

Improving GPU performance : reducing memory conflicts and
latency
Citation for published version (APA):
Braak, van den, G. J. W. (2015). Improving GPU performance : reducing memory conflicts and latency. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 25/11/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/ffb3603c-a702-42bd-9a67-56d5c2b65603

Improving GPU Performance
Reducing Memory Conflicts and Latency

proefschrift

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens,
voor een commissie aangewezen door het College voor Promoties, in het
openbaar te verdedigen op woensdag 25 november 2015 om 14:00 uur

door

Gerardus Johannes Wilhelmus van den Braak

geboren te ‘s-Hertogenbosch

Dit proefschrift is goedgekeurd door de promotor en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. A.C.P.M. Backx
promotor: prof.dr. H. Corporaal
copromotor: dr.ir. B. Mesman
leden: prof.dr. N. Guil Mata (Universidad de Málaga)

prof.dr.ir. G.J.M. Smit (Universiteit Twente)
prof.dr.ir. P.P. Jonker (TU Delft)
prof.dr.ir. D.H.J. Epema (TU Delft, TU Eindhoven)
prof.dr.ir. P.H.N. de With

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeen-
stemming met de TU/e Gedragscode Wetenschapsbeoefening.

Improving GPU Performance
Reducing Memory Conflicts and Latency

Gert-Jan van den Braak

Doctorate committee:

prof.dr. H. Corporaal TU Eindhoven, promotor
dr.ir. B. Mesman TU Eindhoven, copromotor
prof.dr.ir. A.C.P.M. Backx TU Eindhoven, chairman
prof.dr. N. Guil Mata University of Malaga
prof.dr.ir. G.J.M. Smit University of Twente
prof.dr.ir. P.P. Jonker TU Delft
prof.dr.ir. D.H.J. Epema TU Delft, TU Eindhoven
prof.dr.ir. P.H.N. de With TU Eindhoven

This work was supported by the Dutch government in their Point-One research
program within the Morpheus project PNE101003 and carried out at the TU/e.

© Gert-Jan van den Braak 2015. All rights are reserved. Reproduction in whole
or in part is prohibited without the written consent of the copyright owner.

Printed by CPI Koninklijke Wöhrmann – The Netherlands

A catalogue record is available from the Eindhoven University of Technology
Library. ISBN: 978-90-386-3964-2

Abstract

Improving GPU Performance
Reducing Memory Conflicts and Latency

Over the last decade Graphics Processing Units (GPUs) have evolved from fixed
function computer graphics processors to energy efficient and programmable gen-
eral purpose compute accelerators. During this period the number of cores in a
GPU increased from 128 to 3072, an increase of 24×. However, the peak compute
performance only increased by 12×, and memory bandwidth by a mere 3.9×. Al-
gorithms with an abundance of parallelism, such as matrix multiplication, can be
implemented relatively easily on these GPUs and scale well with an increase in
core count. Other, irregular algorithms are much harder to implement efficiently
and benefit less of the increased number of cores. In this work a class of irregular
algorithms, the so called ‘voting algorithms’ such as histogram and Hough trans-
form, are analyzed, implemented and optimized on GPUs. Histograms are not
only used in statistics or for displaying the distribution of colors in an image, but
also for contrast adjustments in images, image segmentation and feature detec-
tion, such as in the Scale Invariant Feature Transform (SIFT) and Histogram of
Oriented Gradients (HoG). The Hough transform can be used to detect the lines
on a road, or the circles of a traffic sign, but also to track particles, e.g. in the
Large Hadron Collider. In voting algorithms a set of input values is mapped to a,
usually much smaller, set of output bins. The main challenge in mapping voting
algorithms to GPUs is to efficiently update the output bins in a parallel manner.

The first contribution of this work is a set of software techniques to improve the
parallel updating of the output bins in the voting algorithms. Voting algorithms
use atomic operations to update the bins. By duplicating all the bins a significant
performance improvement can be achieved. Multi-core CPU implementations are
made which utilize the SSE and AVX vector extensions of the processor. These
optimizations improve the performance of the histogram application on a CPU by
10× over a single thread CPU implementation. The baseline GPU implementation

i

ii ABSTRACT

has a similar performance as a single core CPU implementation, but by using
the proposed software techniques the best GPU histogram implementation out-
performs the optimized multi-core CPU implementation by 4.8×.

The second contribution of this thesis is a hardware change of the scratchpad
memory. The GPU’s on-chip scratchpad memory is divided in banks and contains
locks to support atomic operations. The duplication of the output bins requires
more scratchpad memory and causes an uneven distribution of the memory ac-
cesses over the banks and locks. Hash functions in the addressing of the banks
and locks are proposed to distribute the memory accesses more equally over the
memory’s banks and locks. A simple hardware hash function improves perfor-
mance up to 4.9× for the aforementioned optimized GPU histogram application.
Applications which use the scratchpad memory, but do not rely on atomic op-
erations, still experience an average performance gain of 1.2× by using a more
complicated configurable hash function.

The final contribution is an extension to the GPU architecture, resulting in a
reconfigurable GPU, called R-GPU. This extension improves not only performance
but also power and energy efficiency. R-GPU is an addition to a GPU, which
can still be used in its original form, but also has the ability to reorganize the
cores of a GPU in a reconfigurable network. In R-GPU data movement and
control is implicit in the configuration of this network. Each core executes a fixed
operation, reducing instruction decode count and increasing power and energy
efficiency. R-GPU improves the performance of voting algorithms, e.g. histogram
is improved 2.9× over an optimized GPU implementation. Other benchmarks
profit as well. On a set of benchmarks an average performance improvement of
2.1× is measured. Especially algorithms which have a limited level of parallelism
due to data dependencies, such as calculating an integral image, benefit from the
proposed architecture changes. Furthermore, power consumption is reduced by
6%, leading to an energy consumption reduction of 55%, while the area overhead
of R-GPU is only 4% of the total GPU’s chip area.

With the above software techniques and hardware modifications GPUs are
now much more applicable for the class of voting algorithms.

Contents

1 Introduction 1
1.1 GPU history . 2
1.2 Trends in GPGPU research . 6
1.3 Problem statement . 8
1.4 Contributions & thesis overview . 9

2 GPU architecture & programming model 11
2.1 CPU vs. GPU: multi-core vs. many-core 12
2.2 CUDA & OpenCL programming models 13
2.3 GPU architecture . 16

2.3.1 Tesla architecture . 17
2.3.2 Fermi architecture . 17
2.3.3 Kepler architecture . 18
2.3.4 Maxwell architecture . 19
2.3.5 Scratchpad memory . 21

2.4 GPU compilation trajectory . 22

3 Efficient histogramming 23
3.1 Histogramming on CPU . 25
3.2 Sub-histogram memory layout . 27
3.3 GPU: global memory atomics . 29
3.4 GPU: thread-private histogram . 34
3.5 GPU: warp-private histogram . 38
3.6 GPU: scratchpad memory atomics 43
3.7 Discussion . 46
3.8 Related work . 48
3.9 Conclusions . 49

iii

iv CONTENTS

4 Hough transform 51
4.1 Hough transform algorithm for lines 53

4.1.1 Cartesian coordinate system 54
4.1.2 Polar coordinate system . 54

4.2 Hough transform on CPU . 55
4.3 GPU: global memory atomics . 57
4.4 GPU: scratchpad memory atomics 60

4.4.1 Step 1: creating the coordinates array 61
4.4.2 Step 2: voting in Hough space 62

4.5 GPU: constant time implementation 63
4.6 Related work . 66
4.7 Conclusions . 67

5 Improving GPU scratchpad memory atomic operations 69
5.1 Execution model of atomic operations 70

5.1.1 Lock mechanism . 71
5.1.2 Performance model . 72
5.1.3 Latency estimation . 73

5.2 Implementation in GPGPU-Sim . 75
5.3 Proposed hardware improvements 78
5.4 Evaluation of hardware improvements 80

5.4.1 Synthetic benchmarks . 80
5.4.2 Histogram . 80
5.4.3 Hough transform . 82

5.5 Related work . 83
5.6 Conclusions . 83

6 GPU scratchpad memory configurable bank addressing 85
6.1 Motivation . 86
6.2 Access patterns to scratchpad memory 89

6.2.1 Memory access pattern classification 90
6.2.2 Examples of access pattern classifications 90

6.3 Hash functions . 93
6.3.1 Bit-vector permutation hash function 94
6.3.2 Bit-vector XOR hash function 94
6.3.3 Bitwise permutation hash function 95
6.3.4 Bitwise XOR hash function 95
6.3.5 Hardware design and evaluation 96

6.4 Hash function configuration . 98
6.4.1 Bit-vector exhaustive search algorithm 98
6.4.2 Bitwise search algorithm based on heuristic 99

6.5 Framework for bank conflict reduction 103

CONTENTS v

6.6 Experimental results . 104
6.6.1 Hardware hash function results 105
6.6.2 Software hash function results 108

6.7 Related work . 111
6.8 Conclusions . 112

7 R-GPU: a reconfigurable GPU architecture 113
7.1 Example: 2D convolution . 114
7.2 R-GPU architecture . 115

7.2.1 Inter SM communication 118
7.2.2 Programming model . 120

7.3 R-GPU motivation . 121
7.3.1 Benefit 1: removing redundant memory loads 121
7.3.2 Benefit 2: improving memory bandwidth 122

7.4 Programming Tools . 123
7.4.1 Front end . 123
7.4.2 Back end . 125
7.4.3 Simulator . 125

7.5 Evaluation . 126
7.5.1 Benchmarks . 127
7.5.2 R-GPU performance . 129
7.5.3 Communication network . 131
7.5.4 FIFO sizes . 131
7.5.5 Power & area estimation . 133

7.6 Related work . 136
7.7 Conclusions . 137

8 Conclusions & future work 139

Bibliography 143

Acknowledgements 155

Curriculum Vitae 157

List of publications 159

vi CONTENTS

CHAPTER 1

Introduction

Modern day life is unimaginable without all the ICT technology we use every day,
like computers, tablets, smart phones, digital cameras, etc. All this technology
uses an enormous amount of compute power to perform its designated task. As
an example, let’s take a picture of a group of people with our mobile phone, and
upload it to a social media website. The process starts with demosaicing the
image sensor data into pixel values [57], applying some lens corrections [19], color
space conversion [6] and color corrections [31]. After the picture is compressed to
a (relatively) small file, it can be uploaded to the social media website. In the
cloud of the social media website the photo can be analyzed, and faces can be
automatically detected, recognized1 and annotated [99].

All these steps require a large amount of compute power, preferably with
the lowest amount of energy consumption possible. For a mobile phone energy
efficiency is essential to support a battery life of at least one day. The social
media website on the other hand would like to keep its energy bill low. Some
of the processing steps are usually implemented in application-specific hardware,
like the low-level image processing in the mobile phone. This is an energy efficient
way of implementing this functionality, but also a very non-flexible one. Other
processing steps, like face recognition, are usually performed on large clusters of
CPUs in data centers, which is flexible but not very energy efficient.

The processing steps in this example can also be implemented on Graphics
Processing Units (GPUs). GPUs are many-core processors that execute huge
amounts of threads in SIMD style vectors. SIMD processors in general are very
energy efficient [36], as they only fetch, decode and dispatch a single instruction

1With the compute power of contemporary mobile devices, like NVIDIA’s Tegra [80] chip, it
is also possible to perform face recognition on the processor of the smart phone [116].

1

2 CHAPTER 1. INTRODUCTION

for a vector of processing elements. The many threads in a GPU keep it flexible,
or at least flexible enough to perform all kinds of computations. This became
known as General-Purpose computing on Graphics Processing Units, or GPGPU.

The history of GPUs and how they became the many-core processors suitable
for all kinds of computations is described in Section 1.1. Next the trends in GPU
and GPGPU research over the last decade are given in Section 1.2. Finally the
problem statement and contributions of this thesis are listed in Sections 1.3 and 1.4
respectively.

1.1 GPU history
Graphics processors started out as fixed function display controllers which were
used to offload the rendering of a (computer) screen from a general purpose CPU.
The first graphics chips were only used for 2D rendering and could only draw lines,
arcs, circles, rectangles and character bitmaps. Later graphics processors could
also perform 3D rendering, a feature particularly interesting for computer games.
In the beginning many of the rendering steps, especially those with floating point
computations, were still performed on a CPU. Later graphics chips gained more
and more capabilities, and could perform more and more steps of the rendering
process by itself. At the turn of the century the first graphics processor which
was actually called a GPU was released, the NVIDIA GeForce 256 [75]. It could
do all the geometry calculations by itself, no longer relying on the host CPU and
its floating point computations. A GPU was defined by NVIDIA in 1999 as:

Definition A GPU is a single-chip processor with integrated transform, light-
ing, triangle setup/clipping, and rendering engines that is capable of processing a
minimum of 10 million polygons per second [75].

These first GPUs consisted of fixed processing pipelines. Each stage in the
pipeline had a specific function, implemented in specialized hardware. An overview
of a basic graphics rendering pipeline is shown in Fig. 1.1. Common steps in such
a pipeline are [55]:

• model transformations: transform objects’ coordinates to a common coor-
dinate system (e.g. rotation, translation, scaling).

• lighting: computation of each triangle’s color based on the lights in the
scene. Traditionally Phong shading [91] was used in this step.

• camera simulation: projection of each colored triangle onto the virtual cam-
era’s film plane.

• rasterization: conversion of triangles to pixels, including clipping to the
screen’s edges. The color of each pixel is interpolated from the vertices that
make up a triangle.

1.1. GPU HISTORY 3

raw vertices
& primitives

vertex
shader

transformed
vertices &
primitives

rasterizer

fragments
pixel
shader

processed
fragments

raster
operation

pixels

display

Figure 1.1: Basic graphics rendering pipeline. At the left primitives and vertices
forming a 3D scene enter the pipeline. A primitive consists of one or more vertices. Each
vertex has attributes such as position, color and texture. The vertex shader transforms
the vertices’ coordinates and projects them on the virtual camera’s film plane. The
rasterizer converts the triangles into fragments and the pixel shader maps a texture to
them. Finally all fragments are combined into a 2D array of pixels to be displayed.

• texturing: mapping of textures to pixels in case a texture is used for added
realism. Texture coordinates are calculated before in the rasterization step.

Step by step these fixed, hardwired functions were replaced by programmable
processors, usually called shaders in GPUs. For example, the NVIDIA GeForce 3,
launched in February 2001, introduced programmable vertex shaders [52]. The
vertex shader can be used for model transformations, lighting calculations and
camera simulation. These calculations consist mainly of matrix-vector multipli-
cations, exponentiation and square root computations; therefore vertex shaders
provided hardware capable of doing these calculations efficiently.

The only data type supported by the vertex shaders in the GeForce 3 is single
precision floating point [52], either as a scalar value or as a four component vector.
The instruction set of the vertex shader [52] was tailored to its graphics rendering
task and contained 17 operations. There are the basic operations such as add,
multiply and multiply-add, but also three and four term dot products and a
special instruction for Phong lighting. No branch instructions are available in
the GeForce 3 vertex processor. Simple if-then-else evaluation is only supported
through sum-of-products using 1.0 and 0.0 [52]. The GeForce 3 vertex processor
uses multi-threading to hide pipeline latency, just like modern day GPUs.

Later, GPUs also added a programmable pixel shader (called fragment shader
by OpenGL) which computes the color and other attributes of each fragment,
usually a pixel. With the introduction of OpenGL version 2.0 in 2004 [95] the
OpenGL Shading Language (GLSL) [46] was introduced. GLSL made it possible
to program shaders in a C-like language instead of the ARB assembly language.2

An example of a GPU with programmable vertex and pixel shaders is the
NVIDIA GeForce 6800, introduced in 2004. A block diagram of its architecture

2The ARB assembly language is a low-level shading language. It was created by the OpenGL
Architecture Review Board (ARB) to standardize GPU instructions controlling the hardware
graphics pipeline.

4 CHAPTER 1. INTRODUCTION

A tour of the GeForce 6800
Figure 5 is a top-level dia-

gram of the GeForce 6800.
Work flows from top to bot-
tom, starting with the six
identical programmable ver-
tex processors. Because all
vertices are independent of
each other, the data fetcher
assigns incoming work to any
idle processor, and the paral-
lel utilization is nearly perfect.
The “GeForce 6800 statis-
tics” sidebar provides more
specifics.

Results from the vertex
stage are reassembled in the
original application-specified
order to feed the triangle
setup and rasterization units.
For each primitive, the ras-

46

HOT CHIPS 16

IEEE MICRO

Command and data fetch

Triangle setup rasterizer

Shader thread dispatch

Fragment crossbar

Z-cull

Memory
partition

Memory
partition

Memory
partition

Memory
partition

Level 2
texture
cache

Pixel-
blending
units

Vertex processors

Fragment
processors

Figure 5. GeForce 6800 block diagram.

Constant RAM
512 × 128 bits

Input
registers

16 × 128 bits

Output
registers

16 × 128 bits

Temporary
registers

32 × 128 bits

Special-
function

unit

Instruction
RAM

512 × 123 bits

Vertex
texture

unit

Level 2
texture
cache

Multiply

Add

Memory
Texture related
Computation unit

Figure 6. Vertex processor block diagram.

Figure 1.2: GeForce 6800 block diagram with 6 vertex processors, a rasterizer, 16 frag-
ment processors and 16 pixel blending units. [61]

A tour of the GeForce 6800
Figure 5 is a top-level dia-

gram of the GeForce 6800.
Work flows from top to bot-
tom, starting with the six
identical programmable ver-
tex processors. Because all
vertices are independent of
each other, the data fetcher
assigns incoming work to any
idle processor, and the paral-
lel utilization is nearly perfect.
The “GeForce 6800 statis-
tics” sidebar provides more
specifics.

Results from the vertex
stage are reassembled in the
original application-specified
order to feed the triangle
setup and rasterization units.
For each primitive, the ras-

46

HOT CHIPS 16

IEEE MICRO

Command and data fetch

Triangle setup rasterizer

Shader thread dispatch

Fragment crossbar

Z-cull

Memory
partition

Memory
partition

Memory
partition

Memory
partition

Level 2
texture
cache

Pixel-
blending
units

Vertex processors

Fragment
processors

Figure 5. GeForce 6800 block diagram.

Constant RAM
512 × 128 bits

Input
registers

16 × 128 bits

Output
registers

16 × 128 bits

Temporary
registers

32 × 128 bits

Special-
function

unit

Instruction
RAM

512 × 123 bits

Vertex
texture

unit

Level 2
texture
cache

Multiply

Add

Memory
Texture related
Computation unit

Figure 6. Vertex processor block diagram.Figure 1.3: GeForce 6800 vertex processor block diagram consisting of a vector
multiply-add unit, a scalar special-function unit and a texture unit. [61]

1.1. GPU HISTORY 5

Tesla
8800 GTX

Tesla
9800 GTX

Tesla
GTX 280

Fermi
GTX 480

Fermi
GTX 580

Kepler
GTX 680

Kepler
GTX Titan

Kepler
GTX 780 Ti

Maxwell
GTX Titan X

64

128

256

512

1024

2048

4096

8192

Jan
-0

6

Jan
-0

7

Jan
-0

8

Jan
-0

9

Jan
-1

0

Jan
-1

1

Jan
-1

2

Jan
-1

3

Jan
-1

4

Jan
-1

5

Core count Peak performance [GFLOPS] Power [W]

Figure 1.4: Core count, peak performance and maximum power consumption of various
high-end GPUs at their time of introduction and their corresponding trend lines over
the last 8 years.

with dedicated hardware for the vertex shaders, rasterizer and fragment shaders
is shown in Fig. 1.2. A detailed overview of the vertex shader is shown in Fig. 1.3.
More details about the GeForce 6800 and its design process can be found in [61].

Although the programmable shaders are more flexible than the fixed function
pipeline, shaders can still be underutilized significantly. One video game might
require more vertex than pixel shaders, while another might have the reverse
requirements. Even in a single frame an imbalance can occur. For example, when
a blue sky is drawn at the top of a frame, the vertex shader is mostly idle while
the pixel shader is busy. In another part of the frame a complex figure, such as a
tree with many branches and leafs, is drawn, which saturates the vertex shader.

This problem was solved by combining the different types of shaders in unified
shaders. These were first introduced in the ATI Xenos chip found in the Xbox 360
game console [55] and later also in the NVIDIA GeForce 8800 GPUs [53] used
in personal computers. By having one type of shader for all operations the load-
balancing problem was resolved, as a varying part of the available shaders can be
allocated to each processing stage.

Unified shaders made GPUs much more interesting for GPGPU applications.
To simplify the programming, new programming paradigms were introduced.
First NVIDIA launched CUDA [64] for their GPUs in 2007. Later, in December
2008, the Khronos Group released OpenCL 1.0 [32], an open standard for pro-
gramming heterogeneous systems (e.g. single, multiple or combinations of CPUs,
GPUs, DSPs and FPGAs).

The first NVIDIA architecture with unified shaders was the GeForce 8800 GTX
introduced in November 2006. Its Tesla architecture [53] contains 128 cores. This
number increased exponentially over the next eight years with the introduction of
new GPU architectures to thousands of cores [78], an increase of 24× in just eight

6 CHAPTER 1. INTRODUCTION

years. More features were added to improve not only graphics rendering, but
also general purpose performance. For example, in the Tesla GPUs the texture
cache was often (ab)used by GPGPU programmers to speed-up their applications.
Later GPUs added a general L1 cache to improve memory access performance.

Compute performance did not scale at the same pace as the number of cores
did. In the same eight year period (2006-2014) compute performance has increased
“only” 12×. Performance per Watt (calculated as compute performance over
power consumption) has improved even less, by a mere 7×. Even worse is the
memory bandwidth scaling, which improved by 3.9× over the last eight years,
while memory latency has stayed almost constant.

Power consumption has reached a ceiling of 250W in 2008, which is the max-
imum amount of power a GPU can dissipate in a regular desktop computer. At
the same time the clock frequency of GPUs diminishes in order to fit the ever
increasing number of cores in the power budget of a GPU. This together reveals
a trend in which more parallelism by more cores is preferred over clock frequency.
In other words, more hardware is used in bigger chips to be able to increase perfor-
mance and energy efficiency. This trend is clear from Fig. 1.4, where the number
of cores, compute performance and power consumption of a number of GPUs in-
troduced over the last eight years is shown. A similar trend can be seen for CPUs.
Since 2005 their clock frequency hardly increases anymore but the number of cores
started to increase [18]. Also for CPUs the only road to more performance was
found in adding cores, rather than increasing the clock frequency.

1.2 Trends in GPGPU research
Early GPU research focused largely on improving the quality of the generated
images. One of the most cited papers in this field is Illumination for computer
generated pictures by Phong [91]. In this work the Phong reflection model and the
Phong shading interpolation method are introduced. Combined the two methods
are called Phong shading and describe the way a surface reflects light as a com-
bination of the diffuse reflection of rough surfaces with the specular reflection of
shiny surfaces.

With the introduction of the C-based GLSL shading language in OpenGL 2.0
in 2004 (see Section 1.1), more and more researchers started to investigate the
use of GPUs for other purposes than rendering images. With the various shaders
in the GPU now being relatively easily programmable, creative solutions were
found to utilize the floating point capabilities of the GPUs. For example, the
OpenVIDIA project [20] created a computer vision and image processing library
implemented in OpenGL. Fragment shaders were used as filters, for example an
edge detection filter. Inputs and outputs are mapped to textures. Also more com-
plex computer vision algorithms, such as the Hough transform, are implemented
on a vertex shader. An overview of the use of GPUs and their graphics APIs in
applications other than computer graphics is made by Owens et al. in [87].

1.2. TRENDS IN GPGPU RESEARCH 7

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

0
100
200
300
400
500
600
700

0 0 0 4 10 22 30 57
105

269

432

552
608

534 560

255

OpenCL

CUDA

GPU

Figure 1.5: Number of papers in the IEEEXplore database with the words GPU,
CUDA or OpenCL in the title since 2000. Note: the number of papers for 2015 are up
to October 12 only.

The first GPGPU papers appeared in the IEEEXplore database in 2003. As
programming GPUs was still hard, the number of papers was low, only 6 papers
in 2003 and 10 papers in 2004. After the introduction of unified shaders in 2006
and the release of the CUDA and OpenCL programming languages the number
of papers published rose to 30 in 2006, 57 in 2007 and 105 in 2008. While the
programming models became more mature, and easily programmable GPUs be-
came available to a large audience, GPGPU research became a hot topic, with
over 400 GPU related papers published every year in the IEEEXplore database
since 2010. Over 3400 papers with the words GPU, CUDA or OpenCL in the title
have appeared in the IEEEXplore database since 2003, as illustrated in Fig. 1.5.

At first many papers focused on mapping algorithms to GPUs. Enormous
speed-ups of GPUs over CPUs of hundreds or even thousands of times were pre-
sented. This trend was suddenly stopped after a group of Intel engineers published
the paper Debunking the 100X GPU vs. CPU myth: an evaluation of throughput
computing on CPU and GPU [48]. The focus changed to GPU architecture re-
search, creating a more versatile, easily programmable and energy efficient GPU.

The first paper with the word GPU in its title appeared in the International
Symposium on Computer Architecture, ISCA, the most important computer ar-
chitecture conference, in 2009. The analytical model for a GPU by Hong and
Kim [39] was the only GPU paper that year presented at ISCA. The year after
there were two GPU related papers, with Hong and Kim presenting an extension
of their model [40] and the aforementioned debunking paper [48]. During the next
years the number of papers about GPU architecture increased steadily. Since 2012
a complete session is devoted to GPUs. ISCA 2015 dedicated even two sessions
to GPU papers, showing that GPU architecture research is still a hot topic.

NVIDIA’s research project Echelon [45] from 2011 investigates an architecture
for a heterogeneous high-performance computing system. The goal is to create
a GPU which has three times the performance, and four times the energy effi-
ciency of a modern day GPU. The plan is to improve data locality by adding
caches and scratchpad memories. All potential parallelism is exploited, including
instruction-level parallelism (ILP), data-level parallelism (DLP), and fine-grained

8 CHAPTER 1. INTRODUCTION

task-level parallelism (TLP). Hardware utilization is improved by creating a mul-
tilevel thread scheduling, and a dynamic warp width is used to handle divergent
code. Data accesses are made more energy efficient by using 3D stacked memory
which requires less energy per access than regular GDDR memory. Furthermore,
the CPU and GPU are integrated to remove costly memory transfers. Extrapo-
lating the graphs in Fig. 1.4 shows that these goals could be achieved in 2018.

1.3 Problem statement
The ever increasing number of cores in a GPU can be used efficiently by appli-
cations with an abundance of parallelism. The performance gains of newly intro-
duced GPUs is often shown using applications which operate on large datasets
of millions of elements, e.g. matrix multiplication and FFT. For other algorithms
with an inherent much lower level of parallelism it is much harder to efficiently
use the increasing number of cores. One might say that these algorithms are
more suited for a CPU, and hence should be executed on a CPU. However, these
algorithms are not executed in isolation but interleaved with other applications.
Executing an algorithm on the CPU would imply that the data has to be copied
from the GPU to the CPU and back again.

For example, in an image processing pipeline an image is first constructed
using demosaicing of the pixels in a Bayer pattern. Then noise reduction can be
applied, after which a histogram of the image is made which is used within an
equalization step to improve the contrast of the image. The demosaicing, noise
reduction and equalization steps are embarrassingly parallel and map well to the
many cores of a GPU. However, updating bins in a histogram is sequential. A
pixel’s value has to be read and the corresponding bin in the histogram updated
before the next pixel can be processed. The reason is that when multiple updates
to the same bin occur at the same time, only one of these updates will be saved.
The other updates are lost, leading to an incorrect histogram. The performance
of the parallel algorithms scales with the increase in the number of cores of new
GPUs. The performance of the sequential algorithms does not scale, and hence
will quickly become the bottleneck in the image processing pipeline.

On a GPU histogramming is usually implemented using atomic operations
on the banked scratchpad memory for updating the bins. Atomic operations
are supported in GPU hardware by locking the memory address of a histogram
bin to a specific thread. The thread with access to the bin can update it, all
others have to wait. Although the performance of atomic operations has been
improved significantly over the last couple of generations of GPU architectures,
the serialization caused by locking conflicts results in severe performance penalties.

Applications suffer more and more from the ever increasing gap between com-
pute performance and memory bandwidth. Furthermore, memory access latency
has not been improved much for the last generations of GPUs. Improving off-chip
memory bandwidth is relatively easy, as more memory chips can be put in paral-

1.4. CONTRIBUTIONS & THESIS OVERVIEW 9

lel, or run at a higher clock frequency. Also memory compression [85] can be used
to mitigate the memory bandwidth problem. This provides a larger throughput of
pixel data when rendering graphics, but does not help for GPGPU applications.

The GPUs on-chip memories are commonly used as small scratchpads with
a higher bandwidth and lower latency than the off-chip memory. However, the
obtained bandwidth in reality is often much lower due to bank conflicts.

Not only the compute performance, but also the energy efficiency of GPUs has
to be improved, as GPUs are often limited by the maximum amount of power they
can dissipate. Future directions for GPU architectures to improve on both these
issues are described in [69]. Reducing stall cycles by increasing the number of
active threads is one solution to hiding off-chip memory latency, but is dependent
on the available resources of the GPU to support the extra threads. Often stall
cycles occur when many threads access the same resources at the same time. For
example, threads first calculate an address, then load data from memory and
finally perform some computations on the data. All these actions use different
parts in the GPU, such as integer units, load-store units or floating point units.
If these resource requirements could be spread over time, stall cycles could be
avoided, resulting in improved performance and energy efficiency.

Summarizing above, this thesis addresses the following three problems:

1. Voting applications, like histogram and Hough transform, show poor perfor-
mance on GPGPUs due to serialization caused by atomic operations.

2. In addition, many (voting) applications experience memory bandwidth
problems on GPGPUs, caused by lock access and bank conflicts.

3. Finally, many GPGPU applications under-utilize the available mem-
ory bandwidth due to unbalanced resource usage, which is primarily
caused by the GPU’s execution model.

Above problems severely reduce the applicability of GPUs for general purpose
computing. This thesis researches these three problems in depth, and provides
several solutions, sketched in the following section, and presented in detail within
Chapters 3–7.

1.4 Contributions & thesis overview
This thesis follows the trend of GPU related research over the last years (see
Section 1.2). After an overview of a contemporary (NVIDIA) GPU architecture
in Chapter 2, mappings to GPUs of algorithms with a low inherent level of par-
allelism are explored first. Next, small architectural changes to the GPU are
proposed, which aid the performance gains created by the previously explored
software techniques. Finally a larger change to a GPU architecture is presented,
called R-GPU. This architecture adds a communication network in between the
cores of a GPU, transforming it into a spatial computing architecture.

10 CHAPTER 1. INTRODUCTION

The first contribution of this work is a set of software techniques that improve
the parallel updating of bins in voting algorithms, histogram and Hough transform
in Chapters 3 and 4 respectively. These techniques are based on results published
in [108, 109]. Parallel updating of voting bins is done on GPUs using atomic
operations. By duplicating the bins a significant performance improvement can
be gained. First multi-core CPU implementations are made which utilize the
SSE and AVX vector extensions of the CPU. These optimizations improve the
performance of the histogram application on a CPU by 10×. The baseline GPU
implementation has a similar performance as a single core CPU implementation,
but by using the proposed software techniques the best GPU histogram imple-
mentation outperforms the optimized multi-core CPU implementation by 4.8×.

The second contribution is a hardware change in the addressing of the banks
and locks of the GPU’s on-chip scratchpad memory. The scratchpad memory is
divided into banks and contains locks to support atomic operations. The duplica-
tion of the output bins requires more scratchpad memory and causes an uneven
distribution of the memory accesses over the banks and locks. A fixed hash func-
tion is introduced in Chapter 5, distributing the memory accesses more equally
over the memory’s banks and locks. This improves performance between 1.8×
and 4.9× for histogramming, depending on the software technique used. Hough
transform is improved up to 1.8× by this hash function. The fixed hash function
and its results are published in [105]. Hash functions can also be beneficial for
applications without atomic operations, which can still suffer from bank conflicts.
Configurable hash functions to mitigate these conflicts are introduced in Chap-
ter 6, which remove nearly all conflicts and increase performance 1.2× on average.
The configurable hash functions and their results are published in [106].

The last contribution is an extension to the GPU architecture as proposed in
Chapter 7. This reconfigurable GPU, called R-GPU, not only improves perfor-
mance but also power and energy efficiency for various applications. R-GPU is an
addition to a GPU, which can still be used as such, but also has the ability to reor-
ganize the cores of a GPU in a reconfigurable network. In R-GPU data movement
and control is implicit in the configuration of the network. Each core executes
a fixed operation, reducing instruction decode count and increasing power and
energy efficiency. R-GPU improves the performance of voting algorithms, for ex-
ample histogramming is improved 2.9× over an optimized GPU implementation.
Other benchmarks profit as well. On a set of benchmarks an average performance
improvement of 2.1× is measured. Especially algorithms which have a limited
level of parallelism due to data dependencies, such as integral image, benefit from
the proposed architecture changes. Furthermore, power consumption is reduced
by 6%, leading to an energy consumption reduction of 55%, while the extra area
costs of R-GPU are only 4% of the total GPU’s chip area. R-GPU and its results
are published in [103,104].

Finally, Chapter 8 concludes this thesis and summarizes possible directions
for future work.

CHAPTER 2

GPU architecture & programming model

As illustrated in the previous chapter, GPUs first appeared as dedicated accel-
erators for graphics rendering. Later, the various programmable processors in a
GPU, called shaders, became programmable. An example of such a GPU is the
GeForce 6800, shown in Section 1.1. The last step for GPUs to become truly ap-
plicable for General-Purpose computing on Graphics Processing Units (GPGPU)
was when the various shaders were merged into unified shaders, also known as
streaming multiprocessors (SMs).

Even with only one type of shaders, the microarchitecture of a modern day
GPU can still be very complicated. The cores within an SM (often called pro-
cessing elements or PEs) are simple and support only a handful of instructions.
Shared resources in each SM and the high level of multi-threading make it a very
intricate architecture. Combining multiple SMs in a GPU which have to share
resources as well only adds to this complexity.

In this chapter a brief introduction on the architecture of contemporary GPUs
is given. The last four GPU architectures by NVIDIA, all used in this thesis, are
discussed: Tesla [53], Fermi [76, 117], Kepler [77, 78] and Maxwell [84, 85]. First
a comparison is made between a modern day CPU and GPU in Section 2.1. Sec-
tion 2.2 gives a short summary of the programming model of GPUs, including the
CUDA and OpenCL terminology. Section 2.3 discusses the GPU microarchitec-
ture in detail. An overview of all relevant parameters of the four GPUs used in
this thesis can be found in Table 2.2. Section 2.4 concludes this chapter with a
short description of the compilation trajectory used for GPUs.

11

12 CHAPTER 2. GPU ARCHITECTURE & PROGRAMMING MODEL

Intel Core i7-5960X

17.7mm
20

.0
m
m

Queue, uncore, I/O

core

core

core

core

core

core

core

core

shared
L3 cache

Memory Controller

NVIDIA GTX 980

19.6mm

20
.3
m
m

SM
SM

SM
SM

SM
SM

SM
SM

SM
SM

SM
SM

SM
SM

SM
SM

Network on Chip

L2 cache, memory controller

PCIe interface

Figure 2.1: Chip layout comparison of an Intel® Core™ i7-5960X eight core CPU and
an NVIDIA GTX 980 with sixteen Streaming Multiprocessors (SMs).

2.1 CPU vs. GPU: multi-core vs. many-core
Where CPUs spend most of their chip area on a couple of large, sophisticated
cores, GPUs spend their chip area on a large number of clustered processing
elements. Clusters of processing elements, or cores, are called Streaming Multi-
processors by NVIDIA. A comparison of chip layout between an eight core Intel®
Core™ i7-5960X CPU and an NVIDIA GTX 980 with sixteen SMs is shown in
Fig. 2.1. The layouts are based on actual die photos and renderings. Both chips
are approximately the same size (356mm2 vs. 398mm2), but the Intel CPU is
manufactured using Intel’s 22 nm technology, while the NVIDIA GPU is manu-
factured using TSMC’s 28 nm technology.

The Core i7-5960X uses approximately one third of its area for its eight cores.
About 20% is used for the 20MB of L3 cache, which is shared among the cores.
One quarter of the chip area is used for uncore parts and I/O of the CPU, such
as the PCIe controller. The DDR4 memory controller takes approximately 17%
of the area, and another 5% is undefined.

The core of the Intel processor is optimized for single thread performance.
Many hardware elements do not contribute to the compute power of the processor,
i.e. they do not perform computations themselves, but are there to improve the
throughput of instructions. For example, the pipeline bypassing network makes
results earlier available for subsequent instructions. Also, a branch prediction
unit reduces pipeline stalls by keeping track of branch conditions. Large caches
(L1-instruction, L1-data and combined-L2) are included to reduce memory access

2.2. CUDA & OPENCL PROGRAMMING MODELS 13

latency. To further enhance performance, CPUs have been equipped with vector
instructions. These SIMD (single instruction multiple data) instructions perform
the same operation on all elements in the vector. The Core i7-5960X supports
the MMX, SSE and AVX vector extensions. These vector instructions work on
64, 128 and 256 bit data elements respectively. For example, an MMX, SSE or
AVX instruction works on two, four or eight 32-bit values at the same time. All
these vector extensions together add about 500 instructions to the baseline x86
instruction set. This creates a (relatively) large core. Combined with a large L3
cache, a big memory controller and some I/O they fill up the entire chip.

The NVIDIA GTX 980 uses about half of its chip area for its sixteen SMs.
Each SM consists of 128 cores, a register file, scratchpad memory and L1 cache,
as will be discussed in Section 2.3. The other half is used for the Network on Chip
(NoC), L2 cache, memory controller and PCIe interface. The NoC is used to con-
nect the SMs to the L2 cache and memory controller, but not for communication
between SMs.

To fit all 2048 (16× 128) cores on the chip, they have to be (relatively) simple
and small. Cores are grouped in vectors of 32, and four of these vectors are
combined in an SM in the GTX 980. Grouping cores in vectors means they can
share common parts, such as instruction-fetch-and-decode. In essence a GPU
only executes instructions on vectors of 32 elements. Furthermore, these cores
don’t have a bypassing network or branch predictor. Branch instructions are only
supported via predicate instructions. L1 caches are available in each SM, but
are much smaller than on a CPU. Latency is hidden using multi-threading. The
GPU’s architecture will be explained in more detail in the next section.

The main concept of a GPU is to use many, small processing elements working
in parallel. The latency of computations and memory accesses is hidden using
multi-threading. These concepts were already used in the NVIDIA GeForce 3
in 2001. This was the first GPU with a programmable vertex shader [52], as
discussed in Section 1.1. How this evolved in the GPGPU capable GPUs of today
is described in Section 2.3. The programming model for these GPUs is described
first in the next section.

2.2 CUDA & OpenCL programming models
To support the many multi-threaded cores in a modern GPU, new programming
models have been developed. Since GPUs are used as compute accelerators which
are attached to a CPU, programs consist of two parts. A host part is a regular
application which runs on the CPU. This host part will launch the device part,
called a kernel, which runs on the GPU.

The main programming languages for GPUs are CUDA [64] and OpenCL [32].
Alternatives are directive based languages (e.g. pragmas in C/C++) such as
OpenACC and OpenMP4. Both CUDA and OpenCL are extensions to the C-
programming language. They require a programmer to write host code which

14 CHAPTER 2. GPU ARCHITECTURE & PROGRAMMING MODEL

thread warp thread block grid

Figure 2.2: Hierarcy of threads, warps, thread blocks and grids in the CUDA program-
ming model.

runs on a CPU. This host code is responsible for allocating memory on the GPU
and copying data between CPU and GPU. Host code also starts the kernels which
run on the GPU.

Kernels are so called device code, which runs on the GPU. CUDA introduces
the concepts of threads, warps, thread blocks and grids, as also illustrated in
Fig. 2.2. These concepts are called work-items, wavefronts, work-groups and com-
putation domains in OpenCL. The CUDA vs. the OpenCL terminology is listed
in Table 2.1. The number of threads (work-items) in a thread block (work-group)
and the total number of thread blocks have to be specified by the programmer for
each kernel individually. The size of the grid (computation domain) is determined
as the product of the thread block size times the number of thread blocks.

Thread blocks (work-groups) consist of multiple threads (work-items), usually
several hundred in a GPU. A specific thread block is executed on one SM, but
multiple thread blocks can share an SM. On a GPU the threads of a thread block
are (automatically) grouped in warps (wavefronts), which are executed like SIMD
vectors. This makes executing warps energy efficient, since an instruction has to
be fetched and decoded only once for all threads in a warp. It also causes GPUs
to suffer from branch divergence. If one part of the threads in a warp takes the

Table 2.1: CUDA vs. OpenCL terminology.

CUDA OpenCL

thread work-item
warp wavefront
thread block work-group
grid computation domain

global memory global memory
shared memory local memory
local memory private memory
streaming multiprocessor (SM) compute unit
scalar core processing element

2.2. CUDA & OPENCL PROGRAMMING MODELS 15

1 void saxpy(int n, float a, float *x, float *y)
2 {
3 int i;
4 for(i=0; i<n; i++) { // calculate y = a*x+y
5 y[i] = a*x[i] + y[i]; // for every index i<n
6 }
7 }
8

9 void sequential_example ()
10 {
11 saxpy(n, 2.7, x, y);
12 }

Listing 2.1: sequential C implementation of SAXPY computing y = ax + y

1 __global__ void saxpy(int n, float a, float *x, float *y)
2 {
3 int i = blockIdx.x * blockDim.x + threadIdx.x;
4 if(i < n) { // calculate y = a*x+y
5 y[i] = a*x[i] + y[i]; // for every index i<n
6 }
7 }
8

9 void parallel_example ()
10 {
11 saxpy <<<ceil(n/256), 256>>>(n, 2.7, x, y);
12 }

Listing 2.2: parallel CUDA implementation of SAXPY computing y = ax + y

if part of a branch, and the other part of the threads takes the else branch, both
branches have to be executed. In all current GPUs warps are formed statically; in
NVIDIA GPUs a warp is a group of 32 threads with consecutive indexes. However,
dynamic warp formation was already proposed by Fung et al. [21] in 2007.

Tens to thousands of thread blocks form a grid (compute domain). Thread
blocks are assigned dynamically to SMs by the GPU, and cannot communicate
with each other. The number of thread blocks in a kernel is independent of the
number of SMs in a GPU. Specifying a large number of thread blocks for a kernel
ensures that the kernel will perform well on small and large GPUs. The main
difference between small and large GPUs is the number of SMs they have. Small
GPUs will simply execute a smaller number of thread blocks at the same time
than the larger GPUs, and hence take longer to execute all thread blocks.

The total number of threads active on a GPU at any given point in time (i.e.
the resident threads) is usually much larger than the number of cores on a GPU.
In order to hide pipeline- and memory access latency a GPU uses fine-grained
multi-threading. After executing an instruction from one warp, the GPU switches
immediately to another warp. This is made possible by the large register files on
a GPU, which contain the context of all resident threads. This style of executing

16 CHAPTER 2. GPU ARCHITECTURE & PROGRAMMING MODEL

many threads in SIMD style vectors, and switching threads after every instruction,
is called single-instruction, multiple-thread (SIMT) processing [53].

CUDA example
A sequential implementation of the SAXPY routine [66] is shown in Listing 2.1.
Given scalar a and vectors x and y containing n elements each, it calculates the
update y = ax + y. An equivalent parallel implementation in CUDA is shown in
Listing 2.2.

The kernel (device code) is shown on lines 1-7, the host code on lines 9-12.
Each thread will calculate one element of y. The kernel starts by calculating the
index i based on the thread index (inside the thread block) threadIdx.x, the
thread block dimension blockDim.x and the thread block index blockIdx.x on
line 3. As there may be more threads than elements in the vectors, the index
is checked to be within the array bounds on line 4. Finally the actual SAXPY
computation is performed on line 5.

The host code on line 11 launches the kernel. In CUDA the number of thread
blocks and threads per block used to run the kernel are annotated within the <<<
and >>> brackets. On line 11 the kernel is started with 256 threads in each of the
dn/256e thread blocks. This ensures there are at least as many threads as there
are elements in the vectors x and y.

2.3 GPU architecture
Contemporary CPUs, such as the Intel® Core™ i7-5960X described above, con-
sists of a small number of cores, usually two, four or eight. GPUs on the other
hand have many cores, hundreds or even thousands of cores. These cores are much
simpler than the cores in a CPU. For example, the GPU cores execute instructions
in-order and have no bypassing network or branch predictor.

The basic design of a modern day GPU contains groups of cores in what is
called by NVIDIA streaming multiprocessors (SMs). The number of cores in an
SM is fixed, but varies from one GPU architecture to another. The number of
SMs in a GPU ranges from one or two for low-end GPUs to sixteen in high-end
GPUs. Only some GPUs have more SMs, like the recently introduced NVIDIA
Titan X which has twenty-four SMs.

All SMs in the GPU are connected to a shared L2 cache and the off-chip mem-
ory (GDDR) via a network on chip (NoC), as shown in Fig. 2.3. It is not possible
for SMs to communicate directly with each other via the NoC. The memory and
the L2 cache are divided into partitions. Each memory partition is connected to
one part of the L2 cache. The number of partitions is directly related to the width
of the memory bus and the number of GDDR memory chips on the GPU card.
In case of an NVIDIA GeForce GTX 470 (Fermi architecture) there are 14 SMs
which connect to five memory partitions via the NoC.

2.3. GPU ARCHITECTURE 17

G
D

D
R

NETWORK ON CHIP

S
M

S
M

S
M

S
M

S
M

L2

G
D

D
R

L2

G
D

D
R

L2

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

G
D

D
R

L2

G
D

D
R

L2

Figure 2.3: A GPU consisting of 14 SMs and 5 memory partitions (gddr) with L2
cache, all connected by a network on chip. This specific configuration can be found in
an NVIDIA GTX 470.

The basic layout is the same for all GPUs: SMs are connected via a NoC to
the L2 cache and off-chip memory. The design of the SMs itself changes signif-
icantly from one GPU generation to the other. In the next sections four GPU
architectures from NVIDIA are discussed: Tesla, Fermi, Kepler and Maxwell.
The scratchpad memory plays an important role in this thesis, and is discussed
separately in Section 2.3.5.

2.3.1 Tesla architecture
Tesla was NVIDIA’s first architecture with unified shaders [53]. It’s SMs consist
of eight cores, two special function units (SFUs), a scratchpad memory and a
single warp scheduler. As warps comprise 32 threads, issuing a warp to the eight
cores took four cycles. The cores in the SM are used for general computations,
such as integer and floating point operations. The SFUs are used for more com-
plex operations, such as sine, cosine and reciprocal calculations. This division is
similar to the earlier GPUs such as the GeForce 3 and GeForce 6800 described
in Section 1.1. The NVIDIA 8800 GT with the Tesla architecture is used in this
thesis. It contains 14 SMs, more details can be found in Table 2.2.

2.3.2 Fermi architecture
The SMs in the Fermi architecture [76,117] are much more complicated than the
ones in the Tesla architecture. They consist of an instruction cache shared by two
warp schedulers which have one dispatch unit each. There are also two groups of
16 cores, one group of 16 load-store units (LD/ST) and a group of four special
function units (SFUs). The load-store units are used for memory accesses, both
to the on-chip and the off-chip memory. Each SM also contains a scratchpad

18 CHAPTER 2. GPU ARCHITECTURE & PROGRAMMING MODEL

LD/ST

CORE CORE CORE CORE CORE CORE CORE CORE

CORE CORE CORE CORE CORE CORE CORE CORE

LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST

LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST

CORE CORE CORE CORE CORE CORE CORE CORE

CORE CORE CORE CORE CORE CORE CORE CORE

W
A

R
P

S
C

H
E

D
U

L
E

R

W
A

R
P

S
C

H
E

D
U

L
E

R

D
IS

P
A

T
C

H
 U

N
IT

D

IS
P

A
T

C
H

 U
N

IT

SFU SFU SFU SFU

R
E

G
IS

T
E

R
 F

IL
E

S
H

A
R

E
D

 M
E

M
O

R
Y
 /
 L

1
 C

A
C

H
E

IN
S

T
R

U
C

T
IO

N
 C

A
C

H
E

Figure 2.4: Streaming multiprocessor (SM) design of an NVIDIA Fermi GPU, consist-
ing of two warp schedulers and two dispatch units, a register file, two groups of sixteen
cores (core), one group of sixteen load-store units (ld/st), one group of special function
units (sfu) and a combined scratchpad (shared) memory and L1 cache.

memory (called shared memory by NVIDIA) and an L1 data cache. A schematic
overview of an SM in the Fermi architecture is given in Fig. 2.4.

Each of the two warp schedulers issues instructions via its dispatch unit to
either a group of cores, the group of load-store units or the SFUs. The division
of warps between the schedulers is static, one scheduler processes warps with an
even index, the other scheduler processes the warps with an odd index. In case
both schedulers want to issue an instruction to the load-store units, one of the
schedulers has to stall, as there is only one group of load-store units available in
each SM. The same holds when the two schedulers want to use the SFUs. Both
schedulers can issue an instruction to their respective group of cores simultane-
ously. Or one scheduler can issue an instruction to a group of cores, and the other
to either the load-store units or the SFUs.

A second generation of the Fermi architecture [117] was targeted for consumer
graphics, where the first generation also aimed at high-performance computing.
It added a third group of cores, but more importantly, a second dispatch unit to
each warp scheduler. This made the GPU a superscalar architecture which could
exploit instruction level parallelism (ILP). Each scheduler could now issue two
instructions from the same warp to each group of processing elements as long as
the instructions have no dependency on each other.

2.3.3 Kepler architecture
The Kepler architecture [78] extended the design of an SM to six groups of 32
cores each, two groups of SFUs and two groups of load-store units, as shown in
Fig. 2.5. In total there are ten groups of processing elements and four schedulers
with two dispatch units each. Keeping all ten groups of processing elements busy

2.3. GPU ARCHITECTURE 19

Figure 2.5: Kepler [78] and Maxwell [84] Streaming multiprocessor (SM) design.

requires a lot from the schedulers. They not only have to find ILP within a warp,
but also coordinate among each other who is going to use which group of pro-
cessing elements. This made the schedulers large and power hungry. It also made
reaching peak performance on Kepler GPUs challenging, both for programmers
and compilers.

2.3.4 Maxwell architecture
The Maxwell architecture [84, 85] simplified the design of an SM compared to
Kepler, especially the connection between the schedulers. Each SM still has four
schedulers with two dispatch units each. But each scheduler now has its own
group of 32 cores, one group of eight load-store units and one group of eight
SFUs. Maxwell’s SM design with these four separate processing blocks is shown
in Fig. 2.5. In total there are only 128 cores, compared to the 192 cores of
Kepler. But there are more load-store units and SFUs in a Maxwell SM. Since
the scheduling effort has been reduced significantly, the schedulers can be much
smaller and more energy efficient. The simplification of the SM design makes it
easier to reach peak performance on a Maxwell GPU than on a Kepler GPU.

20 CHAPTER 2. GPU ARCHITECTURE & PROGRAMMING MODEL

Table 2.2: GPU architectures’ parameters of the four GPUs used in this thesis.

GPU 8800 GT GTX 470 GTX Titan GTX 750 Ti

Architecture Tesla Fermi Kepler Maxwell

Introduced Oct. 2007 Mar. 2010 Feb. 2013 Feb. 2014

Compute capability 1.1 2.0 3.5 5.0

Cores per SM 8 32 192 128

Number of SMs 14 14 14 5

Atomic operations on yes yes yes yesglobal memory
Atomic operations on no yes yes yesscratchpad memory
Maximum number of threads 512 1024 1024 1024per thread block
Maximum number of resident 8 8 16 32thread blocks per SM
Maximum number of 24 48 64 64resident warps per SM
Maximum number of 768 1536 2048 2048resident threads per SM
Scratchpad memory 16 kB 48 kB 48 kB 64 kBper SM
Scratchpad memory 16 kB 48 kB 48 kB 48 kBper thread block

2.3. GPU ARCHITECTURE 21

B
an

k
0

11264

11296

11328

11360

12256

11392

11424

...

2048

2080

2112

2144

3040

2176

2208

…

1024

1088

1120

1152

1184

...

2016

0

32

64

96

128

160

...

992

1056

B
an

k
1

11265

11297

11329

11361

12257

11393

11425

...

2049

2081

2113

2145

3041

2177

2209

…

1025

1057

1089

1121

1153

1185

...

2017

1

33

65

97

129

161

...

993

B
an

k
2

11266

11298

11330

11362

12258

11394

11426

...

2050

2082

2114

2146

3042

2178

2210

…

1026

1058

1090

1122

1154

1186

...

2018

2

34

66

98

130

162

...

994
B

an
k

3

1027

1059

1091

1123

1155

1187

...

2019

2051

2083

2115

2147

3043

2179

2211

…

11267

11299

11331

11363

12259

11395

11427

...

3

35

67

99

131

163

...

995

B
an

k
30

30

62

94

126

158

190

...

1022

1054

1086

1118

1150

1182

1214

...

2046

2078

2110

2142

2174

3070

2206

2238

…

11294

11358

11390

11422

12286

11454

11486

...

B
an

k
31

11295

11359

11391

11423

12287

11455

11487

...

2079

2111

2143

2175

3071

2207

2239

…

1055

1087

1119

1151

1183

1215

...

2047

31

63

95

127

159

191

...

1023

11264

2048

1024

0

Lock addresses

31

63

95

127

159

191

...

1023

30

62

94

126

158

190

...

1022

3

35

67

99

131

163

...

995

2

34

66

98

130

162

...

994

1

33

65

97

129

161

…

993

0

32

64

96

128

160

...

992

0

Address 1056
0001 00001 00000 00

Page 0

Page 2

Page Row Bank

St
or

ag
e

re
so

ur
ce

Shared memory

Page 1

Page 11

Memory lock unit

Figure 2.6: Scratchpad memory layout on an NVIDIA Fermi GPU. The 48 kB of
memory is accessed via 4-byte words and is distributed over 32 banks. Each bank has
32 lock bits available for atomic operations. [105]

2.3.5 Scratchpad memory

Scratchpad memories, called shared memory by NVIDIA, have been part of the
streaming multiprocessor design since the Tesla architecture. It can be used as a
software controlled cache, or to store temporary values. The scratchpad memory
is fully controlled by the programmer. The size of the scratchpad memory in each
SM is 16 kB in Tesla, 48 kB in Fermi and Kepler and 64 kB in Maxwell.

The scratchpad memory is not implemented in hardware as one big memory,
but as a banked memory. In Tesla the scratchpad memory is split into 16 banks,
in the other architectures in 32 banks. If all threads in a warp access a different
bank the maximum throughput of the scratchpad memory is achieved. If multiple
threads access a different word in the same bank, a bank conflict occurs and the
accesses are serialized. Because the threads in a warp are executed in SIMD style
vectors, these threads have to wait until they all finish their memory access.

From Fermi onwards the scratchpad memory supports atomic operations in
hardware. In Fermi and Kepler the atomic operations are implemented by sup-
plying lock bits, as illustrated in Fig. 2.6. The number of lock bits and how they
are mapped to memory addresses has been revealed by Gómez-Luna et al. in [26].
Using these bits a memory address can be locked by a thread, and thereafter

22 CHAPTER 2. GPU ARCHITECTURE & PROGRAMMING MODEL

be used exclusively. These atomic operations consist of multiple instructions:
load-and-lock, update, store-and-unlock. There are fewer lock bits than there are
words in the scratchpad memory. If two threads try to lock the same address, or
try to lock two different addresses which share a lock bit, the atomic operations
of these two threads have to be serialized. In Maxwell the lock bit approach has
been replaced by specialized atomic instructions for integer operations.

2.4 GPU compilation trajectory
CUDA code is compiled by the nvcc compiler. An overview of the compilation
process is shown in Fig. 2.7. Host and device code is stored together in one or
more .cu files. The compilation process starts by splitting the .cu files into host
and device code. The host code is processed by a regular C/C++ compiler such
as gcc. The device code is first compiled to an intermediate representation called
PTX, which can be considered as an assembly language for a virtual GPU archi-
tecture. During compilation the feature set of the virtual GPU can be specified.

In a second step the PTX code is compiled to GPU (architecture) specific cubin
code. The targeted GPU should at least support the feature level specified for the
PTX code. Specifying a low feature level ensures maximum compatibility with
all GPU architectures, but could limit optimization opportunities. Therefore the
nvcc compilers allows multiple feature levels to be specified during compilation.

In the final step the PTX, cubin and host code are linked together. The PTX
code is added to the final executable to allow for just-in-time compilation in case
no matching cubin code is included. For more information about the CUDA
compilation process, see the NVIDIA documentation on nvcc [83].

The compilation process for OpenCL is very similar to the compilation of
CUDA code. Only OpenCL stores host and device code in separate files, or the
device code is kept in a string for just-in-time compilation. Therefore the OpenCL
compilation trajectory does not contain a pass to split host and device code.

device host

.cu file split
host & device

stage 1
PTX generation

stage 2
cubin generation

host
compilation

linking.ptx file .cubin file .o file

executable

Figure 2.7: CUDA compilation consists of two parts: host and device.

CHAPTER 3

Efficient histogramming

A histogram is a representation of the frequency of occurrence of values in a set
of data. It is used not only in image and video processing, for example in an
equalization step to enhance contrast, but also in statistics, finance, data mining,
etc. In image processing a histogram shows the distribution of pixel values in an
image. An example of a histogram of a gray-scale image with pixel values ranging
from 0 to 255 is given in Fig. 3.1.

The basic histogram algorithm is very simple, as illustrated in Listing 3.1.
First the histogram is allocated and every bin is set to zero (lines 1-3). Then the
algorithm reads every pixel in an image, one by one, and increments the bin in the
histogram corresponding to the pixel value (lines 5-6). This makes histogramming
a sequential algorithm. It is hard to parallelize the histogram algorithm because of
the unpredictable, data dependent memory accesses to the bins in the histogram.
When making a histogram of image pixels, it is unknown a priori if two pixels
will belong to the same bin or not. Hence the load-update-store sequence has to
be executed atomically to ensure that the histogram is calculated correctly.

1 int i, histogram [256]; // allocate and initialize
2 for(i=0; i<256; i++) // all 256 bins of the
3 histogram[i] = 0; // histogram to 0
4

5 for(i=0; i<IMG_SIZE; i++) // iterate over all pixels in the image
6 histogram[image[i]]++; // increment one bin for each pixel

Listing 3.1: Basic histogram algorithm to create a 256-bin histogram of an image.

23

24 CHAPTER 3. EFFICIENT HISTOGRAMMING

0 50 100 150 200 250

Pixel value

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%
1.2%

-10 -8 -6 -4 -2 0 2 4 6 8 10

Difference between consecutive pixels

0%

5%

10%

15%

20%

25%

Figure 3.1: Image of a rabbit (left), the corresponding histogram (top right) and a
histogram of the difference between consecutive horizontal pixels (bottom right).

The sequential nature of the histogram algorithm makes it hard to implement
efficiently on a parallel architecture such as a multi-core CPU or a GPU. One
solution is to split the input data in multiple parts, and calculate a histogram for
each part in parallel. At the end these sub-histograms have to be combined in a
final histogram. This approach works well for a multi-core CPU, where the input
data can be divided in a couple of parts (e.g, four parts for a quad core CPU).
For a GPU with hundreds of cores, this approach will take a significant amount of
time to combine all sub-histograms, especially if many sub-histograms are used.

Another solution is to calculate the histogram not on the GPU but on the CPU.
The histogram algorithm, however, is usually in the middle of an application. For
example, a denoising filter can be applied on an image coming from a camera,
then a histogram is calculated which is subsequently used in an equalization step
to boost the contrast of the final image. Both the denoising filter and image
equalization algorithm have a high level of parallelism, which make them a good
fit for a GPU. Calculating the histogram on the CPU would imply that the output
of the denoising filter has to be copied to CPU, and the resulting histogram copied
back to the GPU. The bandwidth of the PCIe bus between the CPU and GPU
is relatively low compared to the memory bandwidth of a CPU or GPU. For
example, copying a Full HD gray-scale image (1920× 1080 pixels) over a PCIe v2
bus with 16 lanes will take at least:

1920× 1080
8GB/s = 0.26ms. (3.1)

The actual bandwidth is ofter much lower, mainly due to PCIe protocol overhead
and the 8b/10b encoding used. Copying a Full HD image from a CPU to a
GeForce GTX 470 takes 0.34ms. This is longer than calculating the histogram on

3.1. HISTOGRAMMING ON CPU 25

the CPU takes, as we will see later. Therefore it would be beneficial to implement
the histogram algorithm on the GPU in order to avoid these costly copies.

In this chapter, histogramming on CPU is evaluated first in Section 3.1 to set
a reference point for the GPU implementations later. The CPU implementation
is highly optimized by using multi-threading and SIMD vector instructions. Next,
three options of placing sub-histograms in memory are introduced in Section 3.2.
Memory layout is especially important for the banked memories in a GPU (e.g.
scratchpad memory and off-chip memory). These three memory layouts are used
in four different GPU implementations in Sections 3.3 to 3.6. The GPU imple-
mentations are ordered from simple to implement, using atomic operations on
the global, off-chip memory (Section 3.3), to advanced methods which use private
sub-histograms in the on-chip scratchpad memory, either per thread (Section 3.4)
or per warp (Section 3.5). The last GPU implementation uses atomic operations
on the on-chip scratchpad memory, which is only available in GPU architectures
after Tesla (Section 3.6). A discussion of all results and related work are presented
in Sections 3.7 and 3.8 respectively. Conclusions are given in Section 3.9.

3.1 Histogramming on CPU
Contemporary CPUs consist of multiple cores. Each core can execute a different
application, or a different thread from the same application. To boost perfor-
mance of multi-threaded applications, each core implements simultaneous multi-
threading (SMT), called hyper-threading [56] by Intel. SMT presents each phys-
ical core to the operating system as two virtual or logical cores. This allows one
core to execute two threads simultaneously. When one threads stalls (e.g. due to
memory accesses, data dependencies, etc.) the core can continue with the other
thread. To maximize histogramming performance, all cores (physical as well as
virtual) have to be used.

To improve performance further, the cores in most CPUs have single in-
struction, multiple data (SIMD) instruction set extensions, such as MMX [60],
SSE [100] and AVX [43] in Intel processors. These allow for data parallel process-
ing of small vectors, usually two, four or eight 32-bit words wide.

The CPU used in the experiments of this chapter is the Intel® Core™ i7-4770,
introduced in June 2013. It has 4 cores, which together support 8 simultaneous
threads using hyper-threading. The base frequency is set at 3.4GHz, the maxi-
mum turbo frequency is 3.9GHz. It supports the latest of Intel’s SIMD instruction
set extensions, up to AVX 2.0.

In the experiment of this section one sub-histogram per CPU-thread is used
and the image is divided equally over all threads. Threads are created using
OpenMP pragmas, and the sub-histograms are merged at the end in an OpenMP
critical section, as illustrated in the code example of Listing 3.2. The images used
come from the Van Hateren natural image database [110]. The image dimensions
are 1536× 1024 and the bit depth is 12-bit, stored as 16-bit values.

26 CHAPTER 3. EFFICIENT HISTOGRAMMING

1 #pragma omp parallel num_threads(THREADS)
2 {
3 const unsigned tid = omp_get_thread_num (); // get the thread -id
4 const unsigned pixels_per_thread = IMG_SIZE/THREADS;
5

6 unsigned sub_histogram [256]; // allocate and initialize
7 for(int i=0; i<256; i++) // all 256 bins of the
8 sub_histogram[i] = 0; // sub -histogram to 0
9

10 // process a part of the image and update the sub -histogram
11 const unsigned start = pixels_per_thread * tid;
12 const unsigned end = (tid+1) == THREADS ? IMG_SIZE
13 : pixels_per_thread * (tid+1);
14 for(unsigned i=start; i<end; i++) {
15 int bin = input[i] * (256/4096.0f); // convert pixel value
16 sub_histogram[bin]++; // to bin index and
17 } // update sub -histogram
18

19 #pragma omp critical // combine sub -histograms
20 { // into the final histogram
21 for(int i=0; i<256; i++)
22 histogram[i] += sub_histogram[i];
23 }
24 }

Listing 3.2: Multi-core OpenMP histogramming implementation to create a 256-bin
histogram of a 12-bit image. The number of threads used is set using the THREADS
parameter. Each thread processes a part of the input updating its own sub-histogram,
which are combined at the end in a critical section.

Three implementations are made, either using no SIMD instructions (shown in
Listing 3.2), SSE SIMD instructions or AVX SIMD instructions. SSE and AVX
instructions process 128-bit and 256-bit data words in parallel respectively, or
eight and sixteen 16-bit pixels in parallel. The SSE and AVX SIMD instruction
sets used do not support gather and scatter load and store operations. Therefore
the only part of the algorithm which can be done in parallel with the SIMD
instructions is loading the pixel data and converting the pixel values to bin-indices.

Fig. 3.2 shows the results for calculating a 256-bin histogram on a CPU using
one to eight threads, either using no SIMD instructions, SSE SIMD instructions or
AVX SIMD instructions. The execution time drops from 2.4ms for a single thread
solution without SIMD instructions to 0.64ms for a four thread implementation, a
near perfect linear scaling. Using five threads increases the execution time slightly
to 0.80ms, since the workload of the five threads cannot be divided equally over
the four available cores. Raising the number of threads further to eight reduces the
execution time to 0.50ms, a slight (22%) improvement over the implementation
with four threads.

Using SSE and AVX SIMD instructions improves the execution time for the
single thread solution from 2.4ms to 1.1ms and 1.0ms respectively. Increasing

3.2. SUB-HISTOGRAM MEMORY LAYOUT 27

1 2 3 4 5 6 7 8

N threads

0.0

0.5

1.0

1.5

2.0

2.5
ex

ec
.

ti
m

e
(m

s)

CPU CPU - SSE CPU - AVX

Figure 3.2: Execution time for calculating a 256-bin histogram on a CPU (Intel®
Core™ i7-4770) using 1 to 8 threads

the number of threads to four shows the same near perfect linear scaling, and
reduces the execution time to 0.31ms and 0.29ms for the four thread SSE and
AVX solutions respectively. The eight thread solutions shows the best execution
times, 0.24ms for both the eight thread SSE and AVX solutions.

3.2 Sub-histogram memory layout

As previously mentioned, a common technique to improve the performance of the
histogram algorithm on parallel architectures is to use sub-histograms. The sub-
histograms can be updated independently, but have to be combined at the end.
There are three ways to layout sub-histograms in memory (e.g. GPU scratchpad
memory), sub-histogram-major, sub-histogram-major with padding and bin-major.
An overview is given in Fig. 3.3. Each bin in a sub-histogram is labeled hs,b where
s is the sub-histogram number and b is the bin index. An implementation of each
memory mapping as used in the GPU experiments of Section 3.3 to Section 3.6
can be found in Table 3.1.

Sub-histogram-major memory layout

In the sub-histogram-major memory layout all bins of the first sub-histogram
are placed the memory’s address space first, then all bins of the second sub-
histogram, etc. An example for placing two sub-histograms of a 64-bin histogram
in a memory with 32 banks is given in Fig. 3.3a. The first sub-histogram takes
the first 64 places in the memory, the second sub-histogram takes the second 64
places, etc. Since the number of bins is a multiple of the number of banks in
this example, the same bin for each sub-histogram is located in the same memory
bank. In the remainder of this chapter the sub-histogram-major memory layout
is abbreviated as hist-major.

28 CHAPTER 3. EFFICIENT HISTOGRAMMING

ba
nk

-0

ba
nk

-1

ba
nk

-2

ba
nk

-3 . . .

ba
nk

-3
0

ba
nk

-3
1

h0,0 h0,1 h0,2 h0,3 . . . h0,30 h0,31

h0,32 h0,33 h0,34 h0,35 . . . h0,62 h0,63

h1,0 h1,1 h1,2 h1,3 . . . h1,30 h1,31

h1,32 h1,33 h1,34 h1,35 . . . h1,62 h1,63

(a) sub-histogram-major

ba
nk

-0

ba
nk

-1

ba
nk

-2

ba
nk

-3 . . .

ba
nk

-3
0

ba
nk

-3
1

h0,0 h0,1 h0,2 h0,3 . . . h0,30 h0,31

h0,32 h0,33 h0,34 h0,35 . . . h0,62 h0,63

h1,63

h1,0 h1,1 h1,2 . . . h1,29 h1,30

h1,31 h1,32 h1,33 h1,34 . . . h1,61 h1,62

(b) sub-histogram-major with padding

ba
nk

-0

ba
nk

-1

ba
nk

-2

ba
nk

-3 . . .

ba
nk

-3
0

ba
nk

-3
1

h0,0 h1,0 h2,0 h3,0 . . . h6,3 h7,3

h0,4 h1,4 h2,4 h3,4 . . . h6,7 h7,7

...
...

...
...

...
...

h0,60 h1,60 h2,60 h3,60 . . . h6,63 h7,63

(c) bin-major

Figure 3.3: Three different methods of placing eight sub-histograms of a 64-bin his-
togram in a banked memory. Each bin in a sub-histogram is labeled hs,b where s is the
sub-histogram number and b is the bin index. In (a) and (b) the first two sub-histograms
are shown, placed in a sub-histogram-major order. In (c) a part of the bins 0, 3, 4, 7,
60 and 63 for the eight sub-histograms is shown, placed in a bin-major order.

Sub-histogram-major with padding memory layout

Consecutive pixels in an image often have the same value, as shown in Fig. 3.1.
Hence the corresponding bins in the histogram to these pixels fall in the same
memory bank in the previous memory layout. By placing the same bins of each
sub-histogram in the same memory bank, memory accesses to these bins are
serialized, as memory banks can usually only handle one load- or store operation
at a time. To prevent this serialization, padding can be used to place the same
bins in each sub-histogram in different memory banks, as shown in Fig. 3.3b. This
is called the sub-histogram-major with padding memory layout. In the remainder
of this chapter this memory layout is abbreviated as hist-major w. pad.

3.3. GPU: GLOBAL MEMORY ATOMICS 29

Table 3.1: Implementation of the BIN_INDEX(bin,subhist) macro for the three differ-
ent memory layouts. The number of bins and the number of sub-histograms are given
by the parameters NUM_BINS and NUM_SUBHIST respectively.

sub-histogram-major
#define BIN_INDEX(bin,subhist) (bin + NUM_BINS*subhist)

sub-histogram-major with padding
#define BIN_INDEX(bin,subhist) (bin + (NUM_BINS+1)*subhist)

bin-major
#define BIN_INDEX(bin,subhist) (bin*NUM_SUBHIST + subhist)

Bin-major memory layout

In the bin-major memory layout the first bins of all sub-histograms are placed in
the memory first, then the second bin for all sub-histograms, etc. An example is
shown in Fig. 3.3c. The main advantage of this method is that the same bins in
different sub-histograms are placed in different memory banks, without the use of
padding.

3.3 GPU: global memory atomics
Where the CPU solutions used only up to eight threads, GPUs require many more
threads (thousands) to reach peak performance. The simplest way to support
many threads while making sure all updates in the histogram are correct is by
using atomic operations on the global memory. Atomic operations on the global
memory are executed in the ROP (raster operations pipeline) units and the L2
cache [24]. In the programming model the atomic operations are available via
function calls, which map to specific instructions. For example, adding a value
to a location in the global memory can be done by calling the following function
in CUDA: atomicAdd(memory_location, value). This function call translates
to either the instruction ATOM or the instruction RED. In case the value stored at
memory_location is to be returned, the function call is translated to the ATOM
instruction, otherwise it is translated to the RED instruction.

Although the use of atomic operations on global memory is very simple from
a programmers perspective, the performance may be relatively poor depending
on how the atomic operations are implemented in hardware. Over the years
NVIDIA has improved its hardware and the performance of atomic operations on
global memory significantly. Articles and whitepapers about the Fermi [76, 117],
Kepler [77,78] and Maxwell [84] architectures all mention “substantially improved”
performance for atomic operations. In the Fermi architecture atomic operations
are up to 20× faster than in the Tesla architecture [76]. In the Kepler architecture
atomic operation throughput has improved from 24 operations per clock cycle
for Fermi to 64 operations per clock cycle on Kepler [77], an improvement of

30 CHAPTER 3. EFFICIENT HISTOGRAMMING

1 void histogram_kernel(unsigned short *input , unsigned *histogram)
2 {
3 const unsigned tid = threadIdx.x; // get the thread -id
4 const unsigned subhist = tid % NUM_SUBHIST;
5 const unsigned pixels_per_block = IMG_SIZE/BLOCKS;
6

7 // process a part of the image and update the histogram
8 const unsigned start = blockIdx.x * pixels_per_block;
9 const unsigned end = (blockIdx.x+1) == gridDim.x ? IMG_SIZE

10 : (blockIdx.x+1) * pixels_per_block;
11 for(unsigned i=start+tid; i<end; i+= THREADS) {
12 int bin = input[i] * 256/4096.0f; // calculate bin index and
13 int idx = BIN_INDEX(bin , subhist); // sub -histogram number
14 atomicAdd(histogram + idx , 1); // vote in sub -histogram
15 }
16 }

Listing 3.3: GPU histogramming kernel to create a 256-bin histogram of a 12-bit
image using global memory atomics. The number of threads per thread block, the
total number of thread blocks and the number of sub-histograms are set using the
parameters THREADS, BLOCKS and NUM_SUBHIST respectively.

2.7×. Taking the increased clock frequency into account the improvement grows
to 3.5× [77]. Unfortunately no numbers are given for the Maxwell architecture.

One way for a developer to improve performance on the software side is by
using sub-histograms. By using multiple sub-histograms there is less contention
for the same bin, resulting in a higher performance. For example, when two sub-
histograms are used, all even threads can use the first sub-histogram and all odd
threads can use the second sub-histogram.

Next to the number of sub-histograms there are also other parameters which
will influence the performance of the histogram algorithm. The number of ac-
tive threads per multiprocessor can be increased to improve the GPU’s utiliza-
tion, but more threads can also lead to more contention to the same bin in a
(sub-)histogram. Furthermore, threads can be grouped in one thread block, or
split over multiple smaller thread blocks. For the experiments in this sections the
number of threads per thread block is varied from 32 to the maximum number
of threads per thread block supported by the GPU, as defined in Table 2.2. The
number of threads is increased in steps of 32 threads, the size of a warp. The
number of thread blocks per multi-processor (SM) ranges from one to eight, given
that the total number of threads per SM is limited by the maximum number of
resident threads per SM.

A GPU histogramming kernel using global memory atomics is shown in List-
ing 3.3. The kernel starts with calculating the thread and sub-histogram index
and the number of pixels to be processed in every thread block (lines 3-5). Then
the start and end index of the part of the image to process by each thread block
is calculated (lines 8-10). Finally, every pixel in this part is processed. The pixel
value is converted to a bin index, a sub-histogram is selected and a vote is placed

3.3. GPU: GLOBAL MEMORY ATOMICS 31

Table 3.2: Number of experiments for each of the three memory layouts per number
of sub-histograms for each GPU used in Fig. 3.4.

sub-histograms 8800 GT GTX 470 GTX Titan GTX 750 Ti

1 – 32 53 113 140 140
64 46 105 132 132
128 32 89 116 116
256 15 59 84 84
512 1 27 41 41
1024 0 1 2 2

in a sub-histogram (lines 11-15). Which method of placing sub-histograms in
memory is used is determined by the implementation of the BIN_INDEX macro.
All three options are given in Table 3.1.

After this kernel finishes, a second kernel (not shown) is used to combine all
sub-histograms. In the experiments below the number of pixels processed per
block is set to a multiple of 32 to make memory accesses coalesced and aligned
with cache lines. Threads also read pixels in groups of four using the ushort4
data type, and vote in a sub-histogram for all four pixels before reading the next
four pixels. These optimizations have been omitted from Listing 3.3 for clarity.

The execution time for a 256-bin histogram algorithm is shown in Fig. 3.4
for four different GPUs. Various numbers of sub-histograms are tested, which
are mapped to the global memory using the three three different memory layouts
described in Section 3.2. The number of sub-histograms used is limited to the
number of threads in a thread block, since there is no performance to gain when
every thread has its own sub-histogram. The number of thread blocks per SM
(between one and eight) is indicated by the width of each bar in Fig. 3.4, a larger
bar indicates more thread blocks per SM. Note that smaller bars can be hidden
by larger bars. When bars overlap this means that many configurations lead to
the same performance level, indicating that it is relatively easy for a developer to
select a set of parameters which result in this performance. The total number of
experiments for each of the three memory layouts is given in Table 3.2 for each
number of sub-histograms and for each GPU.

The GeForce 8800 GT was the first GPU (architecture) which could be pro-
grammed using a general purpose languages for GPUs such as CUDA or OpenCL.
It also supported atomic operations, but only on the global, off-chip memory. The
relative performance difference for various number of threads per thread block and
thread blocks per SM is small, but the absolute performance is low, as shown in
Fig. 3.4. In case only one sub-histogram is used the execution time is at best
100ms for each of the three memory layouts. When 32 sub-histograms are used,
one for each thread in a warp, the execution time drops to 22ms. Increasing the
number of sub-histograms further shows different results for the sub-histogram-
major and bin-major memory layouts. The execution time for the bin-major

32 CHAPTER 3. EFFICIENT HISTOGRAMMING

1 2 4 8 16 32 64 128 256 512 1024

sub-histograms

0

20

40

60

80

100

120

ex
ec

.
ti

m
e

(m
s)

GeForce 8800 GT (Tesla)

hist-major

hist-major, w. pad.

bin-major

1 2 4 8 16 32 64 128 256 512 1024

sub-histograms

0
2
4
6
8

10
12
14

ex
ec

.
ti

m
e

(m
s)

GeForce GTX 470 (Fermi)

hist-major

hist-major, w. pad.

bin-major

1 2 4 8 16 32 64 128 256 512 1024

sub-histograms

0

1

2

3

4

5

ex
ec

.
ti

m
e

(m
s)

GeForce GTX Titan (Kepler)

hist-major

hist-major, w. pad.

bin-major

1 2 4 8 16 32 64 128 256 512 1024

sub-histograms

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ex
ec

.
ti

m
e

(m
s)

GeForce GTX 750 Ti (Maxwell)

hist-major

hist-major, w. pad.

bin-major

Figure 3.4: 256-bin histogram on four GPUs using atomic operations on global memory

3.3. GPU: GLOBAL MEMORY ATOMICS 33

memory layout increases, while the execution time for both the sub-histogram-
major layouts decreases. The sub-histogram-major layout with padding achieves
the best execution time of 5.9ms using 512 sub-histograms, 512 threads per thread
block and 1 thread block per SM, as also listed in Table 3.3.

The GeForce GTX 470 shows much better absolute performance, as shown in
Fig. 3.4. Experiments with varying number of threads per thread block and total
number of thread blocks show similar performance in case one, two or four sub-
histograms are used. The difference gets larger (21% for the sub-histogram-major
memory layout) when eight sub-histograms are used. Increasing the number of
sub-histograms does not automatically result in better performance. The sub-
histogram-major layout with padding achieves the best execution time of 1.4ms
using four sub-histograms, two or three thread blocks per SM and 320 to 736
threads per thread block. The best scoring configurations use 960 (320 × 3)
to 1536 (736 × 2) threads per SM. Although the sub-histogram-major memory
layout achieves the best performance, the bin-major memory layout shows a more
constant performance level when the number of sub-histograms is increased.

The absolute performance of the GeForce GTX Titan is even better, with
almost all configurations of threads per thread block and thread blocks per SM
scoring an execution time below one millisecond. The only configurations that
have a significant higher execution time are the ones with very few threads per
SM (e.g. 32 or 64). As the GTX Titan has 192 cores per SM, more threads
are required to keep the GPU fully occupied. Since the number of threads per
thread block is at least the same as the number of sub-histograms, the relative
high execution time for a small number of threads per SM is not present when
more sub-histograms (e.g. more than 128) are used. All three memory layouts
perform similarly, with a small advantage for the bin-major memory layout. The
best execution time of 0.13ms is achieved using sixteen sub-histograms in the bin-
major memory layout and a combination of threads per thread block and thread
blocks per SM which yield 1408 to 1920 threads per SM.

The GeForce GTX 750 Ti is a much smaller GPU with only five SMs compared
to the GTX Titan’s fourteen, and hence, the absolute performance is also lower.
More importantly, the GTX 750 Ti has only 16 ROPs, where the GTX Titan

Table 3.3: Configuration for each GPU which resulted in the best execution time as
shown in Fig. 3.4 for the global memory atomics experiments.

8800 GT GTX 470 GTX Titan GTX 750 Ti

memory layout hist-major hist-major bin-major bin-major
with pad. with pad.

sub-histograms 512 4 16 256
threads per thread block 512 352 320 384
thread blocks per SM 1 3 5 5
execution time 5.9ms 1.4ms 0.13ms 0.57ms

34 CHAPTER 3. EFFICIENT HISTOGRAMMING

has 48 ROPs. Like the GTX Titan, almost all configurations of threads per
thread block and thread blocks per SM result in a similar execution time, but
the performance loss due to a small number of threads is much smaller. The
best execution times are obtained using the sub-histogram-major memory layouts
when the number of sub-histograms is eight or less. With sixteen or more sub-
histograms the best performance is obtained using the bin-major memory layout.
The best execution time of 0.57ms is achieved using 256 sub-histograms in the
bin-major memory layout and 256 to 384 threads per thread block and five, six
or seven thread blocks per SM where the number of threads per SM is between
1280 and 2048 threads.

The configurations resulting in the best performance of the experiments of
Fig. 3.4 are listed in Table 3.3. Only one configuration is given for each GPU,
while for most GPUs there is a range of configurations which lead to a similar
performance level, as described above. In general, using as many threads as a
GPU can support will lead to a good performance level. The best number of sub-
histograms and their memory layout are dependent on the GPU used. Most GPUs
show good performance using as many sub-histograms as possible, except for the
GTX 470 which achieves its best performance using only four sub-histograms. The
8800 GT and the GTX 470 get the best performance using the sub-histogram-
major with padding memory layout, while the GTX Titan and the GTX 750 Ti
prefer the bin-major memory layout.

Although significant speed-ups can be obtained by using sub-histograms in one
of three memory layouts, the execution time for all GPUs (except the GTX Titan)
is still higher than for a CPU. To improve the GPUs’ execution time, the on-chip
scratchpad memory can be used, as will be explored in the next sections.

3.4 GPU: thread-private histogram
The scratchpad memory of a GPU is located inside each SM. It can be used to
improve the performance of the histogram algorithm. Only threads within the
same thread block can cooperate on each others data. When multiple thread
blocks are executed on the same SM at the same time, the available scratchpad
memory is divided among them.

The first histogram implementation using the scratchpad memory is described
by Podlozhnyuk [92]. A private histogram for each thread is created in this
approach. This method was developed for the very first CUDA programmable
GPUs, which did not support atomic operations on the scratchpad memory. Since
every thread has its own, private histogram, no atomic operations are required.
The original implementation of Podlozhnyuk [92] uses 8-bit data words for the
histogram bins. This makes it possible to run 192 threads in parallel on each SM,
while each threads constructs a 64-bin histogram. The downside of having 8-bit
data words is that each thread can only process 28 − 1 = 255 input elements (i.e.
pixels); processing more could result in an overflow of a histogram bin.

3.4. GPU: THREAD-PRIVATE HISTOGRAM 35

layout 1
32 threads

layout 1
64 threads

layout 2
32 threads

layout 2
64 threads

0
2
4
6
8

10
12
14
16

B
a
n
d
w

id
th

(G
B
/
s)

7.3

3.8

8.0

5.4

7.5

3.8

8.0

5.4

11.1

5.2

8.0

5.4
7.3

3.8

8.0

5.4

image1 image2 degenerate random

Figure 3.5: Results from [73] (Section 7) for a 256-bin histogram using a private sub-
histogram per thread on a GeForce GTX 470. Two layouts are tested for four images,
with either 32 or 64 threads per thread block.

An optimization to this per-thread sub-histogram method is described by
Shams and Kennedy [96]. They allocate a sub-histogram for each thread in the
global memory and in the scratchpad memory. When a bin in the scratchpad
memory overflows, the corresponding bin in the global memory is updated. This
mechanism makes it possible to use small (e.g. 8-bit) data words for the bins in
the scratchpad memory and process many input elements per thread.

In Section 7 of [73] we evaluate two different layouts of sub-histograms per
thread in the scratchpad memory for a 256-bin histogram. These results are also
shown in Fig. 3.5. Each bin in a sub-histogram is stored as a 16-bit value; the
total memory costs of a sub-histogram is 512 bytes. This allows the GeForce
GTX 470 to run at most 96 threads in parallel for each SM. Two thread block
configurations are evaluated for both layouts. The first option uses 32 threads per
thread block, allowing three active thread blocks, or 96 active threads, on each
SM. The second option uses 64 threads per thread block, allowing only one active
thread block per SM.

Since the bins are stored as 16-bit values, and the banks of the scratchpad
memory are 32-bit wide, two bins are allocated to each row of a bank. In the
first layout the bins of the sub-histograms are stored in the bin-major order (like
Fig. 3.3c), which means that two threads share a memory bank. When both
threads process a pixel with the same color, they will access the same bin (in their
own sub-histogram), and access the same memory word. In any other case, they
access a different word, and the access to the memory bank has to be serialized,
leading to a slow-down.

The results for this first layout are shown in Fig. 3.5 and are labeled layout 1.
Performance is measured in terms of throughput of the input image in GB/s,
which means higher is better. Four different images of 2048 × 2048 pixels are
tested on a GeForce GTX 470. Two pictures are tested (image1 and image2) and
two synthetic benchmarks, degenerate with a single pixel color and random with
randomly selected pixel values. The achieved throughput for the pictures and the

36 CHAPTER 3. EFFICIENT HISTOGRAMMING

32 64 96 128 160 192

threads per thread block

0.0

0.5

1.0

1.5

2.0

ex
ec

.
ti

m
e

(m
s)

GeForce 8800 GT (Tesla)

hist-major hist-major, w. pad. bin-major

32 64 96 128 160 192

threads per thread block

0

1

2

3

4

5

ex
ec

.
ti

m
e

(m
s)

GeForce GTX 470 (Fermi)

hist-major hist-major, w. pad. bin-major

32 64 96 128 160 192

threads per thread block

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

ex
ec

.
ti

m
e

(m
s)

GeForce GTX Titan (Kepler)

hist-major hist-major, w. pad. bin-major

32 64 96 128 160 192

threads per thread block

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ex
ec

.
ti

m
e

(m
s)

GeForce GTX 750 Ti (Maxwell)

hist-major hist-major, w. pad. bin-major

Figure 3.6: 64-bin histogram on four GPUs using a private histogram for each thread

3.4. GPU: THREAD-PRIVATE HISTOGRAM 37

random image is comparable, but not equal. The degenerate image contains only
pixels with the same value, and therefore does not experience any memory bank
conflicts and shows the best performance of the four images. The solution with
the 32 threads per thread block, and hence 96 active threads per SM, performs
better than the solution with the 64 threads per thread block, and hence only 64
active threads per SM.

The second layout assigns the threads in a warp to private memory banks.
Therefore no memory bank conflicts can occur within a warp, at the cost of more
complicated index calculations. When a thread block size of 32 threads is used, no
inter-warp conflict can occur, as all first warps of each thread block (all warps in
this case) are executed by the first warp scheduler. When a thread block size of 64
threads is used, both schedulers in the SM are active, and inter-warp conflicts can
occur when both warps want the access the scratchpad memory simultaneously.

The results for this second layout are also shown in Fig. 3.5 and are labeled
layout 2, the same four images are used. Because there are no bank conflicts, the
same throughput is achieved for all four images. Like the first layout, the solution
with 96 active threads (32 threads per thread block) outperforms the solution
with 64 active threads. Only the degenerate image shows a worse performance for
layout-2 than for layout-1, the two pictures and the random image benefit from
the conflict free access pattern of the second layout.

In the experiment of Fig. 3.6 a 64-bin histogram is created with a private
sub-histogram for each thread. The bins are stored as 32-bit values, resulting
in a sub-histogram size of 256 bytes. Results are shown for the three different
memory layouts, four GPUs and a range of threads per thread block. The number
of thread blocks per SM is indicated by the width of each bar in Fig. 3.6, a larger
bar indicates more thread blocks per SM. The GeForce 8800 GT has 16 kB of
scratchpad memory per SM, of which a few bytes are used for kernel arguments.
Therefore the maximum thread block size is 32 threads. The other GPUs are
limited by the 48 kB of scratchpad memory per thread block limit, therefore at
most 192 threads per SM are possible, which will fill up the 48 kB completely.
The histogram-major with padding memory layout requires more memory than
the other two layouts due to padding, and therefore is limited to 160 threads.

For the four GPUs and all thread block sizes tested, the best performance is
achieved by the bin-major memory layout, as shown in Fig. 3.6. Adding padding

Table 3.4: Configuration for each GPU which resulted in the best execution time as
shown in Fig. 3.6 for the 64-bin thread-private histogram experiments.

8800 GT GTX 470 GTX Titan GTX 750 Ti

threads per thread block 32 32 32 32
thread blocks per SM 1 6 6 8
scratchpad memory usage 8 kB (50%) 48 kB (100%) 48 kB (100%) 64 kB (100%)
execution time 0.62ms 0.13ms 0.14ms 0.14ms

38 CHAPTER 3. EFFICIENT HISTOGRAMMING

to the sub-histogram major memory layout improves performance significantly
compared to the layout where no padding is used, but only to match the bin-
major memory layout in the best case. The lowest execution time is achieved
for each GPU by using only 32 threads per thread block, and as many thread
blocks as the SM can support. The best configuration for each GPU is listed
in Table 3.4. As the bins are stored as 32-bit words, the bin-major memory
layout with 32 threads per thread block results in a private memory bank in the
scratchpad memory for each thread. Similar to our previous results in [73] for a
64-bin histogram using 16-bit words for the bins, a private memory bank for each
thread results in the best performance for the thread-private histogram method.

3.5 GPU: warp-private histogram
Due to memory restrictions, the thread-private histogram method described in
the previous section is limited to histograms with a small number of bins, since
each thread requires a full copy of the complete set of bins. This means that only
a limited number of threads can be active, as they all have to share the small on-
chip scratchpad memory, and hence the performance is limited due to the relative
low number of active threads.

The solution to both limitations is to use one sub-histogram per warp (a
group of 32 threads) rather than per individual thread. This is first described
by Podlozhnyuk in [92] and Shams and Kennedy in [96]. This reduces the re-
quired amount of scratchpad memory by a factor of 32, and hence makes it pos-
sible to create histograms with more bins and have more active threads per SM.
The downside is that the threads in a warp have to cooperate in creating their
sub-histogram. The first CUDA programmable GPUs did not support atomic
operations on the scratchpad memory, therefore software atomic operations were
introduced.

The software atomic operations rely on the SIMD-style execution of warps in
an SM. Each thread in a warp executes the same instruction at the same time.
Even if a thread is stalled due to memory conflicts for example, the other threads
in the warp stall as well until all threads have finished the memory access and
are ready to execute the next instruction. The CUDA implementation of software
atomic operations as described by Podlozhnyuk in [92] is given in Listing 3.4. A
similar implementation is described by Shams and Kennedy in [96]. A schematic
overview of these of software atomic operation can be found in Fig. 3.7.

The function addData256 in Listing 3.4 requires three arguments: s_WarpHist
is a pointer to a warp’s private histogram, data is the pixel value for which the
corresponding bin has to be incremented and threadTag is a unique tag for each
thread in a warp for which the lower five bits of the thread index can be used.
The current value of the histogram-bin is loaded and the old tag is stripped on
line 8 in Listing 3.4. Next the bin is incremented and the thread’s tag is added on
line 9. Finally the updated bin with the new tag is stored in the warp’s histogram

3.5. GPU: WARP-PRIVATE HISTOGRAM 39

scratchpad memory

old
tag data my

tag data

==+1

load

add tag

store load

equalnot equal, restart

Figure 3.7: Block diagram of the software atomic operations [73].

in the scratchpad memory on line 10. On line 11 the just stored bin-with-tag
is read back to check if the write was successful. If multiple threads write to
the same location, i.e. update the same bin, only one thread will succeed and
all other writes will be lost. In case the read back value on line 11 is not equal
to the stored bin-with-tag from line 10, the load-update-store cycle of lines 7–11
is repeated until the write is successful. In the worst-case scenario where all 32
threads in a warp update the same bin, this loop is executed 32 times. In the
best case each thread updates a different bin, and the loop is executed only once.

In [73] we evaluated the software atomic operations described by Podlozh-
nyuk [92] and Shams and Kennedy [96], but also extended their method with four
extensions. The same four images are used as in the evaluation of our thread-
private histogram method [73] described in Section 3.4. Two pictures are used
(image1 and image2) and two synthetic benchmarks, degenerate with a single pixel
color and random with random pixel values. The results are shown in Fig. 3.8.

Podlozhnyuk’s implementation [92] is used as a baseline. Experiments with
both images show a reasonable performance level, compared to the thread-private
histogram method in Fig. 3.5, although the performance difference between the
two images is large. The degenerate image has a very low throughput, since the

1 __device__ void addData256(
2 volatile unsigned int *warphist , // histogram to be updated
3 unsigned int data , // bin index to be incremented
4 unsigned int threadTag) // current thread ’s tag
5 {
6 unsigned int count;
7 do{
8 count = warphist[data] & 0x07FFFFFF; // strip old tag
9 count = threadTag | (count + 1); // increment bin value

10 warphist[data] = count; // store with new tag
11 }while(warphist[data] != count) // repeat until success
12 }

Listing 3.4: Software atomics implementation by Podlozhnyuk [92].

40 CHAPTER 3. EFFICIENT HISTOGRAMMING

baseline data shuffling no-coalescing hw-atomics no-coalescing
hw-atomics

0

5

10

15

20

25
B
a
n
d
w

id
th

(G
B
/
s)

7.2 7.9 8.4 9.5 8.8

4.9
6.8 7.5 6.4 6.8

1.2 1.2 1.2 0.7 0.7

11.2
8.9 8.5

13.6

9.2

image1 image2 degenerate random

Figure 3.8: Results from [73] (Section 6) for a 256-bin histogram using a private
sub-histogram per warp on a GeForce GTX 470. Four extensions to the baseline by
Podlozhnyuk in [92] are evaluated for four images.

single color in the image results in all threads updating the same bin. This means
that the loop of the software-atomics has to be executed as many times as there
are threads in a warp, leading to this small throughput value. The random image
on the other hand has a uniform distribution of pixel values, and achieves the
highest throughput of all images.

The first extension in [73] applies a pre-processing step on the input images.
The pixels are rearranged in a separate kernel, to create a more uniform distri-
bution of the pixels. For the two pictures this results in an improved throughput
compared to the baseline. In the degenerate image all pixels have the same value,
so rearranging does not improve performance. In fact, performance is slightly
lower due to the time it costs to rearrange the pixels. The same happens with
the random image, where the pixels already had a good distribution. Here the
rearranging reduces the final throughput significantly.

In the baseline implementation pixels are read coalesced, and hence consecu-
tive pixels are read by consecutive threads. As pixels close together in an image
often have the same color, this leads to threads in a warp updating the same
bin. This was resolved in the first extension by pre-shuffling the input pixels. In
this second extension the memory pixels are no longer read coalesced, but with a
stride. Therefore consecutive threads will read pixels which have a lower correla-
tion, but at the cost of uncoalesced memory transfers. For the two pictures this
results in an improved performance over the previous extension. Pre-shuffling the
input pixels in a separate kernel costs more than reading uncoalesced for these
images. The degenerate image does not benefit from shuffling of the input data,
as all pixels have the same value. Therefore the performance is not improved by
this extension. The random image already had a good distribution of the pixels in
the baseline implementation, and hence only suffers from the uncoalesced memory
accesses while there is nothing to gain by not reading consecutive pixels.

The third extension replaces the software atomics with the hardware atomics
available in the GeForce GTX 470. The GPU used in the original implementa-

3.5. GPU: WARP-PRIVATE HISTOGRAM 41

tions by Podlozhnyuk [92] and Shams and Kennedy [96] does not support hard-
ware atomics on the scratchpad memory, but the GeForce GTX 470 used in the
experiments of Fig. 3.8 does. For both pictures and the random image using the
hardware atomics improves performance over the baseline. The degenerate image
however shows a significant lower performance than the baseline. Clearly images
with a high number of conflicting threads updating the same bin (image2, degen-
erate) do not benefit from the hardware atomics, while images with a low number
of conflicts (image1, random) do benefit.

The final extension is the combination of extension two and extension three,
using uncoalesced memory accesses to read less correlated pixels and hardware
atomics. This does improve performance for image2, but image1 and random suffer
from the uncoalesced memory accesses. In the end the best performance is ob-
tained using uncoalesced memory accesses and software atomics (extension two)
for the images image2 and degenerate. For image1 and random the best perfor-
mance is achieved by using coalesced memory accesses and hardware atomics.

In this work the software atomic operation approach as described in [73,92,96]
is extended with the use of sub-histograms. Each warp’s private histogram is now
represented by a number of sub-histograms which are equally divided between the
threads in a warp. The number of sub-histograms per warp is varied from one to
32, the number of threads in a warp for all GPUs tested. Pixels are read as vectors
of four elements by each thread. This is a compromise between processing non-
consecutive pixels by consecutive threads and reading coalesced from memory as
discussed above. Memory accesses to these small vectors can still be coalesced by
the hardware, while the pixels processed by each thread are no longer consecutive.
The results of calculating a 256-bin histogram using the warp-private histogram
method are shown in Fig. 3.9 for four different GPUs. Also the three different
memory layouts as described before (sub-histogram-major, sub-histogram-major
with padding and bin-major) are evaluated. The number of threads per thread
block is varied from 32 to 1024, increasing in steps of 32 which is the number
of threads in a warp. The number of thread blocks per SM (between one and
eight) is indicated by the width of each bar in Fig. 3.9, a larger bar indicates
more thread blocks per SM. The total number of threads per SM, the product of

Table 3.5: Configuration for each GPU which resulted in the best execution time as
shown in Fig. 3.9 for the warp-private histogram experiments.

8800 GT GTX 470 GTX Titan GTX 750 Ti

memory layout bin-major bin-major bin-major bin-major
sub-histograms (per warp) 2 2 1 2
threads per thread block 64 352 736 512
thread blocks per SM 3 2 2 2
scratchpad memory usage 12 kB (75%) 44 kB (92%) 46 kB (96%) 64 kB (100%)
execution time 0.88ms 0.28ms 0.18ms 0.33ms

42 CHAPTER 3. EFFICIENT HISTOGRAMMING

1 2 4 8 16 32

sub-histograms

0

2

4

6

8

10

ex
ec

.
ti

m
e

(m
s)

GeForce 8800 GT (Tesla)

hist-major

hist-major, w. pad.

bin-major

1 2 4 8 16 32

sub-histograms

0

2

4

6

8

10

ex
ec

.
ti

m
e

(m
s)

GeForce GTX 470 (Fermi)

hist-major

hist-major, w. pad.

bin-major

1 2 4 8 16 32

sub-histograms

0

2

4

6

8

10

ex
ec

.
ti

m
e

(m
s)

GeForce GTX Titan (Kepler)

hist-major

hist-major, w. pad.

bin-major

1 2 4 8 16 32

sub-histograms

0

2

4

6

8

10

12

ex
ec

.
ti

m
e

(m
s)

GeForce GTX 750 Ti (Maxwell)

hist-major

hist-major, w. pad.

bin-major

Figure 3.9: 256-bin histogram on four GPUs using a private histogram for each warp

3.6. GPU: SCRATCHPAD MEMORY ATOMICS 43

the number of threads per thread block and the number of thread blocks per SM,
is kept below the allowed number of threads per SM for each GPU, and is also
limited by the available amount of scratchpad memory in each SM.

The configurations which yield the lowest execution times are listed in Ta-
ble 3.5. As also shown in Fig. 3.9, the lowest execution times are obtained us-
ing the bin-major layout of sub-histograms in the memory. Furthermore, using
only two sub-histograms per warp gives the best performance. Using more sub-
histograms requires more scratchpad memory, which may limit the total number
of active threads on an SM, but also requires more time to combine the sub-
histograms which will limit the potential benefit. The best configurations in
Table 3.5 show that all these configurations use many threads per SM, and as
much scratchpad memory as is available.

3.6 GPU: scratchpad memory atomics
In this last GPU implementation of the histogram algorithm a hardware feature
is used which was not available when the previous implementations were devel-
oped: hardware atomic operations on the scratchpad memory. Therefore a single
histogram for each thread (Section 3.4) is no longer required. Also the software
atomic operations at warp level (Section 3.5) can be discarded. The NVIDIA
Fermi (e.g. GTX 470) and Kepler (e.g. GTX Titan) architectures use lock bits
on the scratchpad memory to implement atomic operations. These require mul-
tiple instructions. The NVIDIA Maxwell architecture (e.g. GTX 750 Ti) has a
dedicated instruction for each atomic operation on the scratchpad memory.

Atomic operations on scratchpad memory in the Fermi and Kepler architecture
are implemented using lock bits on the scratchpad memory. The layout of the
scratchpad memory and the lock bits is investigated in detail in [26] by micro-
benchmarking and information from an NVIDIA patent [9]; a summary is given
in Section 2.3.5. An example assembly listing for an atomic addition on an integer
stored in the scratchpad memory is given in Listing 3.5.

The load instructions on the first line returns both the data stored at the
indicated address (R9) in register R7 and a flag that determines if the lock was
successfully acquired in predicate register P0. All threads in a warp will execute
this instruction in parallel. Some may not acquire a lock because: (a) the lock
is already taken by some previous access, (b) another thread in the same warp
accesses the same memory location and acquires the corresponding lock or (c)
another thread in the same warp accesses another memory location and acquires
the lock which happens to be shared with the memory location this thread is
accessing. If the lock is successfully acquired by a thread, it may then modify the
data on line 2, store the new value and release the lock on line 3. If the lock was not
successfully acquired, the thread should attempt to acquire the lock again, hence
the branch instruction on line 4. Threads in the warp that did successfully acquire
a lock will not follow the branch, and wait for the other threads to complete before

44 CHAPTER 3. EFFICIENT HISTOGRAMMING

1 2 4 8 16 32

sub-histograms

0
1
2
3
4
5
6
7
8

ex
ec

.
ti

m
e

(m
s)

GeForce GTX 470 (Fermi)

hist-major hist-major, w. pad. bin-major

1 2 4 8 16 32

sub-histograms

0
1
2
3
4
5
6
7
8

ex
ec

.
ti

m
e

(m
s)

GeForce GTX Titan (Kepler)

hist-major hist-major, w. pad. bin-major

1 2 4 8 16 32

sub-histograms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ex
ec

.
ti

m
e

(m
s)

GeForce GTX 750 Ti (Maxwell)

hist-major hist-major, w. pad. bin-major

Figure 3.10: 256-bin histogram on four GPUs using atomic operations on scratchpad
memory

3.6. GPU: SCRATCHPAD MEMORY ATOMICS 45

1 /*0210*/ LDSLK P0, R7, [R9]; // load and lock
2 /*0218*/ @P0 IADD R10 , R7 , 0x1; // increment by 1
3 /*0220*/ @P0 STSUL [R9], R10; // store and unlock
4 /*0228*/ @!P0 BRA 0x210; // branch if lock was not acquired

Listing 3.5: Assembly code for an atomic addition on the Fermi instruction set.

continuing executing the remainder of the program. The number of iterations the
code in Listing 3.5 is executed depends on the number of addresses which map
to the same lock. In the worst case the loop is executed 32 times, the number of
threads in a warp.

Histogram computations using scratchpad memory atomics were first described
by both Gómez-Luna et al. in [25] in July 2012 and Van den Braak et al. in [109]
in August 2012. Both use an NVIDIA Fermi GPU for evaluation. In [25] this
approach is called “R -per-block”, in which the number of sub-histograms is called
the replication factor R . Padding is used to avoid bank conflicts when the his-
togram size is a multiple of the number of banks in the scratchpad memory. The
memory layout of the “R -per-block” approach corresponds to the sub-histogram-
major with padding memory layout described before. In [109] the use of sub-
histograms is called “bin-stretching” which corresponds to the bin-major memory
layout. The optimal stretching factor S is calculated as the maximum number of
sub-histograms which will fit in the scratchpad memory.

The results of calculating a 256-bin histogram for all three GPUs which sup-
port atomic operations on the scratchpad memory are shown in Fig. 3.10. The
number of sub-histograms is varied from one to 32, similar to the warp-private-
histogram experiments in Section 3.5. There is no contention for bins within a
warp when 32 (or more) sub-histograms are used, as there is one sub-histogram
for each thread in a warp. Also the three different memory layouts as described
before (sub-histogram-major, sub-histogram-major with padding and bin-major)
are evaluated. The number of threads per thread block is varied from 32 to 1024,
increasing in steps of 32 which is the number of threads in a warp. The number
of thread blocks per SM (between one and eight) is indicated by the width of
each bar in Fig. 3.10, a larger bar indicates more thread blocks per SM. The total
number of threads per SM, the product of the number of threads per thread block
and the number of thread blocks per SM, is kept below the allowed number of
threads per SM for each GPU.

The first graph in Fig. 3.10 shows the results for the GeForce GTX 470 (Fermi)
GPU. The results of the sub-histogram-major (with padding) memory layout are
comparable to the “R -per-block” approach [25], the results of the bin-major mem-
ory layout can be compared with the “bin-stretching” approach [109]. When only
one sub-histogram is used there is no difference between the three memory layouts
and hence their performance is equal. When multiple sub-histograms are used the
histogram-major memory layout suffers from bank conflicts, which can be avoided
by using padding. The bin-major memory layout outperforms the other two lay-

46 CHAPTER 3. EFFICIENT HISTOGRAMMING

Table 3.6: Configuration for each GPU which resulted in the best execution time as
shown in Fig. 3.10 for the scratchpad memory atomics experiments.

GTX 470 GTX Titan GTX 750 Ti

memory layout bin-major bin-major bin-major
sub-histograms 32 32 8
threads per thread block 768 1024 512
thread blocks per SM 1 1 4
scratchpad memory usage 32 kB (67%) 32 kB (67%) 32 kB (50%)
execution time 0.12ms 0.08ms 0.05ms

outs, especially when the number of threads active on an SM is low. The best
performance is achieved with the maximum number of sub-histograms tested, 32,
and a large number of threads per SM, as also shown in Table 3.6.

A similar performance profile is shown for the GeForce GTX Titan (Kepler)
GPU in the second graph in Fig. 3.10. The bin-major memory layout outperforms
the other two memory layouts, and the best performance is achieved when 32 sub-
histograms are used in combination with as many threads as an SM can support.

The atomic instructions available in the GeForce GTX 750 Ti (Maxwell) GPU
change the results compared to the other two GPUs. The bin-major memory
layout still outperforms the other two memory layouts, but the best performance
is achieved using only eight sub-histograms per thread block. The implementation
of atomic operations in the Fermi and Kepler architecture using lock bits on
scratchpad memory locations meant that conflicts were expensive, as a number
of instructions (load, add, store, branch, see Listing 3.5) had to be re-executed.
In the Maxwell architecture only the atomic instruction has to be re-executed
when a conflict occurs, therefore conflicts are less expensive. Using multiple sub-
histograms still reduces the number of conflicts, which improves execution time.
However, the sub-histograms have to be merged, leading to a trade-off between
conflict reduction by using more sub-histograms and the time required to merge
these sub-histograms. For the experiment in Fig. 3.10 the best trade-off is found
using eight sub-histograms per thread block, and four thread blocks per SM.

3.7 Discussion
An overview of the best execution times for each of the four approaches described
in the previous sections is shown in Table 3.7 for all four GPUs. The optimized
CPU implementation in Section 3.1 resulted in a execution time of 0.24ms using
eight threads and SSE or AVX vector extensions on the Intel® Core™ i7-4770,
which has four cores and was introduced in 2013. All four GPUs outperform the
CPU significantly, except for the GeForce 8800 GT, which is six years older than
the Core™ i7-4770.

3.7. DISCUSSION 47

GA WP
0

20

40

60

80

100

ex
ec

.
ti
m

e
(m

s)

GeForce 8800 GT (Tesla)

GA TP WP SA
0

2

4

6

8

10

ex
ec

.
ti
m

e
(m

s)

GeForce GTX 470 (Fermi)

GA TP WP SA
0

2

4

6

8

10

ex
ec

.
ti
m

e
(m

s)

GeForce GTX Titan (Kepler)

GA TP WP SA
0

2

4

6

8

10

ex
ec

.
ti
m

e
(m

s)

GeForce GTX 750 Ti (Maxwell)

Figure 3.11: Distribution of execution times for a 256-bin histogram on four GPUs
using either global memory atomics (GA), thread private sub-histograms (TP), warp
private sub-histograms (WP) or scratchpad memory atomics (SA).

Global memory atomic operations have been improved by NVIDIA over the
successive generations of GPU architectures, which is reflected in the improved
execution time for the global memory atomics implementation in Table 3.7. The
global memory atomics implementation on the GTX Titan even outperforms the
CPU implementation.

Despite all improvements to the global memory atomics, using the scratchpad
memory improves execution time significantly, between 1.6× for the GTX Titan
to 12× for the GTX 470. The approaches which use one sub-histogram per thread
or one histogram per warp are outperformed by the implementation which uses
the hardware atomic operations of the scratchpad memory. Although only one
GPU is used for each architecture in these experiments, the atomic instructions

Table 3.7: Execution time for the best configuration of the four implementations of
the 256-bin histogram algorithm on four GPUs.

8800 GT GTX 470 GTX Titan GTX 750 Ti

global memory atomics 5.88ms 1.38ms 0.13ms 0.57ms
thread-private hist. (64-bins) 0.62ms 0.13ms 0.14ms 0.14ms
warp-private histogram 0.88ms 0.28ms 0.18ms 0.33ms
scratchpad memory atomics - 0.12ms 0.08ms 0.05ms

48 CHAPTER 3. EFFICIENT HISTOGRAMMING

in the Maxwell architecture (GTX 750 Ti) boost performance of the histogram
algorithm compared to the lock bit atomic operations in the Fermi (GTX 470)
and Kepler (GTX Titan) architectures.

The common approach to achieve good performance for all four methods on
each of the four GPUs is to use as many sub-histograms as will fit in the scratchpad
memory, and to use as many threads an SM will support. In order to get the best
possible performance, the number of threads per block and the number of thread
blocks per SM have to be tuned. Usually a configuration with two smaller thread
blocks performs better than one large thread block, as different thread blocks can
be scheduled independently. Exact numbers depend on the method and GPU
used, as well as the number of bins in the histogram and the distribution of colors
in the input image and its size.

An overview of the distribution of execution times for the range of experiment
settings (e.g. number of sub-histograms, number of threads per block, number of
thread blocks) is shown in Fig. 3.11 for the four implementations and the four
GPUs tested. A wider blob for a certain execution time indicates that more
experiment settings lead to this execution time. It clearly shows that not only
the best execution time for each method has improved for more recent GPUs, but
also the distribution of execution times, making it easier to reach a performance
level close to the optimum.

3.8 Related work
The four GPU methods described in the previous sections are all implemented
using general purpose languages for GPUs, e.g. CUDA or OpenCL. Before these
languages were introduced the histogram algorithm was implemented in 2D/3D
rendering APIs such as OpenGL. One of the first implementations is described in
“Image processing tricks in OpenGL” by Green [30] using an OpenGL fragment
shader. Another implementation is found in “OpenVIDIA: parallel GPU computer
vision” by Fung and Mann in [20]. Three other implementations using OpenGL
focusing on histogram computations are “GPU histogram computation” by Fluck
et al. [15], “Efficient computation of histograms on the GPU” by Kubias et al. [47]
and “Efficient histogram generation using scattering on GPUs” by Scheuermann
and Hensley in [94].

Thread private sub-histograms have been described as a promising technique
to improve histogramming on GPUs in many papers. The first paper to propose
this technique by Podlozhnyuk [92] has already been discussed in Section 3.4. Also
the optimizations proposed by Shams and Kennedy [96] are described in that sec-
tion. Milic et al. [59] also propose thread private histograms in the scratchpad
memory, but update the final histogram in global memory using atomic opera-
tions. This eliminates the second kernel to combine all sub-histograms which is
required by the approach used in this thesis. Milic et al. also propose a sort-
search approach, which first sorts the input and then searches for the position of

3.9. CONCLUSIONS 49

upper bounds among sorted elements according to bin widths. This approach is
slower than the thread private histogram approach, unless thousands of bins are
used. Another approach to reduce lock conflicts caused by the atomic updating
bins in a histogram is presented by Zhang et al. [119]. They propose to hash the
bin indices, which is a more complex and compute intensive solution than the
sub-histogram-major with padding memory layout described in this thesis.

Using the hardware atomic operations on the scratchpad memory has been
introduced by both Gómez-Luna et al. in [25] and Van den Braak et al. in [109].
Both describe similar techniques, only Gómez-Luna et al. use the sub-histogram-
major with padding memory layout while Van den Braak et al. use the bin-major
memory layout. Both techniques are described in detail in Section 3.6. To the
best of your knowledge this is the first work which compares both techniques
directly, and compares them to all the other histogramming techniques described
in this chapter.

3.9 Conclusions
Histogramming on a CPU is evaluated in this chapter using multi-threading and
vector instructions (SSE and AVX). Multi-threading improves performance lin-
early with the number of cores used, but using SMT (e.g. hyper-threading) only
shows a small extra performance improvement. The vector instructions can only
be used in a part of the histogramming implementation, but still improve perfor-
mance significantly, up to two times for the fastest implementations.

Four software approaches to implement histogramming on GPU have been
described in this chapter: either by using global memory atomics, per thread
private histograms, per-warp private histograms and by using scratchpad memory
atomic operations. All four approaches are tested on the four GPUs as given in
Table 2.2 for the three different memory layouts described in Section 3.2.

Global memory atomic operations have been improved significantly in sub-
sequent generations of GPUs. This is clear from the histogramming results us-
ing global memory atomics, which improves 45× between the 8800 GT and the
GTX Titan. In the oldest GPU the difference between the best and worst config-
uration considering memory layout, threads and threads per thread block used is
about 18×, while for the newest GPU this is only 3×. This means that it is much
easier to reach a good performance level on Maxwell GPUs than it was on Tesla
GPUs. The main thing to consider is how many sub-histograms to use. Generally
more sub-histograms give a better execution time.

The per thread private histogram and per-warp private histogram approach
had to be used on Tesla GPUs (e.g. 8800 GT) as these GPUs did not support
atomic operations on the scratchpad memory. Newer GPUs do support these
operations, and they lead to a lower execution time. As these approaches are
complicated and do not deliver performance wise, it is better to use a scratchpad
memory atomic implementation.

50 CHAPTER 3. EFFICIENT HISTOGRAMMING

The best possible histogramming implementations use the atomic operations
on the scratchpad memory. Newer GPUs not only show better performance,
but also the influence of the number of sub-histograms, memory layout, and the
number of threads and thread blocks used on the execution time is much lower.

The absolute best performance is obtained by the GTX 750 Ti Maxwell GPU
with its scratchpad memory hardware atomic operations. It outperforms the best
CPU implementation by a factor of five. This shows that the hard-to-parallelize
histogram algorithm can be implemented efficiently on a many-core GPU.

CHAPTER 4

Hough transform

The Hough transform is a popular technique to locate shapes in images. It is
often used to find straight lines and circles in images, but it can in principle be
used to detect any arbitrary shape. In this chapter it is only used for lines. The
Hough transform is a robust technique that works well even in the presence of
noise and occlusion. It is used in many computer vision and image processing ap-
plications, like robot navigation [16], industrial inspection and object recognition
applications [115]. The Hough transform is also used in other fields than computer
vision, such as tracking particles in the Large Hadron Collider (LHC) [34,35].

Like the histogram algorithm described in Chapter 3 the Hough transform is
also a voting algorithm. It takes a binary image as its input and creates a two
dimensional parameter space called a Hough space. In the histogram algorithm
the color of a pixel determined which bin had to be incremented in the parameter
space. For the Hough transform the pixel value only determines if a vote has to
be placed or not, the pixel location determines where the vote has to be placed in
the Hough space. Votes in the Hough space are accumulated, the locations of the
maxima in the Hough space indicate the parameters for the lines in the image.

A complete application for detecting shapes in images usually consists of sev-
eral steps. These steps are illustrated in Fig. 4.1 and described below:

Edge detection The first step is finding the edges in the input image, for ex-
ample using Sobel edge detection.

Binarization Next the edge-image is converted to a binary image. A common
technique to find a threshold value is Otsu’s algorithm [86], which uses a
histogram of the edge-image.

51

52 CHAPTER 4. HOUGH TRANSFORM

(a) input image (b) edge detection

(c) binarization (d) Hough space voting

Figure 4.1: Test image of an airplane with the most dominant line (in red) found by
the Hough transform (a); intermediate images after edge detection (b) and binarization
(c); final Hough spaces (d).

Hough space voting The pixels which remain after binarization are used to
vote in the Hough space. Where the votes are placed is determined by the
location of these pixels.

Locating maxima in Hough space The final step is locating the maxima in
the Hough space, which indicate the parameters for the lines in the image.

After the second step, binarization, the number of pixels left for processing
is only a fraction of the original number of pixels. The exact number of pixels
depends on the threshold value, and varies from one image to the other. In the
Nistér and Stewénius benchmark set [68] used in previous work [108] the average
number of pixels after binarization is 9.6%. This benchmark set is used to rec-
ognize objects in images, therefore the images contain a single object on a plain
surface. This leads to a relative low number of edge pixels after binarization.
In the Van Hateren natural image database [110] used in this work, the average
number of pixels left for processing after binarization is higher, 21%. The dis-
tribution of the number of pixels remaining in the 4167 images of this dataset is
shown in Fig. 4.2. Some images have more than 50% of the pixels remaining after
binarization, like a close-up of a patch of grass. The fact that only a fraction of
the pixel are required for thresholding is used in the second GPU implementation,
described in Section 4.4.

4.1. HOUGH TRANSFORM ALGORITHM FOR LINES 53

0% 10% 20% 30% 40% 50% 60%

percentage of edge pixels

0%

1%

2%

3%

4%

5%
o
cc

u
re

n
ce

0%

20%

40%

60%

80%

100%

cu
m

u
la

ti
ve

o
cc

u
re

n
ce

Figure 4.2: Distribution of the number of edge pixels in the images of the Van Hateren
natural image database [110].

In this chapter the focus is on the third step: voting in the Hough space. First
the Hough transform algorithm is described in Section 4.1. Both the original
Hough transform in the Cartesian coordinate system as well as the more com-
monly used Hough transform in the polar coordinate system are discussed. The
vote space of the Hough transform for lines is two dimensional and consists of
a number of Hough lines, where a histogram is only one dimensional. A multi-
core CPU implementation is described in Section 4.2. This implementation is
used as a reference point for three different GPU implementations. The first uses
atomic operations on the off-chip global memory and is described in Section 4.3.
The second implementation is described in Section 4.4 and uses atomic opera-
tions on the on-chip scratchpad memory. The third implementation requires no
atomic operations and is described in Section 4.5. The performance of the GPU
implementations is improved by duplicating the Hough space. This reduces the
contention for the bins in the Hough space. Similar to the GPU histogram im-
plementations, three different methods of placing the lines of a Hough space in
memory are evaluated: sub-Hough-line major (HL-major), sub-Hough-line major
with padding (HL-major, w. pad) and bin-major (bin-major). Related work and
conclusions are given in Sections 4.6 and 4.7 respectively.

4.1 Hough transform algorithm for lines

The Hough transform for lines [42] is a voting procedure where each feature (edge)
point in an image votes for all possible lines passing through that point. All votes
are stored in the so called Hough space, which is two dimensional for the Hough
transform for lines. The size of the Hough space is determined by the size of the
input image and the required accuracy for the parameterization of the lines. Two
different parameterizations for lines and their corresponding Hough transforms
are described next in this section.

54 CHAPTER 4. HOUGH TRANSFORM

b
(xp, yp)

b
(xq, yq)

x

y

(a)

(a, b)

a

b

b

(b)

Figure 4.3: (a) A line through two points in an image. (b) Two lines (sets of votes) in
the Hough space corresponding to the two points.

4.1.1 Cartesian coordinate system
A straight line can be described in a Cartesian coordinate system with a slope a
and some intersect b with the vertical axis by the following equation:

y = ax+ b (4.1)

In the Hough transform the characteristics of the straight line are not considered
as image points (xi, yi), but instead in terms of its parameters a and b. Therefore
Eq. 4.1 can be rewritten to:

b = yi − xia (4.2)

For each image point (xi, yi) a line of votes is placed in the Hough space for a
range of angles θ. Parameter a is calculated as a = tan(θ), and the corresponding
values for b are calculated with Eq. 4.2. In Fig. 4.3a the two points (xp, yp) and
(xq, yq) form a line. The two corresponding lines in the Hough space are shown
in Fig. 4.3b. At the intersect of these two lines the (best approximated) value for
the parameters a and b can be found.

The parameters can become an infinite number when the line is vertical.
Therefore the Hough space is usually divided into two parts: one part for an-
gles between −45◦ and 45◦ which uses Eq. 4.2 and one part for angles between
45◦ and 135◦ which uses Eq. 4.3.

b′ = xi − yia
′ (4.3)

4.1.2 Polar coordinate system
In the polar representation a line is parameterized with ρ and θ [13], as shown
in Fig. 4.4. Parameter ρ represents the distance between the line and the origin,
and represents θ the angle of the vector from the origin to this closest point, as
given by Eq. 4.4. Eq. 4.1 and Eq. 4.4 are related by Eq. 4.5.

ρ = x cos(θ) + y sin(θ) (4.4)

4.2. HOUGH TRANSFORM ON CPU 55

θ

x

y ρ

Figure 4.4: Polar representation of a line.

a = − 1
tan(θ) b = ρ

sin(θ) (4.5)

In this polar parameterization the parameters ρ and θ are bounded. The angle θ
ranges from 0◦ to 180◦ and the radius ρ ranges from −W to

√
W 2 +H2, where

W and H are the width and height of the image respectively.

4.2 Hough transform on CPU
To set a reference point for the GPU implementations of the Hough transform
described in Section 4.3 to Section 4.5 a CPU implementation is investigated in
this section. The same CPU is used as for the histogram experiments described
in Section 3.1, the Intel® Core™ i7-4770. The multiple cores in this CPU are
utilized using OpenMP pragmas, and the SIMD instruction set extensions SSE
and AVX are used using intrinsic functions.

Similar to the histogram experiments described in Chapter 3, three different
implementations are made either without or with SSE or with AVX SIMD in-
structions. SSE and AVX instructions process 128-bit and 256-bit data words
in parallel respectively, or eight and sixteen 16-bit pixels in parallel. The SSE
and AVX SIMD instruction sets used do not support gather and scatter load and
store operations. Therefore only the calculations of the vote’s location in the
Hough space can be done in parallel, the voting itself is done sequentially. Since
the Hough transform is usually calculated using the polar coordinate system de-
scribed in Section 4.1.2, only the polar Hough transform is evaluated.

The value for the angle parameter θ ranges from 0◦ to 180◦, divided uniformly
in 120 steps in the experiments of this chapter. These steps are divided equally
over the CPU threads. This means that each CPU thread calculates a num-
ber of Hough lines, which are combined into the final Hough space. The CPU
implementation without SIMD instructions is shown in Listing 4.1.

Fig. 4.5 shows the results for calculating a Hough transform on a CPU using
one to eight threads, either user no SIMD instructions or SSE or AVX SIMD
instructions. Without the use of SIMD instructions the single core implementation
takes 60ms to process a 1536× 1024 image from the Van Hateren natural image

56 CHAPTER 4. HOUGH TRANSFORM

1 float sin_array[ANGLES];
2 float cos_array[ANGLES];
3 for(int i=0; i<ANGLES; i++) { // pre -calculate all
4 float a = i*PI *(1.0f/(ANGLES -1)); // sin() and cos() values
5 sin_array[i] = sinf(a); // of the tested angles
6 cos_array[i] = cosf(a); // between 0 and 180 degrees
7 }
8

9 // place votes for each pixel not equal to zero
10 #pragma omp parallel num_threads(THREADS)
11 {
12 const int tid = omp_get_thread_num (); // get the thread -id
13 const int angles_per_thread = ANGLES/THREADS;
14

15 // process the entire input , create a part of the output
16 const int start = tid*angles_per_thread;
17 const int end = (tid +1== THREADS) ? ANGLES
18 : (tid+1)*angles_per_thread;
19 const int angle_cnt = end - start;
20

21 // allocate a partial Hough space and set to zero
22 int hp[HS_WIDTH*angle_cnt];
23 memset(hp, 0, HS_WIDTH*angle_cnt*sizeof(int));
24

25 // process the entire input
26 for(int y=0; y<IMG_HEIGHT; y++) {
27 for(int x=0; x<IMG_WIDTH; x++) {
28 edge_t val = edges[y*IMG_WIDTH + x];
29 if(val < threshold)
30 continue;
31

32 // voting for all angles assigned to this thread
33 for(int i=start; i<end; i++) {
34 int r = (x*cos_array[i] + y*sin_array[i]) + IMG_WIDTH;
35 hp[(i-start)*HS_WIDTH + r]++;
36 }
37 }
38 }
39

40 // combine partial Hough spaces to one Hough space
41 for(int b=0; b<HS_WIDTH; b++) {
42 for(int th=0; th<angle_cnt; th++) {
43 houghspace [(th+start)*HS_WIDTH + b] = hp[th*HS_WIDTH + b];
44 }
45 }
46 }

Listing 4.1: Multi-core OpenMP implementation of the polar Hough transform for
lines. The number of threads used is set using the THREADS parameter, the angle
parameter θ is set using ANGLES. Each thread processes the entire input and creates a
part of the output. The final Hough space is joined together at the end.

4.3. GPU: GLOBAL MEMORY ATOMICS 57

1 2 3 4 5 6 7 8

N threads

0

10

20

30

40

50

60

70
ex

ec
.

ti
m

e
(m

s)
CPU CPU - SSE CPU - AVX

Figure 4.5: Hough transform on a CPU (Intel® Core™ i7-4770) using 1 to 8 threads

database [110]. Increasing the number of threads to four reduces the execution
time to 19ms. Using five threads increases the execution time to 24ms, as the
five threads cannot be divided equally over the four cores. Increasing the number
of threads to eight reduces the execution time to 18ms, a tiny improvement over
the implementation with four threads.

Using SSE and AVX SIMD instructions improves the execution time for the
single thread solution from 60ms to 49ms and 46ms respectively. Increasing
the number of threads to four reduces the execution time to 15ms and 14ms
respectively, while the eight thread implementation results in an execution time
of 14ms for the SSE implementation and 12ms for the AVX implementation.
Again the four extra threads over the four thread implementation do not improve
the execution time significantly. Nevertheless the total speed-up of the eight
thread AVX implementation over the single thread implementation without SIMD
instructions is 5×.

4.3 GPU: global memory atomics

The first GPU implementation is based on the CPU implementation and uses
atomic operations on the GPU’s global, off-chip memory. Since the Hough trans-
form is most often implemented using the polar coordinate system, only this ver-
sion is evaluated. Before voting in the global memory can commence the Hough
space has to be reset to all zeros. Then a kernel is started with one thread for each
pixel in the input image, as illustrated in the pseudo code of Listing 4.2. This im-
plementation combines the binarization step with the voting in the Hough space
step. If the value of a thread’s pixel is above the threshold (line 2), the thread
places a vote in the Hough spaces for each possible value of the angle parameter
(lines 4-10). To make sure the updates to the global memory do not interfere with
each other, atomic operations are used. To save redundant computations of the
sin() and cos() functions on the angle parameter, these values are pre-calculated
by the threads in each thread block and stored in the scratchpad memory.

58 CHAPTER 4. HOUGH TRANSFORM

1 2 3 4 5 6 7 8

sub-Hough spaces

0

500

1000

1500

2000

2500

ex
ec

.
ti

m
e

(m
s)

GeForce 8800 GT (Tesla)

HL-major HL-major, w. pad. bin-major

1 2 3 4 5 6 7 8

sub-Hough spaces

0

20

40

60

80

100

ex
ec

.
ti

m
e

(m
s)

GeForce GTX 470 (Fermi)

HL-major HL-major, w. pad. bin-major

1 2 3 4 5 6 7 8

sub-Hough spaces

0
1
2
3
4
5
6
7

ex
ec

.
ti

m
e

(m
s)

GeForce GTX Titan (Kepler)

HL-major HL-major, w. pad. bin-major

1 2 3 4 5 6 7 8

sub-Hough spaces

0

5

10

15

20

ex
ec

.
ti

m
e

(m
s)

GeForce GTX 750 Ti (Maxwell)

HL-major HL-major, w. pad. bin-major

Figure 4.6: Hough transform on GPU using global memory atomic operations.

4.3. GPU: GLOBAL MEMORY ATOMICS 59

1 pixel_value = image[x,y]
2 if(pixel_value > threshold) { // check if pixel value
3 // is above threshold
4 for t=0:N {
5 cv = cos_array[t] // sin() and cos() calculations
6 sv = sin_array[t] // are pre -calculated
7

8 r = x*cv + y*sv // convert pixel location to bin index
9 atomicAdd(HS[(t,r)], 1) // and increment bin in Hough space

10 } // for every angle parameter θ
11 }

Listing 4.2: GPU implementation using global memory atomics of the (polar) Hough
transform.

The execution time for a Hough transform using global memory atomic op-
erations is shown in Fig. 4.6. The number of sub-Hough spaces is varied from
one to eight. Four GPUs are tested, each with the three different memory lay-
outs described before in Section 3.2. The number of threads per thread block
is represented by the width of each bar in the graph. Bars can be overlapping.
This indicates that different settings lead to a similar performance level, which is
good from a programmability perspective. The configurations leading to the best
performance for each GPU are given in Table 4.1.

The GeForce 8800 GT performs poorly in this benchmark, with an execution
time around 1.5 seconds if only a single Hough space is used. Performance im-
proves when more sub-Hough spaces are used. The best tested configuration uses
eight sub-Hough spaces ordered in the Hough-line major layout (without padding)
and executes in 0.32 s. The CPU implementation performs the Hough transform
much faster in 14ms. This makes copying the results of the edge detection to the
CPU, calculating the Hough transform on the CPU, and then copying the results
back to the GPU a better solution than using atomic operations on the global
memory of the GeForce 8800 GT.

The GeForce GTX 470 shows a much better performance. Even when only one
sub-Hough space is used it outperforms the best implementation of the GeForce
8800 GT by about 7×. The best execution time of 15ms is achieved using eight
sub-Hough spaces in the bin-major ordering. It is interesting to note that the bin-

Table 4.1: Configuration for each GPU which resulted in the best execution time as
shown in Fig. 4.6 for the global memory atomics experiments.

8800 GT GTX 470 GTX Titan GTX 750 Ti

memory layout HL-major bin-major bin-major bin-major
sub-Hough spaces 8 8 4 4
threads per thread block 480 256 128 384
execution time 319ms 15ms 1.3ms 4.7ms

60 CHAPTER 4. HOUGH TRANSFORM

width

he
ig

ht

a

b

c

d

Figure 4.7: Fast implementation of the Hough transform on GPU. Each thread block
in the first kernel converts a part of the image to an array of pixel coordinates in the
scratchpad memory (a). The part of the array is added to the main array in global (off-
chip) memory (b). In the second kernel the array of pixel coordinates is processed by a
thread block to create one Hough line in the Hough space in the scratchpad memory (c).
When the complete array of coordinates has been processed, the Hough line is copied
to the Hough space in global memory (d).

major ordering gives the best execution time for this GPU and the Hough-line
major memory layout hardly benefits from using more sub-Hough spaces. This is
the exact opposite compared to the GeForce 8800 GT.

The GeForce GTX Titan improves performance by another 8× to 1.8ms
when only one sub-Hough space is used. The best execution time of 1.3ms is
achieved using only four sub-Hough spaces in the bin-major ordering. Similar to
the GeForce GTX 470 the Hough line major ordering performs worse than the
bin-major ordering. Using more sub-Hough spaces reduces the contention for bins
in the voting process, but also takes more time to combine together. In the his-
togram algorithm the vote space was very small, and so was the time to combine
sub-histograms. But in the Hough transform the vote space is much larger, and
so is time it takes to combine sub-vote spaces.

The GeForce GTX 750 Ti is a smaller GPU than the GeForce GTX Titan.
Therefore the best execution time is only 4.7ms, but similarly to the GTX Titan
this performance is achieved when only four sub-Hough spaces are used. Com-
pared to the GTX Titan the GTX 750 Ti’s performance is less sensitive to the
number of threads per thread block.

4.4 GPU: scratchpad memory atomics
The second GPU implementation attempts to improve processing speed by using
atomic operations on the on-chip scratchpad memory instead of the off-chip global
memory. As mentioned before, only a small part of the input image’s pixels remain

4.4. GPU: SCRATCHPAD MEMORY ATOMICS 61

1 pixel_value = image[x,y] // take a pixel from the image
2 if(pixel_value > threshold) { // only pixels above threshold
3 do {
4 index++ // increment index
5 SMEM_index = index // save index in SMEM
6 SMEM_array[index] = (x,y) // save location at index
7 } while(SMEM_array[index] != (x,y)) // check if stored location
8 } // equals original location
9 index = SMEM_index

Listing 4.3: Building an array of coordinates of edge pixels in scratchpad memory
(SMEM) (step a in Fig. 4.7).

after binarization and are used in the voting process. This means that most of the
threads in the previous solution are waiting for a few threads to finish. Therefore
this second GPU solution starts by making an array of all pixels that need to be
processed. A second kernel processes this array to create the Hough space. This
two-step process is illustrated in Fig. 4.7.

4.4.1 Step 1: creating the coordinates array
The creation of the array of pixel coordinates is inspired by the work in [73] (also
described in Section 3.5), where a histogram for each warp in a thread block is
made. For the Hough transform an array of only the pixels which have to be used
in the voting process is desired. To build this array in a parallel manner on the
GPU (step a in Fig. 4.7), small arrays are made on a warp-level granularity. How
an array per warp is made is summarized in pseudo-code in Listing 4.3. Note that
all threads in a warp execute the same instruction at the same time in parallel,
but some threads may be disabled due to branching conditions.

Each thread in a warp reads a pixel from the input image (line 1 in Listing 4.3).
As the pixel value is larger than the binarization threshold value (line 2), the
pixel’s coordinates need to be added to the array. The index of where these coor-
dinates are to be stored is increased by one (line 4), to ensure no previously stored
coordinates are erased. The new index is also stored in the on-chip scratchpad
memory (line 5), so threads in the warp which do not have to store coordinates
can update their index value after all coordinates in this iteration have been added
to the array (line 9). Now each thread tries to write its coordinate pair (x, y) to
the array in scratchpad memory at location index (line 6). Only one thread will
succeed (line 7), and the others have to retry to write to the next location in the
array (line 3-7).

There is a trade-off in the number of pixels each thread has to process. More
pixels per threads result in less arrays to combine later, but too many pixels per
thread means that there are not enough threads active to keep the GPU fully
utilized. Also the maximum number of pixels in each small array is limited by
the amount of scratchpad memory available.

62 CHAPTER 4. HOUGH TRANSFORM

Now all small arrays in the scratchpad memory have been made, they have
to be combined in one array in the off-chip global memory (step b in Fig. 4.7).
First one thread in each thread block sums the lengths of all warp-arrays of the
thread block. This sum is added by this single thread to the global length of all
arrays using a global atomic operation. This operation returns the value of the
global length before the sum was added. This global length value is now used to
tell each warp at which index in the global array their warp-array can be stored.

Another option is to have each warp update the global length of all arrays by
itself. This leads to many more atomic operations, which makes this approach
slower than to first sum the length of all warp-arrays in one thread block.

4.4.2 Step 2: voting in Hough space
A second kernel is used to vote in the Hough space. Since atomic operations
to the off-chip global memory are slow, the voting implementation is improved
compared to the voting implementation in Section 4.3. A single thread block is
used to create a single Hough line (one value for the angle parameter) in the Hough
space (step c in Fig. 4.7). The number of lines in the Hough space is determined by
the required accuracy of the angle parameterization. This implies that the entire
array will be read as many times as there are values for the angle parameter. Each
Hough line is first constructed in the scratchpad memory, and later copied to the
global memory to create the complete Hough space (step d in Fig. 4.7). This also
removes the requirement that the Hough space in global memory has to be reset
to zero, as was the case in the implementation in Section 4.3.

The execution time for the two-step approach using atomic operations on the
scratchpad memory is shown in Fig. 4.8. Similar to the experiments of Section 4.3,
the number of sub-Hough spaces is varied from one to eight. Only the three
GPUs which support atomic operations on the scratchpad memory are tested,
each with three different memory layouts. The number of threads per thread
block is represented by the width of each bar in the graph. The configurations
leading to the best performance for each GPU are given in Table 4.2.

The execution time of the scratchpad memory implementation on the GeForce
GTX 470 has improved compared to the implementation using global memory
atomic operations. Using only one sub-Hough space the execution is already

Table 4.2: Configuration for each GPU which resulted in the best execution time as
shown in Fig. 4.8 for the scratchpad memory atomics experiments.

GTX 470 GTX Titan GTX 750 Ti

memory layout bin-major bin-major bin-major
sub-Hough spaces 8 6 4
threads per thread block 1024 1024 288
execution time 2.6ms 1.8ms 1.7ms

4.5. GPU: CONSTANT TIME IMPLEMENTATION 63

down to 6.1ms. Increasing the number of sub-Hough spaces to eight reduces the
execution time further to just 2.6ms. Similar to the histogram experiments using
scratchpad memory atomic operations from Section 3.6, the bin-major memory
layout results in the best performance. Not just for the GTX 470, but for all
three GPUs evaluated.

The GeForce GTX Titan achieves an execution time of 4.1ms using only one
sub-Hough space, and 1.8ms when using six sub-Hough spaces. Surprisingly this
is slower than the implementation using atomic operations on the global memory.
It seems that the construction of the list of pixel coordinates takes too much time
for the scratchpad memory implementation to benefit from it. On the GTX Titan
the creation of this list takes 0.45ms, the voting step takes 1.4ms.

The GeForce GTX 750 Ti outperforms the GTX Titan in the scratchpad
memory implementation. It achieves an execution time of 1.9ms using only one
sub-Hough space, and 1.7ms using four sub-Hough spaces. Clearly the hardware
atomic instructions in the GTX 750 Ti improve performance significantly com-
pared to the lock based implementation of atomic operations in previous GPUs.
It takes 0.47ms to build a list of pixel coordinates on the GTX 750 Ti, and
the voting itself takes 1.2ms. This is a bit faster than the GTX Titan, but the
GTX Titan has 14 SMs where the GTX 750 Ti only has 5 SMs.

4.5 GPU: constant time implementation
The third GPU implementation does not required any atomic operations, not even
software emulated atomic operations as used in the histogram implementations
of Sections 3.4 and 3.5. The number of pixels to be processed after binarization
does not influence the processing time for this implementation. Unfortunately
this approach only works for the Hough transform in the Cartesian coordinate
system, and not in the polar coordinate system. Therefore the performance of
this implementation is not evaluated in this chapter, but a performance analysis
and comparison to the previous GPU implementations can be found in [108].
A graphical representation of this third GPU implementation in the Cartesian
coordinate system is shown in Fig. 4.9.

This implementation is based on the observation that given an angle para-
meter a′ in Eq. 4.3, the votes for a complete line in the input image are simply
shifted by a number yia

′. The same holds for the other part of the Hough space
where each column in the input image is shifted by xia according to Eq. 4.2.

In this GPU implementation, all threads in a thread block will together copy
a couple of lines of the input image to the on-chip scratchpad memory (step b in
Fig. 4.9). Then all threads read this part of the input image pixel by pixel, and
together produce one Hough line (step c in Fig. 4.9). Here atomic operations are
not required, since consecutive threads vote for consecutive bins in the scratchpad
memory (since consecutive threads process consecutive pixels). This is only true
if threads are working on the same image line, as can be deducted from Eq. 4.3. If

64 CHAPTER 4. HOUGH TRANSFORM

1 2 3 4 5 6 7 8

sub-Hough spaces

0

20

40

60

80

100

ex
ec

.
ti

m
e

(m
s)

GeForce GTX 470 (Fermi)

HL-major HL-major, w. pad. bin-major

1 2 3 4 5 6 7 8

sub-Hough spaces

0

20

40

60

80

100

ex
ec

.
ti

m
e

(m
s)

GeForce GTX Titan (Kepler)

HL-major HL-major, w. pad. bin-major

1 2 3 4 5 6 7 8

sub-Hough spaces

0

5

10

15

20

25

ex
ec

.
ti

m
e

(m
s)

GeForce GTX 750 Ti (Maxwell)

HL-major HL-major, w. pad. bin-major

Figure 4.8: Hough transform on GPU using scratchpad memory atomic operations.

4.5. GPU: CONSTANT TIME IMPLEMENTATION 65

width

he
ig

ht

a

height

w
id

th

b b

c c

d d

e e

Figure 4.9: Input-data independent implementation of the Hough transform on GPU.
First the image is rotated by the first kernel (a). In a second kernel each thread block
copies a part of the input image from the global (off-chip) memory to the scratchpad
(on-chip) memory (b). Then one Hough line is calculated in scratchpad memory based
on the part of the image in the scratchpad memory (c). This line is stored in a sub-
Hough space in global memory (d). This step is repeated to calculate the next Hough
line, until one entire sub-Hough space is filled by each thread block. A third kernel sums
all sub-Hough spaces together to make the final Hough space (e).

threads work on different image lines, they vote for the same value of b and atomic
operations would be required. So all threads in a thread block need to synchronize
after processing an image line, to remove the need for atomic operations. This
method is most efficient when the least amount of synchronizations are required,
e.g. the width of the input line is as large as possible.

After one line in the Hough space is created, it is written to the off-chip global
memory (step d in Fig. 4.9) and the next Hough line is generated in the same
way. After all lines are generated and copied to global memory, a second kernel
combines all sub-Hough spaces of parts of the image to one Hough space of the
entire image (step e in Fig. 4.9).

To create the second Hough space, the image is first rotated in another kernel
(step a in Fig. 4.9). This makes it possible to read the image coalesced and vote
for consecutive bins, since consecutive pixels are read according to Eq. 4.2. Then
the same algorithm is used as described above, but now there are more lines which
are smaller (since the image now has a portrait orientation instead of a landscape
orientation). This means that creating this second Hough space takes more time
than creating the first Hough space.

66 CHAPTER 4. HOUGH TRANSFORM

GA
0.0

0.5

1.0

1.5

2.0
ex

ec
.

ti
m

e
(s

)
GeForce 8800 GT (Tesla)

GA SA
0

50

100

150

200

ex
ec

.
ti
m

e
(m

s)

GeForce GTX 470 (Fermi)

GA SA
0

10

20

30

40

50

ex
ec

.
ti
m

e
(m

s)

GeForce GTX Titan (Kepler)

GA SA
0

5

10

15

20

25

ex
ec

.
ti
m

e
(m

s)

GeForce GTX 750 Ti (Maxwell)

Figure 4.10: Distribution of execution times for the Hough transform in the polar
coordinate system on four GPUs using either global memory atomics (GA) or scratchpad
memory atomics (SA).

This implementation is limited by the amount of on-chip scratchpad memory
in the GPU. To reduce the number of sub-Hough spaces, a thread block should
process a part of the image as large as possible. Since after the thresholding stage
the pixels can only have two values (0 or 1, below or above threshold value), each
pixel can be packed into a single bit. This means that more pixels can be stored
in the scratchpad memory (in comparison to the original approach where each
pixels is stored in one byte), and the number of sub-Hough spaces (which have
to be added later) is reduced. A second benefit is that the reading of the input
image is faster, since the number of bytes required to read the complete image is
reduced. Packing the image from bytes to bits can be done in the rotating stage
(step a in Fig. 4.9), as it does not take much extra processing time.

4.6 Related work
The version of the Hough transform as presented by He et al. in [37,38] is designed
for a SIMD architecture. It is very similar to the Hough transform as described
in Section 4.1.1. The main difference is that the possible values for the angle a
in Eq. 4.2 are not calculated as the tangent of a range of angles, but an equally
spaced range of values from -1 to 1 is used.

An OpenGL implementation of the Hough transform on a GPU is presented by
Fung and Mann in [20]. Unfortunately no performance measurements are given,
but it is mentioned that an array of all edge pixels is made on the CPU. The Hough
transform for lines has been implemented on a GPU by Ujaldón et al. in [102],

4.7. CONCLUSIONS 67

Table 4.3: Execution time for the best configuration of the two implementations of the
polar Hough transform on four GPUs.

8800 GT GTX 470 GTX Titan GTX 750 Ti

global memory atomics 319ms 15ms 1.3ms 4.7ms
scratchpad memory atomics - 2.6ms 1.8ms 1.7ms

also in OpenGL. Both papers use the rendering functions of OpenGL to calculate
the Hough space. With the availability of CUDA and OpenCL nowadays, using
OpenGL to program GPUs for general purpose computations has fallen in disuse.
One CUDA implementation of the Hough transform can be found in CuviLib [101],
a proprietary computer vision library. It uses the polar representation of a line
for the Hough transform. Next to calculating the Hough space, it also finds the
maxima in the Hough space at the same time.

Next to the Hough transforms for lines and for circles there is also a generalized
Hough transform which can detect arbitrary shapes. One GPU implementation
in CUDA is made by Gómez-Luna et al. in [27]. A list of edge points and their
orientation is also made in this implementation. This list is sorted and compacted
to optimize performance of the voting in the Hough space.

4.7 Conclusions
The best CPU Hough transform implementation uses eight threads and AVX
SIMD instructions. It achieves an execution time of 14ms. The best execution
times for both GPU implementations described in this chapter are shown in Ta-
ble 4.3 for all four GPUs. It is clear that the GeForce 8800 GT cannot match
the CPU’s performance, and the best solution would be to calculate the Hough
transform on the CPU, even taking into account the time it takes to copy the
data to and from the CPU. The other three GPUs perform much better, and
can easily match (GTX 470) or outperform the CPU, even when global memory
atomic operations are used. Performance can be improved further by using the
scratchpad memory, except for the GTX Titan, whose scratchpad memory imple-
mentation is slower than the global memory implementation. The GTX 750 Ti is
the only GPU tested with dedicated hardware instructions for scratchpad mem-
ory atomic operations. This make the scratchpad memory implementation on the
GTX 750 Ti the fastest, even though it is a smaller GPU with fewer SMs than
the other GPUs tested.

An overview of the distribution of execution times for the range of experiments
settings (e.g. number of sub-Hough spaces, number of threads per thread block) is
shown in Fig. 4.10. It clearly shows that not only the best execution time for each
method has improved for more recent GPUs, but also the distribution of execution
times, making it easier to reach a performance level close to the optimum.

68 CHAPTER 4. HOUGH TRANSFORM

CHAPTER 5

Improving GPU scratchpad memory atomic operations

In the last two chapters various GPU implementations for histogram (Chap-
ter 3) and Hough transform (Chapter 4) have been investigated. The best perfor-
mance was attained by using sub-histograms or sub-Hough spaces and the atomic
operations on the GPU’s on-chip scratchpad memory. Three memory layouts
of sub-histograms in the scratchpad memory have been tested: sub-histogram-
major, sub-histogram-major with padding, and bin-major, as depicted in Fig. 3.3.
Similarly, three memory layouts are tested for the Hough transform: sub-Hough-
line-major, sub-Hough-line-major with padding, and bin-major. Results showed
that padding improved the performance of the sub-histogram-major and sub-
Hough-line-major memory layouts, while the bin-major memory layout resulted
in the best overall performance. The reasons behind these performance differ-
ences are investigated further in this chapter. Furthermore, hardware changes
to the scratchpad memory are proposed to improve the performance of atomic
operations for all memory layouts.

As already touched upon in Chapter 3, the scratchpad memory of a GPU
consists of multiple banks. Optimal performance can only be achieved when all
banks are accessed in parallel, i.e. if all threads in a warp access a different bank.
If multiple threads in a warp access the same bank, the memory accesses are
serialized leading to a performance penalty. How words are mapped to memory
banks plays an important role in achieving good performance.

The content of this chapter has been published in the paper Simulation and Architecture
Improvements of Atomic Operations on GPU Scratchpad Memory, presented at the 31st IEEE
International Conference on Computer Design (ICCD), 2013 [105].

69

70 CHAPTER 5. IMPROVING GPU SCRATCHPAD MEMORY ATOMICS

The scratchpad memories in the Fermi and Kepler architectures (e.g. NVIDIA
GTX 470 and GTX Titan) support hardware atomic operations via locks on
memory addresses. Applications that rely on these operations, such as histogram
and Hough transform, experience a performance loss when threads get serialized in
case of bank or lock conflicts. Bank conflicts occur when multiple threads access
different memory addresses in the same bank at the same time. Lock conflicts
occur due to different threads updating the same memory addresses using atomic
operations, or because two memory addresses share the same lock. Conflicts by
threads updating the same memory address (position conflicts) can be reduced
by software techniques described in the previous two chapters, see also [25, 109].
Bank conflicts and lock conflicts are not resolved by these techniques, but are
actually increased. Since these conflicts are less severe for performance than
position conflicts, the software techniques still lead to improvements.

To decrease the remaining conflicts and thereby increase performance, this
chapter introduces a fixed hash function in both the addressing of the banks and of
the locks of the scratchpad memory. The hardware costs of these changes are low,
and tests in a simulator show a speed-up up to 4.9× and 1.8× for the histogram
and Hough transform application respectively. For measurements the GPGPU-
Sim [3] simulator is used. As it did not accurately model atomic operations on
scratchpad memory, a detailed performance model [26] of these operations is first
implemented.

This chapter starts with a brief explanation of the execution of atomic op-
erations in an NVIDIA Fermi GPU [26] in Section 5.1. Next this execution is
modeled in GPGPU-Sim, as described in Section 5.2. Section 5.3 explores the
use of the simulator to propose architecture improvements. Section 5.4 ratifies
the positive effect of such improvements on two widely-used voting applications,
histogram and Hough transform. Finally, related work is presented in Section 5.5
and a summary for this chapter is given in Section 5.6.

5.1 Execution model of atomic operations
A proper integration of atomic operations in GPGPU-Sim requires an accurate
understanding of their performance in GPU architectures. Thus, this section
summarizes how atomic operations are processed on the scratchpad memory by
one warp [26]. An overview of the scratchpad memory and its atomic operations
can be found in Section 2.3.5.

The scratchpad memory is divided into equally-sized memory modules, called
banks, which can be accessed simultaneously. Successive 4-byte words are assigned
to successive banks. If the number of banks is N and A is the address of a
4-byte word, A resides in bank A mod N . This permits a high bandwidth if
simultaneously executed threads access addresses that fall in distinct memory
banks. However, if two different addresses of a memory read or write request fall
in the same bank, there is a bank conflict and the accesses have to be serialized. In

5.1. EXECUTION MODEL OF ATOMIC OPERATIONS 71

1 /*0210*/ LDSLK P0, R7, [R9];
2 /*0218*/ @P0 IADD R10 , R7 , 0x1;
3 /*0220*/ @P0 STSUL [R9], R10;
4 /*0228*/ @!P0 BRA 0x210;

Listing 5.1: Assembly code for an atomic addition using locks. LDSLK reads and locks
a scratchpad memory location. IADD adds 1 if the lock has been acquired (predicated
by P0). STSUL writes and unlocks the scratchpad memory location. The conditional
branch BRA is executed if the lock was not acquired.

the Fermi architecture [76], the scratchpad memory has 32 banks, which is equal
to the warp size. This way, the granularity of memory requests is 32 [82], so that
scratchpad memory requests for different warps are served in different memory
transactions. Thus, bank conflicts are only possible among threads belonging to
the same warp.

For devices of compute capability 1.2 and above, CUDA offers atomic oper-
ations by providing intrinsic functions. The atomic operations perform a read-
modify-write operation on a word residing in either the global or the scratchpad
memory. For example, the function atomicAdd(address, number) reads a word
at address, adds number to it, and writes the result back to the same address.
It is atomic in the sense that no other threads can access this address until the
operation is complete.

An atomic function in the CUDA instruction set architecture, called PTX
(Parallel Thread eXecution) [79], indicates the type of operation (addition, sub-
traction, exchange, etc), the memory space (global or scratchpad), and the data
type used. For instance, the syntax for an atomic addition on an unsigned integer
in the scratchpad memory is: atom.shared.add.u32 c, [a], b. This operation
atomically loads the original value at location a into a destination register c, per-
forms an addition with the operand in register b and the value at location a, and
stores the result at location a overwriting the original value.

PTX is a pseudo-assembly language which is translated by the nvcc com-
piler [83] into a binary form called a cubin object. It can be inspected by using
cuobjdump [81], a disassembler included in the CUDA Toolkit. The disassembled
code of an atomic addition for the Fermi architecture is shown in Listing 5.1. The
atomic addition consists of four instructions: a load from the scratchpad memory
followed by an integer addition (increment by 1 in this case) and a store to shared
memory. Load and store instructions are augmented with lock acquire (LK) and
lock release (UL) suffixes. In this way, the load instruction locks shared memory
locations until they are unlocked by the store instruction.

5.1.1 Lock mechanism
The lock mechanism that enables atomic updates to the scratchpad memory is
implemented by a memory lock unit described in [9]. Memory read and write
requests from threads are input to the memory lock unit. A set of lock bits

72 CHAPTER 5. IMPROVING GPU SCRATCHPAD MEMORY ATOMICS

are provided that store the lock status for locations. A lock bit may be shared
among several addressable locations. Thus, multiple addresses are aliased to
the same lock bit. A hash function may be implemented by the memory lock
unit to map request memory addresses to lock bit addresses. The hash function
guarantees preferably that consecutive word addresses will map to different lock
bits. Otherwise, it may simply use the least significant bits of the address.

Read instructions return both the data that is stored at the indicated address
and a flag that determines if the lock was successfully acquired. Such a flag is
related to the content of a predicate register (P0 in Listing 5.1). The lock bits are
accessed in parallel with memory read and write accesses, so that no additional
pipeline stages or clock cycles are needed to acquire and release the lock.

If the lock was successfully acquired, the program may modify the data, store
the new value and release the lock to allow other threads to access the location
whose address aliases to the same lock address as the released lock address. If
the lock is not successfully acquired, the program should attempt to acquire the
lock again. This is why the branch instruction is included. Thus, the number of
iterations of the code in Listing 5.1 that the program carries out is determined
by the number of addresses mapping to the same lock bit. The program is also
responsible for honoring the lock bits through the predicate register, since the
memory lock unit is not configured to track lock ownership.

5.1.2 Performance model
Threads will compete for locking access to those addresses which are to be atom-
ically updated. This fact reveals the serialization that threads of a warp suffer
when they try to update addresses sharing the same lock bit, i.e., aliased ad-
dresses. For illustrative purposes, let us consider threads of a warp atomically
updating addresses [x, y, 2, 3, 4, ..., 31]. Such a set of 32 addresses is called a
warp access pattern. If x and y are not aliased (and are not aliased to any of
addresses 2 to 31), the atomic operation will take a certain minimum latency that
we call base latency. However, if x and y share lock address, the latency will be
equal to the base latency plus a latency penalty. This can be called a lock conflict
with lock conflict degree equal to 2. If there is a third address z aliased to x and
y (and not aliased to the remaining 29 addresses), the latency will be the base
latency plus two times the latency penalty. Thus, the lock conflict degree is 3.

In [26] Gómez-Luna et al. revealed that the lock mechanism in the Fermi
architecture uses 1024 independent locks. The lock address is given by bits 11:2,
as Fig. 5.1 illustrates. The access pattern in the figure presents lock conflicts
between addresses 0, 1024 and 2048, and between addresses 32 and 1056. We
have observed that the highest lock conflict degree (3 in the current example)
determines the total latency, since lock conflicts with lower degree are resolved
concurrently.

Taking into account the former issues, the scratchpad memory can be un-
derstood as composed by a memory lock unit and a storage resource, which is

5.1. EXECUTION MODEL OF ATOMIC OPERATIONS 73

th0 th1 th2 th3 th4 th5 th6 th7 th8 th9 th31

0 32 1 33 0 1024 1056 2048 8 9 ... 31

Warp access pattern

0 = 0000 00000 00000 00
1 = 0000 00000 00001 00

32 = 0000 00001 00000 00
33 = 0000 00001 00001 00

1024 = 0001 00000 00000 00
1056 = 0001 00001 00000 00
2048 = 0010 00000 00000 00

8 = 0000 00000 01000 00
9 = 0000 00000 01001 00

31 = 0000 00000 11111 00
...

Memory addresses

00000 00000
00000 00001

00001 00000
00001 00001

00000 01000
00000 01001

00000 11111
...

Lock addressesHash function

Bits 11:2

Figure 5.1: Hash function in lock mechanism. Given a memory address, the corre-
sponding lock address is given by bits 11:2. Memory addresses at distance 1024 words
are aliased, since they have the same lock address. This way, threads 0, 4, 5, and 7 will
be executed sequentially, as well as threads 1 and 6.

divided into a number of pages containing 1024 4-byte locations. Such an under-
standing stands for an architecture model of the scratchpad memory according to
atomic operation execution, that is illustrated by the schematic of the scratchpad
memory in Fig. 5.2.

5.1.3 Latency estimation
The following procedure estimates the latency of atomic additions in scratchpad
memory with an arbitrary access pattern. This procedure is founded on the
definition of the base latency and the possible sources of conflicts [26]:

• The base latency (tbase) is the minimum latency for an atomic addition in
the scratchpad memory: the access pattern contains no conflicts of any type.
For a Fermi GPU like the GTX 580 tbase is 108 clock cycles [26].

• If there are different addresses in the same scratchpad memory bank, bank
conflicts appear in read and write accesses. Bank conflicts in different banks
are resolved concurrently, so that the highest bank conflict degree deter-
mines the latency of read or write accesses. The latency is then increased
in steps of tbank, which is the bank conflict penalty. It is 32 clock cycles on
a GTX 580 [26].

74 CHAPTER 5. IMPROVING GPU SCRATCHPAD MEMORY ATOMICS

B
an

k
0

11264

11296

11328

11360

12256

11392

11424

...

2048

2080

2112

2144

3040

2176

2208

…

1024

1088

1120

1152

1184

...

2016

0

32

64

96

128

160

...

992

1056

B
an

k
1

11265

11297

11329

11361

12257

11393

11425

...

2049

2081

2113

2145

3041

2177

2209

…

1025

1057

1089

1121

1153

1185

...

2017

1

33

65

97

129

161

...

993
B

an
k

2

11266

11298

11330

11362

12258

11394

11426

...

2050

2082

2114

2146

3042

2178

2210

…

1026

1058

1090

1122

1154

1186

...

2018

2

34

66

98

130

162

...

994

B
an

k
3

1027

1059

1091

1123

1155

1187

...

2019

2051

2083

2115

2147

3043

2179

2211

…

11267

11299

11331

11363

12259

11395

11427

...

3

35

67

99

131

163

...

995

B
an

k
30

30

62

94

126

158

190

...

1022

1054

1086

1118

1150

1182

1214

...

2046

2078

2110

2142

2174

3070

2206

2238

…

11294

11358

11390

11422

12286

11454

11486

...

B
an

k
31

11295

11359

11391

11423

12287

11455

11487

...

2079

2111

2143

2175

3071

2207

2239

…

1055

1087

1119

1151

1183

1215

...

2047

31

63

95

127

159

191

...

1023

11264

2048

1024

0

Lock addresses

31

63

95

127

159

191

...

1023

30

62

94

126

158

190

...

1022

3

35

67

99

131

163

...

995

2

34

66

98

130

162

...

994

1

33

65

97

129

161

…

993

0

32

64

96

128

160

...

992

0

Address 1056
0001 00001 00000 00

Page 0

Page 2

Page Row Bank

St
or

ag
e

re
so

ur
ce

Shared memory

Page 1

Page 11

Memory lock unit

Figure 5.2: Scratchpad memory layout on an NVIDIA Fermi GPU. The 48 kB of
memory is accessed via 4-byte words and is distributed over 32 banks. Each bank has
32 lock bits available for atomic operations.

• If there are addresses sharing lock addresses (i.e., at distance multiple of 1024
words), lock conflicts appear. The highest lock conflict degree conditions
the total latency, since it determines how many iterations of the code in
Listing 5.1 are run.

• A particular case of lock conflict is the position conflict, which appears when
two or more threads update the same address. The position conflict penalty
is called tposition. It is 120 clock cycles on a GTX 580 [26].

• The penalty provoked by different aliased addresses will be larger than
tposition, because it will be increased in steps of tbank due to bank conflicts
in the read access.

By considering the former issues, the procedure to estimate the latency of an
atomic addition is to first calculate the highest lock conflict degree in the warp ac-
cess pattern. This value represents the number of iterations of the atomic addition
code. Then, for each iteration the procedure computes the bank conflict degree in
the read access, and determines which addresses acquire the locks. Afterwards, it
calculates the bank conflict degree in the write access. Finally, it removes those
addresses that have been updated from the original set of addresses. These steps
should be repeated as many times as iterations of the atomic addition code.

5.2. IMPLEMENTATION IN GPGPU-SIM 75

5.2 Implementation in GPGPU-Sim

GPGPU-Sim [3] is a detailed simulator of contemporary GPU architectures, such
as NVIDIA’s GT200 and Fermi architecture. It has detailed models for almost
all parts of the GPU, such as the register file and operand collector, caches,
interconnect network, instruction scheduler, etc. The operations on the scratch-
pad memory are only simulated based on their bank conflict degree. Scratchpad
memory atomic operations are modeled as general load operations. Although for
general load and store operations the bank conflict degree is an accurate model
for the latency of the operation, for atomic operations it is far from accurate. As
shown in Fig. 5.4, this provokes an evident divergence between the simulation and
the real GPU behavior.

GPGPU-Sim can simulate either NVIDIA’s intermediate (GPU independent)
instruction set PTX [79] for all CUDA enabled GPUs before Kepler (e.g. G80,
GT200, and Fermi), or the GPU’s native instruction set SASS for NVIDIA GPUs
before Fermi (e.g. G80 and GT200). Since we want to compare the simulator to
a Fermi GPU, we have to use the PTX instruction set.

As shown in Listing 5.1, an atomic operation in the scratchpad memory takes
four instructions, which are executed multiple times in case of a lock conflict.
The corresponding PTX code consists of only a single instruction. To mimic
the behaviour of an atomic operation, the atomic operations in GPGPU-Sim are
implemented as a finite-state machine (FSM) with four states, Read, Update,
Write and Branch.

The latency of the Read and the Write state in the FSM are determined by the
level of bank conflicts in the load or store operation respectively, as described in
Section 5.1.3. The bank conflict level is determined by how many threads access
different addresses in the same bank. This is influenced by how many threads
in the warp are active, based on which threads acquired locks. The latency of
the add instruction in the Update state and the branch instruction in the Branch
state are fixed values.

All latency values of the states of the FSM are determined by micro-bench-
marking using asfermi [41]. The latency of the add instruction in the Update
state is found to be 18 cycles, the latency of the branch instruction is 32 cycles.
The load and store instructions in the Read and Write state have a latency of 32
and 36 cycles for each bank conflict level respectively. Similar latency values are
found in [26].

In a real GPU, the instructions in the Read and Write state in the FSM are
executed on the load-store units of a multiprocessor, while instructions in the
Update and Branch state are executed on the compute cores. Since GPGPU-Sim
only simulates the (single) PTX instruction, only the load-store units are occupied
by an atomic operation, as an atomic operations is modeled in the simulator as a
memory instruction.

76 CHAPTER 5. IMPROVING GPU SCRATCHPAD MEMORY ATOMICS

1
0

8

2
3

2

3
5

2

4
7

2

5
9

2

7
1

2

8
7

2

9
9

6

1
1

1
6

1
2

3
6

1
4

0
4

1
5

2
8

1
6

4
8

1
7

6
8

1
8

8
8

2
0

1
2

2
1

3
2

2
2

5
2

2
3

7
2

2
4

9
6

2
6

1
6

2
7

3
6

2
8

5
6

2
9

8
0

3
1

0
0

3
2

2
0

3
3

4
0

3
4

6
4

3
5

8
4

3
7

0
4

3
8

2
4

3
9

4
8

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

La
te

n
cy

 (
cl

o
ck

 c
yc

le
s)

n-way position conflict

Position conflicts GTX 580

GPGPU-Sim

(a) n-way intra-warp position conflicts, in each test, n threads update the same location

1
0

8

1
7

4

2
4

2

3
1

0

3
7

8

4
4

6

5
1

4

5
8

2

6
5

0

7
1

8

7
8

6

8
5

4

9
2

2

9
9

0

1
0

5
8

1
1

2
6

1
1

9
4

1
2

6
2

1
3

3
0

1
3

9
8

1
4

6
6

1
5

3
4

1
6

0
2

1
6

7
0

1
7

3
8

1
8

0
6

1
8

7
4

1
9

4
2

2
0

1
0

2
0

7
8

2
1

4
6

2
2

1
4

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

La
te

n
cy

 (
cl

o
ck

 c
yc

le
s)

m-way bank conflicts

Bank conflicts, stride=32 GTX 580

GPGPU-Sim

XOR hash function

(b) m-way intra-warp bank conflicts, m is given by the number of threads accessing
different addresses in the same bank, but with different locks

1
0

8

1
7

4

2
4

2

3
1

0

4
5

6

5
5

6

6
5

6

7
5

6

9
3

2

1
0

6
4

1
1

9
6

1
3

2
8

1
5

3
6

1
7

0
0

1
8

6
4

2
0

2
8

2
2

6
8

2
4

6
4

2
6

6
0

2
8

5
6

3
1

2
8

3
3

5
6

3
5

8
4

3
8

1
2

4
1

6
0

4
4

1
6

4
6

7
6

4
9

3
6

5
2

7
6

5
5

6
4

5
8

5
6

6
1

4
8

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

La
te

n
cy

 (
cl

o
ck

 c
yc

le
s)

m-way bank conflicts

Bank conflicts, stride=256 GTX 580

GPGPU-Sim

XOR hash function

(c) m-way intra-warp bank conflicts in the simulator, m is given by the number of threads
accessing different addresses in the same bank, but an extra lock conflicts appears every
four bank conflicts

Figure 5.3: Latency in clock cycles of an atomic addition with various intra-warp
conflicts. Measurements on a GTX 580 are indicated with squares, latency simulated
with the modified GPGPU-Sim simulator is indicated with a line, and latency of the
atomic addition with the proposed XOR hash function is denoted with triangles. No
triangles are shown in (a) since hash functions cannot remove position conflicts.

5.2. IMPLEMENTATION IN GPGPU-SIM 77

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Replication factor

Measurements - GTX 470

GPGPU-sim original

GPGPU-Sim - baseline

Figure 5.4: Comparison between measurements on an NVIDIA GTX 470, simulation
results on the modified simulator and simulation results on the original GPGPU-Sim for
a 64-bins histogram computation using a replication factor between 1 and 128 [25].

Validation of the simulator
The synthetic benchmarks of Fig. 5.3 compare the performance of the modified
GPGPU-Sim (line) with experiments on an NVIDIA GTX 580 (squares) included
in [26]. As can be seen, the simulation is so realistic that the average error is
only 2.9%, with a maximum of 8.5% at a conflict degree of 1 (108 vs. 118 cycles).
According to [26] there is a linear relation between the number of conflicts and
the latency in the first two test cases, but the measurements show a small jitter
influencing these error numbers. A single warp (32 threads) is executed in the
synthetic benchmarks of Fig. 5.3. The warp access pattern is calculated according
to Eq. 5.1, where id is the unique identifier of a thread. The stride parameter is
equal to 0 for Fig. 5.3a, 32 for Fig. 5.3b and 256 for Fig. 5.3c. In the first test
case, Fig. 5.3a, position conflicts are tested. In the second and third test case,
Fig. 5.3b and Fig. 5.3c, bank conflicts are validated. In Fig. 5.3b there are no
lock conflicts, in Fig. 5.3c an extra lock conflict appears every four bank conflicts,
creating the step-shaped figure.

index(id) =
{

id × stride if id < conflicts
id otherwise

(5.1)

In Fig. 5.4 a 64-bin histogram is computed. The diamonds give the mea-
surements on a NVIDIA GTX 470, the squares give the simulation results of the
modified GPGPU-Sim simulator and the triangles give the simulation results of
the standard GPGPU-Sim. It is evident that the newly implemented model of
atomic operations considerably improves the accuracy of GPGPU-Sim for this ap-
plication. The histogram application has a lower execution time on the GTX 470
for larger replication factors, with an optimum at a replication factor of 16. This
is exactly mimicked by the improved GPGPU-Sim simulator, while the original
showed a minimum execution time at a replication factor of one. The correlation
between the real GPU and the modified GPGPU-Sim is 99%, on par with the
IPC correlation of 98.3% for other applications mentioned in the GPGPU-Sim
documentation.

78 CHAPTER 5. IMPROVING GPU SCRATCHPAD MEMORY ATOMICS

Table 5.1: Baseline and the proposed hash functions XOR and ADD for selecting which
bank and lock to use.

bank lock

baseline addr[6:2] addr[11:7]
XOR hash addr[6:2] ⊕ addr[11:7] addr[11:7] ⊕ addr[15:12]
ADD hash addr[6:2] + addr[11:7] addr[11:7] + addr[15:12]

5.3 Proposed hardware improvements
In this section, we explain how the modified simulator can be used to propose and
test hardware changes to improve the performance of applications. In some ap-
plications, concurrent threads access scratchpad memory addresses with a stride.
If the stride is not a relative prime to the number of banks (i.e., an odd num-
ber, given the 32 banks in current architectures), bank conflicts will occur [82]. 1

Moreover, lock conflicts may happen as well, if atomic accesses are used. These
conflicts increase the latency of memory accesses, as described in Section 5.1.

Atomic operations are needed in applications where concurrent threads may
update the same memory locations. Thus, position conflicts may occur. Illustra-
tive case studies are voting processes, such as histogramming and Hough trans-
form [42]. In these applications, position conflicts are typically avoided by repli-
cating the voting spaces [25, 73, 92, 96, 108]. This way, the number of position
conflicts is reduced, but bank and lock conflicts may appear: for those threads
that were provoking a position conflict, memory accesses are strided in the repli-
cation scheme.

To reduce the number of bank- and lock conflicts in strided memory accesses,
a hash function can be applied on the memory address to determine which bank
and which lock to use. Traditionally hash functions have been used to increase
the bandwidth of interleaved memories and improve the utilization of caches and
TLBs [111,122]. We propose two hash functions called XOR and ADD, as shown
in Table 5.1. The former XORs the least and most significant bits (LSB ⊕ MSB),
and the latter ADDs them (LSB + MSB). The effect of a hash function on the
distribution of banks or locks is shown in Fig. 5.5. For clarity only two bits are
used for the LSB and MSB. A memory access pattern with a stride of four words
will access exactly one column in Fig. 5.5, and consequently only one of the four
memory banks will be used in the case of a baseline hash function, as shown in
Fig. 5.5a. When the XOR or ADD hash function is applied, all four banks will
be used, indicated by the four different colors in each column in Fig. 5.5b and
Fig. 5.5c.

In case a programmer uses padding (of one) to reduce the number of bank
conflicts, the stride in the previous example increases from four to five. This

1A widely-used software technique to avoid bank conflicts is padding [11, 114, 121], that is,
keeping some memory locations unused to modify the stride.

5.3. PROPOSED HARDWARE IMPROVEMENTS 79

00 01 10 11

LSB

M
SB

00

01

10

11

(a) baseline

00 01 10 11

LSB

M
SB

00

01

10

11

(b) xor

00 01 10 11

LSB

M
SB

00

01

10

11

(c) add

Figure 5.5: Overview of bank (and lock) distribution for three different hash functions,
the different colors represent the four different memory banks. In (a) the baseline hash
function is shown in which the LSB determines the bank. In (b) and (c) the XOR and
ADD hash functions are shown in which the LSB are XORed / ADDed respectively with
the MSB.

results in a memory access pattern as a diagonal from top left to bottom right
in Fig. 5.5. In the baseline hash function (Fig. 5.5a) this results in all memory
banks being accessed, and consequently no bank conflicts. For the XOR hash
function (Fig. 5.5b) however, only one or two banks are used, resulting in a 4-
or 2-way bank conflict respectively for this memory with 4 banks. For the ADD
hash function (Fig. 5.5c) half of the banks is used, resulting a 2-way bank conflict.
It is interesting to note that the padding which removes the bank conflicts with
the baseline hash causes the bank conflicts for the XOR and ADD hash.

Hardware costs

The hardware costs for the XOR hash function is only one XOR gate for every
address bit used in the hash function. The costs for the ADD hash function is an
adder for each bit. Since the proposed hash functions in the scratchpad memory
use five bits and there are two hash functions applied (one for banks and one for
locks), the total costs for the hash function is ten XOR gates or ten adders in
total for the XOR and ADD hash function respectively. Compared to the 32 cores
with floating point fused multiply-add capabilities, 32K register file and 48 kB of
scratchpad memory, the extra costs for the hash functions in transistor count is
negligible.

The latency costs for the XOR hash function is only one (XOR) gate, where
the latency for the ADD hash function is determined by how many bits are used
in the hash function. If the adder is implemented as a basic ripple carry adder,
the added latency for the first adder is one gate and two gates for the others.
Therefore the total gate delay for this 5-bit ADD hash function is 1 + 4 × 2 = 9
gates. Other designs than ripple carry adders exists which can reduce the gate
delay. Examples can be found in [7].

80 CHAPTER 5. IMPROVING GPU SCRATCHPAD MEMORY ATOMICS

5.4 Evaluation of hardware improvements
To evaluate the effects of the proposed XOR and ADD hash functions on the
number of bank and lock conflicts in strided memory accesses, we first re-evaluate
the synthetic benchmarks of Section 5.2. Second the impact on execution time of
the proposed hash functions for histogram and Hough transform applications is
evaluated.

The simulator used in this section is GPGPU-Sim [3] version 3.2.0. Atomic
operations on scratchpad memory have been implemented as described in Sec-
tion 5.2. The GPU simulated is an NVIDIA GTX 580.

5.4.1 Synthetic benchmarks
The simulations of Section 5.2 have been repeated with the proposed XOR and
ADD hash functions. Both give the same results, due to the access-pattern of
these benchmarks and no new conflicts are introduced (see Section 5.3).

Position conflicts (threads updating the same address) cannot be resolved by
changing the addressing of memory banks or locks, therefore the proposed hash
functions cannot improve latency in Fig. 5.3a. The bank conflicts of Fig. 5.3b can
be removed completely by the proposed hash functions, and no new conflicts are
introduced.

The proposed hash functions remove all lock conflicts in Fig. 5.3c, but not all
bank conflicts. Some accesses map to the same bank, even if a hash function is
applied. For example, in case there is a 2-way bank conflict, the access pattern
looks like: 0, 256, 2, 3, 4, ... 31. Without a hash function, thread 0 and thread 1
have a bank conflict at bank 0. With a hash function, address 256 of thread 1
now maps to bank 8, creating a bank conflict with thread 8. So the hash function
has not removed the bank conflict, but only moved it from bank 0 to bank 8. In
case there is a 3-way conflict, the access pattern looks like: 0, 256, 512, 3, 4, ...
31. Without a hash function, thread 0, 1 and 2 have a bank conflict at bank 0.
With a hash function, address 256 gets mapped to bank 8, and address 512 gets
mapped to bank 16. Now the conflict degree has been reduced from three to two,
as the conflicts between thread 1 vs. thread 8 and thread 2 vs. thread 16 can be
resolved concurrently.

5.4.2 Histogram
Histogram is a commonly used algorithm in image processing in which a set of
bins is filled according to the frequency of occurrence in the input image. The
resulting histogram can be used to correct the white balance of the image, for
example. The histogram algorithm can also be found in other domains such as
finance and statistics.

Pixels next to each other in an image often have the same color, resulting in
position conflicts in the histogram algorithm. A software technique to reduce these

5.4. EVALUATION OF HARDWARE IMPROVEMENTS 81

512

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64

32 64 128

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Replication factor
Number of bins in histogram

Baseline

XOR

ADD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 4 8 16 32 1 2 4 8 16 1 2 4 8 1 2 4 1 2

256 512 1024 2048 4096

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Replication factor
Number of bins in histogram

Baseline

XOR

ADD

Figure 5.6: Histogram execution time, configured for 32 up to 4096 bins. Replication
(sub-histogram-major without padding) is used to improve performance. Results are
averaged over 24 12-bit grayscale images [1] of 1536×1024 pixels and are shown for the
baseline, XOR and ADD hash function.

conflicts is replication [25,73,92,96], in which multiple copies of the histogram are
made, reducing the number of concurrent updates on the same memory location.
Replication improves performance by reducing the amount of position conflicts,
but also creates new bank- and lock conflicts.

The proposed XOR and ADD hash functions can diminish these new conflicts
and improve performance further, as is shown in Fig. 5.6. The histogram ap-
plication tested is configured to use 32 up to 4096 bins. The replication factor
(R) varies from 1 to 256, limited by the total memory requirement, calculated
as 4(bytes/word) × #bins × R. The images used in this evaluation come from
the Stanford Center for Image Systems Engineering [1]. They are converted from
24 bit RGB to 12 bit grayscale images with a resolution of 1536×1024 pixels.

Fig. 5.6 shows a maximum speed-up of the hash functions over the baseline
of 4.91× for a 256-bin histogram using a replication factor of 32. For small
replication factors the speed-up is low, as most conflicts are position conflicts
which cannot be removed by a hash function. For larger replication factors, the
memory accesses are spread over a larger part of the scratchpad memory, and
bank and lock conflicts can be removed by the hash function.

In case the programmer has applied padding together with replication, baseline
performance is better than replication without padding. Still, execution time can

82 CHAPTER 5. IMPROVING GPU SCRATCHPAD MEMORY ATOMICS

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Replication factor

Baseline

XOR

ADD

Figure 5.7: Hough transform (polar) on a 640×480 image with six different replication
factors (no padding) for the baseline, XOR and ADD hash function.

be reduced more with the XOR hash, up to 1.79×. Only when the number of
bins is 32, equaling the number of banks in the scratchpad memory, the XOR
hash worsens execution time. As described in Section 5.3, the ADD hash does
not suffer from this slow-down. In all other cases XOR and ADD hash perform
similar.

The sub-histograms created by applying replication can also be organized in
the scratchpad memory using the bin-major memory layout. This layout was
introduced in the bin-stretching technique [109], which is a similar software tech-
nique to replication [25] which uses the sub-histogram-major layout. Only the
ordering of the sub-histogram bins in the scratchpad memory is different, causing
fewer bank and lock conflicts than the sub-histogram-major layout does. The
hash functions can still reduce the number of remaining bank and lock conflicts,
improving performance up to 1.80×.

5.4.3 Hough transform
The Hough transform [42] is a commonly used technique to detect lines and other
features in images. In a pre-processing step edge detection and thresholding is
applied. The coordinates of the remaining pixels are stored in an array [108],
which is used in the voting step. The final step in the Hough transform is to
find the location of the maximum in the vote space, which indicates the most
dominant line in the image. In the voting step the pixel locations in the input
array are used to place votes in the polar (instead of Cartesian) 2D-vote space [13]
using the following equation: ρ = x cos(θ) + y sin(θ).

In this example a 640×480 8-bit grayscale image is used as an input. Replica-
tion without padding is applied using the sub-Hough-line-major memory layout,
similar to the histogram application’s sub-histogram-major memory layout. The
effect of the hash functions on the execution time of the voting step of the Hough
transform is shown in Fig. 5.7. The maximum speed-up attained is 1.76× for
a replication factor of 6. When the bin-major memory layout is used for the
sub-Hough spaces, no speed-up is attained by the hash functions, but also no
slow-down.

5.5. RELATED WORK 83

5.5 Related work
Gou and Gaydadjiev describe the design of the ‘elastic pipeline’ [29] as a solution
to pipeline stalls due to bank conflicts in scratchpad memory. Their focus is on the
older NVIDIA G80 / GT200 architecture (such as the GeForce 8800GT) where
memory operations are executed within the cores. In this chapter the focus is
on the more recent Fermi architecture where memory operations are executed in
separate load/store units.

Various papers describe techniques to optimize performance for atomic op-
erations, but target only a single application. For example optimizations for a
histogram application are discussed in Chapter 3 and [25, 73, 92, 96] and Hough
transform is discussed in Chapter 4 and [108]. More general (software) tech-
niques, such as replication [26] and bin-stretching [109] are applied to multiple
applications, as also used in Chapter 3 and Chapter 4. This chapter describes a
modification to the hardware, which leads to increased performance in combina-
tion with the aforementioned software techniques.

5.6 Conclusions
In this chapter a detailed model of atomic operations is presented, and also inte-
grated within GPGPU-Sim. The model has an absolute error of 2.9% on average
for synthetic benchmarks of atomic operations, and a correlation of 99% between
a real GPU and GPGPU-Sim for a histogram example. This way, the modified
GPGPU-Sim permits a significantly higher accuracy in the simulation of applica-
tions using atomic operations. Furthermore, it can be used to propose hardware
changes to improve the performance of atomic operations.

Using the modified simulator, two hash functions for the GPU’s on-chip scratch-
pad memory’s addressing of banks and locks are presented. With negligible hard-
ware costs, a hash function can reduce thread serialization by decreasing bank
and lock conflicts, which occur in voting algorithms such as histogram, K-means
and (generalized) Hough transform. This improves performance up to 4.9× and
1.8× for the histogram and Hough transform applications respectively when using
the replication software technique and the sub-histogram / sub-Hough-line major
memory layout. When replication is used combined with a memory layout using
padding, or when the bin-major memory layout is used, the performance increase
is smaller, up to 1.8× for histogram and no performance gain or loss for Hough
transform.

84 CHAPTER 5. IMPROVING GPU SCRATCHPAD MEMORY ATOMICS

CHAPTER 6

GPU scratchpad memory configurable bank addressing

In the last chapter fixed hash functions for the addressing of the banks and
locks in the GPU’s scratchpad memory are introduced. These hash functions were
specifically developed for atomic operations and removed most of the bank- and
lock conflicts in the tested benchmarks: histogram and Hough transform.

The fixed hash functions from the previous chapter could not remove all con-
flicts in the atomic operations. Also applications which do not use atomic opera-
tions can suffer from bank conflicts. To remove these conflicts, more complex hash
functions are introduced in this chapter. Furthermore, these new hash functions
are configurable, so each application can select its preferred hash function based
on its memory access pattern instead of having a compromise for all applications.
The focus in this chapter will be on scratchpad memory bank conflicts, and not
on atomic operations. However, the techniques to resolve bank conflicts described
in this chapter can also be applied to lock conflicts as well.

Hash functions are used in processors for memory address mapping to increase
the bandwidth of multibank memories and caches [23, 111]. Hash functions are
also used in the addressing of the caches in GPUs. The (fixed) hash function
in the L1 cache of an NVIDIA Fermi GPU has been revealed in [72]. The main
aim of these hash functions is to spread evenly the memory accesses of a running
application among the memory banks, reducing, in this way, the bank conflict
degree. Choosing the most suitable hash function for a specific application should
take into account how well the memory references are spread and the impact of

The content of this chapter has been published in the paper titled Configurable XOR hash
functions for banked scratchpad memories in GPUs in IEEE Transactions on Computers [106].

85

86 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

the hash function in the final memory latency. The selection of bank indexing
bits can be performed by exhaustive search or with heuristics [23].

In this chapter, the use of configurable hash functions to access the on-chip
scratchpad memories is introduced. The aim is to improve application perfor-
mance by reducing the number of bank conflicts, without explicit actions from
the programmer’s perspective. Therefore a compiler framework is proposed, which
can classify memory access patterns and calculate the best possible hash function
configuration accordingly. The configuration can be done at application level or
even at kernel level. The hash functions are evaluated not only for performance
but also for hardware costs.

The rest of this chapter is organized as follows. First, a motivational exper-
iment in Section 6.1 clearly shows that scratchpad memory bank conflicts can
harm performance significantly, and that removing these conflicts is essential to
achieving peak GPU performance. In Section 6.2 a memory access pattern classi-
fication for scratchpad memory accesses based on [14,44] is shown. Four different
classes of configurable hash functions are introduced in Section 6.3, including an
evaluation of their hardware costs. Heuristics are used to configure these hash
functions, as shown in Section 6.4. In this section a new heuristic, called Mini-
mum Imbalance Heuristic, is presented. Section 6.5 illustrates a framework that
applies hash functions to kernels running on GPU architectures. This framework
proposes the implementation of the calculated hash function not only in hardware
but also in software. The results of the different hash functions and heuristics are
presented in Section 6.6. Related work is discussed in Section 6.7. Finally, a
summary and future work are given in Section 6.8.

6.1 Motivation
Through an illustrative experiment the impact of bank conflicts on two mod-
ern GPUs, AMD Hawaii and NVIDIA K20, is shown in this section. A simple
microbenchmark is used to evaluate this impact:

1 int index = GenerateIndex(tid , way , stride);
2 for(int i = 0; i < repeat; i++)
3 index = ScratchpadMemory[index];

where the function GenerateIndex returns an index value calculated as follows:

GenerateIndex(tid,way, stride) =
{

tid ∗ stride if tid < way
tid elsewhere

where tid is the threadID and way is the number of consecutive threads employing
a strided access of value stride.

For instance, if way = 4 and stride = 32, 32 consecutive threads (a warp in
NVIDIA devices, or a half-wavefront in AMD devices) will access the following
addresses: [0 32 64 96 4 5 6 . . . 31].

6.1. MOTIVATION 87

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

m-way bank conflicts

1.0

1.1

1.2

1.3

1.4
N

or
m

a
li
ze

d
ex

ec
u

ti
o

n
ti

m
e Stride

1

2

4

8

16

32

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

m-way bank conflicts

0

1

2

3

4

5

6

7

L
D

S
B

a
n

k
C

o
n

fl
ic

ts

Stride

1

2

4

8

16

32

Figure 6.1: Execution results on AMD Hawaii for access patterns to scratchpad mem-
ory with different bank conflict degrees (m-way) and strides. (Top) Normalized execution
time; (Bottom) Profiling results.

By changing way and stride, we can analyze the impact of bank conflicts on
performance. Fig. 6.1 (left) shows the normalized execution time on AMD Hawaii.
This GPU contains 64 kB of scratchpad memory, called LDS, per compute unit.
The LDS has 32 banks, and each bank is 4 bytes wide. Thus, power-of-two strides
provoke bank conflicts. Fig. 6.1 (right) presents the corresponding results of the
performance counter LDSBankConflicts as given by CodeXL profiler [2].

Fig. 6.2 shows the same experiments on NVIDIA K20. This GPU has up
to 48 kB of shared memory per streaming multiprocessor, where there are 32
banks and each bank is 8 bytes wide. This helps to decrease the number of
bank conflicts when accessing 4-byte data elements (e.g., a stride of 2 does not
provoke bank conflicts). On the right, the results of the performance counter
shared_load_replay, given by CUDA profiler [74], are shown.

In real world benchmarks the performance penalty caused by bank conflicts not
only depends on the conflict degree, but also on the relative number of scratchpad

88 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

m-way bank conflicts

1

2

3

4

5

6

7

8

9

10

11
N

or
m

a
li
ze

d
ex

ec
u

ti
o

n
ti

m
e Stride

1

2

4

8

16

32

64

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

m-way bank conflicts

0

500

1000

1500

2000

2500

3000

3500

sh
ar

ed
lo

a
d

re
p

la
y

(×
1

0
0

0
) Stride

1

2

4

8

16

32

64

Figure 6.2: Execution results on NVIDIA K20 for access patterns to scratchpad mem-
ory with different bank conflict degrees (m-way) and strides. (Top) Normalized execution
time; (Bottom) Profiling results.

memory instructions in the application. For example, in the first MRI benchmark
from Section 6.6 (MRI-grid-1) only 7.6% of the instructions are scratchpad mem-
ory instructions (194 loads and 141 stores). The average conflict degree is 16.3,
which results in a large potential performance gain when the bank conflicts are
removed. Anther benchmark, convolution (conv-2), has a high number of scratch-
pad memory instructions of 35% (2560 loads and 640 stores), but the average
bank conflict degree is only 2.2. Still, performance can be improved significantly
when these conflicts are avoided, as shown in the results of Section 6.6.

As shown above, bank conflicts have a dramatic impact on performance for
both the AMD and the NVIDIA architectures. This encourages us to propose
hardware and software improvements that free programmers from spending their
time and effort in data rearrangements or fancy addressing schemes that reduce
the number of bank conflicts.

6.2. ACCESS PATTERNS TO SCRATCHPAD MEMORY 89

6.2 Access patterns to scratchpad memory
In this section, typical memory access patterns to scratchpad memory are de-
scribed that can be found in real-world applications. The focus is on the basic
access pattern that generates (at least) one memory transaction, that is, a collec-
tion of addresses whose size is equal to the number of memory banks. In current
architectures, this size is equal to the number of threads in a warp (NVIDIA) or
in a half-wavefront (AMD).

We will be specially careful with non-unit stride memory accesses, as they are
a typical source of bank conflicts. 1D strided accesses are defined in [82] as:

shared_memory[stride · tx + offset] (6.1)

where stride is the distance between threads with consecutive threadID tx. Ac-
cording to [82], no bank conflicts will occur if stride is relative prime to the number
of banks.

In [44], a memory access vector ~s is expressed as a combination of a memory
access matrix M , an iteration vector ~i, and an offset vector ~o:

~s = M~i+ ~o (6.2)

The authors apply this notation to loop nests of arbitrary depth. This nota-
tion is adapted in [14] to separate inter-thread (−−−−→eMAP) and intra-thread (−−−−→iMAP)
components as follows:

~s = −−−−→eMAP +−−−−→iMAP = M ·
−→
tid+−−−−→iMAP =

[
M00 M01
M10 M11

] [
ty
tx

]
+
[

iMAP0
iMAP1

]
(6.3)

As it can be seen, M is a 2 × 2 matrix, and −→tid and −−−−→iMAP are vectors. −→tid
identifies threads in a 2D thread block.

In [14] it is assumed that M00, M01, M10, M11 ∈ {0, 1}. Thus, they only
consider 16 cases of −−−−→eMAP, where there are no non-unit strides. In [44] non-unit
stride accesses are defined with a matrix M where M11 is a constant C /∈ {0, 1}.

In this work, we define our own adaptation of the above notations. We linearize
the notation, since we need to detect the collection of addresses that are accessed
by a warp (or half-wavefront). For instance, if thread blocks are of size 16 × 16,
threads with ty = 0 and ty = 1 are mapped to the same warp. This is not evident
if we use a 2D notation.

Let us assume that a 2D shared memory space of size ROWS × COLS is
accessed. Our linearized notation can be derived from Equation 6.3 as follows:

~s = M ·
−→tid + ~o =

[
M00 M01
M10 M11

] [
ty
tx

]
+
[
o0
o1

]
s = (M00ty +M01tx + o0)COLS +M10ty +M11tx + o1

= (M00COLS +M10)ty + (M01COLS +M11)tx + o0COLS + o1

(6.4)

90 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

where s is now the memory position accessed by the thread with −→tid = (tx, ty)
Comparing to Equation 1, we identify a stride M01COLS +M11. Moreover, if

the size of the thread block in the x dimension (blockDim.x in CUDA) is smaller
than the warp size, we should also consider the stride M00COLS +M10.

6.2.1 Memory access pattern classification
Using the notation given above, a classification of the access patterns can be
carried out. Thus four classes of memory access patterns can be distinguished:
linear, stride, block and random. A description of these classes is given below.

Linear is the most simple class where all memory accesses in a warp are
consecutive.

~s =
[
0 0
0 1

] [
ty
tx

]
+
[
o0
o1

]
(6.5)

Stride is similar to linear, only the accesses are separated with a stride factor
S. Note that linear is a special case of stride where S = 1.

~s =
[
0 0
0 S

] [
ty
tx

]
+
[
o0
o1

]
(6.6)

Block is a class including 2D access pattern where the threads in a warp have
different values for tx and ty. In some combinations of S1, S2, S3 and S4 multiple
accesses map to the same address (e.g., S1 = S2 = S3 = S4 = 0).

~s =
[
S1 S2
S3 S4

] [
ty
tx

]
+
[
o0
o1

]
(6.7)

Random is the last class and contains all cases which cannot be captured by
the other classifications, similar to [44]. In the access pattern below Zx and Zy

are random numbers.
~s =

[
Zy 0
0 Zx

] [
ty
tx

]
+
[
o0
o1

]
(6.8)

6.2.2 Examples of access pattern classifications
The memory access classification will help us to understand the access patterns
that can be found in real-world benchmarks. Once we know the strides involved,
we will be able to propose bit-vector hash functions as explained in Section 6.4.1.
To illustrate how different memory access patterns can be expressed, let us con-
sider three widely-known applications included in the CUDA SDK, matrix trans-
pose, reduction and Fast Walsh Transform. Matrix transpose is an out-of-place
matrix transposition, and essentially consists of loading data from global mem-
ory into shared memory, and then storing the transposed elements from shared
memory to global memory.

6.2. ACCESS PATTERNS TO SCRATCHPAD MEMORY 91

Matrix transpose - loading

In the loading stage data is written into the scratchpad memory. tile is a 2D
shared memory space of size TILE_DIM × TILE_DIM . It is written by one
thread block of the same size. idata is the input matrix in global memory, and i
is the index of the loop that goes through the matrix.
1 tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];

We linearize the access:
~s =

[
1 0
0 1

] [
ty
tx

]
+
[
i
0

]
resulting in:

s = (ty + i) · TILE_DIM + tx = ty · TILE_DIM + tx + i · TILE_DIM

It is observed that threads with equal ty and consecutive tx perform a linear
access (unit stride). However, if blockDim.x < warp_size, threads of consecutive
ty and equal tx will have a stride TILE_DIM between them. If TILE_DIM = 16
and warp_size = 32, the memory access pattern for warp 0 and i = 0 is:

0, 1, 2, 3, . . . , 15, 16, 17, 18, 19, . . . , 31. No bank conflicts (with 32 banks).

Matrix transpose - storing

In the storing stage data is read from scratchpad memory. odata is the output
matrix in global memory.
1 odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i];

We linearize the access:
~s =

[
0 1
1 0

] [
ty
tx

]
+
[
0
i

]
resulting in:

s = tx · TILE_DIM + ty + i

In this case, the source of conflict is the stride TILE_DIM between threads
of consecutive tx and equal ty. The memory access pattern for warp 0 and i = 0
is:

0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 1, 17, 33,
49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241. 8-way bank conflict
(with 32 banks).

Reduction

If the application does not use 2D memory spaces, the linearization is trivial. For
instance, in the reduction kernel (CUDA SDK):
1 sdata[2 * S * tx] += sdata[2 * S * tx + s];

92 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

The access on the left is (S is a power-of-two, 1 ≤ S < blockDim.x):

~s =
[
0 0
0 2 · S

] [
ty
tx

]
+
[
0
0

]
and consequently:

s = 2 · S · tx

The stride, i.e. the distance between consecutive threads, is 2 · S. As S is a
power of two, bank conflicts appear (with 32 banks).

One interesting case that uses 1D blocks is the Fast Walsh Transform (CUDA
SDK). In this kernel, memory access patterns in shared memory are generated by
the following code:

1 int lo = pos & (stride - 1); // Same as: pos % stride;
2 int i0 = ((pos - lo) << 2) + lo;
3 float D0 = s_data[i0];

In this kernel, the variable called stride takes values of 512, 128, 32, 8 and
2 for the default data used by the code (pos = tx). When the variable stride
takes values from 512 to 32 no conflicts appear (with 32 banks) and a regular
access pattern with stride 1 is generated. However, non regular access patterns
are generated for stride values of 8 and 2. For instance, the addresses generated
in a warp (in this example warp 0 from block 0,0) for stride = 8 are:

0, 1, 2, 3, 4, 5, 6, 7, 32, 33, 34, 35, 36, 37, 38, 39, 64, 65, 66, 67, 68, 69, 70,
71, 96,97, 98, 99, 100, 101, 102, 103 (4-way bank conflict)

In order to adapt this addressing to our notation, we notice that the first of
the above instructions can be seen as the calculation of the thread index in a set
of threads of size stride. Thus, a warp would be divided into several sub-warps
of size stride. Let us re-write the instructions:

1 lo = pos - Integer_part_of(pos / stride) * stride;
2 i0 = Integer_part_of(pos / stride) * stride * 4 + lo;

Notice that Integer_part_of(pos / stride) is the index of a sub-warp of size
stride (we call it sw_index): i0 = sw_index * stride * 4 + lo;.

A warp divided into sub-warps can be seen as a 2D collection of threads with
sw_index = ty and lo = tx:

~s =
[
4 · stride 0

0 1

] [
ty
tx

]
+
[
0
0

]
s = 4 · stride · ty + tx

Thus, the distance between threads of equal ty and consecutive tx is 1, and
the distance between threads of equal tx and consecutive ty is 4 · stride.

6.3. HASH FUNCTIONS 93

All functions

XOR-based functions

Unique XOR-based functions

Permutation-based functions Odd polynomials

Even polynomials

Polynomials

Irreductible polynomials

Figure 6.3: Classification of different types of hash functions as given by Vandieren-
donck and De Bosschere [111]

6.3 Hash functions
The goal of a hash function is to distribute the memory accesses over the memory
banks as evenly as possible. The memory consists of 2n words, divided over 2m

banks. The simplest hash function selects the least significant bits to select the
memory banks. Although this works well for many access patterns, it can cause
bank conflicts for other access patterns. In those cases other bits should be chosen.

Hash functions can be divided into several classes, as illustrated in Fig. 6.3
by Vandierendonck et al. [111]. In total there are (2m)(2n) functions to map n to
m bits [111]. Many of these functions are not interesting as they do not use all
available banks or have high computational requirements.

XOR-based functions are often used as hash functions because of their relative
good hashing properties, especially for strided memory accesses, and their low
computational cost. According to [111], there are 2nm XOR-based hash functions
and N(n,m) unique XOR hash functions, where N(n,m) is calculated using the
following expression:

N(n,m) =
m∏

i=1

2n−i+1 − 1
2m−i+1 − 1 (6.9)

The first three entries of Table 6.1 show the number of hash functions contained
in the previous classes and calculate these number for a specific case: NVIDIA’s
Fermi architecture with 48 kB shared memory divided over 32 banks

Testing all (unique) XOR hash functions for any given access pattern is unfea-
sible due to the large number of possible functions. Often a suitable hash function
can be determined based on the access pattern classification. In the following sec-
tions, two approaches to select m out of n bits performing the bank addressing
are presented. The first one, called bit-vector approach, looks for m consecutive

94 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

Table 6.1: Number of hash functions per class, and an example for mapping n = 14
address bits to m = 5 bank bits.

Class Size Example

All functions (2m)(2n) 2.3e24660
XOR-based functions 2nm 1.2e21
Unique XOR-based functions N(n,m) — Eq. 6.9 1.2e14
Bit-vector functions n−m+ 1 10
Bit-vector XOR functions (n−m+ 1) · n · 2m 4480
Bitwise permutation functions

(
n
m

)
2002

Bitwise XOR functions
(

n(n+1)/2
m

)
9.7e7

bits and drastically reduces the search space. The second one, named bit-wise ap-
proach, is more flexible and selects m individual bits out of n arbitrary positions,
generating a much larger search space.

In addition, both approaches are also combined with an XOR operator yield-
ing to the four types of hash functions described below. The hardware costs of
the hash functions is evaluated in in terms of chip-area, power consumption and
increased memory access latency in Section 6.3.5.

All four types of hash functions are configurable. The best configuration can
be found using either heuristics or an exhaustive search algorithm, as will be
described in Section 6.4. An overview of the hash functions and the configuration
method is shown in Table 6.3.

6.3.1 Bit-vector permutation hash function
A common access pattern for a GPU’s scratchpad memory happens when the
accesses of a warp belong to the classes linear or stride. Then, the stride S can
be written as S = S0 · 2k. The number k indicates which m bits to select out of
the n address bits. In case of the linear access pattern and k = 0, the selection of
the least significant bits [0 . . .m) as the hash function is the best possible choice.
In case k > 0 the access pattern is classified as stride. The best possible hash
function for a pure strided memory access uses the address bits [k . . . k +m). As
it can be easily calculated, the total number of possible bit-vector hash functions
is only n−m+ 1 (see Table 6.1).

6.3.2 Bit-vector XOR hash function
The bit-vector XOR hash functions extend the bit-vector permutation hash func-
tions by combining two vectors that consist of m consecutive bits from the word
address with an offset of k1 and k2, respectively. Moreover, the second vector has
a mask such that a selection of bits in this vector can be made. The bank index is
calculated from the word-address using the formula bank = addr [k1 . . . k1 +m]⊕
(addr [k2 . . . k2 +m]&mask), which is implemented as:

6.3. HASH FUNCTIONS 95

1 bank = (address >> k1) ^ ((address >> k2) & mask);

This hash function is particularly useful when multiple strided memory ac-
cesses with different strides S occur in one application, or, more precisely, have
different values of k in S = S0 ·2k. It can be also very appropriate when a block ac-
cess pattern is used. For instance, let us consider the memory access pattern from
the Fast Walsh transform in the CUDA SDK shown below (see also Section 6.2).

s =
[
32 0
0 1

] [
ty
tx

]
+
[
0
0

]
= 32 · ty + tx with 0 ≤ tx < 8 and 0 ≤ ty < 4 (6.10)

Thread index tx uses bits 0-2 of the address, and thread index ty uses bits
5-6. These bits cannot be captured in a single bit-vector, but the bit-vector XOR
hash can combine two vectors to create a better distribution of memory accesses
over the memory banks.

Because bit-vectors are combined, instead of individual bits, the total number
of possible hash functions is limited to (n − m + 1) · n · 2m, or 4480 in case of
a Fermi GPU’s scratchpad memory (see Table 6.1). Although finding the best
possible hash functions requires to test all bit-vector XOR hash functions, often
only a limited set needs to be evaluated, as will be described in Section 6.4.1.

6.3.3 Bitwise permutation hash function
In cases where selecting one bit-vector or combining two bit-vectors is not flexible
enough to create a good hash function, it is also possible to select m bits individ-
ually. The number of possible choices of m bank addressing bits out of n address
bits is n!

(n−m)! . The order of the selected bits only influences in which bank the
conflicts will occur, not the amount the conflicts. Therefore the actual number of
choices is given by the binomial coefficient

(
n
m

)
or n!

m!(n−m)! (see Table 6.1).

6.3.4 Bitwise XOR hash function
Instead of choosing individual bits as a hash function, it is also possible to select
pairs of bits which will be combined using the XOR operation. In the bitwise

Table 6.2: All n(n+ 1)/2 possible XOR combinations of 4 element vector (a, b, c, d).

a b c d

a a a⊕ b a⊕ c a⊕ d
b b b⊕ c b⊕ d
c c c⊕ d
d d

96 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

Table 6.3: A description of the hash functions used in this work along with the tech-
nique employed for searching in the configuration space.

Bits selection Hash functions Search method

bit-vector bit-vector permutation Exhaustive
bit-vector XOR Exhaustive

bitwise bitwise permutation Heuristic: Givargis or MIH
bitwise XOR Heuristic: Givargis or MIH

permutation hash function m bits were selected out of the n address bits. In the
bitwise XOR hash function the n address bits are combined into n2 combinations,
and m pairs of bits are selected. Because the XOR operation is commutative,
not all combinations have to be evaluated [112]. Instead of creating n2 options,
only n(n + 1)/2 combinations have to be evaluated, as shown in the example of
Table 6.2. The total number of possible bitwise XOR hash functions is about 97
million for a Fermi GPU’s scratchpad memory, as shown in Table 6.1.

In Table 6.3 a summary of the proposed hash functions is displayed along with
the technique employed to search in the configuration space.

6.3.5 Hardware design and evaluation
While a fixed hash function has a negligible latency, the proposed configurable
hash functions’ latency cannot be ignored. To estimate these latencies, the pro-
posed hash functions are implemented in Verilog. Latency, area and power num-
bers are obtained using the Cadence Encounter® RTL Compiler v11.20 and a
40 nm standard cell library. A range of target clock frequencies is tested to find
the best trade-off between area, power and latency for each hash function. In
case the latency obtained is low compared to the GPU’s clock period (∼700 ps),
the configurable hash function can be integrated in an existing clock cycle of the
memory access; otherwise each memory access has to be extended with one more
clock cycle to facilitate the hash function.

All four configurable hash functions are evaluated: bit-vector permutation,
bit-vector XOR, bitwise permutation and bitwise XOR. The power and area costs
for a single instantiation for these four hash functions are shown in Fig. 6.4a

Table 6.4: Power and area costs of the four proposed hash functions compared to an
NVIDIA GTX 580 GPU.

bit-vector bit-vector bitwise bitwise
permutation XOR permutation XOR

Power 0.1W (0.04%) 0.2W (0.07%) 0.3W (0.1%) 0.5W (0.2%)
Area 0.2mm2 (0.04%) 0.3mm2 (0.06%) 0.5mm2 (0.1%) 1.1mm2 (0.2%)

6.3. HASH FUNCTIONS 97

bit-vector
permutation

bit-vector
XOR

bitwise
permutation

bitwise
XOR

0

1

2

3

4

5

6

7

8

P
ow

er
(m

W
)

1.5 GHz - 667 ps

3.5 GHz - 286 ps

2.0 GHz - 500 ps

4.0 GHz - 250 ps

2.5 GHz - 400 ps

4.5 GHz - 222 ps

3.0 GHz - 333 ps

5.0 GHz - 200 ps

3
4

8
p

s

4
6

8
p

s

2
6

9
p

s

5
2

1
p

s

3
4

8
p

s

4
3

0
p

s

2
6

9
p

s

4
9

6
p

s

3
4

8
p

s

3
9

8
p

s

2
6

9
p

s

4
0

0
p

s

3
2

6
p

s

3
3

3
p

s

2
6

9
p

s 3
3

3
p

s

2
8

6
p

s

2
8

6
p

s

2
6

9
p

s

2
8

6
p

s

2
5

0
p

s

2
5

0
p

s

2
4

8
p

s

2
5

0
p

s

2
2

2
p

s

2
4

3
p

s

2
2

1
p

s

2
2

7
p

s

2
0

0
p

s

2
4

6
p

s

2
0

0
p

s

2
2

1
p

s

(a) power vs. latency

bit-vector
permutation

bit-vector
XOR

bitwise
permutation

bitwise
XOR

0

1000

2000

3000

4000

5000

6000

ar
ea

(µ
m

2
)

1.5 GHz - 667 ps

3.5 GHz - 286 ps

2.0 GHz - 500 ps

4.0 GHz - 250 ps

2.5 GHz - 400 ps

4.5 GHz - 222 ps

3.0 GHz - 333 ps

5.0 GHz - 200 ps

3
4

8
p

s

4
6

8
p

s

2
6

9
p

s

5
2

1
p

s

3
4

8
p

s

4
3

0
p

s

2
6

9
p

s

4
9

6
p

s

3
4

8
p

s

3
9

8
p

s

2
6

9
p

s

4
0

0
p

s

3
2

6
p

s

3
3

3
p

s

2
6

9
p

s

3
3

3
p

s

2
8

6
p

s 2
8

6
p

s

2
6

9
p

s

2
8

6
p

s

2
5

0
p

s 2
5

0
p

s

2
4

8
p

s

2
5

0
p

s

2
2

2
p

s 2
4

3
p

s

2
2

1
p

s

2
2

7
p

s

2
0

0
p

s 2
4

6
p

s

2
0

0
p

s

2
2

1
p

s
(b) area vs. latency

Figure 6.4: Power (a) and area (b) vs. latency results for the four proposed hash
functions for a range of target clock frequencies (1.5GHz – 5.0GHz)

and Fig. 6.4b respectively. These figures show the range of tested clock frequen-
cies (1.5GHz – 5GHz) and the target clock period just below the target clock
frequency. Furthermore, each bar displays and the achieved latency in each ex-
periment. It can be noticed that the area and power costs increase for each of
the four hash functions as the target clock frequency increases. For the bit-vector
XOR and the bitwise XOR hash functions the target clock frequencies of 4.5GHz
and 5.0GHz are not feasible. The minimum latency required for each of the hash
functions is 250 ps. This is a significant part of the ∼700 ps of a GPU’s clock cycle.
Therefore the memory access latency is increased by one cycle in the experiments
of Section 6.6 in case a configurable hash function is used.

98 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

The hash function hardware has to be instantiated for every bank in the
scratchpad memory. An NVIDIA Fermi GPU has a scratchpad memory con-
sisting of 32 banks in each of its 16 streaming multiprocessors. In total the power
consumption of the scratchpad memory ranges from 0.1W for the bit-vector per-
mutation hash function to 0.5W for the bitwise XOR hash function. This is about
0.2% of the total power consumption of an NVIDIA GTX 580. The corresponding
area costs range from 0.2mm2 to 1.1mm2, as shown in Table 6.4.

6.4 Hash function configuration
As each kernel can employ different patterns to access the scratchpad memory,
the hash functions described in Section 6.3 must be configured per kernel.1 The
configuration parameters for the bit-vector permutation hash functions are deter-
mined using an exhaustive search algorithm described in Section 6.4.1, since the
number of options is limited (see Table 6.1). The options for the parameters of
the bitwise permutation hash functions are much larger, therefore heuristics are
used. Two different heuristics are evaluated: the Givargis heuristic [23] (GH) and
the proposed Minimum Imbalance Heuristic (MIH). The extended hash function
types with XOR operator are configured same as the corresponding permutation-
based types. Although the number of options might be also large for the bit-vector
XOR-based hash functions, we show at the end of Section 6.4.1 that this number
can be drastically reduced under certain circumstances, making the exhaustive
search much more affordable.

6.4.1 Bit-vector exhaustive search algorithm
The bit-vector permutation hash function requires only one parameter: k. The
number of options for k is very limited (e.g., only 10 options are possible in
the example of Table 6.1). The bit-vector XOR hash function requires three
parameters: k1, k2 and mask. A bit-vector permutation hash function can be
emulated by selecting k1 = k and mask = 0. Since every possible bit-vector
permutation hash function can easily be tested, and can also be emulated by a
bit-vector XOR hash function, we only focus on the latter one.

An example of the bit-vector XOR hash function is shown in Fig. 6.5, where
k1 = 2, k2 = 8 and mask = 7, which results in a hash function which selects the
following bank bits: b0 = a2⊕a8, b1 = a3⊕a9, b2 = a4⊕a10, b3 = a5 and b4 = a6.

To select the values for k1, k2 and mask every possible combination of k1, k2
and mask should be explored. In the example of a Fermi GPU (Table 6.1) 48 kB
of scratchpad memory is divided over 32 banks. Hence 14 bits are required to
index every word, and 5 bits for every bank. As a result k1 ranges from 0 to 9 to
make sure always 5 bits are in the result, k2 ranges from 0 to 13 because it can

1When multiple kernels are executing concurrently, different hash functions can be used for
different streaming multiprocessors.

6.4. HASH FUNCTION CONFIGURATION 99

a0a1a2a3a4a5a6a7a8a9a10a11a12a13

k1 m
k2

m

b0 = a2 ⊕ a8

b1 = a3 ⊕ a9

b2 = a4 ⊕ a10

b3 = a5

b4 = a6mask

Figure 6.5: The bit-vector exhaustive search algorithm selects the best values for k1,
k2 and mask, in this example k1 = 2, k2 = 8 and mask = 7.

consist of only one bit due to the mask and mask ranges from 0 to 31 because
there are 5 bits used to index the 32 banks. In total there are 10×14×32 = 4480
combinations to test.

The number of combinations to evaluate can be reduced by limiting the pos-
sible values for k1, k2 and mask. As every stride S can be written as S = S0 · 2k,
the options for k1 can be limited to the values of k of all strided memory access
patterns encountered. Similarly the most significant bit (MSB) for every strided
memory access pattern is calculated as MSB = blog2 ((t− 1) · S)c, with t the
number of threads in a warp. By taking the minimum value for all k, and the
maximum value for all MSB, the range of k2 can be limited. Furthermore, values
k2 = k1 will not give good hashing functions and do not have to be tested, since
ax ⊕ ay = 0 if x = y. For instance, if two different strides S = 4 and S = 6
appear in the scratchpad memory accesses of one kernel, k1 can be 2 or 1 respec-
tively. The maximum MSB is calculated as 7, so that k2 ∈ [1, 7]. The options
k1 = k2 = 1 and k1 = k2 = 2 can be discarded, as they will not give good hashing
functions. Taking the various options for mask into account, the total number of
combinations to evaluate is 188, only 4% of the 4480 possible combinations. In
case k is equal for all strides, the algorithm will select k1 = k and mask = 0 as a
simple permutation will already give the best results.

6.4.2 Bitwise search algorithm based on heuristic

As it was previously indicated, the search space size to find the optimum bitwise
hash function configuration can be very high. Thus, brute-force based meth-
ods can take a long time. To overcome this problem, two heuristics have been
employed. They are presented in this section.

100 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

Givargis Heuristic

Givargis introduces in [23] a heuristic to select the best m out of n address bits
to index a cache. The goal is to use the available cache as fully as possible over
the duration of a program. Therefore all memory accesses of an application are
put in one set, and the heuristic has to find the address bits to index the cache
such that there are as few as possible collisions in the cache.

In the case of scratchpad memory accesses, we need to find the best address
bits to eliminate bank conflicts within one access made by one warp. This makes
it possible to apply the heuristic on every warp access pattern separately. First,
the GH is briefly described below (for a full description see Section 2.3 in [23]).
Then, an extension is presented to combine the results of all the warp access
patterns to select the overall best bank addressing bits.

Given a set R of memory references. Such a set could for example be the
addresses accessed by a single warp in a single instruction. For each bit Ai in
the address space a corresponding quality measure Qi is calculated. The quality
measure is a real number ranging from 0 to 1 and is calculated by taking the ratio
of zeros and ones of bit Ai in all memory addresses in the set R as in the following
equation:

Qi = min(Zi, Oi)
max(Zi, Oi)

(6.11)

where Zi andOi are the number of references having 0 and 1 at bit Ai, respectively.
For each pair of bits (Ai, Aj) in the address space a corresponding correlation

measure Cij is calculated. This correlation is a real number ranging from 0 to 1
and can be calculated using the following equation:

Cij = min(Eij , Dij)
max(Eij , Dij) (6.12)

where Eij and Dij are the number of references having identical and different bits
at Ai and Aj respectively.

To order and select the bits, which should be used to index the banks in the
memory, the following algorithm is used by Givargis:

1 loop:
2 select Ab = max { Q0 , Q1 , Q2, ... QM }
3 for each Qi in { Q0, Q1, Q2, ... QM }
4 Qi := Qi x Cbi
5 halt when all Ai’s␣are␣selected

This algorithm repeatedly selects an address bit with the highest correspond-
ing quality measure and updates the quality measures using the correlations. The
algorithm stops when all bits are selected, ordered from highest to lowest quality.

The goal of Givargis [23] was to evenly distribute all memory accesses of an
application over a CPU’s cache. Therefore all memory accesses are put in one
set. In our application we want to reduce bank conflicts for each memory access

6.4. HASH FUNCTION CONFIGURATION 101

pattern, and a balance must be found in optimizing all access patterns together.
Therefore a set of memory addresses is created for each warp access pattern, and
the heuristic is used to select the best bank addressing bits for the combination
of these sets.

Let us take two sets of memory addresses, R1 and R2, for example correspond-
ing with warp access patterns from two memory accesses in the same application.
Ideally both patterns should access the memory banks with the lowest number
of conflicts possible. Therefore the quality and correlation metrics of each set of
memory addresses is calculated individually as described above. The respective
quality and correlation measures are called Q1

i , Q2
i , C1

ij and C2
ij . The proposed

updated algorithm combines the quality metrics of each memory address set using
the sum operator (+). It finds the best bits for indexing the banks in the memory
as shown below:
1 loop:
2 // calculate the combined quality for each address bit
3 for each Qi in { }
4 Qi := Q1i + Q2i
5 select Ab = max { Q0, Q1, Q2, ... QM }
6 for each Q1i in { Q10 , Q11 , Q12 , ... Q1M }
7 Q1i := Q1i x C1bi
8 for each Q2i in { Q20 , Q21 , Q22 , ... Q2M }
9 Q2i := Q2i x C2bi

10 halt when all Ai’s␣are␣selected

This algorithm repeatedly calculates the combined quality of all address bits
by taking the sum quality value of an address bits over the different sets of memory
addresses. Then it selects the address bit with the highest combined quality value
and updates the quality value for all address bits in all sets with their respective
correlations.

Example For a combination of stride=8 and stride=45 this algorithm selects
address bits (ordered from highest to lowest quality): {A3, A4, A5, A6, A7}. For a
combination of stride=8 and stride=13 it selects {A3, A4, A6, A5, A7}.

To use the GH also for the bitwise XOR hash function, all possible combina-
tions of two address bits are created for each memory reference, as shown in the
example of Table 6.2. These combinations are then used as the input bits for the
GH. For each combination a quality measure Qi and a correlation measure Cij

can be calculated as described above.

Minimum Imbalance Heuristic

In this section a new heuristic is presented, named the Minimum Imbalance
Heuristic (MIH). It finds the best set of addressing bits minimizing the number
of bank conflicts given a set of R memory references.

Similarly to Givargis, this heuristic sequentially computes the best address-
ing bits but it introduces two important modifications to the previous mentioned

102 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

heuristic. Firstly, it employs a measure based on the imbalance of memory refer-
ences to select the best addressing bits. Secondly, a new addressing bit is chosen
taking into account the contribution of previous selected addressing bits.

In this heuristic Pn = (bn−1, bn−2, . . . , b0) is the ordered sequence of n previ-
ously selected addressing bits. Then, the calculation of bn (the following selected
bit) is carried out as follows:

bn = arg min
i

(imbalance (Ai)) for all Ai /∈ Pn (6.13)

where imbalance (Ai) is given by the expression:

imbalance (Ai) =

∑2n+1

j=0

∣∣∣hi(j)− ‖R‖
2n+1

∣∣∣
‖R‖

(6.14)

and hi[j] is the j-th bin of a histogram hi that contains the number of references
with addressing bits (Ai, bn−1, . . . , b0) referencing position j. Notice that a perfect
balance of the ‖R‖ references to a set of 2n+1 histogram bins should result in ‖R‖2n+1

accesses per bin. This quantity is subtracted from the real number of accesses
per bin to calculate the imbalance per memory position. Finally, the calculated
imbalances per memory position are added to obtain the total imbalance, which
is normalized dividing by the total number of references ‖R‖.

As it can be deduced from the previous expressions, the information employed
by this method to select addressing bits for values of n > 0 (more than one
addressing bit) is much richer than those employed for Givargis as all sets of
addresses referenced by Pj at j-th step are considered. Finally, the Minimum
imbalance Heuristic can be written as shown in Listing 6.1.

In Fig. 6.6 an example of the proposed heuristic is shown. Eight references
(‖R‖ = 8) to positions 27, 12, 6, 19, 11, 4, 28 and 3 of a memory organized in
eight banks are carried out. The figure shows the three iterations needed by our
heuristic to select the addressing bits employed to address the memory banks.
Consequently, after applying our heuristic the bank addressing bits are reordered
as {A4, A3, A0}.

Like the GH, the MIH calculates the best set of bank addressing bits for one set
of memory references R. Since we want to reduce bank conflicts for each memory
access pattern in an application, we have to combine the imbalance values for each
set of references to find the overall best possible set of bank addressing bits. This

1 P0={ empty }
2 for(j=0; j<n; j++)
3 b_j = min_i(imbalance(Ai, Pj)) or all Ai not belonging to Pj
4 Pj+1 = { Ab, Pj } // new bit Ab is added to the ordered list Pj
5 endfor

Listing 6.1: Minimum imbalance Heuristic (MIH).

6.5. FRAMEWORK FOR BANK CONFLICT REDUCTION 103

h0 = (4, 4) I0 = 0
h1 = (3, 5) I1 = 0.25
h2 = (4, 4) I2 = 0
h3 = (4, 4) I3 = 0
h4 = (5, 3) I4 = 0.25
(a) b0 = arg mini(Ii) = 0

h1 = (3, 0, 1, 4) I1 = 0.75
h2 = (0, 4, 4, 0) I2 = 1
h3 = (2, 2, 2, 2) I3 = 0
h4 = (3, 2, 1, 2) I4 = 0.25

(b) b1 = arg mini(Ii) = 3

h1 = (1, 0, 2, 0, 1, 2, 0, 2) I1 = 0.75
h2 = (0, 2, 0, 2, 2, 2, 0, 0) I2 = 1

h4 = (2, 1, 1, 1, 0, 1, 1, 1) I4 = 0.25
(c) b2 = arg mini(Ii) = 4

Figure 6.6: Minimum Imbalance Heuristic example. In three steps, (a), (b), (c), the set
of addressing bits P = {b0, b1, b2} = {0, 3, 4} is selected for a set of 8 memory addresses
{27, 12, 6, 19, 11, 4, 28, 3} by calculating a histogram hn and imbalance value In for each
address bit n in each step.

is achieved by adding the imbalance values of every memory reference together
(for all address bits Ai /∈ Pn), and selecting the bit with the lowest combined
imbalance value. Therefore Eq. 6.13 is replaced by Eq. 6.15.

bn = arg min
i

(∑
R

imbalance
(
AR

i

))
for all AR

i /∈ Pn for all memory reference sets R (6.15)

To use the Minimum Imbalance Heuristic also for the bitwise XOR hash func-
tion, all possible combinations of two address bits are created for each memory
reference, as shown in the example of Table 6.2. These combinations are then
used as the input bits for the Minimum Imbalance Heuristic.

6.5 Framework for bank conflict reduction
To test the performance improvements of the proposed hash functions of Sec-
tion 6.3 and the quality of the heuristics of Section 6.4, a framework is developed
as shown in Fig. 6.7. It automatically processes an application’s kernel code,
analyses the memory access patterns and configures the proposed hash functions
using the aforementioned heuristics.

104 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

Kernel code

Compiler
1. Analysis of

memory accesses
2. Heuristics

Hardware
reconfiguration

Optimized
hardware (tested
on GPGPU-Sim)

Software hash
function
generation

Optimized code

Figure 6.7: Our framework for bank conflict reduction. It encompasses hardware and
software approaches.

The first step in the framework is to analyze the kernel code and determine
the hash functions’ parameters. The memory accesses analysis is done on source
code level, based on techniques developed in [107]. On some occasions the analysis
produces sub-optimal results, for example because not all memory accesses in a
loop are known due to an unknown loop count. In this case a memory access
trace can be made which is then analyzed. The results of the analysis are used
by the heuristics and search algorithm described in Section 6.4 to find the best
possible parameters for each hash function.

The effects of the hardware hash functions on bank conflict numbers and ex-
ecution time are tested using a modified version of GPGPU-Sim in which the
different hash functions are integrated. The source code of the benchmark appli-
cations is modified by inserting a setup function before a kernel is launched. This
setup function will configure the hash function being tested with the aforemen-
tioned parameters.

The hash functions can also be applied in the kernel code itself. In Section 6.6.2
we do this by hand with the aim of presenting a proof of concept, which demon-
strates the benefits of doing it by a compiler. The hash function is inserted in
every shared memory access and is configured using the same parameters. Only
the bit-vector XOR hash is tested as a software solution, since it gives very good
results (see Section 6.6) and proves to be a good trade-off between added address
calculation costs and memory access bank conflict reductions.

6.6 Experimental results
The effect of the bit-vector XOR, bitwise permutation and bitwise XOR hash
functions on the number of bank conflicts and consequently the execution time
has been tested on a number of benchmarks. Most of the benchmarks are taken
from the CUDA SDK 6.0, Rodinia 2.4 [8] and Parboil 2.5 [98]. We added two
more benchmarks that can be burdened by bank conflicts: matrix-scan [11, 118],
and FFT [33].

6.6. EXPERIMENTAL RESULTS 105

co
nv-

1

co
nv-

2

dct
8x

8-
1

dct
8x

8-
2

dw
tH

aa
r1

D

FFT
-1

FFT
-2

FW
T

hist
64

hist
25

6

la
va

M
D

LU
D

-1

LU
D

-2

m
at

rix
sc

an

M
RI-g

rid
-1

M
RI-g

rid
-2

M
RI-g

rid
-3

M
RI-g

rid
-4

N
W

-1

N
W

-2

re
duct

io
n

tr
an

sp
os

e
av

g.
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
el

.
n

u
m

b
er

o
f

b
a

n
k

co
n

fl
ic

ts
re

d
u

ce
d

fixed bit-vector XOR hash

bitwise permutation - Givargis heur.

bitwise XOR hash - Givargis heur.

bit-vector XOR hash

bitwise permutation - Minimum Imbalance Heur.

bitwise XOR hash - Minimum Imbalance Heur.

Figure 6.8: Relative number of bank conflicts removed by various hash function com-
pared to a baseline GPU (no hash function) for a set of benchmarks.

The parameters of the bit-vector XOR hash function are determined by using
the search algorithm described in Section 6.4.1. The parameters of the bitwise
permutation and bitwise XOR hash functions are determined using the Givar-
gis heuristic and the proposed Minimum Imbalance Heuristic described in Sec-
tion 6.4.2 and Section 6.4.2 respectively. The memory access patterns used by
the search algorithms and the heuristics are extracted from the benchmarks using
either source code analysis or a memory access trace, as describe in Section 6.5.
The resulting parameters for each benchmark and hash function are shown in
Table 6.5.

The proposed hash functions can be implemented in hardware, but also in
software. To evaluate the impact of the hash functions in hardware, all hash
functions are implemented in GPGPU-Sim version 3.2.0 [3], which is configured
as an NVIDIA GTX 480 (Fermi) GPU. The effect of the hash functions on the
number of bank conflicts and the execution time for the benchmarks is evaluated
in Section 6.6.1. The hardware cost in terms of chip-area, power consumption
and added memory access latency has been evaluated in Section 6.3.5. The use
of hash functions as a software solution is evaluated in Section 6.6.2, which shows
the benefits of adding hash functions to memory accesses either manually by a
programmer or automatically by a compiler.

6.6.1 Hardware hash function results
The bank conflict reduction of the various hash functions is compared against the
regular GPU which does not use a hash function in the addressing of the banks
of the shared memory. The fixed bit-vector hash function used in Chapter 5 is
also included in this study for comparison purposes. The relative number of bank

106 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

Table 6.5: List of benchmarks. The parameters for each of the hash functions (bit-
vector XOR, bitwise permutation and bitwise XOR) are determined by either code anal-
ysis or a memory trace. The parameters for the bitwise hash functions are determined
using either the Givargis heuristic or the proposed Minimum Imbalance Heuristic.

N
am

e
M

et
ho

d
bi

t-
ve

ct
or

bi
tw

ise
pe

rm
.

bi
tw

ise
pe

rm
.

bi
tw

ise
X

O
R

ha
sh

bi
tw

ise
X

O
R

ha
sh

X
O

R
ha

sh
G

iv
ar

gi
s

M
in

.
Im

ba
la

nc
e

G
iv

ar
gi

s
M

in
.

Im
ba

la
nc

e

co
nv
-1

A
na
ly
sis

k1
=
0
k2
=
1
m
as
k=

16
(0
)
(1
)
(2
)
(3
)
(5
)

(0
)
(1
)
(2
)
(3
)
(5
)

(0
)
(0
ˆ1

)
(0
ˆ2

)
(0
ˆ3

)
(0
ˆ5

)
(0
)
(1
)
(2
)
(3
)
(5
)

co
nv
-2

A
na
ly
sis

k1
=
0
k2
=
4
m
as
k=

14
(0
)
(4
)
(5
)
(6
)
(7
)

(0
)
(4
)
(5
)
(6
)
(7
)

(0
)
(0
ˆ4

)
(0
ˆ5

)
(0
ˆ6

)
(0
ˆ7

)
(0
)
(4
)
(5
)
(6
)
(7
)

dc
t8
x8
-1

A
na
ly
sis

k1
=
0
k2
=
5
m
as
k=

7
(3
)
(4
)
(0
)
(1
)
(2
)

(3
)
(4
)
(0
)
(1
)
(2
)

(0
ˆ3

)
(0
ˆ4

)
(0
ˆ5

)
(1
ˆ6

)
(2
ˆ7

)
(3
)
(4
)
(0
ˆ5

)
(1
ˆ6

)
(2
ˆ7

)
dc
t8
x8
-2

A
na
ly
sis

k1
=
0
k2
=
5
m
as
k=

7
(3
)
(4
)
(0
)
(1
)
(2
)

(3
)
(4
)
(0
)
(1
)
(2
)

(0
ˆ3

)
(0
ˆ4

)
(0
ˆ5

)
(1
ˆ6

)
(2
ˆ7

)
(3
)
(4
)
(0
ˆ5

)
(1
ˆ6

)
(2
ˆ7

)
dw

tH
aa
r1
D

Tr
ac
e

k1
=
0
k2
=
5
m
as
k=

15
(4
)
(3
)
(2
)
(1
)
(5
)

(4
)
(3
)
(2
)
(1
)
(5
)

(3
ˆ8

)
(2
ˆ7

)
(1
ˆ6

)
(0
ˆ5

)
(0
ˆ4

)
(3
ˆ8

)
(2
ˆ7
)
(1
ˆ6
)
(0
ˆ5

)
(4
)

FF
T
-1

Tr
ac
e

k1
=
1
k2
=
10

m
as
k=

1
(1
0)

(5
)
(1
)
(2
)
(3
)

(1
0)

(5
)
(4
)
(3
)
(2
)

(1
ˆ2

)
(1
ˆ3

)
(1
ˆ4

)
(1
ˆ5

)
(1
ˆ1

0)
(1
ˆ2

)
(1
ˆ3
)
(1
ˆ4

)
(1
ˆ5

)
(1
ˆ1

0)
FF

T
-2

Tr
ac
e

k1
=
1
k2
=
0
m
as
k=

0
(1
)
(2
)
(3
)
(4
)
(5
)

(1
)
(2
)
(3
)
(4
)
(5
)

(0
ˆ1

)
(0
ˆ2

)
(0
ˆ3

)
(0
ˆ4

)
(0
ˆ5

)
(1
)
(2
)
(3
)
(4
)
(5
)

FW
T

A
na
ly
sis

k1
=
0
k2
=
2
m
as
k=

31
(0
)
(1
)
(2
)
(3
)
(4
)

(4
)
(3
)
(2
)
(1
)
(0
)

(0
ˆ2

)
(0
ˆ3

)
(0
ˆ4

)
(0
ˆ5

)
(1
ˆ6

)
(0
ˆ2

)
(0
ˆ3

)
(0
ˆ4

)
(0
ˆ5

)
(1
ˆ6

)
hi
st
64

Tr
ac
e

k1
=
6
k2
=
4
m
as
k=

1
(6
)
(7
)
(8
)
(9
)
(1
0)

(8
)
(7
)
(6
)
(1
0)

(9
)

(6
)
(6
ˆ7

)
(6
ˆ8

)
(7
)
(7
ˆ8
)

(8
)
(7
)
(6
)
(1
0)

(9
)

hi
st
25

6
Tr
ac
e

k1
=
0
k2
=
6
m
as
k=

28
(8
)
(9
)
(1
0)

(1
1)

(1
2)

(0
)
(1
)
(2
)
(3
)
(4
)

(4
ˆ8

)
(3
ˆ9

)
(2
ˆ1

2)
(1
ˆ1

0)
(0
ˆ7

)
(4
ˆ8

)
(3
ˆ9

)
(2
ˆ1

1)
(0
ˆ1

0)
(1
ˆ2

)
la
va
M
D

A
na
ly
sis

k1
=
1
k2
=
6
m
as
k=

3
(3
)
(4
)
(5
)
(6
)
(7
)

(3
)
(4
)
(5
)
(6
)
(7
)

(0
ˆ3

)
(0
ˆ4

)
(0
ˆ5

)
(1
ˆ6

)
(2
ˆ7

)
(3
)
(4
)
(5
)
(1
ˆ6

)
(2
ˆ7

)
LU

D
-1

A
na
ly
sis

k1
=
0
k2
=
5
m
as
k=

7
(0
)
(1
)
(2
)
(3
)
(4
)

(0
)
(1
)
(2
)
(3
)
(7
)

(0
ˆ4

)
(1
ˆ5

)
(2
ˆ6

)
(3
ˆ7

)
(0
ˆ1

)
(0
ˆ4
)
(1
ˆ5

)
(2
ˆ6

)
(3
ˆ7

)
(1
3)

LU
D
-2

A
na
ly
sis

k1
=
0
k2
=
5
m
as
k=

15
(4
)
(0
)
(1
)
(2
)
(3
)

(4
)
(0
)
(1
)
(2
)
(3
)

(0
ˆ4

)
(1
ˆ5

)
(2
ˆ6

)
(3
ˆ7

)
(0
ˆ8

)
(4
)
(0
ˆ5

)
(1
ˆ6

)
(2
ˆ7
)
(3
ˆ8

)
m
at
rix

sc
an

A
na
ly
sis

k1
=
0
k2
=
5
m
as
k=

7
(3
)
(4
)
(5
)
(6
)
(7
)

(3
)
(4
)
(7
)
(6
)
(5
)

(0
ˆ3

)
(0
ˆ4

)
(0
ˆ5

)
(1
ˆ6

)
(2
ˆ7

)
(3
)
(4
)
(0
ˆ5

)
(1
ˆ6

)
(2
ˆ7

)
M
RI
-g
rid

-1
Tr
ac
e

k1
=
0
k2
=
5
m
as
k=

31
(4
)
(3
)
(5
)
(2
)
(1
)

(4
)
(3
)
(2
)
(5
)
(1
)

(4
ˆ9
)
(3
ˆ8

)
(2
ˆ7

)
(1
ˆ6

)
(0
ˆ5

)
(0
ˆ5

)
(1
ˆ6

)
(2
ˆ7

)
(3
ˆ8

)
(4
ˆ9

)
M
RI
-g
rid

-2
Tr
ac
e

k1
=
1
k2
=
6
m
as
k=

1
(5
)
(4
)
(3
)
(2
)
(6
)

(2
)
(3
)
(4
)
(5
)
(1
)

(1
ˆ6

)
(0
ˆ5

)
(0
ˆ4

)
(4
ˆ5

)
(0
ˆ3

)
(2
)
(3
)
(4
)
(5
)
(1
ˆ6

)
M
RI
-g
rid

-3
Tr
ac
e

k1
=
1
k2
=
6
m
as
k=

1
(5
)
(4
)
(3
)
(6
)
(2
)

(2
)
(3
)
(4
)
(5
)
(1
)

(1
ˆ6

)
(0
ˆ5

)
(0
ˆ4

)
(4
ˆ5

)
(0
ˆ3

)
(2
)
(3
)
(4
)
(5
)
(1
ˆ6

)
M
RI
-g
rid

-4
Tr
ac
e

k1
=
0
k2
=
5
m
as
k=

3
(2
)
(3
)
(4
)
(6
)
(5
)

(6
)
(3
)
(2
)
(5
)
(4
)

(0
ˆ2

)
(3
ˆ6

)
(2
ˆ3

)
(2
ˆ4

)
(1
ˆ4

)
(6
)
(3
)
(2
)
(0
ˆ4

)
(1
ˆ5

)
N
W
-1

Tr
ac
e

k1
=
0
k2
=
5
m
as
k=

7
(4
)
(5
)
(6
)
(1
)
(0
)

(4
)
(5
)
(6
)
(7
)
(0
)

(1
ˆ4

)
(2
ˆ5
)
(0
ˆ6
)
(4
ˆ5

)
(3
ˆ7

)
(0
ˆ5

)
(2
ˆ4

)
(3
ˆ6

)
(1
ˆ7

)
(4
)

N
W
-2

Tr
ac
e

k1
=
0
k2
=
5
m
as
k=

15
(4
)
(5
)
(6
)
(1
)
(0
)

(4
)
(5
)
(6
)
(7
)
(0
)

(1
ˆ4

)
(2
ˆ5

)
(0
ˆ6

)
(4
ˆ5

)
(3
ˆ7

)
(1
ˆ4

)
(2
ˆ5

)
(3
ˆ6

)
(0
ˆ7

)
(4
)

re
du

ct
io
n

Tr
ac
e

k1
=
0
k2
=
5
m
as
k=

7
(4
)
(3
)
(5
)
(2
)
(1
)

(4
)
(3
)
(2
)
(1
)
(5
)

(2
ˆ7

)
(1
ˆ6

)
(0
ˆ5

)
(0
ˆ4

)
(4
ˆ5

)
(2
ˆ7
)
(1
ˆ6

)
(0
ˆ5

)
(4
)
(3
)

tr
an
sp
os
e

A
na
ly
sis

k1
=
0
k2
=
4
m
as
k=

14
(0
)
(4
)
(1
)
(2
)
(3
)

(0
)
(4
)
(1
)
(2
)
(3
)

(0
)
(0
ˆ4

)
(1
ˆ4

)
(1
ˆ5

)
(2
ˆ6

)
(0
)
(4
)
(1
ˆ5

)
(2
ˆ6

)
(3
ˆ7

)

6.6. EXPERIMENTAL RESULTS 107

conflicts removed by each hash function for the benchmarks listed in Table 6.5 is
shown in Fig. 6.8. For 14 of the 22 benchmarks the fixed bit-vector hash function
from Chapter 5 removes all bank conflicts, and all configurable hash functions
do so as well. For the other 8 benchmarks the configurable hash functions also
remove all bank conflicts, except for the histogram benchmarks which use indirect
memory accesses. Average values are displayed in Table 6.6. Thus, the fixed bit-
vector XOR works well and removes 86% of all bank conflicts on average. The
configurable bit-vector XOR hash function (Section 6.3.2) improves the number of
removed bank conflicts to 96%. The bitwise permutation hash function performs
worse, regardless if the Givargis or Minimum Imbalance Heuristic is used. It
only removes 49% and 47% respectively of the bank conflicts. The bitwise XOR
hash function removes 88% of all bank conflicts if the parameters are determined
using the Givargis heuristic. In case the Minimum Imbalance Heuristic is used
to determine the parameters, 97% of all bank conflicts are removed and only the
histogram (hist64 and hist256) benchmarks have bank conflicts remaining.

The histogram algorithm is a special kind of algorithm in which the location of
the memory accesses is dependent on the input data itself, and not (just) the input
data dimensions. Therefore one input image can result in more bank conflicts than
another. To take this into account in the experiments, the parameters of the hash
functions are determined using a (randomly selected) image, and the results of
Fig. 6.8 and Fig. 6.9 are obtained by averaging the results of ten other images.

An application does not consist solely of memory accesses, therefore the per-
formance gains are less than the bank conflicts reduction numbers. The speed-up
obtained by the various hash functions over the baseline GPU is shown in Fig. 6.9
for a set of benchmarks. The configurable hash functions perform similar to the
fixed hash function for the 14 benchmarks in which all conflicts are removed by any
hash function. For the other 8 benchmarks the configurable hash functions show a
small performance improvement over the fixed hash function, except for the hist64
benchmark. The geometric mean of the speed-up for the fixed bit-vector XOR
from Chapter 5 is 1.21× compared to a baseline GPU. The configurable bit-vector
XOR hash function performs a little bit better with a speed-up of 1.24×. The
bitwise permutation hash function removes fewer bank conflicts, and consequently
also shows a smaller speed-up of 1.14× and 1.10× for the Givargis and Minimum

Table 6.6: Bank conflicts reduction percentage achieved by the different hash functions
and heuristics.

Heuristic
Hash function None Exhaustive search GH MIH

fixed bit-vector XOR 86% - - -
bit-vector XOR - 96% - -
bit-wise permutation - - 49% 47%
bit-wise XOR - - 88% 97%

108 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

co
nv-

1

co
nv-

2

dct
8x

8-
1

dct
8x

8-
2

dw
tH

aa
r1

D

FFT
-1

FFT
-2

FW
T

hist
64

hist
25

6

la
va

M
D

LU
D

-1

LU
D

-2

m
at

rix
sc

an

M
RI-g

rid
-1

M
RI-g

rid
-2

M
RI-g

rid
-3

M
RI-g

rid
-4

N
W

-1

N
W

-2

re
duct

io
n

tr
an

sp
os

e

gm
ea

n

0.75

1.0

1.5

2.0

2.5

3.0

S
p

ee
d

-u
p

co
m

p
ar

ed
to

b
a

se
li

n
e

fixed bit-vector XOR hash

bitwise permutation - Givargis heur.

bitwise XOR hash - Givargis heur.

bit-vector XOR hash

bitwise permutation - Minimum Imbalance Heur.

bitwise XOR hash - Minimum Imbalance Heur.

Figure 6.9: Overall speed-up obtained by the various hash functions compared to a
baseline GPU (no hash function) for a set of benchmarks.

Imbalance Heuristic respectively. The bitwise XOR hash functions score best,
with a speed-up of 1.18× and 1.24× for the Givargis and Minimum Imbalance
Heuristic respectively. Because memory accesses using the flexible hash functions
require one extra clock cycle (see Section 6.3.5), some applications experience a
slowdown due to the configurable hash functions, see for example the lavaMD
benchmark in Fig. 6.9. The hist256 benchmark benefits the most from the con-
figurable hash functions with a speed-up of 2.5×. It consists mainly of load and
store operations to the scratchpad memory, and is therefore very sensitive to bank
conflicts.

Some applications use the scratchpad memory but do not have bank conflicts.
The performance impact of the extra cycle of latency for every memory access
(see Section 6.3.5) on these kind of applications has been evaluated by testing five
benchmarks: back propagation, srad and hotspot from Rodinia [8], scalar product
from the CUDA SDK and matrix-matrix multiply from Parboil [98]. The average
loss in execution time is only 1%, and the maximum performance loss is 4.5% for
the srad benchmark.

6.6.2 Software hash function results
As indicated in Section 6.5, our framework can be integrated in a compiler, which
would generate optimized code using hash functions. That way, such optimization
would be transparent for the programmer. In this section, we carry out a proof of
concept applying software optimization manually. With this aim, we use the bit-
vector XOR hash functions shown in Table 6.5 for a number of the benchmarks.
The code in Listing 6.2 illustrates how the software optimization can be applied in
a kernel. This sample CUDA code corresponds to the lavaMD benchmark, where

6.6. EXPERIMENTAL RESULTS 109

co
nv-

1

co
nv-

2

dct
8x

8-
1

dct
8x

8-
2

dw
tH

aa
r1

D
dxt

c

FW
T

hist
64

hist
25

6

la
va

M
D

LU
D

-1

LU
D

-2

m
at

rix
sc

an

M
RI-g

rid
-1

M
RI-g

rid
-2

M
RI-g

rid
-3

M
RI-g

rid
-4

nee
dle

-s
har

ed
1

nee
dle

-s
har

ed
2

re
duct

io
n

tr
an

sp
os

e
av

g.
-20%

0%

20%

40%

60%

80%

100%

R
el

.
n

u
m

b
er

o
f

b
a

n
k

co
n

fl
ic

ts
re

d
u

ce
d

Fermi GTX 580 - Ad hoc Fermi GTX 580 - Hash

co
nv-

1

co
nv-

2

dct
8x

8-
1

dct
8x

8-
2

dw
tH

aa
r1

D
FW

T

hist
64

hist
25

6

la
va

M
D

LU
D

-1

LU
D

-2

m
at

rix
sc

an

M
RI-g

rid
-1

M
RI-g

rid
-2

M
RI-g

rid
-3

M
RI-g

rid
-4

nee
dle

-s
har

ed
1

nee
dle

-s
har

ed
2

re
duct

io
n

tr
an

sp
os

e
av

g.
-20%

0%

20%

40%

60%

80%

100%

R
el

.
n

u
m

b
er

o
f

b
a

n
k

co
n

fl
ic

ts
re

d
u

ce
d Kepler K20 - Ad hoc (Load)

Kepler K20 - Hash (Load)

Kepler K20 - Ad hoc (Store)

Kepler K20 - Hash (Store)

Figure 6.10: Relative number of bank conflicts removed by an ad-hoc optimization
technique (typically, padding), and a bit-vector XOR hash function compared to a base-
line implementation (neither hash function, nor ad-hoc technique) for a set of bench-
marks, on GTX 580 (Fermi) and K20 (Kepler). dxtc has been tested on GTX 280 (Tesla
architecture).

rA_shared, rB_shared, and qB_shared are three arrays in scratchpad memory.
Experiments have been run on real hardware: GTX 580 with Fermi architec-

ture, and K20 with Kepler architecture. The benchmark dxtc has only been run
on a GTX 280 with Tesla architecture. The shared memory of this GPU has 16
banks. More recent NVIDIA GPUs have 32-banked shared memories, and dxtc
does not present bank conflicts on them.

Fig. 6.10 presents the relative number of bank conflicts reduced on the GPUs
compared to a baseline implementation, where no specific software technique has
been used to reduce bank conflicts. This figures have been obtained with the
CUDA command-line profiler. For Fermi and Tesla, the profiler returns a single
number as the bank conflict count. For Kepler, it differentiates between shared
memory loads and stores.

110 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

co
nv-

1

co
nv-

2

dct
8x

8-
1

dct
8x

8-
2

dw
tH

aa
r1

D
dxt

c

FW
T

hist
64

hist
25

6

la
va

M
D

LU
D

-1

LU
D

-2

m
at

rix
sc

an

M
RI-g

rid
-1

M
RI-g

rid
-2

M
RI-g

rid
-3

M
RI-g

rid
-4

nee
dle

-s
har

ed
1

nee
dle

-s
har

ed
2

re
duct

io
n

tr
an

sp
os

e

ge
om

ea
n

0.50

0.75

1.0

1.5

2.0
2.5
3.0

4.0
S

p
ee

d
-u

p
co

m
p

ar
ed

to
b

a
se

li
n

e Fermi GTX 580 - Ad hoc Fermi GTX 580 - Hash

co
nv-

1

co
nv-

2

dct
8x

8-
1

dct
8x

8-
2

dw
tH

aa
r1

D
FW

T

hist
64

hist
25

6

la
va

M
D

LU
D

-1

LU
D

-2

m
at

rix
sc

an

M
RI-g

rid
-1

M
RI-g

rid
-2

M
RI-g

rid
-3

M
RI-g

rid
-4

nee
dle

-s
har

ed
1

nee
dle

-s
har

ed
2

re
duct

io
n

tr
an

sp
os

e

ge
om

ea
n

0.50

0.75

1.0

1.5

2.0
2.5
3.0

4.0

S
p

ee
d

-u
p

co
m

p
ar

ed
to

b
a

se
li
n

e Kepler K20 - Ad hoc Kepler K20 - Hash

Figure 6.11: Overall speed-up obtained by an ad-hoc optimization technique (typically,
padding), and a bit-vector XOR hash function compared to a baseline implementation
(neither hash function, nor ad-hoc technique) for a set of benchmarks, on GTX 580
(Fermi) and K20 (Kepler). dxtc has been tested on GTX 280 (Tesla architecture).

For each benchmark, two columns may appear. The one on the left (darker
color) stands for the results for an ad-hoc technique, such as padding, to reduce
bank conflicts. This is the technique (if any) that can be found in the original
code. The right column (lighter color) represents the results for a hash function.
As it can be seen, hash functions always obtain at least the same reduction of the
number of bank conflicts.

The speed-up obtained by the ad-hoc techniques and the hash functions is
shown in Fig. 6.11. In general, the hash functions achieve a speed-up relative to
the baseline that is comparable to the ad-hoc techniques. The geometric mean of
the speed-up of the hash functions to the baseline implementations is 1.23× on
Fermi and 1.33× on Kepler. Moreover, it is remarkable that the ad-hoc techniques
are only applied to 12 out of 21 benchmarks.

In those cases where there is a small performance loss (e.g. conv-1 on GTX
580 and lavaMD on K20), the reduction in the number of bank conflicts does not
compensate for the cost of the hash function (shift and logic operations). It is
worth noting that in this cases no ad-hoc techniques were used in the original

6.7. RELATED WORK 111

code. The number of bank conflicts is so little that no improvement is obtained
from them.

The benchmarks hist64 and hist256 are only a sample of the benefits that
hash functions can have on histogramming. In these tests, histograms of 64 and
256 bins have been calculated for 10 real images using a replication factor of
32, which is the number of sub-histograms in shared memory per thread block.
More details of the use of hash functions on software-optimized implementations
of histogramming, such as [25] and [109], are described in Chapter 5.

In summary, a programmer could benefit from our framework, since this can
generate a hash function that reduces the bank conflicts at least as effectively as
manually-applied ad-hoc techniques. Actually, the optimization could be trans-
parent for the programmer, if the proposed framework of Section 6.5 is integrated
into a compiler. Hash functions also save memory space compared to the padding
approach, so that occupancy might be increased in some cases.

6.7 Related work
GPU memory access pattern classification have been introduced in [14,44]. Jang
et al. describe in [44] six different memory access patterns which are used for loop
vectorization for AMD GPUs and memory selection (e.g. global, shared, texture,
constant) on NVIDIA GPUs. Fang et al. [14] specify 33 memory access patterns
(MAPs). Each MAP consists of an inter- and intra-thread component. The
MAPs are used to predict performance for various platforms (e.g. CPU or GPU)
by querying a database of MAP performance of a particular platform. In this
work we reduce the number of patterns found to only four: linear, stride, block
and random, and use the classification in the search algorithm and heuristics to
configure the proposed hash functions.

Chapter 5 describes fixed hash functions on GPU scratchpad memory. These
hash functions can also be used to avoid atomic conflicts in some implementations
of atomic operations, such as NVIDIA Tesla, Fermi and Kepler architectures [9,
26,105]. Other works propose configurable hash functions per application for CPU

1 __device__ unsigned int hash(unsigned int address){
2 unsigned int addr_xor = (address >> 6) & 3; // k2=6, mask=3
3 addr_xor = addr_xor ^ (address >> 1); // k1=1
4 return addr_xor;
5 }
6 ...
7 d.x = rA_shared[hash (4*wtx+1)] - rB_shared[hash (4*j+1)];
8 ...
9 fA[wtx].v += qB_shared[hash(j)] * vij;

Listing 6.2: Software implementation of the bit-vector XOR hash function (top) and
the CUDA code taken from the lavaMD benchmark (bottom).

112 CHAPTER 6. GPU SCRATCHPAD MEMORY CONF. BANK ADDRESSING

caches [23,28,89,90,112] and interleaved memories [17,93]. Patel et al. [89,90] find
the best possible hash function for a single set of memory references. The proposed
methods in this work find a hash function for all sets of memory references. This
work extends the heuristics from previous work [23] to configure the proposed hash
functions which are an improvement performance-wise compared to the fixed hash
functions in Chapter 5.

Instead of configuring the indexing of the banked memory to reduce bank
conflicts, it is also possible to change the memory itself, as shown in [10]. Diamond
et al. show that it is possible to efficiently address a banked memory with an
arbitrary modulus (instead of 2N). When implemented on a GPU’s L1 cache and
scratchpad memory 98% of all bank and set conflicts can be removed, resulting
in an average speed-up of 24%. When the arbitrary modulus indexing is only
applied to the scratchpad memory, they get a geometric mean 11% speed-up for 5
benchmarks. In our work, we have proposed the use of configurable hash functions
to achieve a geometric mean 24% speed-up on 22 benchmarks.

6.8 Conclusions
In this work four configurable hash functions for banked memories are evaluated:
bit-vector permutation, bit-vector XOR, bitwise permutation and bitwise XOR.
The impact on the number of bank conflicts and the resulting performance gains of
hardware implementations are assessed for the NVIDIA Fermi architecture using
GPGPU-Sim. In total 22 benchmarks from the NVIDIA CUDA SDK, Rodinia
and Parboil benchmark suites are tested. Bank conflicts are removed completely
for 20 benchmarks, while the fixed hash function from Chapter 5 only managed to
remove all bank conflicts for 14 benchmarks. Bank conflict are reduced on average
by 86% for this fixed hash function, by 96% for the configurable bit-vector XOR,
and by 97% for the bitwise XOR hash function using the proposed heuristic.
Only the two histogram benchmarks with their indirect, data dependent memory
references have remaining bank conflicts. In terms of performance, a geometric
mean speed-up of 1.24× over all benchmarks is attained for the configurable
hash functions. Also the hardware costs in terms of latency, power and area are
evaluated. These are estimated to be no more than 0.2% of the power and area
budget of a contemporary GPU for the most complex configurable hash function.

Next to this hardware solution a software hash function is proposed, which
does not require any changes to the hardware. This software approach can reduce
the average number of bank conflicts by 99% in load accesses and 90% in store
accesses, and leads to a 1.33× speed-up on the NVIDIA Kepler architecture.

To configure the hash functions, the Givargis heuristic [23] is extended to
select the overall best bank addressing bits for multiple sets of memory references,
not just for a single set. Also the Minimum Imbalance Heuristic is introduced,
which removes 97% of all bank conflicts for the bitwise XOR hash functions,
outperforming the Givargis heuristic.

CHAPTER 7

R-GPU: a reconfigurable GPU architecture

The last two chapters introduced small changes to the GPU architecture. In
Chapter 5 fixed hash functions for the addressing of the banks and locks in the
scratchpad memory are proposed. These hash functions reduce the number of
bank and lock conflicts, which results in an improved performance for atomic op-
erations on the scratchpad memory. In Chapter 6 a configurable hash function for
scratchpad bank addressing is proposed, which can be configured differently for
each application. This makes it possible to reduce bank conflicts even further, re-
sulting in improved performance not only for applications with atomic operations,
but for all application which suffer from bank conflicts.

Bank conflicts are not the only source of performance loss in GPUs. As already
discussed in Chapter 1, the peak compute performance of GPUs has increased
less than the number of cores. Memory bandwidth has seen an even smaller
improvement, and power consumption has reached its limit. Even applications
with lots of parallelism suffer more and more from the ever increasing gap between
compute performance and memory bandwidth. Much performance is lost due to
GPUs being stalled, either because of off-chip memory accesses or because certain
resources in the GPU are (temporarily) overloaded. Often stall cycles occur when
many threads access the same resources at the same time. For example, threads
first calculate an address, then load data from memory and finally perform some

The content of this chapter has been published in the paper GPU-CC: A Reconfigurable
GPU Architecture with Communicating Cores, presented at the 16th International Workshop on
Software and Compilers for Embedded Systems (M-SCOPES), 2013 [103] and is submitted in the
paper titled R-GPU: A Reconfigurable GPU Architecture to ACM Transactions on Architecture
and Code Optimization [104].

113

114 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

computations on the data. All these actions use different parts in the GPU,
such as integer units, load-store units or floating point units. If these resource
requirements could be spread over time, stall cycles could be avoided, resulting
not only in performance improvements, but also in increased energy efficiency.

In this chapter a more radical modification of the GPU architecture is pro-
posed, called the R-GPU architecture. It decouples the cores in a streaming
multiprocessor (SM) from their normal SIMD-style vector execution, and adds
a communication network between them. R-GPU is an extension to the current
GPU architecture in which the cores in a streaming multiprocessor (SM) can be
configured in a network with direct communication, creating a spatial comput-
ing architecture. Furthermore, each core executes a fixed instruction, reducing
instruction fetch and decode count significantly. Data movement and control of
an application is made implicit in the network, freeing up the cores for compu-
tations on actual data. By better utilizing the available cores in a GPU, this
results in increased performance and improved energy efficiency, while it only
adds a relatively small amount of hardware. Since the original GPU functionality
is preserved, R-GPU can still run existing existing GPU programs.

This chapter starts with an example. A 2D convolution kernel is mapped
to a regular Fermi GPU in Section 7.1. The proposed R-GPU architecture is
introduced in Section 7.2, as well as its programming model. The main benefits
of the R-GPU architecture are described in Section 7.3. Section 7.4 introduces the
tools developed to program the proposed architecture, and Section 7.5 contains a
performance, area and power evaluation. Related work is discussed in Section 7.6
and a summary is given in Section 7.7.

7.1 Example: 2D convolution
In this section we consider a 2D convolution kernel which is mapped to an NVIDIA
Fermi GPU. It consists of multiple independent streaming multiprocessors (SMs).
Each SM has a private instruction and data cache, a scratchpad memory, two
groups of 16 cores, one group of 16 load-store units, 4 special function units and
two schedulers. A detailed description is given in Section 2.3.2; an overview of
this type of SM is given in Fig. 2.4.

For a GPU to achieve peak compute performance, both schedulers have to
issue an instruction every two cycles. Sometimes a scheduler cannot issue an
instruction, because hardware (e.g. the single group of load-store units) is used
by the other scheduler. Or because input operands are not yet available, either
due to pipeline- or memory latency.

As an example, consider the activity graph in Fig. 7.1 of a multiprocessor of
an NVIDIA GTX 480 (Fermi architecture) executing a 2D convolution kernel.
The SM’s activity is split into three groups: (1) integer instructions representing
address calculations and control operations, (e.g. calculating loop indexes and
branches), (2) floating point instructions representing calculations on actual data

7.2. R-GPU ARCHITECTURE 115

-
time

int
float
ld/st

(a) Baseline 3×3 convolution kernel

-
time

int
float
ld/st

(b) Optimized 3×3 convolution kernel

Figure 7.1: SM activity for (a) a baseline and (b) an optimized kernel. The activity is
split into integer (int), floating point (float) and load-store (ld/st) operations.

and (3) load and store operations. Both the baseline version (Fig. 7.1a) and the
optimized version (Fig. 7.1b) start with address calculations, after which load
instructions are issued. After an idle period the data arrives from the off-chip
memory and floating point instructions (data computations) are issued. The
optimized kernel shows fewer load operations (and corresponding address calcu-
lations) than the baseline implementation, due to the caching of data elements in
registers. The optimized version finishes earlier, but despite all optimizations the
GPU is still idle for a large part of the time.

Although the kernel in Fig. 7.1b is optimized and minimizes the number of
memory loads, the SM is still stalled waiting for data for 49% of the execution
time, despite the many threads it is executing to hide latency. The two schedulers
in the SM only utilize 37% of the possible instruction issue slots to executed in-
structions. Furthermore, many cycles are spent on address calculations and load
instructions, and only 33% of the executed instructions are floating point instruc-
tions on actual data. This results in only 12% of the possible issued instructions
over the duration of the kernel being spent on computations on actual data.

7.2 R-GPU architecture
The goals of the R-GPU architecture are twofold: first the relative number of
executed instructions spend on actual data computations is improved; second
the number of stall cycles due to long latency memory operations is reduced.
Applications with a regular access pattern and/or some form of re-use of their
input data show a large gain in performance from the R-GPU architecture. For
example, a 3 × 3 convolution application uses every input nine times in a fixed
pattern, as discussed in Section 7.5.1. Applications which have a limited level of
parallelism due to data dependencies imposed by the algorithm benefit most from

116 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

the R-GPU architecture. An example is the integral image application described
in Section 7.5.1. Applications which are compute bound, such as matrix-matrix
multiplication, will not benefit from the R-GPU architecture as R-GPU does not
add any compute capabilities to the GPU.

To better utilize the available cores in the GPU, the R-GPU architecture
configures the cores in an SM in a network with direct communication between
them, creating a spatial computing architecture. By moving data directly from
one core to the next, data movement and control is made implicit in the network
and instruction count can be reduced. Furthermore, each core is assigned one
static instruction which it will execute during the whole kernel execution time. It
is stored in a local configuration register and has to be loaded only once. Just like
regular GPU instructions each instruction can be predicated using a predicate
register.

The standard GPU architecture is preserved, and no hardware blocks are re-
moved. Hereby backwards compatibility for current GPU programs is assured,
and programs which do not benefit of the R-GPU architecture can use the stan-
dard GPU architecture as is. Only configuration registers (CR) and a communi-
cation network with FIFO buffers is added, see Fig. 7.2. The GPU can switch
between the its standard and the R-GPU architecture at run-time. In a kernel
which uses the R-GPU architecture, the GPU starts in its standard mode. After
all configuration registers are filled and FIFO buffers are initialized, the GPU
switches to the R-GPU mode. When it completes, it can switch back to regular
mode if required.

The cores in an SM in the R-GPU architecture are connected to each other
via a communication network with FIFO buffers, as shown in Fig. 7.2. Via six
data lanes, named A to F, cores can send data to each other’s FIFOs. Each data
lane is a unidirectional ring and is split into slots using muxes. Compute cores
read input values from one slot in the data lanes and write to the next slot, as
illustrated by the blue arrows out of each CORE in Fig. 7.2. Load store units on
the other hand read from one slot, but write to the same slot, as illustrated by
the red arrows out of each LD/ST. This connection scheme makes it possible to
calculate addresses in core N , load values in load-store unit N+1 and process the
loaded values in core N+1. By passing data directly between cores and load-store
units, the register file is not required and can be switched off. The multiplexers in
the network are controlled by the configuration registers, creating a static circuit
switched network for the duration of a kernel’s execution.

The hardware added by R-GPU will change the hardware design of an SM.
An SM will be larger because of the added hardware, and the maximum possible
clock frequency of the GPU could be reduced. The exact timing impact on the
SM is hard to predict, as the design of an SM is not publicly available. The
performance of R-GPU is insensitive to latency. In addition, the data lanes can
be split into segments to reduce the length of a single wire and minimize the
timing impact. Also, as already observed in Chapter 1, the clock frequency of
GPUs has diminished over the last couple of years to stay within the power

7.2. R-GPU ARCHITECTURE 117

CR

CR

A

B

C

E

D

CORE

LD/ST

F

CR

CORE

CR

CR

CORE

LD/ST

CR

CORE

Figure 7.2: Design of the R-GPU architecture. Cores and load-store units communicate
via FIFO buffers and six data lanes named A to F. The single instruction each core
executes is stored in a local configuration register (CR). Only four of the 32 cores and
two of the 16 load-store units in an SM are shown for clarity.

budget. Furthermore, many GPU card manufacturers offer overclocking tools to
users which allows them to increase the GPU’s clock frequency at the costs of a
higher power consumption. These two observations combined makes us believe
that there is slack available in the GPU’s clock period. A small increment in
the required timing for the SM design caused by the added hardware of R-GPU
therefore has no effect on the GPU’s clock frequency. However, we can only be
sure when this can be verified with an actual GPU hardware design. As these
designs are not available, this verification is outside the scope of this paper.

The extra hardware parts in R-GPU consume extra power next to the GPUs
regular hardware. But when a GPU runs in R-GPU-mode, the register file and
instruction fetch and decode units can be switched off. This alone saves more
power than the R-GPU hardware costs, as is elaborated in Section 7.5.5. Pre-
sumably more power is saved because cores execute a single, static instruction in
R-GPU, and not a mix of instructions. Furthermore, not all cores are used in
every application in R-GPU, which can be disabled, saving even more power.

Each core has three input FIFOs, as a core can execute instructions with (up
to) three input operands. The load-store units have two input FIFOs, one for
the address and one for the data in case of a store. The sizes of the FIFO are
determined in Section 7.5.4.

Cores are triggered to execute an instruction when all input FIFOs have a data
element available and when all FIFOs of the receiving cores have space available.
In some cases a core can write its results back to its own FIFO, for example when
an increment instruction is mapped to a core. To completely hide the latency of a

118 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

core, the FIFO size should be at least as large as the latency of the core. According
to GPGPU-Sim [3] the latency of a two- and three-input instruction is 8 and 10
cycles respectively (for integer or single precision floating point operands).

The latency of a load operation in a load-store unit can be very long in case
of a cache miss. The load-store unit only removes an item from the head of its
FIFO if the operation has completed. The common data type on a GPU is 32-bit,
and an L1 cache line is 128-byte wide [82]. This means that up to 32 consecutive
addresses (for 32-bit words) can fall into the same cache line. The load-store unit
has been equipped with a new prefetch element, which scans the address FIFO.
When it detects an address with a new cache line address, it generates a memory
request to fill the L1 cache with the corresponding cache line. This way the load-
store units’ following load operations will hit in the L1 cache, resulting in minimal
stall cycles. For the prefetcher to be able to prefetch a cache line, the address
FIFO needs to hold at least 32 addresses, or even more to be able to prefetch
more cache lines.

The prefetcher requests an address within a cache line, which causes the cache
line to be fetched from memory and placed in the cache. When the actual memory
access occurs, the prefetch action may not have completed. In this case latency is
reduced, and the final latency observed is somewhere between the cache latency
and the main memory latency. In the unlikely event that a cache line is evicted
between a prefetch request and an actual access, the memory access will take
the full latency of a memory access. This usually does not happen, as there
are few load-store units per SM (16 in Fermi) and 16 kB (or 48 kB) of cache per
SM (depending on the cache configuration), which means there are at least 8
(or 24) cache lines (of 128 bytes) available for each load-store unit. This number
will improve if fewer load-store units are used for load-instructions, assuming a
perfect cache-placement policy. In the experiments the cache-placement policy
of GPGPU-Sim is used, which mimics the actual GPU cache behavior of a set-
associative cache.

7.2.1 Inter SM communication
The communication network as described in the previous section only allows cores
within one SM to communicate with each other. In case an R-GPU kernel consists
of more instructions than there are cores available in a single SM, multiple SMs
can work together to execute the kernel. Three options are investigated to make
inter SM communication possible.

The first option is direct communication between SMs, for example each SM
could have a connection to its direct neighbors, as shown in Fig. 7.3a. Although
this could lead to a low-latency, high-throughput connection between SMs, it
also requires thread blocks to be mapped to specific SMs, which is the exact
opposite of the SIMT programming model (e.g. CUDA and OpenCL). In current
GPU manufacturing, GPUs are made with the maximum number of SMs the
architecture supports, but when some SMs fail during testing the GPU is sold as

7.2. R-GPU ARCHITECTURE 119

G
D

D
R

NETWORK ON CHIP

S
M

S
M

S
M

S
M

S
M

L2

G
D

D
R

L2

G
D

D
R

L2

(a) Direct communication

G
D

D
R

NETWORK ON CHIP

S
M

S
M

S
M

S
M

S
M

L2

G
D

D
R

L2

G
D

D
R

L2

(b) NoC communication

G
D

D
R

NETWORK ON CHIP

S
M

S
M

S
M

S
M

S
M

L2

G
D

D
R

L2

G
D

D
R

L2

(c) L2 communication

Figure 7.3: Three options for inter SM communication.

a lower-end model with the faulty SMs disabled. This would make the direct SM
communication very hard to correctly implement in every possible situation.

The second option, shown in Fig. 7.3b is communication via the network on
chip (NoC). This option can handle different numbers of SMs in a GPU. Also
the thread blocks do not have to be mapped to specific SMs, as long as the
communication via the NoC can be addressed using thread block IDs, instead
of SM IDs. The downside of this options is that the NoC becomes much larger.
Currently the NoC only supports memory requests (loads and stores) from the 16
SMs to the 6 memory partitions. To allow for communication between the SMs,
the number of destinations in the NoC increases from 6 to 16+6.

The last and most applicable solution is communication via the L2 cache as
shown in Fig. 7.3c. Like the second solution any number of SMs can be present
in the GPU, and thread blocks do not have to be mapped to specific SMs. The
sending SM can write to the global, off-chip memory which will be cached in the
L2 cache. The receiving SM can read from the same memory, and will get the
data from the L2 cache. Load and store instructions in a GPU have various cache
operators which are used to specify in which level(s) of cache to update a certain
request. For example, loads can be executed without touching the cache in case
a data element is used only once, or stores can be marked as write-through to
make them available for others in the off-chip memory as soon as possible. For
the receiving SM we introduce a new cache operator called wait-for-hit, which
will remain in the L2 access queue until a hit occurs. The sending SM can use
the already available cache operators. Loads and stores not involved in inter
SM communication can use cache operators to bypass the cache to prevent cache
pollution which could influence the communication.

The inter-SM communication of Fig. 7.3c requires memory loads to be hold
in the L2 cache access queue until a write to the same memory location occurs.
Each L2 partition in an NVIDIA Fermi GPU (six in total in a GTX480) has a
queue of 8 entries. The wait-for-hit load instructions keeps circling through this
L2 cache access queue and the L2 cache until the write from the sending SM has

120 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

occurred. Deadlocks are prevented by having fewer pending load operations with
the wait-for-hit cache operator than there are entries available in the queue. As
a load-store unit which issues these wait-for-hit load instructions can only issue
the next instruction after the previous one has finished, there is a very limited
number of instructions which will be pending in the L2 caches and access queues.
The benchmarks (integr and nw) in Section 7.5) use only one wait-for-hit load
instruction per SM.

7.2.2 Programming model
An R-GPU program consists of two parts. The first part is a regular CUDA
or OpenCL program which is executed in the GPUs standard mode. In this
standard mode all configuration registers can be loaded and the FIFO buffers
can be filled with initial values if required. Then the GPU can switch to R-GPU
mode, which is done at a barrier instruction (e.g. __syncthreads() in CUDA).
At a barrier instruction all threads in a thread block are at the same point in
the kernel. To make sure all threads executing on an SM are synchronized at
this point, only one thread block is allowed to execute at an SM at the same
time. Note: if more thread blocks are used than there are SMs available, multiple
thread blocks can be executed on the SM after each other. thread blocks can
run in any order in regular GPGPU programs, as thread blocks are independent.
To prevent deadlocks in kernels which use inter SM communication, the R-GPU
architecture requires thread blocks to be executed in a known order. The simulator
used (GPGPU-Sim, see Section 7.4.3) orders thread blocks by increasing thread
block-id.

Now the GPU starts executing in R-GPU mode in which the concept of threads
is no longer used. The cores and load-store units in each SM execute the instruc-
tion stored in their configuration register for a given number of iterations, let’s
say N . For example, a load-store unit will issue N times a load operation with
N addresses (which can be all different or equal, depending on the application).
The core receiving data from this load-store unit will calculate N values, which
are then passed on to the next core.

Cores with no dependencies on other cores, and with initial values in their
FIFOs, start executing first. Usually these are address calculating cores. The
generated addresses arrive at the address FIFOs of the load-store units, which
start fetching data from memory. After the data arrives, it is written to the FIFOs
of cores who require these values. These cores start calculating, and forward the
generated results to the next cores. Usually the results end at a load-store unit
which is configured with a store-instruction. This core will store the calculated
result back to the memory. Alternatively the final result can also be kept in a
FIFO, which happens in reduction applications, such as summing all values in
a matrix. After all cores and load-store units have executed their instruction N
times, the GPU may switch back to its normal execution mode. Now the results
which are kept in the FIFOs can be used again in the regular GPU mode.

7.3. R-GPU MOTIVATION 121

1 void fir(float *input , float *coefficients , float *output) {
2 for(int i=2; i<LENGHT; i++) {
3 output[i] = input[i] * coefficients [0]
4 + input[i-1] * coefficients [1]
5 + input[i-2] * coefficients [2];
6 }
7 }

Listing 7.1: Sequential C-code for a 3-tap FIR filter.

7.3 R-GPU motivation
The R-GPU architecture improves GPU performance in two ways: first it removes
redundant memory loads by having the cores communicate directly with each
other using FIFO buffers. Second it improves the obtained memory bandwidth
for applications with a low level of parallelism. These two benefits are discussed
in more detail in this section.

7.3.1 Benefit 1: removing redundant memory loads
In a 3-tap FIR filter as shown in Fig. 7.4a, three input values are combined into
one output value. A sequential C-implementation is given in Listing 7.1. In a
simple GPU implementation one thread would be launched for a single output
element. This implies that each thread has to load three input values. Thread N
loads input values N , N −1 and N −2, thread N + 1 loads input values N + 1, N
and N−1, etc. Even though not all these loads result in off-chip memory accesses
due to the caches present in a GPU, all threads still have to issue the three load
instructions to acquire all input values. This results in all input values being
loaded three times. In an ideal situation each input value is loaded only once. To
limit the number of load instructions, each thread can calculate multiple output
elements. Previously loaded values can be kept in registers and can be re-used for
multiple output elements. This approach still implies that (some) input values are
copied from one register to the other, depending on the amount of loop-unrolling.

Another approach in reducing the total number of loads is to allow threads to
use each others input values. NVIDIA’s Kepler architecture introduces ‘shuffle’
instructions [78] which allows threads in a warp to read each others registers [65].
This has a limited effect on reducing the number of loads, as only the 32 threads
in a warp can communicate. Boundary conditions have to be taken into account;
the first and the last thread in a warp have to read extra values as they don’t
have neighbors from which they can read.

In R-GPU no redundant loads and no register copies are required in the FIR
filter example. Each input value is read only once, and is directly forwarded to
the cores which need the data. Fig. 7.4b shows the R-GPU implementation of
the same 3-tap FIR filter. Data elements are loaded via the LD load-store unit

122 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

z−1 z−1

c0 c1 c2

+ +

in[i]

out[i]

(a) FIR block diagram

IADD

LD.F32

FMUL FMAD FMAD ST.F32

IADD

(b) FIR implementation in R-GPU

Figure 7.4: Block diagram of a 3-tap FIR filter (a) and an R-GPU implementation
(b). Two cores (IADD) are calculating addresses, three cores (FMUL and FMADD) are
performing calculations on data and two load-store units (LD and ST) are used.

and stored in the FIFO buffers of the three taps of the FIR filter, implemented
by the FMUL and FMAD cores. To ensure that the correct input values N , N − 1
and N −2 are used for output value N , the input FIFOs of these three cores have
0, 1 and 2 initial values respectively. The final results are stored using the ST
load-store unit. Addresses for the load-store units are generated by the two IADD
cores.

As the number of load-store units in a GPU’s streaming multiprocessor (SM)
is relatively small,1 reducing the number of load and store instructions has a
large impact on execution time. Especially in applications in which the memory
bandwidth is the main bottleneck, the load-store units are used most (if not all) of
the time. For these applications the compute instructions can be scheduled in the
memory latency period of the load and store instructions. Reducing the number
of load and store operations for these applications will result in a performance
improvement. Regular optimization techniques (e.g. calculating multiple output
values per GPU thread) already show some improvement. R-GPU can further
reduce the number of load and store instructions, resulting in a larger performance
improvement.

7.3.2 Benefit 2: improving memory bandwidth
In a regular GPU each thread’s execution (e.g. calculating a FIR filter) starts
with loading data from memory into registers. When all data has arrived, the
registers are used in calculating the output values of the FIR filter. These are
then subsequently stored back in the memory. Only after the store operations have
been issued, the registers are free and new values can be loaded from memory in
the registers. This causes a delay in the processing, as every thread is waiting
for input data to arrive. GPUs attempt to hide this waiting time by running
many threads in parallel. Often this is not enough to hide all memory latency.

1An NVIDIA Fermi SM has 16 load-store unit compared to 32 compute cores. An NVIDIA
Kepler SM has only 32 load-store unit compared to 192 compute cores.

7.4. PROGRAMMING TOOLS 123

Measurements on a GTX470 show that at least 768 threads per SM are required
to achieve more than 90% of the obtainable bandwidth (which is achieved by
running 1536 threads, the maximum number of threads per SM) for a simple,
memory bound kernel. As described above, it is possible to re-use input elements,
and to apply loop-unrolling to improve performance, but still threads may stall
waiting for data to arrive from memory. This effect is clearly visible in applications
which have a low level of parallelism, and cannot run many threads in parallel, as
illustrated in the Needleman-Wunsch and integral image benchmarks described
in Section 7.5.

Two-level warp scheduling [63] is one way to reduce idle cycles due to the long
latency (load) operations. It schedules instructions only from a limited number of
threads, just enough to hide the pipeline latency, until a long latency operation is
encountered. Only then the instructions from other threads are executed, which
fill the idle cycles caused by the load operation as much as possible.

In R-GPU on the other hand, the address calculating IADD cores (e.g. in the
FIR filter of Fig. 7.4b) never have to wait until registers are free. As long as there
is space available in the FIFOs connected to these cores’ outputs, more addresses
can be generated. This ensures that the load-store unit will load data as quickly
as possible, until the FIFOs connected to its output are full. Only when R-GPU
starts executing a kernel a short stall period is observed in which the first data
elements are loaded.

As the off-chip memory latency on a GPU is hundreds of cycles, a prefetch
element is added in R-GPU to each load-store unit. It scans the address FIFO
and creates memory requests when an address of a new cache line is found. These
requests fill the L1 cache in the SM, and subsequent loads from the load-store
unit will hit in the cache.

7.4 Programming Tools
For ease of programming R-GPU programming tools have been developed to help
the programmer. A visual programming environment is developed as a front end,
see Section 7.4.1 and Fig. 7.5a. A back end is described in Section 7.4.2, see
Fig. 7.5b. This back end automates the error prone task of mapping instructions
to cores and assigning the correct data lanes between cores. It can also make
a trade-off between the number of cores and the number of data lanes used. A
full compiler will be part of future work. Finally the performance of R-GPU is
evaluated using a simulator described in Section 7.4.3.

7.4.1 Front end
A front end visual programming environment is developed in which the program-
mer can draw instructions as boxes onto a canvas. Dependencies between instruc-
tions are drawn as arrows between the boxes. Also initialization values for the

124 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

(a) Visual programming environment

add

add ld.global

sub ld.global

add

add

st.global

A B C

(b) Mapping of instructions
onto cores

Figure 7.5: Integral image application programmed in the visual programming envi-
ronment (a) and the resulting mapping to cores and load-store units (b).

instructions’ operands can be given. To help the programmer even more, pseudo-
instructions are added. For example, an increment instruction is included, which
will map to an add instruction. The programmer can specify the step size, the
number of initial values and the start-offset, which can be a function of the thread
block id and a kernel parameter.

In Fig. 7.5a an R-GPU implementation of the integral image application (see
also Section 7.5.1) is drawn in the visual programming environment. The corre-
sponding sequential C-code is given in Listing 7.2. Each thread block calculates
one row in this example. Two increment units are used to generate the addresses
to load and store from. The first one is used to address 32-bit integers, the second
one 8-bit integers. An offset to a kernel parameter is given, which is a pointer to
an array in the off-chip memory. Also an offset for each specific thread block is
specified to ensure that each thread block processes a different part of the data.
Both increment units have five initial values in their input FIFOs. Only two ad-
ditions (add) and one subtraction (sub) are required to calculate each output,
similar to Listing 7.2. The elements loaded from the row (y−1) above the current
row being processed are used twice, once for (x) and once for (x−1). The second
input has one initial value to account for the difference in the index. The result
of one calculation is used as the input for the next, this is done via the loop back
arrow of the last add unit, shown in the bottom right of Fig. 7.5a.

7.4. PROGRAMMING TOOLS 125

1 void integral_image(char *in, int *out) {
2 for(int y=1; y<HEIGHT; y++)
3 for(int x=1; x<WIDTH; x++)
4 out[y*WIDTH+x] = out[y *WIDTH + x-1] // west
5 + out[(y-1)*WIDTH + x] // north
6 - out[(y-1)*WIDTH + x-1] // north -west
7 + in [y *WIDTH + x];
8 }

Listing 7.2: Sequential C-code of the integral image application

7.4.2 Back end
The back end maps instructions to cores and load-store units and assigns the data
lanes in two steps. It can make a trade-off between the number of cores and the
number of data lanes used. The results are written to a file to be used by the
simulator. A visual overview of the mapping is given, as shown in Fig. 7.5b.

In the first step a mapping of instructions to cores and load-store units is
made by constraint programming. The mapping has to satisfy the number of
cores and load-store units in an SM, as well as the number of data lanes. Also
data dependencies are taken into account, as the communication network is a
directed ring between the cores.

Each instruction has to be mapped to a distinct core or load-store unit. A
constraint is added between two instructions if one requires the output of the
other; the sending instruction has to be placed on a core which is connected to
the core with the receiving instruction. Due to the unidirectional data lanes, the
sending core has to be to the left in Fig. 7.2 of the receiving core. Special care
has to be taken with load-store instructions. Where cores read at one data lane
slot and write to the next, load-store units write at the same slot as they read
from (see also Fig. 7.2).

The instruction mapping is constraint by the number of data lanes available.
To limit the number of data lanes used, a second set of constraints is added. For
each communication between a writing and a reading core, a virtual data lane
is set to be occupied between the writing and the reading core. For each slot in
the data lanes, the total number of virtual data lanes used has to be less than or
equal to the actual number of data lanes available.

In the second step the cores which have to communicate their results to other
cores are assigned to the actual data lanes. This is also done by constraint pro-
gramming. As the total number of data lanes used is limited in the first step, a
standard geometrical packing constraint can be used.

7.4.3 Simulator
The R-GPU architecture is based on NVIDIA’s Fermi architecture, the latest GPU
architecture supported by GPGPU-Sim [3]. Version 3.2.1 of this cycle level simu-

126 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

Table 7.1: List of benchmarks used to evaluate the R-GPU architecture.

Benchmark Abbre- Data Benchmark Description
viation lanes set

2D convolution CONV 4 GPU-CC 2D 3 × 3 image blur
Histogram HIST 2 Gómez-Luna Histogram of a Full HD

et al. 2013 gray scale image
Integral INTEGR 3 - Prefix sum
MRI-Q MRIQ 4 Parboil Magnetic Resonance Imaging
Neural Network NN 3 GPGPU-Sim Third layer of a 5-layer

neural network
Needleman-Wunsch NW 3 Rodinia DNA sequence alignment
PathFinder PATH 6 Rodinia Grid Traversal
Stencil STENCIL 5 Parboil 3D stencil operation
Streamcluster STREAM 6 Rodinia Sum of squared distances

calculation

lator has been modified to be able to simulate the R-GPU architecture. Switching
from the standard GPU execution model to the R-GPU execution model can be
done at a barrier instruction (e.g. __syncthreads() in CUDA). After a barrier
instruction finishes all threads in a thread block are synchronized, making it the
ideal point in time to switch the execution model of an SM. The number of cycles
it takes to finish all threads is modeled in the simulator, just like the loading of
the initial values in the FIFOs.

7.5 Evaluation
To validate the performance improvements of R-GPU we implemented a number
of kernels from a range of applications using the tools described in Section 7.4. All
benchmarks are listed in Table 7.1. From GPGPU-Sim 3.2.1 [3] we use the neu-
ral network benchmark, from Rodinia 2.4 [8] the Needleman-Wunsch, Pathfinder
and Streamcluster benchmark and from Parboil 2.5 [98] the MRI-Q and stencil
benchmark. We also added the 2D convolution from [103], the histogram kernel
from [25] and a newly implemented integral image benchmark. All benchmarks
are compiled using NVIDIA’s CUDA compiler nvcc version 4.2, the latest ver-
sion supported by GPGPU-Sim. All benchmarks are tested using the modified
version of GPGPU-Sim 3.2.1 (see Section 7.4.3) using the configuration file for an
NVIDIA GTX 480 GPU supplied with GPGPU-Sim.

Three benchmarks are described in Section 7.5.1. Next the performance of
R-GPU is evaluated in Section 7.5.2. In Section 7.5.3 and Section 7.5.4 the com-
munication network is discussed and the sizes for the data and address FIFOs are
determined. A conservative power and area estimation is given in Section 7.5.5.

7.5. EVALUATION 127

IADD

LD.F32

FMUL FMAD FMAD ST.F32

IADD

LD.F32

FMUL FMAD FMAD

LD.F32

FMUL FMAD FMAD

FADD

FADD

(a) functional implementation

(b) communication layout

Figure 7.6: Functional implementation (a) and communication layout (b) for a 3×3
2D convolution kernel in R-GPU. Cores with integer instruction are dark-green, those
with floating point instruction in light-green. Cores and load-store units which are not
active are shown as an outline only in the communication layout.

7.5.1 Benchmarks
All benchmarks are implemented using the tools described in Section 7.4. If
a benchmark requires fewer cores than available in an SM, the implementation
is replicated to fill up the SM as much as possible. The implementation of most
benchmarks (e.g. 2D-convolution and stencil) utilizes the spatial locality available
in these benchmarks. Other benchmarks have more complex re-use patterns, such
as the MRI-Q benchmark. The inter SM communication is demonstrated by the
integral image and Needleman-Wunsch benchmarks. These three benchmarks are
discussed below.

2D-convolution

Convolution is a common operation in image and signal processing, among others.
For example an image can be blurred by a 2D convolution with a Gaussian kernel.
A mathematical representation is given in Eq. 7.1, where I is the input image and
K the convolution kernel.

(I ∗K)(x, y) =
∑

i

∑
j

I(x+ i, y + j)K(i, j) (7.1)

128 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

The R-GPU implementation is shown in Fig. 7.6a. The 3×3 structure of the
convolution implemented here is visible in this figure. The nine FMUL and FMAD
cores perform the multiply and add operations in the convolution. Two extra
FADD cores are used to sum the results together. Two IADD cores are used for
calculating the input and output addresses. Three LD.F32 cores are used to load
the input data from the off-chip memory via the L1 cache. The instructions of
these cores contain an immediate offset such that each load-store unit reads a
different line in the image. The ST.F32 is used to store the output data. Fig. 7.6b
shows how the cores can be placed in the communication network. Four out of
the six data lanes are sufficient for this 2D convolution kernel.

Only 13 out of the 32 cores and 4 out of the 16 load-store units in each SM
are used in the configuration of Fig. 7.6. This makes it possible to instantiate two
copies of this configuration in each SM in order to improving performance.

MRI-Q

In the MRI-Q benchmark a matrix Q is computed, representing the scanner con-
figuration for calibration [98]. The arrays Qr and Qi are calculated according
to Eq. 7.2 and Eq. 7.3. The arguments of the sin and cos functions are re-used,
similar to the regular GPU implementation. For every output indexed by n, a
single value of the arrays x, y and z is used, as well as all values of the array in.
In the R-GPU implementation eight values of x, y and z are loaded at setup time
in FIFOs, and at run-time each value of the in array is used eight times, once for
each value of x, y and z in the FIFOs. A new value of the in array is only read
every eight cycles. Two of these implementations can be mapped in a single SM,
resulting in the total number of thread blocks required to be n/(8 · 2). In this
way the in array gets re-used as much as possible. Array in (3072 entries in the
Parboil input dataset) fits in the L1 cache of the GPU, therefore the in array is
only read from the off-chip memory once.

Qr[n] =
∑

k

in[k].φ · cos((in[k].x · x[n] + in[k].y · y[n] + in[k].z · z[n]) · 2π) (7.2)

Qi[n] =
∑

k

in[k].φ · sin((in[k].x · x[n] + in[k].y · y[n] + in[k].z · z[n]) · 2π) (7.3)

Integral image

The integral image, or summed area table, of a matrix M contains the sum of all
pixels above and to the left of the current element, as shown in Eq. 7.4.

I (x, y) =
∑
x′≤x
y′≤y

M (x′, y′) (7.4)

7.5. EVALUATION 129

1.35

3.40 2.91

1.54 1.25

11.5

1.65 1.48 1.16
2.11

0

2

4

6

8

10

12

14

conv integr hist mriq nn nw path stencil stream gmean

Sp
e

e
d

-u
p

Figure 7.7: Speed-up of R-GPU compared to an optimized GPU implementation

In the R-GPU implementation a single row of the output I is calculated by only
eight cores, therefore each thread block can work on four rows. The dependency
between row n and row n + 1 in two different thread blocks is resolved using
inter SM communication. The first thread block will write its results to the
memory via the L2 cache. The second thread block will stall until it can read this
data. Although this leads to a long (functional) pipeline, this approach requires
the input data to be read only once, and only one in four output rows have to
be re-read from the L2 cache. In a standard GPU implementation usually the
integral image is calculated in two steps. First the horizontal integral image is
calculated, after which the intermediate output is written to memory. Second the
intermediate output is read again, and the vertical integral image is calculated.

7.5.2 R-GPU performance
The benchmarks as listed in Table 7.1 are implemented on the R-GPU architec-
ture using the tools of Section 7.4. Their performance is compared to a regular
GPU as simulated in GPGPU-Sim [3]. A reference implementation for the reg-
ular GPU implementation is taken from the benchmarks suites. When multiple
reference implementations were available, all are optimized and tested and the
best one is used as the reference. All reference implementations are highly op-
timized, not only thread and thread block sizes are tuned for GPGPU-Sim, but
also loop unrolling factor. For example, the performance of the Neural Network
benchmark taken from GPGPU-Sim is improved more than 8×. For the 2D-
convolution benchmark five different reference implementations are implemented
and evaluated, with an execution time difference between them over 2×.

The speed-up of the R-GPU implementation over a regular GPU is shown in
Fig. 7.7. All these benchmarks benefit from the R-GPU architecture. Benchmarks
who do not gain performance can use the regular GPU architecture as such, and
do not (have to) experience a slow-down. The geometric mean of the speed-ups
for the benchmarks shown in Fig. 7.7 is 2.1×.

Needleman-Wunsch (nw), a nonlinear global optimization method for DNA

130 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

step 1

step 2

step 3

step 4

step 5

step 6

step 7

Figure 7.8: Dependencies between matrix elements in the Needleman-Wunsch algo-
rithm. Seven steps are required to calculate this 4× 4 matrix.

sequence alignments, shows the largest performance improvement of all bench-
marks. It fills a 2D matrix from top left to bottom right as illustrated in Fig. 7.8.
At the start only the first row and the first column of the matrix are filled. To cal-
culate one element in the matrix, the elements to the northwest-, north- and west-
adjacent are required, similar to the integral image benchmark of Section 7.5.1.
At every step of the algorithm the next diagonal is calculated. This means that
the available parallelism is limited, the maximum parallelism is reached when
calculating the main diagonal of the matrix. This limited parallelism limits the
performance of a regular GPU implementation greatly. The reference implemen-
tation from Rodinia uses a two-level approach. The matrix is split into tiles, and
each tile is calculated as described above, the tiles itself are processed in the same
manner. Like the other benchmarks the reference implementation is optimized for
GPGPU-Sim. The R-GPU architecture can transfer the calculated value of one
matrix element directly to its adjacent elements. Similar to the integral image
implementation of Section 7.5.1 the R-GPU implementation of nw calculates four
output rows per thread block. Dependencies between thread blocks are resolved
via inter SM communication (Section 7.2.1). R-GPU’s fine grained communica-
tion, combined with the removal of redundant reads and writes to the off-chip
memory, lead to the large speed-up of 11.5× over a regular GPU.

The integral image benchmark has a similar dependency pattern as the Needle-
man-Wunsch benchmark. However the calculations of the integral image bench-
mark are linear. Therefore the reference GPU implementation can be split into
two kernels for the horizontal and vertical sum. These kernels contain more par-
allelism and far fewer redundant load and store operations than the reference
implementation of the Needleman-Wunsch benchmark. Hence the speed-up for
the integral image benchmark is lower, but still 3.4×.

In Fig. 7.9 the activity of the conv benchmark is shown over the duration
of the kernel’s execution. The activity of the cores is split into int and float
instructions, representing computations on addresses and data respectively. Be-
cause the conv benchmark is limited by off-chip memory bandwidth, not all cores

7.5. EVALUATION 131

-
time

ld/st

float

int

Figure 7.9: Activity of the cores within one SM in R-GPU over the execution of the
2D-convolution application. The activity is split into integer (int), floating point (float)
and load-store (ld/st) operations.

are active all the time, as is clear from the gaps in Fig. 7.9. Compared to the
activity graph of the regular GPU in Fig. 7.1 the R-GPU architecture manages
to issue load instruction to the off-chip memory constantly, instead of in many
short bursts. This is the main source of the speed-up of 1.35× of R-GPU.

7.5.3 Communication network
The R-GPU architecture in Fig. 7.2 has six data lanes; the number of lanes
required for each benchmark is shown in Table 7.1. Most benchmarks require
only 2, 3 or 4 data lanes, while stencil requires 5. Only path and stream
require all 6 data lanes. In these two cases there is a ‘hotspot’ where all data lanes
are used, most often fewer data lanes are used. For example see the instruction
mapping in Fig. 7.5b, where the maximum number of data lanes is only used for
a short period. In case an application requires more data lanes than available in
the architecture it is possible to re-write the application such that data values are
re-computed instead of communicated.

The wires in the data lanes consume a large portion of the area used by R-
GPU, as elaborated in Section 7.5.5. The data lanes only consume power when
used, since unused data lanes can be switched off. Therefore the number of data
lanes in the R-GPU architecture is an area-performance trade-off, which is shown
in Fig. 7.10.

The current implementation of the path benchmark uses 6 data lanes, but
alternative implementations use either 4 or 10 lanes. The 4-lane implementation
is twice as slow, the 10-lane implementation is only 14% faster. Increasing the
number of data lanes from 6 to 10 increases the area cost of R-GPU from 4% to
6%, as shown in Fig. 7.10. Not only the area used by the data lanes increases, but
also more muxes are added in the data lanes. Further more the muxes connecting
the communication network to the FIFOs increase in size as they require more
inputs.

7.5.4 FIFO sizes
A range of FIFO sizes is tested for all benchmarks to find the best possible trade-
off between performance and FIFO size, e.g. number of entries, area and power.
The data FIFO’s size is tested with 4, 8, 16 and 32 entries as shown in Fig. 7.11a.

132 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

0
2
4
6
8

10
12
14
16
18

4
64
4

6
128

8

8
256
16

10
512
32

A
re

a
(m

m
2)

Nr. of data lanes
Addr. fifo size
Data fifo size

nr. lanes
addr. fifo
data fifo

Figure 7.10: R-GPU area costs of the communication network (4 to 10 lanes), address
FIFOs (64 to 512 entries) and data FIFOs (4 to 32 entries).

The execution time of each benchmark is normalized against the execution time
of a FIFO size of 8 entries. Most benchmark are not sensitive for the different
FIFO sizes. The nn benchmark requires at least 5 entries in a data FIFO, and
the mriq and path benchmarks take twice as long to execute when the FIFO
contains only 4 entries. Therefore we select the data FIFO size to be 8 entries. At
this size the path, nw and nn benchmarks perform 15%, 8% and 6% slower than
at a FIFO size of 16 respectively. All other benchmarks’ performance is within
3% of its best best value.

Increasing the number of entries in the data FIFOs from 8 to 16 entries only
increases the total area of R-GPU by 2%, as shown in Fig. 7.10. But the power
consumption of R-GPU increases by 8% due to the larger FIFOs, while perfor-
mance hardly improves for most benchmarks.

The address FIFO size is tested with 64, 128, 256 and 512 entries, as shown in
Fig. 7.11b. The execution time of each benchmark is normalized against the exe-
cution time of a FIFO size of 256 entries. Four benchmarks, hist, mriq, path and
stream perform significantly better with larger FIFO sizes, while conv, nn and
stencil only show small performance improvements. The integr and nw bench-
marks perform the same for all FIFO sizes, as it is limited by the communication
between multiprocessors (Section 7.2.1), and cannot use the prefetch capabilities
of the load-store unit. The stream benchmark uses an array-of-structs as its
inputs, which contain four 32-bit words. In R-GPU one load-store unit is used
for each word. Consecutive addresses for each word are 16 bytes apart, instead of
the normal 4 bytes for 32-bit words. This causes the load-store unit’s prefetcher
to prefetch more cache lines than usually, which causes significant cache pollution
and a slow down for a FIFO size of 512 entries for the stream benchmark. Taken
all the above considerations into account a FIFO size of 256 entries is chosen for
the address FIFOs.

Increasing the number of entries in the address FIFOs from 256 to 512 en-
tries increases the total area of R-GPU by 10%, as shown in Fig. 7.10. But the
power consumption of R-GPU increases by 26% due to the larger FIFOs, while
performance only improves for the hist benchmark.

7.5. EVALUATION 133

0.5

1.0

2.0

4.0

conv hist integr mriq nn nw path stencil stream

N
o

rm
al

iz
e

d
 e

xe
cu

ti
o

n
 t

im
e

4 8 16 32

(a) Execution time normalized against data FIFO size = 8

0.5

1.0

2.0

4.0

conv hist integr mriq nn nw path stencil stream

N
o

rm
al

iz
e

d
 e

xe
cu

ti
o

n
 t

im
e

64 128 256 512

(b) Execution time normalized against address FIFO size = 256

Figure 7.11: Normalized execution time for various FIFO sizes. The data FIFO sizes
range from 4 to 32 (a) and the address FIFO sizes range from 64 to 512 (b).

7.5.5 Power & area estimation
To estimate the power savings of R-GPU, we first estimate how much power can
be saved by switching off some parts of the GPU, e.g. the register file and the
instruction cache, fetch- and decode-unit. Second we give a detailed estimation of
the power the R-GPU architecture requires using Cacti, Verilog synthesis, and a
wire power model. Finally an area estimation of the R-GPU architecture is given.

Power savings

According to GPUWattch [49], the register file takes 13.4% of the dynamic power
in a GTX 480 (average over multiple compute benchmarks), which is about 13W.
In an older Quadro FX5600 the dynamic power consumed by the register file is
17.2%. Similar numbers are reported by GPUSimPow [54], where the register file
of a GTX 240 consumes 12.6% of its power in the Blackscholes benchmark from
the CUDA SDK, while the instruction fetch- and decode-unit take 5.65% of the
GPU’s power. The Hong & Kim power model [40] estimates the power of the
register file and the instruction fetch- and decode-unit to be 7.9W or 4.5% and
13W or 7.5% respectively for a GTX 280 averaged over a number of benchmarks.

Although the power numbers reported are for different GPUs, and even dif-
ferent GPU architectures, the combined power consumed by the register file and

134 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

0.18W

0.28W

0.69W

0.21W

Logic - 0.18W

Data FIFOs - 0.28W

Addr. FIFOs - 0.69W

Wires - 0.21W

Total - 1.35W

(a) Power results – stencil
benchmark

0.29W

1.05W

1.21W

0.60W

Logic - 0.29W

Data FIFOs - 1.05W

Addr. FIFOs - 1.21W

Wires - 0.60W

Total - 3.15W

(b) Power results – mriq
benchmark

3.5mm2

2.6mm2

7.6mm2

9.3mm2

Logic - 3.5mm2

Data FIFOs - 2.6mm2

Addr. FIFOs - 7.6mm2

Wires - 9.3mm2

Total - 23.0mm2

(c) Area results for R-GPU

Figure 7.12: R-GPU power distribution in two benchmarks: memory bound (a) and
compute bound (b) and the area distribution (c)

instruction fetch- and decode-unit of the GPU range from 12% to 18%. Since we
use the same GPU (GTX 480) for our simulations as [49], we use the 13W of
dynamic power reported by [49] as a conservative estimation of the power we can
save by switching off the register file and instruction fetch- and decode-units.

Power costs

To estimate the power consumption of the R-GPU architecture we modeled the
muxes and FIFOs according to the configuration shown in Fig. 7.2 with six data
lanes. The muxes and FIFO logic are implemented in Verilog, and power numbers
are obtained using the Cadence Encounter® RTL Compiler v11.20 and a 40 nm
standard cell library. The SRAM memories in the FIFOs are modeled using
CACTI 6.5 [62] using a 45 nm technology size. The total number of data and
address FIFOs in each SM is 112 (3 for each of the 32 cores and 1 for each of the
16 load-store units) and 16 respectively, with 8 and 256 entries each respectively
(Section 7.5.4). As the wires in the interconnection network between the cores
of an SM can become quite long, we model the power consumption of the wires
separately. A normalized energy per bit of 60 pJ/m is used, similar to [22] where
also architecture changes in the same GPU (GTX 480) are proposed. This is well
within the range of 20 to 100 pJ/m reported in [120] for transmission line type of
interconnection structures at the 45 nm technology node. The normalized energy
per bit for a repeated RC wire type of interconnect is much higher, approximately
400 pJ/m according to [120]. Similar to [22] we base the wire length on a die photo
of a GTX 480, and assume it to be 8mm, the length plus the width of an SM.

7.5. EVALUATION 135

The final power consumption is dependent on the benchmark used, similar
to [40, 49, 54]. For the stencil and mirq benchmark the power consumption for
the different parts of R-GPU is shown in Fig. 7.12. The stencil benchmark is
limited by the off-chip memory bandwidth, and therefore the R-GPU pipeline
often stalls. When the pipeline stalls the wires and values in the FIFOs do not
toggle, leading to a moderate power consumption of 1.4W. The address FIFOs
use a relative large amount of the power because all load-store units are used, but
not all cores in the SMs in this benchmark. The mirq benchmark on the other
hand is not limited by off-chip memory bandwidth and the R-GPU pipeline is
stalled much less, leading to a power consumption of 3.2W. As 28 out of the 32
cores are used, and only 8 out of the 16 load-store units, the power consumption
of the data FIFOs is relatively large for the mirq benchmark compared to the
stencil benchmark.

Combining the 13W of dynamic power which can be saved by switching off
the register file, the 3.2W of added power in the R-GPU architecture and the
total (average) GPU power consumption of 153W [49] leads to a power saving of
6%. Note that this is a conservative estimation, as power saving due to disabling
the instruction cache, fetch- and decode units are not taken into account. Also
the fact that each core is executing a static instruction for a period of time is not
taken into account in this estimation.

Area costs

The area costs of the R-GPU architecture are estimated similar to the power
costs in the previous section. The area values as reported by CACTI 6.5 are used
to determine the area of the FIFOs. The logic area is estimated using Verilog
simulations using the Cadence Encounter® RTL Compiler and the area of the
long wires in the data lanes is estimated using the wire model in [120]. The
total area costs of the R-GPU architecture is estimated to be 23mm2, which is
an increase of just 4% compared to the total area of 529mm2 of an NVIDIA
GTX 480.

An overview of the area costs for the different components of R-GPU is shown
in Fig. 7.12c. The wires in the data lanes add the most area. This is mainly due
to the estimation of the wire length we use, the sum of the length and width of
an SM. When the actual length of these wires is smaller, the (relative) area costs
would also be less as wire area scales linearly with the wire length [120].

Although there are many more data FIFOs than address FIFOs in the R-GPU
architecture (112 vs. 16 per SM), the address FIFOs take the most area. A single
data FIFO contains eight 32-bit values (Section 7.5.4) and has an area of only
0.0015mm2. A single address FIFO contains 256 entries, but also has two read
ports instead of one to support prefetching (Section 7.2), resulting in an area of
0.031mm2 per FIFO. Despite having two read ports the address FIFO requires
less area per bit than the data FIFO.

136 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

In more recent architectures than Fermi (i.e. Kepler [78]), threads in a warp
can read from each others register file by using so called ‘shuffle’ instructions.
The hardware used to perform this shuffling described in [65] could be re-used
as the communication network in the R-GPU architecture. This will reduce the
hardware costs significantly, since the wires in the data lanes take 40% of the total
area of R-GPU.

7.6 Related work
Reconfigurable architectures have been described in literature long before the in-
troduction of GPGPUs. One example is the MorphoSys architecture [97], which
consists of a main processor (RISC) and a reconfigurable processor array con-
nected together via a bus. Another example is the ADRES architecture [58]
which combines a main processor (VLIW) with a matrix of reconfigurable cells.
The main processor and the reconfigurable array are separate hardware parts
in the MorphoSys architecture. In the ADRES architecture several functional
units of the reconfigurable matrix are shared with the VLIW processor, which
reduces communication costs. As a result the ADRES architecture has two func-
tional views, either the VLIW processor or the reconfigurable matrix is executing
instructions. In the R-GPU architecture all resources are shared between the
standard GPU mode and the proposed R-GPU mode, keeping the original GPU
functionality intact which is also used to setup the R-GPU mode.

The R-GPU architecture looks more like the CGRA architecture described
in [67] than the CGRA architectures described above. The execution scheme in
this CGRA is stream based, similar to the R-GPU architecture. It consists of
dedicated (compute) cores and memory tiles. Cores have a direct communication
channel with their neighbors. Global communication is done via a 2D Network
on Chip. The R-GPU architecture on the other hand consists of compute cores
and load-store units which access the memory. The cores and load-store units are
connected via a 1D set of communication lanes. The main difference is that the
CGRA cores in [67] have a register file and execute multiple instructions, while
the R-GPU cores have no memory and execute only one instruction.

Register file caching is introduced in [22] as an alternative method to reduce
register file energy. This is combined with a two-level thread scheduler which
maintains a small set of active threads to hide ALU and scratchpad memory
access latency. A larger set of pending threads is used to hide main memory
latency. The two-level scheduler combined with a a 6-entry per-thread register
file cache reduces register file energy consumption by 36%.

Two-level warp scheduling [63] reduces stall cycles due to long latency oper-
ations, just as R-GPU’s prefetch element in the load-store unit. Two-level warp
scheduling issues instructions from a limited number of threads, just enough to
hide the pipeline latency, until a long latency operation (e.g. off-chip memory
load) is encountered, after which the instructions from other threads are executed.

7.7. CONCLUSIONS 137

Combined with the large warp microarchitecture the two-level warp scheduling
improves performance by 19%.

Specialization in software has been introduced by Bauer et al. in [4]. In this
work certain warps in a thread block are used as a DMA to copy data from the off-
chip DRAM memory to the on-chip scratchpad memory. The resulting speed-up
for several benchmarks are 1.15×−3.2×. In ‘Singe’ [5] by Bauer et al. all warps
in a thread block are assigned a specific sub-computations of a kernel. This allows
‘Singe’ to deal efficiently with the irregularity in both data access patterns and
computation. It also makes large working sets in the on-chip scratchpad memory
possible. The final performance result is a 3.75× speed-up over their previous
GPU implementations.

FCUDA [88] adapts the CUDA programming model into an FPGA design
flow, which maps the coarse and fine grained parallelism exposed in CUDA onto
the reconfigurable fabric. CUDA kernels are compiled into an FPGA design using
high-level synthesis tools. Where FCUDA targets an FPGA, and synthesizes its
processing elements specific for the kernels, R-GPU uses a GPU as platform and
re-uses the existing processing elements.

The Single-Graph Multiple Flows (SGRF) architecture presented in [113] looks
similar to the R-GPU architecture. It is a complete redesign of a GPU as a
coarse-grain reconfigurable fabric (CGRF), where R-GPU is an extension to the
existing architecture. The functional units in SGRF are interconnected in a two
dimensional grid, compared to the one dimensional, unidirectional data lanes in
R-GPU. In SGRF the functional units also execute a static instruction but for
different threads, like the standard GPU architecture. In comparison, the R-GPU
architecture executes on thread block granularity and has no notion of threads.
In SGRF values are tagged with thread IDs which allows threads to overtake each
other. R-GPU does not use tagging, and values have to be processed in-order.
Similar to R-GPU, the SGRF architecture does not require a central register
file or instruction fetch- and decode unit. The reported performance of SGRF
is comparable to existing GPUs, while consuming 57% less energy on average.
This is comparable to R-GPU, which achieves an energy consumption reduction
of 55%. The difference is that R-GPU improves performance over 2×. In terms
of area SGRF is much more efficient, with a reported size of 318 mm2 using a
40 nm technology node for a configuration with 15 SGMF cores. For comparison,
a reference GPU such as the NVIDIA GTX480 has an area of 529 mm2, and
R-GPU adds another 4% on top of this.

7.7 Conclusions
In this chapter R-GPU is presented, a new and reconfigurable GPU architec-
ture with communicating cores. It is fully backwards compatible with existing
GPUs. A communication network with FIFO buffers is added between the cores
of an SM, which allows cores to directly send data to each other. Hereby data

138 CHAPTER 7. R-GPU: A RECONFIGURABLE GPU ARCHITECTURE

movement and control operations (e.g. loop calculations) are avoided. This not
only leads to an improved performance for various benchmarks, but also an in-
creased energy efficiency. The parameters of the architecture, such as the FIFO
sizes, have been quantified using benchmarks from Rodinia and Parboil. Based
on these benchmarks an average speed-up of 2.1× is measured over the regular
GPU architecture. The extra hardware of R-GPU costs only 4% of extra area.
This extra hardware also consumes extra power, but more power is saved as the
register file and instruction fetch- and decode-units can be switched off. This leads
to a conservative approximation of the power savings of R-GPU of 6%. Combined
with the performance improvement this leads to an energy consumption reduction
of 55%.

Programming the R-GPU architecture can be challenging. Therefore tools
are developed to assist the programmer, consisting of a visual programming en-
vironment and an instruction mapper based on constraint programming. This
simplifies programming, but a full compiler would be much appreciated.

CHAPTER 8

Conclusions & future work

Over the last decade GPUs have evolved from a fixed-function graphics renderer to
a fully-programmable compute accelerator. With the exponential increase in the
number of cores, GPUs obtained an unprecedented level of compute performance.
Unfortunately this compute performance is only easily reachable for applications
with an abundance of parallelism. Applications which are more irregular have a
hard time taking advantage of the increase in compute performance. Examples
of such algorithms are histogram and Hough transform, which use atomic opera-
tions to increment voting bins. Furthermore, GPUs have hit the power wall and
became limited by a maximum power consumption level. This led to lower clock
frequencies and an increased number of cores to keep improving the compute
performance of successive GPU architectures. Also the compute-performance to
memory-bandwidth ratio has kept shifting towards compute performance, making
memory accesses more and more the most critical part of a GPU application.

In this thesis various software techniques to improve the performance of atomic
operations have been investigated on the histogram (Chapter 3) and Hough trans-
form (Chapter 4) algorithms. Four different GPUs with four different architec-
tures are used in the evaluation. Both the atomic operations on the off-chip
memory as well as atomic operations on the on-chip scratchpad memory are eval-
uated. It is shown that by replicating the vote-spaces (i.e the bins in the histogram
algorithm) conflicts for bins among threads can be largely avoided. This leads to
large performance improvements, in both the histogram and Hough transform al-
gorithms. Selecting the best combination of replication factor, number of threads
per thread block and number of thread blocks for each software technique and for
each GPU is challenging, as there is no easy way to predict which configuration
will result in the best performance. The general observation is that selecting a

139

140 CHAPTER 8. CONCLUSIONS & FUTURE WORK

configuration which supports the highest number of active threads on a GPU gives
a very good level of performance in most cases. The measurements presented in
this thesis show that more recent GPU architectures are easier to program, as
more configurations result in a performance level close to the optimum.

The results of the software techniques also showed that removing bank and
lock conflicts in the scratchpad memory is eminent to achieve the best possible
performance. The software techniques could only do so much to reduce the num-
ber of conflicts. Therefore hash functions in the addressing of the banks and locks
have been introduced in Chapter 5 to remove the remaining conflicts. These hash
functions require only a couple of logic gates in the addressing lines of the scratch-
pad memory, making this a very cheap addition to the GPU architecture. The
hash functions resulted in an additional performance improvement for applications
with atomic operations, such as histogramming and Hough transform.

Other applications which do not use atomic operations can also suffer from
bank conflicts when accessing the scratchpad memory. As access patterns vary
from one application to the other, configurable hash functions are proposed for
the addressing of banks in the scratchpad memory in Chapter 6. Simulations in
this thesis show that these configurable hash functions can remove nearly all bank
conflicts, resulting in a significant performance improvement. Because these hash
functions can be reconfigured, the hardware costs are larger than the previously
described non-configurable ones. A trade-off can be made between the complexity
of the hash functions and the resulting costs on the one hand and the performance
gains on the other hand. Compared to the size and energy consumption of a GPU
the hardware costs are still negligible for all proposed hash functions.

A much larger modification to the GPU architecture is R-GPU, described in
Chapter 7. R-GPU is an addition to the GPU architecture, which can still be
used as such, ensuring backwards compatibility with existing GPU programs. A
communication network is added between the cores of a GPU, creating a spa-
tial computing network. Because cores can now directly communicate with each
other, the register file can be switched off. Since data-movement is implicit in
the network, many data movement operations can be saved. In R-GPU each core
executes a single, static instruction. This removes any costs for instruction fetch
and decoding, also improving energy efficiency. It also means that the distribu-
tion of instruction execution over time is much more balanced. In a regular GPU
all threads want to use the same resource (e.g. a core or a load-store unit) at the
same time. In R-GPU each core and each load-store unit executes a single, static
instruction over and over again, creating a constant load on this resource. Due to
all this the R-GPU improves the performance of many applications. Applications
which do not benefit from R-GPU architecture can still use the original GPU
architecture. Also power consumption is reduced, as the parts of the GPU which
are switched off consume more power than the parts that are added. These two
factors combined result in an even larger energy efficiency improvement.

FUTURE WORK 141

Future work
The techniques presented in this thesis to implement applications with atomic
operations efficiently can be extended to the newest GPUs with stacked DRAM
memory and also to other parallel architectures, such as the Intel Xeon Phi.
Furthermore, the R-GPU architecture can be incorporated in more recent GPU
architectures. These recommendations for future research are described below.

• In the near future the off-chip GDDR memory will be replaced by through-
silicon vias (TSV)-based stacked DRAM memory, such as High Bandwidth
Memory (HBM) or Hybrid Memory Cube (HMC). The first generation of
stacked DRAMwill be connected to the GPU via a silicon interposer, instead
of via long wires on the Printed Circuit Board (PCB). The width of the
memory bus is much wider than on currently available GDDR memory
systems. At the same time the memory clock frequency is reduced in order
to save on power. How this will affect atomic operations on the off-chip
memory is hard to predict at this point in time. Future research will tell
if stacked DRAM is beneficial not only for overall memory throughput but
also for applications like histogram and Hough transform which use atomic
operations.

• The techniques developed in this thesis to reduce conflicts and improve
the performance of atomic operations can also be applied on other parallel
architectures, such as Intel’s Xeon Phi. If and how atomic operations are
implemented on other architectures has to be investigated, after which the
best matching technique from this thesis can be applied.

• The configurable hash functions in Chapter 6 are initialized at launch time
for the complete duration of a kernel’s execution. An alternative would be to
incorporate a hash function in the load- and store instructions, which makes
it possible to use different hash functions for different memory accesses.
One problem is that different hash functions can map different memory
addresses to the same memory location. This can be prevented by dividing
the memory in regions, e.g. by using the most significant bits of the address.

• The current version of the R-GPU architecture is based on NVIDIA’s Fermi
architecture. R-GPU could be also be based on more recent architectures,
such as Kepler and Maxwell. In these newer architectures ‘shuffle’ instruc-
tions are introduced. These instructions allow threads in a warp to read
each others registers [65]. The available hardware for the ‘shuffle’ instruc-
tions could be re-used for the R-GPU architecture, reducing its area costs.

• The current programming tools for R-GPU require the programmer to or-
ganize the operations of an algorithm by hand. A full compiler which can
translate e.g. C code to an R-GPU program would make the R-GPU archi-
tecture much easier to use.

142 CHAPTER 8. CONCLUSIONS & FUTURE WORK

Bibliography

[1] Stanford Center for Image Systems Engineering (SCIEN). http://scien.
stanford.edu/index.php/test-images-and-videos/, 2013.

[2] AMD. CodeXL profiler. http://developer.amd.com/tools-and-sdks/
opencl-zone/opencl-tools-sdks/codexl/.

[3] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt. An-
alyzing CUDA workloads using a detailed GPU simulator. In Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, pages 163–174, April 2009.

[4] M. Bauer, H. Cook, and B. Khailany. CudaDMA: Optimizing GPU mem-
ory bandwidth via warp specialization. In Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 12:1–12:11. ACM, 2011.

[5] M. Bauer, S. Treichler, and A. Aiken. Singe: Leveraging warp specialization
for high performance on GPUs. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
’14, pages 119–130. ACM, 2014.

[6] K. Bjorke. Color controls. In R. Fernando, editor, GPU Gems: Pro-
gramming Techniques, Tips and Tricks for Real-Time Graphics, chapter 22,
pages 363–373. Pearson Higher Education, 2004.

[7] N. Burgess. Fast ripple-carry adders in standard-cell CMOS VLSI. In
Computer Arithmetic (ARITH), 2011 20th IEEE Symposium on, pages 103–
111, July 2011.

143

http://scien.stanford.edu/index.php/test-images-and-videos/
http://scien.stanford.edu/index.php/test-images-and-videos/
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-tools-sdks/codexl/
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-tools-sdks/codexl/

144 BIBLIOGRAPHY

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing. In
Proceedings of the 2009 IEEE International Symposium on Workload Char-
acterization (IISWC), IISWC ’09, pages 44–54. IEEE Computer Society,
2009.

[9] B. Coon, P. Mills, J. Nickolls, and L. Nyland. Lock mechanism to enable
atomic updates to shared memory. US Patent 8,055,856, Feb 2013.

[10] J. Diamond, D. Fussell, and S. Keckler. Arbitrary Modulus Indexing. In
Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-47. ACM, 2014.

[11] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and J. Manferdelli.
Fast scan algorithms on graphics processors. In Proceedings of the 22Nd
Annual International Conference on Supercomputing, ICS ’08, pages 205–
213. ACM, 2008.

[12] T. Drijvers, C. Pinto, H. Corporaal, B. Mesman, and G.-J. van den Braak.
Fast Huffman decoding by exploiting data level parallelism. In Embedded
Computer Systems (SAMOS), 2010 International Conference on, pages 86–
92, July 2010.

[13] R. O. Duda and P. E. Hart. Use of the Hough transformation to detect lines
and curves in pictures. Commun. ACM, 15(1):11–15, Jan 1972.

[14] J. Fang, H. Sips, and A. L. Varbanescu. Aristotle: A Performance Impact
Indicator for the OpenCL Kernels Using Local Memory. Scientific Program-
ming, 22:239–257, 2014.

[15] O. Fluck, S. Aharon, D. Cremers, and M. Rousson. GPU histogram com-
putation. In ACM SIGGRAPH 2006 Research Posters, SIGGRAPH ’06.
ACM, 2006.

[16] J. Forsberg, U. Larsson, and A. Wernersson. Mobile robot navigation us-
ing the range-weighted Hough transform. Robotics Automation Magazine,
IEEE, 2(1):18–26, Mar 1995.

[17] J. Frailong, W. Jalby, and J. Lenfant. XOR-schemes: A flexible data or-
ganization in parallel memories. In International Conference on Parallel
Processing (ICPP), pages 276–283, 1985.

[18] S. H. Fuller and L. I. Millett. Computing performance: Game over or next
level? IEEE Computer, 44(1):31–38, Jan 2011.

[19] J. Fung. Computer vision on the GPU. In M. Pharr, editor, GPU Gems
2: Programming Techniques for High-Performance Graphics and General-
Purpose Computation, chapter 40, pages 649–665. Addison-Wesley Profes-
sional, 2005.

BIBLIOGRAPHY 145

[20] J. Fung and S. Mann. OpenVIDIA: Parallel GPU computer vision. In Pro-
ceedings of the 13th Annual ACM International Conference on Multimedia,
MULTIMEDIA ’05, pages 849–852. ACM, 2005.

[21] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp for-
mation and scheduling for efficient GPU control flow. In Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 40, pages 407–420. IEEE Computer Society, 2007.

[22] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lind-
holm, and K. Skadron. Energy-efficient mechanisms for managing thread
context in throughput processors. In Proceedings of the 38th Annual Inter-
national Symposium on Computer Architecture, ISCA ’11, pages 235–246.
ACM, 2011.

[23] T. Givargis. Improved indexing for cache miss reduction in embedded sys-
tems. In Design Automation Conference, 2003. Proceedings, pages 875–880,
June 2003.

[24] D. B. Glasco, P. B. Holmqvist, G. R. Lynch, P. R. Marchand, K. Mehra,
and J. Roberts. Cache-based control of atomic operations in conjunction
with an external ALU block. US Patent 8,135,926, Mar 2012.

[25] J. Gómez-Luna, J. M. González-Linares, J. I. Benavides, and N. Guil. An
optimized approach to histogram computation on GPU. Machine Vision
and Applications, 24(5):899–908, 2013.

[26] J. Gómez-Luna, J. M. González-Linares, J. I. Benavides Benítez, and
N. Guil. Performance modeling of atomic additions on GPU scratchpad
memory. IEEE Trans. Parallel Distrib. Syst., 24(11):2273–2282, Nov. 2013.

[27] J. Gómez-Luna, J. M. González-Linares, J. Ignacio Benavides, E. L. Zapata,
and N. Guil. Load balancing versus occupancy maximization on graphics
processing units: The generalized Hough transform as a case study. Int. J.
High Perform. Comput. Appl., 25(2):205–222, May 2011.

[28] A. González, M. Valero, N. Topham, and J. M. Parcerisa. Eliminating cache
conflict misses through XOR-based placement functions. In Proceedings of
the 11th International Conference on Supercomputing, ICS ’97, pages 76–83.
ACM, 1997.

[29] C. Gou and G. N. Gaydadjiev. Elastic pipeline: Addressing GPU on-chip
shared memory bank conflicts. In Proceedings of the 8th ACM International
Conference on Computing Frontiers, CF ’11, pages 3:1–3:11. ACM, 2011.

[30] S. Green. Image processing tricks in OpenGL. GameDevelopers Conference,
Mar 2005.

146 BIBLIOGRAPHY

[31] L. Gritz and E. d’Eon. Computer vision on the GPU. In H. Nguyen, edi-
tor, GPU Gems 3, chapter 24, pages 529–542. Addison-Wesley Professional,
2007.

[32] K. O. W. Group. The OpenCL specification – version 1.0. https://www.
khronos.org/registry/cl/specs/opencl-1.0.pdf, December 2008.

[33] E. Gutierrez, S. Romero, M. A. Trenas, and O. Plata. Experiences with
Mapping Non-linear Memory Access Patterns into GPUs. In Proceedings of
the 9th International Conference on Computational Science: Part I, ICCS
’09, pages 924–933. Springer-Verlag, 2009.

[34] V. Halyo, A. Hunt, P. Jindal, P. LeGresley, and P. Lujan. GPU enhancement
of the trigger to extend physics reach at the LHC. Journal of Instrumenta-
tion, 8(10):P10005, 2013.

[35] V. Halyo, P. LeGresley, P. Lujan, V. Karpusenko, and A. Vladimirov. First
evaluation of the CPU, GPGPU and MIC architectures for real time particle
tracking based on Hough transform at the LHC. Journal of Instrumentation,
9(04):P04005, 2014.

[36] Y. He, Y. Pu, R. Kleihorst, Z. Ye, A. A. Abbo, S. M. Londono, and H. Cor-
poraal. Xetal-Pro: An ultra-low energy and high throughput SIMD proces-
sor. In Proceedings of the 47th Design Automation Conference, DAC ’10,
pages 543–548. ACM, 2010.

[37] Y. He, Z. Zivkovic, R. Kleihorst, A. Danilin, and H. Corporaal. Real-time
implementations of Hough transform on SIMD architecture. In Distributed
Smart Cameras, 2008. ICDSC 2008. Second ACM/IEEE International Con-
ference on, pages 1–8, Sept 2008.

[38] Y. He, Z. Zivkovic, R. Kleihorst, A. Danilin, H. Corporaal, and B. Mesman.
Real-time Hough transform on 1-D SIMD processors: Implementation and
architecture exploration. In J. Blanc-Talon, S. Bourennane, W. Philips,
D. Popescu, and P. Scheunders, editors, Advanced Concepts for Intelligent
Vision Systems, volume 5259 of Lecture Notes in Computer Science, pages
254–265. Springer Berlin Heidelberg, 2008.

[39] S. Hong and H. Kim. An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness. In Proceedings of the
36th Annual International Symposium on Computer Architecture, ISCA ’09,
pages 152–163. ACM, 2009.

[40] S. Hong and H. Kim. An integrated GPU power and performance model.
In Proceedings of the 37th Annual International Symposium on Computer
Architecture, ISCA ’10, pages 280–289. ACM, 2010.

https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf

BIBLIOGRAPHY 147

[41] Y. Hou. asfermi: An assembler for the NVIDIA Fermi Instruction Set.
https://code.google.com/p/asfermi/, 2013.

[42] P. V. Hough. Method and means for recognizing complex patterns, Dec
1962. US Patent 3,069,654.

[43] Intel Corporation. Intel® 64 and IA-32 architectures software developer’s
manual. Number: 325462-052US, September 2014.

[44] B. Jang, D. Schaa, P. Mistry, and D. Kaeli. Exploiting Memory Access
Patterns to Improve Memory Performance in Data-Parallel Architectures.
Parallel and Distributed Systems, IEEE Transactions on, 22(1):105–118,
Jan 2011.

[45] S. Keckler, W. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs and
the future of parallel computing. Micro, IEEE, 31(5):7–17, Sept 2011.

[46] J. Kessenich, D. Baldwin, and R. Rost. The OpenGL® shading lan-
guage – language version 1.10. http://www.opengl.org/registry/doc/
GLSLangSpec.Full.1.10.59.pdf, April 2004.

[47] A. Kubias, F. Deinzer, M. Kreiser, and D. Paulus. Efficient computation
of histograms on the gpu. In Proceedings of the 23rd Spring Conference on
Computer Graphics, SCCG ’07, pages 207–212. ACM, 2007.

[48] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey. Debunking the 100x GPU vs. CPU myth: An evaluation of
throughput computing on CPU and GPU. In Proceedings of the 37th Annual
International Symposium on Computer Architecture, ISCA ’10, pages 451–
460. ACM, 2010.

[49] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi. GPUWattch: Enabling energy optimizations
in GPGPUs. In Proceedings of the 40th Annual International Symposium
on Computer Architecture, ISCA ’13, pages 487–498. ACM, 2013.

[50] A. Li, G.-J. van den Braak, H. Corporaal, and A. Kumar. Fine-grained
synchronizations and dataflow programming on GPUs. In Proceedings of
the 29th ACM on International Conference on Supercomputing, ICS ’15,
pages 109–118. ACM, 2015.

[51] A. Li, G.-J. van den Braak, A. Kumar, and H. Corporaal. Adaptive and
transparent cache bypassing for GPUs. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2015.

[52] E. Lindholm, M. J. Kilgard, and H. Moreton. A user-programmable vertex
engine. In Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’01, pages 149–158. ACM, 2001.

https://code.google.com/p/asfermi/
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf

148 BIBLIOGRAPHY

[53] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:
A unified graphics and computing architecture. Micro, IEEE, 28(2):39–55,
March 2008.

[54] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and B. Juurlink. How
a single chip causes massive power bills GPUSimPow: A GPGPU power
simulator. In Performance Analysis of Systems and Software (ISPASS),
2013 IEEE International Symposium on, pages 97–106, April 2013.

[55] D. Luebke and G. Humphreys. How GPUs work. IEEE Computer, 40(2):96–
100, Feb 2007.

[56] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and
M. Upton. Hyper-threading technology architecture and microarchitecture.
Intel Technology Journal, 6(1):4–14, February 2002.

[57] M. McGuire. Efficient, high-quality Bayer demosaic filtering on GPUs. Jour-
nal of Graphics, GPU, and Game Tools, 13(4):1–16, 2008.

[58] B. Mei, S. Vernalde, D. Verkest, H. Man, and R. Lauwereins. ADRES:
An architecture with tightly coupled VLIW processor and coarse-grained
reconfigurable matrix. In P. Cheung and G. Constantinides, editors, Field
Programmable Logic and Application, volume 2778 of Lecture Notes in Com-
puter Science, pages 61–70. Springer Berlin Heidelberg, 2003.

[59] U. Milic, I. Gelado, N. Puzovic, A. Ramirez, and M. Tomasevic. Paral-
lelizing general histogram application for CUDA architectures. In Embed-
ded Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIII), 2013 International Conference on, pages 11–18, July 2013.

[60] M. Mittal, A. Peleg, and U. Weiser. MMX™ technology architecture
overview. Intel Technology Journal, 1(3):4–15, August 1997.

[61] J. Montrym and H. Moreton. The GeForce 6800. Micro, IEEE, 25(2):41–51,
March 2005.

[62] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA
organizations and wiring alternatives for large caches with CACTI 6.0. In
Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 40, pages 3–14. IEEE Computer Society, 2007.

[63] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and
Y. N. Patt. Improving GPU performance via large warps and two-level warp
scheduling. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-44, pages 308–317. ACM, 2011.

[64] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel pro-
gramming with CUDA. ACM Queue, 6(2):40–53, Mar. 2008.

BIBLIOGRAPHY 149

[65] J. Nickolls, B. Coon, M. Siu, S. Oberman, and S. Liu. Single interconnect
providing read and write access to a memory shared by concurrent threads.
US Patent 7,680,988, 2010.

[66] J. Nickolls and W. Dally. The GPU computing era. Micro, IEEE, 30(2):56–
69, March 2010.

[67] A. Niedermeier, J. Kuper, and G. Smit. Dataflow-based reconfigurable ar-
chitecture for streaming applications. In System on Chip (SoC), 2012 In-
ternational Symposium on, pages 1–4, Oct 2012.

[68] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In
Proceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition - Volume 2, CVPR ’06, pages 2161–2168.
IEEE Computer Society, 2006.

[69] C. Nugteren, G.-J. van den Braak, and H. Corporaal. Future of GPGPU
micro-architectural parameters. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’13, pages 392–395. EDA Consor-
tium, 2013.

[70] C. Nugteren, G.-J. van den Braak, and H. Corporaal. Roofline-aware DVFS
for GPUs. In Proceedings of International Workshop on Adaptive Self-tuning
Computing Systems, ADAPT ’14, pages 8–10. ACM, 2014.

[71] C. Nugteren, G.-J. van den Braak, and H. Corporaal. A study of the po-
tential of locality-aware thread scheduling for GPUs. In Euro-Par 2014:
Parallel Processing Workshops, volume 8806 of Lecture Notes in Computer
Science, pages 146–157. Springer International Publishing, 2014.

[72] C. Nugteren, G.-J. van den Braak, H. Corporaal, and H. Bal. A detailed
GPU cache model based on reuse distance theory. In High Performance
Computer Architecture (HPCA), 2014 IEEE 20th International Symposium
on, pages 37–48, Feb 2014.

[73] C. Nugteren, G.-J. van den Braak, H. Corporaal, and B. Mesman. High
performance predictable histogramming on GPUs: Exploring and evaluat-
ing algorithm trade-offs. In Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, GPGPU-4, pages 1–8.
ACM, 2011.

[74] NVIDIA. CUDA profiler. http://docs.nvidia.com/cuda/profiler-
users-guide.

[75] NVIDIA Corporation. GeForce 256. http://www.nvidia.com/page/
geforce256.html, August 1999.

http://docs.nvidia.com/cuda/profiler-users-guide
http://docs.nvidia.com/cuda/profiler-users-guide
http://www.nvidia.com/page/geforce256.html
http://www.nvidia.com/page/geforce256.html

150 BIBLIOGRAPHY

[76] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Ar-
chitecture: Fermi. http://www.nvidia.com/content/pdf/fermi_white_
papers/nvidia_fermi_compute_architecture_whitepaper.pdf, 2009.

[77] NVIDIA Corporation. NVIDIA GeForce GTX 680. http:
//www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-
Whitepaper-FINAL.pdf, 2012.

[78] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Kepler GK110. http://www.nvidia.com/content/pdf/kepler/
nvidia-kepler-gk110-architecture-whitepaper.pdf, 2012.

[79] NVIDIA Corporation. Parallel Thread Execution ISA v3.1. http://docs.
nvidia.com/cuda/parallel-thread-execution/, 2012.

[80] NVIDIA Corporation. NVIDIA Tegra K1: A New Era in Mobile Com-
puting. http://www.nvidia.com/content/pdf/tegra_white_papers/
tegra-k1-whitepaper.pdf, 2013.

[81] NVIDIA Corporation. CUDA binary utilities v6.5. http://docs.nvidia.
com/cuda/cuda-binary-utilities/, August 2014.

[82] NVIDIA Corporation. CUDA C Programming Guide v6.5. http://docs.
nvidia.com/cuda/cuda-c-programming-guide/, Aug 2014.

[83] NVIDIA Corporation. CUDA compiler driver NVCC v6.5. http://docs.
nvidia.com/cuda/cuda-compiler-driver-nvcc/, August 2014.

[84] NVIDIA Corporation. NVIDIA GeForce GTX 750 Ti. http:
//international.download.nvidia.com/geforce-com/international/
pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf, 2014.

[85] NVIDIA Corporation. NVIDIA GeForce GTX 980. http:
//international.download.nvidia.com/geforce-com/international/
pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF, 2014.

[86] N. Otsu. A threshold selection method from gray-level histograms. Systems,
Man and Cybernetics, IEEE Transactions on, 9(1):62–66, Jan 1979.

[87] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. KrÃĳger, A. Lefohn,
and T. J. Purcell. A survey of general-purpose computation on graphics
hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[88] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and W.-
M. Hwu. FCUDA: Enabling efficient compilation of CUDA kernels onto
FPGAs. In Application Specific Processors, 2009. SASP ’09. IEEE 7th
Symposium on, pages 35–42, July 2009.

http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.nvidia.com/content/pdf/kepler/nvidia-kepler-gk110-architecture-whitepaper.pdf
http://www.nvidia.com/content/pdf/kepler/nvidia-kepler-gk110-architecture-whitepaper.pdf
http://docs.nvidia.com/cuda/parallel-thread-execution/
http://docs.nvidia.com/cuda/parallel-thread-execution/
http://www.nvidia.com/content/pdf/tegra_white_papers/tegra-k1-whitepaper.pdf
http://www.nvidia.com/content/pdf/tegra_white_papers/tegra-k1-whitepaper.pdf
http://docs.nvidia.com/cuda/cuda-binary-utilities/
http://docs.nvidia.com/cuda/cuda-binary-utilities/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF

BIBLIOGRAPHY 151

[89] K. Patel, L. Benini, E. Macii, and M. Poncino. Reducing Conflict Misses by
Application-Specific Reconfigurable Indexing. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 25(12):2626–2637,
Dec 2006.

[90] K. Patel, E. Macii, L. Benini, and M. Poncino. Reducing cache misses by
application-specific re-configurable indexing. In Computer Aided Design,
2004. ICCAD-2004. IEEE/ACM International Conference on, pages 125–
130, Nov 2004.

[91] B. T. Phong. Illumination for computer generated pictures. Commun. ACM,
18(6):311–317, June 1975.

[92] V. Podlozhnyuk. Histogram calculation in CUDA. http://docs.nvidia.
com/cuda/samples/3_Imaging/histogram/doc/histogram.pdf, 2007.

[93] B. R. Rau. Pseudo-randomly interleaved memory. In Proceedings of the
18th Annual International Symposium on Computer Architecture, ISCA ’91,
pages 74–83. ACM, 1991.

[94] T. Scheuermann and J. Hensley. Efficient histogram generation using scat-
tering on GPUs. In Proceedings of the 2007 Symposium on Interactive 3D
Graphics and Games, I3D ’07, pages 33–37. ACM, 2007.

[95] M. Segal and K. Akeley. The OpenGL® graphics system: A specification
– version 2.0. http://www.opengl.org/documentation/specs/version2.
0/glspec20.pdf, October 2004.

[96] R. Shams and R. Kennedy. Efficient histogram algorithms for NVIDIA
CUDA compatible devices. In Proc. Int. Conf. on Signal Processing and
Communications Systems (ICSPCS), pages 418–422, 2007.

[97] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and
E. Chaves Filho. Morphosys: an integrated reconfigurable system for data-
parallel and computation-intensive applications. Computers, IEEE Trans-
actions on, 49(5):465–481, May 2000.

[98] J. A. Stratton, C. Rodrigrues, I.-J. Sung, N. Obeid, L. Chang, G. Liu,
and W.-M. W. Hwu. Parboil: A revised benchmark suite for scientific
and commercial throughput computing. Technical Report IMPACT-12-01,
University of Illinois at Urbana-Champaign, Mar 2012.

[99] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap
to human-level performance in face verification. In Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 1701–1708,
June 2014.

http://docs.nvidia.com/cuda/samples/3_Imaging/histogram/doc/histogram.pdf
http://docs.nvidia.com/cuda/samples/3_Imaging/histogram/doc/histogram.pdf
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf

152 BIBLIOGRAPHY

[100] S. Thakkar and T. Huff. The internet streaming SIMD extensions. Intel
Technology Journal, 3(2):2–9, May 1999.

[101] TunaCode (Limited). Cuda Vision and Imaging Library. http://www.
cuvilib.com/.

[102] M. Ujaldón, A. Ruiz, and N. Guil. On the computation of the circle Hough
transform by a GPU rasterizer. Pattern Recogn. Lett., 29(3):309–318, Feb.
2008.

[103] G.-J. van den Braak and H. Corporaal. GPU-CC: A reconfigurable GPU
architecture with communicating cores. In Proceedings of the 16th Inter-
national Workshop on Software and Compilers for Embedded Systems, M-
SCOPES ’13, pages 86–89. ACM, 2013.

[104] G.-J. van den Braak and H. Corporaal. R-GPU: A reconfigurable GPU
architecture. submitted to ACM Transactions on Architecture and Code
Optimization, 2015.

[105] G.-J. van den Braak, J. Gómez-Luna, H. Corporaal, J. González-Linares,
and N. Guil. Simulation and architecture improvements of atomic operations
on GPU scratchpad memory. In Computer Design (ICCD), 2013 IEEE 31st
International Conference on, pages 357–362, Oct 2013.

[106] G.-J. van den Braak, J. Gómez-Luna, J. González-Linares, H. Corporaal,
and N. Guil. Configurable XOR hash functions for banked scratchpad mem-
ories in GPUs. IEEE Transactions on Computers, 2015.

[107] G.-J. van den Braak, B. Mesman, and H. Corporaal. Compile-time GPU
memory access optimizations. In Embedded Computer Systems (SAMOS),
2010 International Conference on, pages 200–207, July 2010.

[108] G.-J. van den Braak, C. Nugteren, B. Mesman, and H. Corporaal. Fast
Hough transform on GPUs: Exploration of algorithm trade-offs. In Pro-
ceedings of the 13th International Conference on Advanced Concepts for In-
telligent Vision Systems, ACIVS’11, pages 611–622. Springer-Verlag, 2011.

[109] G.-J. van den Braak, C. Nugteren, B. Mesman, and H. Corporaal. GPU-
vote: A framework for accelerating voting algorithms on GPU. In Pro-
ceedings of the 18th International Conference on Parallel Processing, Euro-
Par’12, pages 945–956. Springer-Verlag, 2012.

[110] J. H. van Hateren and A. van der Schaaf. Independent component fil-
ters of natural images compared with simple cells in primary visual cortex.
Proceedings of the Royal Society of London. Series B: Biological Sciences,
265(1394):359–366, 1998.

http://www.cuvilib.com/
http://www.cuvilib.com/

BIBLIOGRAPHY 153

[111] H. Vandierendonck and K. De Bosschere. XOR-based hash functions. Com-
puters, IEEE Transactions on, 54(7):800–812, July 2005.

[112] H. Vandierendonck, P. Manet, and J.-D. Legat. Application-specific recon-
figurable XOR-indexing to eliminate cache conflict misses. In Proceedings
of the Conference on Design, Automation and Test in Europe: Proceedings,
DATE ’06, pages 357–362. European Design and Automation Association,
2006.

[113] D. Voitsechov and Y. Etsion. Single-graph multiple flows: Energy efficient
design alternative for GPGPUs. In Proceedings of the 41st Annual Interna-
tional Symposium on Computer Architecture, ISCA ’14. ACM, 2014.

[114] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear
algebra. In Proceedings of the 2008 ACM/IEEE Conference on Supercom-
puting, SC ’08, pages 31:1–31:11. IEEE Press, 2008.

[115] Y. Wang, M. Shi, and T. Wu. A method of fast and robust for traffic sign
recognition. In Image and Graphics, 2009. ICIG ’09. Fifth International
Conference on, pages 891–895, Sept 2009.

[116] Y.-C. Wang, B. Donyanavard, and K.-T. Cheng. Energy-aware real-time
face recognition system on mobile CPU-GPU platform. In K. Kutulakos,
editor, Trends and Topics in Computer Vision, volume 6554 of Lecture Notes
in Computer Science, pages 411–422. Springer Berlin Heidelberg, 2012.

[117] C. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi GF100 GPU architec-
ture. Micro, IEEE, 31(2):50–59, March 2011.

[118] S. Yan, G. Long, and Y. Zhang. StreamScan: Fast scan algorithms for GPUs
without global barrier synchronization. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’13, pages 229–238. ACM, 2013.

[119] J. Zhang and D. Wang. High-performance zonal histogramming on large-
scale geospatial rasters using GPUs and GPU-accelerated clusters. In Par-
allel Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE
International, pages 993–1000, May 2014.

[120] Y. Zhang, X. Hu, A. Deutsch, A. E. Engin, J. F. Buckwalter, and C.-K.
Cheng. Prediction and comparison of high-performance on-chip global in-
terconnection. Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on, 19(7):1154–1166, July 2011.

[121] Y. Zhang and J. D. Owens. A quantitative performance analysis model
for GPU architectures. In Proceedings of the 2011 IEEE 17th International
Symposium on High Performance Computer Architecture, HPCA ’11, pages
382–393. IEEE Computer Society, 2011.

154 BIBLIOGRAPHY

[122] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based page interleaving
scheme to reduce row-buffer conflicts and exploit data locality. In Proceed-
ings of the 33rd Annual ACM/IEEE International Symposium on Microar-
chitecture, MICRO 33, pages 32–41. ACM, 2000.

Acknowledgements

First of all, I sincerely thank my promotor and co-promotor, Henk Corporaal
and Bart Mesman, for their guidance, support and encouragements over the past
years. They invited me to join the ES-group after my M.Sc. graduation and
offered me a PhD position a year later. They inspired me to come up with new
ideas and helped me to develop the experiments to validate my concoctions. I am
very grateful for the in-depth and inspiring discussions we had which have led to
many of the concepts in this thesis.

Second, I thank Nicolás Guil, Gerard Smit, Pieter Jonker, Dick Epema, Peter
de With and Ton Backx for being part of my doctorate committee. I also thank
them for their contributions to the final version of this thesis. Especially I would
like to thank Nicolás Guil for inviting me to the university of Málaga to present
my work and for his contributions and feedback to the papers we wrote together.

Muchas gracias to Juan Gómez-Luna. Not only for his effort on our joint
papers, but also for all the discussions we had during his stay in Eindhoven, my
visit to Spain and in our frequent e-mail conversations. Thank you also for guiding
me around in Sevilla, Córdoba and Málaga and for introducing me to some fine
Spanish culture.

I would also like to thank all the others who contributed directly to this thesis.
In particular I thank Cedric for being a co-author on many papers and for allowing
me to present some of his papers as well. I also thank him for his practical help
in so many topics and his critical view on my papers. Thanks for the many
lunch-time discussion we had, both about work or any other topic.

Visiting conferences is part of the job as a PhD student. Maurice was often
also present at these conferences. I thank him for the time we spent at these
conference, especially at the ICCD conference in 2013 in Asheville, NC, USA.
Furthermore, Maurice has been my office-mate for nearly all my years at the
TU/e, ready to help in any way, shape or form, for which I am very grateful.

155

156 ACKNOWLEDGEMENTS

Many, if not all, of the experiments in this thesis have been carried out on a
computer. Special thanks go to Martijn for helping me keeping the computers in
tip-top shape. Especially those with a GPU inside, as they required much more
maintenance than any other computer.

The PARsE team members were always willing to provide feedback on my
work, long before ideas became experiments and experiments became results. I
thank Zhenyu, Yifan, Dongrui, Cedric, Maurice, Shakith, Roel, Erkan, Ang, Luc
and Mark for their feedback during our biweekly PARsE meetings. I also thank
all students and all the guests who visited us and participated in the meetings,
especially Juan, Sohan and Siham.

Many thanks to everyone at the ES-group, who made working at the TU/e a
real pleasure. Special thanks to the heads of the group, Ralph Otten and Twan
Basten, and project leader Jan van Dalfsen for his support on project management
and all related (and unrelated) matters. I also thank our secretaries, Marja, Rian
and Margot, for all the care and support they bring. Furthermore I would like
to thank all my office-mates for our daily chit-chat, both in Potentiaal as in
Flux. Many thanks also to all the people who joined for the daily (non)scientific
discussions at the lunch and coffee breaks: Raymond, Luc, Marcel, Roel, Maurice,
Cedric, Sven, Martijn, Andrew, Andreia, Joost, Sander, Marc and all the others.

I also thank my friends and family for their interest in my work and the
progress of this thesis. Although my explanation of my work might not have been
the clearest at times, they never hesitated to ask about it. A special thank you
goes to Wouter for reviewing this thesis and for providing valuable feedback.

Finally I would like to thank my parents and my brother for their continued
help and support. Although they might not have contributed directly to this
thesis, it would not have been possible without them.

Curriculum Vitae

Gert-Jan van den Braak was born in ‘s-Hertogenbosch, The Netherlands on
November 9, 1983. After finishing the gymnasium in 2002 at the Jeroen Bosch
College in ‘s-Hertogenbosch, he studied Electrical Engineering at the Eindhoven
University of Technology. Here he obtained the B.Sc. as well as the M.Sc. degree
in Electrical Engineering. As a part of the Master’s program he did an internship
at KTH in Stockholm, Sweden. In 2009 he graduated within the ES-group on
compile-time GPU memory access optimizations.

After graduating Gert-Jan joined the ES-group as a research / teaching assis-
tant where he continued his research on GPUs. Next he started a PhD project
within the ES-group at the Eindhoven University of Technology, also on GPU
architectures and application mappings. During his PhD project Gert-Jan (co-)
authored two journal articles and thirteen publications in international confer-
ences and workshops (see page 159). The results of his research are presented in
this dissertation.

157

158 CURRICULUM VITAE

List of publications

Journal articles
[1] G.-J. van den Braak and H. Corporaal. R-GPU: a reconfigurable GPU

architecture. Submitted to ACM Transactions on Architecture and Code
Optimization, 2015

[2] G.-J. van den Braak, J. Gómez-Luna, J. González-Linares, H. Corpo-
raal, and N. Guil. Configurable XOR hash functions for banked scratchpad
memories in GPUs. IEEE Transactions on Computers, 2015.

Conference and workshop proceedings
[3] A. Li, G.-J. van den Braak, A. Kumar, and H. Corporaal. Adaptive and

transparent cache bypassing for GPUs. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2015.

[4] A. Li, G.-J. van den Braak, H. Corporaal, and A. Kumar. Fine-grained
synchronizations and dataflow programming on GPUs. In Proceedings of
the 29th ACM on International Conference on Supercomputing, ICS ’15,
pages 109–118, 2015.

[5] C. Nugteren, G.-J. van den Braak, and H. Corporaal. Roofline-aware
DVFS for GPUs. In Proceedings of the 4th International Workshop on
Adaptive Self-tuning Computing Systems, ADAPT ’14, pages 8–10, 2014.

[6] C. Nugteren, G.-J. van den Braak, and H. Corporaal. A study of the
potential of locality-aware thread scheduling for GPUs. In Euro-Par 2014:
Parallel Processing Workshops, volume 8806 of Lecture Notes in Computer
Science, pages 146–157. Springer International Publishing, 2014.

159

160 LIST OF PUBLICATIONS

[7] C. Nugteren, G.-J. van den Braak, H. Corporaal, and H. Bal. A detailed
GPU cache model based on reuse distance theory. In High Performance
Computer Architecture (HPCA), 2014 IEEE 20th International Symposium
on, pages 37–48, Feb 2014.

[8] G.-J. van den Braak, J. Gómez-Luna, H. Corporaal, J. González-Linares,
and N. Guil. Simulation and architecture improvements of atomic operations
on GPU scratchpad memory. In Computer Design (ICCD), 2013 IEEE 31st

International Conference on, pages 357–362, Oct 2013.

[9] G.-J. van den Braak and H. Corporaal. GPU-CC: A reconfigurable GPU
architecture with communicating cores. In Proceedings of the 16th Inter-
national Workshop on Software and Compilers for Embedded Systems, M-
SCOPES ’13, pages 86–89, 2013.

[10] C. Nugteren, G.-J. van den Braak, and H. Corporaal. Future of GPGPU
micro-architectural parameters. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’13, pages 392–395, San Jose, CA,
USA, 2013. EDA Consortium.

[11] G.-J. van den Braak, C. Nugteren, B. Mesman, and H. Corporaal. GPU-
vote: A framework for accelerating voting algorithms on GPU. In Pro-
ceedings of the 18th International Conference on Parallel Processing, Euro-
Par’12, pages 945–956, 2012.

[12] G.-J. van den Braak, C. Nugteren, B. Mesman, and H. Corporaal. Fast
Hough transform on GPUs: Exploration of algorithm trade-offs. In Pro-
ceedings of the 13th International Conference on Advanced Concepts for
Intelligent Vision Systems, ACIVS’11, pages 611–622, 2011.

[13] C. Nugteren, G.-J. van den Braak, H. Corporaal, and B. Mesman. High
performance predictable histogramming on GPUs: Exploring and evaluat-
ing algorithm trade-offs. In Proceedings of the 4th Workshop on General
Purpose Processing on Graphics Processing Units, GPGPU-4, pages 1–8,
2011.

[14] G.-J. van den Braak, B. Mesman, and H. Corporaal. Compile-time GPU
memory access optimizations. In Embedded Computer Systems (SAMOS),
2010 International Conference on, pages 200–207, July 2010.

[15] T. Drijvers, C. Pinto, H. Corporaal, B. Mesman, and G.-J. van den
Braak. Fast Huffman decoding by exploiting data level parallelism. In Em-
bedded Computer Systems (SAMOS), 2010 International Conference on,
pages 86–92, July 2010.

LIST OF PUBLICATIONS 161

Posters & abstracts (non-refereed)
[16] G.-J. van den Braak and H. Corporaal. GPU shared memory hash func-

tions. ICT.Open 2015 - The interface for Dutch ICT-Research. Amersfoort,
The Netherlands, 2015.

[17] A. Li, G.-J. van den Braak, and H. Corporaal. Highly-efficient and
fine-grained synchronizations on GPUs. ICT.Open 2015 - The interface for
Dutch ICT-Research. Amersfoort, The Netherlands, 2015.

[18] G.-J. van den Braak and H. Corporaal. Programming the GPU-CC archi-
tecture using a visual programming language. ICT.Open 2013 - The interface
for Dutch ICT-Research. Eindhoven, The Netherlands, 2013.

[19] G.-J. van den Braak and H. Corporaal. GPU architecture modifica-
tions for voting algorithms. ICT.Open 2012 - The interface for Dutch ICT-
Research. Rotterdam, The Netherlands, 2012.

[20] G.-J. van den Braak, B. Mesman, and H. Corporaal. Voting algorithms
on GPU: a unified approach. In ACACES 2012 - 8th International Sum-
mer School on Advanced Computer Architecture and Compilation for High-
Performance and Embedded Systems, pages 13-16, Fiuggi, Italy, 2012.

[21] G.-J. van den Braak, B. Mesman, and H. Corporaal. Generalized GPU
voting algorithm. ICT.Open 2011 - The interface for Dutch ICT-Research.
Veldhoven, The Netherlands, 2011.

[22] C. Nugteren and G.-J. van den Braak. Highly efficient histogramming
on manycore GPU architectures. STW.ICT Conference 2010 - Progress.
Veldhoven, The Netherlands, 2010.

	Abstract
	Contents
	Introduction
	GPU history
	Trends in GPGPU research
	Problem statement
	Contributions & thesis overview

	GPU architecture & programming model
	CPU vs. GPU: multi-core vs. many-core
	CUDA & OpenCL programming models
	GPU architecture
	Tesla architecture
	Fermi architecture
	Kepler architecture
	Maxwell architecture
	Scratchpad memory

	GPU compilation trajectory

	Efficient histogramming
	Histogramming on CPU
	Sub-histogram memory layout
	GPU: global memory atomics
	GPU: thread-private histogram
	GPU: warp-private histogram
	GPU: scratchpad memory atomics
	Discussion
	Related work
	Conclusions

	Hough transform
	Hough transform algorithm for lines
	Cartesian coordinate system
	Polar coordinate system

	Hough transform on CPU
	GPU: global memory atomics
	GPU: scratchpad memory atomics
	Step 1: creating the coordinates array
	Step 2: voting in Hough space

	GPU: constant time implementation
	Related work
	Conclusions

	Improving GPU scratchpad memory atomic operations
	Execution model of atomic operations
	Lock mechanism
	Performance model
	Latency estimation

	Implementation in GPGPU-Sim
	Proposed hardware improvements
	Evaluation of hardware improvements
	Synthetic benchmarks
	Histogram
	Hough transform

	Related work
	Conclusions

	GPU scratchpad memory configurable bank addressing
	Motivation
	Access patterns to scratchpad memory
	Memory access pattern classification
	Examples of access pattern classifications

	Hash functions
	Bit-vector permutation hash function
	Bit-vector XOR hash function
	Bitwise permutation hash function
	Bitwise XOR hash function
	Hardware design and evaluation

	Hash function configuration
	Bit-vector exhaustive search algorithm
	Bitwise search algorithm based on heuristic

	Framework for bank conflict reduction
	Experimental results
	Hardware hash function results
	Software hash function results

	Related work
	Conclusions

	R-GPU: a reconfigurable GPU architecture
	Example: 2D convolution
	R-GPU architecture
	Inter SM communication
	Programming model

	R-GPU motivation
	Benefit 1: removing redundant memory loads
	Benefit 2: improving memory bandwidth

	Programming Tools
	Front end
	Back end
	Simulator

	Evaluation
	Benchmarks
	R-GPU performance
	Communication network
	FIFO sizes
	Power & area estimation

	Related work
	Conclusions

	Conclusions & future work
	Bibliography
	Acknowledgements
	Curriculum Vitae
	List of publications

