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1. Introduction 
 

1.1 Why Lecture Notes?  

This document is meant to be a supplement to standard textbooks on Inventory 
Management like Silver et al. (1998), Nahmias (2009), Cachon and Terwiesch 
(2012), Stevenson et al. (2011), Camm and Anderson (2011), Chopra and Meindl 
(2012) and Taylor (2012). Most standard textbooks make many simplifying 
assumptions when modeling an inventory system. These assumptions lead to 
relatively simple formulas, which can be easily implemented in Excel or which can be 
used in exercises and exams. The price to be paid for this simplicity is the fact that 
the assumptions are often not valid in practice, leading to the implementation of 
approximations and non-optimal solutions. The results presented in this document 
are based on fewer and more realistic assumptions when compared to standard 
textbooks. For different situations, for example when demand is discrete (integer 
numbers only) or when demand is continuous and follows a gamma or normal 
distribution, we derive exact expressions for key performance indicators (KPI’s) of 
inventory systems. These expressions can be implemented in a spreadsheet using 
standard statistical functions in Excel. To support the implementation of these results 
we also provide the students of this course with an Excel-based toolbox. 

Another reason for this document is the fact that inventory control systems in which 
ordering can only be done periodically (e.g., once every two weeks) and in (multiples 
of) a fixed batch-size are very common in practice but receive hardly any attention in 
standard textbooks. Most standard textbooks also focus on systems with continuous 
demand distributions (and sometimes predominantly on one distribution only: the 
normal distribution). The assumption of a continuous distribution is not appropriate if 
the average demand is very low (like in a spare parts environmnent) and the 
assumption of a normal distribution is not valid if the demand uncertainty is high. 

In courses where the textbook of Nahmias (2009) is used, this document replaces 
sections 5.4 to 5.6. We suggest to read sections 5.1 to 5.3 from Nahmias (2009) 
before reading this reader to get a better perspective on Inventory Management in 
general and to get acquainted with the basic mathematical model in Stochastic 
Inventory Management: the newsboy model. This newsboy model considers a one-
period inventory system, while in this document we focus on multi-period inventory 
systems. 

 

1.2 Classification: (𝑅, 𝑠,𝑛𝑄), (𝑅, 𝑠, 𝑆), (𝑠,𝑛𝑄) and (𝑠, 𝑆)-control systems 

A major classification of inventory control systems was introduced by Silver et al. 
(1998). To honour the fact that they explicitly recognized the so-called review period 
as a key decision variable we will use their classification and the associated notation 
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throughout this document. Please note that this notation differs from the notation in 
Nahmias (2009) and other standard textbooks. 

Before presenting their classification, we introduce an important concept called the 
inventory position. The inventory position in an inventory system is equal to the sum 
of the inventories in the system minus the backorders. Backorders are customer 
orders which could not be delivered from the inventory on hand and which will be 
delivered as soon as new inventory on hand becomes available. So the inventory 
position is negative if there is no inventory on hand in the system while there are 
backorders. The inventories in the system include both the scheduled receipts 
(replenishment orders which have been placed at the supplier in the past but that 
have not yet been delivered; the sum of all scheduled receipts in the system is also 
known as ‘goods in transit’ or ‘pipe-line inventory’) and the inventory on hand in the 
stock point. 

Inventory control systems typically are based on the inventory position rather than on 
the inventory on hand. The reason for this is simple. If the inventory replenishment 
decision would be based on the inventory on hand and if it takes some periods 
before the replenishment order arrives (the so-called lead time), then after ordering 
the inventory on hand has not changed. Therefore a new replenishment order will be 
generated as soon as possible since the inventory on hand is still too low. By using 
the inventory position as the basis for the replenishment decision this error is 
prevented, since immediately after ordering the inventory position is raised with the 
quantity ordered. If the replenishment order arrives in the stock point, the inventory 
on hand is raised while the inventory position remains unchanged since the sum of 
all scheduled receipts decreased with the same quantity as the inventory on hand 
increased. 

Silver et al. first differentiate inventory systems which are reviewed continuously to 
see whether a replenishment of the inventory is needed and systems which are 
reviewed only periodically. In practice in most situations a periodic review is applied, 
for example if delivery schedules are fixed (e.g., trucks visiting the warehouse only 
once every review period). The time between two moments when the inventory 
levels are reviewed is called the review period. Silver et al. use the capital letter 𝑅 to 
denote the review period. 

The second differentiation in inventory systems is based on the replenishment 
quantity. In some systems the inventory position is replenished in (integer multiples 
of) a fixed quantity, for example if items are delivered in case packs (e.g., a carton 
box containing 12 consumer units) or in full pallets. The capital letter 𝑄 is used to 
denote the fixed base replenishment quantity. In other systems the inventory position 
is replenished up to a fixed order-up-to level and as a result the replenishment 
quantity is variable, depending on the inventory position at the moment of ordering. 
Silver et al. use the capital letter 𝑆 to denote the order-up-to level. In both systems 
with a fixed and a variable replenishment quantity the decision to replenish the 
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inventory depends on whether the inventory position has dropped below a critical 
level called the reorder level, denoted by the small letter 𝑠.  

Based on the two classification criteria discussed above, we have four basic 
inventory control systems, which are referred to as (𝑅, 𝑠,𝑛𝑄), (𝑅, 𝑠, 𝑆), (𝑠,𝑛𝑄) and 
(𝑠, 𝑆)-systems. If the system is reviewed continuously, the review period is zero and 
this is reflected in the notation by omitting the capital 𝑅 (e.g., (𝑠, 𝑆) versus (𝑅, 𝑠, 𝑆)). 
In the (𝑅, 𝑠,𝑛𝑄) and the (𝑠,𝑛𝑄) control system the small letter 𝑛 denotes the integer 
multiple of the fixed base replenishment quantity which is needed to raise the 
inventory position to or above the reorder level. These four control systems are 
depicted in the matrix in Figure 1 below: 

 Periodic review Continuous review 

Fixed base replenishment 
quantity 

(𝑅, 𝑠, 𝑛𝑄) (𝑠,𝑄) 

Variable replenishment 
quantity 

(𝑅, 𝑠, 𝑆) (𝑠, 𝑆) 

 

Figure 1. Classification of inventory control systems. 

 

To clarify the four control systems, below we will give a formal description of the 
replenishment logic used in the (𝑅, 𝑠,𝑛𝑄) and the (𝑠, 𝑆) system. 

The replenishment logic used in the (𝑅, 𝑠,𝑛𝑄) is as follows: 

If at a review moment the inventory position is below the reorder level 𝑠, then 
𝑛 times 𝑄 units are ordered with 𝑛 the minimum integer which is needed to 
bring the inventory position after ordering back to or above the reorder level 𝑠. 

The replenishment logic used in the (𝑠, 𝑆) system is as follows: 

As soon as the inventory position drops below the reorder level 𝑠, the amount 
of units is ordered which is needed to bring the inventory position after 
ordering back to the order-up-to level 𝑆. 

 
1.3 Focus of the Lecture Notes 

In this document we focus on (𝑅, 𝑠,𝑛𝑄)-systems, since this type of system is 
encountered very often in practice. In practice frequently some type of coordination 
in replenishment of inventories is desirable. For example when a group of items is 
produced simultaneously to gain economies of scale, e.g., at the metal press factory 
at DAF Trucks items are produced in family groups, since changing production from 
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one group to another requires very large set-up times while changing between items 
within the family group requires little set-up time. Or the coordination is desirable 
when items are delivered periodically due to a fixed transportation schedule. For 
example, supermarkets are typically having a fixed ‘ordering and delivery’ schedule 
to be able to balance workload in the DC and to make the workload in the 
supermarkets predictable so that managers can schedule and select the workforce 
on a medium term rather than on the short term and offer employees fixed working-
hours. Also when items are shipped from the same supplier, when items are using 
the same transportation mode, or when a supplier offers a discount when the total 
volume ordered for a set of items at the same time exceeds a certain total volume, 
coordinated replenishment is preferable. The main advantage of continuous review 
systems is the fact that they require less safety stock to offer the same customer 
service. Yet this advantage is limited, since the review period in a periodic review 
system can be given a very small value to reap most of these benefits. As a matter 
of fact, by selecting an extremely small value for the review period when applying the 
exact results for periodic systems presented in this document, virtually exact 
approximations will be available for continuous systems.  

The fact that ordering in the (𝑅, 𝑠,𝑛𝑄)-systems is done in (multiples of) a fixed base 
replenishment quantity is also in line with the actual practice in many companies and 
industries. In retail for example fixed case packs are used. This is done primarily to 
enable efficient handling of goods, but it also helps to protect the goods against 
damage and to reduce errors in the issuance or administration of goods. In 
warehouses goods are very often replenished in full pallets or in full layers of a 
pallet, again to make the handling of goods more efficient: handling a pallet with one 
carton box on it requires the same amount of time as handling a full pallet. Although 
it has been proven in inventory theory that order-up-to systems like the (𝑠, 𝑆)-system 
result in lower total average costs than systems using fixed base replenishment 
quantities, it is important to recognize that these proofs are given for models that do 
not include the handling efficiencies described above in their objective function. 

Since the objective function or constraints may be different in each situation in 
practice, we will not use a single objective function in this paper. Rather we will 
derive expressions for five Key Performance Indicators (KPI’s) which are important 
and flexible building blocks when making a model for a specific situation in practice. 
In this way the results in this document can be applied in a wide range of situations 
rather than only in situations where the single objective function would be applicable.  

 

1.4 Definition of variables 
 
Apart from the parameters specifying the inventory control systems (𝑅,𝑄,𝑛, 𝑠 and 𝑆), 
we will use the following variables in this document: 
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𝑫(𝒕𝟏, 𝒕𝟐) 
The demand during time interval (t1, t2]. If demand is stationary (i.e. time-invariant), 
then the demand during time interval (t1, t2] is also denoted by 𝐷𝑡. 
 
𝑳 
The lead time is the time which elapses from the moment a replenishment order is 
created until the moment the replenishment order arrives in the stock point. 
 
There are different types of inventory that are relevant when analyzing an inventory 
system. Below we give the notation and the definition for each of them. When 
analyzing an inventory system we will typically consider the behavior of the system 
during a single arbitrary review period. We denote the review moment at the 
beginning of this review period as  𝜏. If a replenishment order is generated at this 
review moment, this order will arrive 𝐿 (the lead time) periods later, so at time  𝜏 + 𝐿, 
in the stockpoint and will then be added to the inventory on hand (the physical 
inventory in the stockpoint). The first review moment after time 𝜏 will be at time  𝜏 +
𝑅. If a replenishment order is placed at this review moment, this order will arrive in 
the stockpoint at time 𝜏 + 𝑅 + 𝐿. For now, we assume all orders have a deterministic 
constant lead time. This assumption will be relaxed later on in this document. 
 
We define the review cycle as the time interval (𝜏, 𝜏 + 𝑅) and the potential delivery 
cycle as the time interval (𝜏 + 𝐿, 𝜏 + 𝑅 + 𝐿). The word potential is added since not 
every review period a replenishment order will be placed. Especially if 𝑄 is much 
larger than the average demand during a review period, there will be many review 
moments when the inventory position is well above the reorder level and no 
replenishment order is generated. 
 
Figure 2 shows a sample path of a (𝑅, 𝑠,𝑛𝑄)-system having a relatively small base 
replenishment quantity 𝑄. At time 𝜏, the first review moment occurs. Because the 
inventory position at time 𝜏 is (strictly) below the reorder level 𝑠 =  22, a 
replenishment order is placed. The order size is 12, because one batch is sufficient 
to bring the inventory position at or above the reorder level. Because the lead time is 
1 time unit, this order is delivered at time 𝜏 + 1, when it becomes available as 
inventory on hand. Between time 𝜏 and time 𝜏 + 1, the inventory position is higher 
than the inventory on hand, because it includes these scheduled receipts. Although 
the inventory position at time 𝜏 + 1 and time 𝜏 + 2 is below the reorder level, no 
orders are placed because these are no review moments. In the interval 
 (𝜏 + 2, 𝜏 + 3] more demand occurs than there is inventory on hand left, leading to 
outstanding backorders. At time 𝜏 + 3, a new review moment occurs. The minimum 
number of batches needed to get the inventory position at or above the minimum 
level is 3; in total 36 items are ordered. This is immediately reflected in the inventory 
position. When the scheduled receipts are delivered at time 𝜏 + 4, the outstanding 
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customer demand is met first, after which the remainder of the ordered items 
becomes available as inventory on hand. 

 

 
 
Figure 2. A sample path of the inventory position, the inventory on hand, and the 
backorders for an item under a (𝑅, 𝑠,𝑛𝑄) inventory system, where the parameters 
are given by 𝑅 = 3, 𝑠 =  22 , and 𝑄 =  12. For this item, the demand during an 
interval (𝑡, 𝑡 + 1] follows a discrete uniform distribution on {0, … ,15} and the lead time 
is 𝐿 = 1. 

 
If the lead time is equal to an integer multiple of the review period, at some points in 
time a delivery and review moment will coincide. For those situations we have to 
make assumptions on the order of events in the system. In those cases we will 
assume that demand occurs during the review period, the replenishment decision 
takes place at the end of the review period and the delivery is made immediately 
after the replenishment decision. This sequencing of events (delivery after the 
replenishment decision) enables us to also model a situation with zero lead time.  

 
 
Figure 3. The order of events if the end of the period is a review moment. 
 
Sometimes an item is stored at multiple locations, e.g. in the DC and multiple stores. 
When analyzing the inventory typically an item at a single specific location is 
considered. To uniquely identify the combination of an item and the location the term 

demand
replenishment decision

delivery of order placed L time units ago
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Stock Keeping Unit (SKU) is being used. A Stock Keeping Unit is defined (Silver et 
al. (1998)) as ‘an item of stock that is completely specified as to function, style, size, 
color, and, usually, location’. For convenience we will mostly be using the term item 
rather than SKU in these lecture notes if there is no danger of misinterpretation.  
We define the following inventory-related variables: 
 
𝑰𝑶𝑯(𝒕) 
The inventory on hand in the stock point at time t. In the analyses later on in this 
document we will typically consider the inventory on hand levels at two moments: at 
the beginning of the potential delivery cycle just after a potential delivery (when the 
inventory on hand is at the highest level during the cycle) and at the end of the 
potential delivery cycle just before a potential delivery (when the inventory on hand is 
at the lowest level during the cycle). We will denote these two inventory on hand 
levels with the variables 𝐼𝑂𝐻(𝜏 + 𝐿)  and  𝐼𝑂𝐻(𝜏 + 𝑅 + 𝐿).  
 
𝑰𝑷(𝒕) 
The inventory position of the system at time t. The inventory position is equal to the 
sum of all inventories in the system minus the backorders. The inventories in the 
system include both the scheduled receipts (replenishment orders which have been 
placed at the supplier in the past but which have not yet been delivered) and the 
inventory on hand in the stock point. Again we consider the inventory position at two 
moments: at the beginning of the review cycle just after a potential replenishment 
order has been placed at the supplier and at the end of the review cycle just before a 
potential replenishment order has been placed. We will denote these two inventory 
position levels with the variables 𝐼𝑃(𝜏)  and  𝐼𝑃(𝜏 + 𝑅).  
 
𝑩𝑶(𝒕) 
The backorders outstanding at time t. Backorders outstanding (in consumer units) 
are equal to the customer demand which has not been delivered yet due to an out of 
stock situation. We will consider the number of backorders at two moments: at the 
beginning of the potential delivery cycle just after a potential delivery (when the 
backorders are at the lowest level during the cycle) and at the end of the potential 
delivery cycle just before a potential delivery (when the backorders are at the highest 
level during the cycle). We will denote these two backorder levels with the variables 
𝐵𝑂(𝜏 + 𝐿)  and  𝐵𝑂(𝜏 + 𝑅 + 𝐿).  
 
Above both the inventory on hand and the backorders are defined at a particular 
point in time (t). In the analysis below we will also be interested in the average 
inventory on hand during the potential delivery cycle and the number of new 
backorders generated during the potential delivery cycle. So these two variables are 
defined for a time interval rather than at a specific point in time. A notation which 
clearly reflects the relevant time interval could have been 𝐼𝑂𝐻(𝜏 + 𝐿, 𝜏 + 𝑅 + 𝐿) and 
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𝐵𝑂(𝜏 + 𝐿, 𝜏 + 𝑅 + 𝐿), but for ease of notation we will use the notation 𝐼𝑂𝐻 and 𝐵𝑂 for 
these two variables, i.e. without a time variable attached to it.  

When analyzing an inventory system we will consider five Key Performance 
Indicators (KPI’s) which are relevant in practice: the expected inventory on hand, the 
expected number of orderlines per review period, the expected order size, the fill rate 
and the discrete ready rate. We use the following notation and definitions for these 
five KPI’s: 

𝑬[𝑰𝑶𝑯(𝝉 + 𝒕)] 
The expected inventory on hand at the beginning of an arbitrary potential delivery 
cycle just after a potential delivery (if 𝑡 = 𝐿 ) or at the end of an arbitrary potential 
delivery cycle just before a potential delivery (if 𝑡 = 𝐿 + 𝑅). Traditionally in the 
scientific literature on periodic review systems the expected inventory on hand at  
𝑡 = 𝐿 + 𝑅 is used as the KPI for the inventory on hand (see Äxsater (2010)). 
However, especially when the review period is very large compared to 𝑄, it may be 
better to also take into account the expected inventory on hand at the beginning of 
the delivery cycle, for example by taking the average of 𝐸[𝐼𝑂𝐻(𝜏 + 𝐿)] and   
𝐸[𝐼𝑂𝐻(𝜏 + 𝑅 + 𝐿)] as the KPI for the inventory on hand. It should be noted that in this 
case the resulting KPI is an approximation for the average inventory on hand (when 
measured on a continuous time scale) although this approximation is very good if the 
fill rate is high. 
 
𝑬[𝑶𝑳] 
The expected number of order lines per review period.  
 
𝑬[𝑶𝑺] 
The expected order size, which is the long term average quantity ordered (averaged 
over all replenishment orders).  
 
𝑷𝟐 
The long-term fraction of demand delivered immediately from stock, also known as 
the fill rate. This is in many situations the preferred way to define the customer 
service. While this definition is very useful to set reorder levels in many situations, it 
should be noted that in environments where demand is not registered but only sales 
(like in retail), the fill rate which is actually achieved in practice cannot be measured. 
 
𝑷𝟑𝒅𝒊𝒔𝒄𝒓𝒆𝒕𝒆 
The probability that we have positive inventory on hand just before a potential 
delivery moment, hereafter referred to as the discrete ready rate. One way to 
measure the customer service, in supermarkets for example, is to register for every 
stock keeping unit (SKU) whether the inventory on hand is equal to zero just before a 
potential delivery moment. Silver et al. (1998) define a measure which is similar to 
the discrete ready rate. While the discrete ready rate used in this document 
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measures the availability at specific discrete moments in time, their measure (the so-
called ready rate  𝑃3, which is defined as the fraction of time the inventory on hand is 
positive) measures the product availability continuously over time. Due to inaccuracy 
of inventory data, retailers prefer to do a physical check on empty shelves 
periodically rather than to rely on the continuous monitoring of inventory data in their 
computer systems when they want to assess the true customer service they provide.  

Silver et al. (1998) introduce another product availability measure, called  𝑃1, which is 
defined as the probability that the inventory on hand is positive just before an actual 
delivery takes place. The reason that this measure is cited in almost any textbook is 
due to the nice and simple analytical expressions for the reorder level which can be 
derived when using this measure. Two major drawbacks of using this measure are 
that in most situations it does not reflect the product availability as perceived by the 
customers and it does not take into account the positive effect of large lot-sizes or 
large review periods on the product availability. To see that 𝑃1 is not a good 
reflection of the product availability as perceived by customers, and to better 
understand why this measure will not be discussed in this document, consider an 
item with the following inventory and demand data (see Table 1): starting inventory 
on hand at the beginning of week 1, just after a replenishment order arrived at the 
end of week 0, is equal to 99 units. Demand per week is equal to 20 units and the 
next replenishment order will arrive at the end of week 5. 

Table 1: An example to illustrate the difference between service measures. 

Weeknr. Demand End of week inventory 
before potential delivery 

1 20 units 79 units 

2 20 units 59 units 

3 20 units 39 units 

4 20 units 19 units 

5 20 units 0 units; 1 unit backorder 

 

Based on these data the fill rate (𝑃2) is 99% (99 units out of 100 units were delivered 
immediately from the inventory on hand), while in this example 𝑃1, the probability that 
the inventory on hand is positive just before an actual delivery takes place, is equal 
to zero. Clearly, by no means does this reflect the true product availability perceived 
by the customers. Especially in situations with large lot-sizes we find that the fill rate 
𝑃2 is larger than 𝑃1. In those situations the lot-sizing inventory partially takes over the 
role of the safety stock. Note that the discrete ready rate 𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 is similar to 𝑃1 
when the review period is so large that a replenishment order is generated each 
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review period. In situations with large lot-sizes but small review periods (e.g. if in the 
example above the review period would be one day), the discrete  𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 is more 
similar to the fill rate than 𝑃1. 
 
1.5 Generic expressions for KPI’s  
 
To find an expression for the five KPI’s introduced in Section 1.4, we will analyze the 
inventory system during an arbitrary review period. We will make three assumptions 
which will be relaxed later on: 

1. The lead time is constant and deterministic. 
2. Demand which is not met from inventory on hand immediately is backordered. 
3. Products are non-perishable. 

 
An important building block for the analyses made in this document is the result 
found by Hadley and Whitin in 1963, who derived the probability density function for 
the inventory position at an arbitrary review period. Although with this result the 
inventory position at the arbitrary review moment 𝜏 is known, this information is not 
sufficient to determine the inventory on hand at that moment: part of the inventory 
position may be scheduled receipts and part may be inventory on hand. However, 
we can find an equation for the inventory on hand when we look L periods later: at 
that moment (𝜏 + 𝐿) just after the potential delivery (whether there is an actual 
delivery at time 𝜏 + 𝐿 depends on whether or not in period 𝜏 a replenishment order 
has been placed) all inventory which was in transit at time 𝜏 has entered the 
warehouse and is now part of the inventory on hand. In the meantime however, the 
inventory also decreased due to the demand during time interval (𝜏, 𝜏 + 𝐿). When we 
assume that demand, which cannot be satisfied from the inventory on hand 
immediately, is backordered, we then have the following expression for the inventory 
on hand at time 𝜏 + 𝐿  
 
𝐼𝑂𝐻(𝜏 + 𝐿) = max(𝐼𝑃(𝜏) − 𝐷(𝜏, 𝜏 + 𝐿), 0) = (𝐼𝑃(𝜏) − 𝐷(𝜏, 𝜏 + 𝐿))+.      
 
For ease of notation we will use the notation 𝑥+ to denote max (0, 𝑥) throughout this 
paper. 
 
Since the distribution function for 𝐼𝑃 as well as 𝐷 is known, the expression above 
fully specifies the distribution function for the inventory on hand just after a potential 
delivery. Likewise we can derive an expression for the inventory on hand just before 
the next potential delivery moment, at time 𝜏 + 𝑅 + 𝐿. Note that the first review 
moment after 𝜏 is at time 𝜏 + 𝑅 and an order placed at this time will not have arrived 
in the warehouse at time 𝜏 + 𝑅 + 𝐿, if we look at the system just before this potential 
delivery. Since no extra orders have arrived in the warehouse after time 𝜏 + 𝐿 and up 
to the moment just before 𝜏 + 𝑅 + 𝐿, while there may have been demand during the 
interval (𝜏 + 𝐿, 𝜏 + 𝑅 + 𝐿) we know that  
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𝐼𝑂𝐻(𝜏 + 𝑅 + 𝐿) = (𝐼𝑂𝐻(𝜏 + 𝐿) − 𝐷(𝜏 + 𝐿, 𝜏 + 𝑅 + 𝐿))+ = (𝐼𝑃(𝜏) − 𝐷(𝜏, 𝜏 + 𝑅 + 𝐿))+.   

So the following expression holds for 𝑡 = 𝐿 as well as for 𝑡 = 𝐿 + 𝑅 

𝐼𝑂𝐻(𝜏 + 𝑡) = (𝐼𝑃(𝜏) − 𝐷(𝜏, 𝜏 + 𝑡))+.              (1.1) 
 
Note that the inventory on hand is highest at the beginning of the potential delivery 
cycle, 𝐼𝑂𝐻(𝜏 + 𝐿),  and lowest at the end of this cycle, 𝐼𝑂𝐻(𝜏 + 𝑅 + 𝐿). See Figure 2. 
 
Now the expected inventory on hand at time  𝑡 is simply equal to 
 
𝐸[𝐼𝑂𝐻(𝜏 + 𝑡)] = 𝐸[(𝐼𝑃(𝜏) − 𝐷(𝜏, 𝜏 + 𝑡))+].             (1.2) 
 
It is left to the reader as an exercise to derive the following formulas for the number 
of backorders at time 𝜏 + 𝐿 and at time 𝜏 + 𝑅 + 𝐿 using exactly the same line of 
reasoning as used to derive the formulas for the expected inventory on hand.  
 
𝐵𝑂(𝜏 + 𝐿) = max(𝐷(𝜏, 𝜏 + 𝐿) − 𝐼𝑃(𝜏),0) = (𝐷(𝜏, 𝜏 + 𝐿) − 𝐼𝑃(𝜏))+    
𝐵𝑂(𝜏 + 𝑅 + 𝐿) = (𝐷(𝜏, 𝜏 + 𝑅 + 𝐿) − 𝐼𝑃(𝜏))+ .      
 
So we have for 𝑡 = 𝐿 and 𝑡 = 𝑅 + 𝐿 
 
𝐵𝑂(𝜏 + 𝑡) = (𝐷(𝜏, 𝜏 + 𝑡) − 𝐼𝑃(𝜏))+ .         (1.3) 
 
For 𝐵𝑂, the number of extra backorders in the system during the time interval 
(𝜏 + 𝐿, 𝜏 + 𝑅 + 𝐿), i.e. the backorders which were not yet present at time 𝜏 + 𝐿 but 
which were present at time 𝜏 + 𝑅 + 𝐿, we can derive the following expression 
 
𝐵𝑂 = 𝐵𝑂(𝜏 + 𝑅 + 𝐿) − 𝐵𝑂(𝜏 + 𝐿).        

The expressions for 𝐼𝑂𝐻(𝑡) and 𝐵𝑂(𝑡)  derived above can be used to determine the 
fill rate 𝑃2 and the discrete ready rate 𝑃3𝑑𝑖𝑠𝑐𝑟. The fill rate is equal to the fraction of 
demand delivered from stock immediately. So 1 − 𝑃2 is equal to the fraction of 
demand which has been backordered. When considering a potential delivery cycle 
this is equal to the expected extra backorders in the time interval (𝜏 + 𝐿, 𝜏 + 𝑅 + 𝐿) 
divided by the average demand during this interval 

𝑃2 = 1 −
𝐸[𝐵𝑂]

𝐸[𝐷(𝜏 + 𝐿, 𝜏 + 𝑅 + 𝐿)]
= 1 −

𝐸[𝐵𝑂(𝜏 + 𝑅 + 𝐿)] − 𝐸[𝐵𝑂(𝜏 + 𝐿)]
𝐸[𝐷(𝜏 + 𝐿, 𝜏 + 𝑅 + 𝐿)]

       (1.4) 

     = 1 −
𝐸[{𝐷(𝜏, 𝜏 + 𝑅 + 𝐿) − 𝐼𝑃(𝜏)}+] − 𝐸[{𝐷(𝜏, 𝜏 + 𝐿) − 𝐼𝑃(𝜏)}+]

𝐸[𝐷(𝜏 + 𝐿, 𝜏 + 𝑅 + 𝐿)]
 .                  
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The discrete ready rate is equal to the probability that at the end of a potential 
delivery cycle just before delivery the inventory on hand is positive. So 
 

𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 = 𝑃(𝐼𝑂𝐻(𝜏 + 𝑅 + 𝐿) > 0) = 𝑃({𝐼𝑃(𝜏) − 𝐷(𝜏, 𝜏 + 𝑅 + 𝐿)}+ > 0) 

            = 𝑃(𝐼𝑃(𝜏) > 𝐷(𝜏, 𝜏 + 𝑅 + 𝐿)).      (1.5) 

The expected number of orderlines per review cycle is simply equal to the probability 
that a replenishment order is generated at a review moment. This is equal to the 
probability that at period 𝜏 + 𝑅 the inventory position just before a replenishment 
decision is less than the reorder level. This inventory position equals the inventory 
position at period 𝜏  just after the replenishment decision minus the demand during 
the review period. As a result we have 
  
𝐸[𝑂𝐿] = 𝑃(𝐼𝑃(𝜏) − 𝐷(𝜏, 𝜏 + 𝑅) < 𝑠).      (1.6) 
 
Since in the long run the expected supplied quantity should be equal to the expected 
demand during a review period, and since the expected supply quantity is equal to 
the expected order size per replenishment order times the probability a 
replenishment order is generated during a review period, we have 
 
𝐸[𝐷(𝜏, 𝜏 + 𝑅)] = 𝐸[𝑂𝑆] ∙ 𝐸[𝑂𝐿] 
 
and therefore 
 

𝐸[𝑂𝑆] =
𝐸[𝐷(𝜏, 𝜏 + 𝑅)]

𝐸[𝑂𝐿]
.                                                                                                      (1.7) 

 
In this chapter we have derived generic expressions for all five KPI’s in terms of the 
stochastic variables 𝐼𝑃 and/or 𝐷. These expressions for an inventory control system 
with backordering are generic since they hold for any demand probability distribution 
and for any periodic review replenishment logic (so not only for a (𝑅, 𝑠, 𝑛𝑄)-control 
system, but also for (𝑅, 𝑠, 𝑆)- and other control systems). We can make these 
expressions more specific when making assumptions on the demand distribution and 
the replenishment logic used in the inventory control system. These more specific 
expressions will depend on whether demand distributions are assumed to be 
discrete or continuous. Chapter 2 will focus on systems with discrete demand 
distributions, while chapter 3 will focus on systems with continuous demand 
distributions. In both chapters it is assumed that a (𝑅, 𝑠,𝑛𝑄)-control system is 
applied. Alternative control systems are discussed in section 4.3. 
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2. Discrete demand distribution 

In this chapter specific expressions for the five KPI’s are derived for systems in 
which demand and supply quantities can only be integers. In other words, we only 
consider discrete demand distributions in this chapter. 

2.1    Expressions for KPI’s when demand is discrete 

Throughout this paper we assume that in a (𝑅, 𝑠,𝑛𝑄)-system a replenishment order 
is generated if at a review moment the inventory position is strictly below the reorder 
level (𝐼𝑃 < 𝑠 rather than  𝐼𝑃 ≤ 𝑠 ). The reason for this definition of a reorder level is 
that this definition is aligned with terminology used in practice. In practice sometimes 
companies work with a so-called min-max rule. The terms min and max are used to 
indicate that the inventory position should be equal to at least the min level and at 
most the max level. This implies that they will only order if the inventory position is 
strictly below the min level. Note that in commercial software for inventory control 
sometimes it is assumed that an order is generated when the inventory position is at 
or below a reorder level 𝑠. In those cases the reorder levels derived in this document 
should be decreased by one unit (if demand and supply are discrete) when 
comparing them with reorder levels used in commercial software. 

Given this definition of the reorder level and the replenishment logic of the (𝑅, 𝑠, 𝑛𝑄) 
control system, the inventory position just after a potential ordering moment is 
always larger than 𝑠 − 1 and less than or equal to 𝑠 − 1 + 𝑄 if demand and supply 
are in discrete numbers. Hadley and Whitin (1963) have proven that for a (𝑅, 𝑠,𝑛𝑄)-
system with backordering the inventory position at an arbitrary review moment just 
after the potential ordering moment follows a discrete uniform distribution on the set 
{𝑠, 𝑠 + 1, … , 𝑠 − 1 + 𝑄} if demand and supply is in discrete numbers.  

Note that Hadley and Whitin’s result does not hold for lost sales systems. This can 
be shown easily with a counterexample: consider a lost sales (𝑅, 𝑠,𝑛𝑄)-system with 
𝑠=3, 𝑄=20, 𝐿=0 days, 𝑅=1 day and demand per day equal to 25 with probability 0.4 
and equal to 26 with probability 0.6. In this system the inventory position at every 
review moment (after demand has occurred and before a replenishment order is 
placed) will be equal to 0. So the inventory position at every review period after a 
replenishment order is placed will be equal to 20. 

The derivation of the results below assumes the reader is capable to determine the 
expectation of the function of one or two stochastic variables. For those who are less 
familiar with this part of stochastic theory, the short summary and explanation given 
in Appendix 1 is strongly recommended. 

Let’s first derive an expression for the expected inventory on hand at time 𝑡, with 
𝑡 = 𝐿  or 𝑡 = 𝐿 + 𝑅. From (1.2) in Section 1.5 we know 

𝐸[𝐼𝑂𝐻(𝜏 + 𝑡)] = 𝐸[(𝐼𝑃(𝜏) − 𝐷(𝜏, 𝜏 + 𝑡))+].              
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Next, we first determine the expectation of the function of the two stochastic 
variables 𝐼𝑃 and 𝐷. Since 𝐼𝑃~𝑢(𝑠, 𝑠 − 1 + 𝑄), we know that 
 
𝑃(𝐼𝑃 = 𝑠 + 𝑖) = 1

𝑄
  for 𝑖 = 0,1, … ,𝑄 − 1 and zero elsewhere.   

 
This results in 
 
𝐸[𝐼𝑂𝐻(𝜏 + 𝑡)] = 𝐸[{𝐼𝑃(𝜏) − 𝐷(𝜏, 𝜏 + 𝑡)}+] 
 
   = ∑ 𝑃(𝐼𝑃 = 𝑘)𝐸[{𝑘 − 𝐷(𝜏, 𝜏 + 𝑡)}+]∞

𝑘=−∞         (substitute 𝑖 = 𝑘 − 𝑠) 
 
   = 1

𝑄
∑ 𝐸𝑄−1
𝑖=0 [{𝑠 + 𝑖 − 𝐷(𝜏, 𝜏 + 𝑡)}+]  

 
   = 1

𝑄
∑ ∑ {𝑠 + 𝑖 − 𝑑}+∞

𝑑=0
𝑄−1
𝑖=0 𝑃(𝐷𝑡 = 𝑑)  

 
   = 1

𝑄
∑ ∑ {𝑠 + 𝑖 − 𝑑}𝑠+𝑖−1

𝑑=0
𝑄−1
𝑖=0 𝑃(𝐷𝑡 = 𝑑).       (2.1) 

 
Note that for ease of notation we use the stochastic variable 𝐷𝑡 to denote the 
demand during t periods. 
 
Likewise we can derive the expressions for 𝑃2 and 𝑃3𝑑𝑖𝑠𝑐𝑟, using (1.4) and (1.5) 
 

     𝑃2 = 1 −
𝐸[{𝐷(𝜏, 𝜏 + 𝑅 + 𝐿) − 𝐼𝑃(𝜏)}+]− 𝐸[{𝐷(𝜏, 𝜏 + 𝐿) − 𝐼𝑃(𝜏)}+]

𝐸[𝐷(𝜏 + 𝐿, 𝜏 + 𝑅 + 𝐿)]
                           

 

     = 1 −
∑ 𝑃(𝐼𝑃 = 𝑘)∞
𝑘=−∞ (𝐸[{𝐷(𝜏, 𝜏 + 𝑅 + 𝐿) − 𝑘}+] − 𝐸[{𝐷(𝜏, 𝜏 + 𝐿) − 𝑘}+])

𝐸[𝐷(𝜏 + 𝐿, 𝜏 + 𝑅 + 𝐿)]
             

 

     = 1 −

1
𝑄∑ ∑ [𝑃(𝐷𝐿+𝑅 = 𝑑) − 𝑃(𝐷𝐿 = 𝑑)]∞

𝑑=𝑠+𝑖+1
𝑄−1
𝑖=0  {𝑑 − 𝑠 − 𝑖}

𝐸[𝐷𝑅]
.                       (2.2) 

 
 

𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 = 𝑃�𝐼𝑃(𝜏) > 𝐷(𝜏, 𝜏 + 𝑅 + 𝐿)� = ∑ 𝑃(𝐼𝑃 = 𝑘)𝑃(𝐷𝐿+𝑅 < 𝑘)∞
𝑘=−∞    

 = 1
𝑄
∑ 𝑃(𝐷𝐿+𝑅 < 𝑘)𝑠+𝑄−1
𝑘=𝑠 = 1

𝑄
∑ ∑ 𝑃(𝐷𝐿+𝑅 = 𝑑)𝑘−1

𝑑=0
𝑠+𝑄−1
𝑘=𝑠   if 𝑠 ≥ 1, zero otherwise (2.3) 
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Using (1.6) we can derive the expression for the expected number of orderlines per 
review period, 𝐸[𝑂𝐿] 

𝐸[𝑂𝐿] = 𝑃(𝐼𝑃(𝜏) − 𝐷(𝜏, 𝜏 + 𝑅) < 𝑠) = ∑ 𝑃(𝐼𝑃 = 𝑘)𝑃(𝐷𝑅 > 𝑘 − 𝑠)∞
𝑘=−∞   

   

= 1
𝑄
∑ 𝑃(𝐷𝑅 > 𝑖)𝑄−1
𝑖=0 = 1

𝑄
∑ �1 − ∑ 𝑃(𝐷𝑅 = 𝑑)𝑖

𝑑=0 �.𝑄−1
𝑖=0     (2.4) 

 
When combining this formula with formula (1.7) we get the expression for the 
expected order size, 𝐸[𝑂𝑆] 
 
𝐸[𝑂𝑆] = 𝐸[𝐷𝑅]

1
𝑄
∑ {1−∑ 𝑃(𝐷𝑅=𝑑)}𝑖

𝑑=0
𝑄−1
𝑖=0

.       (2.5) 

 
 
2.2     Calculating the KPI’s for a given discrete demand distribution  

 
In this section we will use an example to show how to determine the convolution of 
stochastic discrete variables, and given the convolution how to determine the five 
KPI’s.  
 
The formulas in section 2.1 all depend on one or more of the stochastic variables 𝐷𝐿,  
𝐷𝑅 and/or 𝐷𝐿+𝑅 .The probability distribution for these variables can be derived in two 
ways: 1. By using the fact that the probability distribution of the demand during 𝑡 
periods (𝑡 = 𝐿, 𝑅, 𝐿 + 𝑅) is the t-fold convolution of the probability distribution of the 
single period demand and 2. By first calculating or measuring the mean 𝜇𝑡 and the 
standard deviation 𝜎𝑡 of the demand during 𝑡 periods (𝑡 = 𝐿, 𝑅, 𝐿 + 𝑅) and then 
fitting a discrete probability distribution on 𝜇𝑡 and 𝜎𝑡. These two options will be 
discussed in more detail below. 
 

Option 1. Deriving the 𝑡-fold convolution of the single period probability distribution 

This approach assumes that the single period probability distribution is known. It may 
be estimated from empirical data. If for example demand is registered during 50 
weeks and in 20 weeks demand was equal to 3 units, while in the other 30 weeks 
demand was equal to 4 units, then we estimate (with 𝐷1the single period demand) 
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for  𝒕 = 𝟏 

𝑃(𝐷1 = 3) = 20
50

= 0.4 and  

𝑃(𝐷1 = 4) =
30
50

= 0.6 

Assume 𝐿 = 1 and 𝑅 = 2, so 𝐿 + 𝑅 = 3. In order to determine the five KPI’s we then 
need the probability distributions of 𝐷1, 𝐷2 and 𝐷3. The probability distribution of 𝐷𝑡 
can be derived using the equation 
 

𝑃(𝐷𝑡 = 𝑘) = � 𝑃(𝐷𝑡−1 = 𝑗 𝑎𝑛𝑑 𝐷1 = 𝑖)
𝑗+𝑖=𝑘

 

 
If 𝐷𝑡−1 and 𝐷1 are independent stochastic variables, this can be written as 
 

𝑃(𝐷𝑡 = 𝑘) = � 𝑃(𝐷𝑡−1 = 𝑗) ∙ 𝑃(𝐷1 = 𝑖)
𝑗+𝑖=𝑘

 

 
With this equation we can determine the t-fold convolution. In our example we then 
have 

for  𝒕 = 𝟐 

Since 𝐷1 is equal to 3 or 4 units, 𝐷2 can vary between 6 and 8 units. 

𝑃(𝐷2 = 6) = 𝑃(𝐷1 = 3 𝑎𝑛𝑑 𝐷1 = 3) = 0.4 ∗ 0.4 = 0.16 

𝑃(𝐷2 = 7) = 𝑃(𝐷1 = 3 𝑎𝑛𝑑 𝐷1 = 4) + 𝑃(𝐷1 = 4 𝑎𝑛𝑑 𝐷1 = 3) 

                     = 0.4 ∗ 0.6 + 0.6 ∗ 0.4 = 0.48 

𝑃(𝐷2 = 8) = 𝑃(𝐷1 = 4 𝑎𝑛𝑑 𝐷1 = 4) = 0.6 ∗ 0.6 = 0.36 

for  𝒕 = 𝟑 

Since 𝐷1 is equal to 3 or 4 units and 𝐷2 can vary between 6 and 8 units, 𝐷3 will vary 
between 9 and 12 units. 

𝑃(𝐷3 = 9) = 𝑃(𝐷2 = 6 𝑎𝑛𝑑 𝐷1 = 3) = 0.16 ∗ 0.4 = 0.064 

𝑃(𝐷3 = 10) = 𝑃(𝐷2 = 6 𝑎𝑛𝑑 𝐷1 = 4) + 𝑃(𝐷2 = 7 𝑎𝑛𝑑 𝐷1 = 3) 

                        = 0.16 ∗ 0.6 + 0.48 ∗ 0.4 = 0.288 

𝑃(𝐷3 = 11) = 𝑃(𝐷2 = 7 𝑎𝑛𝑑 𝐷1 = 4) + 𝑃(𝐷2 = 8 𝑎𝑛𝑑 𝐷1 = 3) 
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                        = 0.48 ∗ 0.6 + 0.36 ∗ 0.4 = 0.432 

𝑃(𝐷3 = 12) = 𝑃(𝐷2 = 8 𝑎𝑛𝑑 𝐷1 = 4) = 0.36 ∗ 0.6 = 0.216 

With these probability distributions the five KPI’s can be derived. For example, when 
𝑠 = 10 and = 2 , formula (2.2) gives 

𝑃2 = 1 −
1
2 (∑ [𝑃(𝐷3 = 𝑑) − 𝑃(𝐷1 = 𝑑)]{𝑑 − 𝑠} + ∑ [𝑃(𝐷3 = 𝑑) − 𝑃(𝐷1 = 𝑑)]{𝑑 − 𝑠 − 1})∞

𝑑=𝑠+2
∞
𝑑=𝑠+1

2 ∗ 𝐸[𝐷1]
 

Since 𝐸[𝐷1] = ∑ 𝑑.𝑃(𝐷1 = 𝑑) = 3 ∗ 0.4 + 4 ∗ 0.6 = 3.6∞
𝑑=0  and 

𝑃(𝐷1 = 𝑑) = 0 for 𝑑 = 9, 10, 11, 12   

the fill rate 𝑃2 is equal to  

𝑃2 = 1 −
1
2 {𝑃(𝐷3 = 11) ∗ 1 + 𝑃(𝐷3 = 12) ∗ 2 + 𝑃(𝐷3 = 12) ∗ 1}

7.2
 

      = 1 −
1
2 {0.432 ∗ 1 + 0.216 ∗ 2 + 0.216 ∗ 1}

7.2
= 0.925 

 
With (2.4) we determine the expected number of orderlines per review period. 

𝐸[𝑂𝐿] =
1
2

{1 − 𝑃(𝐷2 = 0) + 1 − 𝑃(𝐷2 = 0) − 𝑃(𝐷2 = 1)} = 1. 

Note that since the single period demand is always larger than 𝑄 in this example, 
every review period a replenishment order is generated. 
 
Likewise 𝐸[𝐼𝑂𝐻(𝜏 + 𝐿)], 𝐸[𝐼𝑂𝐻(𝜏 + 𝐿 + 𝑅)] and 𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 can be calculated. 
 
While above we assumed that demand in consecutive periods is independent, this 
assumption is not needed if we determine the probability distribution from demand in 
𝑡 periods directly from empirical data (using a time series of observations for 𝐷𝑡). 
 

Option 2.  Fitting a discrete probability distribution on 𝜇𝑡 and 𝜎𝑡. 

The second option to determine the probability distribution function is in fact an 
approximation. By first calculating or measuring the mean 𝜇𝑡 and the standard 
deviation 𝜎𝑡 of the demand during 𝑡 periods (𝑡 = 𝐿, 𝑅, 𝐿 + 𝑅) and then fitting a 
theoretical discrete probability distribution  on 𝜇𝑡 and 𝜎𝑡, an approximative probability 
distribution is found. Adan et al. (1995) developed a simple and effective fitting 
procedure based on 𝜇𝑡 and 𝜎𝑡. In their procedure they consider four discrete 
probability distributions: the geometric (𝐺𝐸𝑂), negative binomial (𝑁𝐵), Poisson 
(𝑃𝑂𝐼𝑆), and binomial (𝐵𝐼𝑁) distribution. A 𝐺𝐸𝑂(𝑝) random variable has probability 
distribution 𝑝𝑖 = (1 − 𝑝)𝑝𝑖, 𝑖 = 0,1,2, …, and an 𝑁𝐵(𝑘,𝑝) variable is the sum of 𝑘 
independent 𝐺𝐸𝑂(𝑝) variables. A 𝑃𝑂𝐼𝑆(𝜆) random variable is Poisson distributed 
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with mean 𝜆, and a 𝐵𝐼𝑁(𝑘, 𝑝) variable is binomially distributed, where 𝑘 is the 
number of trials and 𝑝 the success probability. 

To choose one of these four probability distributions, they consider the variable 𝑎 
which is defined as  

𝑎 =
𝜎2/𝜇 − 1

𝜇
 

They choose the binomial distribution when −1 < 𝑎 < 0, the Poisson distribution 
when 𝑎 = 0, the negative binomial distribution when 0 < 𝑎 < 1, and the geometric  
distribution when 𝑎 ≥ 1. This is visualized in Figure 4. For certain combinations of a 
small value for the Variance to Mean and a small value for the Mean they prove that 
those combinations do not exist if demand is discrete. These combinations are 
reflected by the area below the red line in Figure 4. For the exact determination of 
the parameters of the distribution (like the parameters 𝑘 and 𝑝 for the negative 
binomial distribution) we refer to Adan et al.(1995).  
 

 

Figure 4. The probability distributions selected in the fitting procedure of Adan et al. 
as a function of the mean and the Variance to mean (VTM). 
 

With the probability distribution selected based on the fitting procedure of Adan et al., 
the five KPI’s can be determined again using (2.1)-(2.5).  

The advantage of the fitting procedure of Adan et al. is the fact that only two 
numbers, 𝜇𝑡 and 𝜎𝑡, are required to fully specify the probability distribution function. 
The advantage of using the full empirical distribution functions, as described above 
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when discussing the first option, is the fact that it gives exact results. However, this is 
under the assumption that the empirical distribution is known. The reality is that often 
this empirical distribution is based on a limited set of historical data. As such it is an 
estimate of the true probability distribution. As new information becomes available, 
this distribution function will change again. So with limited historical data the fitting 
procedure of Adan et al. may be more robust: when new demand information 
becomes available the estimates of the mean and standard deviation will change 
also, but the KPI’s are likely to change less.  

The fitting procedure of Adan et al. is implemented in the Excel-based DoBr tool.  
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3. Continuous demand distribution 

In this section demand and supply are assumed to be real numbers rather than 
integers. In other words, we will consider continuous demand distributions here. 
In Section 3.1 we will first derive formulas for the KPI’s assuming demand is 
continuously distributed but without making any further assumption on the demand 
distribution. The formulas derived in section 3.1 can be expressed in terms of 
functions that can be easily evaluated in Excel when demand is either gamma or 
normally distributed. Section 3.2 derives the expressions when demand is gamma 
distributed and Section 3.3 derives them when demand is normally distributed.   
 

3.1    Expressions for KPI’s when demand is continuous 

For the (𝑅, 𝑠,𝑛𝑄) inventory control system with backordering and demand being a 
continuous stochastic variable, a replenishment order is triggered as soon as the 
inventory position drops below the reorder level 𝑠. For this system Hadley and Whitin 
have proven that the inventory position at an arbitrary review moment, just after the 
replenishment order is placed, is (continuously) uniformly distributed between 𝑠 and 
𝑠 + 𝑄.  
Note the differences with Hadley and Whitin’s result for the system with discrete 
demand: the continuous uniform pdf versus the discrete uniform pdf and the interval 
(𝑠, 𝒔 + 𝑸) versus the set {𝑠, 𝑠 + 1, … , 𝒔 − 𝟏 + 𝑸}. 
 
 

• The fill rate 
 

If we assume demand is identically and independently distributed (i.i.d.) in disjoint 
time intervals we can derive the expression for the fill rate. This derivation starts with 
formula (1.4) 
 

𝑃2 = 1 −
𝐸[𝐵𝑂(𝜏 + 𝑅 + 𝐿)] − 𝐸[𝐵𝑂(𝜏 + 𝐿)]

𝐸[𝐷𝑅]
. 

Next we will derive a general expression for 𝐸[𝐵𝑂(𝜏 + 𝑡)] with 𝑡 = 𝑅 + 𝐿 or = 𝐿 .   
Hereto we use the fact that 𝐼𝑃(𝜏)~𝑢(𝑠, 𝑠 + 𝑄) and we introduce the continuous 
stochastic variable ∆= 𝐼𝑃(𝜏) − 𝑠, so  ∆~𝑢(0,𝑄). Finally we introduce the notation for 
two probability density functions (pdf’s):  𝑓𝑡(. ) is the pdf for 𝐷𝑡, the demand during 𝑡 
periods, and 𝑔(. ) is the pdf for the stochastic variable ∆. 
 
Using (1.3) we have 
 
𝐸[𝐵𝑂(𝜏 + 𝑡)] = 𝐸[{𝐷(𝜏, 𝜏 + 𝑡) − 𝐼𝑃(𝜏)}+] = 𝐸[(𝐷𝑡 − 𝑠 − ∆)+] 
 
 

          = ��(𝑥 − 𝑠 − 𝛿)+𝑓𝑡(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥

𝑄

0

∞

−∞

 

22 
 



         = ��(𝑥 − 𝑠 − 𝛿)+𝑓𝑡(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥

𝑄

0

𝑠

−∞

+ � � (𝑥 − 𝑠 − 𝛿)+𝑓𝑡(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥
𝑄

0

𝑠+𝑄

𝑠
 

                       +� � (𝑥 − 𝑠 − 𝛿)+𝑓𝑡(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥
𝑄

0

∞

𝑠+𝑄
 

 

= ��(𝑥 − 𝑠 − 𝛿)+𝑓𝑡(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥

𝑄

0

𝑠

−∞

+ � � (𝑥 − 𝑠 − 𝛿)+𝑓𝑡(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥
𝑥−𝑠

0

𝑠+𝑄

𝑠
 

                     + � �(𝑥 − 𝑠 − 𝛿)+𝑓𝑡(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥

𝑄

𝑥−𝑠

𝑠+𝑄

𝑠

+ � � (𝑥 − 𝑠 − 𝛿)+𝑓𝑡(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥
𝑄

0

∞

𝑠+𝑄
. 

 
The integration over 𝑥 starts with −∞ since in our analyses we also include 
probability distribution functions, like the normal distribution, having a positive 
probability that demand is negative. In reality of course demand is not negative.  
 
Note that in the first integral (𝑥 − 𝑠 − 𝛿)+ = 0  since 𝑥 ≤ 𝑠. Likewise in the third 
integral (𝑥 − 𝑠 − 𝛿)+ = 0  since  𝛿 ≥ 𝑥 − 𝑠 . Therefore both the first and third integral 
are equal to zero. Given the values for 𝑥 and 𝛿 in the second and fourth integral, the 
function (𝑥 − 𝑠 − 𝛿)+  can be replaced by (𝑥 − 𝑠 − 𝛿).   
 
So, also knowing that  𝑔(𝛿) = 1/𝑄, we have 
 

𝐸[𝐵𝑂(𝜏 + 𝑡)] =
1
𝑄
� � (𝑥 − 𝑠 − 𝛿)𝑓𝑡(𝑥)𝑑𝛿𝑑𝑥

𝑥−𝑠

0

𝑠+𝑄

𝑠

+
1
𝑄
� � (𝑥 − 𝑠 − 𝛿)𝑓𝑡(𝑥)𝑑𝛿𝑑𝑥

𝑄

0

∞

𝑠+𝑄
. 

 
Simply integrating over 𝛿 gives us 
 
 
𝐸[𝐵𝑂(𝜏 + 𝑡)] 
 

          =
1
𝑄
� [(𝑥 − 𝑠)𝛿 −

1
2
𝛿2]𝛿=0

𝛿=𝑥−𝑠

𝑠+𝑄

𝑠

𝑓𝑡(𝑥)𝑑𝑥 +
1
𝑄
� [(𝑥 − 𝑠)𝛿 −

1
2
𝛿2]𝛿=0

𝛿=𝑄
∞

𝑠+𝑄
𝑓𝑡(𝑥)𝑑𝑥 

 

        =
1
𝑄
�

1
2

(𝑥 − 𝑠)2
𝑠+𝑄

𝑠

𝑓𝑡(𝑥)𝑑𝑥 +
1
𝑄
� [(𝑥 − 𝑠)𝑄 −

1
2
𝑄2]

∞

𝑠+𝑄
𝑓𝑡(𝑥)𝑑𝑥 

 

        =
1
𝑄
�

1
2

(𝑥 − 𝑠)2𝑓𝑡

𝑠+𝑄

𝑠

(𝑥)𝑑𝑥 + � 𝑥𝑓𝑡(𝑥)𝑑𝑥 − (𝑠 +
𝑄
2

)� 𝑓𝑡(𝑥)𝑑𝑥
∞

𝑠+𝑄

∞

𝑠+𝑄
.                    (3.1) 
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• The number of order lines and the order size 
 

To determine the expected number of order lines per review period we start with 
(1.6). When demand is continuous, we can derive the following formula 
 
𝐸[𝑂𝐿] = 𝑃(𝐼𝑃(𝜏) − 𝐷𝑅 < 𝑠) = 𝑃(𝑠 + ∆ − 𝐷𝑅 < 𝑠) = 𝑃(𝐷𝑅 > ∆) 
 

             = � � 1{𝑥>𝛿}𝑓𝑅(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥
∞

−∞

∞

−∞
 

             = � � 𝑓𝑅(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥 =
1
𝑄

min (𝑄,𝑥)

0

∞

0
� 𝑓𝑅(𝑥)min (𝑄, 𝑥)𝑑𝑥
∞

0
 

            =
1
𝑄
� 𝑥𝑓𝑅(𝑥)𝑑𝑥 +

1
𝑄
� 𝑄𝑓𝑅(𝑥)𝑑𝑥
∞

𝑄

𝑄

0
 

             = 1 − 𝐹𝑅(𝑄) +
1
𝑄
� 𝑥𝑓𝑅(𝑥)𝑑𝑥
𝑄

0
.                                                                               (3.2)  

 
with 1{𝑥>𝛿} the indicator function which is equal to one if 𝑥 > 𝛿 and zero otherwise. 

 

According to (1.7) the expected order size 𝐸[𝑂𝑆]  is equal to 
 

𝐸[𝑂𝑆] =
𝐸[𝐷𝑅]
𝐸[𝑂𝐿].                                                                                                                 (3.3) 

 
• The inventory on hand 

 
To determine the expected inventory on hand we start with (1.2). The expected 
inventory hand at time 𝜏 + 𝑡, denoted by 𝐸[𝐼𝑂𝐻(𝜏 + 𝑡)], is equal to  
 
𝐸[𝐼𝑂𝐻(𝜏 + 𝑡)] = 𝐸[(𝐼𝑃(𝜏) − 𝐷𝑡)+ ] = 𝐸[(𝑠 + ∆ − 𝐷𝑡)+] 
 

              = � � (𝑠 + 𝛿 − 𝑥)+𝑓𝑡(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥
𝑄

0

∞

−∞
 

              = � � [𝑠 + 𝛿 − 𝑥 + (𝑥 − 𝑠 − 𝛿)+]𝑓𝑡(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥
𝑄

0

∞

−∞
 

              = � � (𝑠 − 𝑥 + 𝛿)𝑓𝑡(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥 +  � � (𝑥 − 𝑠 − 𝛿)+
𝑄

0

∞

−∞

𝑄

0

∞

−∞
𝑓𝑡(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥 

              = �
1
𝑄

∞

−∞
�(𝑠 − 𝑥)𝑄 +

1
2
𝑄2� 𝑓𝑡(𝑥)𝑑𝑥 + 𝐸[(𝐷𝑡 − 𝑠 − ∆)+] 

 

              = 𝑠 +
𝑄
2
− 𝐸[𝐷𝑡] + 𝐸[𝐵𝑂(𝜏 + 𝑡)] .                                                                        (3.4) 

 
Note that with this formulas we have shown a direct link between the expected 
inventory on hand and the expected number of backorders at time 𝑡. 
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In case 𝐸[𝐵𝑂(𝜏 + 𝑡)], with 𝑡 = 𝐿 and 𝑡 = 𝐿 + 𝑅, is close to zero (i.e. if the fill rate is 
close to 100%), if the safety stock 𝑠𝑠 is defined as 
 
𝑠𝑠: = 𝑠 − 𝐸[𝐷𝐿+𝑅],  
 
and if demand is i.i.d., then the expected inventory on hand at time  𝜏 + 𝐿 resp. 
𝜏 + 𝑅 + 𝐿 is approximately equal to  
 

𝐸[𝐼𝑂𝐻(𝜏 + 𝐿)] ≈
𝑄
2

+ 𝐸[𝐷𝑅] + 𝑠𝑠 
 

𝐸[𝐼𝑂𝐻(𝜏 + 𝑅 + 𝐿)] ≈
𝑄
2

+ 𝑠𝑠. 
 
Recall that these quantities represent the expected inventory on hand at the 
beginning and end of an arbitrary review period and not, as in some other textbooks, 
the expected inventory on hand at the beginning and end of a replenishment cycle 
(defined as the time interval starting from the moment a replenishment order has 
arrived and ending at the moment the next replenishment order is about to arrive). 
 
 

• The discrete ready rate 
 

For the discrete ready rate 𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 we use (1.5) to derive the following result 
 
𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 = 𝑃(𝐼𝑃(𝜏) > 𝐷𝐿+𝑅) = 𝑃(𝐷𝐿+𝑅 < 𝑠 + ∆) 

 

     = � � 1{𝑥<𝑠+𝛿}𝑓𝐿+𝑅(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥
∞

−∞

∞

−∞
 

 

     = � � 𝑓𝐿+𝑅(𝑥)𝑔(𝛿)𝑑𝛿𝑑𝑥 =
1
𝑄

𝑄

max (0,𝑥−𝑠)

𝑠+𝑄

−∞
� 𝑓𝐿+𝑅(𝑥)[𝑄 − max(0, 𝑥 − 𝑠)]𝑑𝑥
𝑠+𝑄

−∞
 

 

     = 𝐹𝐿+𝑅(𝑠 + 𝑄) −
1
𝑄
� (𝑥 − 𝑠)𝑓𝐿+𝑅(𝑥)𝑑𝑥
𝑠+𝑄

𝑠
 

 

     =
𝑠 + 𝑄
𝑄

𝐹𝐿+𝑅(𝑠 + 𝑄) −
𝑠
𝑄
𝐹𝐿+𝑅(𝑠) −

1
𝑄
� 𝑥𝑓𝐿+𝑅(𝑥)𝑑𝑥.                                           (3.5)
𝑠+𝑄

𝑠
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3.2    Gamma distribution 

In case 𝐷𝑡 is gamma distributed with mean 𝛼𝛽 and variance 𝛼𝛽2, then the pdf is 
equal to 

𝑓(𝑥|𝛼,𝛽) =
𝑥𝛼−1

Γ(𝛼)𝛽𝛼
𝑒−𝑥/𝛽 

 
with  Γ(𝛼) = ∫ 𝑦𝛼−1𝑒−𝑦𝑑𝑦.∞

0  
 
With 𝐹(𝑥|𝛼,𝛽) being the cdf of the gamma distribution and using  Γ(𝛼 + 1) = 𝛼Γ(𝛼) 
we can derive the following general expressions 
  
 
∫ 𝑓(𝑥|𝛼,𝛽)𝑑𝑥𝑏
𝑎 = 𝐹(𝑏|𝛼,𝛽) − 𝐹(𝑎|𝛼,𝛽).                               (3.6) 

 

� 𝑥𝑓(𝑥|𝛼,𝛽)𝑑𝑥 = �
𝑥𝛼

Γ(𝛼)𝛽𝛼
𝑏

𝑎

𝑏

𝑎
𝑒−

𝑥
𝛽𝑑𝑥 

                               = 𝛼𝛽�
𝑥𝛼

Γ(𝛼 + 1)𝛽𝛼+1
𝑒−

𝑥
𝛽

𝑏

𝑎
𝑑𝑥 

 
                               = 𝛼𝛽[𝐹(𝑏|𝛼 + 1,𝛽) − 𝐹(𝑎|𝛼 + 1,𝛽)]                      (3.7) 
 

� 𝑥2𝑓(𝑥|𝛼,𝛽)𝑑𝑥 = �
𝑥𝛼+1

Γ(𝛼)𝛽𝛼
𝑏

𝑎

𝑏

𝑎
𝑒−

𝑥
𝛽𝑑𝑥 

                                    = (𝛼 + 1)𝛼𝛽2 �
𝑥𝛼+1

Γ(𝛼 + 2)𝛽𝛼+2
𝑒−

𝑥
𝛽

𝑏

𝑎
𝑑𝑥 

 
                                    = (𝛼 + 1)𝛼𝛽2[𝐹(𝑏|𝛼 + 2,𝛽) − 𝐹(𝑎|𝛼 + 2,𝛽)]         (3.8) 
 
 
Below these expressions will be used to derive expressions for the KPI’s. 

 

• The fill rate  

The fill rate 𝑃2 can be determined by combining (1.4) with 

𝐸[𝐵𝑂(𝜏 + 𝑡)] =
1
𝑄
�

1
2

(𝑥 − 𝑠)2
𝑠+𝑄

𝑠

𝑓𝑡(𝑥)𝑑𝑥 + � 𝑥𝑓𝑡(𝑥)𝑑𝑥 − �𝑠 +
𝑄
2
�� 𝑓𝑡(𝑥)𝑑𝑥

∞

𝑠+𝑄

∞

𝑠+𝑄
, 

 
where 𝑓𝑡(. ) is the probability density function for the stochastic variable 𝐷𝑡, the 
demand during 𝑡 periods. 
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Using expressions (3.6)-(3.8), we can rewrite this expression for 𝐸[𝐵𝑂(𝜏 + 𝑡)]. 
 
𝐸[𝐵𝑂(𝜏 + 𝑡)] 

   =
1
𝑄
�

1
2

(𝑥 − 𝑠)2
𝑠+𝑄

𝑠

𝑓(𝑥|𝛼,𝛽)𝑑𝑥 + � 𝑥𝑓(𝑥|𝛼,𝛽)𝑑𝑥 − (𝑠 +
𝑄
2

)� 𝑓(𝑥|𝛼,𝛽)𝑑𝑥
∞

𝑠+𝑄

∞

𝑠+𝑄
 

 

    =
(𝛼 + 1)𝛼𝛽2

2𝑄
[𝐹(𝑠 + 𝑄|𝛼 + 2,𝛽) − 𝐹(𝑠|𝛼 + 2,𝛽)] 

                      −�
𝑠 + 𝑄
𝑄

�𝛼𝛽𝐹(𝑠 + 𝑄|𝛼 + 1,𝛽) +
𝑠𝛼𝛽
𝑄

𝐹(𝑠|𝛼 + 1,𝛽) 

                  + (𝑠+𝑄)2

2𝑄
𝐹(𝑠 + 𝑄|𝛼,𝛽) − 𝑠2

2𝑄
𝐹(𝑠|𝛼,𝛽) + 𝛼𝛽 − �𝑠 + 𝑄

2
�.            (3.9) 

 
Since 𝐷𝑡 is gamma distributed with mean 𝛼𝛽 and variance  𝛼𝛽2,  𝛼 and 𝛽 in the 
equation above can be solved from 𝛼𝛽 = 𝑡𝜇 and 𝛼𝛽2 = 𝑡𝜎2 when demand data are 
available to estimate 𝜇 and 𝜎 or when 𝜇 and 𝜎 are given. This yields 
 
𝛽 = 𝜎2

𝜇
        and     𝛼 = 𝑡 𝜇

2

𝜎2
 

 
When combining (1.4) and (3.9), we have an exact expression for the 𝑃2 in an 
(𝑅, 𝑠,𝑛𝑄)-system with gamma distributed demand and backordering. 
 
 

• The number of order lines and the order size 
 

According to (3.2), when demand is continuous the expected number of orderlines 
per review period is equal to 
 

𝐸[𝑂𝐿] = 1 − 𝐹𝑅(𝑄) +
1
𝑄
� 𝑥𝑓𝑅(𝑥)𝑑𝑥
𝑄

0
. 

 
In case demand during the review period is gamma distributed with parameters 𝛼𝑅 
and  𝛽𝑅, we get (by using (3.7)) 
 

𝐸[𝑂𝐿] = 1 − 𝐹(𝑄|𝛼𝑅 ,𝛽𝑅) +
1
𝑄
� 𝑥𝑓(𝑥|𝛼𝑅 ,𝛽𝑅)𝑑𝑥
𝑄

0
 

            =  1 − 𝐹(𝑄|𝛼𝑅 ,𝛽𝑅) +
𝛼𝑅𝛽𝑅
𝑄

𝐹(𝑄|𝛼𝑅 + 1,𝛽𝑅).                                                    (3.10) 

 
The expected order size 𝐸[𝑂𝑆] can be determined using (3.3) and (3.10).  
 
 

• The inventory on hand  

If demand is gamma distributed, the expected inventory on hand follows from 
combining equation (3.9) with (3.4). 
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• The discrete ready rate 

 
In case demand is gamma distributed, formula (3.5) 
 

 𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 =
𝑠 + 𝑄
𝑄

𝐹𝐿+𝑅(𝑠 + 𝑄) −
𝑠
𝑄
𝐹𝐿+𝑅(𝑠)−

1
𝑄
� 𝑥𝑓𝐿+𝑅(𝑥)𝑑𝑥
𝑠+𝑄

𝑠
 

 
can be rewritten, using formula (3.7) into  
 
 

𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 =
𝑠 + 𝑄
𝑄

𝐹(𝑠 + 𝑄|𝛼𝐿+𝑅 ,𝛽𝐿+𝑅) −
𝑠
𝑄
𝐹(𝑠|𝛼𝐿+𝑅 ,𝛽𝐿+𝑅) 

                                    −
𝛼𝐿+𝑅𝛽𝐿+𝑅

𝑄
[𝐹(𝑠 + 𝑄|𝛼𝐿+𝑅 + 1,𝛽𝐿+𝑅) − 𝐹(𝑠|𝛼𝐿+𝑅 + 1,𝛽𝐿+𝑅)].    (3.11) 

 
 

3.3    Normal distribution 

In this section demand is assumed to be normally distributed. So the probability 
distribution function 𝑓(𝑥) is equal to 
 

𝑓(𝑥) =
1

𝜎√(2𝜋)
𝑒−

(𝑥−𝜇)2
2𝜎2 . 

 
We will derive expressions for the five KPI’s that can be easily implemented in Excel.  
To this end the following results, which are derived in Appendix 2, will be used to 
transform expressions for a stochastic variable 𝑋 with a non-standard normal pdf 
𝑓(𝑥), mean 𝜇 and standard deviation 𝜎 into expressions for a stochastic variable 𝑉 
with standard normal pdf 𝜑(𝑣)and cdf Φ(𝑣) with    𝜑(𝑣) = 1

√2𝜋
exp (−𝑣2

2
).   

 

� 𝑓(𝑥)𝑑𝑥 = Φ�
𝑏 − 𝜇
𝜎

� − Φ(
𝑎 − 𝜇
𝜎

)
𝑏

𝑎
                                                                      (3.12) 

 

� 𝑥𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝜎𝜑 �

𝑎 − 𝜇
𝜎

� − 𝜎𝜑 �
𝑏 − 𝜇
𝜎

� + 𝜇Φ�
𝑏 − 𝜇
𝜎

� − 𝜇Φ�
𝑎 − 𝜇
𝜎

�          (3.13) 

 

� 𝑥2𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝜎(𝜇 + 𝑎)𝜑 �

𝑎 − 𝜇
𝜎

� − 𝜎(𝜇 + 𝑏)𝜑 �
𝑏 − 𝜇
𝜎

� 

                              + (𝜎2 + 𝜇2) �Φ �
𝑏 − 𝜇
𝜎

� − Φ�
𝑎 − 𝜇
𝜎

��                                       (3.14) 
 
  

28 
 



• The fill rate 
 

The fill rate 𝑃2 can be determined by combining (1.4) with 

𝐸[𝐵𝑂(𝜏 + 𝑡)] =
1
𝑄
�

1
2

(𝑥 − 𝑠)2
𝑠+𝑄

𝑠

𝑓𝑡(𝑥)𝑑𝑥 + � 𝑥𝑓𝑡(𝑥)𝑑𝑥 − (𝑠 +
𝑄
2

)� 𝑓𝑡(𝑥)𝑑𝑥
∞

𝑠+𝑄

∞

𝑠+𝑄
. 

 
where 𝑓𝑡(. ) is the probability density function for the stochastic variable 𝐷𝑡, the 
demand during t periods with  𝜇𝑡 = 𝑡𝜇  and  𝜎𝑡 = √𝑡𝜎  if demand is i.i.d.. 
 
For ease of notation below we leave out the subindices 𝑡 for 𝜇 and 𝜎 when deriving 
formula (3.15). By using (3.12)-(3.14) the expression for 𝐸[𝐵𝑂(𝜏 + 𝑡)] can be 
rewritten into 

𝐸[𝐵𝑂(𝜏 + 𝑡)] =
𝜎

2𝑄
(𝜇 + 𝑠)𝜑 �

𝑠 − 𝜇
𝜎

� −
𝜎

2𝑄
(𝜇 + 𝑠 + 𝑄)𝜑�

𝑠 + 𝑄 − 𝜇
𝜎

� 

                                + 
1

2𝑄
(𝜎2 + 𝜇2) �Φ �

𝑠 + 𝑄 − 𝜇
𝜎

� − Φ�
𝑠 − 𝜇
𝜎

�� 

                                −
𝑠
𝑄

 [𝜎𝜑 �
𝑠 − 𝜇
𝜎

� − 𝜎𝜑 �
𝑠 + 𝑄 − 𝜇

𝜎
� + 𝜇Φ�

𝑠 + 𝑄 − 𝜇
𝜎

� − 𝜇Φ�
𝑠 − 𝜇
𝜎

�] 

                                +
𝑠2

2𝑄
Φ�

𝑠 + 𝑄 − 𝜇
𝜎

� −
𝑠2

2𝑄
Φ�

𝑠 − 𝜇
𝜎

�         

                                +𝜎𝜑 �
𝑠 + 𝑄 − 𝜇

𝜎
� + 𝜇 − 𝜇Φ�

𝑠 + 𝑄 − 𝜇
𝜎

�         

                                −�𝑠 +
𝑄
2
� + (𝑠 +

𝑄
2

)Φ�
𝑠 + 𝑄 − 𝜇

𝜎
�         

 

                           =
𝜎

2𝑄
(𝑠 + 𝑄 − 𝜇)𝜑 �

𝑠 + 𝑄 − 𝜇
𝜎

� −
𝜎

2𝑄
(𝑠 − 𝜇)𝜑�

𝑠 − 𝜇
𝜎

� 

                                +
𝜎2 + (𝑠 + 𝑄 − 𝜇)2

2𝑄
Φ�

𝑠 + 𝑄 − 𝜇
𝜎

� −
𝜎2 + (𝑠 − 𝜇)2

2𝑄
Φ�

𝑠 − 𝜇
𝜎

�         

                                −  �𝑠 +
𝑄
2
− 𝜇�                                                                                           (3.15) 

 
When combining (1.4) and (3.15), we have an exact expression for the 𝑃2 in an 
(𝑅, 𝑠,𝑛𝑄)-system with normally distributed demand and backordering. 
 
When 𝑡 = 𝑅 + 𝐿 and 𝑠 = 𝐸[𝐷𝐿+𝑅] + 𝑠𝑠, this expression can be written as 
 

𝐸[𝐵𝑂(𝜏 + 𝑅 + 𝐿)] =
𝜎𝐿+𝑅
2𝑄

(𝑠𝑠 + 𝑄)𝜑 �
𝑠𝑠 + 𝑄
𝜎𝐿+𝑅

� −
𝜎𝐿+𝑅
2𝑄

(𝑠𝑠)𝜑 �
𝑠𝑠
𝜎𝐿+𝑅

� 

                                         +
𝜎𝐿+𝑅2 + (𝑠𝑠 + 𝑄)2

2𝑄
Φ�

𝑠𝑠 + 𝑄
𝜎𝐿+𝑅

� −
𝜎𝐿+𝑅2 + (𝑠𝑠)2

2𝑄
Φ�

𝑠𝑠
𝜎𝐿+𝑅

�         

                                         −  �𝑠𝑠 +
𝑄
2
�                                                                                       
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For the readers who are familiar with the theory in Zipkin’s handbook (2000), an 
alternative way to derive the expressions for the fill rate for gamma or normal 
demand is given in Appendix 4. 
 

• The number of order lines and the order size 
 

In case demand is normally distributed, the expression for 𝐸[𝑂𝐿] can be rewritten 
and expressed in the standard normal distribution functions, using (3.2) and (3.13). 
The expression for 𝐸[𝑂𝐿] can then be rewritten into: 
 

𝐸[𝑂𝐿] = 1 − 𝐹𝑅(𝑄) +
1
𝑄
� 𝑥𝑓𝑅(𝑥)𝑑𝑥
𝑄

0
 

        
            = 1 −Φ(𝑄−𝜇𝑅

𝜎𝑅
)+𝜎𝑅

𝑄
�𝜑 �−𝜇𝑅

𝜎𝑅
� − 𝜑 �𝑄−𝜇𝑅

𝜎𝑅
�� + 𝜇𝑅

𝑄
�Φ�𝑄−𝜇𝑅

𝜎𝑅
� − Φ�−𝜇𝑅

𝜎𝑅
��.     (3.16) 

 

The expected order size 𝐸[𝑂𝑆] can then be determined by combining (3.3) and 
(3.16).  

 
• The inventory on hand  

If demand is normally distributed, the expected inventory on hand follows from 
combining equation (3.4) with (3.15). 

 
• The discrete ready rate 

 
In case demand is normally distributed, formula (3.5) 
 

     𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 =
𝑠 + 𝑄
𝑄

𝐹𝐿+𝑅(𝑠 + 𝑄) −
𝑠
𝑄
𝐹𝐿+𝑅(𝑠) −

1
𝑄
� 𝑥𝑓𝐿+𝑅(𝑥)𝑑𝑥
𝑠+𝑄

𝑠
 

 
can be rewritten (again using (3.13)) and expressed in the standard normal 
distribution functions 
  

𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 =
𝑠 + 𝑄
𝑄

Φ�
𝑠 + 𝑄 − 𝜇𝐿+𝑅

𝜎𝐿+𝑅
� −

𝑠
𝑄
Φ�

𝑠 − 𝜇𝐿+𝑅
𝜎𝐿+𝑅

� 

 

+
𝜎𝐿+𝑅
𝑄

�𝜑 �
𝑠 + 𝑄 − 𝜇𝐿+𝑅

𝜎𝐿+𝑅
� − 𝜑 �

𝑠 − 𝜇𝐿+𝑅
𝜎𝐿+𝑅

�� −
𝜇𝐿+𝑅
𝑄

[Φ�
𝑠 + 𝑄 − 𝜇𝐿+𝑅

𝜎𝐿+𝑅
� − Φ�

𝑠 − 𝜇𝐿+𝑅
𝜎𝐿+𝑅

�] 

 
When 𝑠 = 𝜇𝐿+𝑅 + 𝑠𝑠, we have  
 

𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 =
𝑠𝑠 + 𝑄
𝑄

Φ�
𝑠𝑠 + 𝑄
𝜎𝐿+𝑅

� −
𝑠𝑠
𝑄
Φ�

𝑠𝑠
𝜎𝐿+𝑅

� +
𝜎𝐿+𝑅
𝑄

�𝜑 �
𝑠𝑠 + 𝑄
𝜎𝐿+𝑅

� − 𝜑 �
𝑠𝑠
𝜎𝐿+𝑅

�� .       (3.17) 
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4.  Relaxation of assumptions 

In standard textbooks typically many assumptions are made, like  

• demand is always normally distributed,  
• immediately after a delivery the backorders are always equal to zero,  
• the order size is always equal to exactly one base replenishment quantity,  
• at the moment of ordering the inventory position is exactly equal to the reorder 

level.  

In some papers, Lecture Notes or textbooks, including De Kok (1991b), De Kok 
(2012) and Tempelmeier (2011) it is recognized that this last assumption often does 
not hold, i.e. at the moment of ordering the inventory position may be strictly less 
than the reorder level. This difference between the reorder level and the inventory 
position at the moment of ordering is called the undershoot. The first two moments of 
the undershoot are typically determined using approximations from Tijms (1986). 
Tijms notes that these approximations are good as long as the base replenishment 
quantity is more than 1.5 times the average demand during the review period. 

The results derived so far in this document do not depend on any of the assumptions 
and approximations mentioned above. Still some assumptions were made. We 
assumed items are non-perishable, demand which is not satisfied in out-of-stock 
situations is backordered, lead times are deterministic, demand is stationary, a 
(R,s,nQ)-control system is applied and subsequent replenishment orders cannot 
pass (i.e. an order B for a certain item placed later than order A for the same item 
cannot arrive earlier). In this chapter we will discuss how to relax all these 
assumptions except for the last one. The analysis of the model becomes intractable 
if the last assumption is relaxed. In practice this assumption is generally valid since  
an item is typically ordered at a single supplier who has no reason to handle and 
ship the orders in a sequence which is different from the sequence in which he 
received the orders. Only in case it is possible to place both regular orders and 
emergency orders, having a regular and a shorter average lead time, another type of 
replenishment policy (like the dual index policy) is needed. See the review paper by 
Minner (2003). 

 

4.1 Stochastic lead times. 

Up to now we assumed that the lead time is constant, deterministic and equal to 𝐿. In 
this section we show how to determine the KPI’s in case the lead time is stochastic.  
 
All expressions for the KPI’s derived in chapters 1 to 3 depend on 𝐷(𝜏, 𝜏 + 𝐿), 
𝐷(𝜏, 𝜏 + 𝑅)   and/or 𝐷(𝜏, 𝜏 + 𝑅 + 𝐿). This implies, if we assume demand in 
consecutive periods is identically and independently distributed (i.i.d.), that all KPI’s 
depend on 𝐷𝐿, 𝐷𝑅 and/or 𝐷𝐿+𝑅. If the lead time is a stochastic variable we first have 
to calculate the mean and variance of 𝐷𝐿, 𝐷𝑅 and/or 𝐷𝐿+𝑅. Next we have to make an 
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assumption about the probability distribution of the demand and then we can 
determine the KPI’s again using the expressions derived in chapters 2 and 3.  
 
If the lead time is a discrete stochastic variable with mean 𝐸[𝐿] and variance 𝑣𝑎𝑟[𝐿], 
demand in one period is stochastic with mean 𝐸[𝐷1] and variance 𝑣𝑎𝑟[𝐷1], and the 
review period is equal to an integer value 𝑅, then we can determine the mean and 
variance of 𝐷𝐿, 𝐷𝑅 and 𝐷𝐿+𝑅 using the equations 
 
𝐸[𝐷𝑅] = 𝑅𝐸[𝐷1]           and     𝑣𝑎𝑟[𝐷𝑅] = 𝑅𝑣𝑎𝑟[𝐷1]       (4.1) 
 
𝐸[𝐷𝐿+𝑅] = 𝐸[𝐷𝐿] + 𝑅𝐸[𝐷1]    and     𝑣𝑎𝑟[𝐷𝐿+𝑅] = 𝑣𝑎𝑟[𝐷𝐿] + 𝑅𝑣𝑎𝑟[𝐷1]      (4.2) 
 
𝐸[𝐷𝐿] = 𝐸[𝐿] ∙ 𝐸[𝐷1]         and     𝑣𝑎𝑟[𝐷𝐿] = 𝐸[𝐿] ∙ 𝑣𝑎𝑟[𝐷1] + 𝐸2[𝐷1] ∙ 𝑣𝑎𝑟[𝐿] (4.3) 
 
The derivation of these formulas is similar to the derivation of formula (4.3) in De Kok 
(2012). Below we derive formula (4.1). The derivation of formulas (4.2) and (4.3) is 
given in Appendix 3. 
 
If we assume the review period is equal to an integer number of periods, say K, and 
demand is i.i.d. we have  
 
𝐸[𝐷(𝜏, 𝜏 + 𝑅)](= 𝐸[𝐷𝑅])     

                             = 𝐸[∑ 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)𝐾
𝑘=1 ]     

                             = ∑ 𝐸[𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)]𝐾
𝑘=1      

                             = � 𝐸[𝐷1]
𝐾

𝑘=1
 

                             = 𝐾𝐸[𝐷1] 

and 

𝑣𝑎𝑟[𝐷(𝜏, 𝜏 + 𝑅)](= 𝑣𝑎𝑟[𝐷𝑅]) 

                                 = 𝑣𝑎𝑟 �� 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)
𝐾

𝑘=1
� = 

                                 = 𝑣𝑎𝑟 �� 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)
𝐾

𝑘=1
� = 

                                  = � 𝑣𝑎𝑟[𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)]
𝐾

𝑘=1
 

                                  = � 𝑣𝑎𝑟[𝐷1]
𝐾

𝑘=1
 

                                  = 𝐾𝑣𝑎𝑟[𝐷1]          (4.4) 
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While the variable 𝑅 has the dimension ‘time’, the constant 𝐾 is dimensionless. For 
convenience we define here 𝑅 too as a number of periods. Then 𝑅 = 𝐾 and (4.4) 
results in (4.1). 
 
 
4.2 The (𝑅, 𝑆), (𝑅, 𝑠, 𝑆), (𝑠,𝑛𝑄) and (𝑠, 𝑆)-system 

The (𝑅, 𝑆)-system is a special case of the (𝑅, 𝑠,𝑛𝑄)-system: it is a (𝑅, 𝑠,𝑛𝑄)-system 
with 𝑄 = 1 when demand is discrete and it is virtually identical (i.e. can be 
approximated extremely accurately) to a (𝑅, 𝑠,𝑛𝑄)-system with 𝑄 = 𝜀 (with 𝜀 a real 
number close to zero) when demand is continuous. So all results derived in the 
previous chapters also apply for the (𝑅, 𝑆)-system. A special feature of the (𝑅, 𝑆)-
system is the fact that the reorder quantity is always equal to the demand in the most 
recent review period (assuming demand is stationary). Early exact analyses for this 
system were provided by De Kok (1991a). It is left as an exercise to determine the 
exact formulas for the (𝑅, 𝑆)-system with discrete and continuous demand using the 
expressions in chapter 1 in combination with the fact that the inventory position at 
any review period just after potential ordering is exactly equal to 𝑆.  

The (𝑅, 𝑠, 𝑆)-system assumes that there is a minimum order quantity 𝑀𝑂𝑄 (equal to 
𝑆 − 𝑠 + 1 for discrete demand and 𝑆 − 𝑠 for continuous demand) rather than a base 
replenishment quantity 𝑄. In case demand is discrete, the expressions for the 
probability distribution of the inventory position as derived by Zheng and Federgruen 
(1991) together with the formulas in section 2.1 can be used to find exact 
expressions for the (𝑅, 𝑠, 𝑆)-system.  Zheng and Chen (1992) compare the 
performance between (𝑅, 𝑠, 𝑆)- and (𝑅, 𝑠, 𝑛𝑄)-systems and show that for many 
situations the performance is very close. For the special case of Erlang distributed 
demand (gamma demand with integer shape parameter), Moors and Strijbosch 
(2002) have derived exact expressions for the fill rate in an (𝑅, 𝑠, 𝑆)-system. 

The (𝑠,𝑛𝑄) and (𝑠, 𝑆)-systems are continuous review systems. They can be 
interpreted as periodic review systems with extremely small review periods. So the 
results derived for the periodic systems can be applied here too in a straightforward 
manner. 

 

4.3 Non-stationary demand 

In reality often demand is not stationary e.g. due to trends, seasonal patterns and/or 
product life cycles. As a result the average demand may increase or decrease as 
time goes by. In those situations an exact analysis of time-varying and stochastic 
demand is far too complicated for routine use in practice, according to Silver et. al. 
(1998). For these cases heuristic approaches are suggested in the literature to 
determine the reorder level. Rather than determining a single reorder level based on 
the mean and the standard deviation of the demand during 𝐿 + 𝑅 periods, now every 
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review moment a new reorder level is determined and it is based on the forecasted 
demand for the next 𝐿 + 𝑅 periods and the standard deviation of the forecast error 
for these 𝐿 + 𝑅 periods. The reorder level at time 𝑡 (𝑠𝑡) is equal to the demand 
forecast made in period 𝑡 for the demand for the next 𝐿 + 𝑅 periods (𝐷𝑡,𝑡+𝐿+𝑅

𝑓𝑐𝑠𝑡  ) plus a 
safety stock (𝑠𝑠𝑡), which depends on the standard deviation of the forecast error for 
the next 𝐿 periods and for the next 𝐿 + 𝑅 periods, so 

𝑠𝑡 = 𝐷𝑡,𝑡+𝐿+𝑅
𝑓𝑐𝑠𝑡 + 𝑠𝑠𝑡. 

A key issue then is how to estimate this standard deviation of the forecast error for 
the next  𝐿 periods and the next 𝐿 + 𝑅 periods. If e.g. demand follows a positive trend 
then measuring the standard deviation of the forecast error in the periods preceding 
the current review moment will tend to underestimate the standard deviation of the 
forecast error for the 𝐿(+𝑅) periods after the current review moment. The reason 
behind this is that if demand increases, then the standard deviation (of demand as 
well as) of the forecast error increases. To counter this effect, Silver et al. (1998, 
p.341-343) suggest to derive a relationship between the standard deviation of the 
forecast error for the next 𝐿(+𝑅) periods and the demand forecast for the next 𝐿(+𝑅) 
periods. They assume this relationship holds for a group of SKU’s and uses 
regression to estimate the relationship, cf. the method described earlier in their book 
(p.114-116 and 126-127).  

It can also be proven that demand forecasting increases the variance if it is applied 
to a stationary demand process. See e.g. Nahmias (2009, p.110-112 and 
Appendix 2A). This effect increases with the lead time (plus review period) and can 
be taken into account when estimating the standard deviation of the forecast error, 
as shown in Strijbosch et al. (2011).  

The comparison of the different approaches to estimate the standard deviation of 
forecast errors over a lead time (plus review period) is beyond the scope of this text. 
We like to stress however the importance of using the standard deviation of the 
forecast error rather than the standard deviation of demand when determining 
reorder levels and KPI’s for systems with non-stationary demand. The best 
motivation for this can be seen from an item having deterministic demand following a 
strong seasonal pattern or a trend. The standard deviation of demand for this item is 
very large, while the standard deviation of the forecast error is zero for this item. 
Since demand is deterministic for this item, no safety stock is needed if the reorder 
level is set to the demand forecast for the next 𝐿(+𝑅) periods. 

 

4.4 Lost sales 

In some environments, like supermarkets, customers are not willing to wait for their 
item if the item is temporarily out-of-stock. Rather they substitute to another item in 
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the same store, buy the item elsewhere or do not buy the item. In all these cases 
unmet demand is lost for the particular item. In a lost sales model the average sales 
will be lower than in a model in which unmet demand is backordered. As a result the 
average inventory on hand and the service level in a lost sales model will be higher 
than in a similar backordering system. In this section we present three 
approximations for the fill rate in a lost sales system as well as approximations for 
the expected number of orderliness and the expected order size.  

Tijms and Groenevelt (1984) suggest approximating the fill rate in a lost sales model 
with a (s, S)-policy by first calculating the fill rate for a similar backordering system 
(𝑃2𝐵𝑂) and then solving the fill rate for the lost sales system (𝑃2𝐿𝑆1) from the equation 

1−𝑃2𝐿𝑆1

𝑃2
𝐿𝑆1 = 1 − 𝑃2𝐵𝑂 ⟺ 𝑃2𝐿𝑆1 = 1

2−𝑃2
𝐵𝑂      (4.5) 

Silver et al. (1998, footnote on page 268) applied the same idea to the continuous 
review (𝑠,𝑄) system with normal distributed demand assuming there is no 
undershoot.  The first approximation for the fill rate in a (𝑅, 𝑠,𝑛𝑄) system with lost 
sales is to solve (4.5) using the fact that 𝑃2𝐵𝑂 is known from the expressions for the fill 
rate in a (𝑅, 𝑠,𝑛𝑄) system with backordering, derived in chapter 2 or 3 depending on 
the demand distribution. This approximation is called 𝑃2𝐿𝑆1.  

This basic approximation for the fill rate can be further refined by using an iterative 
procedure to determine the fill rate in a lost sales system. This second approximation 
is based on the notion that the main reason for a higher fill rate in a lost sales system 
compared to the otherwise identical backordering system is due to the fact that in a 
lost sales system sales is less than demand. To capture this effect, the sales is 
estimated iteratively (using the fact that sales is equals to the fill rate times demand) 
and used as input in the expression for the fill rate in an otherwise identical 
backordering system. This leads to the following iterative procedure, where 𝐷 
represents the demand 

Step 1. Set 𝑖 = 0 and 𝑃2,0
𝐿𝑆2(⋯ ,𝐷,⋯ ) = 𝑃2𝐵𝑂(⋯ ,𝐷,⋯ ) using the fill rate 

expression for the backordering system. 
Step 2. Set 𝑖: = 𝑖 + 1. Update the mean and variance-to-mean ratio of 𝐷𝑖′ with 

𝜇𝑖′ = 𝑃2,𝑖−1
𝐿𝑆2 ∙ 𝜇 and 𝑉𝑇𝑀(𝐷𝑖′) = 1 + 𝑃2,𝑖−1

𝐿𝑆2 ∙ (𝑉𝑇𝑀(𝐷) − 1). 
Step 3. Calculate 𝑃2,𝑖

𝐿𝑆2(⋯ ,𝐷,⋯ ) = 𝑃2𝐵𝑂(⋯ ,𝐷𝑖′,⋯ ) using the fill rate expression 
for the backordering system. 

Step 4. If 𝑖 < 𝑖𝑀𝐼𝑁 or (�𝑃2,𝑖
𝐿𝑆2 − 𝑃2,𝑖−1

𝐿𝑆2 � > 𝜀  and 𝑖 < 𝑖𝑀𝐴𝑋) then continue with 
Step 2, else Stop. 

 

Note that Van Donselaar & Broekmeulen (2013) kept the variance to mean ratio 
constant in their iterative procedure. The adjustment proposed here guarantees a 
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feasible fit for the mixed discrete distribution according to the procedure of Adan et 
al. (1995).  

The third approximation for the fill rate in a lost sales system improves the accuracy 
of the first two approximations using regression. First two important factors are 
identified which have a large impact on the performance of a lost sales system. 
These two factors are the extent to which the demand during the lead-time plus 
review period is uncertain and the number of orders outstanding. The first can be 
easily measured via the coefficient of variation of the demand during the lead-time 
plus review period which, in case demand is identically and independently 
distributed, is simply equal to:  

𝑐𝐿+𝑅 =
𝜎

𝜇√(𝐿 + 𝑅)
 

Already in 1963, Hadley and Whitin (p. 197) noted that for the lost sales system it is 
necessary to take explicit account of the number of orders outstanding and the times 
at which they were placed. The simplest single measure to take into account the 
number of outstanding orders is the variable 𝑛𝑂𝑂, which is defined as the ratio 
between the expected demand during the lead-time 𝐿 ∙ 𝜇 and 𝑀𝑎𝑥(𝑄,𝑅 ∙ 𝜇), which is 
a simple proxy for the expected order size in a (𝑅, 𝑠,𝑛𝑄)-system:  

𝑛𝑂𝑂 =
𝐿 ∙ 𝜇

𝑀𝑎𝑥(𝑄,𝑅 ∙ 𝜇)
 

After identifying these two key variables, Van Donselaar and Broekmeulen (2013) 
used regression to improve the accuracy of the first two approximations (𝑃2𝐿𝑆1 and 
𝑃2𝐵𝑂). This lead to the third approximation for the fill rate in a lost sales system, 𝑃2𝐿𝑆3   

𝑃2𝐿𝑆3 = �
�𝑃2𝐿𝑆2+0.062∙𝑛𝑂𝑂−0.128�

0.062∙𝑛𝑂𝑂+0.87
𝑛𝑂𝑂 < 5

�𝑃2𝐵𝑂−1.0172−1.3218∙(𝑐𝐿+𝑅)−0.552�
1.3218∙(𝑐𝐿+𝑅)−0.552 𝑛𝑂𝑂 ≥ 5

    (4.6) 

This third approximation indeed gives very accurate estimates for the fill rate in a lost 
sales system as can be seen from Figure 5, where the fill rate of a lost sales system 
(on the horizontal axis) is compared with four different approximations (on the 
vertical axis). 

The KPI’s  𝐸[𝐼𝑂𝐻(𝜏 + 𝑡)]  (for 𝑡 = 𝐿 and 𝑡 = 𝐿 + 𝑅),  𝐸[𝑂𝐿)] and 𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 for a lost 
sales system are determined in the same way as described for the fill rate above, i.e. 
using the expressions for these KPI’s derived in chapters 2 and 3 in combination with 
an iterative procedure. In this iterative procedure the demand in the expressions for 
the KPI’s is replaced by the estimated fill rate in the (i-1)-th iteration times the 
demand. The expected order size is then determined using the equation  𝐸[𝑂𝑆] ∗
𝐸[𝑂𝐿] = 𝑃2𝐿𝑆2 ∗ 𝐸[𝐷𝑅]. 
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Figure 5.  Four different approximations for the fill rate of a lost sales system (from 
Van Donselaar & Broekmeulen, 2013). 

 

4.5 Perishable items 

Perishable items are items with a fixed lifetime. The fixed lifetime is defined here as 
the number of periods the item can be sold, starting from the moment the item is 
delivered and added to the inventory on hand until the expiration date is exceeded. 
Just like lost sales systems, systems for perishable items are notoriously hard to 
analyze and so we have to rely on approximations in this case as well. Most 
approximations in the literature for perishable items hold for specific cases only, e.g. 
if the lead time is one period, the base replenishment quantity is one unit, the fixed 
lifetime is equal to 2 periods or demand is Poisson distributed. Recently 
Broekmeulen and Van Donselaar (2009) developed a new replenishment logic 
specifically for perishable items and this logic has the nice feature that the safety 
stock needed to achieve a target fill rate is virtually independent of the fixed lifetime. 
This implies that all results for the fill rate derived in chapters 1 to 3 also can be 
applied for perishable items without major restrictions on the system parameters or 
the demand distribution.  
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The new replenishment logic, called the EWA logic, is a modified (𝑅, 𝑠,𝑛𝑄)-logic and 
simple to implement if the age of inventories in the system is known. The only 
difference with the replenishment logic in a (𝑅, 𝑠,𝑛𝑄)-system is the determination of 
the inventory position. In the EWA-logic the inventory position is reduced with the 
expected outdating during the next 𝐿 + 𝑅 − 1 periods, before a replenishment 
decision is made. This is called the modified inventory position. If the modified 
inventory position is below the reorder level 𝑠, a replenishment order is generated 
with size 𝑛 ∙ 𝑄 with 𝑛 the minimal integer value to bring the modified inventory 
position back to or above the reorder level. The expected outdating is determined by 
assuming that demand in the next 𝐿 + 𝑅 − 1 periods is simply equal to the average 
demand (or forecasted demand if demand is non-stationary). 

Apart from the fill rate, another key KPI for perishable items is the relative outdating, 
defined as the percentage of demand which is outdated since the expiration date is 
exceeded before it is sold. Van Donselaar and Broekmeulen (2012) derived 
approximations for the relative outdating using a mix of analytically derived 
expressions, simulation and regression.  

The approximations for the fill rate and the relative outdating enable the trade-off 
between these two KPI’s, for example if a change in the system parameters is 
evaluated. By varying the (safety stock or) the reorder level this trade-off can be 
visualized with graphs like in Figure 6. In this Figure a base scenario for lamb chops 
is compared with alternative scenarios in which for example the lead time is reduced 
from one day to 0.5 day or the shelf life (fixed lifetime) is reduced from 6 to 5 days. 
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5.  Determining reorder levels 

The expressions for the KPI’s derived in chapters 2 and 3 can be used directly to 
determine reorder levels. If for example the commercial or inventory manager 
requires that each item should meet a given target fill rate, formula (2.2) in 
combination with a search procedure will provide the right reorder level. In the DoBr-
tool a simple function is available which only requires the system parameters and the 
target fill rate as an input and then returns the reorder level. Many inventory control 
systems in practice set reorder levels in a similar way rather than using cost 
parameters. This may be due to its simplicity (reducing a potential multi-item problem 
to a single-item problem), the lack of accurate cost data (e.g. how to determine the 
cost of a backorder-situation), or the fact that customers do not accept that fill rates 
differ strongly between different items (having the perception that an item should 
either be included in the assortment and be available with a high probability or not be 
included in the assortment at all).  

The expressions for the KPI’s derived in earlier chapters can also be used to build 
optimization models with objective functions and/or restrictions for a single item or a 
group of items. Section 5.1 deals with the single item problem when the objective is 
to minimize the expected costs. Section 5.2 deals with the multi-item problem in the 
presence of a budget constraint. In section 5.3 other implementation issues are 
discussed when determining the reorder level. 

 

5.1 The single item problem 

If the base replenishment quantity is exogenous,  e.g. determined by the supplier, 
and the inventory holding costs and the backordering costs are linear and we are 
dealing with a single item, then the objective function is 

min Π = 0.5ℎ{𝐸[𝐼𝑂𝐻(𝜏 + 𝐿)] + 𝐸[𝐼𝑂𝐻(𝜏 + 𝐿 + 𝑅)]} +   

                       𝑏{𝐸[𝐵𝑂(𝜏 + 𝐿 + 𝑅)]− 𝐸[𝐵𝑂(𝜏 + 𝐿)]}                                                       (5.1) 

In this objective function we approximate the average expected inventory as the 
simple average of the inventory at the beginning and end of an arbitrary potential 
delivery cycle.  

with 

Π  = the expected total relevant costs per review period 

ℎ𝑘 = the inventory holding cost per unit of inventory on hand for item 𝑘 

𝑏𝑘 = the backordering cost per unit backordered for item 𝑘 
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To get familiar with the behavior of this objective function in different parameter 
settings, the reader is invited to implement this function in the DoBr-tool and to 
visualize the value of the objective function as a function of the reorder level. 
Implementation of the objective function in the DoBr-tool is straightforward using the 
functions DoBr_EIOH_Begin, DoBr_EIOH_End and DoBr_FillRate (and using (1.4) 
to express the expected backordering costs per review period in terms of the fill 
rate). 

When demand is continuous, formulas (3.1) and (3.4) can be used to transform this 
objective function into 

min Π = ℎ{𝑠 + 0.5𝑄 − 0.5𝐸[𝐷𝐿] − 0.5𝐸[𝐷𝐿+𝑅]} + 

(0.5ℎ − 𝑏)𝐸[𝐵𝑂(𝜏 + 𝐿)] + (0.5ℎ + 𝑏)𝐸[𝐵𝑂(𝜏 + 𝐿 + 𝑅)]. 

The optimal reorder level which minimizes this objective function can be found by 
setting the derivative equal to zero 

𝑑Π
𝑑𝑠

= ℎ + (0.5ℎ − 𝑏)
𝑑𝐸[𝐵𝑂(𝜏 + 𝐿)]

𝑑𝑠
+ (0.5ℎ + 𝑏)

𝑑𝐸[𝐵𝑂(𝜏 + 𝐿 + 𝑅)]
𝑑𝑠

= 0 

 

Intermezzo:  According to Leibnitz’s rule, if we have an integral of the form  

  𝐼(𝑠) = ∫ 𝑓(𝑠,𝑦)𝑑𝑦𝑦𝑠(𝑠)
𝑦1(𝑠) , 

then the derivative of this integral is equal to 

  𝑑𝐼(𝑠)
𝑑𝑠

= ∫ 𝑑𝑓(𝑠,𝑦)
𝑑𝑠

𝑑𝑦 + 𝑓(𝑠,𝑦2) 𝑑𝑦2(𝑠)
𝑑𝑠

− 𝑓(𝑠,𝑦1) 𝑑𝑦1(𝑠)
𝑑𝑠

𝑦2(𝑠)
𝑦1(𝑠) . 

 

When applying Leibnitz’s rule to formula (3.1)  

𝐸[𝐵𝑂(𝜏 + 𝑡)] =
1
𝑄
�

1
2

(𝑥 − 𝑠)2
𝑠+𝑄

𝑠

𝑓𝑡(𝑥)𝑑𝑥 + � 𝑥𝑓𝑡(𝑥)𝑑𝑥 − �𝑠 +
𝑄
2
�� 𝑓𝑡(𝑥)𝑑𝑥

∞

𝑠+𝑄

∞

𝑠+𝑄
, 

we have 

𝑑𝐸[𝐵𝑂(𝜏 + 𝑡)]
𝑑𝑠

= 

               =
1
𝑄

[−� (𝑥 − 𝑠)𝑓𝑡(𝑥)𝑑𝑥 +
1
2
𝑄2𝑓𝑡(𝑠 + 𝑄) − 0]

𝑠+𝑄

𝑠
 

                                   +[0 + 0 − (𝑠 + 𝑄)𝑓𝑡(𝑠 + 𝑄)] −{�𝑠 + 𝑄
2
� ∙ �−𝑓𝑡(𝑠 + 𝑄)� + ∫ 𝑓𝑡(𝑥)𝑑𝑥}∞

𝑠+𝑄  
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=
−1
𝑄
� (𝑥 − 𝑠)𝑓𝑡(𝑥)𝑑𝑥 − [1 −� 𝑓𝑡(𝑥)𝑑𝑥

𝑠+𝑄

−∞

𝑠+𝑄

𝑠
 ]                                                  (5.2) 

This implies (see the derivation of formula (3.5))  

𝑑𝐸[𝐵𝑂(𝜏 + 𝐿 + 𝑅)]
𝑑𝑠

= 𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 − 1.                                                                                    (5.3) 

So we have 
𝑑Π
𝑑𝑠

= ℎ + (0.5ℎ − 𝑏){𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑠;𝑅 = 0) − 1} + (0.5ℎ + 𝑏){𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑠;𝑅) − 1} 

with 𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑠;𝑅 = 0) being equal to formula (3.5) with the review period equal to 
zero (𝑅 = 0). 

The second derivative of 𝐸[𝐵𝑂(𝜏 + 𝑡)] is equal to (using again Leibnitz’s rule) 

𝑑2𝐸[𝐵𝑂(𝜏 + 𝑡)]
𝑑𝑠2

=
1
𝑄
� 𝑓𝑡(𝑥)𝑑𝑥                                                                                         (5.4)
𝑠+𝑄

𝑠
 

So the second derivative of the objective function is equal to 

𝑑2Π
𝑑𝑠2

=
0.5ℎ − 𝑏

𝑄
� 𝑓𝐿
𝑠+𝑄

𝑠
(𝑥)𝑑𝑥 +

0.5ℎ + 𝑏
𝑄

 � 𝑓𝐿+𝑅(𝑥)𝑑𝑥.
𝑠+𝑄

𝑠
 

If this second derivative is non-negative (e.g. when 𝑓𝐿+𝑅(𝑥) ≥ 𝑓𝐿(𝑥), which holds e.g. 
for the normal probability density function if 𝑥 ≥ 𝜇𝐿+𝑅), the objective function is 
convex in 𝑠 and therefore the optimal reorder level can be determined by setting the 
first derivative of the objective function equal to zero, i.e. to solve 

ℎ + (0.5ℎ − 𝑏)�𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑠;𝑅 = 0) − 1� + (0.5ℎ + 𝑏)�𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑠;𝑅) − 1� = 0      (5.5) 

A simple bi-section search procedure can be used for this. 

 

In case the base replenishment quantity 𝑄 is not exogenous, an additional term is 
added to the objective function representing the expected ordering costs. If the fixed 
cost per order is equal to 𝐾, the expected costs per review period are equal to 

min Π = 𝐾𝐸[𝑂𝐿] + ℎ{𝑠 + 0.5𝑄 − 0.5𝐸[𝐷𝐿] − 0.5𝐸[𝐷𝐿+𝑅]} + 

                        (0.5ℎ − 𝑏)𝐸[𝐵𝑂(𝜏 + 𝐿)] + (0.5ℎ + 𝑏)𝐸[𝐵𝑂(𝜏 + 𝐿 + 𝑅)]                       (5.6)  

Note we do not need to include the variable ordering (or purchasing) costs, since the 
expected demand and sales are not dependent on the reorder level and the base 
replenishment quantity due to the backordering assumption.   
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The optimal reorder level and the optimal base replenishment quantity should then 
be solved by the equations which emerge from setting the two partial derivatives of 
the objective function  equal to zero. In combination with (5.5) we then also have  

𝜕Π
𝜕𝑄

= 𝐾
𝜕𝐸[𝑂𝐿]
𝜕𝑄

+ 0.5ℎ + (0.5ℎ − 𝑏)
𝜕𝐵𝑂(𝜏 + 𝐿)

𝜕𝑄
+ (0.5ℎ + 𝑏)

𝜕𝐵𝑂(𝜏 + 𝐿 + 𝑅)
𝜕𝑄

= 0  (5.7) 

with 

𝜕𝐸[𝑂𝐿]
𝜕𝑄

=
−1
𝑄2 � 𝑥𝑓𝑅(𝑥)𝑑𝑥

𝑄

0
 

𝜕𝐵𝑂(𝜏 + 𝑡)
𝜕𝑄

=
−1
2𝑄2� (𝑥 − 𝑠)2𝑓𝑡(𝑥)𝑑𝑥 −

1
2
� 𝑓𝑡(𝑥)𝑑𝑥                                             
∞

𝑠+𝑄

𝑠+𝑄

𝑠
 

The results for the partial derivates are derived using Leibnitz’s rule, (3.1) and (3.2). 

Then the optimal reorder level and optimal base replenishment quantity can be found 
by iteratively solving (5.5) and (5.7). 

In practice, the base replenishment quantity is often limited to be chosen from a finite 
set of values. For example, handling in a warehouse/distribution centre is typically 
more efficient if it is restricted to handling an integer number of layers on a pallet, 
half a pallet (rounded to the nearest integer number of layers), three quarters of a full 
pallet (rounded to the nearest integer number of layers) or in full pallets. If the 
ordering costs mainly consist of material handling costs, then these ordering costs 
may be non-linear in the expected number of orderlines: handling layers often 
implies additional handling time (for putting the layer(s) on a pallet) compared to 
handling full pallets. Due to the limited set of potential optimal values for 𝑄 and due 
to the potential non-linear expected ordering costs, it may be better in these 
situations to determine the optimal reorder level and the optimal base replenishment 
quantity using (5.5) to determine the optimal reorder level for each potential base 
replenishment quantity and then evaluate the expected total relevant costs per 
review period using (5.6) for each potential base replenishment quantity. Finally the 
optimal reorder level and base replenishment quantity are selected based on the 
lowest expected total relevant costs. 

 

5.2 The multi item problem with budget constraint 

In this section we consider a multi-item problem. More specifically we consider the 
following problem: Given a budget (in euro’s) which is available to invest in 
inventories, how to set the reorder levels for a group of items in such a way that the 
costs for backorders per review period are minimized? 
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If we approximate the average expected inventory by taking the simple average of 
𝐸[𝐼𝑂𝐻(𝜏 + 𝐿)] and 𝐸[𝐼𝑂𝐻(𝜏 + 𝑅 + 𝐿)], this problem can be formulated as  

min ∑ (1 − 𝑃2,𝑘(𝑠𝑘)) ∙ 𝐸�𝐷𝑅,𝑘� ∙ 𝑏𝑘 𝑛
𝑘=1    

 s. t.     ∑ 0.5{𝐸[𝐼𝑘𝑂𝐻(𝜏 + 𝐿)] + 𝐸[𝐼𝑘𝑂𝐻(𝜏 + 𝐿 + 𝑅)]} ∙ 𝑔𝑘 = 𝐵 𝑛
𝑘=1  

             𝑠𝑘 ≥ 0,𝑘 = 1, … ,𝑛 

with 

𝑏𝑘 = the cost per unit backordered for item 𝑘 

𝑔𝑘 = the value per unit of inventory on hand for item 𝑘 

𝐵 = the budget available to invest in inventories 

𝑛 = the number of items in the group 

Strictly speaking, the budget restriction is a less-than-or-equal-to restriction. 
However, if we assume demand is continuous and the costs per unit backordered 
are positive, it is optimal to allocate the total budget and hence to use an equal-to 
restriction. Note that in this problem we do not include the ordering costs in the 
objective function since we assume that the base replenishment quantity is an 
exogenous variable. Also the inventory holding costs are not included in the 
objective function, which is correct if the inventory holding costs are equal to a 
constant (which is independent of the item) times the value of a unit. To see this, 
note that in this case the budget determines the total value of the inventories and 
hence the inventory holding costs are fixed if the budget is fixed.  

Since often in practice the backordering costs are not known, a simplification of this 
model may be used by setting 𝑏𝑘 equal to 1. In this case the objective function is to 
maximize the expected total demand per review period which is not backordered 
given the budget for inventories. This is identical to maximizing the aggregate fill rate 
for this group of items, since the average demand per review period for all items is a 
constant. This simplified objective function is in line with current practice where it is 
observed that sometimes companies report the overall performance of their 
inventory system in terms of two indicators: the total value of the inventories and 
some kind of aggregate fill rate, where the latter typically does not take into account 
the value or costs of the item.  

The restriction can be included in the objective function using a Lagrange-multiplier 
𝜆.  
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The objective function then becomes 

min∑ (1 − 𝑃2,𝑘(𝑠𝑘))𝐸�𝐷𝑅,𝑘�𝑏𝑘 𝑛
𝑘=1   

                                          +𝜆[∑ 0.5𝑔𝑘{𝐸[𝐼𝑘𝑂𝐻(𝜏 + 𝐿)] + 𝐸[𝐼𝑘𝑂𝐻(𝜏 + 𝐿 + 𝑅)]} − 𝐵]𝑛
𝑘=1   

s.t.   𝑠𝑘 ≥ 0,𝑘 = 1, … ,𝑛 

When demand is continuous, formulas (1.4) and (3.4) can be used to transform this 
objective function into 

min Π = ∑ {𝐸[𝐵𝑂𝑘(𝜏 + 𝐿 + 𝑅)]−𝐸[𝐵𝑂𝑘(𝜏 + 𝐿)]}𝑏𝑘 𝑛
𝑘=1 +  𝜆 [−𝐵 +  

 ∑ 𝑔𝑘�𝑠𝑘 + 0.5(𝑄𝑘 − 𝐸�𝐷𝐿,𝑘� − 𝐸�𝐷𝐿+𝑅,𝑘� + 𝐸[𝐵𝑂𝑘(𝜏 + 𝐿 + 𝑅)] + 𝐸[𝐵𝑂𝑘(𝜏 + 𝐿)])�]𝑛
𝑘=1   

Taking the partial derivatives we get 

𝜕Π
𝜕𝑠𝑘

=
𝜕𝐸[𝐵𝑂𝑘(𝜏 + 𝐿 + 𝑅)]

𝜕𝑠𝑘
{𝑏𝑘 + 0.5𝜆𝑔𝑘} −

𝜕𝐸[𝐵𝑂𝑘(𝜏 + 𝐿)]
𝜕𝑠𝑘

{𝑏𝑘 − 0.5𝜆𝑔𝑘} + 𝜆𝑔𝑘 = 0 

𝜕Π
𝜕𝜆

= 0

=  � 𝑔𝑘�𝑠𝑘 + 0.5(𝑄𝑘 − 𝐸�𝐷𝐿,𝑘� − 𝐸�𝐷𝐿+𝑅,𝑘� + 𝐸[𝐵𝑂𝑘(𝜏 + 𝐿 + 𝑅)] + 𝐸[𝐵𝑂𝑘(𝜏 + 𝐿)])� − 𝐵
𝑛

𝑘=1
(5.8) 

 

So we have 

𝜕Π
𝜕𝑠𝑘

= �𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑠𝑘;𝑅 = 0) − 1�{𝑏𝑘 + 0.5𝜆𝑔𝑘} 

                  −�𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑠𝑘;𝑅) − 1�{𝑏𝑘 − 0.5𝜆𝑔𝑘} + 𝜆𝑔𝑘 = 0 

with 𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑠𝑘;𝑅 = 0) being equal to formula (3.5) with the review period equal to 
zero (𝑅 = 0). 

This can be rewritten as: 

𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑠𝑘;𝑅 = 0)
𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑠𝑘;𝑅)

=
𝑏𝑘 + 0.5𝜆𝑔𝑘
𝑏𝑘 − 0.5𝜆𝑔𝑘

                                                                                (5.9) 

This equation can be solved if 0 < 𝜆 < 2𝑏𝑘
𝑔𝑘

  for all 𝑘 

(𝜆 > 0 since 𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑠𝑘;𝑅 = 0) > 𝑃3𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑠𝑘;𝑅) if 𝑅 > 0 ).  

So the optimal reorder levels for a group of items with a restriction on the total 
available budget can be determined by iteratively solving equations (5.8) and (5.9). 
Lau and Lau (1995) show for a similar (but single-period) problem that if demand can 
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never be zero, or has a very long left tail, it may be impossible to numerically solve 
an equation like (5.9) for certain values of 𝜆. For those situations the reader is 
referred to the methodology in their paper, which is developed to provide a solution 
for any demand distribution.  

The solution from (5.8) and (5.9) can be used, by varying the budget, to present 
exchange curves to the commercial, operations and financial managers showing 
how the aggregate fill rate increases if the budget for inventories increases. This type 
of exchange curve is an effective decision support tool for setting parameters at the 
senior management level. 

 

5.3 Implementation issues 

When implementing inventory control theory in practice, several implementation 
issues may arise. We will discuss some of these issues below. 
 

• Selection of the demand distribution function 

There are several ways to decide which demand distribution to use. If in reality 
demand is discrete, the most obvious choice is to use either the empirical distribution 
or to fit a theoretical distribution function on this empirical distribution function (as 
discussed in chapter 2). Especially for items with low or very low demand (like in 
retail or spare parts settings) this will give much better results than using a 
continuous distribution. However, if the average demand during lead time plus 
review period is very large (say >2000 units) and at the same time reorder levels 
have to be recalculated for more than 100,000 items on a daily basis, then the 
computational time will become rather large when using a discrete distribution 
function. At the same time, the inaccuracy of using a continuous distribution function 
will decrease when the average demand during the lead time plus review period 
increases. Therefore, if the computation time becomes prohibitive we suggest to use 
a continuous distribution function for these items.  

 

• Adjusting reorder levels when using continuous demand models in discrete 
demand environments 

When the KPI’s are determined using continuous demand models while in reality 
demand is discrete, Zipkin (2000, p. 210) suggests to correct the reorder level with 
0.5 in the formulas for continuous demand models. In the DoBr-tool we assume that 
demand in reality is continuous when a gamma or normal distribution is applied and 
therefore the reorder level is not adjusted for this. When the continuous distribution is 
applied in situations with a very large reorder level, then the impact of having a 
correction with 0.5 or not will be very small.  
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Appendix 1. The expectation of the function of a stochastic variable  

How to determine the expectation of the function of a stochastic variable depends on 
whether the variable is discrete or continuous. These two cases will be discussed 
separately. 

 

A1.1  The expectation of the function of a discrete stochastic variable  
Let X be a discrete stochastic variable. The realization (in a random experiment) of 
this variable X is equal to an integer value with a certain probability. With P(X = k)) 
we refer to the probability that the realization of the stochastic variable X takes on the 
value k. For discrete stochastic variables it is known that by definition ∑ P(X =∞

k=0
k) = 1. In this formula we assumed that  X can only take on non-negative values (0, 
1, 2,…).  
For this course it is very important to understand the meaning of ‘the expectation of 
the function of a stochastic variable’ and how to calculate/determine this expectation. 
The simplest expectation is the expectation of X itself, E[X]. This can be calculated 
as follows 
 
E[X] = ∑ kP(X = k)∞

k=0                                                         (A1.1) 
 
To determine the variance of a (discrete or continuous) stochastic variable we only 
need the expectation of X and X2, since var[X] = E[X2] − (E[X])2. The expectation of 
X2 can be calculated as follows 
 
E[X2] = ∑ k2P(X = k)∞

k=0                                                     (A1.2) 
 
Rather than memorizing for every function of X how to determine its expectation, it is 
much easier and more insightful to know how to determine for any function of a 
stochastic variable its expectation. Let h(X) be an arbitrary function of the discrete 
stochastic variable X (with domain k=0, 1, 2, …). The expectation of this function is 
simply the weighted sum of the value of this function for a given realization of the 
stochastic variable ( h(k) ), where the weights are simply equal to the probability that 
the stochastic variable X takes on this value k. So we have 
 
E[h(X)] = ∑ h(k)P(X = k)∞

k=0            (A1.3) 
 
Note that for h(X) = X and h(X) = X2 this simply results in formulas (A1.1) resp. 
(A1.2)! 
This expression for the expectation of the function of a stochastic variable is not only 
relevant for this course Stochastic Operations Management, but will also be used in 
multiple other courses in the Bachelor and Master program. From here on students 
are expected to be able to determine these expectations! 
 
Slightly more complex is the determination of the expectation of the function of two 
discrete stochastic variables. In this case we take the weighted average over both 
stochastic variables, so we have 
 
E[h(X, Y)] = ∑ ∑ h(k, j)∞

j=0 P(X = k)P(Y = j)∞
k=0     (A1.4) 
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A1.2  The expectation of the function of a continuous stochastic variable  
For a continuous stochastic variable Z there is no use in working with the probability 
that this variable takes on a specific value z, (i.e.  P(Z = z) ), since this probability 
cannot be distinguished from zero. It is common to use f(z) and F(z) rather than with 
P(Z = z) and (Z ≤ z) , where f(. ) f is the probability density function and F(. ) the 
cumulative probability distribution function. 
Again we know by definition that all probability densities add up to 1: ∫ f(z)dz = 1∞

−∞ . 
Here we assumed that Z can take on both negative and non-negative values. 
Furthermore the following relation holds for F(z) 
 
F(z) = ∫ f(r)drz

−∞ .  
 
The expectation of a continuous stochastic variable is determined analogous to the 
expectation of a disrete stochastic variable: 
 
E(Z) = ∫ zf(z)dz∞

−∞          (A1.5) 
 
The more general expression for the expectation of the function h(Z) of a continuous 
stochastic variable Z is equal to 
 
E[h(Z)] = ∫ h(z)f(z)dz        ∞

−∞        (A1.6) 
 
And for the expectation of a function of two stochastic variables Z and W with f(. ) the 
probability density function for Z and g(. )  the probability density function for W we 
have: 
 
E[h(Z, W)] = ∫ ∫ h(z, w)∞

−∞ f(z)g(w)dzdw        ∞
−∞     (A1.7) 

 
Note the similarity with the expressions for the discrete stochastic variables where 
the probabilities are replaced by the probability densities and where the summation 
signs are replaced by the integrals. 
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Appendix 2. Derivation of formulas for standard normal demand 

In this appendix we will show how to transform expressions for a non-standard 
normally distributed variable 𝑋 with pdf 𝑓(𝑥), mean 𝜇 and standard deviation 𝜎 into 
expressions for a standard normally distributed variable 𝑉 with pdf 𝜑(𝑣)and cdf Φ(𝑣) 
                                               
 
For this purpose it will be very helpful to first consider the relationships between the 
standard (or unit) normal probability distribution function (pdf) 𝜑(𝑣) and its first and 
second order derivatives 𝜑′(𝑣) and 𝜑′′(𝑣) and the standard normal cumulative 
distribution function (cdf) Φ(𝑣). To this end we first derive the first and second order 
derivatives of  𝜑(𝑣) 
 
  𝜑(𝑣) = 1

√2𝜋
exp (−𝑣2

2
)   

 
  𝜑′(𝑣) = −𝑣

√2𝜋
exp �− 𝑣2

2
� =  −𝑣𝜑(𝑣)   

 
  𝜑′′(𝑣) = (𝑣2−1)

√2𝜋
exp �− 𝑣2

2
� = (𝑣2 − 1)𝜑(𝑣)  

 
With these equations and knowing that Φ′(𝑣) = 𝜑(𝑣) we can derive the following 
results 
 
∫ 𝜑(𝑣)𝑑𝑣 = Φ(𝑏) −Φ(𝑎)𝑏
𝑎   

 
∫ 𝑣𝜑(𝑣)𝑑𝑣 =  ∫ −𝜑′(𝑣)𝑑𝑣 =𝑏

𝑎
𝑏
𝑎 𝜑(𝑎) − 𝜑(𝑏)   

 
∫ 𝑣2𝜑(𝑣)𝑑𝑣 =  ∫ 𝜑′′(𝑣)𝑑𝑣 + ∫ 𝜑(𝑣)𝑑𝑣𝑏

𝑎 =𝑏
𝑎

𝑏
𝑎 𝜑′(𝑏) − 𝜑′(𝑎) + Φ(𝑏) −Φ(𝑎)   

                          =  𝑎𝜑(𝑎) − 𝑏𝜑(𝑏) + Φ(𝑏) −Φ(𝑎). 
 
The following results can be used to transform expressions for a non-standard 
normally distributed variable 𝑋 with pdf 𝑓(𝑥), mean 𝜇 and standard deviation 𝜎 into 
expressions for a standard normally distributed variable 𝑉 with pdf 𝜑(𝑣)and cdf Φ(𝑣) 
                                               
  

� 𝑓(𝑥)𝑑𝑥 = Φ�
𝑏 − 𝜇
𝜎

� − Φ(
𝑎 − 𝜇
𝜎

)
𝑏

𝑎
                                                 

 
 

� 𝑥𝑓(𝑥)𝑑𝑥 = � 𝜎
(𝑥 − 𝜇 + 𝜇)

𝜎
𝑓(𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎
 

                        = � 𝜎 �𝑣 +
𝜇
𝜎
�

1
𝜎
𝜑(𝑣)𝑑(𝜎𝑣)

(𝑏−𝜇)/𝜎

(𝑎−𝜇) 𝜎⁄
 

                         = 𝜎� 𝑣𝜑(𝑣)𝑑𝑣 + 𝜇� 𝜑(𝑣)𝑑𝑣
(𝑏−𝜇) 𝜎⁄

(𝑎−𝜇) 𝜎⁄

(𝑏−𝜇)/𝜎

(𝑎−𝜇) 𝜎⁄
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                         = 𝜎𝜑 �
𝑎 − 𝜇
𝜎

� − 𝜎𝜑 �
𝑏 − 𝜇
𝜎

� + 𝜇Φ�
𝑏 − 𝜇
𝜎

� − 𝜇Φ�
𝑎 − 𝜇
𝜎

�          
 
 

� 𝑥2𝑓(𝑥)𝑑𝑥 = � 𝜎2(
𝑥 − 𝜇 + 𝜇

𝜎
)2𝑓(𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎
 

                          = � 𝜎2(𝑣 +
𝜇
𝜎

)2
1
𝜎
𝜑(𝑣)𝑑(𝜎𝑣)

(𝑏−𝜇)/𝜎

(𝑎−𝜇) 𝜎⁄
 

                          = 𝜎2 � 𝑣2𝜑(𝑣)𝑑𝑣 + 2𝜇𝜎� 𝑣𝜑(𝑣)𝑑𝑣
(𝑏−𝜇) 𝜎⁄

(𝑎−𝜇) 𝜎⁄

(𝑏−𝜇)/𝜎

(𝑎−𝜇) 𝜎⁄
+ 𝜇2 � 𝜑(𝑣)𝑑𝑣

(𝑏−𝜇) 𝜎⁄

(𝑎−𝜇) 𝜎⁄
 

 

          = 𝜎2[
𝑎 − 𝜇
𝜎

𝜑 �
𝑎 − 𝜇
𝜎

� −
𝑏 − 𝜇
𝜎

𝜑 �
𝑏 − 𝜇
𝜎

� + Φ�
𝑏 − 𝜇
𝜎

� − Φ�
𝑎 − 𝜇
𝜎

�] 

                        + 2𝜇𝜎[𝜑 �𝑎−𝜇
𝜎
� − 𝜑 �𝑏−𝜇

𝜎
�] 

                              + 𝜇2[Φ�𝑏−𝜇
𝜎
� − Φ(𝑎−𝜇

𝜎
)]  

                         = 𝜎(𝜇 + 𝑎)𝜑 �
𝑎 − 𝜇
𝜎

� − 𝜎(𝜇 + 𝑏)𝜑 �
𝑏 − 𝜇
𝜎

� 

                              + (𝜎2 + 𝜇2) �Φ �
𝑏 − 𝜇
𝜎

� − Φ�
𝑎 − 𝜇
𝜎

��.                             
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Appendix 3. Demand during the lead time (plus review period)  
when the lead time is uncertain 

 
In this Appendix we derive formulas (4.2) and (4.3), i.e. the formulas for the mean 
and variance of  

1. the demand during the lead time and  

2. the demand during the lead time plus review period.  

We assume both 𝑅 and 𝐿 are equal to an integer number of periods, say 𝐾 and 𝑀. 𝑅  
is a deterministic constant and 𝐿 a discrete stochastic variable with mean 𝐸[𝐿] and 
variance 𝑣𝑎𝑟[𝐿]. Then 𝑀 is also a discrete stochastic variable with mean 𝐸[𝑀] and 
variance 𝑣𝑎𝑟[𝑀]. 

Note that L  has the dimension “time” whereas 𝑀 is a dimensionless number. Using 
the fact that demand is i.i.d. we have 

𝐸[𝐷(𝜏, 𝜏 + 𝑅 + 𝐿)](= 𝐸[𝐷𝐿+𝑅])     

                             = 𝐸[∑ 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)𝐾+𝑀
𝑘=1 ]     

                             = ∑ 𝐸[𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)]𝐾
𝑘=1 + 𝐸[∑ 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)]𝐾+𝑀

𝑘=𝐾+1      

                             = ∑ 𝐸[𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)]𝐾
𝑘=1 + 𝐸[𝐷(𝜏 + 𝐾, 𝜏 + 𝐾 + 𝑀)]     

                             = 𝐾𝐸[𝐷1] + 𝐸[𝐷𝑀]     

and 

𝑣𝑎𝑟[𝐷(𝜏, 𝜏 + 𝑅 + 𝐿)](= 𝑣𝑎𝑟[𝐷𝐿+𝑅]) 

                                 = 𝑣𝑎𝑟 �� 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)
𝐾+𝑀

𝑘=1
� = 

                                 = 𝑣𝑎𝑟 �� 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)
𝐾

𝑘=1
� + 𝑣𝑎𝑟[� 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)]

𝐾+𝑀

𝑘=𝐾+1
 

                                 = 𝑣𝑎𝑟 �� 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)
𝐾

𝑘=1
� + 𝑣𝑎𝑟[𝐷(𝜏 + 𝐾, 𝜏 + 𝐾 + 𝑀)] 

                                  = 𝐾𝑣𝑎𝑟[𝐷1] + 𝑣𝑎𝑟[𝐷𝑀]         

 

For convenience we define L  and 𝑅 too as a number of periods. Then ML =  and 
𝑅 = 𝐾 and the equations above result in formula (4.2). 

Next, we determine 𝐸[𝐷𝑀] and 𝑣𝑎𝑟[𝐷𝑀] with 𝑀 a discrete stochastic variable. 

 

52 
 



𝐸[𝐷𝑀] = 𝐸[� 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)]
𝑀

𝑘=1
 

Since this is an expectation of the function of a discrete stochastic variable 𝑀 (and a 
stochastic variable 𝐷) we determine this expectation using (A1.3) from Appendix 1 

𝐸[ℎ(𝑋)] = ∑ ℎ(𝑘)𝑃(𝑋 = 𝑘)∞
𝑘=0                                                    (A1.3) 

𝐸[𝐷𝑀] = 𝐸[� 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)]
𝑀

𝑘=1
 

           = ∑ 𝐸[∑ 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)]𝑃(𝑀 = 𝑚)𝑚
𝑘=1

∞
𝑚=0  

           = ∑ 𝑚 ∙ 𝐸[𝐷1] ∙ 𝑃(𝑀 = 𝑚)∞
𝑚=0  

           = 𝐸[𝐷1]∑ 𝑚 ∙ 𝑃(𝑀 = 𝑚)∞
𝑚=0  

              = 𝐸[𝑀] ∙ 𝐸[𝐷1] 

To determine 𝑣𝑎𝑟[𝐷𝑀], we use the fact that  𝑣𝑎𝑟[𝐷𝑀] = 𝐸[𝐷𝑀2 ] − 𝐸2[𝐷𝑀].  

Hence we first determine  

𝐸[𝐷𝑀2 ] = 𝐸[{� 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)}2
𝑀

𝑘=1
] 

           = ∑ 𝐸[{∑ 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)}2𝑚
𝑘=1

∞
𝑚=0 ]𝑃(𝑀 = 𝑚) 

( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2Since  we have ,  soX E X E X E X X E Xσ σ= − = +  

          = ∑ {𝑣𝑎𝑟[∑ 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)] + 𝐸2[𝑚
𝑘=1 ∑ 𝐷(𝜏 + 𝑘 − 1, 𝜏 + 𝑘)]}𝑃(𝑀 = 𝑚)𝑚

𝑘=1
∞
𝑚=0  

    = ∑ {𝑚 ∙ 𝑣𝑎𝑟[𝐷1] + (𝑚 ∙ 𝐸[𝐷1])2}𝑃(𝑀 = 𝑚)∞
𝑚=0    

          = 𝐸[𝑀} ∙ 𝑣𝑎𝑟[𝐷1] + 𝐸2[𝐷1] ∙ 𝐸[𝑀2]  

 

and then we have  

𝑣𝑎𝑟[𝐷𝑀] = 𝐸[𝐷𝑀2 ] − 𝐸2[𝐷𝑀] 

                = 𝐸[𝑀} ∙ 𝑣𝑎𝑟[𝐷1] + 𝐸2[𝐷1] ∙ 𝐸[𝑀2] − 𝐸2[𝑀] ∙ 𝐸2[𝐷1]  

                = 𝐸[𝑀} ∙ 𝑣𝑎𝑟[𝐷1] + 𝐸2[𝐷1] ∙ 𝑣𝑎𝑟[𝑀].  

 

For convenience we define L  too as a number of periods. Then ML =  and the 
equations above result in formula (4.3). 

Note that in order to keep dimensions correct, it is essential to interpret L  as a 
number of periods and not as delivery time. 
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Appendix 4. Alternative formulas for 𝑬[𝑩𝑶(𝝉 + 𝒕)]     

 
Zipkin (Foundations in Inventory Management (2000)) introduced the ccdf (𝐹0), the 
first order loss function (𝐹1), and the second order loss function (𝐹2) for any 
continuous demand distribution f(x), with: 
 

𝐹0(𝑦) = � 𝑓(𝑥)𝑑𝑥
∞

𝑦
 

𝐹1(𝑦) = � (𝑥 − 𝑦)𝑓(𝑥)𝑑𝑥
∞

𝑦
 

𝐹2(𝑦) = � (𝑥 − 𝑦)2𝑓(𝑥)𝑑𝑥
∞

𝑦
 

 
Then the generic expression for 𝐸[𝐵𝑂(𝜏 + 𝑡)] can be expressed in these functions 
very easy: 
 

𝐸[𝐵𝑂(𝜏 + 𝑡)] =
1
𝑄

[𝐹2(𝑠) − 𝐹2(𝑠 + 𝑄)] + 𝐹1(𝑠 + 𝑄) +
𝑄
2
𝐹0(𝑠 + 𝑄)   

 
Alternative derivation of BO-formula for gamma demand: 

According to Zipkin (2000, p.457) the following equations hold for gamma distributed 
demand with the pdf  𝑓(𝑥|𝛼,𝛽)  and with cdf   𝐹(𝑥|𝛼,𝛽): 
 

𝐹0(𝑦) = 1 − 𝐹(𝑦|𝛼,𝛽) 
 

𝐹1(𝑦) = (𝛼𝛽 − 𝑦)𝐹0(𝑦) + 𝛽𝑦𝑓(𝑦|𝛼,𝛽) 
 

𝐹2(𝑦) =
1
2

[(𝛼𝛽 − 𝑦)2 + 𝛼𝛽2]𝐹0(𝑦) +
1
2
𝛽�(𝛼 + 1)𝛽 − 𝑦�𝑦𝑓(𝑦|𝛼,𝛽) 

 
With these functions and some straightforward algebra the generic expression for 
𝐸[𝐵𝑂(𝜏 + 𝑡)]  can be rewritten into the following formula for gamma distributed 
demand (note that 1/(2Q) holds for all 4 parts of the expression!): 
 

𝐸[𝐵𝑂(𝜏 + 𝑡)] =
1

2𝑄
{  𝐹0(𝑠)[(𝛼𝛽 − 𝑠)2 + 𝛼𝛽2]    

 
+ 𝐹0(𝑠 + 𝑄)[−2𝑄2 + 4(𝛼𝛽 − 𝑠)𝑄 − (𝛼𝛽 − 𝑠)2 − 𝛼𝛽2]    

 
                              +𝑓(𝑠|𝛼,𝛽)[(𝛼 + 1)𝛽2𝑠 − 𝛽𝑠2] 
 
                              + 𝑓(𝑠 + 𝑄|𝛼,𝛽)�3𝛽𝑄2 + 𝛽𝑄�4𝑠 − 𝛽(𝛼 + 1)� + 𝛽𝑠2 − 𝛽2𝑠(𝛼 + 1)� }  
 
Since 𝐷𝑡 is gamma distributed with mean 𝛼𝛽 and variance  𝛼𝛽2,  𝛼 and 𝛽 in the 
equation above can be solved from 𝛼𝛽 = 𝑡𝜇 and 𝛼𝛽2 = 𝑡𝜎2.  
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Note: Zipkin (2000, p. 457) also mentions that one can fit 𝛼  and 𝛽  to any positive 
mean and variance. 
 

Alternative derivation of BO-formula for normal demand: 

 
Before rewriting this expression let us first consider the derivates of 𝜑(𝑣)  and 𝜑′(𝑣): 
 
  𝜑(𝑣) = 1

√2𝜋
exp (−𝑣2

2
)   

 
  𝜑′(𝑣) = −𝑣

√2𝜋
exp �− 𝑣2

2
� =  −𝑣𝜑(𝑣)   

 
  𝜑′′(𝑣) = (𝑣2−1)

√2𝜋
exp �− 𝑣2

2
� = (𝑣2 − 1)𝜑(𝑣)  

 
With these results we can rewrite the three integrals in (2): 
 

� (𝑣 − 𝑘)2
𝑘+𝑐

𝑘

𝜑(𝑣)𝑑𝑣 =     

     = ∫ (𝑣2 − 1)𝜑(𝑣)𝑑𝑣 − 2𝑘 ∫ 𝑣𝜑(𝑣)𝑑𝑣 + (𝑘2 + 1)∫ 𝜑(𝑣)𝑑𝑣𝑘+𝑐
𝑘

𝑘+𝑐
𝑘

𝑘+𝑐
𝑘    

     = 𝜑′(𝑘 + 𝑐) −𝜑′(𝑘) + 2𝑘�𝜑(𝑘 + 𝑐) − 𝜑(𝑘)� + (𝑘2 + 1)(Φ(𝑘 + 𝑐) −Φ(𝑘))   
     = −(𝑘 + 𝑐)𝜑(𝑘 + 𝑐) + 𝑘𝜑(𝑘) + 2𝑘�𝜑(𝑘 + 𝑐) − 𝜑(𝑘)� + (𝑘2 + 1)(Φ(𝑘 + 𝑐) −Φ(𝑘))   
     = (𝑘 − 𝑐)𝜑(𝑘 + 𝑐) − 𝑘𝜑(𝑘) + (𝑘2 + 1)(Φ(𝑘 + 𝑐) −Φ(𝑘))   
 
 
∫ (𝑣 − 𝑘 − 𝑐)𝜑(𝑣)𝑑𝑣 =  ∫ 𝑣𝜑(𝑣)𝑑𝑣 − (𝑘 + 𝑐)∞

𝑘+𝑐
∞
𝑘+𝑐 ∫ 𝜑(𝑣)𝑑𝑣∞

𝑘+𝑐    
                                              = 𝜑(𝑘 + 𝑐) − (𝑘 + 𝑐)(1−Φ(𝑘 + 𝑐))   
 
 
∫ 𝜑(𝑣)𝑑𝑣 = 1 −Φ(𝑘 + 𝑐)∞
𝑘+𝑐   

 
In Section 3.1 we derived the following expressions for the fill rate 𝑃2 

𝑃2 = 1 −
𝐸[𝐵𝑂(𝜏 + 𝑅 + 𝐿)] − 𝐸[𝐵𝑂(𝜏 + 𝐿)]

𝐸[𝐷𝑅]
                                                              (𝐴4.1) 

with 

𝐸[𝐵𝑂(𝜏 + 𝑡)] =
1
𝑄
�

1
2

(𝑥 − 𝑠)2
𝑠+𝑄

𝑠

𝑓(𝑥)𝑑𝑥 + � (𝑥 − 𝑠 − 𝑄)𝑓(𝑥)𝑑𝑥 +
𝑄
2
� 𝑓(𝑥)𝑑𝑥
∞

𝑠+𝑄

∞

𝑠+𝑄
 

and 𝑓(. ) the probability density function for the stochastic variable 𝐷𝑡, the demand 
during t periods. 
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In case 𝑥 is normally distributed, we can rewrite this into the following expression, 
by using the substitutions  𝑣 = 𝑥−𝜇

𝜎
 ,  𝑘 = 𝑠−𝜇

𝜎
  and  𝑐 = 𝑄

𝜎
  with 𝜇 and 𝜎 the mean resp. 

standard deviation of 𝑥, with 𝜑(𝑣)  and Φ(𝑣)  the standard (or unit) normal probability 
density function (pdf) and cumulative distribution function (cdf). 
 
𝐸[𝐵𝑂(𝜏 + 𝑡)] = 𝜎

2𝑐 ∫ (𝑣 − 𝑘)2𝑘+𝑐
𝑘 𝜑(𝑣)𝑑𝑣 + 𝜎 ∫ (𝑣 − 𝑘 − 𝑐)𝜑(𝑣)𝑑𝑣 + 𝑐𝜎

2 ∫ 𝜑(𝑣)𝑑𝑣∞
𝑘+𝑐

∞
𝑘+𝑐       

(2) 
 
By using (3.30)-(3.32) this can be rewritten into 
 
 
𝐸[𝐵𝑂(𝜏 + 𝑡)] = 𝜎

2𝑐
[(𝑘 − 𝑐)𝜑(𝑘 + 𝑐) − 𝑘𝜑(𝑘) + (𝑘2 + 1)�Φ(𝑘 + 𝑐) −Φ(𝑘)�] +

𝜎 �𝜑(𝑘 + 𝑐) − (𝑘 + 𝑐)�1 −Φ(𝑘 + 𝑐)�� + 𝑐𝜎
2

(1 −Φ(𝑘 + 𝑐))        

= 𝜑(𝑘 + 𝑐) �𝑘
𝑐

+ 1� 𝜎
2
− 𝜑(𝑘) 𝑘𝜎

2𝑐
+ Φ(𝑘 + 𝑐) �(𝑘2 + 1) 𝜎

2𝑐
+ (𝑘 + 𝑐)𝜎 − 𝑐𝜎

2
� −

Φ(𝑘)(𝑘2 + 1) 𝜎
2𝑐
− 𝜎(𝑘 + 𝑐

2
).                                                                           (A4.2) 

 
Note that in (A4.2) 𝜎 represents  𝜎𝑡  (for ease of notation we left out the subindices t 
so far), k represents    𝑘𝑡 = 𝑠−𝜇𝑡

𝜎𝑡
  and c represents  𝑐𝑡 = 𝑄

𝜎𝑡
  with  𝜇𝑡 = 𝑡𝜇  and  𝜎𝑡 =

√𝑡𝜎  if demand is i.i.d. 
 
When combining (A4.1) and (A4.2), we have an exact expression for the 𝑃2 in an 
(𝑅, 𝑠,𝑛𝑄)-system with normally distributed demand and backordering. Expression 
(A4.2) can be rewritten into expression (3.15). 
 

56 
 



Working Papers Beta 2009 - 2014 
 
 
 
nr.  Year  Title                                                                Author(s) 
447 
 
 
446 
 
 
445 
 
 
 
444 
 
 
 
443 
 
 
 
442 
 
 
441 
 
 
440 
 
 
439 
 
 
438 
 
 
 
437 
 
 
 
 
 
 

2014 
 
 
2014 
 
 
2014 
 
 
 
2014 
 
 
 
2014 
 
 
 
2014 
 
 
2013 
 
 
2013 
 
 
2013 
 
 
2013 
 
 
 
2013 
 
 
 
 
 
 

Stochastic inventory models for a single item 
at a single location 
 
Optimal and heuristic repairable stocking and 
expediting in a fluctuating demand environment 
 
Connecting inventory control and repair shop 
control: a differentiated control structure for 
repairable spare parts 
 
A survey on design and usage of Software 
Reference Architectures 
 
Extending and Adapting the Architecture Tradeoff 
Analysis Method for the Evaluation of Software 
Reference Architectures 
 
A multimodal network flow problem with product 
Quality preservation, transshipment, and asset 
management 
 
Integrating passenger and freight transportation: 
Model formulation and insights 
 
The Price of Payment Delay 
 
 
On Characterization of the Core of Lane Covering 
Games via Dual Solutions 
 
Destocking, the Bullwhip Effect, and the Credit 
Crisis: Empirical Modeling of Supply Chain 
Dynamics 
 
Methodological support for business process 
Redesign in healthcare: a systematic literature 
review 
 
 
 
 

K.H. van Donselaar, R.A.C.M.  
Broekmeulen 
 
Joachim Arts, Rob Basten, 
Geert-Jan van Houtum 
 
M.A. Driessen, W.D. Rustenburg, 
G.J. van Houtum, V.C.S. Wiers 
 
 
Samuil Angelov, Jos Trienekens, 
Rob Kusters 
 
Samuil Angelov, Jos J.M. Trienekens, 
Paul Grefen 
 
 
Maryam SteadieSeifi, Nico Dellaert, 
Tom Van Woensel 
 
Veaceslav Ghilas, Emrah Demir, 
Tom Van Woensel 
 
K. van der Vliet, M.J. Reindorp, 
J.C. Fransoo 
 
 
Behzad Hezarkhani, Marco Slikker, 
Tom van Woensel 
 
Maximiliano Udenio, Jan C. Fransoo, 
Robert Peels 
 
 
Rob J.B. Vanwersch, Khurram 
Shahzad, Irene Vanderfeesten, Kris 
Vanhaecht, Paul Grefen, Liliane 
Pintelon, Jan Mendling, Geofridus G. 
Van Merode, Hajo A. Reijers 
 
 



436 
 
 
 
435 
 
 
 
434 
 
 
433 
 
 
 
432 
 
 
 
 
431 
 
 
 
430 
 
 
 
429 
 
 
 
428 
 
 
 
427 
 
 
426 
 
 
 
425 
 

2013 
 
 
 
2013 
 
 
 
2013 
 
 
2013 
 
 
 
2013 
 
 
 
 
2013 
 
 
 
2013 
 
 
 
2013 
 
 
 
2013 
 
 
 
2013 
 
 
2013 
 
 
 
2013 
 

Dynamics and equilibria under incremental 
Horizontal differentiation on the Salop circle 
 
 
Analyzing Conformance to Clinical Protocols 
Involving Advanced Synchronizations 
 
 
Models for Ambulance Planning on the Strategic 
and the Tactical Level 
 
Mode Allocation and Scheduling of Inland 
Container Transportation: A Case-Study in the 
Netherlands 
 
Socially responsible transportation and lot sizing: 
Insights from multiobjective optimization 
 
 
 
Inventory routing for dynamic waste collection 
 
 
 
Simulation and Logistics Optimization of an 
Integrated Emergency Post 
 
 
Last Time Buy and Repair Decisions for Spare 
Parts 
 
 
A Review of Recent Research on Green Road 
Freight Transportation 
 
 
Typology of Repair Shops for Maintenance 
Spare Parts 
 
A value network development model and 
Implications for innovation and production network 
management 
 
Single Vehicle Routing with Stochastic Demands: 
Approximate Dynamic Programming 
 

B. Vermeulen, J.A. La Poutré, 
A.G. de Kok 
 
 
Hui Yan, Pieter Van Gorp, Uzay 
Kaymak, Xudong Lu, Richard Vdovjak, 
Hendriks H.M. Korsten, Huilong Duan 
 
J. Theresia van Essen, Johann L. 
Hurink, Stefan Nickel, Melanie Reuter 
 
Stefano Fazi, Tom Van Woensel, 
Jan C. Fransoo 
 
 
Yann Bouchery, Asma Ghaffari, 
Zied Jemai, Jan Fransoo 
 
 
 
Martijn Mes, Marco Schutten, 
Arturo Pérez Rivera 
 
 
N.J. Borgman, M.R.K. Mes, 
I.M.H. Vliegen, E.W. Hans 
 
 
S. Behfard, M.C. van der Heijden, 
A. Al Hanbali, W.H.M. Zijm 
 
 
Emrah Demir, Tolga Bektas, Gilbert 
Laporte 
 
 
M.A. Driessen, V.C.S. Wiers, 
G.J. van Houtum, W.D. Rustenburg 
 
 
B. Vermeulen, A.G. de Kok 
 
 
C. Zhang, N.P. Dellaert, L. Zhao, 
T. Van Woensel, D. Sever 
 



 
 
424 
 
 
 
 
423 
 
 
 
 
422 
 
 
 
421 
 
420 
 
 
419 
 
 
 
418 
 
 
 
417 
 
 
416 
 
 
 
415 
 
 
414 
 
 
 
413 
 

 
 
2013 
 
 
 
 
2013 
 
 
 
 
2013 
 
 
 
2013 
 
2013 
 
 
2013 
 
 
 
2013 
 
 
 
2013 
 
 
2013 
 
 
 
2013 
 
 
2013 
 
 
 
2013 
 

 
Influence of Spillback Effect on Dynamic Shortest 
Path Problems with Travel-Time-Dependent 
Network Disruptions 
 
 
 
Dynamic Shortest Path Problem with Travel-Time-
Dependent Stochastic Disruptions: Hybrid 
Approximate Dynamic Programming Algorithms 
with a Clustering Approach 
 
System-oriented inventory models for spare 
parts 
 
 
Lost Sales Inventory Models with Batch Ordering 
And Handling Costs 
 
Response speed and the bullwhip 
 
 
Anticipatory Routing of Police Helicopters 
 
 
 
Supply Chain Finance: research challenges 
ahead 
 
Improving the Performance of Sorter Systems 
By Scheduling Inbound Containers 
 
Regional logistics land allocation policies: 
Stimulating spatial concentration of logistics 
firms 
 
The development of measures of process 
harmonization  
 
BASE/X. Business Agility through Cross- 
Organizational Service Engineering 
 
 
The Time-Dependent Vehicle Routing Problem 
with Soft Time Windows and Stochastic Travel 
Times 

 
Derya Sever, Nico Dellaert,  
Tom Van Woensel, Ton de Kok 
 
 
 
 
Derya Sever, Lei Zhao, Nico Dellaert, 
Tom Van Woensel, Ton de Kok 
 
 
R.J.I. Basten, G.J. van Houtum 
 
 
 
T. Van Woensel, N. Erkip, A. Curseu, 
J.C. Fransoo 
 
Maximiliano Udenio, Jan C. Fransoo, 
Eleni Vatamidou, Nico Dellaert 
 
Rick van Urk, Martijn R.K. Mes, 
Erwin W. Hans 
 
 
Kasper van der Vliet, Matthew J. 
Reindorp, Jan C. Fransoo 
 
S.W.A. Haneyah, J.M.J. Schutten, 
K. Fikse 
 
Frank P. van den Heuvel, Peter W. de 
Langen, Karel H. van Donselaar,  
Jan C. Fransoo 
 
Heidi L. Romero, Remco M. Dijkman, 
Paul W.P.J. Grefen, Arjan van Weele 
 
Paul Grefen, Egon Lüftenegger, 
Eric van der Linden, Caren Weisleder 
 
 
Duygu Tas, Nico Dellaert, Tom van 
Woensel, Ton de Kok 
 



 
 
412 
 
 
411 
 
 
 
410 
 
 
 
409 
 
 
 
408 
 
 
 
407 
 
 
 
406 
 
 
405 
 
404 
 
 
403 
 
 
 
 
402 
 
 
 
401 
 
 

 
 
2013 
 
 
2013 
 
 
 
2013 
 
 
 
2013 
 
 
 
2013 
 
 
 
2013 
 
 
 
2013 
 
 
2013 
 
2013 
 
 
2013 
 
 
 
 
2012 
 
 
 
2012 
 
 

 
Clearing the Sky - Understanding SLA 
Elements in Cloud Computing 
 
Approximations for the waiting time distribution 
In an M/G/c priority queue 
 
 
To co-locate or not? Location decisions and 
logistics concentration areas 
 
 
 
The Time-Dependent Pollution-Routing Problem 
 
 
 
Scheduling the scheduling task: A time 
Management perspective on scheduling 
 
 
Clustering Clinical Departments for Wards to 
Achieve a Prespecified Blocking Probability 
 
 
MyPHRMachines: Personal Health Desktops 
in the Cloud 
 
Maximising the Value of Supply Chain Finance 
 
Reaching 50 million nanostores: retail  
distribution in emerging megacities 
 
A Vehicle Routing Problem with Flexible Time 
Windows 
 
 
 
The Service Dominant Business Model: A  
Service Focused Conceptualization 
 
 
Relationship between freight accessibility and  
Logistics employment in US counties 
 
 

 
Marco Comuzzi, Guus Jacobs, 
Paul Grefen 
 
A. Al Hanbali, E.M. Alvarez, 
M.C. van der van der Heijden 
 
 
Frank P. van den Heuvel, Karel H. van 
Donselaar, Rob A.C.M. Broekmeulen, 
Jan C. Fransoo, Peter W. de Langen 
 
 
Anna Franceschetti, Dorothée 
Honhon,Tom van Woensel, Tolga 
Bektas, GilbertLaporte. 
 
 
J.A. Larco, V. Wiers, J. Fransoo 
 
 
J. Theresia van Essen, Mark van 
Houdenhoven, Johann L. Hurink 
 
 
 
Pieter Van Gorp, Marco Comuzzi 
 
Kasper van der Vliet, Matthew J. 
Reindorp, Jan C. Fransoo 
 
Edgar E. Blanco, Jan C. Fransoo 
 
 
Duygu Tas, Ola Jabali, Tom van 
Woensel 
 
 
 
Egon Lüftenegger, Marco Comuzzi, 
Paul Grefen, Caren Weisleder 
 
 
Frank P. van den Heuvel, Liliana 
Rivera,Karel H. van Donselaar, Ad de 
Jong,Yossi Sheffi, Peter W. de Langen, 
Jan C.Fransoo 



 
 
400 
 
 
 
399 
 
 
 
 
398 
 
 
397 
 
 
 
396 
 
 
 
 
395 
 
 
 
394 
 
 
393 
 
 
 
392 
 
 
 
 
391 
 
 
390 
 
 

 
 
2012 
 
 
 
2012 
 
 
 
 
2012 
 
 
2012 
 
 
 
2012 
 
 
 
 
2012 
 
 
 
2012 
 
 
2012 
 
 
 
2012 
 
 
 
 
2012 
 
 
2012 
 
 

 
A Condition-Based Maintenance Policy for Multi-
Component Systems with a High Maintenance 
Setup Cost 
 
A flexible iterative improvement heuristic to 
Support creation of feasible shift rosters in 
Self-rostering 
 
Scheduled Service Network Design with 
Synchronization and Transshipment Constraints 
For Intermodal Container Transportation Networks 
 
Destocking, the bullwhip effect, and the credit 
Crisis: empirical modeling of supply chain 
Dynamics 
 
Vehicle routing with restricted loading  
capacities 
 
 
 
 
Service differentiation through selective 
lateral transshipments 
 
 
A Generalized Simulation Model of an  
Integrated Emergency Post 
 
Business Process Technology and the Cloud: 
Defining a Business Process Cloud Platform 
 
 
Vehicle Routing with Soft Time Windows and 
Stochastic Travel Times: A Column Generation 
And Branch-and-Price Solution Approach 
 
 
Improve OR-Schedule to Reduce Number of 
Required Beds 
 
How does development lead time affect 
performance over the ramp-up lifecycle? 
 

 
Qiushi Zhu, Hao Peng, Geert-Jan van 
Houtum 
 
 
E. van der Veen, J.L. Hurink,  
J.M.J. Schutten, S.T. Uijland 
 
 
K. Sharypova, T.G. Crainic, T. van 
Woensel, J.C. Fransoo 
 
 
Maximiliano Udenio, Jan C. Fransoo, 
Robert Peels 
 
 
J.  Gromicho, J.J. van Hoorn, A.L. Kok 
J.M.J. Schutten 
 
 
 
 
E.M. Alvarez, M.C. van der Heijden, 
I.M.H. Vliegen, W.H.M. Zijm 
 
 
Martijn Mes, Manon Bruens 
 
 
Vasil Stoitsev, Paul Grefen 
 
 
 
D. Tas, M. Gendreau, N. Dellaert, 
T. van Woensel, A.G. de Kok 
 
 
 
J.T. v. Essen, J.M. Bosch, E.W. Hans, 
M. v. Houdenhoven, J.L. Hurink 
 
Andres Pufall, Jan C. Fransoo, Ad de 
Jong 
 



 
389 
 
 
 
388 
 
 
 
387 
 
 
 
 
386 
 
 
 
 
385 
 
 
384 
 
 
383 
 
 
 
382 
 
 
 
381 
 
 
380 
 
 
 
 
379 
 
 
 

 
2012 
 
 
 
2012 
 
 
 
2012 
 
 
 
 
2012 
 
 
 
 
2012 
 
 
2012 
 
 
2012 
 
 
 
2012 
 
 
 
2012 
 
 
2012 
 
 
 
 
2012 
 
 
 

 
Evidence from the consumer electronics 
industry 
 
 
The Impact of Product Complexity on Ramp- 
Up Performance 
 
 
Co-location synergies: specialized versus diverse 
logistics concentration areas 
 
 
 
Proximity matters: Synergies through co-location 
of logistics establishments 
 
 
 
Spatial concentration and location dynamics in 
logistics:the case of a Dutch province  
 
FNet: An Index for Advanced Business Process 
Querying 
 
Defining Various Pathway Terms 
 
 
 
The Service Dominant Strategy Canvas: 
Defining and Visualizing a Service Dominant 
Strategy through the Traditional Strategic Lens 
 
A Stochastic Variable Size Bin Packing Problem 
With Time Constraints 
 
Coordination and Analysis of Barge Container 
Hinterland Networks 
 
 
 
Proximity matters: Synergies through co-location 
of logistics establishments 
 
 
 

 
Andreas Pufall, Jan C. Fransoo, Ad de 
Jong, Ton de Kok 
 
 
Frank P.v.d. Heuvel, Peter W.de 
Langen, 
Karel H. v. Donselaar, Jan C. Fransoo 
 
Frank P.v.d. Heuvel, Peter W.de 
Langen, 
Karel H. v.Donselaar, Jan C. Fransoo 
 
 
Frank P. v.d.Heuvel, Peter W.de 
Langen, 
Karel H.v. Donselaar, Jan C. Fransoo 
 
 
Zhiqiang Yan, Remco Dijkman, Paul 
Grefen 
 
W.R. Dalinghaus, P.M.E. Van Gorp 
 
 
Egon Lüftenegger, Paul Grefen, 
Caren Weisleder 
 
 
 
Stefano Fazi, Tom van Woensel, 
Jan C. Fransoo 
 
K. Sharypova, T. van Woensel, 
J.C. Fransoo 
 
Frank P. van den Heuvel, Peter W. de 
Langen, Karel H. van Donselaar, Jan 
C. 
Fransoo 
 
Heidi Romero, Remco Dijkman, 
Paul Grefen, Arjan van Weele 
 
 
 



378 
 
 
 
 
377 
 
 
 
 
375 
 
374 
 
 
373 
 
 
372 
 
 
371 
 
 
370 
 
 
369 
 
 
 
368 
 
 
367 
 
 
 
366 
 
 
365 
 
 
364 

2012 
 
 
 
 
2012 
 
 
 
 
2012 
 
2012 
 
 
2012 
 
 
2012 
 
 
2012 
 
 
2012 
 
 
2011 
 
 
 
2011 
 
 
2011 
 
 
 
2011 
 
 
2011 
 
 
2011 

A literature review in process harmonization: a 
conceptual framework 
 
 
 
A Generic Material Flow Control Model for  
Two Different Industries 
 
 
Improving the performance of sorter systems by 
scheduling inbound containers 
 
Strategies for dynamic appointment making by 
container terminals 
 
MyPHRMachines: Lifelong Personal Health 
Records in the Cloud 
 
 
Service differentiation in spare parts supply 
through dedicated stocks 
 
Spare parts inventory pooling: how to share 
the benefits 
 
Condition based spare parts supply 
 
 
Using Simulation to Assess the Opportunities of 
Dynamic Waste Collection 
 
 
Aggregate overhaul and supply chain planning for 
rotables 
 
 
Operating Room Rescheduling 
 
 
Switching Transport Modes to Meet Voluntary 
Carbon Emission Targets 
 
On two-echelon inventory systems with Poisson 
demand and lost sales 
 
 
Minimizing the Waiting Time for Emergency 
Surgery 

S.W.A. Haneya, J.M.J. Schutten, 
P.C. Schuur, W.H.M. Zijm 
 
 
 
H.G.H. Tiemessen, M. Fleischmann, 
G.J. van Houtum, J.A.E.E. van Nunen, 
E. Pratsini 
 
Albert Douma, Martijn Mes 
 
 
Pieter van Gorp, Marco Comuzzi 
 
E.M. Alvarez, M.C. van der Heijden, 
W.H.M. Zijm 
 
 
Frank Karsten, Rob Basten 
 
 
X.Lin, R.J.I. Basten, A.A. Kranenburg, 
G.J. van Houtum 
 
Martijn Mes 
 
 
J. Arts, S.D. Flapper, K. Vernooij 
 
 
J.T. van Essen, J.L. Hurink, W. 
Hartholt, 
B.J. van den Akker 
 
Kristel M.R. Hoen, Tarkan Tan, Jan C. 
Fransoo, Geert-Jan van Houtum 
 
 
Elisa Alvarez, Matthieu van der Heijden 
 
 
J.T. van Essen, E.W. Hans, J.L. Hurink,  
A. Oversberg 
 
Duygu Tas, Nico Dellaert, Tom van 
Woensel, Ton de Kok 



 
 
 
 
363 
 
 
362 
 
 
361 
 
 
360 
 
 
359 
 
 
358 
 
 
357 
 
 
356 
 
 
355 
 
 
354 
 
 
353 
 
 
352 
 
 
351 
 
 
350 
 

 
 
 
 
2011 
 
 
2011 
 
 
2011 
 
 
2011 
 
 
2011 
 
 
2011 
 
 
2011 
 
 
2011 
 
 
2011 
 
 
2011 
 
 
2011 
 
 
2011 
 
 
2011 
 
 
2011 
 

 
 
 
Vehicle Routing Problem with Stochastic Travel 
Times Including Soft Time Windows and Service 
Costs 
 
A New Approximate Evaluation Method for Two-
Echelon Inventory Systems with Emergency 
Shipments 
 
Approximating Multi-Objective Time-Dependent 
Optimization Problems 
 
Branch and Cut and Price for the Time Dependent 
Vehicle Routing Problem with Time Window 
 
Analysis of an Assemble-to-Order System with 
Different Review Periods 
 
Interval Availability Analysis of a Two-Echelon, 
Multi-Item System 
 
Carbon-Optimal and Carbon-Neutral Supply 
Chains 
 
Generic Planning and Control of Automated 
Material Handling Systems: Practical 
Requirements Versus Existing Theory 
 
Last time buy decisions for products sold under 
warranty 
 
 
Spatial concentration and location dynamics in 
logistics: the case of a Dutch provence 
 
Identification of Employment Concentration Areas 
 
 
BOMN 2.0 Execution Semantics Formalized as 
Graph Rewrite Rules: extended version 
 
Resource pooling and cost allocation among 
independent service providers 
 
A Framework for Business Innovation Directions 
 
 

 
 
 
Erhun Özkan, Geert-Jan van Houtum, 
Yasemin Serin 
 
 
Said Dabia, El-Ghazali Talbi, Tom Van 
Woensel, Ton de Kok 
 
Said Dabia, Stefan Röpke, Tom Van 
Woensel, Ton de Kok 
 
A.G. Karaarslan, G.P. Kiesmüller, A.G. 
de Kok 
 
Ahmad Al Hanbali, Matthieu van der 
Heijden 
 
Felipe Caro, Charles J. Corbett, Tarkan 
Tan, Rob Zuidwijk 
 
Sameh Haneyah, Henk Zijm, Marco 
Schutten, Peter Schuur 
 
M. van der Heijden, B. Iskandar 
 
Frank P. van den Heuvel, Peter W. de 
Langen, Karel H. van Donselaar, Jan 
C. Fransoo 
 
Frank P. van den Heuvel, Peter W. de 
Langen, Karel H. van Donselaar, Jan 
C. Fransoo 
 
 
Pieter van Gorp, Remco Dijkman 
 
 
Frank Karsten, Marco Slikker, Geert-
Jan van Houtum 
 
E. Lüftenegger, S. Angelov, P. Grefen 
 
 
Remco Dijkman, Irene Vanderfeesten, 
Hajo A. Reijers 
 



349 
 
 
348 
 
 
347 
 
 
346 
 
345 
 
 
344 
 
 
 
343 
 
 
342 
 
 
341 
 
 
 
339 
 
 
338 
 
 
 
335 
 
334 
 
 
 
333 
 
 
 

2011 
 
 
2011 
 
 
2011 
 
 
2011 
 
2011 
 
 
2011 
 
 
 
2011 
 
 
2010 
 
 
2010 
 
 
 
2010 
 
 
2010 
 
 
 
2010 
 
2010 
 
 
 
2010 
 
 
 

The Road to a Business Process Architecture: An 
Overview of Approaches and their Use 
 
Effect of carbon emission regulations on transport 
mode selection under stochastic demand 
 
An improved MIP-based combinatorial approach 
for a multi-skill workforce scheduling problem 
 
An approximate approach for the joint problem of 
level of repair analysis and spare parts stocking 
 
Joint optimization of level of repair analysis and 
spare parts stocks 
 
Inventory control with manufacturing lead time 
flexibility 
 
 
Analysis of resource pooling games via a new 
extenstion of the Erlang loss function 
 
Vehicle refueling with limited resources 
 
 
Optimal Inventory Policies with Non-stationary 
Supply Disruptions and Advance Supply 
Information 
 
Redundancy Optimization for Critical Components 
in High-Availability Capital Goods 
 
 
Analysis of a two-echelon inventory system with 
two supply modes 
 
 
Analysis of the dial-a-ride problem of Hunsaker 
and Savelsbergh 
 
Attaining stability in multi-skill workforce scheduling 
 
 
 
Flexible Heuristics Miner (FHM) 
 
 
 

K.M.R. Hoen, T. Tan, J.C. Fransoo 
G.J. van Houtum 
 
Murat Firat, Cor Hurkens 
 
R.J.I. Basten, M.C. van der Heijden, 
J.M.J. Schutten 
 
R.J.I. Basten, M.C. van der Heijden, 
J.M.J. Schutten 
 
Ton G. de Kok 
 
 
Frank Karsten, Marco Slikker, Geert-
Jan van Houtum 
 
 
Murat Firat, C.A.J. Hurkens, Gerhard J. 
Woeginger 
 
Bilge Atasoy, Refik Güllü, TarkanTan 
 
 
Kurtulus Baris Öner, Alan Scheller-Wolf 
Geert-Jan van Houtum 
 
 
Joachim Arts, Gudrun Kiesmüller 
 
 
Murat Firat, Gerhard J. Woeginger 
 
 
 
Murat Firat, Cor Hurkens 
 
 
A.J.M.M. Weijters, J.T.S. Ribeiro 
 
 
P.T. Vanberkel, R.J. Boucherie, E.W. 
Hans, J.L. Hurink, W.A.M. van Lent, 
W.H. van Harten 
 
 



332 
 
 
331 
 
 
330 
 
 
329 
 
 
328 
 
 
327 
 
 
 
326 
 
 
325 
 
 
 
324 
 
 
 
323 
 
 
 
322 
 
 
321 
 
 
 
320 
 
 
 

2010 
 
 
2010 
 
 
2010 
 
 
2010 
 
 
2010 
 
 
2010 
 
 
 
2010 
 
 
2010 
 
 
 
2010 
 
 
 
2010 
 
 
 
2010 
 
 
2010 
 
 
 
2010 
 
 
 

An exact approach for relating recovering surgical 
patient workload to the master surgical schedule 
 
Efficiency evaluation for pooling resources in 
health care 
 
The Effect of Workload Constraints in 
Mathematical Programming Models for Production 
Planning 
 
Using pipeline information in a multi-echelon spare 
parts inventory system 
 
Reducing costs of repairable spare parts supply 
systems via dynamic scheduling 
 
Identification of Employment Concentration and 
Specialization Areas: Theory and Application 
 
 
A combinatorial approach to multi-skill workforce 
scheduling 
 
 
Stability in multi-skill workforce scheduling 
 
 
 
Maintenance spare parts planning and control: A 
framework for control and agenda for future 
research 
 
Near-optimal heuristics to set base stock levels in 
a two-echelon distribution network 
 
 
 
Inventory reduction in spare part networks by 
selective throughput time reduction 
 
The selective use of emergency shipments for 
service-contract differentiation 
 
 
Heuristics for Multi-Item Two-Echelon Spare Parts 
Inventory Control Problem with Batch Ordering in 
the Central Warehouse 
 
Preventing or escaping the suppression 

Peter T. Vanberkel, Richard J. 
Boucherie, Erwin W. Hans, Johann L. 
Hurink, Nelly Litvak 
 
M.M. Jansen, A.G. de Kok, I.J.B.F. 
Adan 
 
Christian Howard, Ingrid Reijnen, 
Johan Marklund, Tarkan Tan 
 
 
H.G.H. Tiemessen, G.J. van Houtum 
 
F.P. van den Heuvel, P.W. de Langen, 
K.H. van Donselaar, J.C. Fransoo 
 
 
Murat Firat, Cor Hurkens 
 
 
Murat Firat, Cor Hurkens, Alexandre 
Laugier 
 
 
M.A. Driessen, J.J. Arts, G.J. v. 
Houtum, W.D. Rustenburg, B. Huisman 
 
 
 
R.J.I. Basten, G.J. van Houtum 
 
 
 
M.C. van der Heijden, E.M. Alvarez, 
J.M.J. Schutten 
 
 
E.M. Alvarez, M.C. van der Heijden, 
W.H. Zijm 
 
B. Walrave, K. v. Oorschot, A.G.L. 
Romme 
 
 
 
Nico Dellaert, Jully Jeunet. 
 
 



319 
 
 
318 
 
317 
 
 
316 
 
315 
 
 
314  
 
 
313 

2010 
 
 
2010 
 
2010 
 
 
2010 
 
2010 
 
 
2010 

mechanism: intervention conditions 
 
Hospital admission planning to optimize major 
resources utilization under uncertainty 
 
Minimal Protocol Adaptors for Interacting Services 
 
Teaching Retail Operations in  Business and 
Engineering Schools 
 
Design for Availability: Creating Value for 
Manufacturers and Customers 
 
Transforming Process Models: executable rewrite 
rules versus a formalized Java program 
 
Getting trapped in the suppression of exploration: 
A simulation model  
 
A Dynamic Programming Approach to Multi-
Objective Time-Dependent Capacitated Single 
Vehicle Routing Problems with Time Windows 

R. Seguel, R. Eshuis, P. Grefen. 
 
 
Tom Van Woensel, Marshall L. Fisher, 
Jan C. Fransoo. 
 
Lydie P.M. Smets, Geert-Jan van 
Houtum, Fred Langerak. 
 
Pieter van Gorp, Rik Eshuis. 
 
 
Bob Walrave, Kim E. van Oorschot, A. 
Georges L. Romme 
 
 
S. Dabia, T. van Woensel, A.G. de Kok 
 
 
 

312 2010 
Tales of a So(u)rcerer: Optimal Sourcing Decisions 
Under Alternative Capacitated Suppliers and 
General Cost Structures 

Osman Alp, Tarkan Tan 

311 2010 
In-store replenishment procedures for perishable 
inventory in a retail environment with handling 
costs and storage constraints 

R.A.C.M. Broekmeulen, C.H.M. Bakx 

310 2010 The state of the art of innovation-driven business 
models in the financial services industry 

E. Lüftenegger, S. Angelov, E. van der 
Linden, P. Grefen 

309 2010 Design of Complex Architectures Using a Three 
Dimension Approach: the CrossWork Case R. Seguel, P. Grefen, R. Eshuis 

308 2010 Effect of carbon emission regulations on transport 
mode selection in supply chains 

K.M.R. Hoen, T. Tan, J.C. Fransoo, 
G.J. van Houtum 

307 2010 Interaction between intelligent agent strategies for 
real-time transportation planning 

Martijn Mes, Matthieu van der Heijden, 
Peter Schuur 

306 2010 Internal Slackening Scoring Methods Marco Slikker, Peter Borm, René van 
den Brink 

305 2010 Vehicle Routing with Traffic Congestion and 
Drivers' Driving and Working Rules 

A.L. Kok, E.W. Hans, J.M.J. Schutten, 
W.H.M. Zijm 

304 2010 Practical extensions to the level of repair analysis R.J.I. Basten, M.C. van der Heijden, 
J.M.J. Schutten 

303 2010 
Ocean Container Transport: An Underestimated 
and Critical Link in Global Supply Chain 
Performance 

Jan C. Fransoo, Chung-Yee Lee 

302 2010 Capacity reservation and utilization for a 
manufacturer with uncertain capacity and demand Y. Boulaksil; J.C. Fransoo; T. Tan 

300 2009 Spare parts inventory pooling games F.J.P. Karsten; M. Slikker; G.J. van 

http://beta.ieis.tue.nl/node/1523
http://beta.ieis.tue.nl/node/1523
http://beta.ieis.tue.nl/node/1523
http://beta.ieis.tue.nl/node/1522
http://beta.ieis.tue.nl/node/1522
http://beta.ieis.tue.nl/node/1520
http://beta.ieis.tue.nl/node/1520
http://beta.ieis.tue.nl/node/1519
http://beta.ieis.tue.nl/node/1519
http://beta.ieis.tue.nl/node/1518
http://beta.ieis.tue.nl/node/1518
http://beta.ieis.tue.nl/node/1515
http://beta.ieis.tue.nl/node/1514
http://beta.ieis.tue.nl/node/1514
http://beta.ieis.tue.nl/node/1512
http://beta.ieis.tue.nl/node/1511
http://beta.ieis.tue.nl/node/1511
http://beta.ieis.tue.nl/node/1511
http://beta.ieis.tue.nl/node/1508
http://beta.ieis.tue.nl/node/1508
http://beta.ieis.tue.nl/node/1505


Houtum 

299 2009 Capacity flexibility allocation in an outsourced 
supply chain with reservation Y. Boulaksil, M. Grunow, J.C. Fransoo 

 
298 

 
2010 

 
An optimal approach for the joint problem of level 
of repair analysis and spare parts stocking 

 
R.J.I. Basten, M.C. van der Heijden, 
J.M.J. Schutten 

297 2009 
Responding to the Lehman Wave: Sales 
Forecasting and Supply Management during the 
Credit Crisis 

Robert Peels, Maximiliano Udenio, Jan 
C. Fransoo, Marcel Wolfs, Tom 
Hendrikx 

296 2009 An exact approach for relating recovering surgical 
patient workload to the master surgical schedule 

Peter T. Vanberkel, Richard J. 
Boucherie, Erwin W. Hans, Johann L. 
Hurink, Wineke A.M. van Lent, Wim H. 
van Harten 

 
295 

 
2009 

 
An iterative method for the simultaneous 
optimization of repair decisions and spare parts 
stocks 

 
R.J.I. Basten, M.C. van der Heijden, 
J.M.J. Schutten 

294 2009 Fujaba hits the Wall(-e) Pieter van Gorp, Ruben Jubeh, 
Bernhard Grusie, Anne Keller 

293 2009 Implementation of a Healthcare Process in Four 
Different Workflow Systems 

R.S. Mans, W.M.P. van der Aalst, N.C. 
Russell, P.J.M. Bakker 

292 2009 Business Process Model Repositories - Framework 
and Survey 

Zhiqiang Yan, Remco Dijkman, Paul 
Grefen 

291 2009 Efficient Optimization of the Dual-Index Policy 
Using Markov Chains 

Joachim Arts, Marcel van Vuuren, 
Gudrun Kiesmuller 

290 2009 Hierarchical Knowledge-Gradient for Sequential 
Sampling 

Martijn R.K. Mes; Warren B. Powell; 
Peter I. Frazier 

289 2009 
Analyzing combined vehicle routing and break 
scheduling from a distributed decision making 
perspective 

C.M. Meyer; A.L. Kok; H. Kopfer; J.M.J. 
Schutten 

288 2009 Anticipation of lead time performance in Supply 
Chain Operations Planning 

Michiel Jansen; Ton G. de Kok; Jan C. 
Fransoo 

287 2009 Inventory Models with Lateral Transshipments: A 
Review 

Colin Paterson; Gudrun Kiesmuller; 
Ruud Teunter; Kevin Glazebrook 

286 2009 Efficiency evaluation for pooling resources in 
health care 

P.T. Vanberkel; R.J. Boucherie; E.W. 
Hans; J.L. Hurink; N. Litvak 

285 2009 A Survey of Health Care Models that Encompass 
Multiple Departments 

P.T. Vanberkel; R.J. Boucherie; E.W. 
Hans; J.L. Hurink; N. Litvak 

284 2009 Supporting Process Control in Business 
Collaborations 

S. Angelov; K. Vidyasankar; J. Vonk; P. 
Grefen 

283 2009 Inventory Control with Partial Batch Ordering O. Alp; W.T. Huh; T. Tan 

282 2009 Translating Safe Petri Nets to Statecharts in a 
Structure-Preserving Way R. Eshuis 

281 2009 The link between product data model and process 
model J.J.C.L. Vogelaar; H.A. Reijers 

280 2009 Inventory planning for spare parts networks with 
delivery time requirements I.C. Reijnen; T. Tan; G.J. van Houtum 

http://beta.ieis.tue.nl/node/1503
http://beta.ieis.tue.nl/node/1503
http://beta.ieis.tue.nl/node/1513
http://beta.ieis.tue.nl/node/1513
http://beta.ieis.tue.nl/node/1502
http://beta.ieis.tue.nl/node/1502
http://beta.ieis.tue.nl/node/1502
http://beta.ieis.tue.nl/node/1494
http://beta.ieis.tue.nl/node/1494
http://beta.ieis.tue.nl/node/1489
http://beta.ieis.tue.nl/node/1489
http://beta.ieis.tue.nl/node/1489
http://beta.ieis.tue.nl/node/1487
http://beta.ieis.tue.nl/node/1486
http://beta.ieis.tue.nl/node/1486
http://beta.ieis.tue.nl/node/1475
http://beta.ieis.tue.nl/node/1475
http://beta.ieis.tue.nl/node/1474
http://beta.ieis.tue.nl/node/1474
http://beta.ieis.tue.nl/node/1473
http://beta.ieis.tue.nl/node/1473
http://beta.ieis.tue.nl/node/1472
http://beta.ieis.tue.nl/node/1472
http://beta.ieis.tue.nl/node/1472
http://beta.ieis.tue.nl/node/1469
http://beta.ieis.tue.nl/node/1469
http://beta.ieis.tue.nl/node/1468
http://beta.ieis.tue.nl/node/1468
http://beta.ieis.tue.nl/node/1466
http://beta.ieis.tue.nl/node/1466
http://beta.ieis.tue.nl/node/1465
http://beta.ieis.tue.nl/node/1465
http://beta.ieis.tue.nl/node/1464
http://beta.ieis.tue.nl/node/1464
http://beta.ieis.tue.nl/node/1463
http://beta.ieis.tue.nl/node/1467
http://beta.ieis.tue.nl/node/1467
http://beta.ieis.tue.nl/node/1462
http://beta.ieis.tue.nl/node/1462
http://beta.ieis.tue.nl/node/1461
http://beta.ieis.tue.nl/node/1461


279 2009 Co-Evolution of Demand and Supply under 
Competition B. Vermeulen; A.G. de Kok 

 
 
278 
 
 
 
277 

 
 
2010 
 
 
 
2009 

 
Toward Meso-level Product-Market Network 
Indices for Strategic Product Selection and 
(Re)Design Guidelines over the Product Life-Cycle 
 
An Efficient Method to Construct Minimal Protocol 
Adaptors 

B. Vermeulen, A.G. de Kok 
 
 
 
R. Seguel, R. Eshuis, P. Grefen 

276 2009 Coordinating Supply Chains: a Bilevel 
Programming Approach Ton G. de Kok, Gabriella Muratore 

275 2009 Inventory redistribution for fashion products under 
demand parameter update G.P. Kiesmuller, S. Minner 

274 2009 Comparing Markov chains: Combining aggregation 
and precedence relations applied to sets of states 

A. Busic, I.M.H. Vliegen, A. Scheller-
Wolf 

273 2009 Separate tools or tool kits: an exploratory study of 
engineers' preferences 

I.M.H. Vliegen, P.A.M. Kleingeld, G.J. 
van Houtum 

 
272 

 
2009 

 
An Exact Solution Procedure for Multi-Item Two-
Echelon Spare Parts Inventory Control Problem 
with Batch Ordering 

 
Engin Topan, Z. Pelin Bayindir, Tarkan 
Tan 

271 2009 Distributed Decision Making in Combined Vehicle 
Routing and Break Scheduling 

C.M. Meyer, H. Kopfer, A.L. Kok, M. 
Schutten 

270 2009 
Dynamic Programming Algorithm for the Vehicle 
Routing Problem with Time Windows and EC 
Social Legislation 

A.L. Kok, C.M. Meyer, H. Kopfer, J.M.J. 
Schutten 

269 2009 Similarity of Business Process Models: Metics and 
Evaluation 

Remco Dijkman, Marlon Dumas, 
Boudewijn van Dongen, Reina Kaarik, 
Jan Mendling 

267 2009 Vehicle routing under time-dependent travel times: 
the impact of congestion avoidance A.L. Kok, E.W. Hans, J.M.J. Schutten 

266 2009 Restricted dynamic programming: a flexible 
framework for solving realistic VRPs 

J. Gromicho; J.J. van Hoorn; A.L. Kok; 
J.M.J. Schutten;  

 
 
 
Working Papers published before 2009 see: http://beta.ieis.tue.nl 
 

http://beta.ieis.tue.nl/node/1471
http://beta.ieis.tue.nl/node/1471
http://beta.ieis.tue.nl/node/1458
http://beta.ieis.tue.nl/node/1458
http://beta.ieis.tue.nl/node/1457
http://beta.ieis.tue.nl/node/1457
http://beta.ieis.tue.nl/node/1451
http://beta.ieis.tue.nl/node/1451
http://beta.ieis.tue.nl/node/1450
http://beta.ieis.tue.nl/node/1450
http://beta.ieis.tue.nl/node/1449
http://beta.ieis.tue.nl/node/1449
http://beta.ieis.tue.nl/node/1448
http://beta.ieis.tue.nl/node/1448
http://beta.ieis.tue.nl/node/1448
http://beta.ieis.tue.nl/node/1447
http://beta.ieis.tue.nl/node/1447
http://beta.ieis.tue.nl/node/1446
http://beta.ieis.tue.nl/node/1446
http://beta.ieis.tue.nl/node/1446
http://beta.ieis.tue.nl/node/1445
http://beta.ieis.tue.nl/node/1445
http://beta.ieis.tue.nl/node/1441
http://beta.ieis.tue.nl/node/1441
http://beta.ieis.tue.nl/node/1154
http://beta.ieis.tue.nl/node/1154
http://beta.ieis.tue.nl/

	Voorblad WP 447
	Beta_wp447
	Note that  has the dimension “time” whereas 𝑀 is a dimensionless number. Using the fact that demand is i.i.d. we have
	For convenience we define  and 𝑅 too as a number of periods. Then  and 𝑅=𝐾 and the equations above result in formula (4.2).
	For convenience we define  too as a number of periods. Then  and the equations above result in formula (4.3).

	Working Papers Beta

