plane waves

Plane waves, such as shown in figure 3.1, are sound waves of which the pressure
and particle velocity only depend on a single coordinate in a Cartesian coordinate
system. Let us choose the z-axis for this purpose. This reduces equation (3.22) to a
somewhat simpler form:

∂2 p
∂z2 −

1
c2

∂2 p
∂t2 = 0 . (3.24)
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It can be shown (see for example [69]) that solutions of this equation are of the
form p(z, t) = f (z− ct) and p(z, t) = g(z + ct). These are waves that propagate in
unaltered shape and amplitude in the positive and negative z-direction respectively,
with a velocity c. Thus the constant c that was introduced in equation (3.5) turns out
to be the sound velocity. The particle velocity in the wave can be found by means
of equation (3.19), which can be written for a plane wave that propagates in the
z-direction as

∂ p
∂z

+ ρ0
∂uz

∂t
= 0 . (3.25)

This equation can be rewritten making use of the substitution s = z− ct.

∂ p
∂s

∂s
∂z

+ ρ0
∂uz

∂s
∂s
∂t

= 0

∂ p
∂s
− ρ0c

∂uz

∂s
= 0

(3.26)

Integration of the above equation with regard to s yields the relationship between
the excess pressure and the particle velocity; uz =

1
ρ0c p. Likewise the substitution

s = z + ct results in uz = − 1
ρ0c p, which is consistent with the definition of a

backwards travelling wave. The quantity

Za
0 =

p
uz

(3.27)

is the specific, or characteristic acoustic impedance of the medium, which, for a
plane wave, is equal to Za

0 = ρ0c.

3.3.2 Spherical waves

In the case of a spherical wave the only variation occurs as a function of the radial
distance from the sound source r and time t. The pressure and particle velocities do
not vary in the θ and ϕ directions. Analogously to the previous section, the wave
equation (3.22) can be rewritten for this specific case making use of the identities
x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, obtaining

∂2 p
∂r2 +

2
r

∂ p
∂r
− 1

c2
∂2 p
∂t2 = 0 , (3.28)

Substitution of p(r, t) = 1
r f (r, t) results in

∂2 f
∂r2 −

1
c2

∂2 f
∂t2 = 0 (3.29)
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which is again in the same form as the one dimensional wave equation (3.24). The
solution of the differential equation is therefore found in the same manner. We
obtain for the pressure distribution p(r, t) = 1

r f (r− ct), which corresponds to a
radially expanding wave. The solution p(r, t) = 1

r g(r + ct) exists as well of course,
but describes a radially contracting wave (a wave propagating radially towards
r = 0), which is less interesting to consider.

Making use again of (3.19) and (B.4) in appendix B (page 174), we have that

∂ p
∂r

+ ρ0
∂ur

∂t
= 0 . (3.30)

Let us now assume that the pressure varies sinusoidally. For matters of simplicity,
we will write it in complex notation as

p(r, t) =
1
r

A ej(ωt−kr) , (3.31)

with the angular wave number k = ω/c. This reduces equation (3.30) to

ur =
1

ρ0c

(
1 +

1
jkr

)
p(r, t) . (3.32)

The specific impedance for a spherically expanding wave is found from the previous
equation:

Za
0 = ρ0c

1
1 + 1

jkr

=
ρ0c

1 + k2r2

(
k2r2 + jkr

)
.

(3.33)

Contrarily to the plane wave, in which the pressure and the particle velocity are
exactly in phase, the phase difference between both variables varies with the distance
from the origin in a spherical wave. The factor kr can be written as kr = 2πr/λ,
making the specific impedance depend on the ratio between the distance from the
origin and the wavelength. The pressure and particle velocity are exactly out of
phase for r/λ = 0, while for r/λ→ ∞ they are in phase, and the specific impedance
seen by the wave is again the same as in the plane wave case:

Za
0

∣∣∣
r→∞

= ρ0c . (3.34)
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The point source

If a spherical source pulsates with a velocity U0ejωt and has a radius a, we can find
from 3.33 that the pressure at the surface of the source is

p(a, t) = u(a, t) Za
0(a) ,

=
1

1 + 1
jka

ρ0cU0ejωt ,
(3.35)

Combination of the latter with equation (3.31) yields

p(r, t) = ρ0cU0
jka

1 + jka
a
r

ej(ωt+k(a−r)) , (3.36)

which in case of a long wavelength in comparison to the source radius reduces to

p(r, t) = jρ0cU0
ka2

r
ej(ωt−kr) , ka� 1 . (3.37)

The volume velocity Q that is produced by our spherical source is equal to its velocity
multiplied by its surface area. Consequently the volume velocity amplitude is

Q0 = 4πa2U0 . (3.38)

which allows the expression for the sound pressure to be simplified to

p(r, t) =
jωρ0Q0

4πr
ej(ωt−kr) . (3.39)

Combination with (3.32) finally yields an expression of the particle velocity that is
produced by this source:

~u(r, t) =
Q0

4πr2 (1 + jkr) ej(ωt−kr) r̂ . (3.40)

As mentioned, these expressions are only valid for long wavelengths in comparison
to the radius of the spherical source. In the case of a point source, having an
infinitesimally small radius, however, these equations are exact, as long as the
frequency, and therefore k, is finite.

3.4 Attenuation of sound

Until now the influence of attenuation of sound waves was neglected in the dis-
cussion of wave propagation. While in many cases this is a fair assumption, the
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theory put forward here will be used to discuss energy transfer by means of sound
waves. This means that it is imperative to, at the very least, consider attenuation,
and to investigate whether or not it can be neglected. This section slightly extends
the theory described above to allow it to describe the effect that absorption has on
the sound wave.

It would go too far for this short introduction to acoustics to discuss the theory of
attenuation in gases and fluids and to derive sound wave equations that reflect these
effects. Instead the result will be merely given here. More details can be found in
standard works on acoustics. For example [58] contains an excellent analysis of
absorption and attenuation. As Kinsler et al. describe, there are multiple effects at
play that result in attenuation of a sound wave. Generally they all lead to a lossy
Helmholtz equation

∇2 p + k
2

p = 0 . (3.41)

This equation is very similar to the Helmholtz equation (3.23) that was derived
earlier. The only difference is the substitution of a complex valued angular wave
number

k = k− jα . (3.42)

Here k is still defined as the ratio of the angular frequency to the sound velocity,
i.e. k = ω/c. Attenuation of sound waves is accounted for by introduction of
the absorption coefficient α of the medium, which is a function, not only of the
parameters of the medium, such as its chemical composition, temperature and
pressure, but also of the frequency of the sound propagating through it.

3.5 Power and sound intensity

As the particles in a sound wave have a certain mass, their vibration implies that
they possess a certain amount of kinetic energy. Likewise, the pressure variations
in the gas require the exchange of potential energy within the sound wave. The
presence of these forms of energy in a sound wave is of course the very reason that
sound can be used to transfer energy.

3.5.1 Sound intensity

The energy that is transferred by a sound wave through a certain area perpendicular
to the direction of propagation of the wave, is equal to the work performed by the
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particles adjacent to this area [35]. The rate of work that is done is equal to the
product of the force ~F that is exerted on and the velocity ~u of the particles. The rate
of work per unit area is then given by

d
dS

dW
dt

= pun (3.43)

in which dS is an infinitesimally small area and un the component of the particle
velocity normal to the surface. Generalising this concept we can define a vector
quantity

~I(t) = p(t)~u(t) , (3.44)

which is the instantaneous sound intensity. It is in essence the energy flux density of
the sound wave, i.e. the amount of energy that passes per unit time through a unit
area.

In a time-stationary acoustic field, the instantaneous sound intensity can be split up
into an active and a reactive component [35]. The active sound intensity ~Ia is the
time average of the instantaneous sound intensity

~Ia =
1
T

t0+T∫
t0

p(t)~u(t)dt , (3.45)

and as such represents the net transport of energy in the direction of ~Ia. The in-
tegration length T in this equation is chosen so that averaging takes place over an
integer number of periods of the sound wave. Note that although the active sound
intensity no longer contains a time dependency, it is a vector which still depends
on the spatial position in the sound field. The reactive part of the sound intensity
represents the locally oscillating exchange of energy in the sound field, without
actual transport or dissipation.

The term ‘sound intensity’ is often interpreted as the average flow of energy in the
direction of propagation ‖~Ia‖, which is of course only meaningful when the sound
wave has a distinct direction of propagation, such as a plane wave. If the vector~Ia is
a function of spatial coordinates as well one can still talk about the the magnitude
of the sound intensity Ia = ‖~Ia‖, but this has a different meaning in most cases, as
it is the active sound intensity in the local direction of propagation (which is ~u/‖~u‖).
Whenever the scalar Ia is used in this thesis, it will have the latter meaning to avoid
confusion. Whenever one can speak of one single direction of propagation of the
sound wave, Ia will be the active sound intensity of the wave. In all other cases the
vector intensity~I will be used.

In acoustics mostly periodic signals with a zero average are considered, which
renders the concept of intensity somewhat easier. In this case both the pressure and
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particle velocity can be written as a linear combination of sinusoids at frequencies
that are an integer multiple of a fundamental frequency ω. The pressure field can
then be written as

p(~r, t) =
∞

∑
m=1

Pm(~r) cos
(
mωt + ϕp,m

)
. (3.46)

An analogous expression can be found for the particle velocity

~u(~r, t) =
∞

∑
n=1

Un(~r) cos(nωt + ϕu,n) û . (3.47)

The instantaneous sound intensity is subsequently found by combining the previous
two equations and (3.44), yielding

~I(~r, t) =
∞

∑
m=1

[
Pm(~r) cos

(
mωt + ϕp,m

)] ∞

∑
n=1

[
~Un(~r) cos(nωt + ϕu,n)

]
=

∞

∑
m=1

∞

∑
n=1

~Im,n(~r, t)
(3.48)

The product~Im,n of the m-th term of the pressure and the n-th term of the particle
velocity is

~Im,n(~r, t) = Pm(~r) cos
(
mωt + ϕp,m

)
~Un(~r) cos(nωt + ϕu,n)

= 1
2 Pm(~r) ~Un(~r)

[
cos
(
(m + n)ωt +

(
ϕp,m + ϕu,n

))
+

cos
(
(m− n)ωt +

(
ϕp,m − ϕu,n

)) ] (3.49)

It is clear from equations (3.45), (3.48) and (3.49) that the only components that
contribute to the active sound intensity, and hence to the net transport of energy, are
those components that are of equal frequency (m = n) and have a phase difference
unequal to 1

2 π (i.e. ϕp,m − ϕu,n 6= 1
2 π (mod π))

To simplify matters even further, let us suppose that we have a pressure field that
varies purely sinusoidally, i.e. p(~r, t) = P(~r) cos

(
ωt + ϕp

)
, and a particle velocity

~u(~r, t) = ~U(~r) cos(ωt + ϕu). There are no higher harmonics present, contrarily to
the previous discussion. From the results above we have that

~Ia(~r, t0) =
P(~r) ~U(~r)

2T

t0+
2π
ω∫

t0

[
cos
(
2ωt +

(
ϕp + ϕu

))
+ cos

(
ϕp − ϕu

)]
dt

= 1
2 P(~r) ~U(~r) cos

(
ϕp − ϕu

)
.

(3.50)
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When the excess sound pressure and the particle velocity are written in complex

notation p(~r, t) = P(~r) ej(ωt+ϕp) and~u(~r, t) = ~U(~r) ej(ωt+ϕu), one can show that the
active sound intensity is

~Ia(~r) =
1
2 Re

(
p(~r, t)~u

∗
(~r, t)

)
. (3.51)

3.6 Equivalent electrical networks

Any system of linear time-invariant differential equations can be represented by
an equivalent electrical network. Such networks can prove enormously insightful,
especially for electrical engineers who are used to working with such diagrams. The
purpose of an electrical network is to capture the (most important) behaviour of a
system in a diagram. The use of these circuits, however, is not only limited to elec-
trical problems. Any problem that can be described by (linear) differential equations
can be captured into such an equivalent network. Ideal capacitors and inductors,
having the voltage-current relationships v = L di

dt and i = C dv
dt respectively, are then

used to represent differentiation and integration.

The cornerstone of electrical networks is the concept of impedance, introduced by
Oliver Heaviside, which is defined as the ratio of the voltage across an element to
the current through it. As already discussed in section 1.2, this thesis uses

Za
=

p
u

(3.52)

as definition for the acoustic impedance. The superscript a is used to indicate
an acoustic impedance. From this definition we find that pressure is equival-
ent to a voltage and particle velocity to a current. Furthermore, the relationship
p = Za u = jωm u shows that an inductance is equivalent to an inertance per unit
area m on which the pressure p acts. A mechanical equivalent would be a mass
per unit area. Equivalently, an acoustic compliance per unit area n, which behaves
according to n d p

dt = u, translates to capacitance in the electrical case. These relation-
ships are summarised in table 3.1.

In principle, the use of equivalent circuits is restricted to one-dimensional acoustic
problems, since the current in such a diagram is a scalar quantity. As such, it cannot
be used to describe a general particle velocity, which is a vector. Therefore, the
direction of ~u should be implicitly defined, as is the case in a one-dimensional wave,
such as the plane wave or the spherical wave that were discussed earlier in sections
3.3.1 and 3.3.2.
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Table 3.1 Conversion from acoustic to electrical variables and parameters.

Acoustic variable Electrical equivalent

Pressure p (Pa) Voltage v (V)
Particle velocity u (m s−1) Current i (A)
Damping per unit area b (N s m−3) Resistance R (Ω)
Mass per unit area m (kg m−2) Inductance L (H)
Compliance per unit area n (m3 N−1) Capacitance C (F)

The use of equivalent circuits is not limited to so-called lumped element models in
which the acoustic problem can be wholly represented—or rather: approximated—
by means of a small number of electrical circuit components, say a single series RLC
combination. Equivalent circuits can also be used in systems where one can speak
of a distributed impedance, such as is the case with transmission line circuits. A
sound wave propagating in a pipe is no different from an electromagnetic wave
propagating along a length of conductor or a waveguide. Therefore, transmission
lines are another commonly encountered form of electrical equivalents for acoustic
problems.

The advantage of using equivalent circuits is that they can describe the behaviour
of both the electrical and mechanical domains at the same time, through coupling
elements such as transformers and gyrators [101] that link both domains. Examples
will be encountered in section 4.2.
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4 First steps in acoustic
energy transfer

THERE are two main performance indices for any system that is used to transfer
energy, independently of whether or not it achieves it contactlessly. These are
the energy transfer efficiency on one hand, and the power transfer capabilities

on the other. These two factors determine the physical limitations of such a system.
One expects a part of a system that transfers energy to do so without impeding the
energy flow, and thus without posing any restriction on the power flow through it,
within the limits in which the system is to be used of course. Efficiency is always a
key aspect, as it determines how economically sound an energy transfer system is,
and how much heating is to be expected. It is often the most interesting aspect on
the basis of which to compare energy transfer systems.

Of course there are other characteristics of contactless energy transfer systems that
can be of importance when trying to determine the best candidate in any situation,
but these can be rather application dependent. One can think of issues such as the
strength or presence of electromagnetic fields, for example with regard to safety,
or whether there are obstacles in the line of sight between the transmitter and the
receiver, the medium through which the energy is to be transmitted (especially
metallic barriers can pose great difficulties for methods that rely on electromagnetic
fields) or limitations on system dimensions, just to name a few.

The purpose of this chapter is to take a first look at the energy transfer that can
be attained by means of contactless energy transfer through air. Therefore we will

This chapter is based on [98] and [100].

33
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have to look at the specific loss mechanisms that occur in such an application.
When talking specifically about acoustic energy transfer systems, the energy transfer
efficiency is limited chiefly by four effects:

• the attenuation of sound waves in the medium;

• the spreading of the sound waves;

• the transduction efficiency;

• losses in electrical circuitry.

Modelling these effects is necessary to be able to judge the attainable efficiency.

Attenuation Attenuation of sound waves in a medium occurs through a num-
ber of different principles, which vary according to the type of medium and can
include viscous or frictional losses, heat conduction, molecular thermal relaxation,
structural relaxation, chemical relaxation, losses at boundaries, crystal lattice defects,
scattering in polycrystalline materials, and so forth [58, 69].

Spreading Parts of the sound wave that do not reach the receiver surface will
propagate into infinity and will be absorbed at some point. As such they do not con-
tribute to the output power at the receiving end. Therefore these can be considered
as losses, which can be grouped under spreading losses. Spreading of sound waves
can occur naturally because of the radiation pattern of the source. In practice virtu-
ally no sound source radiates a collimated beam, but will always create a divergent
radiation pattern. Spreading can also occur because of a change in the direction
of propagation of the sound wave, because of either refraction or diffraction [85].
Refraction is the bending of sound waves due to a change in the medium. One
can think of a change in sound velocity due to local temperature variation of the
medium, for example. Diffraction is the bending of sound waves around objects.

Transduction The transduction efficiency takes into account the losses that oc-
cur in the transducer which converts the electrical energy into mechanical vibrations
at the transmitting side and vice versa at the receiving end. Any losses in this
process, whether they be of electrical or mechanical origin, will decrease the amount
of energy that is transferred to an application that is to be powered.

Circuitry In order to work, an acoustic energy transfer system requires electrical
circuitry at the transmitting and receiving ends, which inherently introduce losses.
These losses fall outside the scope of this thesis, as they are a field of research in
themselves, depending on the circuit topologies that are chosen.
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Figure 4.1 A simple acoustic energy transfer system consists of a coaxially placed
circular transmitter and receiver. The squares represent the planes in
which the transmitter and receiver are placed, which are assumed to
be parallel to each other. The transmitting transducer is assumed to
be placed in an infinite baffle.

4.1 Diffraction and attenuation

Having drawn up a list of all possible loss mechanisms in an AET system, we can
make a start with the creation of a model, with the goal of arriving at an efficiency
limit for a simple acoustic energy transfer system. The system that we will be looking
at is, at first, a simple transmitter and receiver of circular shape placed coaxially
at a distance zd from each other. This acoustic energy transfer system is depicted
schematically in figure 4.1.

4.1.1 Diffraction

Let us first examine the effect of diffraction in the model. Diffraction occurs in our
simple system of figure 4.1 due to the limited size of the transmitter and receiver.
The edge of the transmitter will always create a sound field that radiates over a
large angular range. However, the larger the transmitter size is in comparison to the
wavelength, the less pronounced the effect of its edge will be, and therefore, the less
divergent its sound beam will be. If a sound beam diverges to some extent, a finite
receiver size implies that not all energy that was transmitted as a sound wave is
collected by the receiver. As a result, diffraction losses are influenced by the system
dimensions.
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Some further assumptions about the system will have to be made, if we are to be
able to calculate the influence of the spreading for the simple AET system described
above. Here we will make the assumption that the front face of the transmitting
transducer vibrates as a whole, without flexing or bending at any point. This type
of source can be modelled as a classical source: what is known in literature as a
vibrating piston source [21, 58, 69, 85, 120]. This is essentially a circular disk of radius
as which is mounted in an infinite baffle, of which the surface uniformly performs
sinusoidal vibrations with a velocity amplitude U0 and angular frequency ω.

Pressure and particle velocity

It is possible to calculate the pressure and particle velocity that are generated by such
a piston by considering its surface to be made up of an infinite number of individual
baffled point sources. The superposition of the pressure field of each individual
point source results in the total pressure field of the piston source, which is achieved
by integration over the piston surface. This method is commonly referred to as a
Rayleigh integral, and is a special case of the more general Kirchhoff diffraction
formula [69, 82].

The piston vibrates with a velocity u = U0ejωt, which means that every point of the
piston moves at this same velocity. Every infinitesimally small section of the piston
surface of area dS therefore produces a volume velocity dQ = udS. Consequently,
the volume velocity amplitude is dQ0 = U0dS. The pressure that is generated by
such a single point source at a distance r is found with help from equation (3.39) to
be

dpp =
jωρ0U0

2πr
ej(ωt−kr)dS . (4.1)

The corresponding particle velocity that is produced by this point source is analog-
ously found from (3.40) to be

d~up =
U0

2πr2

(
1 + jkr

)
ej(ωt−kr) r̂pdS . (4.2)

These equations contain a complex angular wave number k = k− jα to account for
the absorption by the medium by means of an absorption coefficient, as explained
in section 3.4. The distance r between each source point ~Ps = rsr̂ + ϕs ϕ̂ and receiver
point ~Pr = rrr̂ + ϕr ϕ̂ + zdẑ is given by

r =
∥∥∥~Ps − ~Pr

∥∥∥
=
√

r2
s + r2

r + z2
d − 2rsrr cos(ϕs − ϕr) .

(4.3)
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The unit vector r̂p points in the radial direction away from the source point. The
direction of d~up at the receiver point ~Pr is therefore the direction of the line ~Ps~Pr. This
unit vector can be written in terms of the unit vectors in the Cartesian coordinate
system in figure 4.1, as

r̂p =
1
r

(
(rr cos ϕr − rs cos ϕs) x̂ + (rr sin ϕr − rs sin ϕs) ŷ + zdẑ

)
(4.4)

Without loss of generality, the case ϕr = 0 can be considered, since the problem is
symmetric around the z-axis. The total sound pressure and particle velocity at any
point in the field can then be found by integration over the surface of the transmitter.
Denoting the area of the transmitter by As, the pressure is found from (4.1) to be

p(rr, zd, t) =
∫∫
As

dpp

=
jωρ0U0

2π
ejωt

as∫
0

2π∫
0

e−jkr

r
rsdϕsdrs .

(4.5)

The particle velocity is found in exactly the same manner by integration of d~up from
(4.2). It is equal to

~u(rr, zd, t) =
∫∫
As

d~up

=
U0

2π
ejωt

as∫
0

2π∫
0

e−jkr

r2

(
1 + jkr

)
×

1
r
((rr − rs cos ϕs) x̂− rs sin ϕsŷ + zdẑ) rsdϕsdrs .

(4.6)

Here as is the radius of the transmitter, and zd is the distance between the transmitter
and the receiver.

Careful examination of the system reveals that for ϕr = 0 there is no net contribution
of the y-component of the integrand in the calculation of the particle velocity in
equation (4.6) due to rotational symmetry. Therefore the y-component of~u is equal to
zero. The calculated x-component of the particle velocity is equal to the r-component
in the cylindrical coordinate system. Moreover, the inner integral in both (4.5) and
(4.6) can be rewritten employing the system’s symmetry, since in both integrals the
contributions of the intervals [0; π] and [π; 2π] are equal. Hence the equations for
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the pressure and particle velocity produced by the vibrating piston reduce to

p(rr, zd, t) = jωρ0
U0

π
ejωt

as∫
0

π∫
0

e−jkr

r
rsdϕsdrs

~u(rr, zd, t) =
U0

π
ejωt

as∫
0

π∫
0

e−jkr

r2

(
1 + jkr

)
×

1
r
((rr − rs cos ϕs) r̂ + zdẑ) rsdϕsdrs .

(4.7)

From pressure to power

As was explained in section 3.5.1, the energy flux density of a (sound) pressure wave
is characterised by the associated sound intensity. The sound intensity vector at
any point in space in a homogenous gaseous medium can be calculated from the
expressions for the pressure and particle velocity in (4.7) using (3.51):

~Ia(rr, zd) =
1
2 Re

(
p~u
∗)

= Ia,r r̂ + Ia,z ẑ ,
(4.8)

The total intensity at any point is then found from the euclidian norm of the intensity
vector:

Ia(rr, zd) =
∥∥∥~Ia

∥∥∥
=
√

I2
a,r + I2

a,z .
(4.9)

Numeric integration, e.g. by means of the MATLAB integral2 function, allows the
calculation of the diffraction pattern of the circular piston source. An example of
such a pattern is shown in figure 4.2 as a function of z and r. Attenuation was
omitted in this simulation, i.e. k = k.

As is immediately clear from the radiation pattern, the diffraction that occurs at the
edge of the piston itself prevents a truly perfect focus. A piston source does not
produce a plane wave, but it rather creates a main on-axis lobe and many so-called
side lobes. Both the main and the side lobes diverge, and therefore a receiver of
finite dimensions will never be able to collect all radiated energy.

Figure 4.2 shows a clear focal point to the radiation pattern of the source where
the sound intensity is the greatest, around zd = 400 mm. This focal point can be
employed for AET, although placement of the receiver at this location does not
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Figure 4.2 The sound intensity pattern of a vibrating piston shows the diffraction
of the sound field by the aperture. The sound intensity is normalised
to the piston velocity squared to render it independent of the input
power. For the simulation as = 7.83 cm, and f = 20 kHz were used.

necessarily result in the highest possible output power. Since the sound intensity
is an energy flux density, its integral over the receiver surface yields the energy
flow through that surface. Therefore the shape and size of that receiving surface
determine where the maximum power can be harvested from the sound wave.

In the system in figure 4.1 the total received power is

Πr = 2π

ar∫
0

Ia(rr, zd) rrdrr . (4.10)

One could argue that it is not entirely correct to consider the total sound intensity Ia,
as it also contains a contribution of the r-component, and that one should only look
at the component Ia,z normal to the receiver surface in figure 4.1. Since a limit to the
energy transfer efficiency is considered in this chapter, we will, however, opt to use
the total intensity, as an intelligent receiver design could possibly also make use of
the r-component that is present in the sound wave.

Energy transfer efficiency

So far only pressures, particle velocities and the available power at the site of the
receiver have been discussed. If we go one step further, we can examine the energy
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transfer efficiency due to diffraction ηdif, which can be defined as the ratio of the
received power to the total radiated power

ηdif =
Πr

Πrad
. (4.11)

Without going into detail, the radiation impedance, i.e. the ratio of force over velocity,
that the piston works against is given by (see for example [58, 69])

Zrad = Rrad + jXrad

= ρ0cπa2
s

(
1− 2

J1(2kas)

2kas
+ j2

H1(2kas)

2kas

)
,

(4.12)

with J1(x) the first-order Bessel function of the first kind and H1(x) the first order
Struve function [3, 5]. For completeness, the radiation impedance is plotted in figure
4.3 as a function of kas.

The power that is radiated by the source is then found from

Πrad = 1
2 U2

0 Rrad

= 1
2 U2

0 ρ0cπa2
s

(
1− 2

J1(2kas)

2kas

)
,

(4.13)

Combining equations (4.10), (4.11) and (4.13), the diffraction dependent ratio of
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received to transmitted power is then found to be

ηdif =
4

U2
0 ρ0ca2

s

(
1− 2 J1(2kas)

2kas

) ar∫
0

Ia(rr, zd) rrdrr , (4.14)

which, when considering (4.7) and (4.9), is independent of U0, and thus of the input
power.

It is possible to find an analytical expression for (4.14) by making use of far field
approximations (see for example [58, 69]), namely rr � r. Unfortunately, these
approximations cannot be guaranteed to be valid in the region of interest. The far
field approximation, as the name implies, neglects the near field that is seen to exist
close to the source in figure 4.2. For our efficiency limit it might be beneficial to work
in this region, and as such it should be included in the analysis. Therefore (4.14) is
to be calculated numerically.

The energy transfer efficiency due to diffraction is shown in figure 4.4 as a function
of the frequency of vibration of the piston. The efficiency is depicted for a transmitter
and receiver radius a = as = ar of 2, 5 and 10 cm, and a distance between the two
of zd = 1 m. From the graphs it is immediately clear that, in order to keep the
diffraction losses low, a frequency should be used that is as high as possible. This is
easily explained qualitatively. As the ratio between the transmitter radius and the
wavelength grows, as it does for an increasing frequency, the transmitter transforms
from a point source to a very large plate, in comparison to the wavelength. So while
the piston source emits sound waves almost omnidirectionally at low frequencies,
it creates virtually plane waves at extremely high frequencies. Therefore high
frequencies imply a collimated beam between the transmitter and the receiver. This
effect is also very apparent from the difference in the efficiency for an increase in the
transducer dimensions, effectively increasing the ratio between transmitter size and
wavelength for an equal frequency. Therefore a larger transmitter is more efficient
at lower frequencies. Increasing the size of the receiver has the same effect, since
it allows a larger part of the radiated energy to be captured, as a result of a larger
receiver.

The diffraction losses that are calculated in this section are of course only valid in
the case of a transmitter that behaves as a circular piston, and a circular receiver
that absorbs all the energy of the sound wave that impinges upon it. This is not
a situation that is likely to occur in an actual system, but it will serve to obtain
insight in how such a system will perform. Still, there are some improvements
possible over this system that would allow less diffraction losses. One could, for
example, apply focusing (see [77, 79] for instance), or use low-diffraction beam
patterns [30, 31, 90, 102].
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Figure 4.4 The energy transfer efficiency ηdif solely due to diffraction losses
shows an increases with the frequency of vibration of the piston source.
The efficiency is plotted for a number of transmitter and receiver radii
a = as = ar ∈ {2, 5, 10} cm and a distance zd = 1 m between the two.

4.1.2 Attenuation

A great advantage of a contactless energy transfer system that is based on inductive
energy transfer is that attenuation and absorption in the medium barely have any
influence on the energy transfer efficiency. This is, of course, only true when no
conductive materials other than the inductors themselves are present in the vicinity
of the two coils. Induced eddy currents in any material will lead to dissipation, and
thus losses.

Acoustic waves suffer much more from absorption and attenuation by the medium
in which they propagate, unfortunately. Section 3.4 already briefly touched on the
subject of the modelling aspect of attenuation and absorption in fluids and gases.
It explains that it is possible to introduce an absorption constant α with which the
angular wave number can be extended to account for losses.

The question is now how to choose a good value for the absorption constant. This
is a whole field of research in itself, and the easiest method is therefore to consult
literature on the subject. This thesis only covers the use of sound waves for the
wireless transfer of energy through air, for which some data are available on sound
attenuation, although figures differ from publication to publication. The data in
[12, 13, 33], however, are consistent with both an ANSI and an ISO norm (see the
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references in [13]), and are cited in many works on acoustics (e.g. [58, 69]). Therefore
these seem to be a good reference and will be used in the remainder of this thesis.

The formulas in [13] describe the dependency of the attenuation coefficient α in
(3.42) as a function of the air temperature, its relative humidity, the atmospheric
pressure and the sound wave frequency. The value of this attenuation constant
stems from an analytical model of energy transfer mechanisms in an air mixture
consisting of nitrogen, oxygen, water vapor and carbon dioxide, and agrees well
with experimentally determined values.

Since the attenuation constant is part of the angular wave number k, it is not directly
clear from (4.7) how it affects the efficiency of our acoustic energy transfer system.
The exact relationship between the efficiency and the attenuation constant can
only be found through integration. It is, however, possible to obtain a reasonable
estimate of the influence of the attenuation constant by assuming that there is a
single travelling wave between the transmitter and the receiver, which is not too
bold an assumption as long as the distance zd is large in comparison to the receiver
radius ar.

The damped travelling wave solution [58] is then

p(z, t) = P0e−αzej(ωt−kz) (4.15)

of which the sound intensity is, from (3.27) and (3.44),

Ia(z) =
1

2ρ0c
(

P0e−αz)2

= Ia(0) e−2αz .
(4.16)

A good first order approximation of the energy transfer ratio due to attenuation is
obtained by division of the sound intensity at z = zd by that at the transmitting
surface I(0), resulting in

ηatt = e−2αzd . (4.17)

This energy transfer efficiency, as it has been calculated above, is by definition in-
dependent of the transmitter and receiver dimensions, since we assumed a simple
travelling wave. It only depends on the distance between the source and the receiv-
ing element. The graph in figure 4.5 shows ηatt for a distance of z = zd. From it
we see that an increase in sound frequency leads to higher attenuation losses. The
attenuation constant that was used to calculate the graph was derived for a relative
humidity of the air of 45 %, an atmospheric pressure of 1 atm and a temperature of
20 ◦C.
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Figure 4.5 The influence on the energy transfer efficiency of the attenuation by
the air ηatt of a travelling wave is defined as the sound intensity at a
distance z = zd along the propagation direction of the wave divided
by the intensity at z = 0 m. The efficiency due to attenuation is plotted
here for a distance zd = 1 m, a relative humidity of the air of 45 %, an
atmospheric pressure of 1 atm and a temperature of 20 ◦C
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4.1.3 Combined energy transfer efficiency

From figures 4.4 and 4.5 one can see that the energy transfer efficiency due to
diffraction increases with an increase in frequency, while the converse is true for
the energy transfer efficiency due to attenuation by the medium. This implies that
there is an optimum driving frequency for a given set of system dimensions (i.e. the
transmitter and receiver radii as and ar and the distance zd that is to be crossed),
where the total energy transfer efficiency is optimal.

In the previous, the efficiency as a result of diffraction and attenuation were invest-
igated as separate effects. While this is a good approximation to get a feeling for
the effect that attenuation has, it is in practice necessary to consider both effects
simultaneously. For this reason from here on the total energy transfer efficiency
will be considered, not as the product ηdifηatt, but rather through proper calculation
of the pressure and particle velocity in (4.7) by means of a complex angular wave
number k.

The total energy transfer efficiency ηt is depicted in figure 4.6 for transmitter and
receiver radii a = as = ar of 2, 5 and 10 cm. These graphs clearly show that, indeed,
maxima in the energy transfer efficiency occur as a direct result of the combined
effects of diffraction and attenuation. For the the chosen transmitter and receiver
radii, the optimal efficiency is 64 %.

In general, an increase of the transmitter and receiver radii leads to less diffrac-
tion losses. Consequently, the efficiency is only limited by constraints regarding
the transmitter and receiver dimensions (and a maximum efficiency of 100 % of
course). These constraints can either be posed by the application itself, or by the
manufacturing process, because of impracticality or just plain impossibility.

The remaining free parameter in the system is the distance zd from the transmitter
to the receiver. Figure 4.7 shows the decay of the energy transfer efficiency that
accompanies an increase in distance between the sending and the receiving elements.
Do note that the efficiency does not per se decrease monotonically. In the near field
it can have numerous local maxima.

The on-axis pressure in the far field (z > πa2
s

λ , valid for large values of kas) of a
circular piston source is given by (see for example [69])

p(z) ≈ jρ0ωU0a2
s

2z
ej(ωt−kz) . (4.18)

The pressure is thus proportional to 1
z e−αz. If the frequency, and therefore the

attenuation coefficient α, is sufficiently low [13], the pressure decreases to a good
approximation with 1

z , implying that the on-axis intensity (and therefore the power
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Figure 4.6 The combined energy transfer efficiency due to diffraction and attenu-
ation by the air ηt at a distance zd = 1 m has a distinct maximum. It
is plotted here for equal transmitter and receiver radii a of 2, 5 and
10 cm.

and efficiency) is proportional to 1
z2 . Due to the spherical wave expansion in the far

field, the on-axis intensity in the far field is then

I ≈ 1
2
|p|2

Za
0

≈
ρ0ω2U2

0 a4
s

8c
e−2αz

z2 .

(4.19)

With the assumption that the intensity is constant over the surface of the receiver,
and thus that the received power Πr is merely the product of the receiving surface
area and the intensity, the received power becomes

Πr =
πρ0ω2U2

0 a4
s a2

r
8c

e−2αz

z2 . (4.20)

The total radiated power Πrad is obtained from equation (4.13), with which the
approximate total efficiency is

η̃t,α =
Πr

Πrad

= η̃te−2αz .
(4.21)
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Figure 4.7 The energy transfer efficiency ηt decays as a function of zd. It is shown
here for a frequency f = 20 kHz and equal transmitter and receiver
radii a of 2, 5 and 10 cm. The dashed lines represent the far field
approximated efficiency with attenuation η̃t,α, while the dotted lines
give the approximate efficiency without attenuation η̃t.

The approximate efficiency without attenuation is given by

η̃t =
k2a2

s a2
r

4z2
(

1− 2J1(2kas)
2kas

) . (4.22)

Figure 4.7 reveals that indeed the efficiency is to a good approximation proportional
to 1

z2 in the far field.

4.1.4 Optimisation

Although the previous sections already demonstrated that the transmitter and
receiver radii as and ar, and the sound frequency f have a pronounced effect on the
achievable efficiency, it would be interesting to see what the maximum efficiency can
be for an AET system, given the constraints introduced in section 2.4.1. Let us assume
that a distance of zd = 1 m is to be crossed, and that both radii are allowed to assume
a value between 0 and 10.0 cm. The frequency is left unconstrained. Logically, the
optimal value of ar is the maximum of 10 cm, since this allows the most energy to be
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captured, and hence the diffraction losses to be lowest, assuming, of course, that an
increase in receiver size does not contribute to an increase in its losses.

The optimal values of the remaining two parameters can be found by minimising
the power loss ratio:

arg min
as∈U , f∈R+

(1− ηt) , U := (0; 10] cm . (4.23)

Doing so for a distance zd = 1 m, for example by means of the MATLAB fminsearch
optimisation routine, yields the values as = 7.83 cm and f = 20.53 kHz. The
corresponding maximum efficiency at 1 m distance is 65.0 %. Recollecting the 64 %
that the model predicts in the case of as = ar = 10 cm, the gain in efficiency through
optimisation is only marginal.

Construction of solid piezo transducers with these desired radii of 7.83 cm and
10 cm is quite impractical. It is difficult to design transducers of these sizes that
are sufficiently rigid at the desired frequency of 20 kHz or higher. One possible
solution is the construction of a transducer array, in which a large number of small
transducers approximate the desired active surface. The advantage of using a
transducer array over a single element is that it can be used for beam steering.
This principle is commonly used in medical ultrasonography (it is also used in
phased array radar applications). Beam steering can be used in AET applications to
overcome low output power due to misalignment of the transmitter and receiver.
This is necessary when the location of the transmitter and the receiver is not fixed,
or otherwise a priori unknown.

4.2 Transducer efficiency

The last important loss component in an AET system is that which occurs in the
transmitter and the receiver. These transducers can be quite efficient. According to
e.g. [66], no more than 10 % losses should be expected when using bending mode
piezoelectric transducers that are mounted on the first nodal circle. This construction
has the advantage of having a high mechanical quality factor of the mounting. Still,
often a considerable part of the energy that is lost in AET is due to the losses in the
transmitting and receiving transducers. A good model of the transducer is therefore
of the essence to be able to estimate the total losses in an AET system.

Equivalent electrical networks, such as introduced in section 3.6, are a convenient
method of describing the behaviour of a transducer (see [17, 65, 75, 87, 101, 117,
123, 124]) and can therefore be used to assess the losses that occur in the energy



4.2 TRANSDUCER EFFICIENCY 49

conversion process between the electrical and mechanical domains. Although
the circuit can only describe a one-dimensional model, as was explained earlier,
equivalent circuits can still be of value for determining the losses in actuators. They
will allow us to express the efficiency of a transducer in terms of its quality factors
and resonance frequency.

Piezoelectric transducers

Piezoelectric crystals exhibit a net polarisation, which is caused by an atomic lattice
that does not have a centre of symmetry [49, 103]. Such atomic lattices can be
found for example in naturally occurring crystals such as quartz and tourmaline.
The polarisation of the material means that it can be deformed by application of
an electric field, or inversely, that an electric field is created by deforming the
crystal. The result is a linear interaction between its electrical and mechanical
parameters [49, 57, 103].

A piezoelectric actuator generally vibrates in multiple directions. These vibrations
require a six-dimensional description; its strain has three normal components (Sxx,
Syy and Szz) and three shear components (Sxy, Sxz and Syz). Likewise the stress in
a piezoelectric material has the components Txx, Tyy, Tzz, Txy, Txz and Tyz [49, 63].
Piezoelectric crystals are usually analysed in terms of tensors, which allow for the
description of behaviour with multiple degrees of freedom that is required.

The dynamical behaviour of a piezoelectric transducer can be captured in a limited
frequency range in an electrical equivalent network as depicted in figure 4.8. It
models the air load on the diaphragm by a dissipative component Ra and a reactive
component Xa. The mechanical part of the transducer is modelled by a resistive, a
mass, and a compliance component (Rm, Lm and Cm respectively). The mechanical
domain is coupled to an electrical section through a transformer. The electrical do-
main contains a capacitor Ce to account for the capacitive behaviour of a piezoelectric
element, and a resistance Re that models the ceramic’s dielectric losses.

Contrarily to the tensor description, we have only a one-dimensional model in this
case, as it describes the transducer’s velocity as a scalar quantity u. Although the
material of the transducer typically vibrates in all six directions, the vibration in one
single direction is often dominant, which justifies the description of the transducer’s
behaviour by means of a one-dimensional model.

The transformer with transfer ratio ϕ in figure 4.8 originates from the behaviour of
a piezoelectric crystal. The change in electric displacement field due to a strain S
is DS = eS, and the developed stress due to an electric field E is TE = eE [49, 57].
The parameter e is the piezoelectric stress constant. Inclusion of the dielectric prop-
erties of the material and the compliance of the material results in the constitutive
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Figure 4.8 The behaviour of a piezoelectric transducer around its resonance fre-
quency can be captured in an equivalent electrical circuit.

piezoelectric relations

D = eS + εSE (4.24a)

T = cES− eE . (4.24b)

Here εS is the material’s permittivity for constant strain, and cE is the elastic constant
for constant electric field. Considering a section of the material of length l and area
A, the current due to a strain S is given by iS = A dDS

dt = eA
l u, and the force due to

an applied electric field is FE = TE A = eA
l v. Hence the relationship between the

mechanical and electrical domain is described by a transformer with a transfer ratio
ϕ = eA

l for a simple 33-mode actuator in which the strain is uniform throughout the
material. The coupling between both domains can even by described by means of
a transformer in cases where this last requirement does not hold, as explained in
e.g. [65, 94].

Lorentz force transducers

The most common loudspeakers that are in use today for sound reproduction are of
the voice coil type. These are in fact Lorentz force actuators. Ribbon loudspeakers
fall into this category as well, as their principle of operation is exactly the same; they
consist of a conductive material that is suspended in a magnetic field. The material
experiences a force when a current is passed through it. In the case of a voice
coil loudspeaker the conductive material is a copper coil, which is mechanically
connected to a cone, while the material in a ribbon speaker is a thin foil that serves
directly as the radiating surface. For more information, see [15, 20, 87, 101] for
example.

Just as is the case for piezoelectric transducers, the behaviour of a Lorentz force
actuator is easily captured in an equivalent circuit diagram, which is shown in figure
4.9. Not very surprisingly, its circuit diagram is remarkably similar to figure 4.8.

Let us assume that we have a voice coil actuator with a coil conductor length l
suspended in a homogeneous magnetic field of flux density B, moving at a velocity
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Figure 4.9 The equivalent electrical circuit of a voice coil loudspeaker or trans-
ducer is largely similar to that of a piezoelectric transducer.

u. The diaphragm that is attached to the coil experiences a counteracting force F
from the air that it puts into motion. The Lorentz force that acts on the coil due
to the current i that it carries is Fm = Bli, while the movement of the voice coil
induces an electromotive force vEMF = Blu. This behaviour can be represented in
the circuit diagram by a gyrator (see for example [101, 121]) with a transfer ratio
ϕ = Bl. The mechanical branch of the circuit diagram is exactly equal to that of
the piezoelectric transducer; the mass of the moving part is accounted for by an
inductance Lm, the compliance of the system by Cm and the losses by Rm. Contrarily
to the piezoelectric case, the Lorentz force actuator mainly consists of a moving coil
which has an inductance Le and a wire resistance Re.

Careful examination reveals that the equivalent circuit of the Lorentz force trans-
ducer in figure 4.9 is actually the dual network of that of the piezoelectric transducer
in figure 4.81.It is therefore only necessary to investigate the efficiency of either of
the transducers.

Efficiency

Let us take a closer look at the efficiency of the piezoelectric transducer, departing
from the equivalent circuit in figure 4.8. It can be simplified to the circuit diagram of
figure 4.10. The impedances Z1, Z2 and Z3 of the three circuit elements can be easily
derived from figure 4.8 and are found to be

Z1 =
1

1 + ω2R2
eC2

e

(
Re − jωR2

eCe

)
(4.25a)

Z2 =
1
ϕ2

(
Rm + j

(
ωLm −

1
ωCm

))
(4.25b)

Z3 =
1
ϕ2 (Ra + jXa) . (4.25c)

1The gyrator converts voltages to currents and viceversa, and thus the impedance observed at the
primary side is the reciprocal of the secondary side impedance.
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Figure 4.10 A simplified equivalent electrical circuit of a piezoelectric transducer
driven by a voltage source.

The power dissipated in every impedance is then

Πn = 1
2 Re(vn ı∗n) , ∀n ∈ {1, 2, 3} , (4.26)

with vn the voltage across impedance Zn and ın the current through it. From this
network we have for the power Π1, Π2 and Π3, and the efficiency ηtr

Π1 =
Re
(
Z1
)

2
∣∣Z1
∣∣2 |v|2 (4.27a)

Π2 =
Re
(
Z2
)

2
∣∣Z2 + Z3

∣∣2 |v|2 (4.27b)

Π3 =
Re
(
Z3
)

2
∣∣Z2 + Z3

∣∣2 |v|2 (4.27c)

ηtr = Π3

(
3

∑
n=1

Πn

)−1

, (4.27d)

which, after some algebraic manipulation, brings us to

ηtr =
ϕ2RaRe

(Rm + Ra)
2 +

(
ωLm − 1

ωCm
+ Xa

)2
+ ϕ2Re (Rm + Ra)

. (4.28)

The equivalent circuit diagram of the Lorentz force actuator is, as mentioned earlier,
the dual circuit of that of the piezoelectric actuator. It is therefore not very astonishing
that the expression for the efficiency in [87] is very similar to that derived above.
In fact, upon closer examination it is exactly equivalent when accounting for the
substitution of impedances by admittances through the use of the dual circuit.

If we now assume that the reactive part of the air loading on the transducer is
dominantly mass-like, i.e. Xa = ωLa, the total impedance of the mechanical branch
becomes

Zm = Rt + j
(

ωLt −
1

ωCm

)
. (4.29)
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in which the equivalent total mechanical resistance is given by Rt = Rm + Ra and
the equivalent total mass is Lt = Lm + La.

The output of the piezoelectric transducer will be highest at the mechanical reson-
ance frequency ω0, which follows from the condition d

dω |Zm| = 0 and gives

ω2
0 =

1
LtCm

. (4.30)

The expression for the efficiency in (4.28) is quite obscure, and it does not serve much
purpose in gaining insight into the behaviour of a transducer. This can be somewhat
improved by rewriting it in terms of the resonance frequency, given above, and its
quality factors. Let us introduce firstly a mechanical quality factor Qm, which relates
the mechanically dissipated energy to the stored mechanical energy. The latter is
stored in the resonant circuit formed by Lt and Cm;

Estored,m(t) = 1
2 Ltu2(t) + 1

2 CmF2
C(t) . (4.31)

The force FC is the ‘voltage’ across the capacitance Cm, or, equivalently, the net
force acting on the lumped element compliance of the transducer. At the resonance
frequency the stored energy is constant and equal to

Estored,m = 1
2 LtU2 , (4.32)

with U the amplitude of the transducer’s velocity. The power that is dissipated in
the mechanical resistance Rt is given by Pdiss,m = 1

2 RtU2, and thus the energy that
is dissipated in a single cycle is

Ediss,m =
2π

ω
Pdiss,m . (4.33)

This yields a mechanical quality factor

Qm = 2π
Estored,m

Ediss,m
=

1
Rt

√
Lt

Cm
. (4.34)

The mechanical losses in the resistances Rm and Ra are not the only losses in the
transducer. The losses in the electrical resistance Re should be considered as well.
Doing so leads to the definition of an electrical quality factor Qe, in analogous fashion
to [117]. The power dissipated in the resistance is equal to Pdiss,e = 1

2 R2
t /ϕ2ReU2,

which renders the electrical quality factor

Qe = 2π
Estored,m

Ediss,e
=

ϕ2Re

R2
t

√
Lt

Cm
. (4.35)
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These definitions allow the efficiency of the piezoelectric transducer in equation
(4.28) to be written in a somewhat simpler form as

ηtr =

Qe
Qm

1 + Qe
Qm

+
(

ω
ω0
− ω0

ω

)2
Q2

m

Ra

Ra + Rm
(4.36)

This equation is, after minor rearrangement of terms, equal to that of a voice coil
loudspeaker [2], which is expected, given the duality of the equivalent circuits
of both transducer types. Note that all parameters in (4.36) can be derived from
the electrical impedance seen at the electrical port of the transducer. From elec-
trical impedance measurements one cannot separate Ra from Rm and Xa from
(ωLm − 1/ωCm). However, it is possible to measure these components indirectly, by
measuring the impedance under two loading conditions; operating in air, and in
vacuum (which effectively shorts the air load Ra + jXa), or using another a priori
know acoustic load.

Unlike traditional loudspeakers, the electrical losses can often be neglected in piezo-
electric transducers. A traditional voicecoil loudspeaker suffers from the resistive
loss in its copper coil. This coil is traditionally designed to be extremely lightweight
since it should not add significant mass to that of the cone and the air it displaces [20].
The resulting voice coil design is therefore a tradeoff between losses and added
mass. This is not to say that Lorentz force actuators with low electrical losses cannot
be constructed. The electrical losses in a piezoelectric transducer, on the other hand,
are mostly of dielectric nature. These are normally insignificant for piezoelectric
materials. Discarding the electrical losses changes the expression for the efficiency
of the transducer (4.36) to the somewhat unsurprising result

lim
Qe→∞

ηtr =
Ra

Ra + Rm
, (4.37)

which is again equivalent to the approximation in [2] for a large value of Bl.

Operation as a receiver

The equivalent circuits of the piezoelectric and Lorentz force actuator are in principle
reversible; decoupling the air load Ra and Xa and applying a force or velocity will
produce a corresponding voltage v at the electrical port. Connection of an electrical
load between the terminals will then also allow a current i to flow.

The efficiency of a receiver is easily calculated in much the same manner as it
was derived for the transmitter. Its equivalent circuit diagram can be simplified
to that depicted in figure 4.11, where the impedance of the mechanical branch is
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Figure 4.11 A simplified equivalent electrical circuit of a piezoelectric transducer
operating as a receiving element.

Z1 = Rm + j (ωLm − 1/ωCm), the electrical reactance is X2 = 1/ωCe and the electrical
resistance is 1/(ϕ2R2

)
= 1/Re + 1/RL. The resistance RL is the load resistance that is

connected to the electrical terminals. It is easy enough to show that the efficiency of
the transducer in this case is

ηtr =
R2

Rm + R2 +
RmR2

2
X2

2

. (4.38)

Interestingly enough, the efficiency of the receiving transducer does not depend on
the mass nor on the compliance of the transducer. Please note that they do influence
the output power, since the current i1 depends on the total value of Z1 + (R2 ‖ jX2),
which is at a maximum at the resonance frequency ω0 = 1√

LmCm
. This resonance

frequency can be different from that of the transmitting transducer, where the
radiation reactance Xa also plays a role in the resonance frequency (cf. equation
(4.30)). A different resonance frequency can be problematic if both transducers have
a very high quality factor, which would lead to a low energy transfer in the case
of a frequency mismatch. This tends to be less of a problem for larger transducers,
as can be gathered from figure 4.3, since Xa approaches 0 for large values of kas,
which is ratio of the transducer circumference to the wavelength. In other situations
one should take care through proper design of the transducers that the resonance
frequency of the transmitter and the receiver match.

The only frequency dependent component in (4.38) is introduced by the electrical
reactance X2, and thus the electrical capacitance Ce of the piezo element. The
efficiency of the receiver will be optimal if we can make X2 approach an infinite
value. In that case the efficiency of the transducer becomes

lim
X2→∞

ηtr =
R2

Rm + R2
. (4.39)

Or, when neglecting the dielectric losses, the expression reduces even further to

lim
X2→∞
Re→∞

ηtr =
ϕ2RL

Rm + ϕ2RL
. (4.40)



56 CHAPTER 4 FIRST STEPS IN ACOUSTIC ENERGY TRANSFER

Re
Ce

Lm Cm iu Rm

RLLL

ϕ : 1

vL

+

−

Fm

+

−

F

+

−

Figure 4.12 The parasitic electrical capacitance of a piezoelectric transducer can
be compensated for by addition of an external inductor LL.

Compensation inductance

The reactance X2 should approach an infinite value to obtain an optimal efficiency.
This can be achieved by changing it from the single parasitic capacitance Ce to a
parallel combination of the capacitance and an externally connected inductance LL
in parallel to the load resistance, such as depicted in figure 4.12. The reactance of
the parallel combination of Ce and LL indeed approaches infinity at a resonance
frequency ω0,e = 1/√LLCe. While this improves the efficiency, it is mostly interesting
for the increase in output power that can be attained.

Starting from the circuit diagram in figure 4.11, the received output power is

Πr =
1

2R2

∣∣∣∣ Z2

Z1 + Z2

∣∣∣∣2 |v|2 , with Z2 =
jR2X2

R2 + jX2

= 1
2

R2X2
2

(R1R2 − X1X2)
2 + (R1X2 + R2 (X1 + X2))

2 |v|
2 .

(4.41)

From the received power it is possible to obtain a value for the optimal load resistance
R2, by setting d

dR2
Πr equal to 0. In the following it will be assumed that the force F

that drives the transducer (represented by a voltage v in figure 4.11) is independent
of the value of R2. This is a reasonable assumption for a heavy and stiff transducer,
in which the values of Rm, Lm and 1/Cm are large. A bit of mathematics leads us to
the optimal value of R2:

R2
2 =

R2
1 + X2

1

R2
1 + (X1 + X2)

2 X2
2 , (4.42)

or, when converted to the parameters of figure 4.12:

(Re ‖ RL)
2 =

R2
m +

(
ωLm − 1

ωCm

)2

R2
m +

(
ωLm − 1

ωCm
− ϕ2

ωCe

)2
1

ω2C2
e

. (4.43)
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In practice one will want to work at the resonance frequency of the system, reducing
the influence of the reactive system components and maximising the excursion of
the transducers. Following this assumptions allows for the mechanical reactance X1
to be set to 0. Therefore, the optimal value of R2 becomes

R2
2 =

R2
1X2

2
R2

1 + X2
2

. (4.44)

This renders the output power equal to

Πr =
1

4R1

1
1 +

√
1 + R2

1/X2
2

|v|2 , (4.45)

which, in terms of the parameters of the equivalent circuit diagram in figure 4.12 is

Πr =
1

4Rm

1

1 +
√

1 + R2
mC2

e
ϕ2LmCm

|F|2 , (4.46)

If the resistance R1 is large in comparison to X2, or R1/X2 � 1, the output power
approaches

Πr ≈
1

4R1

X2

R1
|v|2 ≈ 0 W . (4.47)

On the other hand, compensating the electrical capacitance Ce by means of an
inductance (X2 → ∞), the output power (4.45) logically is

lim
X2→∞

Πr =
1

8R1
|v|2 =

1
8Rm

|F|2 . (4.48)

This shows that proper compensation of the electrical capacitance of a piezoelectric
transducer acting as a receiver in an AET system can result in much higher output
power. However, it also shows that compensation will not improve the performance
in systems where the mechanical damping in the transducer is low in comparison to
the reactance presented by the parasitic capacitance:

R1

X2
� 1 . (4.49)

The load resistance was chosen in this section such that the maximum output power
is obtained. This is not always the best choice, since it inevitably means that 50 %
of the received power is lost in the damping of the transducer. If the losses are
sufficiently low, or the available power is greater, one could opt to choose a higher
load resistance, such that the efficiency is higher, but at the cost of a reduced received
output power.
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Figure 4.13 PX051 piezoelectric transducers fabricated by EMCT SA are used for
the first experiments.

4.3 Experimental verification of the model

Validation of the model described in section 4.1 does not necessarily have to occur
using the optimal transmitter and receiver dimensions that were found in section
4.1.4. Rather than using such large transducers, single transducers of a smaller size
can be used, thereby significantly reducing the complexity of the construction of a
test setup. PX051 piezo transducers produced by EMCT SA, Switzerland [32] were
selected to serve both as transmitter and receiver. These are small unimorph piezo-
electric bender elements, attached to a 1.2 cm radius, thin, aluminium diaphragm, as
can be seen in the photograph of figure 4.13. The transfer of energy between two of
these transducers is examined as a function of the distance between them for these
first indicative measurements.

4.3.1 Parameter identification

It is necessary to estimate the losses of the transmitter and the receiver to be able to
make a fair comparison between the theoretical limit and the measurement results.
Section 4.2 describes a method of estimating these losses from the parameters of
the equivalent circuit diagram of the transducer. This circuit diagram is valid for
bender transducers, according to [24], and hence can be used. As mentioned, all
parameters in equation (4.36) can be found from electrical impedance measurements.
Two separate measurements are necessary, since the mechanical branch is a series
connection of the transducer parameters Rm + j (ωLm − 1/ωCm) and the radiation
impedance Ra + jXa, implying that they are indistinguishable when observed from
the electrical port. Their values can, however, be found through two separate
measurements. The radiation impedance depends on the medium in which the
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Figure 4.14 In vacuo impedance measurements were conducted using a small
vacuum chamber. This allowed the simultaneous measurement of
six transducers.

transducer operates. The transducer will experience no opposing force from the
medium if it is placed in a vacuum, and therefore the radiation impedance will
be equal to zero. Equivalently, the force F at the mechanical terminals in figure
4.9 will be zero. The radiation impedance will hence effectively be short circuited,
and impedance measurements will yield only the transducer parameters. The
radiation impedance can subsequently be found from the difference between the
measurements in air and the in vacuo measurements. Do note that this is the sum of
the radiation impedance at the front and the back of the transducers. The resistive
part of the back impedance also acts as a loss term during normal operation.

An Agilent 4294A precision impedance analyser was used to measure the trans-
ducers’ impedance as a function of frequency. A small vacuum chamber (a pho-
tograph of which can be seen in figure 4.14) facilitated the in vacuo measurements.
Twelve transducers were measured to be able to judge the component variation.
These transducers were cherry-picked to have a resonance frequency in the vicinity
of 17 kHz, as the main resonance frequency was found to vary to a large extent from
one transducer to another.

The model of figure 4.15 was fitted to the electrical impedance, which was measured
in the range of 14 to 22 kHz. The transducer impedance contains multiple resonances,
besides the main resonance (which produces the largest acoustic output). These
are accounted for through the parallel mechanical branches in figure 4.15. They are
fitted together with the main branch consisting of L′m, C′m and R′m to improve the
estimate of the parameters of interest. Figure 4.16 shows an example of the fitted
impedance curve of a PX051 transducer. The maximum error of the fitted impedance
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Figure 4.15 The equivalent transducer circuit used for parameter fitting contains
multiple RLC branches to be able to describe multiple resonances.

magnitude is 4 % for the air measurements and 5 % for the vacuum measurements.
The error in the phase is at maximum 3°. The phase error shows an offset, which
likely appears due to a small parasitic resistance in the measurements.

Table 4.1 lists the resulting parameters and the difference between the measurements
in air and in vacuum for all twelve transducers. The values of Re are sufficiently high
for these transducers to justify the use of equation (4.37) to calculate the efficiency
of the transmitting transducer. Therefore the main parameters of interest are the
values of R′m in air and in vacuum. The average efficiency according to (4.37) is
ηtransm = 0.48 for this set of transducers. Hence these transducers are not very
efficient. In practice the efficiency will be even lower due to radiation from the back
of the transducer.

Table 4.1 indicates that, indeed, there is a large component variation between trans-
ducers, even among a set that was selected on the basis of a comparable resonance
frequency. Furthermore, Xa is small, which would normally be beneficial, reducing
the difference in resonance frequency between the transmitter and the receiver. This
is relatively unimportant for these transducers since the resonance frequency varies
wildly already. Lastly, the value of Re is much larger in vacuum than it is in air for
most transducers. Possibly an (albeit negligibly small) part of the radiation losses of
the transducer are accounted for by Re in the model.

The parameters of the transducers are also depicted by means of bar graphs in
figure 4.17. These graphs show the large variation that occurs in L′m, C′m and R′m
(figures 4.17a, 4.17b and 4.17c respectively). The graphs of L′m and C′m seem to be
inversely related, which is logical, since the transducers were selected based on their
similar resonance frequency. This is confirmed by figure 4.17e (from (4.30)). There
also appears to be a correlation between L′m and R′m. Figure 4.17f reveals that this
correlation leads to a mechanical quality factor Qm that varies much less between
transducers than their equivalent circuit parameters do. A similar quality factor
Qm, however, does not necessarily lead to an equal power output or transducer
efficiency, as is also indicated by equation (4.36).
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Figure 4.16 The top graphs show the magnitude and phase of the electrical im-
pedance of transducer 2 (cf. table 4.1). The measured (solid line) and
fitted impedance (dashed line) are virtually indistinguishable. The
magnitude error and the phase error are given for reference, where
∆ |Z| = |Zmeas| − |Zmod| and ∆ arg(Z) = arg(Zmeas)− arg(Zmod).
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Table 4.1 The equivalent circuit parameters of 12 transducers were obtained from
impedance measurements in air and vacuum.

Transducer L′m (mH) C′m (pF) R′m (Ω) Ce (nF) Re (Ω)

1 Air 297.4 306.7 363.0 6.250 9.959 · 104

Vacuum 289.3 313.5 182.6 6.218 9.775 · 1015

Difference 8.2 −6.8 180.3 0.033 −9.775 · 1015

2 Air 272.8 343.1 309.6 6.492 2.258 · 105

Vacuum 267.2 349.6 155.7 6.453 3.809 · 1016

Difference 5.6 −6.5 153.9 0.038 −3.809 · 1016

3 Air 244.6 376.1 285.7 6.448 1.947 · 105

Vacuum 241.0 381.2 133.3 6.411 8.277 · 1014

Difference 3.6 −5.1 152.4 0.037 −8.277 · 1014

4 Air 222.8 402.1 256.5 6.713 1.973 · 105

Vacuum 217.9 409.0 126.2 6.658 3.602 · 1016

Difference 4.9 −6.9 130.3 0.055 −3.602 · 1016

5 Air 286.2 296.5 360.7 6.176 1.566 · 105

Vacuum 293.7 287.0 198.9 6.143 2.765 · 1015

Difference −7.6 9.6 161.9 0.033 −2.765 · 1015

6 Air 263.0 347.4 291.2 6.394 1.804 · 105

Vacuum 255.5 356.0 151.1 6.378 2.189 · 1015

Difference 7.6 −8.6 140.1 0.016 −2.189 · 1015

7 Air 261.1 323.1 306.8 6.378 9.997 · 104

Vacuum 244.9 342.6 170.8 6.305 2.687 · 105

Difference 16.2 −19.5 136.0 0.073 −1.687 · 105

8 Air 310.4 297.6 379.6 5.924 2.447 · 105

Vacuum 303.7 302.5 179.5 5.878 8.195 · 105

Difference 6.7 −4.9 200.1 0.046 −5.748 · 105

9 Air 257.1 361.8 300.3 6.594 1.537 · 105

Vacuum 255.8 362.0 162.5 6.576 2.402 · 105

Difference 1.3 −0.2 137.8 0.018 −8.654 · 104

10 Air 388.8 238.6 390.0 6.472 6.241 · 104

Vacuum 367.2 251.7 264.1 6.484 6.244 · 1016

Difference 21.7 −13.1 126.0 −0.012 −6.244 · 1016

11 Air 282.2 340.1 326.5 6.762 2.686 · 105

Vacuum 279.1 343.6 167.4 6.850 6.340 · 1015

Difference 3.0 −3.6 159.1 −0.088 −6.340 · 1015

12 Air 277.3 331.3 331.1 5.991 1.543 · 105

Vacuum 270.1 338.3 153.6 5.995 1.378 · 1017

Difference 7.3 −7.0 177.5 −0.003 −1.378 · 1017
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Figure 4.17 Bar plots of the transducer parameters clearly show the parameter
variation, even though the transducers were cherry-picked. The
black bars represent the impedance measurements in air, and the
grey graphs those in vacuum.
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4.3.2 Setup

One of the assumptions made during the derivation of the model is the coaxial place-
ment of the transducers, just as in the system of figure 4.1. Consequently, an accurate
alignment of the transmitting and receiving transducers is required. Furthermore,
the distance between the two is to be accurately measured and precisely controlled
for these measurements. This is achieved through the use of a milling machine
as a means for distance variation between, and alignment of the transducers. A
photograph of the setup can be seen in figure 4.18. The machine is fitted with a linear
encoder system that has an accuracy of 10 µm, which should be adequate, given that
the resonance frequency at which the transducers are used is approximately 17 kHz,
implying a wavelength λ = 20 mm. The resolution of the positioning system is
therefore orders of magnitude smaller than the wavelength.

Care should be taken when doing such measurements that the vibrations of the
transmitter only couple with the receiver via the medium (the air in this case) and
not via the platform on which they are mounted. The coupling via the milling
machine is nil in this case. Therefore all received power can be considered to have
been transferred through the air.

Due to their physical construction the PX051 transducers are not suited for high
power levels. This shows in low voltages and particularly low current amplitudes
(i.e. tenths of milliamperes). Amplification is therefore necessary to properly measure
the currents. Care should be taken that the amplifier does not introduce an error in
the power measurements. An amplifier always inserts a certain phase shift between
its input and output signal. Since we are concerned with power measurements, the
phase relation between the transducer’s voltage and current is of importance and
should be maintained. This is achieved in this setup by using an identical amplifier
circuit for the measurement of the transducers’ voltages and their currents. The
output of the amplifiers is measured with a LeCroy WaveRunner 44Xi oscilloscope,
which calculates the power as the cyclic average of the product of the voltage and
current.

The transducers were used at their mechanical resonance frequency ω0. Since the
reactive component Xa of the radiation impedance is negligible, the resonance
frequencies of the transmitter and the receiver are approximately equal.

The load resistance RL was varied to obtain maximum power transfer, which resulted
in an optimal value of RL = 1990.3 Ω. A compensation inductance was used, as
described in section 4.2 to maximise the power output at the receiving side. From
measurements with an Agilent 4294A impedance analyser the resonance frequency
of a freely radiating PX051 transducer is measured to be f0 = ω0

2π = 17.0 kHz. The
measurements of energy transfer efficiency versus distance were therefore conducted
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Figure 4.18 Two PX051 transducers are mounted on a milling machine to facilitate
accurate alignment and distance variation.

at this frequency. The electric capacitance of the piezo transducer was measured to
be approximately Ce = 6.0 nF. Therefore an inductor of LL = 15 mH was used to
make the resonance frequency of the LL-Ce combination equal to the mechanical
resonance frequency ω0.

The input power was delivered by an arbitrary waveform generator. No output
rectifier was used at the receiving side for the sake of simplicity, since our interest
lies primarily with the energy transfer by means of sound waves and not as much
with the influence of the electrical circuitry.

4.3.3 Measurement results

Figure 4.19a shows the measured efficiency of the energy transfer between an
identical transmitting and receiving piezo element. The efficiency is measured as the
ratio of average electrical output power of the receiving transducer to the average
electrical input power of the transmitting transducer. The graph also includes the
theoretical limit for this setup, which was derived in section 4.1. The theoretical
limit includes a transmitter efficiency ηtransm = 0.48 as determined in section 4.3.1
and a receiver efficiency ηrec = 0.50, assuming a perfectly matched load resistance
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RL. The measured input power Πin and output power Πout are plotted as a function
of the distance zd in figure 4.19b. Separate points are indicated in both graphs where
the energy transfer was measured at higher power levels. These measurements
were limited by the breakdown voltage of the transmitting piezo element. The input
power, output power and efficiency that were measured during this maximum-
power measurement are

Πin, Max power = 184.9 mW

Πout, Max power = 40.0 mW

η = 21.6 % .

The higher efficiency obtained at maximum power is most likely due to the use of a
different set of piezo elements with slightly different parameters, as the transducers
suffer heavily from component variation (see also table 4.1). Possibly there was less
discrepancy in the resonance frequencies of the transducers for this set, or internal
losses were lower for one or both transducer(s).

There are some notable differences between the measured efficiency and the the-
oretical limit in figure 4.19a. First and foremost, the efficiency shows a very peaky
behaviour, revealing many local maxima and minima as a function of distance.
These are a direct result of reflections that occur at the surfaces of both the receiving
and the transmitting transducers. A wave that arrives at the face of the transducer
bounces into it if the transducer is not moving at the same velocity as the particles
in the wave. This causes the wave to reflect, travelling back to the transmitter, from
which it will reflect again, et cetera. This leads to (partial) standing waves, or spatial
resonances. Whenever the distance zd is a multiple of the half wavelength 1

2 λ, the
total phase shift that a sound wave undergoes on a round trip from transmitter to
receiver and back to transmitter is 360 degrees, and thus a resonance occurs. This is
the same effect on the basis of which lasers work, and which occurs in incorrectly
terminated transmission lines. Obviously, reflections are not considered in the model
derived in section 4.1, since the assumption was made that the receiver extracts all
the available energy from the incoming sound wave, prohibiting the existence of a
reflected wave. Reflections will be discussed in more detail in chapter 5.

Another difference from the theoretical model is found in the level of the measured
efficiency, which decreases decidedly faster than the model predicts. The level of
the first peak is well approximated by the model, especially for the high power
measurement (η = 0.2163 from the measurement versus η = 0.2171 predicted by the
model). Consequent peaks are much lower than the modelled efficiency. This can
be attributed to the fact that the pressure and particle velocity change significantly
due to the reflections with respect to that predicted by the simple model describing
the radiation pattern of a circular piston. Moreover, the PX051 transducers have an
open back, as can be seen in figure 4.13), implying that part of the acoustic energy
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Figure 4.19 The source-to-load energy transfer efficiency η of two EMCT PX051
piezo transducers was measured as a function of the distance zd
between them (a). The theoretical limit for this setup is shown for
reference. The corresponding measured electrical input and output
power are shown in (b).The radius of the transducers is 1.2 cm.
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is radiated from the back of the transmitter and does not contribute to the energy
transfer.

Finally, the optimal value of the load resistance RL = 1990.3 Ω was found as the
load resistance that yields the highest output power at the first spatial resonance
peak. From (4.44), the assumption that Re is sufficiently high, and a compensated
capacitance Ce, one expects that RL = Rm/ϕ2 = R′m. Strangely enough, comparison
with table 4.1 tells us differently. From it one would expect the value of the load
resistance to lie between 125 Ω and 390 Ω 2. The most likely explanation for this
inconsistency would be an inadequate model on the basis of which the optimal load
resistance was derived.

Another possible explanation for the observed difference between the optimal load
resistance and the internal resistance of the transducer is an excessively large value
of R′m, either through component variations or because of a faulty transducer, al-
though this seems unlikely judging from the variation encountered in table 4.1. The
maximum value of R′m that was measured was 200.1 Ω.

A last possibility to explain the difference is a measurement error in determining
the optimal load resistance, which yielded an incorrect value of RL. Since these
measurements are quite demanding to perform there is always a possibility that
errors are made. Some indication in this direction can be found in the results of a
separate set of energy transfer measurements with a different set of transducers,
where an optimal load of RL = 420 Ω was found. These measurements were
performed without compensation inductance. A corresponding value of R′m is
found from (4.44) as

R′m =

√
R2

L
1−ω2R2

LC2
e
= 436.1 Ω , (4.50)

with ω = 2π · 17.0 kHz, RL = 420 Ω and Ce = 6.0 nF. Although this value is much
lower than that found in the experiments described above, still it is not low enough
to fall into the range indicated by table 4.1. It is possible that the difference in
optimal load resistance is attributable to the distance between the transmitter and
the receiver at which the maximum output power was sought. The load resistance
for the first set of measurements was determined at the first output power peak,
while the second was optimised at zd = 10 cm. Still, the second value is too large to
be able to attribute the high values of RL to a measurement error.

2A transducer loss resistance R′m = 390 Ω implies that all power is radiated from the back of the
transducer, when operating under free radiating conditions, which is certainly not the case. In practice its
value will be lower.
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4.4 Conclusions and discussion

The theoretical limit to the energy transfer efficiency of an AET system is derived in
this chapter based on an identification of the losses that occur in such a system. The
model that it is derived from includes diffraction, attenuation and transducer losses.
Optimal electrical loading conditions were derived based on this model.

Acoustic energy transfer achieves a maximum efficiency of 65 % over a distance
of 1 m, when the radii of the transmitter and receiver are restricted to 10 cm. This
theoretical limit is based on diffraction and attenuation losses only. For the inclusion
of transducer losses, one can look at examples of high efficiency transducers such
as found in literature; for example Gallego-Juarez et al. [38], who reported an 82 %
efficient high power transducer, or Kritz [66], who published a paper on a 93 %
efficient ultrasound transducer. Assuming that the transmitter operates at the
latter efficiency and the receiver is (according to (4.39) and (4.44)) 50 % efficient,
the resulting total efficiency limit is 30 %. If the electrical loading of the receiving
transducer is optimised for maximum efficiency, rather than maximum output
power, even higher efficiencies up to 60 % can be attained.

According to Waffenschmidt & Staring [127], an inductively coupled CET system
with the same transmitter and receiver dimensions would have an efficiency of
approximately 2 %, assuming coil quality factors of 1000. Mur-Miranda et al. [84] use
a different approach to the maximum energy transfer of an inductive CET system
and arrive at approximately 6 % efficiency for the same dimensions and quality
factors. Hence AET has the potential to perform at least 5 to 10 times better in terms
of efficiency. This advantage of AET over inductive CET grows very rapidly with the
distance that is to be crossed, since the efficiency of AET is approximately inversely
proportional to z 2

d (cf. equation (4.21)), while that of inductive CET is inversely
proportional to z 6

d [84].

The model on which the theoretical limit is based was validated through experiments
in which the energy transfer between two piezoelectric unimorph bender elements
was measured. These first indicative measurements show that energy transfer by
means of sound waves is feasible. The maximum output power that was reached
(40 mW) is a bit too low to be useful for many applications. This can be attributed
to the low power handling capabilities of the transducers that were used for the
experiments. There are, however, applications in which power transfer of this
order of magnitude is quite adequate. Examples that come to mind are powering
remote sensor applications, MEMS (microelectromechanical systems) and charging
biomedical implants

The measured efficiency and power show a clear influence of reflections of the sound
waves from the faces of the transducers. Both quantities show distinct peaks as a
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function of the distance between the transmitter and the receiver, corresponding
to half-wavelength intervals. These spatial resonances (figure 4.19) can be min-
imised by appropriate termination of the acoustic path. Just like a transmission
line, the acoustic impedance of the receiver should be matched to the characteristic
impedance Za

0 of the air. Chapter 5 discusses reflections in more detail. Acoustic
impedance transformers, such as diaphragms [15, 20], horns [20, 44, 69, 105, 106, 128],
and 1

4 λ-matching layers [17, 41, 64], can be used for this purpose. Diaphragms and
horns are used most widely in combination with air transducers. Both are extens-
ively used for audio reproduction among other purposes. Chapters 6 and 7 examine
their application to acoustic energy transfer.

The measured efficiency corresponds very well to the theoretical limit model at the
first spatial resonance peak. The decline in efficiency with the distance between both
transducers proved to be greater in reality than predicted by the model. This is most
likely due to the pressure and particle velocity distribution being altered drastically
by the reflections.

Both the calculated efficiency limit and the measured maximum efficiency show
good agreement with those attained by Ozeri et al. [88,90], who reported respectively
27 % and 39.1 % over short distances through a very lossy medium. The measured
efficiency, peaking at 21.6 %, is a bit lower. This however, is a quite good result,
considering that open back transducers are used and the transducers have not been
optimised for this purpose

It is clear from the difference between the value of the optimal electric load RL
and the value of the mechanical transducer resistance R′m, that the models of the
transducers are not entirely correct. The optimal load resistance was derived under
the assumption that it does not have any influence on the pressure acting on the
receiving transducer. This assumption is in practice not valid. The transducer
presents an equivalent acoustic impedance to the incoming sound wave. This
impedance, which depends on the value of the load resistance, determines the
occurrence of reflections and their intensity (see the experimental results in [89]).
Therefore it also influences the pressure at the face of the receiver. Hence the
assumption that p at the face of the receiver is independent of RL is most likely
inaccurate.

Assuming that the transmitter and the transmission path up to the receiver can
be modelled by a Thévenin equivalent voltage source FTh and series impedance
Za

Th = RTh + jXTh, the optimal load resistance for a compensated capacitance Ce
becomes R2 = R1 + RTh. From there one can deduce that the Thévenin equivalent
resistance (referred to the electrical domain) R′Th = 1

ϕ2 RTh lies somewhere between
640 Ω and 1.9 kΩ.

Another problem with the models is that they describe lumped element behaviour,
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which is not an accurate description of the real behaviour of the transducers. While
it is accurate enough to model the transducer from an electrical viewpoint (i.e.
its impedance), the mechanical behaviour can be entirely different. Whenever the
transducer is large in comparison to the wavelength of the material, one should resort
to wave equations to describe the pressure and displacement. Models that are often
used are, according to [57], the Mason, the Redwood [94] and the KLM model [65].
The latter two use transmission lines to describe the waves that travel through the
transducer’s material. Unfortunately, these models are one-dimensional as well, and
are therefore not suited for transducers that vibrate in multiple dimensions. Such
a model could very well describe the vibration of the bender elements that were
used for the experiments in this chapter, but this model does then not simply have a
mechanical port to which the air load can be connected, since the vibration of the
entire surface of the transducer couples transversely to the medium. The opposing
force presented by the medium that the transducers experience therefore becomes a
distributed mass-resistance element in the transmission line.

One can conclude from the measurements that the main challenges for AET lie with
the design of transducers that can handle large amounts of power at sufficiently high
efficiency. Additionally, impedance matching at the side of the receiver is required
to overcome reflections, and thus the spatial resonances that restrict a free placement
of the receiver.
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5 Reflections

ONE IMPORTANT ASPECT of acoustic energy transfer systems has not been
modelled up to now; the model that was presented in the chapter 4 assumed
that all energy that arrives at the receiving transducer is absorbed, while

in reality—as indicated by the measurements of figure 4.19—a sound wave that
impinges upon the surface of the receiver will partly reflect. These reflections of the
sound waves from the surfaces of both the transmitter and the receiver drastically
alter the behaviour of an acoustic energy transfer system from that predicted by the
previously introduced idealised model. The reflections cause the energy transfer
efficiency as well as the input and output power to have very sharp peaks at half-
wavelength intervals. This is a very important practical aspect of AET, as the peaks
imply fixed locations of high power transfer, and others where it is nil. A receiver
can therefore only be placed at fixed distances from the transmitter, which restricts
the usefulness of such a system.

If one is to overcome this problem, it is first to be properly understood. This is
accomplished through modelling of the reflections and their influence on the energy
transfer. Once a model of the reflections is obtained, attention can be turned towards
mitigation of the problem.

Sound wave propagation in a medium is equivalent to an electromagnetic wave
travelling in a transmission line. Reflections occur in such a waveguide whenever
there is an impedance mismatch in it, or at its extremities [92]. The same applies for

This chapter is based on [99].
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sound wave propagation. The impedance of the transducer (the opposing pressure it
produces when it moves at a unit velocity) should match with that of the medium it
operates in. In case of inequality of these ratios of pressure to velocity, the medium’s
particles will collide with the transducer surface, and reflections arise.

A sound wave emanating from the transmitter reflects at the receiver’s surface,
thereupon reverses direction and returns to the transmitter, where it reflects again.
This process repeats itself until all energy is dissipated. Whenever the phase relation
between the transmitted and the reflected wave is an exact multiple of 360° upon
return of the latter to its source, a resonance condition occurs where so-called
constructive interference takes place. The reflected wave will leave the surface
of the transmitter exactly in phase with the wave it newly generates. The result
is a standing wave where the pressure amplitude of the original wave is greatly
amplified through reflection upon reflection, much like the working principle of
a laser [56]. The phase relationship between the two waves is determined by the
distance between the transmitter and the receiver and the sound velocity in the
medium. Equally, an out-of-phase relationship between the reflected wave and
the one originating from the transmitter yields destructive interference, effectively
cancelling the original incident wave.

This chapter presents two models of reflections; one model based on transmission
line theory, and the other a finite element (FE) model.

5.1 Transmission line models

The first models that spring to mind when discussing reflections are, at least for
electrical engineers, transmission line models, although they are found in acoustics
as well (think of transmission line loudspeakers for example [15]). These models
are used to describe the propagation of electromagnetic waves inside transmission
lines that are long in comparison to the wavelength. Notable examples are telegraph
lines, long power lines and high frequency traces on printed circuit boards.

Transmission line models are one-dimensional models that in essence describe
plane waves propagating along the length of, for example, a conductor (see for
instance [92]). In the case of a true transmission line these waves are normally
confined to a waveguide, but this is by no means a requirement imposed by the
model. The description works just as well for a plane wave. The sound waves in
a typical AET system are no plane waves, and therefore a transmission line model
will never be able to give an exact representation of the reflections. Nevertheless,
the model is a good starting point for their description.
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5.1.1 Pressure and impedance

Recalling section 3.3.1, the generalised solution to the differential equation governing
a plane pressure wave (3.24) is p(z, t) = f (z− ct) + g(z + ct). The acoustic energy
transfer system that is being discussed was said to work at a single frequency.
Therefore the solution also assumes a single frequency, which is in complex notation

p(z, t) = P+ej(ωt−kz) + P−ej(ωt+kz) . (5.1)

These are two sinusoidal pressure waves, the first having an amplitude P+ travelling
in the positive z-direction and the second a wave of amplitude P− travelling in
opposite direction. Again, the complex angular wave number k = k− jα accounts
for attenuation in the transmission line through an attenuation constant α, as was
introduced in section 3.4.

The corresponding particle velocity is then found through application of (3.27):

u(z, t) =
P+

Za
0

ej(ωt−kz) − P−

Za
0

ej(ωt+kz) , (5.2)

where the subtraction accounts for the negative direction of propagation, and hence
the associated negative particle velocity, of the backwards travelling wave. Let us
now assume that this backwards travelling wave originated through reflection of
the forward travelling wave. A reflection coefficientR can then be introduced that
relates the complex amplitude of the positive and negative (reflected) wave at the
site of the receiver z = zd: 1

R =
P−ejkzd

P+e−jkzd
=

P−

P+ ej2kzd . (5.3)

Dropping the superscript of the pressure amplitude, the pressure and particle velo-
city are now given by

p(z, t) = Pejωt
(

e−jkz +Re−jk(2zd−z)
)

(5.4a)

u(z, t) =
P

Za
0

ejωt
(

e−jkz −Re−jk(2zd−z)
)

. (5.4b)

1Generally, a coordinate transformation is applied in transmission line theory that renders the distance
between a point on the transmission line and the reflecting interface positive and places the the load at
z = 0. In this derivation it is chosen not to do so, to be able to maintain the same coordinate system as
defined earlier, i.e. a source at z = 0 and a (reflecting) receiver at z = zd. Both approaches are equivalent
in terms of results.
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Now that we have an expression for the pressure (5.4a) and the particle velocity
(5.4b), it is possible to define the acoustic impedance at any point along the wave’s
path. It is equal to the ratio of pressure over particle velocity, which is

Za
(z) = Za

0
e−jkz +Re−jk(2zd−z)

e−jkz −Re−jk(2zd−z)
. (5.5)

Suppose that at z = zd the transmission line is terminated by a load impedance
Za

L = RL + jXL. It imposes a boundary condition Za
(zd) = Za

L, which allows us to
derive the value of the reflection coefficientR using (5.5). It yields the well-known
relation

R =
Za

L − Za
0

Za
L + Za

0

. (5.6)

Note that it is assumed here that the characteristic impedance of the medium is a
real quantity, i.e. Za

0 ∈ R. This is a fair assumption when dealing with plane waves
(cf. section 3.3.1), although it may not necessarily be the most realistic choice, as it
can be different for other types of sound waves. However, for matters of simplicity,
it will be assumed in the following that it is a real valued constant.

From equation (5.5) we can also find the acoustic impedance that opposes the
vibration of the transmitter, which is equal to

Za
(0) = Za

0
1 +Re−j2kzd

1−Re−j2kzd
. (5.7)

Lastly, the pressure amplitude P of the travelling wave follows from a boundary
condition at z = 0. Assuming that at the beginning of the transmission line the
pressure is defined by a pressure source p(0, t) = P0ejωt, the pressure amplitude is
found from equation (5.4a) to be equal to

P =
P0

1 +Re−j2kzd
. (5.8)

5.1.2 Power and efficiency

The input power and output power of the transmission line are given by

Πa
in = 1

2 As

∣∣∣∣∣ p(0)
Za

(0)

∣∣∣∣∣
2

Re
(

Za
(0)
)

(5.9a)

Πa
out =

1
2 Ar

∣∣∣∣∣ p(zd)

Za
L

∣∣∣∣∣
2

Re
(

Za
L

)
, (5.9b)
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with As = πa2
s and Ar = πa2

r the surface areas of the transmitter and the receiver
respectively. Equations 5.9 can be rewritten by combining (5.4a), (5.6), (5.7) and (5.8).
With help of some algebra and a touch of wizardry, one now finds that the power
delivered by the source at z = 0 is equal to

Πa
in =

Za
1

2 sinh(2αzd) + Za
3

2 cosh(2αzd)

Za
1

2 cosh(2αzd) + Za
3

2 sinh(2αzd) + Za
2

2 cos(2kzd) + Za
4

2 sin(2kzd)

AsP2
0

2Za
0

,

(5.10)

and the output power at z = zd is

Πa
out =

RL

Za
1

2 cosh(2αzd) + Za
3

2 sinh(2αzd) + Za
2

2 cos(2kzd) + Za
4

2 sin(2kzd)
ArP2

0 ,

(5.11)

with

Za
1

2 = R2
L + X2

L + Za
0

2 (5.12a)

Za
2

2 = R2
L + X2

L − Za
0

2 (5.12b)

Za
3

2 = 2RLZa
0 (5.12c)

Za
4

2 = 2XLZa
0 , (5.12d)

The efficiency of the energy transfer through the transmission line consequently is

η =
Πa

out
Πa

in

=
Ar

As

Za
3

2

Za
1

2 sinh(2αzd) + Za
3

2 cosh(2αzd)
.

(5.13)

5.1.3 Location of peaks

Assuming that [Za
1

2 cosh(2αzd) + Za
3

2 sinh(2αzd)] varies slowly with respect to zd in
comparison to [Za

2
2 cos(2kzd) + Za

4
2 sin(2kzd)], we have from (5.11) and dΠout

dzd
= 0

that there are peaks and troughs in the output power whenever

tan(2kzd) = −
2XLZa

0

R2
L + X2

L − Za
0

2 , (5.14)

which implies that the peak-pattern can have an offset for XL 6= 0. Notice that
because of the π-periodicity of the tangent function, peaks indeed occur at half
wavelength intervals. Equation (5.14) also shows that the larger |Za

L|2 = R2
L + X2

L is,
the smaller this offset will be.
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5.1.4 Attenuation coefficient

The attenuation coefficient α normally only represents the absorption by the medium.
However, the attenuation coefficient in (5.10), (5.11) and (5.13) is used to account for
all losses in the wave propagation. As was discussed in section 4.1.1, a typical acous-
tic energy transfer system not only suffers from absorption, but also experiences a
decreased efficiency through beam spreading losses. Both effect must be included in
the absorption coefficient for the transmission line model to represent the behaviour
of the actual system. The idea of inclusion of these losses in a transmission line
model was proposed in [52]. The authors used an electrical circuit representation of
the transmission line, were the conductance per unit length was used to model the
spreading losses and the resistance part represented the absorption losses.

In the case of a simple transmission line, the attenuation coefficient in equations
(5.10), (5.11) and (5.13) normally assumes a constant value. In the system that is
being considered, however, a single value for α will almost certainly not lead to
the desired results. Since the spreading losses depend on the distance from the
transmitter, the attenuation constant will be a function of distance as well. In the
transmission line model e−αz is the factor that relates the pressure amplitude at a
distance z = z′ to that at z = 0. In practice one cannot speak of a single pressure
amplitude |p(z) |, since the transmitter does not produce plane waves (see figure 4.2).
Hence average pressure amplitudes will be used as an approximation. The averages
are taken over the faces of the receiving and transmitting transducers respectively.
We know from the model derived in chapter 4 what the absorption and spreading
losses are. Using these it is possible to derive a ‘lumped element’ value of α. This
gives an absorption coefficient

α = − 1
z′

ln

∣∣∣∣∣ pavg(z
′)

pavg(0)

∣∣∣∣∣
= − 1

z′
ln

∣∣∣∣∣∣∣∣∣
a2

s

ar∫
0

p(rr, z′, t) rrdrr

a2
r

as∫
0

p(rs, 0, t) rsdrs

∣∣∣∣∣∣∣∣∣ .

(5.15)

The pressure p(rr, z′, t) at z = z′ is found from equation (4.7), but the pressure at
z = 0 is unfortunately not so easily calculated, since its computation involves a
singular integral when using (4.7). This singularity is, however, easily circumvented
by changing the coordinate system [58].

Suppose that we have a source point ~Ps and a receiving point ~Pr = rsr̂ + 0ϕ̂. The
distance between the two is r = ‖~Ps − ~Pr‖. Choosing the point ~Pr as the centre of the
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as

rs

�Ps

�Pr
ψ

rs + r cos ψ

−r sin ψ
r

Figure 5.1 A change of coordinate system removes the singularity from the integ-
ral that yields p(rs, 0, t).

cylindrical coordinate system for integration (see figure 5.1) we have

p(rs, 0, t) =
jωρ0U0

π
ejωt

π∫
0

rmax∫
0

e−jkr

r
rdrdψ , (5.16)

where the integration limit of the inner integral follows from figure 5.1:

a2
s = r2

max sin2 ψ + (rs + rmax cos ψ)2

rmax =
√

a2
s − r2

s sin2 ψ− rs cos ψ .
(5.17)

This allows the pressure at the face of the transmitter to be expressed as a single
integral:

p(rs, 0, t) =
jωρ0U0

πk
ejωt

π −
π∫

0

e−jkrmax dψ

 . (5.18)

The PX051 transducers that were used earlier in section 4.3 are taken as a test case for
the description of reflections in an AET system. Therefore α is calculated from (5.15)
using transmitter and receiver radii as = ar = 1.2 cm and a frequency f = 17.0 kHz.
The result is shown in figure 5.2. It is clear that, indeed, α is a function of the distance
z′ from the transmitter. The relatively high values of α for small z′ may be caused by
numerical errors, either due to the division by z′ in (5.15) or because of the integral
in the calculation of p(rr, z′, t) being close to singular for small z′. The ability of α to
represent actual system behaviour for small z′ is likely to be low anyway, since it
involves calculation of the average pressure in the near field—a near field that only
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Figure 5.2 The lumped element attenuation constant α for a transmission line
model of a rigid circular piston radiator varies as a function of the
distance z′ between the transmitter and the point of observation. A far
field approximation α̃ shows good resemblance for large values of z′.

exist under free radiating conditions. The behaviour will likely be very different
from free radiation when the receiver is placed in close proximity to the transmitter.

Figure 5.2 also contains an approximation for α from equation (5.15), where the
source pressure is derived from

pavg(0) =
Zrad

πa2
s

U0ejωt . (5.19)

The average pressure pavg(z
′) at z = z′ is assumed to be equal to the far-field on-

axis pressure from equation (4.18). The far-field approximation of the attenuation
constant is then

α̃ = − 1
z′

ln

(
ρ0ωπa4

s

2z′
∣∣Zrad

∣∣
)

, (5.20)

which, according to figure 5.2, is a good approximation for α in the far field of the
radiator. Therefore, the numerical integration in (5.15) is not strictly necessary if
only values of zd are considered that are large in comparison to the transmitter size.

5.1.5 Simulation results

Figure 5.3 shows simulation results of the energy transfer in the transmission line
approximation of the AET system. The load Za

L was chosen to be real, and the radii of
the transmitter and the receiver are equal (as = ar = 1.2 cm). The graphs show that
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for Za
L = Za

0 (black line) there indeed are no reflections; the input power does not
vary as a function of the distance between the transmitter and the receiver, and the
output power only decreases with distance due to the losses in the system. The more
the load impedance deviates from this optimal termination, the more reflections
emerge, and the more pronounced the peaks become. The losses naturally increase
as well as a result of the greater impedance mismatch, which is apparent from the
efficiency η in figure 5.3.

Figure 5.4 shows similar results for the same system, but now for various complex
load impedances. Again, the input power and output power contain peaks at half-
wavelength intervals when Za 6= Za

0 . Note that reflections are even present when
the absolute value of the load impedance is equal to Za

0 , but it has a small complex
phase angle. The efficiency is barely influenced by the reactance of the load.

Although there is still a separation of one half wavelength visible between con-
secutive peaks, the peaks for low values of |Za

L| are slightly offset in zd (this is
clearly visible in figure 5.5, which shows a detail of the input power). The difference
between graphs for real and complex load impedance decreases rapidly for an in-
crease in |Za

L|. This is in line with (5.14). For |Za
L| ≥ 20Za

0 the graphs are virtually
indistinguishable.

Comparing these results with the measurements in figure 4.19, one notices immedi-
ately that, although the shape of the output power is fairly similar, the shape of the
input power, on the other hand, is very different. Accordingly, sharp peaks appear
in the measured efficiency, while the simulated efficiency curve is fairly smooth.

The simulated efficiency contains minima and maxima when dη
dzd

= 0, or

dα

dz′

∣∣∣∣
zd

= −α(zd)

zd
. (5.21)

The absorption coefficient should satisfy this criterion at quarter-wavelength inter-
vals to accommodate both maxima and minima in the energy transfer efficiency.
Clearly from figure 5.2 it does not.

Note that in both figure 5.3 and 5.4 the resonance peaks (for high load impedance)
occur at half wavelength intervals, starting from zd = 1

4 λ. This is due to the choice
of a pressure source at z = 0. The peaks would occur at zd = 1

2 nλ ∀n ∈ Z≥0 should
a velocity source have been chosen. This is entirely determined by the impedance of
the transmission line at z′ = 0, since a pressure source delivers maximum power to
a low impedance, while a velocity source delivers its maximum power when the
impedance of the transmission line is high.
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Figure 5.3 Simulation results of the transmission line representation for various
values of Za

L show reflections for Za
L 6= Za

0 . The simulation results
were obtained for as = ar = 1.2 cm and f = 17 kHz. The input power
Πin and output power Πout are normalised to the squared pressure
amplitude at z = 0.
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Figure 5.4 Complex load impedances can add an offset to the location of reflec-
tion peaks in the transmission line model, when the load impedance
magnitude is close to the medium’s characteristic impedance.
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5.4: Za

0ej π
10 (black), 2Za

0ej π
10 (dark grey) and 20Za

0ej π
10 (light grey).

5.1.6 Parameter fitting

The purpose of the transmission line model is to describe the effect that reflections
have on the behaviour of a real acoustic energy transfer system. It is therefore
interesting to examine the extent to which our simple one-dimensional model agrees
with power measurements of such as system.

Measurements

The model is compared to measurements that were obtained using two PX051 trans-
ducers, one of which was mounted on a position controlled linear motor fitted with
a linear encoder system. This allowed a positioning accuracy of 1 µm. The distance
between the transducers was varied in 25 µm increments for the measurements.

The input power to the transmitter was supplied by a Kepco BOP72-6M power
operational amplifier. It was measured by means of the method described in section
4.3.2; A Teledyne LeCroy HDO6034 12-bit oscilloscope measured the power as the
cyclic average of the product of the input voltage and current (which was measured
with a Tektronix TCP312 probe and TCPA300 amplifier). The delay between the
voltage and current probes was compensated using a LeCroy DCS015 deskew
calibration source.

The output power was found from the voltage across the load resistance, measured
for reasons of accuracy with an Agilent 34401A multimeter. The load resistance was
accurately measured for this purpose using the same multimeter and a four-wire
resistance measurement. Its optimal value proved to be RL = 420 Ω. The electrical
capacitance was not compensated.
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Figure 5.6 The equivalent circuit model that is used for parameter fitting repres-
ents the transmitting and receiving piezo element by complex imped-
ances.

Parameters

The simulation results of the transmission line model cannot directly be compared
to measured values of the electrical input power and output power since the model
only encompasses the acoustic domain. To be able to do so, a transducer model,
as introduced in section 4.2 is necessary to couple the mechanical and electrical
domains.

This raises the problem that not all system parameters are known. The transformer
ratio ϕ of the transmitting and receiving piezo transducers in figures 4.8 and 4.12
cannot be readily measured electrically. Moreover, due to the component variation
described in section 4.3.1 the transducer parameters must be estimated through
parameter fitting. Doing so for the complete model, consisting of the transducer
models of figures 4.8 and 4.12 coupled to the transmission line model, did not yield
satisfying results. A simplified (but equivalent) transducer model was therefore used
for parameter fitting. The transmitter is replaced by a pressure source Pinejωt and
a complex series-impedance Za

s , effectively only taking the mechanical impedance
branch into account (the electrical capacitance has no influence, and the dielectric
losses are neglected). The receiver is replaced by its equivalent acoustic impedance
Za

r . The corresponding circuit diagram is depicted in figure 5.6.

Because the output impedance Za
r is composed of the transducer parameters on one

hand and the electric load on the other, the electrical output power is not equal to the
received acoustic power at z = zd. Part of the received energy is dissipated in the
transducer. It is assumed that the electrical output power is half the received acoustic
power Πout =

1
2 Πa

out due to the optimal termination of the receiver. Moreover, since
the transformer ratio ϕ is unknown, the source amplitude Pin must also be fitted.

The casing of the PX051 transducers extends about 1 mm beyond the aluminium
diaphragm (see figure 4.13), which effectively lengthens the acoustic path by ap-
proximately 2 mm. Since the distance between the transducers is measured between
these edges, an offset z0 is added to the model, and is fitted to the measurements as
the influence of this edge is unknown.
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Results

Figure 5.7 depicts the fitted simulation results of the transmission line model. The
graph shows two different fit results: one for which the transmission line length
offset z0 was kept equal to 0, and one in which all parameters were fitted. The fitted
model shows a good resemblance to the measurement results, although the quality
of the fit for z0 = 0 is somewhat lower.

It proved necessary to adjust the angular wavenumber k = 2π/λ for the distance
between the peaks to match with the measurements. The effective wavelength used
for fitting is 6 % larger than was expected from the driving frequency f = 17.0 kHz
used for the measurements. This is possibly caused by a higher sound velocity due
to different ambient conditions (e.g. temperature, relative humidity). The reader
with a keen eye will observe that not all peaks of the fitted results coincide with their
measured counterparts. It is very likely that changes in the ambient temperature
during the measurements caused the sound velocity and thus the wavelength to
change, thus altering the wavelength.

The fitted system parameters are given in table 5.1. Since the fit yielded a negative
distance offset z0, the corresponding graphs of power and efficiency in figure 5.7
start at zd = −z0, ignoring negative distances between the transmitter and the
receiver.

From table 5.1 it is clear that in both cases the obtained parameter values are not
realistic. The imaginary parts of Za

s and Za
r are sizable. This is unexpected, given that

the transducers should be operating at, or very near to their mechanical resonance
frequencies, corresponding to a (near) zero series reactance. The fact that Za

r is about
two orders of magnitude smaller than Za

s is also striking, as one would expect it
to be comparable, albeit slightly larger due to the presence of a load impedance.
Moreover, the value of z0 that was found for the second fit is far off from the 2 mm
that were expected due to the transducer construction. Instead, a large negative
value was found, which is completely non-physical, as it decreases the distance
between both transducers. The source amplitude Pin is a bit high, amounting to a
sound pressure level at z = 0 of approximately 138 dB.

It is expected that the behaviour of the model is not very accurate for small values of
zd, due to the free field conditions under which α was derived. For small values of
zd, the virtual location of the receiver is in the near field, which changes considerably
when a reflecting transducer is present. In addition, the second set of parameters
was fitted to the measurement data from zd = 40 mm to 150 mm. The fact that the
rest of the simulated power and efficiency match so well with the measurements
indicates that the transmission line model does have predictive value, even though
the parameters that are found through fitting seem to be not in line with expectations.
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Figure 5.7 The fitted transmission line model shows a good resemblance to the
measured energy transfer as a function of the distance zd between the
transmitter and the receiver. The second set of fit results accounts for
a possible offset in the transmission line length.
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Table 5.1 Fitted parameter values of the transmission line model, both with and
without position offset.

Parameter z0 = 0 z0 6= 0 Unit

Pin 1.68 1.978 kPa
Za

s 2.39 + j3.53 3.92 + 4.97 kN s m−3

Za
r 62.12− j220.66 41.02− j102.77 N s m−3

z0 0 −12.32 mm

The accuracy of the measurements is high enough for the parameters to be fitted.
The maximum measurement error in the output power measurement at its lowest
measured value of Πout = 19.5 µW is εΠout = 29.1 nW, or 0.15 %. The distance was
varied in 250 µm increments, in order to capture all peaks adequately. Accordingly,
the total measurement comprises 801 measurement points, which is sufficient for
parameter fitting.

5.2 Finite element modelling

It is nearly impossible to create an analytical model of an AET system that yields
closed form solutions, without resorting to approximations and simplifications. This
is mostly due to the inherent multiphysical and three-dimensional nature of such a
system. Finite element (FE) analysis seems ideal in this respect, since it is capable
of solving the differential equations that govern every domain of physics, coupling
them through boundary conditions. Via subdivision into small elements such a
method is capable of tackling multidimensional problems with considerable ease.

The AET system was modelled using a finite element method in Comsol Multiphysics
in an attempt to create a comprehensive model that describes:

• the coupling between the electrical and mechanical domains through a piezo-
electric material

• the structural mechanics governing the behaviour of the piezoelectric patch
and the aluminium diaphragm

• the coupling of the transducer to the medium

• the wave propagation through the medium

• and lastly, and most importantly for this chapter: the occurrence of reflections
at boundaries.
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Figure 5.8 The geometry that is used for the finite element analysis is a slight
simplification of the PX051 piezo transducer. The piezoelectric mater-
ial is indicated in black, the casing of the transducer in grey and the
hatched part is an aluminium diaphragm. The model is axisymmetric
around the dashed line at r = 0 m.

The FE model mainly comprises two piezo transducers placed a distance zd apart
with aligned centres. The transducer model, the geometry of which is shown in
figure 5.8, is a simplification of the EMCT SA PX051 piezo transducers that were
used for earlier experiments. The values of the parameters in figure 5.8 are given in
table 5.2.

The casing of a transducer, indicated in grey in figure 5.8, is assumed to be suffi-
ciently rigid to neglect its vibrations. Therefore it is modelled as an acoustic hard
wall, which is a perfectly reflecting boundary condition where the normal particle
velocity vanishes. In the model, the transducers are placed in a spherical air domain
surrounded by a so-called perfect matching layer, which is a coordinate transforma-
tion simulating an infinite air domain. This prevents reflections from the domain
boundaries. The model does not include sound absorption in the air or mechanical
losses in the transducers.

The electrical contacts of the piezoelectric material are located on its top and bottom.
Logically, these are the same contacts that were used for polarisation of the material.
Hence the piezoelectric material is assumed to be polarised in the z-direction. The
exact type of piezoelectric ceramic that is used in the transducers is unknown.
Simulations of the maximum energy transfer efficiency were performed for various
PZT (lead zirconate titanate) grades. Table 5.3 lists the efficiency of the AET system at
the first peak in the transfer efficiency, as well as the distance between the transducers
zd and frequency f at which this peak occurs. The table indicates that, although the
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Table 5.2 Parameters of the PX051 FE model

Parameter Value Unit Parameter Value Unit

rd 1.10 cm cb 900 µm
hd 165 µm cc 4.80 mm
rp 4.95 mm cd 1.60 mm
hp 200 µm ce 1.69 mm
rs1 6.45 mm cf 2.20 mm
rs2 9.60 mm cg 2.00 mm
ca 900 µm

efficiency can vary considerably, the distance and frequency at which the efficiency
peaks do not change substantially. One cannot choose a piezoelectric material
based on these figures alone. Proper characterisation of the material is required
(measurement of piezoelectric constants, compliance, density, permittivity, et cetera).
Since the type of piezoelectric material is unknown, PZT-5A is used in the model.
Based on the value of the electrical capacitance Ce from table 4.1 and the radius
rp and thickness hp of the piezoelectric ceramic from table 5.2, the required value
of the relative permeability under constant strain in the 33-direction should be
approximately

εS
r,33 =

hp

ε0πr2
p

Ce ≈ 1760. (5.22)

PZT-5A has a relative permeability of approximately 827, which indicates that the
material parameters of the actual transducer are different. This, however, only
allows one to conclude that the transducers’ piezoelectric material is not PZT-5A. It
is not certain that the other parameters of the material deviate as well. On the same
grounds, choosing a material with a higher relative permittivity does not imply that
it is a better choice with respect to the other parameters.

5.2.1 Results

Since the FE model is able to model the physics describing each domain and correctly
take into account the boundary conditions between them, it should in principle be
able to accurately describe reflections. Where the transmission line model is only
able to describe one-dimensional waves and lumped-element boundary conditions,
the finite element model does not pose such restrictions.
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Table 5.3 Maximum energy transfer efficiency ηmax at a distance zdmax and a
frequency fmax for various piezoelectric materials

Material ηmax (%) zdmax (mm) fmax (kHz)

PZT-2 33.4 5.71 17.67
PZT-4 57.2 5.84 17.79

PZT-4D 60.5 5.94 17.68
PZT-5A 67.1 6.37 17.12
PZT-5H 69.6 6.56 17.15
PZT-5J 69.1 6.56 17.05
PZT-7A 31.4 5.53 18.05
PZT-8 50.1 5.75 17.85

Input power, output power and efficiency

Figure 5.9 presents a comparison between measurement results and the outcome of
FE simulations of the model described above. There is a reasonably good agreement
between the two. The resonance peaks that are characteristic for reflections are
clearly present in the input power Πin, the output power Πout and the efficiency η.
The peaks do not exactly coincide in terms of the distance zd, since the frequency that
was used for the simulations was a bit higher than that used in the measurements.
In both cases the frequency was varied to obtain the maximum output power, which
yielded f = 17.00 kHz for the measurements and f = 17.15 kHz for the simulations.

The behaviour of the input power Πin shows some discrepancy between measure-
ments and simulations. Firstly, it is much higher, about a factor of two for large zd in
the simulations. Since this situation is not too different from a free field simulation,
this implies that the transducer model is not correct. Most likely the difference
is caused by the absence of transducer losses in the FE model. Furthermore, the
variation of the input power with the distance is very different as well. Where the
measured input power first drops for an increase in zd, the simulated input power
rises steadily. The measured input power then rises sharply, while the measure input
power does the exact opposite. From the transmission line model it is understood
that this behaviour is determined by the source impedance (compare figures 5.3
and 5.7). Possibly this is therefore also a result of the omission of transducer losses,
but is can just as easily be caused by an incorrect piezo material or other parameter
inaccuracies.

Both the amplitude of the peaks and the decline with zd of the output power Πout
are very comparable. The level of the output power is very different, but this is
likely due to the input power that is of greater magnitude than expected and the
absence of losses in both the transducers and the air.
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Figure 5.9 The energy transfer efficiency η was calculated by means of FE analysis
as a function of the distance zd between the transmitting and receiving
piezo elements. A driving frequency of f = 17.152 kHz was used for
the simulations.
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Lastly the efficiency is again comparable, although the effect of the reflections is
not as pronounced in the FE results as it is in the measurements. This is put down
chiefly to the discrepancy in the input power, considering the similarity in Πout. The
efficiency is approximately a factor ten higher than expected. The absence of losses
in the model naturally boosts the efficiency. Furthermore, as already indicated by
table 5.3, a wrong choice of piezoelectric material can lead to a large deviation in
efficiency.

Pressure amplitude

The reflections cause distinct maxima and minima in the energy transfer and its
efficiency. It is interesting to examine what these maxima and minima mean in terms
of the pressure amplitude in the r, z-domain. Our finite element model is a useful
tool in this regard, since it calculates this pressure.

There are two ways of approaching the energy transfer; one could either opt to look
at the maximum output power, or the maximum efficiency. These two cases do
not necessarily coincide, and in practice occur for slightly different frequencies and
distances. Both situations will be considered here.

A pattern search algorithm [46] was used for finding the maximum output power
and efficiency to prevent false maximum detection due to the numerical inaccuracy
of the solver. The model predicts the maximum output power to be produced at a
distance zd = 5.557 mm and a frequency f = 17.152 kHz. The first minimum of the
output power at the same frequency was found at zd = 11.1 mm. Analogously, the
maximum efficiency was found for a distance zd = 6.373 mm and f = 17.123 kHz.
The first minimum of the efficiency at the same frequency occurred at zd = 12.1 mm.
The precision of zd at the minima is lower due to relatively higher noise from the FE

solver.

Figure 5.10 shows the FE simulation results of the pressure amplitude in these
four situations. The standing waves that originate due to the reflections from
both transducers are clearly visible as alternating amplitude maxima and minima
in the z direction. The pressure amplitude distribution is very different when
looking at the situation where we have maximum output power (figure 5.10a) or
maximum efficiency (figure 5.10c). The pressure amplitude immediately in front
of the diaphragm of the receiver (top transducer) is about a factor two higher than
in the case of maximum efficiency, naturally leading to a higher output power.
Unfortunately, figure 5.10a also shows that a large part of the power radiates away
from the back of the transmitter. Figure 5.10c indeed shows a situation where the
efficiency will be much higher, as the pressure amplitude is high in front of both
transducers, implying that the transmitter delivers most of its energy to the medium
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at the front, and the receiver absorbs much of this energy. This figure shows very
well how reflections, and the standing waves that ensue, cause the impedance of
the medium to increase, and the matching of the transducer with the medium to
improve.

The pressure amplitude distribution in case of minimum output power (figure
5.10b) and minimum efficiency (figure 5.10d) are virtually indistinguishable. The
most important observation to be made from the two figures is that the pressure
amplitude at the diaphragm of the receiver is negligible, and therefore the output
power is as well. The transmitter still delivers its energy to the medium, both at the
front and the back of the diaphragm.

5.2.2 Parameter sensitivity

Table 5.3 already indicated that the performance of the system heavily depends on
the material parameters. The maximum of the simulated efficiency of the system
lies between 33 % and 70 %, depending on the choice of PZT-grade. The material not
only influences the maximum output power and efficiency, but also the resonance
frequency at which these occur. This change in efficiency offers great opportunities
to increase the energy transfer efficiency, by choosing the right materials for the
construction of the transducers.

If the simulation results can be altered to such a large extent by changing one material
for another, the question arises how the results are influenced by the model’s other
parameters, such as the dimensions listed in table 5.2, or the material properties
of the diaphragm and the piezoelectric ceramic. Quantitative information about
the influence of model parameters can be obtained from a sensitivity analysis. The
purpose of such an analysis is twofold; it gives information on how parameter
deviation influences the outcome of the model, in other words: how accurately
parameters should be known to be able to construct an accurate model, while, on
the other hand, if performance improvement is the main topic of interest, it indicates
which parameters will change the system’s output most.

The finite element model was used to investigate the sensitivity of the system to
parameter changes. The choice of output variable on the basis of which the sensitivity
analysis is to be performed is an important one. The most useful choice for AET is the
output power. Unfortunately it depends heavily on the exact location of the receiver
and the driving frequency because of the reflections. For a fair comparison one will
have to look at the change in the maximum output power Πout,max for a change in a
parameter. The distance zdmax and frequency fmax at which the maximum output
power occurs and their change are also of interest.
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Figure 5.10 Pressure amplitude from FE simulations: maximum output power (a),
minimum output power (b), maximum efficiency (c) and minimum
efficiency (d).
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The sensitivity analysis was carried out for all geometric parameters in table 5.2, the
load resistance RL, the piezoelectric stress constant e in the 31, 33 and 15 directions,
the elasticity matrix cE (on account of practical reasons the whole matrix is scaled
as cE = λcE

0 , and only λ is varied), the relative permittivity εS
r,33 of the PZT material,

its density ρPZT, the Young’s modulus EAl of the diaphragm, its density ρAl and the
Poisson’s ratio νAl.

Each parameter p was varied by a small increment σp0 from its default value p0,
after which the new maximum output power Πmax,out(p) was sought by means of a
pattern search algorithm:

Πout,max(p) = max
zd, f

Πout (5.23a)

(zdmax(p) , fmax(p)) = arg max
zd, f

Πout (5.23b)

From the variation in the maximum output power one can determine the relative
sensitivity of a variable y for a change in parameter p as

∂y
∂p

p0

y0
, ∀y ∈ {Πout,max, zdmax, fmax} (5.24)

To reduce the influence of numerical errors from the simulation, the partial derivative
is calculated by means of a five-point Lagrange’s formula [5]. The relative sensitivity
is then

∂y
∂p

p0

y0
=

y((1− 2σ) p0)− y((1 + 2σ) p0)

12σy0
− 2

y((1− σ) p0)− y((1 + σ) p0)

3σy0
(5.25)

This sensitivity analysis was performed for σ = 1 · 10−3.

The relative sensitivities of the output power to changes in the parameters are listed
in table 5.4. The output power is affected most by the radius of the aluminium dia-
phragm rd. Fortunately, it is easy to measure, and is therefore unlikely to introduce
modelling errors. Other important parameters are the radius and thickness of the
piezoelectric patch, the latter being somewhat more difficult to accurately measure.
Furthermore the output power is sensitive to changes in the location rs1 of the first
notch in the diaphragm, and a number of dimensions of the casing. Surprisingly,
the material properties of the diaphragm have little influence on the output power.
The material properties of the piezoelectric ceramic seem to influence it much more.
Especially the elasticity of the material and the piezoelectric stress constant in the
33-direction affect the output power.

Not only the efficiency is influenced by the variation of parameters, but also the
position and the frequency at which the efficiency maxima occur are subject to
change. This change is reflected by ∂zdmax

∂p
p0

zdmax0
and ∂ fmax

∂p
p0

fmax0
. It is striking that the
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Table 5.4 Relative change in the maximum energy transfer efficiency ηmax, its
location zdmax and resonance frequency fmax for a relative change in a
parameter p

p ∂Πout,max
∂p

Πout,max0
p0

∂zdmax
∂p

p0
zdmax0

∂ fmax
∂p

p0
fmax0

p ∂Πout,max
∂p

p0
Πout,max0

∂zdmax
∂p

p0
zdmax0

∂ fmax
∂p

p0
fmax0

rd −7.8 2.9 −1.9 RL 0.5 −0.5 0.0
hd 0.8 −1.1 0.6 e31 1.2 −0.6 0.0
rp 2.9 0.1 −0.0 e33 1.9 −0.6 0.0
hp −4.4 5.2 0.2 e15 0.4 −0.5 0.0
rs1 −2.4 6.9 −0.2 cE −2.5 0.8 0.1
rs2 −0.9 6.3 −0.0 εS

r,33 0.6 −0.6 −0.0
ca −0.3 3.0 −0.1 ρPZT 0.4 5.0 −0.2
cb −2.0 5.9 −0.1 EAl 0.5 3.7 0.2
cc −3.6 6.7 −0.2 ρAl −0.2 2.9 −0.4
cd −3.7 4.6 −0.1 νAl 0.1 3.4 0.0
ce 0.3 2.7 −0.0
cf 0.6 3.9 −0.1
cg 0.3 1.6 −0.0

frequency at which the output power is at its maximum virtually does not change.
Only a change in the diaphragm radius seems to have any effect. One would expect
the resonance frequency of the transducer to change when this radius increases, but
then again, one would also expect it to change when altering parameters such as the
thickness of the diaphragm, the compliance of the materials, their density, et cetera.
The fact that a relative sensitivity is used probably obscures this change because of
the high value of fmax,0.

The accuracy of the finite element simulations used to derive table 5.4 is a matter of
concern. The listed sensitivities were checked by decreasing the mesh size, using
larger initial step sizes in the pattern search, and using a larger value for σ. The
results were all comparable, although the decimals are subject to change. There are
a two main reasons for this inaccuracy: the accuracy of the solver (which also can
lead to false maxima detection of the pattern search algorithm) and the remeshing
that is required for every change of a geometric parameter.

5.3 Conclusions and discussion

The efficiency of an AET system is affected by reflections, causing a great dependence
of the energy transfer efficiency on the distance between the transmitter and the
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receiver. The peaks in the output power and efficiency, which are a consequence of
the reflections, restrict the free placement of the receiver if a high energy transfer
efficiency and output power are desired.

One possible approach to dealing with reflections is to design a system were they do
not play a large role. An example is the system by Shahab et al. [109,111], that uses a
receiver that is small in comparison to the wavelength, and a spherically radiating
source. The disadvantages of such a system are the low received power and the
low transfer efficiency as a consequence of these design choices. It does, however,
greatly simplify the modelling of the system. In contrast, in this chapter effort was
made to model reflections, since they prove a key aspect of an AET system where a
high directionality is used in combination with a receiver of dimensions comparable
to or larger than the wavelength.

This chapter outlines two models that describe the reflections that occur in an AET

system where the transducers are imperfectly matched to the medium between them.
The first model, based on transmission line theory, is a completely analytical model,
based on one-dimensional wave propagation, where the combined diffraction and
absorption losses are accounted for by means of a lumped attenuation constant.
This constant is derived from a vibrating piston model. The second model is a
finite element model of the system where the electrical, mechanical and acoustical
domains are described and linked to each other through appropriate boundary
conditions.

The transmission line model is able to model reflections, but depends heavily on a
good transducer model. It is possible to approach measured values of the input and
output power to a good degree by means of this model, but the resulting transducer
parameters are unrealistic. Without a properly validated transducer model, of which
all the parameters are a priori known, it is impossible to say whether the good quality
of the fitted model’s simulation results is a consequence of the correctness of the
transmission line model, or that all errors in the model are smoothed away by the
parameter fitting and end up in the transducer model parameters. Measurements
of acoustic variables (pressures and velocities) would allow a direct comparison to
values from the transmission line model and can therefore be used to validate the
model, in the absence of sufficient knowledge of the transducer model.

Notwithstanding this consideration, the transmission line models seems to be able
to describe the reflections that occur in a typical AET system quite well. Hence, it
would seem that the transmission line model is at the very least a step in the right
direction.

The transmission line model predicts that, as one would expect, the resonance peaks
as a function of the distance between the two transducers completely disappear
when the receiving transducer presents an impedance to the medium that is exactly
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equal to the medium’s characteristic impedance.

Although finite element analysis seems to be able to describe reflections and the
general behaviour of an acoustic energy transfer system, it is far from the holy
grail in modelling. The FE model is able to model reflections, but the predicted
output power is an order of magnitude too high. The variation of the input power
with the distance between the two transducers is considerably different from the
measurements. This suggests that the transducer is likely incorrectly modelled.
This can be caused by parameter deviation, an incorrectly modelled geometry, the
absence of losses, unmodelled nonlinear behaviour, or a combination of any of these.

A sensitivity analysis indicates that a change of piezoelectric material can have a
great impact on the energy transfer efficiency. Other important parameters are the
diaphragm radius, the piezoelectric disc dimensions and the dimensions of the
plastic casing. It will therefore require much effort and proper characterisation of
all system, geometry and material parameters to arrive at a model that is able to
describe the quantities of interest to an adequate level of accuracy.

The transmission line model predicts that a perfect termination of the acoustic path
leads to a total absence of reflections. The impedance of the receiving transducer
must therefore be adapted to the medium’s characteristic impedance. Impedance
matching of transducers to a medium can be achieved in a number of ways. A
method that is often applied for piezoelectric transducers is the use of quarter-
wavelength matching layers [17, 41, 64]. As the name implies, these are layers of
a thickness corresponding to a quarter of a wavelength in the material, that are
bonded to the radiating face of the transducer. The material itself is chosen to have
a characteristic impedance between the transducer’s and medium’s characteristic
impedances. Often multiple consecutive layers are used for an even better adaptation
[41], each one successively decreasing in characteristic impedance from that of the
transducer to the loading medium. Matching layers are used less frequently in air,
because of the need for very low acoustic impedance materials, which are generally
extremely lossy and ill suited for use with piezo transducers due to difficulties in
bonding them to the transducer surface, in tuning them to the transducer’s resonance
frequency and their porosity [6, 7, 132]

Acoustic horns (as applied for example in horn drivers, sirens and megaphones)
[15,20,44,61,62,128] can be used to convert the large reactive radiation impedance of
a small transducer into a larger real impedance, and can convert a small transducer
velocity to a larger particle velocity in the horn. Moreover, a horn gives control over
the directivity of the transducer, which is another desirable feature in an AET system.

A final often applied method of impedance matching is the enlargement of the
radiating surface of the transducer, commonly accomplished with membranes or
diaphragms, such as the cone in a traditional voice coil loudspeaker [15, 20], or
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trough the use of multiple direct radiators in parallel.

The last two methods of impedance adaptation will be examined in more detail in the
next two chapters. Chapter 6 deals with the use of horns in AET systems operating
in air. Chapter 7 investigates the influence of an increased radiation surface on the
energy transfer.
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6 Horns

REFLECTIONS are caused by an impedance mismatch at the side of the receiver,
basically no differently from a poorly terminated transmission line, as was
explained in the previous chapter. They are undesirable, in the sense that

they introduce maxima and minima into the energy transfer and the efficiency, and
thereby limit the placement of the receiver to distinct locations where the energy
transfer peaks. A receiver that presents a perfect impedance match to the medium
is able to absorb all the energy contained in the incident wave, without generating
reflections (see figure 5.3). But it is not only an impedance mismatch at the receiving
end that affects the energy transfer. The impedance mismatch that exists between
the transmitting transducer and the medium limits the power that can be transferred.
A perfectly matched transmitter transfers the maximum amount of energy to the
medium.

Impedance adaptation for transducers in essence amounts to conversion of either the
pressure or the particle velocity at the radiating face of the transducer, or both. As a
result the transducer experiences a better match with its own impedance. Section
5.3 already mentioned a number of methods with which this can be accomplished.
This chapter specifically addresses the use of horns for this purpose. It describes the
design and optimisation of horns for AET that employ internal reflections to boost
the throat impedance.

This chapter is based on [99] and [100].

101
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6.1 Waveguides

Let us first look at what a horn actually is. In essence it is a structure that limits the
spreading of a wave. It is therefore a waveguide; a structure that guides the sound
wave as it propagates along a path. In its simplest form, a waveguide is a pipe of a
constant cross section. This type of wave guide was already discussed in section 5.1,
where it was used to model reflections analytically.

Let us apply the coordinate transformation mentioned in footnote 1 on page 75,
setting z = −l, and terminating the waveguide with an impedance Za

(0) = p(0)/u(0)

at z = 0. A positive l corresponds to a location a distance l to the left of z = 0.
Equations (5.1) and (5.2) can be combined to find the impedance Za

(l) as

Za
(l) = Za

0
Za

(0) + jZa
0 tan(kl)

Za
0 + jZa

(0) tan(kl)
, (6.1)

which is a well-known standard expression1. Losses are neglected in this case, hence
k is real.

If the cross-sectional area of the waveguide changes at z = 0 from A1 to A2, such
as depicted in figure 6.1, the situation becomes somewhat different. We will make
the assumption here that the waves inside the waveguide are always plane waves.
Imagine that we have a pressure p(0−) and a particle velocity u(0−) immediately
left of the discontinuity and a pressure and particle velocity p(0+) and u(0+) to
the right. The pressure should be continuous across the boundary, implying that
p(0−) = p(0+). Continuity relations also dictate that the mass flow (and hence
the volume flow) be constant across the discontinuity, or A1u(0−) = A2u(0+).
Therefore the impedances directly left and right of the discontinuity are related by

Za(0−) = A1

A2
Za(0+) . (6.2)

A step change in the diameter of a pipe can therefore be used to increase the imped-
ance seen by a transducer or the medium (or decrease it when desired).

Now, let us consider the impedance a distance l away from the discontinuity. It
follows from the combination of (6.1) and (6.2), and is equal to

Za
(l) = Za

0
A1Za+

+ jA2Za
0 tan(kl)

A2Za
0 + jA1Za+ tan(kl)

, (6.3)

1On a side node, equation (6.1) explains how quarter-wavelength matching layers can be used for
impedance adaptation. For a length corresponding to a quarter-wavelength kl = 1

2 π, the impedance
becomes Za

(l) = Za
0

2/Za
(0) and can thus be tuned by a proper choice of Za

0 . The only other length that
yields a real impedance is l = 1

2 λ, resulting in the not overly useful Za
(l) = Za

(0).
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A1 A2

Figure 6.1 A waveguide with a change in cross-sectional area at z = 0.

using the shorthand notation Za+
= Za

(0+).

6.2 Exponential horns

If the cross-sectional area of a pipe changes continuously, instead of abruptly as in
figure 6.1, and it increases monotonically, such a pipe is normally referred to as a
horn [69]. Based on the force and mass balance in a horn, one can derive a differential
equation that describes the pressure in it. This equation, known as Webster’s horn
equation [69, 128], is given by

∂2 p
∂z2 +

d ln(A)

dz
∂ p
∂z

=
1
c2

∂2 p
∂t2 . (6.4)

It is derived under the assumption that the waves in the horn are (nearly) plane,
which is only possible as long as the surface area A changes very slowly as a function
of z.

Let us now look at a horn of which the surface area varies exponentially as

A(z) = A0emz , (6.5)

with m the flare constant of the horn. The differential equation (6.4) for the pressure
waves in this horn can then be written as

∂2 p
∂z2 + m

∂ p
∂z

=
1
c2

∂2 p
∂t2 . (6.6)

Substitution of a plane wave solution p(z, t) = Peσzejωt gives

σ2 + mσ + k2 = 0 , (6.7)

where the angular wave number k = ω/c is again introduced. This equation has the
solutions σ = −α± jβ, with α = 1

2 m and β =
√

k2 − α2. Note that a travelling wave
solution only exists for β ∈ R, or ω > ωc =

1
2 mc. The horn therefore has a distinct

cutoff frequency and acts as a high pass filter.
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6.2.1 Infinite horns

If we make the assumption that the horn is infinitely long, there is no interface from
which reflections can occur, and hence there will only be a wave travelling in the
positive z-direction. This wave corresponds to the solution σ = jβ− α, or

p(z, t) = Pe−
1
2 mzej(ωt−βz) . (6.8)

The factor e−
1
2 mz is the dilution [69] that accounts for the waves having to cover an

area that increases with the spatial coordinate z.

The particle velocity u(z, t) in the horn can be obtained from the solution of the
pressure (6.8) by means of equation (3.19), which can be written in this case as

u = − 1
jρ0ω

∂ p
∂z

=
p

Za
0

(√
1−

(ωc

ω

)2
− j

ωc

ω

)
.

(6.9)

The ratio between the pressure and the particle velocity gives us the effective charac-
teristic impedance that the wave experiences inside the horn. It is equal to

Za
0,h =

p
u

= Za
0

(√
1−

(ωc

ω

)2
+ j

ωc

ω

)
.

(6.10)

Note that this impedance does not depend on the z-coordinate and thus is constant
throughout the horn. Therefore it is effectively the impedance that a source placed at
the the throat (the narrow end) of the horn will have to work against. The radiation
resistance of this transducer, determining its radiated power, hence is equal to

Rrad,h = A0 Re
(

Za
0,h

)
= A0Za

0

√
1−

(ωc

ω

)2
.

(6.11)

Comparing this radiation impedance to that of a circular piston, given by equation
(4.12), one can see in figure 6.2 that the low frequency radiation of a plane piston
is greatly improved by application of a horn. This is a great advantage for audio
applications, as is the flat frequency response of the horn in comparison to the piston
radiator. Unfortunately, acoustic energy transfer does not really benefit from either,
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Figure 6.2 The normalised radiation impedance of a circular piston source of
r0 = 8 cm radius is boosted for low frequencies by the addition of an
infinite exponential horn (m = 5 m−1).

as long as the transmitter size is not too small in comparison to the wavelength. In
the high frequency region, the impedance seen by the transmitter is approximately
equal to A0Za

0 , whether a horn is used or not. The advantage of the horn lies in
confining the radiated power to a restricted volume, instead of the source radiating
omnidirectionally (which it does for a small transmitter size in comparison to the
wavelength, and thus low frequencies). In principle an increased transducer size
gives the same result as the addition of a horn. Horns are often used in loudspeaker
systems, rather that large diaphragms, because the mass of a diaphragm increases
faster than its area, since a certain rigidity should be maintained [34]. Therefore
a small loudspeaker coupled to a horn will be more efficient than a large direct
radiator. A larger radiation surface can also be obtained by using multiple direct
radiators driven in parallel, but horn loudspeakers perform much better in this
situation in general as well, due to difficulties in getting these loudspeakers to
radiate at a uniform phase, because of spacing, complex vibration of the diaphragm,
and production variation. The resulting radiation is often irregular and has an
unpredictable response and directivity [15].

6.2.2 Horns of finite length

Equation (6.7) predicts a wave travelling in the positive z-direction and one going in
the opposite direction. Only the former was used in the derivation of the sound field
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in the infinite horn, since reflections can never occur in it. In practice, however, a horn
will always have a finite length. An infinite horn can at best only be approximated.
The true pressure field will therefore be a superposition of both solutions.

A complete derivation of the pressure field inside a horn of finite length will not be
given in this section. Instead the resulting throat impedance will merely be given. It
is equal to (see [21, 120]):

Za
t = Za

0
jZa

0 sin(βl) + Za
m cos(βl + θ)

jZa
m sin(βl) + Za

0 cos(βl − θ)
, (6.12)

with tan θ = α/β. Since we are now dealing with a horn of finite length l, the throat
impedance Za

t depends on the impedance Za
m at the mouth of the horn (the wide

end). The form of (6.12) is reminiscent of the equation describing the impedance of
a transmission line (6.1), which a horn of course is in a certain sense.

The value of the mouth impedance Za
m is normally approximated in literature by that

of a baffled circular piston source (see equation (4.12)). This is an exact representation
as long as the waves arriving at the mouth of the horn are plane waves and the horn
mouth is embedded in a baffle. In practice it will therefore only be an approximation.
Note that Za

m is an acoustic impedance, instead of a mechanical impedance. The
radiation impedance from (4.12) should therefore be divided by the mouth surface
area.

Figure 6.3 depicts the throat impedance from equation (6.12) for a horn mouth radius
of 10 cm, 20 cm, 30 cm and that of an infinite horn. The throat radius is 8 cm in all
four situations, and the horn flare constant is m = 5 m−1, just as in figure 6.2. The
graphs show that the longer the horn is, the more its throat impedance approaches
that of an infinite exponential horn. The horn impedance now peaks at certain
resonance frequencies, as a consequence of the horn’s finite length. These peaks
surpass the Za

0-level, which can at maximum be attained by means of an infinite
horn, and which is approximately the maximum radiation resistance of a plane
piston. A finite horn is therefore capable of boosting the impedance seen by the
transducer.

The asymmetric oscillations that are visible in the throat impedance (for example
around f = 2 kHz for rm = 10 cm) are caused by the oscillatory behaviour of the
radiation impedance of a circular piston, (see figure 4.3 or 6.2). Furthermore, the
first peak of the impedance is significantly higher than the others for small horn
mouth sizes. This is a direct result of the low radiation impedance of the mouth for
small sizes and low frequencies (cf. figure 4.3), having large reflections as a result,
comparable to a large impedance mismatch in a transmission line.
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Figure 6.3 The normalised throat impedance for an exponential horn having
throat radius rt = 8 cm and flare rate m = 5 m−1, for a mouth radius
rm = 10 cm, 20 cm and 30 cm, and an infinite horn (from equation
(6.11)).
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6.3 Introductory measurements

A simple first test setup was built to investigate the effect that horns have on the
energy transfer efficiency. Again, two PX051 piezo transducers were used for these
experiments, one on the transmitting and one on the receiving side. Two horns, one
for the transmitting and one for the receiving transducer, were constructed to test
for influence on the reflection and the energy transfer efficiency as a whole. As a
first attempt, a readily available shape was used as a horn. The horns are made out
of PET with a thickness of 0.25 mm.

A finite element model of the AET system with horns was made for comparison. The
horns are added to the FE model of the PX051 transducers, which was described
in section 5.2, to obtain the model in figure 6.4. The total FE model contains two
of these transducer-horn combinations placed a distance zd apart in an air domain,
surrounded by a perfect matching layer. The horns are modelled in the simulation
as a rigid reflecting boundary. Their geometry is approximated by a linear segment,
followed by a quadratic Bézier curve. The linear part at the throat of the horn is
described by

rh (z) = 13.2 mm , 0 mm ≤ z < 9.50 mm , (6.13)

while the second part is given by the rational quadratic Bézier curve:

~B (t) = rh(t) r̂ + z(t) ẑ (6.14)

=
(1− t)2 ~P0w0 + 2t (1− t) ~P1w1 + t2~P2w2

(1− t)2 w0 + 2t (1− t)w1 + t2w2
, t ∈ [0, 1] , (6.15)

with

P =
(
~P0 ~P1 ~P2

)
=

(
13.2 23.4 32.3
9.50 26.8 80.0

)
mm , (6.16)

w =
(
w0 w1 w2

)
=
(
1 3.62 1

)
. (6.17)

6.3.1 Results

The measured energy transfer efficiency of the AET system with PX051 transducers
and horns is shown in figure 6.5, together with the corresponding simulation results
obtained from the FE model. There are some dissimilar peaks to be found in the
region 0 mm < zd < 60 mm. These are possibly caused by resonances in the
horns, i.e. structural vibrations that are not modelled in FE analysis. All other
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Figure 6.4 The radius rh (z) of the horns that are used in the measurements
is described in the FE model by means of Bézier curves. They are
modelled as ideal hard acoustic boundaries.

characteristics of the simulated and experimentally determined efficiency are very
similar. The relative amplitude of the peaks in comparison to their mean is equal
from approximately zd = 100 mm onwards, just as is their shape. As one can see, the
mean of the measured efficiency and the efficiency predicted by the FE model differ
approximately by a factor 2.3 for distances zd > 100 mm. The peaks are also shifted
to the right by 3.1 mm, which is possibly caused by a small offset in the reference
position during the measurements.

Let us now turn our attention towards the differences between the efficiency with
and without horns, which is of course our main interest. Both measurements
are plotted in figure 6.6 to be able to compare them directly. The distance zd is
measured between the horn mouths, or between the casings of the transducers
for the measurements without horns. The actual distance travelled between the
transducers in the case with horns is therefore larger by 2lh = 160 mm. It is, however,
fair to compare the efficiency for an equal separation between the extremities of the
transducers—including horns—as this is the distance one would be interested in for
contactless energy transfer.

Figure 6.6 shows that horns can drastically increase the efficiency of AET, by an
order of magnitude or more, although the peak efficiency is lower (5.1 % with horns,
versus 27.7 % without). The milder drop-off as a function of the distance zd is very
striking, and can be explained by the larger radiating surface of the transmitter,
leading to less diffraction losses, and the increased receiver area, which allows it to
catch more energy (cf. figure 4.7). Adding horns to the transducers in an AET system
does not reduce reflections per se, as the peaks due to reflections became larger by
the addition of the horns. This is in all likelihood a consequence of a suboptimal
horn design. The exact cause was not verified.

All-in-all there are enough interesting features to figure 6.6 to justify more exper-
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Figure 6.5 Measurements and simulations of an AET system fitted with horns
differ in amplitudes and mean values of the spatial resonance peaks.
Moreover, there are some resonance peaks present in the measurement
results for small values of zd that are absent in the FE simulations. For
large zd, the results agree to a larger extent.
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Figure 6.6 Measurements show that the addition of horns to an AET system can
significantly enhance the efficiency of the energy transfer. Moreover,
the decline of the efficiency is much milder when the horns are added.
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iments in an attempt to boost the output power and to decrease reflections. The
remainder of this chapter is dedicated to the design of specific horns for AET and
their optimisation.

6.4 Stepped-exponential horns

Horn design commonly focuses on obtaining a frequency response that is as flat
as possible [21, 44, 58, 69, 120], being a desirable feature in sound generation for
audio purposes. However, since acoustic energy transfer normally makes use of a
single frequency, or at most a very narrow frequency band, it is possible to design
a horn in which its resonance characteristics are deliberately used to obtain a high
output at the desired frequency. Reflections in the horn, which occur due to its
finite length, can be used to tune the impedance in such a way that the horn has
a large transformation ratio. This possibility was already coined much earlier, but
was usually considered undesirable or unnecessary (see for example [44]). On
another note, the horns for audio systems are normally designed to have a constant
directivity, with low beam forming, while an AET system contrarily benefits from
having a very high directivity, or otherwise put: a narrow beam width.

This section focuses on the design of horns that provide a large impedance step in an
attempt to reduce reflections and to increase the transferred power. The resonance
frequency of the horn is matched to that of the driving transducer to obtain the
maximum output pressure. Two concepts from section 6.1 are married to this end; a
stepped radius waveguide is utilised to obtain a large step in impedance, which is
then coupled to an exponential horn section. A cross section of the total structure is
depicted in figure 6.7. The radius of the horn is given by

r(z) =

{
r1, 0 ≤ z < l1
r2e

1
2 m(z−l1), l1 ≤ z < l2

. (6.18)

The first section, consisting of a step in bore radius from r1 to r2, boosts the imped-
ance, but the accompanying decrease in radiating surface means that the directivity
is also reduced in comparison to that of the original transducer. As indicated previ-
ously, a horn can be used in such a case to both increase the radiation resistance and
to improve the directivity. The length l2 of the exponential section can moreover be
chosen advantageously to gain an extra boost in impedance. The total impedance
presented to the transducer at z = 0 is then equal to the combination of (6.3) and
(6.12), with Za+

= Za
t .
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Figure 6.7 A stepped exponential horn has a constant radius at its throat, chan-
ging stepwise into a smaller radius, which flares out again exponen-
tially.

These equations only describe the behaviour of the horns up to a certain accuracy.
The derivation of the throat impedance of the finite exponential horn assumes that
the horns are slender, i.e. that mouth radius r3 is not much larger than the throat
radius r2. This is a requirement that is not mentioned properly in literature, but
that is rather just lightly touched upon and subsequently ignored. Although the
impedance graphs of figure 6.3 seem to converge to that of an infinite horn for
an increase in mouth radius, they actually diverge again for even larger mouth
radii. This stems from the assumption of plane waves that no longer holds in these
cases. The derivation of both (6.3) and (6.12) made use of this assumption, which
is a further cause of concern, since this requires the horn’s radial dimensions to be
much smaller than a wavelength. In practice this will not be the case either, which
can give rise to radial modi. Lastly, one is interested in the transferred power and
the efficiency at which this occurs, which the impedance does not directly give
an account of. Here the directivity of the horn also comes into play, which is not
described by these simple impedance equations.

Because of these reasons finite element analysis is used for design and optimisation
of the horns, even though it is much more computationally intensive. The FE model
consists of the geometry of the PX051 piezoelectric transducers, which was presented
earlier in section 5.2, coupled to the horn structure of figure 6.7. For the sake of
simplicity, an axisymmetric model is used and the horn walls are modelled as hard
boundaries. The horns are assumed to be sufficiently rigid to be able to neglect
their structural mechanical properties. No losses in the transducers, the horns or
wave propagation were modelled in the FE model for the design and optimisation
of the horns. All losses in the model solely occur due to acoustic energy that is not
captured by the receiver.

To attain maximum power transfer, the dimensions of the horns are optimised using
the MATLAB patternsearch minimisation algorithm and the FE model. The power
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Table 6.1 Optimisation yields different dimensions for both the transmitter and
receiver horns.

Parameter Transmitter (mm) Receiver (mm)

r1 11.70 11.70
r2 3.01 5.65
r3 24.03 41.01
l1 17.95 18.43
l2 149.18 146.21
m 27.8 27.1

transfer has many local optima, largely due to the reflections in the horns, requiring
the use of a global optimisation algorithm. Because there is no way of confirming
whether a found solution is actually globally optimal, the optimisation was started
from a large number of initial parameter sets to obtain a design of which optimality
is sufficiently probable. The optimisation goal in this case is maximisation of the
received power, dissipated in a 2 kΩ load connected to the receiving transducer.
This load resistance was chosen based on the optimal value found in section 4.3.2.
A driving frequency of 17 kHz is used in the optimisation, which is the nominal
resonance frequency of the piezo transducers that are used. The distance zd between
the mouths of the horns was set to 10 cm.

The horn parameters of both the transmitter and receiver are varied in the optim-
isation, as it is expected that this leads to a higher power output. In principle, the
design of the mouth and flare of the transmitter should be aimed at arriving at an
optimal directivity, to decrease the spreading losses. A large mouth, and hence a
large receiving surface, is beneficial for the receiver on the other hand. The receiv-
ing horn should at the same time provide a good impedance match so that little
energy is reflected. Therefore the horns are optimised simultaneously. The resulting
parameters of the optimised designs are given in table 6.1.

6.4.1 Transducer losses

Initial measurements showed large differences between the measured transferred
power and efficiency and the predictions from the FE model. The FE model was
therefore extended with the transducer losses from section 4.3.1. As was already
discussed, the internal resistance varies wildly between transducers. A resistance
Rm = 190 Ω is used in the FE model to compensate for the losses in the transducer.

The losses are added exactly as they are measured: as a lumped element resistance.
This is accomplished by addition of an electrical circuit to the FE simulation, which is
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Figure 6.8 The transducer losses are incorporated into the FE model as a lumped
element resistance. A negative capacitance is used to cancel the trans-
ducers parasitic capacitance. The equivalent circuit of the transducer
is represented in grey since it is not the real FE transducer model, but
is merely drawn for comprehensibility of the principle.

connected virtually to the terminals of the piezoelectric ceramic. First, the electrical
impedance is determined from the original FE model of the PX051 transducers
by means of a frequency sweep. Subsequently, it is assumed that the equivalent
circuit of the PX051 model in the FE model is of the form of figure 4.8. Its circuit
parameters are then determined making use of the method described in section 4.3.1.
Now the transducer losses should be added as a series element in the mechanical
branch of the equivalent circuit. To this end a negative capacitance −Ce is placed in
parallel to the transducer in simulation, which cancels the transducer’s own electrical
capacitance. A resistance R′m = 190 Ω is then connected between a capacitance Ce
and the transducer terminals. The principle is shown graphically in figure 6.8.

6.4.2 Experimental results

The horn designs that were obtained from the optimisation were CNC-machined out
of solid aluminium. They were fitted with the PX051 piezoelectric transducers that
were also used for earlier experiments. These transducers were cherry-picked for
the experiments to have a resonance frequency of 17.0 kHz, since the horns were
designed to work at this frequency. The horns were successively mounted on the
same position controlled linear motor that was used in earlier measurements (section
5.1.6, page 84). The procedure for measuring the input and output power was the
same as well. Distances zd are measured between the horn mouths. All surfaces
were covered in absorbing foam to counter reflections. A photograph of the setup is
shown in figure 6.9.

The electrical load RL connected to the receiving transducer was varied to find its
optimum of 840 Ω at a distance of zd = 10 cm, for which the horns were optimised.
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Figure 6.9 The horns were milled out of solid aluminium and mounted on a
linear motor with incremental encoder to facilitate accurate position
variation.

The electrical capacitance was not compensated, as it did not yield a higher output
power. This indicates that the effective internal resistance of the receiver is low in
comparison to the reactance of its electrical capacitance.

The power transfer and efficiency of the transducers without horns was measured on
the same setup for comparison. A 420 Ω load proved to be optimal in this case. As
before, the distance zd was measured between the casings of the transducers to allow
a fair comparison between the sets of measurements. Although this means that
the path lengths between the transducers is shorter by a distance l1 + l2, arguably
leading to a wrong comparison from an acoustic point of view, the distance between
the extremities of the transmitter and the receiver is of importance for comparison
of the performance of a contactless energy transfer system.

Power transfer and efficiency

The results of the FE simulation and the energy transfer measurements, both with
and without horns, are plotted together in figure 6.10 as a function of the distance zd
between the transmitter and the receiver. This distance was incremented in 250 µm
steps with a 1 µm accuracy. It is immediately clear from these graphs that the realised
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power transfer and efficiency are much lower than the predictions of the FE model,
even after including the transducer losses in the model. Section 6.4.3 will go into
more detail about the origin of these differences.

Even though the measured behaviour is different from that of the model, the horns
still have a large advantage over the setup without horns. The output power is
larger at distances greater than 74 mm, while the efficiency of the hornless setup is
already outperformed at a distance of 52 mm. The power transfer and efficiency of
the setup without horns is still better in comparison to the case with horns for very
small distances, where reflections between the transducers play a large role. Their
efficiency and transferred power drops off rather steeply with distance, however,
which is something the horns suffer from to a much lesser extent, because of the
improved directivity of the transmitter. Furthermore, the increased area of the
receiver allows a larger part of the sound wave to be captured and guided towards
the piezo transducer.

At zd = 10 cm, the distance for which the horns were optimised, the received
electrical power is Πout = 248 µW, at an energy transfer efficiency of η = 0.68 %. If
no horns are used, the same transducers yield an output power of Πout = 79.8 µW at
an efficiency of η = 0.091 %. The height of the peaks due to reflections does not differ
notably from those in the experiment without horns. Only at larger distances, from
approximately zd = 80 mm onwards, the height of the peaks in the case without
horns is much lower, which is likely caused by larger spreading losses in this case.

If one would look at how the systems compare for equal distances between the
diaphragms of the transducers, the horns compare very favourably. Their results
in figure 6.10 are then offset by 331.77 mm, which is out of range of the graph, but
extrapolation allows us to see that the horns would provide more than an order of
magnitude higher output power and efficiency.

6.4.3 Differences between measurements and simulations

There are several possible causes for the experimental results of the power and
efficiency measurements with horns to be quite different from the finite element
simulations. Firstly, as mentioned earlier, the piezo transducers that are used vary
greatly, not only in resonance frequency, but in losses as well. This variation in
combination with possible minor deviations in the horn dimensions can lead to
large change in the output, since the resonances of the air column in the horn have
to be tuned exactly to the resonance of the piezo element. Moreover, section 5.2.1
already indicated that the FE model of the piezoelectric transducers, which was used
for optimisation of the horns, deviates from their actual behaviour.
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Figure 6.10 Although the horns show a great improvement in energy transfer
and efficiency at greater distances, their effect is much smaller than
was predicted by the model. The graphs show the electrical input
power Πin, the electrical output power Πout and the energy transfer
efficiency η = Πout/Πin.
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Another possible effect that could degrade performance are viscous losses in the
small cross-sectional areas of the exponential sections. The viscous and thermal
boundary layer thicknesses at f = 17 kHz and 20 ◦C are respectively [69]

dvis =

√
2µ

ρ0ω
= 16.9 µm (6.19a)

dth =

√
2κ

ρ0ωcp
= 19.9 µm , (6.19b)

with µ = 1.8369 · 10−5 kg m−1 s−1 being the viscosity, κ = 0.0257 W m−1 K−1 the
thermal conductivity and cp = 1.005 · 103 J kg−1 K−1 the isobaric mass heat capacity,
all of dry air at 20 ◦C. These correspond to a viscous boundary layer covering
1.1 % and a thermal boundary layer that makes up 1.3 % of the surface area at the
narrowest part (r = r2) of the transmitter horn. There will therefore be a small
influence due to viscous losses at the walls of the horns and heat exchange between
the horn and the air, but it is not expected to play a huge role.

Although nonlinear effects due to excessively high pressure levels are often respons-
ible for reduced performance of horns, it was confirmed by measuring the linearity
between the output sound pressure and the input voltage that this is not an issue in
the current design.

The influence of several other parameters will be investigated in the remainder of
this section. The performance of the horns is judged based on the sensitivity S of the
horn driver (the piezo element-horn combination). It is defined in this case as the on-
axis sound pressure amplitude2 at a distance of 10 cm from the horn mouth, divided
by the input voltage amplitude of the transducer. The sensitivity is measured by
means of a Stanford Research Systems SR785 dynamic signal analyser using a swept
sine measurement. Only the ratio of the pressure and voltage amplitudes is retained,
the phase information is discarded. The horns for the transmitting and the receiving
transducers are both used in a transmitting configuration for these tests.

Figure 6.11 beautifully illustrates the reason why losses were included in the finite
element model, as the sensitivity without is much too high for both transducers.
Adding a transducer loss resistance R′m = 190 Ω brings the simulated sensitivity of
the receiver down to that of the measurements, but the sensitivity of the transmitter,
as predicted by the FE model, is still too large.

Please keep in mind that the sensitivity is only used as a convenient quantity on the
basis of which to judge the deviation between the FE model and the measurements.

2The sound pressure was measured using a G.R.A.S. 40BF microphone, connected to a 26AC preampli-
fier and a 12AK power module and postamplifier from the same manufacturer. The whole measurement
chain is calibrated using a G.R.A.S. 42AA pistonphone.
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Figure 6.11 The measured sensitivities of the transmitting (a) and receiving (b)
horn drivers are compared with finite element simulations, both with
and without transducer losses.
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While it bears some information on the performance of the horns, it is not an absolute
measure of how well these horns function in an acoustic energy transfer setup, as
the sensitivity does not give any information about the directivity, reflections, et
cetera.

Horn parameters

The first place to start in the search for the cause of these large deviations is naturally
with the influence of the horn dimensions. To this end, the sensitivity at 10 cm from
the transmitting horn mouth is simulated again using the finite element model. In
these simulations, the horn parameters are varied from their nominal values by
plus and minus 4 %; a deviation that they in practice never can have. The results
are shown in figures 6.12a-d. These graphs indicate that r2, r3 and l2 have a very
limited influence on the on-axis pressure at z = 10 cm. The length l1 of the chamber
into which the transducer radiates, however, has an enormous influence on the
sensitivity. This is easily explained, as equation (6.3) already shows that it are the
reflections in this section that determine the load impedance on the transducer.
Lengthening or shortening this section changes the wavelength at which resonance
occurs. Therefore the influence of this length is very large. It would not have been
odd for the same to apply to the length l2 of the exponential section, but apparently
the reflections in this section play much less of a role in the throat impedance of the
horn.

Figure 6.12e shows similar results for a variation of the horn profile. It was changed
from its original exponential shape to a conical one in five discrete steps. The
intermediate horns are a conical-exponential hybrid. The horn radius as a function
of the z-coordinate is given for these horns by

r(z) = tr2

(
r3

r2

) z−l1
l2

+ (1− t)
(

r3 − r2

l2
(z− l1) + r2

)
, t ∈

{
0, 1

4 , 1
2 , 3

4 , 1
}

.

(6.20)

The figure indicates that the shape of the flaring section of the horn is not important.
Surprisingly, at S = 11.3 Pa V−1 the on axis pressure is even larger at f = 17 kHz
for a purely conical section than it is for the originally designed exponential design
(S = 11.2 Pa V−1). This renders manufacturing of the horns considerably easier. The
best performance at 17 kHz is obtained for t = 1

2 , although the sensitivity is only
marginally better at S = 11.5 Pa V−1. The differences are not large enough, however,
to explain the dissimilarity between the measurements and the simulations.
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Figure 6.12 Parameter variation of r2 (a), r3 (b), l1 (c), l2 (d) is investigated by
means of FE simulations of the sensitivity S at 10 cm distance from
the transmitting horn mouth. The graphs correspond to: nominal
value minus 4 % (black), nominal value (dark grey) and plus 4 %
(light grey). The influence of the horn profile is shown in (e). It was
varied between the original exponential and a conical shape.
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Transducer losses

Figure 6.11 already gave a quick first glance at how transducer losses influence the
characteristics of the stepped-exponential horn radiators. Understandably, the losses
lower the sensitivity, owing to the fact that part of the energy is dissipated in the
transducer, rather than radiated.

Figure 6.13 gives a better view of the influence of the transducer losses. The sens-
itivity indeed decreases when the losses increase. Since the mechanical quality
factor Qm of the transducer also decreases (see equation (4.34)), the sharpness of the
resonance peaks decreases when the resistance is increased.

As said before, the sensitivity of the receiving horn and transducer match very well
with the simulation results for R′m = 190 Ω, but those of the transmitting horn do
not. They are still more than a factor two off. It is not possible to get both to match
only by addition of transducer losses. These losses will therefore play a role in the
discrepancy between measurements and model, but will not be the sole cause.

Interestingly enough, especially from figure 6.13b, it appears that the right peak,
around 17.4 kHz, is damped much more by the transducer losses than the left one.
This effect is much less pronounced for the transmitter (figure 6.13a).

Piezoelectric stress constant

Section 5.2 mentioned that, based on the relative permittivity of the piezoelectric
material, it is probable that an incorrect material is used in the finite element model.
Let us therefore have a look at how the piezoelectric stress constant influences the
sensitivity of the horn drivers, and whether a wrongly chosen value in the FE model
can cause the deviations seen in figure 6.11.

The finite element model uses PZT-5A as a piezoelectric material, as was indicated
in the previous chapter. The PZT-5A material that is available in the material library
in Comsol Mulitphysics has e31 = −5.35 C m−2 and e33 = 15.78 C m−2. Both values
are changed in simulation to investigate their impact on the sensitivity. The 31-
component is changed to −2 C m−2 and e33 to 5 C m−2; first separately, then both
components are changed simultaneously. The effect of e15 was already shown
to be minimal, as one would expect from a bender element, and is therefore not
considered.

Figure 6.14 depicts the sensitivity at a 10 cm distance from the horn mouth for these
combinations of stress constants. Decreasing the stress constant leads to a lower
sensitivity, as is to be expected, since it is the factor relating the stress to the electric
field. Altering the stress constant also changes the resonance frequencies of the
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Figure 6.13 The sensitivity decreases for an increase in transducer losses, as is
shown by these finite element simulation results. The sensitivities
of the transmitting horn driver (a) and receiving horn driver (b) are
shown separately.
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Table 6.2 Resonance frequencies of the transducers that are used for component
variation analysis.

Transducer f0 (kHz) Transducer f0 (kHz)

1 17.0 6 17.1
2 16.8 7 17.0
3 17.0 8 16.8
4 16.8 9 17.1
5 17.0

system, as is visible, most notably from figure 6.14a. The peaks distinctly shift to a
lower frequency for lower stress constants.

Contrarily to the transducer losses, which also lower the sensitivity, as figure 6.13
indicates, the stress constant does not appreciably lower the quality factor in the
way that the losses do. It is therefore perfectly reasonable to assume that the stress
constant plays a role in the reduced performance of the horns in comparison to the
FE simulations.

Component variation

Given the knowledge that the PX051 transducers that drive the horns vary quite
substantially from transducer to transducer, the influence of their parameter vari-
ation on the sensitivity should be examined as well. To this end the on-axis pressure
of the receiving horn is measured for nine different transducers. All transducers
were selected on the basis of their resonance frequency f0 lying in the vicinity of
17 kHz. The exact resonance frequencies are listed in table 6.2.

The sensitivities, again at 10 cm distance, are plotted in figure 6.15. It is immediately
clear that there is a huge range of output, depending on the chosen transducer. The
peak sensitivity can differ up to approximately a factor 3. Both the shape and the
amplitude are subject to variation. The shapes and amplitudes of the sensitivities
of transducers 2 and 3, those of 4 and 9, and those of 5 and 7 seem reasonably
comparable. The value of the piezo transducer’s resonance frequency, from table 6.2,
seems to be of little influence, however.

The transducers are fixed to the horns by means of a thin aluminium plate, pressing
them firmly against the horn mouth. This plate is fixed onto the horn by means of
three M3 bolts, which can be seen in figure 6.9 if one looks closely. It is possible that
the force with which they hold the transducer in place influences the performance
of the horn driver as a whole. This hypothesis is investigated by fastening the bolts
with various torques by means of a Torqueleader TBN2 torquewrench with a range
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Figure 6.14 The piezoelectric stress constant e has a pronounced influence on the
behaviour of both the transmitting transducer-horn combination (a)
and the receiving set (b). The graphs show the measured sensitivities
and FE simulations using PZT-5A material. The first set of simula-
tions uses unaltered PZT-5A. For the second set e31 was changed to
−2 C m−2, the third set has e33 = 5 C m−2, and the fourth uses both
e31 = −2 C m−2 and e33 = 5 C m−2.
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Figure 6.15 The sensitivity of the receiving horn S using nine different trans-
ducers shows the enormous influence that component variation of
the driving element has on the output of the horns.
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Figure 6.16 The sensitivity of the receiving horn-transducer combination is influ-
enced by the tightening torque of the bolts that keep the transducer
in place. The darker the line, the higher this torque.

of 0.2 to 2 N m. The sensitivity of the receiving horn driver is measured as before
for a range of fastening torques. Figure 6.16 shows the results. The fastening torque
indeed influences the sensitivity, and thus the characteristics of the horn driver. It
is mostly the left resonance peak that is affected by tightening of the bolts. The
peak not only increases in amplitude, but it also seems to move to a slightly lower
frequency.

The results of figure 6.16 can explain the differences in figure 6.15 for a small part,
but not completely, since the influence is not large enough to account for a factor
3 increase of the sensitivity. Although the bolts were not tightened using a torque
wrench for the experiment of figure 6.15, the actual torque used will not have lain in
so great a range as used in these experiments. Moreover, the output does not change
considerably for the three highest fastening torques.

Temperature variation

From the horn parameter sensitivity analysis, we know that the most important
parameter of the horn is the length l1 of the first section. Its length is used for setting
up a resonance condition, where the output greatly increases through reflections.
Exactly like the effect described in the previous chapter, the wavelength plays
a crucial part here. When the sound velocity changes, the frequency at which
resonance occurs changes along with it. Now, the speed of sound in air is only
affected by the temperature of the medium. The effect of all other parameters is
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negligible [58]. Since the measurements in this chapter were done in a period were
the maximum ambient temperature lay at 25 ◦C or higher, let us choose this value as
a reference value to investigate the influence of the temperature.

The equation of state for a perfect gas is, according to [58], equal to

pt = ρtrTK (6.21)

with r ≈ 287.06 J kg−1 K−1 the specific gas constant and TK the absolute temperature
in Kelvins. Combination with (3.7b) allows the sound velocity to be written as

c2 = γrTK

= c2
0

(
1 +

T
T0

) (6.22)

where c0 is the sound velocity at 0 ◦C, T is the temperature in ◦C and T0 = 273.15 K.
From equation (3.7b), and the list of physical constants in A.5, we can calculate the
sound velocity at 0 ◦C to be c0 = 331.33 m s−1.

To obtain a resonance condition, the length l1 of the first section of the horn must be
approximately half a wavelength. Therefore we have

l1 ≈ 1
2

c20 ◦C
f20 ◦C

= 1
2

c25 ◦C
f25 ◦C

, (6.23)

or

f25 ◦C
f20 ◦C

=

√
T0 + 25 ◦C
T0 + 20 ◦C

≈ 1.00849 .

(6.24)

The horns were designed for a frequency f20 ◦C = 17 kHz, which implies that the
shift in resonance frequency is f25 ◦C − f20 ◦C ≈ 144.3 Hz. Suppose we would choose
this to be equal to the 3 dB bandwidth, or, in other words, that only half the power
is available at 17 kHz and 25 ◦C. In that case the corresponding quality factor is

Q = 1
2

17 kHz
144.3 Hz

≈ 59 . (6.25)

This is a very low quality factor for a piezoelectric transducer. It is therefore very
probable that the temperature is a main contributor to the differences between the
measurements and the modelled behaviour.
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6.5 Conclusions and discussion

This chapter investigated the use of horns in an acoustic energy transfer system in
an attempt to improve the energy throughput in such a system and to reduce the
reflections that were shown to be of a large influence. First measurements using a
simple nonoptimised horn design indicated that the addition of horns to an existing
AET system has enough interesting effects to warrant a further investigation of their
influence. Although they did not reduce reflections, they significantly improved the
efficiency at greater distances because of the increased directivity of the transmitter
and the enlarged surface of the receiver.

Stepped exponential horns were successively designed for the transmitter and the
receiver of an acoustic energy transfer system to boost the output power and the
energy transfer efficiency. The profile of these horns follows a stepwise change in
radius, which is used to boost the throat impedance, followed by a section that
flares out exponentially, whose purpose is the optimisation of the directivity of the
transmitter and the surface of the receiver. Optimisation of the electrical output
power was performed using a global optimisation algorithm in combination with a
finite element model of the horns and the piezoelectric transducers.

Initial measurements of the energy transfer showed a significant deviation in power
levels from those predicted by the finite element model. Losses in the transducers
were therefore added to the model in the form of an equivalent resistance. This
resistance alone proved not sufficient to explain the difference, as the measured
power transfer and energy transfer efficiency were still much lower than simulations
indicated. Still, the effect of the horns is evident, especially at greater distances
between the transmitter and the receiver. At zd = 10.0 cm—the distance between
the transmitter and receiver for which the horns were designed—the addition of the
horns results in an output power that is approximately 3.1 times higher while the
efficiency is 7.5 times higher in comparison to measurements without horns.

Various possible sources of the discrepancy between the measured energy transfer
and that predicted by simulations were investigated. Losses, as mentioned earlier,
are a part of the cause, but it is shown in this chapter that they cannot solely make up
for the difference. Bringing the simulated sensitivities of the transducers with horns
down to the level of the measurement requires adding so high a loss resistance that
resonance peaks completely disappear because of a much reduced quality factor.

It was shown that the piezoelectric stress constant can account for a large variation
in output of the order of the observed difference. Unlike the transducer losses,
this constant can bring the sensitivities down to the measured amplitudes, without
compromising the resonance peaks. Taking into consideration that the piezoelectric
material used in the transducers is unknown, and, moreover, already shown to be
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different from the material used in simulation (see page 90), there is a fair chance that
a large part of the discrepancies is to be attributed to an incorrect transducer model.
Again, this goes to show that transducer identification is critical for AET system
modelling, and must occur before designing impedance adaptation measures.

Not only are the materials of the piezoelectric transducers unknown, even the com-
ponent variation between transducers proves to be a large problem. Swapping
transducers makes a large difference, not only in output, but in frequency response
as well. There is no discernable connection between the transducer’s resonance
frequency and the obtained sensitivity plot. It was even found that the same trans-
ducer could give a slightly different output when remounting. All in all, the poor
reproducibility was ultimately the reason why the experiments were stopped.

Of all horn parameters, only the length l1 of the first section of the horn has a distinct
influence on the output. Reflections in this section greatly boost the impedance
seen by the transducer. In hindsight this was not necessarily a good choice, as the
system’s sensitivity to parameter variation is enormous. Especially the combination
with temperature variation will influence the output to a large extent. It was shown
that a temperature rise of 5 ◦C implies half the output power is obtained if the horn
is coupled to a component with a quality factor of 59. It is therefore expected that the
variation of this resonance frequency is one of the main contributors to the observed
differences, although, unfortunately, this has not been verified.

It would have been better to investigate the impact of horns on the AET energy
transfer using a length l1 that is very short in comparison to the wavelength, as is
conventionally done in horn loudspeaker systems [15]. The disadvantage in this
case is that there is no resonance that can be used to boost the impedance, while the
advantage is that there is no resonance that can cause mismatch problems. The step-
wise change in radius can still be utilised for impedance transformation according to
equation (6.2) in this case. If one does choose to work with multiple components that
should resonate at the same frequency, adjustability of these resonance frequencies
is a must.

Another principle that is used in horns for audio purposes is the addition of a phas-
ing plug [15, 20], that equalises path lengths from different parts of the transducer
diaphragm to the throat of the horn. At certain frequencies these path length differ-
ences, when unequal, can cause interference when the size of the diaphragm is of the
order of a wavelength or larger. Sound waves from the edge of the diaphragm can
then (partly) cancel those emitted from the centre. Possibly this leads to a decreased
output when the resonance frequency changes. The finite element model did not
predict the telltale notches in the frequency response that give away this problem.
The principle was therefore not researched further.

A third principle used in horns for loudspeakers is the addition of a compression
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chamber behind the diaphragm. Without it, the diaphragm experiences a large
opposing pressure from the impedance transformation by the horn when it moves in
the forward direction. When it moves backwards, however, it only has to counteract
the free air radiation impedance. This can lead to nonlinearity, which in audio
applications is of course extremely undesirable. Nonlinearity was found to be not an
issue in the experiments so far. If the horns are to be used at larger output levels it
may become necessary to add a compression chamber at the back of the transducer,
which adds a stiffness component that counteracts this nonlinearity.

Lastly, it was shown that the profile of the section that flares out from a small radius
r2 to a larger horn mouth radius r3 is not critical at all. A conical horn can be used
instead of the chosen exponential shape without problems, and will even result in a
higher sensitivity. Such a horn is much easier to manufacture when turning it form
metal, just as the the horns in this chapter. It is not a particularly large problem
though, as modern 3D printing technology can produce about any desired shape.
Keep in mind that the sensitivity does not give any information about the directivity
of the horn and the effect it has on reflections. Here an exponential section may still
prove to be advantageous.
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7 Experiments with
bolt-clamped Langevin
transducers

LOUDSPEAKERS make use of the high radiation resistance that the large surface
of their diaphragms offers. The sound that would be produced by the voice coil

alone would be barely noticeable, but the loudspeaker’s cone can produce an
impressive sound volume. The diaphragm couples the vibrations of the small voice
coil to a considerable volume of air, making it a very effective method of impedance
matching. This principle of impedance adaptation by means of a change in surface
area can also be employed in acoustic energy transfer to match the transmitting
and receiving transducers to the medium. It is used in this chapter in an attempt to
increase the output power.

Let us suppose that we have a radiator that moves against a counteracting pressure.
The force that it has to exert is equal to the product of this pressure and its surface
area, F = pA. The pressure is, however, not constant, but is linked with the
transducer’s directivity, which increases with the radiating surface area. Therefore
the radiation resistance grows faster than linearly with the surface area of the radiator.
This can be seen in figure 4.3.

The experiments that have been discussed up to this point all leave something to
be desired, mostly in terms of output power and efficiency, but also in terms of
reproducibility. Different transducers are used in this chapter in an attempt to boost
the output power and to increase the reproducibility. Bolt-clamped Langevin trans-
ducers (BLT) [125] were chosen for this purpose. These are 33-mode piezoelectric
actuators, which are comprised of one or more piezoelectric rings, attached to a
metal front and back mass that are used for tuning of the transducer’s resonance
frequency (see figure 7.1). This topology addresses a major issue of piezoelectric
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front mass

back mass

piezo rings

Figure 7.1 The Steiner & Martins SMBLTD45F40H transducers that are used in
this chapter consist of two piezoelectric discs between an aluminium
front and back mass, held together by a bolt that applies a prestress.

transducers, namely the low power handling capabilities of piezoelectric material.
While these materials can stand compressive stress very well, they crack very easily
under tensile stress. A bolt that connects the front and back masses is used to ap-
ply a prestress in the BLT topology, making it suitable for high power applications.
Moreover, the transducer topology is typically very efficient if hard PZT material is
used.

All experiments in this chapter make use of Steiner & Martins SMBLTD45F40H
bolt-clamped Langevin transducers, a photograph of which can be seen in figure
7.1. Aluminium plates are bolted to the transducers to increase their radiating and
receiving surface areas. Plates of various radii and thicknesses are used so that the
influence of the plate dimensions can be investigated. The radius of a plate r is either
40 mm, 70 mm or 100 mm, while the thickness d can be 1 mm, 5 mm or 10 mm. A
shorthand notation r/d is used in this chapter to indicate specific plates, e.g. a 70/10
plate would be of 70 mm radius and have a thickness of 10 mm. In the experiments,
the transmitter and receiver were always fitted with the same plates.

This chapter discusses energy transfer measurements of the transducers with and
without plates, as well as peculiarities that were encountered during the measure-
ments.

7.1 Reflections

All previous measurements were done at a fixed driving frequency, while the dis-
tance between the transmitter and the receiver was varied. This is a logical approach,



7.1 REFLECTIONS 135

as one wants to work at the frequency that provides the maximum output, but
is not necessarily the most insightful. For example, the effect of reflections only
becomes truly apparent when both the driving frequency and the distance between
the transducers is varied. To illustrate this, an experiment was carried out where the
Langevin transducers were mounted on the same linear motor setup that was used
in earlier experiments. One transducer was attached to the mover, while the other
remained stationary. The transducers were clamped at their rear mass by means
of rubber o-rings, to minimise the influence on the transducers’ vibrations. The
ratio of output voltage amplitude Vout to input voltage amplitude Vin was measured
by means of a Stanford Research Systems SR785 signal analyser. The transmitter
was driven by a Toellner TOE7621-40 operational amplifier. The driving voltage
amplitude was Vin = 400 mV.

Figure 7.2 shows the measured voltage gain from transmitter to receiver in the
(zd, f )-domain, without plates (figure 7.2a), and in case both transmitters are fitted
with the r = 70 mm, d = 5 mm plates (figure 7.2b). The most distinct feature of these
figures are the resonance frequencies of the system (and the transducers), which
are visible as horizontal lines of high gain at a fixed frequency. Figure 7.2a shows a
main resonance frequency of 40 kHz, and several resonance frequencies that yield
a slightly lower output, e.g. at approximately 52 kHz, 70 kHz and 80 kHz. Figure
7.2b shows that the plates add a plethora of other resonances, mostly in the low
frequency region up to approximately 55 kHz.

The voltage gain plots in figure 7.2 also nicely show the reflections between the
transducers. In theory one would expect reflections to form hyperbolical lines
(because of a constant wavelength) in the (zd, f )-domain. Since the output at various
frequencies is very different due to the high quality factor of the transducers, these
lines are a bit harder to see, although they are quite discernable if one looks closely.
The many resonance frequencies that the plates add in figure 7.2b help in this respect.
The reflections almost form continuous lines in the frequency range of 30 kHz to
55 kHz. The theoretically expected locations of the reflection induced peaks, i.e.

fr =
nc
2zd

, n ∈ Z , (7.1)

are also drawn in figure 7.2 as dashed black lines. The sound velocity was chosen as
c = 344 m s−1 for figure 7.2a and c = 347 m s−1 for figure 7.2b. Clearly, these lines
match very well with the measurements.

The reader will undoubtedly have noticed the second set of reflections in figure 7.2b,
which are indicated with the solid black hyperbolical lines. These are caused by the
clamping discs that are used to attach the radiating plates to the transducer. Figure
7.3 shows that because these discs have a finite thickness dd = 3.5 mm, a second set
of surfaces for reflection exist, a distance zd − 2dd apart. Sound waves reflect from
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Figure 7.2 The voltage transfer ratio of receiver output voltage to transmitter
input voltage as a function of the distance zd between the two and the
driving frequency for a system without plates (a) and with 70/5 plates
(b). The expected location of the reflections in the (zd, f )-domain
is indicated by the dashed black lines. The solid black lines in (b)
correspond to reflections between the discs that affix the plates to the
transducers.
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zd

zd − 2dd

dd

Figure 7.3 The distance zd between the transducers is measured between their
plates. Beside from the plates, reflections also occur from the discs
that are used to attach the plates to the transducers.

these surfaces as well, thereby introducing a second resonance condition

fr,d =
nc

2 (zd − 2dd)
, n ∈ Z . (7.2)

The solid black lines in figure 7.2b indicate that this is indeed the case.

7.2 Normal modes

Figure 7.2 not only shows reflections, but also predicts a minimal influence of the
plates on the energy transfer. As one can see from the colour of the graph, the
output corresponding to the reflections between the discs is much higher than those
between the plates, by about 10 to 20 dB. It seems that the plates do not increase the
output as expected, but that the majority of the radiation takes place from the centre
part of the transducer-plate combination.

An explanation can be found in the vibrational modes of the plates, two examples
of which are visualised in figure 7.4. At high frequencies, as the wavelength of the
stress waves in the plates becomes comparable to the plate dimensions, the plates
can no longer be considered to be rigid objects. The vibrations induce standing wave
patterns on the surface of the plate. Its surface therefore moves with alternating zones
of positive and negative displacement, thereby reducing the average displacement
of the plate. As a result there is a large acoustic short circuit across the surface of
the plate. This severely reduces the output of the plates when used as an acoustic
radiator.



138 CHAPTER 7 EXPERIMENTS WITH BOLT-CLAMPED LANGEVIN TRANSDUCERS

(a) (b)

Figure 7.4 Two of the normal modes of the 100/5 plate visualised using gran-
ulated sugar. The shown plate modes occur at 35.81 kHz (a) and
38.14 kHz (b).

The larger the radius and the thinner the plate, the lower the frequency at which
the first mode shape appears. These modes of vibration are therefore very difficult
to prevent at high frequencies. They can, however, be used advantageously, by
adding a half-wavelength path difference to regions that vibrate with a 180° phase
difference. This can be achieved by means of plates that have stepwise thickness
variations [11, 36–39].

7.3 Load impedance

The optimal load resistance should be determined before the energy transfer is
measured. Since it seems that the plates do not significantly contribute to the power
transfer, the load resistance was determined for the case without plates. To this end,
the voltage gain from transmitter to receiver G = |vout|/|vin| was again measured
as a function of frequency and distance using a Stanford Research RS785 signal
analyser for various values of load resistance RL (measured by means of a four wire
resistance measurement and an Agilent 34461A digital multimeter). The normalised
output power is then Π′out = G2/RL = Πout/V2

in. The input voltage amplitude was
Vin = 400 mV.

It is assumed that the maximum output power lies in the 40 to 40.2 kHz range.
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Figure 7.5 The measured normalised output power as a function of the load
resistance shows a distinct optimum. A double Gaussian function is
used to fit the optimal value.

The voltage gain was measured in this range with a frequency resolution of 1 Hz.
The distance between the transducers was varied between 20 and 45 mm to find
the maximum gain. This was repeated for every load impedance. The maximum
occurred at, or very close to 22.960 mm in each case, while the optimal frequency
varied slightly. The measured normalised output power as a function of load
resistance is shown in figure 7.5. The graph also contains a double Gaussian function

Π′out = a1e
−
(

ln(RL)−b1
c1

)2

+ a2e
−
(

ln(RL)−b2
c2

)2

(7.3)

that was fitted to the measurement data for easy determination of the optimal load
impedance, which was found to be RL,opt = 46.8 Ω. Further experiments are carried
out using a load resistance of RL = 46.988 Ω.

The use of an inductance for the compensation of the piezo element’s parasitic
capacitance (see section 4.2) is not necessary, as the reflected mechanical resistance
of the transducer must be smaller than RL,opt, which is 46.8 Ω, and its capacitance
is Ce = 3.41 nF, which at 40 kHz equals a reactance X2 = 1.17 kΩ. The criterion of
equation (4.49) therefore tells us that compensation will not help increase the output
power. This was confirmed through measurements.
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7.4 Comparison between plate dimensions

The measurements of figure 7.2b and the plate modes of figure 7.4 strongly indicate
that the addition of radiating plates to the transducers does not have the desired
effect of increasing the output power. However, this cannot be properly assessed
based solely on voltage gain measurements, using a nonoptimally terminated re-
ceiver and a single plate size. It is necessary to look at more plate dimensions and
to perform proper power measurements before conclusions can be drawn. The
effectiveness of the plates will be judged in this section based on the maximum
normalised power transfer that can be achieved with them.

The measurements of the voltage transfer in figure 7.2 show that the plates introduce
many extraneous resonances to the acoustic energy transfer system. Moreover, the
presence of reflections means that it is far from trivial at which frequency and dis-
tance the energy transfer is to be measured when one is interested in the maximum
output power. It is therefore necessary to scan the entire distance and frequency
domain. If the power transfer measurements were to be done in the same fashion as
previous measurements, i.e. using an oscilloscope and a multimeter to determine
the input and output power, the measurements would take an enormous amount of
time, because of the high resolution that is required in both distance and frequency.
Therefore it was chosen to measure the power by means of the signal analyser that
was also used for the measurements of section 7.1. It again measures the voltage
gain G, as well as the input voltage amplitude |vin| and input impedance Ze

in = vin/ıin

as a function of the driving frequency. The current iin is measured using a Tektronix
TCP312 current probe and TCPA300 amplifier. The output power Πout and efficiency
η are then found from

Πout =
1
2

G2 |vin|2

RL
(7.4a)

η = G2

∣∣∣Ze
in

∣∣∣2
RL Re

(
Ze

in

) . (7.4b)

Please note that these measurements assume that all measured signals (vin, iin and
vout) are sinusoidal. Therefore only small signal energy transfer behaviour can be
measured. However, this was considered to be a good basis on which to compare
the power transfer between plate dimensions. A driving voltage amplitude of
|vin| = 400 mV was used for the measurements. The measurement method was first
checked against power measurements with an oscilloscope and digital multimeter
as used before. The maximum deviation between the two was found to be smaller
than 3 %.
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Finding the maximum output power for each plate size is far from trivial. It is sought
based on the voltage gain G. As mentioned, the whole frequency and distance range
must be surveyed with a high resolution. The analyser is used in FFT-mode (fast
Fourier transform) with a chirp source to quickly scan the frequency domain. The
distance is increased in 100 µm increments to find the maximum. It is assumed
that the optimum lies between 30 kHz and 100 kHz, and at a maximum distance of
40 mm. Once the maximum is found, the input and output power are measured
in a swept sine measurement in a (100 Hz, 500 µm) band around it. The results are
shown in figure 7.6 for all plates of 40 mm radius, the 70/5 and 100/5 plates, and
the case without plates. The measurement resolution in zd is a bit low for the quality
factor imposed by the reflections, but care was taken that the maximum output
power lies on the chosen zd measurement grid. The resolution therefore does not
pose any problems in judging the maximum output power and the corresponding
efficiency.

The measured output power levels indeed confirm the suspicion that the plates only
degrade the system performance. The maximum output power without plates is
at 4.0 µW the highest, only to be followed by the 40/10 plates at Πout = 0.26 µW.
The efficiency of these plates is better than that achieved by the bare transducers,
but it must be pointed out that since the distance is measured between the plates,
the extremities of the transducers are actually much closer together for the 40/10
plates, which can possibly explain this difference. The maximum efficiency is very
low at 0.24 % for the transducers without plates because of the enormous impedance
mismatch between the transducers and the medium.

7.5 Nonlinearity

The output power and efficiency were measured at a low input voltage amplitude in
the previous section. Experiments revealed that increasing the input voltage to the
transmitter leads to nonlinear behaviour of the AET system. It is not easily noticeable
from electrical measurements, as the transducers function as high quality factor
filters, but it can be observed as a slight distortion of the transmitter current. The
nonlinearity is, however, very apparent from pressure measurements, such as can
be seen for instance in figure 7.7 for a transducer fitted with a 70/1 plate. The higher
the amplitude of the input voltage, the more the pressure is distorted by higher
harmonics. In some cases subharmonics (harmonics of half the driving frequency)
were encountered as well. It was asserted that the measured distortion was not due
to the microphone measurement system.

Investigation of the nonlinear behaviour of the systems is best done based on
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Figure 7.6 Output power Πout and efficiency η, measured for various plate di-
mensions, around the point of maximum output power in the (zd, f )-
domain.
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Figure 7.7 Typical examples of pressure waveforms of a Langevin transducer
(in this case with 70/1 plate) show distortion that increases with the
input voltage amplitude |vin|.

pressure measurements in the frequency domain. These give a clear picture of the
harmonic content of the pressure generated by the transducer. Figure 7.8 shows the
pressure produced by a Langevin transducer fitted with a 70/5 plate, which was
selected because it nicely illustrates the whole range of nonlinear behaviour that was
encountered. The pressure is again measured with a G.R.A.S. 40BF microphone, with
26AC preamplifier and 12AK power module. It was calibrated using a G.R.A.S. 42AA
pistonphone. The pressure is measured at a distance of 400 mm on the transducer’s
axis. The microphone is connected to the Stanford Research Systems signal analyser,
which is used in FFT mode. A driving frequency of f = 42.75 kHz is used, as it is
very close to a major resonance frequency (42.8 kHz) and corresponds exactly to an
FFT bin.

At very low input voltages, the pressure spectrum, as one would expect, only
contains the fundamental frequency. As the input voltage grows, there is a distinct
value of the input voltage amplitude, just shy of 16 V, where a second harmonic
component appears. Increasing the input voltage further to 20 V gives us the earlier
mentioned subharmonic components at multiples of half the fundamental frequency.
At 24 V amplitude, all harmonics and subharmonics gain sideband components,
while for even higher frequencies more and more sideband components appear. A
sort of runaway, possibly thermal, seems to occur here: while all other components
are introduced into the spectrum at distinct input voltages, the continuous sidebands
come into existence gradually as the system seems to slowly settle into a steady
state.

Measurements of the frequency spectrum of the driving voltage showed, beside
the fundamental frequency, a second harmonic component. It is not present at an
input voltage amplitude of 800 mV, while for all the other measurements it is 61 dB



7.5 NONLINEARITY 145

L
p /

2
0

µ
P

a
(d

B
)
→

f (kHz) →

L
p /

2
0

µ
P

a
(d

B
)
→

f (kHz) →

L
p /

2
0

µ
P

a
(d

B
)
→

f (kHz) →

L
p /

2
0

µ
P

a
(d

B
)
→

f (kHz) →

L
p /

2
0

µ
P

a
(d

B
)
→

f (kHz) →

|vin| = 32 V

|vin| = 24 V

|vin| = 20 V

|vin| = 16 V

|vin| = 800 mV

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

−40
−20

0
20
40
60
80

−40
−20

0
20
40
60
80

−40
−20

0
20
40
60
80

−40
−20

0
20
40
60
80

−40

−20

0

20

40

Figure 7.8 Chaotic behaviour is observed when the input voltage amplitude is
increased. At first, harmonics and subharmonics appear, followed by
spontaneous sidebanding. The sound pressure level was measured
400 mm in front of the transducer, which was fitted with a 70/5 plate.
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to 68 dB smaller than the first harmonic component. Moreover, none of the other
harmonic components in figure 7.8 are visible in the input voltage spectrum. It can
therefore be concluded that the distortion is not introduced by the driving amplifier.

The behaviour that figure 7.8 shows, including subharmonics and spontaneous
sidebanding, is sometimes encountered in loudspeakers [14, 29, 86, 95, 129]. Judging
from publications on the topic, it seems that it is most commonly encountered in
traditional voice coil topologies, where it is often attributed to nonlinearity of com-
pliance components, although sometimes bending waves in the cone are mentioned
as a cause. These nonlinearities introduce chaotic behaviour into the system, such
as witnessed by the measurements that are shown here. It is therefore reasonable
to assume that the nonlinearities are introduced by the transducer, especially since
they also occur in the transducers without plates. It seems that the addition of the
radiating plates only amplifies the effect. A first hypothesis is that the nonlinear
behaviour is caused by the transducer’s clamping bolt, which has the effect of a
nonlinear compliance term due to its prestress.

7.6 Energy transfer

Since the plates do not have the desired effect, the energy transfer is henceforth
investigated using bare Langevin transducers without any plates attached. Energy
transfer measurements are carried out to investigate the dependency of the power
transfer on the distance as well as the input voltage. The transducers that are used for
the remaining experiments were cherry-picked to obtain the largest output power.

7.6.1 Variation of distance

One of the interesting features of a contactless energy transfer system, is how it
performs when the distance changes. Therefore similar measurements as in figure
7.6 were performed, but now for a larger distance range. The measurement setup is
exactly the same, apart from the different transducers that are used. Measurements
are complicated by the nonlinearity of the transducers, necessitating the use of a low
input voltage. The normalised power is therefore measured. This allows the results
to be extrapolated to predict the energy transfer capabilities of similar transducers
that are designed to have a linear response. Because of the low input voltage, the
method of power measurement described in section 7.4 can be used.

The measured output power and efficiency are depicted in figure 7.9 as a function of
the driving frequency f and the distance zd between the transducers. The maximum
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Figure 7.9 The measured output power Πout (a) and efficiency η (b) decrease
rapidly as the distance increases. The resolution in zd is 100 µm in a
band of 500 µm around peaks. The resolution elsewhere is reduced to
500 µm to enhance the graphs’ clarity.
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output power that was measured was 11.9 µW at an input voltage amplitude of
400 mV, corresponding to a normalised output power of 74.3 µW V−2. This value
is different from the maximum output power in figure 7.6f, as is the resonance
frequency. This difference can be explained by the use of other transducers for these
measurements. The maximum efficiency that was obtained in these measurements
is very low, at 5.0 · 10−3.

Figure 7.9 nicely illustrates the difficulty that lies in obtaining an output power
and efficiency of any significance. The very large quality factors of the output
power and the efficiency, both with respect to f (due to the resonance frequency of
the transducer) and zd (because of reflections), mean that very accurate frequency
control and positioning are required. Comparing figures 7.9a and 7.9b, the quality
factor of the efficiency with respect to the frequency is slightly lower than that of
the output power. A slightly mismatched frequency is therefore less problematic in
terms of efficiency than it is powerwise.

The reflections between the two transducers can not only be observed in the output
power, but in the power fed to the transmitter as well. Therefore the electrical
impedance of the transmitter must contain information about the distance between
the transducers. Ideally, it could be used to determine the optimal distance between
them. This information can then subsequently be used to position the transmitter
so that the energy flow is at its maximum. Figure 7.10 depicts the magnitude of the
input impedance |Ze

in| of the transmitter as it was obtained in the measurements
of figure 7.9. The reflections are visible, although the relative change in impedance
is fairly small. The magnitude of the impedance is 9.1 % higher at the first peak at
zd = 4.3 mm, than it is halfway between the first and the second peak at zd = 6.5 mm,
both at the respective frequencies of maximum output power. This difference rapidly
decreases for successive peaks in the direction of higher zd.

7.6.2 Variation of input voltage

Despite the nonlinearity of the transducers limiting the power transfer, one can still
measure the maximum power transfer capabilities of the acoustic energy transfer
system as it is. Since the waveforms are in that case no longer sinusoidal, as section
7.5 showed, power measurement using a signal analyser gives incorrect results.
Therefore the voltages and currents are measured using a LeCroy HDO6034 oscillo-
scope. The input voltage is measured directly at the transducer’s terminals using a
LeCroy ADP305 differential voltage probe. The current through the transducer is
measured by means of a Tektronix TCP312 current probe and a TCPA300 amplifier.
The delay of the current probe was compensated for in the measurements.

While the transducer’s maximum voltage is specified as 500 V, the Toellner opera-
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Figure 7.10 The reflections also have an effect on the magnitude of the transmitter
impedance. The resolution in zd is 100 µm in the direct vicinity of the
power transfer peaks, and 300 µm elsewhere.
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tional amplifier that drives it limits the voltage amplitude to 40 V. A transformer is
therefore used to boost the input voltage to a maximum of 190 V.

The input power is calculated as the cyclic mean of the product of vin and iin. The
output power is obtained from the RMS (root-mean-square) value of vout and the
load resistance. Contrarily to previous measurements, the cyclic mean and RMS

value are determined in MATLAB, utilising the autocorrelation to find each signal’s
period.

Measuring at higher power levels means that the transducers heat up through
dissipation. It became clear during measurements that this influences the resonance
frequency of the system and the optimal distance between the transducers, as well
as significantly decreases the output power. The system seems to reach a steady
state after a while. It is likely that this is caused by the thermal characteristics of
the transducers. A changing resonance frequency is a known nonlinear effect in
piezoelectric materials, that is often attributed to large mechanical deformations
and self-heating [8]. To limit the influence of self-heating as much as possible,
measurements are done in short bursts.

The energy transfer is measured for different values of the input voltage amplitude.
The measured output power and efficiency are shown in figure 7.11. The optimal
frequency and distance were determined for each value of input voltage to reduce the
influence of temperature, and possibly other nonlinear effects, as much as possible.
The burst mode measurements seemed to help in this respect as the optimal distance,
unlike for continuous measurements, was constant at zd = 4.340 mm. The optimal
frequency varied very slightly between 40.346 kHz and 40.354 kHz.

Figure 7.11a shows that the output power has a bending point around |vin| = 50 V,
after which the output power increases approximately linearly. In a linear system
one would expect the output power to increase quadratically with the input voltage
amplitude. The efficiency in figure 7.11b initially drops very rapidly as the input
voltage increases, but then falls off at an increasingly slower pace. Whether it
reaches a steady state or not can unfortunately not be concluded from this graph.
The maximum output power that was measured is 36.3 mW at an input voltage
amplitude of 190 V.

7.7 Reproducibility

The reproducibility of the described measurements is a cause for concern, just as it
was in previous chapters. It is investigated here based on the electrical impedance
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Figure 7.11 The output power Πout as a function of input voltage amplitude
|vin| (a) increases approximately linearly after a bending point. The
efficiency η (b) decreases rapidly.
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Figure 7.12 The magnitude of the transducer’s electrical impedance shows very
little variation when the plates are not removed between measure-
ments. The transducer was fitted with a 100/1 plate.

Ze
in of the transducer. Only the magnitude of the impedance is considered here. It is

measured by means of an Agilent 4294A precision impedance analyser.

Impedance measurements of the transducers without plates have a good reproducib-
ility. Impedance curves measured at different instances are virtually indistinguish-
able. The maximum deviation in the impedance magnitude is 4 %, while the average
deviation is 2 · 10−7. The reproducibility of impedance measurements with plates is,
unfortunately, a bit of a different story. Large differences were seen between different
impedance measurements of the same transducer with the same plate. Especially the
plates of a thickness d = 1 mm proved to be problematic. Measuring the impedance
multiple times without removing the plates, however, yields impedance curves that
match up almost perfectly, as figure 7.12 shows. These impedance measurements
were spread out over the course of hours to remove time dependency from the
equation. Since these measurements were done with one of the most problematic
plates, and the reproducibility issue is virtually nonexistent in these measurements,
it must be caused either by the fastening torque of the screw with which the plate is
bolted onto the transducer, or by the remounting of the plates.

The influence of the fastening torque T was investigated by remounting the plate
a number of times, each time with a fixed torque, and measuring the electrical
impedance. Figure 7.13 shows the results for a 70/10 plate. While there is some
variation visible for a torque of T = 1 N m, the impedance agrees much better for
higher torques, although there is no complete match (see for example the resonances
around 48 kHz and 82 kHz). The 100/1 plate has very different results, however.
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Figure 7.14 depicts the impedance for the same three fastening torques. While the
results match to some extent for T = 1 N m, the variation is drastically higher for
higher torques. Many new resonances appear, and some move to another frequency.

Since the impedance measurements do not necessarily agree better when the plates
are fixed with an equal torque, the problems regarding reproducibility must be
caused by variation in the positioning of the plates. It turned out that the plates
of 1 mm thickness are thin enough to move laterally in the thread of the screw
that should hold them in place. The plate is therefore not automatically centred
by the screw. This can easily result in very different behaviour, as it makes the
transducer asymmetric. Possibly the 70/10 plates are centred better when the torque
is increased, which would explain the greater consistency in results for higher
fastening torques. At 1 N m both plates are very comparable. This is to be expected,
as they are quite loosely attached to the transducer, so there is probably a reduced
influence of the radiating plate.

The point to take away from this is that reassembly of the transducers is gener-
ally a cause of variation in measurement results, especially for thin plates. All
measurement results given in this chapter are therefore a possible set of outcomes.
This variation is only increased by the temperature dependency that was already
discussed in section 7.6.2. It also shows that modelling of this system for design
purposes would not have been very meaningful, as the behaviour in reality may
be very different due to reproducibility issues, even if an initial model would show
good agreement with measurement results.

7.8 Conclusions and discussion

This chapter set out to investigate impedance adaptation of transducers through
enlargement of their radiating surface, in an attempt to reduce reflections, and
particularly to increase the output power. Plates of varying radius and thickness that
are attached to the transducers were chosen as a solution. Bolt-clamped Langevin
transducers were chosen for their large power handling capabilities and their high
efficiency. Unfortunately, initial voltage gain measurements indicated that the plates
do not increase the output power. These measurements suggest that the largest part
of the power is transferred between the centres of the transducers, and not between
the plate surfaces.

A subsequent set of energy transfer measurements proves that the plates indeed do
not increase the output power; the highest output power was obtained without the
use of plates. Although the output power is lower for every plate size, the energy
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Figure 7.13 Measurements of the magnitude of the transducer impedance show
the variation that occurs in remounting the plates. The 70/10 plate
that is used for these experiments is fastened with a fixed torque of
1 N m, 2.5 N m or 4 N m.
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Figure 7.14 The 100/1 plates are subject to much more variation, judging from
the transducer impedance. The screw attaching the plate to the
transducer is again fastened with a torque of 1 N m, 2.5 N m or 4 N m.
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transfer efficiency is slightly higher with the 40/10 plates attached. This is due to a
smaller net distance between the transmitter and the receiver (2 mm, compared to
4.5 mm without plates), because of the discs that clamp the plates to the transducers.

The unsatisfying performance of the radiating plates as impedance matching devices
is ascribed to the normal vibration modes of the plates. These result in a partitioning
of the plates into small sections that vibrate with opposite phase, causing an acoustic
short circuit that severely reduces the radiated power. At high frequencies it is very
difficult to prevent these normal modes. It is possible, however, to use plates having
local thickness variations, which negate the phase difference that the normal modes
introduce.

Matters are complicated further by the nonlinearity of the transducers. It causes
their performance at high power levels to significantly deviate from the expec-
ted sinusoidal behaviour. Harmonics and subharmonics appear at discrete input
voltage amplitudes, and at a certain point spontaneous sidebanding occurs, indic-
ating chaotic behaviour. The same phenomena have been observed in voice coil
loudspeakers. Normally they are blamed on nonlinearity of the compliance of the
loudspeaker suspension, or on diaphragm modes. It is possible that they are intro-
duced in this AET system because of nonlinearity of the materials, or because of the
pretension applied by the transducer’s prestress bolt.

Because of the nonlinear behaviour, low power measurements of the energy transfer
were done initially. The maximum output power that was measured is 12 µW at an
input voltage amplitude of 400 mV. Extrapolation to a voltage of 500 V, which is
the maximum voltage that the transducers allow, would yield an output power of
Πout = 18.6 W. Naturally, linearity of both the transducer and the air are assumed.
The maximum efficiency that was attained in these measurements is 5 · 10−3. This
low value is a consequence of the very poor impedance matching of the transducers
to the medium.

The measurements again illustrate the stringent requirements on the positioning
of the transducers imposed by the reflections. The high quality factor that the
reflections bring to the system means that a 100 µm displacement is accompanied
by a 7 dB drop in output power. Therefore accurate positioning of the transducers
is of paramount importance. If an AET system is to transfer any energy, it will be
necessary to adjust the position of the transmitter depending on the location of the
receiver. Since the distance between consecutive peaks is 4.3 mm for this system (cf.
figure 7.9), a maximum variation of the transmitter position of 2.2 mm is required,
which is quite acceptable. Information about the optimum position of the transmitter
can possibly be obtained from the transmitter impedance, since it gives information
about the location of the energy transfer peak. The difference in impedance between
an output power maximum and minimum is 9 % at the first peak, making it quite
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discernible, but for larger zd it is barely detectable.

Measurements of the variation of the output power with input voltage revealed
an approximately linear relation between the two for high values of input voltage,
instead of the expected quadratic relationship. Consequently, the efficiency η de-
creases rapidly for higher input voltages. The maximum obtained output power is
36.3 mW at 190 V input voltage amplitude. From the measured normalised output
power in figure 7.9a, one would have expected an output power of 2.7 W.

The reproducibility of measurement results was judged based on electrical imped-
ance measurements of the transducers. While the reproducibility of these measure-
ments was excellent when the bare transducers were measured, much variation was
observed when radiating plates were attached to them. It was deduced through
experiments that the most likely cause of this variation is the positioning of the
plates with respect to the transducer. The problem seemed to be most prevalent with
the plates of 1 mm thickness. These proved difficult to position symmetrically with
respect to the axis of the transducer, causing many varying resonances.

Lastly, the experiments in this chapter show that the frequency of optimal power
transfer varies not only with distance, but also with ambient temperature. It is
therefore important to perform measurements both as a function of distance and
frequency. Alternatively, a maximum power tracking algorithm can be used, so that
the system always works at its optimal frequency.
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8 Conclusions &
recommendations

THIS THESIS focuses on the contactless transfer of energy from an electrical
source to an electrical load, using sound waves that propagate through air as an
intermediate energy carrier. Its main purpose lies in providing an exploratory

overview of the subject, pointing out the features, opportunities and limitations of
the approach. It investigates a number of peculiarities of the system and describes
various paths that have been followed in the pursuit of optimised system perform-
ance. While the research has answered several questions, it has simultaneously
raised numerous new ones, paving the way—and leaving a couple of direction
signs—for further investigation.

This final chapter briefly summarises the most important conclusions of the work
that has been presented in this dissertation. Furthermore, it lists the main contribu-
tions of the research, and discusses several recommendations for future work on
acoustic energy transfer in air. AET being a quite new field, this list naturally is far
from exhaustive.

8.1 Conclusions

A theoretical limit to the efficiency of acoustic energy transfer has been derived,
based on a model that includes diffraction, attenuation and transducer losses. The
model indicates that, for a maximum transmitter and receiver diameter of 20 cm
and 1 m distance between the two, acoustic energy transfer has the potential to

159
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perform at least 5 to 10 times better than an inductively coupled system of the same
dimensions. Optimal electrical loading conditions were derived from this model,
which indicate that the receiving element, unfortunately, has an efficiency of 50 %
when maximum output power is desired.

The model on which the theoretical limit is based was validated through experiments,
showing that energy transfer by means of sound waves is feasible. A maximum
output power of 40 mW was demonstrated using piezoelectric transducers. In this
case, the output power was limited by the mechanical breakdown of the transmitting
transducer. The measurements revealed the occurrence, influence and importance
of reflections. These create periodic maxima and minima of energy transfer and
efficiency, spaced at half-wavelength intervals, and thus restrict the free placement
of a receiving element. Transducer losses were identified from impedance measure-
ments in vacuum, to allow a fair comparison between the measurements and the
model. The measured efficiency corresponds very well to the theoretical limit at the
first spatial resonance peak, but the decline in efficiency with the distance between
both transducers proved to be greater in reality than predicted by the model. This
is most likely due to the pressure and particle velocity distribution being altered
drastically by the reflections.

Reflections have been modelled both analytically and numerically. The analytical
model is based on a transmission line model, assuming plane waves. A lumped
element attenuation coefficient accounts for the spreading of sound waves and the
absorption in the medium. It is obtained from a circular piston radiator model and
depends on the spatial coordinate. Because there are unknowns in the transducer
model, parameter fitting is used to bring the model into line with measurement data.
Results show a very good agreement between the two, but the obtained transducer
parameters are nonphysical. Nevertheless, the results show that the model is not
without merits. It is expected that simulation results deviate for distances that lie in
the near field of the transducer, due to averaging of the pressure in this region in the
calculation of the attenuation constant.

The numerical model describes reflections by means of multiphysical finite element
analysis of the transducers in an air domain. Although it is able to predict the effect
of reflections on the output power and efficiency, it is unable to do so accurately.
The predicted output power is an order of magnitude too high and the variation
of the input power with the distance between the two transducers is considerably
different from the measurements. This is attributed to an incorrect model of the
transducers. Sensitivity analysis identified the most influential parameters, but
revealed no extreme sensitivity to changes in their values.

Stepped-exponential horns were designed, optimised and constructed as a means of
impedance adaptation for both the transmitting and receiving transducers. Their
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profile is comprised of a stepwise change in radius followed by a section that flares
out exponentially. Resonance in the horn is used to greatly increase its throat
impedance. The horns improved the output power by a factor 3.1, and the efficiency
by a factor 7.5 at 10 cm distance between the transmitter and the receiver. The
experimental results deviate significantly from the finite element model that was
used for their optimisation. This discrepancy is likely caused by a combination of
temperature variation, which detunes the horn’s resonance frequency, an unknown
piezoelectric material and component variation of the transducers. The exact profile
of the flaring section was shown to be irrelevant for the output pressure.

Radiating surface enlargement has been investigated as a second means of imped-
ance adaptation. It was applied to bolt-clamped Langevin transducers in the form
of aluminium plates that are screwed onto the transducer. Nine different plate sizes
were manufactured to investigate the influence of the plate dimensions. It was found
that the plates do not increase the output power. This is due to their normal modes,
which severely reduce the effective velocity of the radiator. Moreover, the trans-
ducers suffer from nonlinear behaviour, manifesting in harmonics, subharmonics
and spontaneous sidebanding when the driving voltage is increased. Furthermore,
problems were encountered with respect to reproducibility due to difficulty in
coaxial placement of plates on transducers. The maximum output power that was
measured (without plates), is 36.3 mW. Measurements showed the importance of
measuring as a function of the frequency and the distance between the transducers.
It was found that optimal positioning of the transmitter is possible based on its
electrical impedance.

Essentially, acoustic energy transfer through air is possible. Achieved power levels
are adequate for small systems such as sensors, MEMS, et cetera, but are insufficient
for implementation in more power hungry applications such as actuators or wire-
less charging. The transducers are the restricting factor. Proposed models of AET

are usable, but they require more research to become accurate enough for design
purposes. Throughout this thesis, transducer modelling has been shown to be of
critical importance for accurate acoustic energy transfer modelling, since it is the
element that connects the electrical, mechanical and acoustic domains. Almost all
uncertainty in models can ultimately be traced down to the transducer.

8.2 Thesis contributions

• Introduction to a broader audience of acoustic energy transfer as a method
of contactless transfer of electrical energy. Contactless energy transfer by
means of sound waves was already introduced in its most basic form in
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1985 [19]. Unfortunately, it was never picked up as a serious contender to
electromagnetic alternatives. The research done for this thesis and publica-
tions thereof have helped in bringing the subject to the attention of a broader
audience [97].

• Experimental validation of the principle of contactless energy transfer em-
ploying vibration of air as a means of energy transport. Viability of the
principle of AET has been shown through measurements of the electrical en-
ergy transfer by means of sound waves on a number of setups. A maximum
electrical output power of 40 mW has been achieved.

• Derivation of a theoretical upper limit to acoustic energy transfer efficiency
A theoretical limit to the efficiency of acoustic energy transfer has been derived.
It is based on an analytical model of the energy transfer between two circular
transducers, describing diffraction and attenuation losses. The losses in the
transducers were estimated from their equivalent electrical circuits. Optimal
loading conditions for the receiving transducer have been derived.

• Analytically and numerically modelling the reflections that occur in an AET

system. Reflections have been shown to be a very essential characteristic of
a typical acoustic energy transfer system. They generate a partial standing
wave that restricts the placement of the receiver to distinct locations where
the energy transfer and efficiency are high. Reflections are therefore of large
influence on the energy transfer. This thesis presents two models of reflections:
one based on transmission line theory, and the other a finite element model.

• Design and optimisation of impedance adaptation measures. Impedance
mismatch has been identified as a major factor limiting the performance of an
acoustic energy transfer setup. At the receiving side it introduces reflections,
thereby limiting the absorbed power and introducing more losses, while a
mismatch at the transmitting end limits the power transfer to the medium.
Two methods of impedance adaptation have been investigated:

– Resonant horn structures, comprising a stepwise change in radius fol-
lowed by an exponentially varying radius profile. Horns have been de-
signed and optimised for both the transmitting and receiving transducers.
The energy transfer using these horns has been verified experimentally.

– Acoustic impedance transformation for bolt-clamped Langevin trans-
ducers, consisting of aluminium plates of varying radius and thickness.
A setup was built and measurements were done to verify the influence
of the plates on the energy transfer, as well as identifying various ef-
fects that limit the energy transfer, i.e. nonlinearity and chaos, thermal
characteristics and normal vibration modes.
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8.3 Recommendations

No research is ever complete, unfortunately, and there is always room for improve-
ment. Especially in a subject that is in its infancy, such as acoustic energy transfer,
there is bound to be many a topic left untouched. Many ideas about new research
directions, or how to improve results that have been obtained have formed during
the course of the research. The most important recommendations are discussed in
this section. Some of these have already been treated in the concerning chapters of
this dissertation, but they will be repeated here for the sake of completeness.

Modelling The models that have been presented in this thesis show many sim-
ilarities with measurements, but generally they are unable to accurately predict the
behaviour of the AET systems. A major factor in this respect is the validation of the
separate parts of the model. For example, the transmission line model cannot be
validated properly because the transducer model contains too many uncertainties. It
is therefore advisable to construct models of the separate parts of the system (trans-
ducer, wave propagation, reflections), and validate them separately. Once they are
found to be accurate enough the system model can be assembled and validated as a
whole. In this thesis it was attempted to validate all models through measurements
of electrical quantities only. It will be necessary to also measure mechanical quant-
ities for proper validation. One can think of pressure measurements, or velocity
profile estimation (for example by means of acoustic holography [4, 42, 83]).

Especially for the purpose of accurately modelling acoustic energy transfer, one
should start with acoustic energy in its most basic form. Problematic factors should
be eliminated as much as possible from the system, so that the basic mechanisms
can be thoroughly researched and understood. One can think of circumventing the
problem of reflections using a very small receiver, so that waves diffract around it
and reflections are negligible. Other possibilities are using transducers that are suffi-
ciently rigid, or do not vibrate at their normal modes but rather can be considered
one-dimensional. This greatly facilitates their modelling and the complexity of their
coupling with the medium. A last example is acoustic energy transfer through a
wave guide, so that spreading losses can be taken out of the equation. Some of these
choices will probably reduce the power level and efficiency, but will allow one to
fully understand the system, and from there make choices about how to optimise it.

Transducers Transducer design for acoustic energy transfer is a whole field of
research in itself, or should at least become one in near future. All experiments in
this dissertation made use of piezoelectric transducers, and not only this thesis; the
use of piezoelectric transducers is prevalent throughout the field of acoustic energy
transfer. The only example to date of the use of another type of actuator for AET
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is [43], where an electromagnetic acoustic transducer (EMAT) design is evaluated.
The authors concluded that piezoelectric transducers are better suited, under the
restriction that they are well coupled to the medium. There is, however, no reason
not to consider other actuator topologies, such as voice coil or ribbon loudspeakers,
electrostatic topologies, magnetostrictive materials, et cetera. The advantage of
piezoelectric materials is that they can be used at very high frequencies and high
efficiencies. The frequencies used in this research however, are not extremely high
(up to 40 kHz). Therefore, different transducer designs may be just as efficient. They
can circumvent specific problems of piezoelectric components, such as having to use
them at their resonance frequency for any output of significance. This thesis shows
that these high quality factor resonances can be very problematic when they have to
be matched.

During the research it gradually became clear that impedance matching is not by far
as important for the transmitter as it is for the receiver. The underlying problem is
depicted graphically in figure 8.1 for a set of bolt-clamped Langevin transducers. A
poorly matched transducer implies a reflection coefficient close to one, and a very
small transmission coefficient. A wave that arrives at the radiating surface of the
transmitter mostly reflects, and only part is transmitted to the air, illustrated by
the length of the arrows in figure 8.1. The reflected wave, however, stays confined
to the geometry of the transducer. It will reflect from the back of the transducer
and return to the radiating face. This is the resonance condition on the basis of
which bolt-clamped Langevin transducers work. These reflections do not cause
losses per se, as long as the material is relatively lossless. The wave that arrives
at the surface of the receiver, on the other hand, mostly reflects off it, and only a
small part continues as a stress wave in the transducer. The reflections from the
receiver travel back to the transmitter, where they reflect again; A process that was
amply discussed in chapter 5. As long as the directivity of the transducers is high,
this will not cause severe losses, but as soon as diffraction comes into play, the
efficiency degrades considerably due to spreading of the reflected wave. This shows
that the impedance adaptation of the receiver is much more important than that of
the transmitter. A very light receiver, such as a ribbon transducer or electrostatic
loudspeaker, will be much more appropriate than a piezoelectric transducer in this
case. This also illustrates that optimal designs for the transmitter and reducer may
consist of entirely different topologies. The transmitter design should be focused on
delivering high power, while the receiver design should focus on a low impedance
transducer.

Besides a low impedance, the receiver will have to adhere to a specific design.
Suppose a plane wave propagates towards a receiver, as in figure 8.2. Ideally, the
ratio between the pressure p1 and particle velocity u1 at the face of the receiver is
equal to Za

0 , so that the wave does not reflect. If the receiver is much thinner than a
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Transmitter Receiver

Figure 8.1 The transmission coefficient at the transducer-medium interface is
very small for a poorly matched transducer. The wave that is reflected
from the surface of the transmitter stays confined to the transmitter
geometry and does not cause losses. The reflections on the receiver do
cause losses due to absorption and diffraction.

wavelength, or it is sufficiently rigid, it will move the air at its back with a velocity
u2 = u1. To do so, it has to exert a pressure of approximately p2 = Za

0u2 = p1.
Because the pressure and particle velocity are equal at the front and back face of the
receiver, it does not extract any power from the wave, and the wave only passes
through it. If it would absorb energy, p1 would be larger than Za

0u1, and the incident
wave would reflect. For perfect matching—as well as for reasons of efficiency—it is
therefore necessary to prevent the transducer from radiating a wave from its back
face, essentially requiring the active sound intensity at the back of the transducer to
be equal to zero. This can be accomplished in several manners, for instance:

• A vacuum at the back of the transducer, so that it cannot radiate, i.e. p2 = 0.
This can cause nonlinear behaviour because of an uneven loading at the front
and back of the transducer.

• A closed back, creating a resonance chamber; in this case a standing wave pat-
tern is created behind the transducer where p2 and u2 have a phase difference
of 90°. Energy radiated from the back is in that case not lost, save for a small
fraction that is dissipated because of damping in the air. This design can, just
as with the horns, lead to problems with temperature variation, and should
hence be used with caution.

• A fixed back, so that u2 = 0. This requires the wave to be completely attenu-
ated in the transducer material through extraction of its energy. It therefore
does not work for a rigid transducer.

Designing specific transducers for AET will be the way forward. Transducers can be
designed on the basis of desirable properties, such as a specified acoustic impedance,
size, rigidity, resonance frequency, sensitivity, flexural modes, transformation ratio
between mechanical and electrical quantities, and electrical characteristics (with
respect to the power electronics that have to drive the transducer, respectively extract
energy from it).
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p2p1

u1 u2

Figure 8.2 A plane pressure wave impinging on a receiver. The pressure in front
of the transducer is p1 and the particle velocity is u1. The pressure
and particle velocity at the back of the receiver are likewise p2 and u2.

Reflection models In chapter 5, the characteristic impedance Za
0 of the trans-

mission line was assumed to be constant. Since the wave propagation in the line is
modelled as a plane wave, this is not a strange assumption. The true wave, however,
is not a plane wave, and the characteristic impedance it experiences is not constant
throughout the medium. The model can possibly be improved by calculating the
impedance in the same manner as the lumped element attenuation constant.

It was assumed in the transmission line model that both the wave that emanates from
the transmitter and the wave that reflects from the transducer follow the radiation
pattern of a circular piston source. This may not be the case, especially so because
the radiation pattern will change due to the pressure field that arises as a result
of these reflections. Better results may be obtained by accurately modelling the
radiation patterns of both the transmitted and reflected waves.

Horns As mentioned in chapter 6, using a resonance chamber in a horn can
lead to considerable mismatch problems when using multiple high quality factor
resonating systems (multiple transducers, horns, and a resonating air column in
between). It is advisable to keep the length of the first section of the horn short in
comparison to a wavelength. The corresponding impedance transformation step
will be much lower, but there will likely be less influence of the ambient temperature,
and therefore less problems in tuning the system. This will allow one to gain a better
understanding of the effects at play.

A number of likely causes of the reduced performance of the horns have been
indicated, the temperature mentioned above being one of them. Their influence
should be investigated through a series of experiments to pinpoint the main cause.

Regarding the design of the horns, it is wise to incorporate a phasing plug to prevent
wave cancellation originating from path length differences from the tranducer’s
radiating surface to the throat of the horn. A compression chamber can be added to
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the back to increase linearity. Although this has not been found to be a problem, it
may become one when power levels are increased.

Possibly horns can be used advantageously in a hybrid impedance matching topo-
logy, where the first step is obtained by means of matching layers, and a second
step through application of a horn. Matching layers can be used very well for
high to medium-high impedance steps, but are ill-suited for low impedance media
(see section 5.3). Horns, on the other hand, are best used for the medium to low
impedance step, since they always perform the last step, down to the impedance
of the radiating medium. Using this solution they do not have to bridge the entire
impedance gap between the transducer and the medium.

Diaphragm design Normal modes make radiation from a diaphragm ineffi-
cient. They are therefore best avoided. This can be challenging when high fre-
quencies and a large radiating surface are amongst the requirements. While in
loudspeaker design it is not uncommon to use dissipative diaphragm materials, so
that modes are damped [20], this is not a viable option for acoustic energy transfer,
as it adds to the losses of the system. A diaphragm hence must be as rigid as possible.
Great improvements over the flat plates that were used in chapter 7 can be obtained
by using a cone shape for example (as is used in loudspeakers), by using a stiffer
material or by dividing the radiating surface into smaller segments by means of
a transducer array. Alternatively, the flexural modes can be used advantageously,
since the transducers operate at a single frequency. Gallego-Juarez et al. designed
high efficiency, high directivity transducers where a plate of stepped thickness can-
cels the phase difference in the radiation due to the plate’s normal modes [11,36–39].
These will certainly be useful for AET as a transmitter design.

General considerations Quite a few problems that had to be dealt with during
this research were linked with finite element analysis. They mostly were caused
by high quality factor resonances. A small change in mesh parameters can in such
a case shift the resonance frequency by several Hertz, which can drastically alter
the output of the simulation. Low efficiency systems, such as AET, are also difficult
to simulate since the output power can often be of the same order of magnitude
as the error in the simulation. It is therefore advisable to decouple the simulation
into separate parts, e.g. a transmitter, wave propagation and a receiver. This will
improve the accuracy of the simulations. Care should still be taken in matching
different resonance frequencies.

On the same topic, when designing a setup, one should make sure that a resonance
frequency is adjustable, or a lower quality factor should be used. While this pos-
sibly comes at the expense of maximum efficiency and output power, when taking
component variation and model inaccuracy into account the power transfer and
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efficiency will likely be higher.

All acoustic energy transfer systems that were discussed in this thesis suffered
from much higher spreading losses than attenuation losses. In such a case it is
beneficial to consider focusing, or diffraction-free beam patterns, as they improve
the directivity of the transmitter. They improve the efficiency, especially for larger
distances. For very high frequencies the effect will be less pronounced, as in that case
spreading losses decrease and absorption losses rise. Phased array transducers can
be used to this end, for example capacitive micromachined ultrasonic transducers
(CMUT) [67], or piezoelectric transducer arrays such as used in medical ultrasound
applications [22]. A phased array has the added advantage of beam steering, which
is necessary when the location of the receiver is a priori unknown. For large output
power one could consider a design consisting of a large surface area filled with
small transducers. A possible difficulty lies in tuning all transducers to the same
resonance frequency.

One goal of impedance adaptation is to prevent reflections, so that the position of
the receiver can be chosen freely, instead of being restricted to multiples of half a
wavelength. If all impedance adaptation measures fail, one can opt to adjust the
distance between both transducers mechanically to obtain the maximum output
power. The required distance variation is of the order of a couple of millimetres for
kilohertz waves, which is easily achieved (4.3 mm at 20 kHz, for instance).

Lastly, measurements should preferably be performed at a constant temperature,
since the optimal distance (due to reflections), changes as a function of sound
velocity, and therefore temperature.
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A Symbols and notation

A.1 Symbols

Symbol Quantity Unit

A Surface area m2

B Magnetic flux density T
B Adiabatic bulk modulus Pa
c Sound velocity m s−1

Elastic constant Pa
cp Isobaric mass heat capacity of air J kg−1 K−1

D Electric displacement field C m−2

e Piezoelectric stress constant C m−2 or N V−1 m−1

E Electric field V m−1

f Frequency Hz
F Force N
i Current A
I Instantaneous sound intensity W m−2

k Angular wave number m−1

l Length m
m Horn flare constant m−1

p Pressure Pa
Q Quality factor −

Volume velocity m3 s−1
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Symbol Quantity Unit

R Reflection coefficient −
R The set of real numbers ?
S Strain −
S Transmitter sensitivity Pa V−1

T Stress Pa
u Particle velocity m s−1

v Voltage V
W Work J
zd Distance between transmitter and receiver m
Za Acoustic impedance N s m−3

Ze Electrical impedance Ω
Z The set of integers ?
α Absorption coefficient m−1

ε Permittivity F m−1

η Energy transfer efficiency −
ξ Particle displacement m
κ Thermal conductivity W m−1 K−1

λ Wavelength m
µ Viscosity kg m−1 s−1

Π Power W
ρ Density kg m−3

ω Radial frequency s−1

A.2 Subscripts and superscripts

Subscript Quantity

a Active sound intensity
att Attenuation
c Cutoff

dif Diffraction
e Pertaining to the electrical domain
L Load
m Mouth

Pertaining to the mechanical domain
p Point source
r Received
t Throat

Total
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Subscript Quantity

tr Transducer
x, y, z Component in x, y or z direction

0 Equilibrium
Offset
Source amplitude

Superscript Quantity

a Acoustic
e Electrical
E Value for constant electric field
S Value for constant strain

A.3 Notation

Operator Quantity

a Complex representation
~a Vector
â Unit vector in the direction of~a: â = ~a/‖~a‖

~a ·~b Dot product of vectors~a and~b
~a×~b Cross product of vectors~a and~b
∇a Gradient of a
∇ ·~a Divergence of~a
∇×~a Curl of~a
Re(a) Real part of a
Im(a) Imaginary part of a

a∗ Complex conjugate of a
|a| Absolute value of a
‖~a‖ Euclidian norm of~a

A.4 Acronyms

Acronym Meaning

AC Alternating current
AET Acoustic energy transfer
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Acronym Meaning

BLT Bolt-clamped Langevin transducer
CET Contactless energy transfer

CMUT Capacitive micromachined ultrasonic transducer(s)
DC Direct current
EM Electromagnetic

EMF Electromotive force
FE Finite element

FFT Fast Fourier transform
MEMS Microelectromechanical system(s)

PZT Lead zirconate titanate
RF Radio frequency

RMS Root-mean-square

A.5 Physical constants

Constant Value Unit Quantity

c 3.4326 · 102 m s−1 Sound velocity at 20 ◦C
cEM 2.9979 · 108 m s−1 Speed of light in vacuum
cp 1.005 · 103 J kg−1 K−1 Isobaric mass heat capacity of air at

20 ◦C
p0 1.013 25 · 105 Pa Atmospheric pressure
Za

0 4.1332 · 102 rayl Characteristic impedance of air at
20 ◦C

γ 1.400 − Ratio of specific heats of air
ε0 8.8542 · 10−12 F m−1 Permittivity of free space
κ 0.0257 W m−1 K−1 Thermal conductivity of air at 20 ◦C
µ 1.8369 · 10−5 kg m−1 s−1 Viscosity of air at 20 ◦C
ρ0 1.2922 kg m−3 Air density at 0 ◦C

1.2041 kg m−3 Air density at 20 ◦C
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B Coordinate systems

B.1 Coordinate transformations

B.1.1 Spherical coordinates

This thesis uses a spherical coordinate system in which the polar angle θ is the
angle between the positive z-axis and the vector. The azimuthal angle ϕ is the
counterclockwise angle between the x-axis and the vector’s projection in the xy-
plane. By definition r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. The conversion between
Cartesian and spherical coordinates is given by

x = r sin θ cos ϕ , r =
√

x2 + y2 + z2 ,

y = r sin θ sin ϕ , θ = arccos
( z

r

)
,

z = r cos θ , ϕ = arctan
( y

x

)
.

B.1.2 Cylindrical coordinates

A point in a cylindrical coordinate system is defined by a radial distance r, a height z
and an azimuthal angle ϕ, which is defined in the same manner as for the spherical
coordinate system. Here again r ≥ 0, 0 ≤ ϕ ≤ 2π, and z ∈ R. The coordinate
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transformation between Cartesian and cylindrical coordinates is given by

x = r cos ϕ , r =
√

x2 + y2 ,

y = r sin ϕ , ϕ = arctan
( y

x

)
.

The z-coordinate is equal in both systems.

B.2 Gradient

Let us assume we have a coordinate system with coordinates x1, x2 and x3 and
corresponding unit vectors x̂1, x̂2 and x̂3, in which a function f is defined in a point
~x = x1 x̂1 + x2 x̂2 + x3 x̂3. The gradient of f is then according to [51] equal to

∇ f =
1
h1

d f
dx1

x̂1 +
1
h2

d f
dx2

x̂2 +
1
h3

d f
dx3

x̂3 , (B.1)

in which the scale factors h1, h2 and h3 are given by

h1 =

∥∥∥∥ ∂~x
∂x1

∥∥∥∥ , h2 =

∥∥∥∥ ∂~x
∂x2

∥∥∥∥ , h3 =

∥∥∥∥ ∂~x
∂x3

∥∥∥∥ . (B.2)

B.2.1 Gradient in spherical coordinates

Deriving the gradient in spherical coordinates boils down to calculating the scale
factors in (B.2), with x1 = r, x2 = θ and x3 = ϕ. They are easily found from the
definition of the coordinate transformation in section B.1.1:

h1 =

∥∥∥∥∂~x
∂r

∥∥∥∥ = 1 , (B.3a)

h2 =

∥∥∥∥∂~x
∂θ

∥∥∥∥ = |r| = r , (B.3b)

h3 =

∥∥∥∥ ∂~x
∂ϕ

∥∥∥∥ = |r sin(θ)| = r sin(θ) . (B.3c)

Substituting these coefficients in equation (B.1) results in the definition of the gradi-
ent in spherical coordinates:

∇ f =
d f
dr

r̂ +
1
r

d f
dθ

θ̂ +
1

r sin(θ)
d f
dϕ

ϕ̂ . (B.4)
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B.2.2 Gradient in cylindrical coordinates

The gradient in cylindrical coordinates is found from (B.2) and section B.1.2. The
scale factors are given by

h1 =

∥∥∥∥∂~x
∂r

∥∥∥∥ = 1 , (B.5a)

h2 =

∥∥∥∥ ∂~x
∂ϕ

∥∥∥∥ = |r| = r , (B.5b)

h3 =

∥∥∥∥∂~x
∂z

∥∥∥∥ = 1 . (B.5c)

The gradient is found from these scale factors as

∇ f =
d f
dr

r̂ +
1
r

d f
dϕ

ϕ̂ +
d f
dz

ẑ . (B.6)





References

[1] “Tesla’s tower,” New York American, 22 May 1904.

[2] R. M. Aarts, “Optimally sensitive and efficient compact loudspeakers,” Journal of the
Acoustical Society of America, vol. 119, no. 2, pp. 890–896, Feb. 2006.

[3] R. M. Aarts and A. J. E. M. Janssen, “Approximation of the Struve function H1 occurring
in impedance calculations,” Journal of the Acoustical Society of America, vol. 113, no. 5,
pp. 2635–2637, May 2003.

[4] R. M. Aarts and A. J. E. M. Janssen, “Acoustic holography for piston sound radiation
with non-uniform velocity profiles,” in Proceedings of the 17th International Congress on
Sound & Vibration, Jul. 2010, pp. 1–6.

[5] M. Abramowitz and I. A. Stegun, Eds., Handbook of mathematical functions, 10th ed.
Washington D.C.: US Government Printing Office, 1972.

[6] T. E. G. Álvarez-Arenas, “Acoustic impedance matching of piezoelectric transducers to
the air,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51,
no. 5, pp. 624–633, May 2004.

[7] T. E. G. Álvarez-Arenas and L. Díez, “Novel impedance matching materials and
strategies for air-coupled piezoelectric transducers,” in Sensors, Nov. 2013.

[8] T. Andersen, M. A. E. Andersen, O. C. Thomsen, M. P. Foster, and D. A. Stone, “Non-
linear effects in piezoelectric transformers explained by thermal-electric model based
on a hypothesis of self-heating,” in Proceedings of IECON 2012 - 38th Annual Conference
of the IEEE Industrial Electronics Society, Oct. 2012, pp. 596–601.

[9] S. Arra, J. Leskinen, J. Heikkilä, and J. Vanhala, “Ultrasonic power and data link for
wireless implantable applications,” in Proceedings of the 2nd International Symposium on
Wireless Pervasive Computing ISWPC ’07, Feb. 2007, pp. 567–571.

[10] X. Bao, W. Biederman, S. Sherrit, M. Badescu, Y. Bar-Cohen, C. Jones, J. Aldrich, and
Z. Chang, “High-power piezoelectric acoustic-electric power feedthru for metal walls,”
in Proceedings of SPIE, ser. Industrial and Commercial Applications of Smart Structures

177



178 REFERENCES

Technologies, L. Porter Davis, B. K. Henderson, and M. Brett McMickell, Eds., vol. 6930,
no. 69300Z, Apr. 2008, pp. 1–8.

[11] A. Barone and J. A. Gallego Juárez, “Flexural vibrating free-edge plates with stepped
thicknesses for generating high directional ultrasonic radiation,” The Journal of the
Acoustical Society of America, vol. 51, no. 3B, pp. 953–959, 1972.

[12] H. E. Bass, L. C. Sutherland, and A. J. Zuckerwar, “Atmospheric absorption of sound:
Update,” Journal of the Acoustical Society of America, vol. 88, no. 4, pp. 2019–2021, Oct.
1990.

[13] H. E. Bass, L. C. Sutherland, A. J. Zuckerwar, D. T. Blackstock, and D. M. Hester,
“Atmospheric absorption of sound: further developments,” Journal of the Acoustical
Society of America, vol. 97, no. 1, pp. 680–683, Jan. 1995.

[14] F. Bolaños, “Measurement and analysis of subharmonics and other distortions in
compression drivers,” in Audio Engineering Society Convention 118, May 2005, pp. 1–16.

[15] J. Borwick, Ed., Loudspeaker and headphone handbook, 2nd ed. Oxford, U.K.: Focal Press,
1994.

[16] W. C. Brown, “The history of power transmission by radio waves,” IEEE Transactions
on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1230–1242, Sep. 1984.

[17] M. Castillo, P. Acevedo, and E. Moreno, “KLM model for lossy piezoelectric trans-
ducers,” Ultrasonics, vol. 41, no. 8, pp. 671–679, Nov. 2003.

[18] A. Charych, “System and method for wireless electrical power transmission,” U.S.
Patent 6 798 716 B1, Sep. 28, 2004.

[19] G. V. B. Cochran, M. W. Johnson, M. P. Kadaba, F. Vosburgh, M. W. Ferguson-Pell, and
V. R. Palmeiri, “Piezoelectric internal fixation devices: A new approach to electrical
augmentation of osteogenesis,” Journal of Orthopaedic Research, vol. 3, no. 4, pp. 508–513,
1985.

[20] A. B. Cohen, Hi-Fi loudspeakers and enclosures. London, U.K.: Newnes-Butterworths,
1968.

[21] I. B. Crandall, Theory of vibrating systems and sound. New York, NY: D. Van Nostrand
Company, 1926.

[22] L. Curiel, F. Chavrier, R. Souchon, A. Birer, and J. Y. Chapelon, “1.5-D High intensity
focused ultrasound array for non-invasive prostate cancer surgery,” IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 49, no. 2, pp. 231–242, Feb. 2002.

[23] J. de Boeij, E. Lomonova, J. L. Duarte, and A. J. A. Vandenput, “Contactless power
supply for moving sensors and actuators in high-precision mechatronic systems with
long-stroke power transfer capability in x-y plane,” Sensors and Actuators A: Physical,
vol. 148, no. 1, pp. 319–328, Nov. 2008.



REFERENCES 179

[24] J. L. Delany, “Bender transducer design and operation,” Journal of the Acoustical Society
of America, vol. 109, no. 2, pp. 554–562, Feb. 2001.

[25] A. Denisov and E. Yeatman, “Ultrasonic vs. inductive power delivery for miniature
biomedical implants,” in Proceedings of the IEEE International Conference on Body Sensor
Networks, Jun. 2010, pp. 84–89.

[26] A. Denisov and E. M. Yeatman, “Micromechanical actuators driven by ultrasonic
power transfer,” IEEE/ASME Journal of Microelectromechanical Systems, vol. 23, no. 3, pp.
750–759, Jun. 2014.

[27] A. A. Denisov and E. M. Yeatman, “Battery-less microdevices for body sensor/actuator
networks,” in Proceedings of the IEEE International Conference on Body Sensor Networks,
2013, pp. 1–5.

[28] R. M. Dickinson, “Wireless power transmission technology state of the art - The first
Bill Brown lecture,” Acta Astronautica, vol. 53, no. 4-10, pp. 561–570, Aug. 2003.

[29] I. Djurek, D. Djurek, and A. Petosic, “Chaotic state in an electrodynamic loudspeaker,”
Acta Acustica united with Acustica, vol. 94, no. 4, pp. 629–635, Jul.-Aug. 2008.

[30] J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” Journal of the
optical society of America A, vol. 4, no. 4, pp. 651–654, 1987.

[31] J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Physical Review Letters,
vol. 58, no. 15, pp. 1499–1501, Apr. 1987.

[32] EMCT SA. Electronic buzzer catalogue. [Online]. Available: http://www.emct.ch/
files/buzzer.pdf

[33] L. B. Evans, H. E. Bass, and L. C. Sutherland, “Atmospheric absorption of sound:
Theoretical predictions,” Journal of the Acoustical Society of America, vol. 51, no. 5B, pp.
1565–1575, 1972.

[34] F. Fahy, Foundations of engineering acoustics. London, U.K.: Academic press, 2001.

[35] F. J. Fahy, Sound intensity. London, U.K.: Elsevier applied science, 1989.

[36] J. A. Gallego Juárez, “Axisymmetric vibrations of circular plates with stepped thick-
ness,” Journal of Sound and Vibration, vol. 26, no. 3, pp. 411–416, Feb. 1973.

[37] J. A. Gallego Juárez and G. Rodriguez Corral, “Piezoelectric transducer for air-borne
ultrasound,” Acta Acustica united with Acustica, vol. 29, no. 4, pp. 234–239, Oct. 1973.

[38] J. A. Gallego-Juárez, G. Rodriguez-Corral, and L. Gaete-Garreton, “An ultrasonic
transducer for high power applications in gases,” Ultrasonics, vol. 16, no. 6, pp. 267–
271, Nov. 1978.

[39] J. A. Gallego Juárez, G. Rodriguez, J. L. San Emeterio, P. T. Sanz, and J. C. Lázaro, “An
acoustic transducer system for long-distance ranging applications in air,” Sensors and
Actuators A: Physical, vol. 37–38, pp. 397–402, Jun.-Aug. 1993.

http://www.emct.ch/files/buzzer.pdf
http://www.emct.ch/files/buzzer.pdf


180 REFERENCES

[40] T. Gerrits, D. C. J. Krop, L. Encica, and E. A. Lomonova, “Development of a linear
position independent inductive energy transfer system,” in Proceedings of the IEEE
International Electric Machines & Drives Conference (IEMDC), May 2011, pp. 1445–1449.

[41] J. H. Goll, “The design of broad-band fluid-loaded ultrasonic transducers,” IEEE
Transactions on Sonics and Ultrasonics, vol. 26, no. 6, pp. 385–393, Nov. 1979.

[42] J. W. Goodman, Introduction to Fourier optics, 2nd ed. London, U.K.: McGraw-Hill,
1996.

[43] D. J. Graham, J. A. Neasham, and B. S. Sharif, “Investigation of methods for data
communication and power delivery through metals,” IEEE Transactions on Industrial
Electronics, vol. 58, no. 10, pp. 4972–4980, Oct. 2011.

[44] C. R. Hanna and J. Slepian, “The function and design of horns for loud speakers,”
Transactions of the American Institute of Electrical Engineers, vol. 43, pp. 393–411, Jan.
1924.

[45] R. Henderson and K. Schulmeister, Laser safety. Bristol & Philadelphia: Institute of
Physics Publishing, 2004.

[46] R. Hooke and T. A. Jeeves, ““Direct search” solution of numerical and statistical
problems,” Journal of the ACM, vol. 8, no. 2, pp. 212–229, Apr. 1961.

[47] H. Hu, Y. Hu, and C. Chen, “Wireless energy transmission through a thin metal wall
by shear wave using two piezoelectric transducers,” in Proceedings of the 2008 IEEE
Ultrasonics Symposium, Nov. 2008, pp. 2165–2168.

[48] Y. Hu, X. Zhang, J. Yang, and Q. Jiang, “Transmitting electric energy through a metal
wall by acoustic waves using piezoelectric transducers,” IEEE Transactions on Ultrason-
ics, Ferroelectrics, and Frequency Control, vol. 50, no. 7, pp. 773–781, Jul. 2003.

[49] T. Ikeda, Fundamentals of piezoelectricity. Oxford, U.K.: Oxford University Press, 1990.

[50] T. Ishiyama, Y. Kanai, J. Ohwaki, and M. Mino, “Impact of a wireless power transmis-
sion system using an ultrasonic air transducer for low-power mobile applications,” in
Proceedings of the 2003 IEEE Symposium on Ultrasonics, vol. 2, Oct. 2003, pp. 1368–1371.

[51] A. Jeffrey, Handbook of mathematical formulas and integrals. London, U.K.: Academic
press, 1995.

[52] J. Johansson, P.-E. Martinsson, and J. Delsing, “Simulation of absolute amplitudes of
ultrasound signals using equivalent circuits,” IEEE Transactions on Ultrasonics, Ferroelec-
trics, and Frequency Control, vol. 54, no. 10, pp. 1977–1983, Oct. 2007.

[53] A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-
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