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Generalized Hopf fibration and geometric SO(3)
reduction of the 4DOF harmonic oscillator

J.C. van der Meer
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F. Crespo, S. Ferrer

Departamento de Matemática Aplicada, Universidad de Murcia, Spain.

Abstract

It is shown that the generalized Hopf map H × H → H × R × R in quaternion
formulation can be interpreted as an SO(3) orbit map for a symplectic SO(3) action.
As a consequence the generalized Hopf fibration S7 → S4 appears in the SO(3)
geometric symplectic reduction of the 4DOF isotropic harmonic oscillator.
Key Words: Hopf map, Hopf fibration, symplectic reduction, harmonic oscillator.
AMS Subject Classification: primary: 53D20, 37J15, secondary: 55R10.

1 Introduction

It is well known that one may reduce the phase space of the 2DOF harmonic oscillator
by using the symmetry given by the S1-action generated by the flow of the Hamiltonian.
Restricting the reduction mapping to the three spheres given by the energy surfaces, the
orbit mapping becomes a reduction of the energy surface S3 to the reduced phase space
S2, which mapping is exactly the Hopf fibration S3 → S2. See [3]. In section 2. we will
make this precise starting from the classical description of the Hopf fibration in complex
coordinates. In the following sections we generalize these ideas to the 4DOF isotropic
harmonic oscillator. For this purpose we will introduce quaternions in section 3. and
the generalized generalized Hopf map in terms of quaternions in section 4. In section 5
we will show that, after choosing an appropriate real representation, this Hopf map can
be considered as an orbit map for an appropriately chosen symplectic SO(3) action, and
that restriction to an energy surface for the harmonic oscillator, gives the generalized
Hopf fibration S7 → S4. In the final section we will say something about how the twistor
fibration, that appears in the diagram for the generalized Hopf fibration, fits in the scheme
of symplectic reduction.
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2 Hopf fibration in 2DOF

In this section we wil start with the common complex description of the Hopf map and
show how this leads to an orbit map and reduction map for a 2DOF harmonic oscillator.

For the ambient space of the classical Hopf fibration, consider the complex vector space
C2, together with the usual hermitian inner product. Let z ∈ C2 and w ∈ C2, where
z = (z1, z2), w = (w1, w2) and z1, z2, w1, w2 ∈ C, then

< z,w >= z̄w = z̄1w1 + z̄2w2 .

Thus S3 can be shown as a subset in C2 given by S3 = {z ∈ C2 | < z, z >= 1}. Define
an equivalence relation on S3 by z ∼ ω iff ω = λz, λ ∈ S1. We get that

S3/ ∼ ∼= P (C2) = CP1.

Therefore, by means of the stereographic projection CP 1 → S2, the classic Hopf fibration
Π : S3 → S2 is built in a constructive process that we may describe by means of the
commutative diagram in figure (1).

Figure 1: Hopf map and classic Hopf fibration diagram.

Here Π is the stereographic projection, Pr is the map from C2−{0} to S3(r) that matches
each semi-ray through the origin with the corresponding element of module equal to r,
P∼ from S3(r) into CP 1 identifies each point in the sphere to its corresponding class of
equivalence, P1,2,3 is the elimination of the fourth component and A is the Hopf map.
The Hopf fibration Fr from S3(r) to S2( r

2
) is given by composing Π and P∼, it can also
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be obtained by means of the restriction of A, the Hopf map, to S3(r) and composing it
with P1,2,3.

Notice that Π : CP 1 −→ S2( r
2
) is based on the classic stereographic projection from

S2( r
2
)−N onto the real plane, in this case the north pole is covered by the infinite point

[(1, 0)].

Moving to cartesian coordinates, and taking into account the natural relation between C
and R2, by setting z = (z1, z2) = (q1 + iq2, Q1 + iQ2) we get AR : R4 → R4 given by

AR(q1, q2, Q1, Q2) = (ω1(q,Q), ω2(q, Q), ω3(q, Q), ω4(q, Q)) ,

where

ω1 = q1Q2 − q2Q1, ω3 =
1

2
(q2

1 + q2
2 −Q2

1 −Q2
2),

ω2 = q1Q1 + q2Q2, ω4 =
1

2
(q2

1 + q2
2 + Q2

1 + Q2
2) ,

and the following relation between the ω′is holds

C(q1, q2, Q1, Q2) = ω2
1 + ω2

2 + ω2
3 − ω2

4 = 0 . (1)

Notice that the image of C2 − {0} by the Hopf map is given by the algebraic manifold
defined in (1) by C, it is a 3-dimensional cone with vertex in the coordinate origin. If we
consider R4 together with the standard symplectic form then the polynomials ωi span a
Lie algebra with bracket being the Poissonbracket induced by the symplectic form. ω1 is
in the center of this Lie algebra, ie. we have {ω1, ωi} = 0 for i = 2, 3, 4. Thus this Hopf
map is an orbit map for the symplectic S1-action generated by the Hamiltonian ω1 with
respect to the standard symplectic form on R4. Restriction to ω−1

4 (c), i.e. to levelsets
of ω4, then gives a Hopf fibration S1 ↪→ S3 → S2, where the fibre is the orbit for the
ω1-action. Although this restriction of the Hopf map does correspond to a reduction of
the manifold ω−1

4 (c) for the ω1-action, it is not a reduction with respect to the ω4-action.

However, one can give a construction of the Hopf map such that it will be an orbit map
for the ω4-action and such that the reduction map wil be a Hopf fibration with the orbit
of the ω4-action as a fibre, as will be shown below.

Consider R4 together with the standard symplectic form. The above given real represen-
tation of the Hopf map is not an orbit map for the symplectic action of ω4. To obtain
a real representation which is an orbit map consider the real representation obtained by
setting z = (z1, z2) = (q1 − iQ1, q2 − iQ2), which gives

ÃR(q1, q2, Q1, Q2) = (τ1(q, Q), τ2(q, Q), τ3(q,Q), τ4(q, Q)) ,
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where

τ1 = q1Q2 − q2Q1, τ3 =
1

2
((q2

1 + Q2
1)− (q2

2 + Q2
2)),

τ2 = q1q2 + Q1Q2, τ4 =
1

2
(q2

1 + q2
2 + Q2

1 + Q2
2) = ω4 ,

and the following relation between the τ ′is holds

C(q1, q2, Q1, Q2) = τ 2
1 + τ 2

2 + τ 2
3 − τ 2

4 = 0 . (2)

Then τ4 is the Hamiltonian of the harmonic oscillator. The invariants for the symplectic
S1-action generated by the flow of the Hamiltonian vector field corresponding to τ4 with
respect to the standard symplectic form are τ1, τ2, τ3, and τ4. Consequently we have that
ÃR is the orbit map for this S1-action. Restriction of AR to level surfaces τ4 = c then gives
a map S3 → S2, which is a reduction map with the 2-sphere given by τ 2

1 + τ 2
2 + τ 2

3 = c2 as
a reduced phase space.

3 Preliminaries on quaternions

The generalization of the Hopf map that we give next is based upon the generalization
from the complex numbers to the quaternions. For that reason, we provide here a brief
description of the division ring H, that also will set up a fixed notation through this note.

The hyper-complex numbers of rank 4 were invented by W. R. Hamilton [11], he gave
them the name of quaternion, it is a division ring H, the elements of which are denoted
by q = (q1, q) ∈ H, and may be regarded as a real part q1 plus the imaginary vector part
q = (q2, q3, q4) ∈ R3. Quaternions having zero scalar part are called pure quaternions and
can regarded both as a vector in R3 and as a quaternion. Therefore there is a bijective
identification between R3 and the pure quaternions.

The quaternions, together with the operations of addition (+) by components and scalar
multiplication (·), may be identified with R4 as a vector space. The quaternionic multi-
plication (◦) provide a division ring structure to H.

It is customary to use the notation {1 , i , j , k} for a basis in (H, +, H), that is, 1 =
(1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0) and k = (0, 0, 0, 1), thus elements in H may be
expressed as follows

H := {q = q11 + q2i + q3j + q4k, q1, q2, q3, q4 ∈ R} .

Quaternionic multiplication is performed in the usual manner, like polynomial multiplica-
tion, taking the following relations into account Note that the relations given in table 1.
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◦ 1 i j k

1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Table 1: Multiplication table for basis vectors

for the multiplication may be deduced directly from the ones that Hamilton gave initially,
namely i2 = j2 = k2 = ijk = −1.

Also we can think of {1 , i , j , k} as the four roots of unity. An alternative way of defining
the quaternionic product making use of the “dot” and “cross” in R3 is given by

q ◦Q = (q1Q1 − q ·Q , q1Q + Q1q + q ×Q). (3)

For the sake of a cleaner notation, we will drop the symbols (·) and (◦), they will be used
just in case of possible confusion.

Definition (3) is, of course, directly deduced from the relations given above and may be
written explicitly in term of coordinates as follows

qQ = q1Q1 − (q2Q2 + q3Q3 + q4Q4) (4)

+(q2Q1 + q1Q2 + q4Q3 − q3Q4) i

+(q3Q1 − q4Q2 + q1Q3 + q2Q4) j

+(q4Q1 + q3Q2 − q2Q3 + q1Q4)k.

In addition, every quaternion q = (q1, q) has a conjugate q̄ = (q1,−q), that is, the real
numbers are fixed by the conjugation and ī = −i, j̄ = −j, k̄ = −k. Note that qQ = Q̄q̄.

The usual hermitian inner product is defined in H as

〈q,Q〉 = qQ, (5)

such a inner product is extended in a natural way to H2, the vector space made of column
vectors (q,Q)T , where q,Q ∈ H

〈(q,Q), (p,P)〉 = qQ + pP. (6)

Note that, for the hermitian product defined above, a different choice could be made
instead of (5), that is,

〈q,Q〉 = q̄Q, (7)
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also defines a hermitian inner product in H.

The norm of a quaternion is denoted by |q|, sometimes called the length of q, it is the
scalar defined by

|q| =
√
〈q,q〉 =

√
qq̄ =

√
q2
1 + q2

2 + q2
3 + q2

4,

notice that this definition is the same that for the length of a vector in R4, or equivalently
the Euclidean norm. This definition of norm is independent of the choice in the definition
of the hermitian product (5) versus (7).

Finally we give the expression for the inverse, for every q 6= 0 there exists another
quaternion q−1, which will be noted as the inverse and is given by

q−1 =
q̄

|q|2 .

4 Generalized Hopf map

In this section we generalize the classical Hopf fibration from C2 to the quaternion space
H2. See figure (FibracionCuaternionica).

Figure 2: Generalized Hopf map and Hopf fibration.

Introducing real coordinates q = (q1, q2, q3, q4), through the natural equivalence H ≡ R4,
for the first copy of H, and Q = (Q1, Q2, Q3, Q4) for the second copy of H, we obtain a
real representation of the Hopf map
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AR(q,Q) = (〈q,Q〉, 1

2
(|q|2 − |Q|2), 1

2
(|q|2 + |Q|2)) (8)

= (ω1(q,Q), ω2(q,Q), ω3(q,Q), ω4(q,Q), ω5(q,Q), ω6(q,Q)),

where 〈q,Q〉 is the hermitian inner product defined by (5). Therefore, the components
of AR are defined as follows

ω1(q,Q) = q1Q1 + q2Q2 + q3Q3 + q4Q4, (9)

ω2(q,Q) = −(q1Q2 − q2Q1)− (q3Q4 − q4Q3),

ω3(q,Q) = −(q1Q3 − q3Q1) + (q2Q4 − q4Q2),

ω4(q,Q) = −(q1Q4 − q4Q1)− (q2Q3 − q3Q2),

ω5(q,Q) =
1

2
(q2

1 + q2
2 + q2

3 + q2
4 −Q2

1 −Q2
2 −Q2

3 −Q2
4),

ω6(q,Q) =
1

2
(q2

1 + q2
2 + q2

3 + q2
4 + Q2

1 + Q2
2 + Q2

3 + Q2
4).

It is easy to check that assuming q3 = q4 = Q3 = Q4 = 0, we get the classic Hopf map.
On the other hand the Hopf variables ωi, i = 1 . . . , 6, satisfy

C(ω1, ω2, ω3, ω4, ω5, ω6) = ω2
1 + ω2

2 + ω2
3 + ω2

4 + ω2
5 − ω2

6 = 0, ω6 ≥ 0, (10)

Even more, considering the algebraic manifold given by C and by eliminating the vertex
C∗ = C − {0}, it can be proven that AH(H2 − {0}) = C∗. Now if we restrict AH to the
7-dimensional sphere

S7(r) = {(q,Q) ∈ R8 | q2
1 + q2

2 + q2
3 + q2

4 + Q2
1 + Q2

2 + Q2
3 + Q2

4 = r2 = 2 ω6} (11)

we obtain the generalized Hopf fibration

FH(q,Q) : S7(r) −→ S4( r2

2
)

(q,Q) Ã (ω1, ω2, ω3, ω4, ω5)
(12)

where S4( r2

2
) is the 4-dimensional sphere.

A different choice of the hermitian inner product in the definition of AR, as defined by
(7), leads to an analogous scheme. Under this condition the components ω1, ω5, ω6 of AR
remain the same and ω2, ω3, ω4 become the following three new functions

G1(q, Q) = ((q1Q2 − q2Q1)− (q3Q4 − q4Q3)) ,

G2(q, Q) = ((q1Q3 − q3Q1) + (q2Q4 − q4Q2)) ,

G3(q, Q) = ((q1Q4 − q4Q1)− (q2Q3 − q3Q4)) .
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The diagram given in Figure (2) keeps its validity with the slight changes on the definition
of AR given above, even more, relation (10) is transformed into

C(ω1, G1, G2, G3, ω5, ω6) = ω2
1 + G2

1 + G2
2 + G2

3 + ω2
5 − ω2

6 = 0, ω6 ≥ 0. (13)

5 Reduction of the 4DOF harmonic oscillator

Consider on R8, with co-ordinates (q, Q) = (q1, q2, q3, q4, Q1, Q2, Q3, Q4), and standard
symplectic form ω, the isotropic harmonic oscillator with Hamiltonian

H2(q, Q) = 1
2
‖q‖2 + 1

2
‖Q‖2 .

To get a convenient ordering we will rename the functions obtained so far. Let

σ7(q, Q) = G1(q, Q), σ8(q,Q) = G2(q, Q), σ9(q, Q) = G3(q,Q). (14)

The Hamiltonian flows corresponding to σ7, σ8, σ9 generate a group G, which is a sym-
metry group for the system (H2, ω,R8), because {σ7, H2} = {σ8, H2} = {σ9, H2} = 0,
where { , } is the Poisson bracket associated to the standard symplectic form ω. Further-
more {Gi, Gj} = εijkGk, thus these functions form a basis for the Lie algebra so(3) and
G = SO(3).

Next consider the functions

σ1(q, Q) = ω2(q,Q) = − ((q1Q2 − q2Q1) + (q3Q4 − q4Q3)) ,

σ2(q, Q) = ω3(q,Q) = − ((q1Q3 − q3Q1)− (q2Q4 − q4Q2)) ,

σ3(q, Q) = ω4(q,Q) = − ((q1Q4 − q4Q1) + (q2Q3 − q3Q2)) ,

σ4(q, Q) = ω1(q,Q) =< q, Q > ,

σ5(q, Q) = ω5(q,Q) = 1
2
‖q‖2 − 1

2
‖Q‖2 ,

σ6(q, Q) = ω6(q,Q) = 1
2
‖q‖2 + 1

2
‖Q‖2 .

Note that these same polynomials also play a role in the reduction of the Kepler system
[4] and the reduction of the 4DOF isotropic harmonic oscillator [5, 6, 7].

The polynomials σ1, σ2, σ3 span a Lie algebra isomorphic to so(3). Furthermore {σ4, σ5} =
−2σ6, {σ4, σ6} = −2σ5, {σ5, σ6} = 2σ4 , that is, σ4, σ5, σ6 span a Lie algebra isomorphic
to su(1, 1) ∼= sl(2,R). In addition σ7, σ8, σ9, σ1, σ2, σ3 span a Lie algebra isomorphic to
so(3)× so(3) ∼= so(4) and {σi+6, σj} = {σi, σj} = 0 for i = 1, 2, 3, and j = 4, 5, 6.

Note that sl(2,R) generated by σ4, σ6 + σ5, σ6 − σ5 gives the full linear Lie algebra
invariant under the SO(4) action generated by σ7, σ8, σ9, σ1, σ2, σ3 (see [12]). If we
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consider so(4) ∼= so(3)×so(3), with the first copy of so(3) generated by σ7, σ8, σ9 and the
second copy of so(3) generated by σ1, σ2, σ3 then the full linear Lie algebra of invariants
for the first copy of so(3) is so(3)×sl(2,R) generated by σ1, σ2, σ3, σ4, σ5, σ6, and the full
linear Lie algebra of invariants for the second copy of so(3) is so(3) × sl(2,R) generated
by σ7, σ8, σ9, σ4, σ5, σ6. Thus polynomials σi are invariants for the G-action and are
generators for the space of G-invariant polynomials. Consequently the orbit map for the
G-action is

ρ : R8 → R6; (q,Q) → (σ1, · · · , σ6) .

Consequently, ρ is equivalent to the real representation of the Hopf map given in (8).

Let Sij(q, Q) = qiQj − qjQi Then
∑

16i<j64

S2
ij = ‖q‖2‖Q‖2− < q,Q >2= −σ2

5 + σ2
6 − σ2

4 , (15)

and

S12S34 − S13S24 + S14S23 = 0 . (16)

Thus

σ2
1 + σ2

2 + σ2
3 = −σ2

5 + σ2
6 − σ2

4 , (17)

and

σ2
7 + σ2

8 + σ2
9 = −σ2

5 + σ2
6 − σ2

4 . (18)

Thus the orbit space ρ(R8) for the above defined SO(3) representation is five dimensional
and is determined by (17). The reduced phase spaces for the G-action on the one hand
are the co-adjoint orbits for the action of SO(3) on so(3)× so(3), and on the other hand
are determined by the so(3) Casimir C(q, Q) = σ2

7 +σ2
8 +σ2

9. Therefore the reduced phase
spaces are ρ(C−1(c)), i.e. the subset of R6 determined by

σ2
1 + σ2

2 + σ2
3 = c , (19)

−σ2
5 + σ2

6 − σ2
4 = c .

Thus, if c 6= 0, the reduced phase space is the four dimensional product of a two-sphere
and a two-sheeted hyperboloid. If c=0 we have a critical two dimensional reduced phase
space which is a cone times a point.

When we consider the harmonic oscillator Hamiltonian then H−1
2 (h) is S7 ⊂ R8 and

ρ(H−1
2 (h)) : S7 → S4,

is a generalized Hopf map giving the generalized Hopf fibration of the seven-sphere (see
[2]). The S4 is given by

σ2
1 + σ2

2 + σ2
3 + σ2

4 + σ2
5 = h2 .

9



This four-sphere intersects the SO(3)-reduced phase spaces ρ(C−1(c)) in the sets

σ2
1 + σ2

2 + σ2
3 = c , (20)

σ2
4 + σ2

5 = h2 − c , h 6 c 6 0 ,

which are topologically S2 × S1. The sets given by (20) are not reduced phase spaces for
a combined reduction with respect to the SO(3) action by G and the S1 action generated
by H2, because the induced H2-action on ρ(C−1(c)) ∩ ρ(H−1

2 (h) is an S1 action which
is trivial on σ2

1 + σ2
2 + σ2

3 = c and which rotates along σ2
4 + σ2

5 = h − c. An additional
reduction with respect to the H2-action will therefore result in a two dimensional reduced
phase space defined by σ2

1 + σ2
2 + σ2

3 = c.

One should be aware that the above construction depends on the choices of the real coordi-
nates for the quaternion representation. An other choice will alter the way the Lie algebra
structure of the quaternions is represented and change the role of the harmonic oscilla-
tor Hamiltonian with respect to the Poisson bracket induced by the standard symplectic
form.

6 The twistor fibration

In the above we have shown that a generalized Hopf map is present in the dynamics of
the isotropic harmonic oscillator on R8 by explicit construction. Actually we constructed
some representation of the map AH ◦PH in the diagram in figure (2), which is a restriction
of an orbit map for a symplectic group action. We know that the map ΠH in this diagram
represents the twistor fibration (see [1]) or the Calabi-Hopf-Penrose fibration CP1 ↪→
CP3 → S4 which is obtained via a quotient of two Hopf maps [8]:

Figure 3: Twistor fibration

In this section we will show how the twistor fibration can be obtained by factorizing
the orbit map for the symplectic SO(3)-action through the orbit map for a symplectic
SO(2)-action.

One should notice that the linear Lie algebra of SO(3) invariants will be noncompact due
to the presence of the sl(2,R) subalgebra. Because the linear Lie algebra of invariants for
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the H2 action is isomorphic to the compact Lie algebra su(4), it is impossible to perform
the above constructed SO(3) reduction in a way that factors through the H2 reduction.

If in the diagram in figure(2) the map PH,r ◦ PH,∼ would describe an H2 reduction, than
this would imply an SO(3) reduction factoring through the H2 reduction. Consequently
the second map PH,∼ is not an H2-reduction, although it is known that the reduced phase
space for the H2-action is CP3 (see [10]).

Choose σ7 from the representation of the SO(3) group action. Then {σ7, H2} = 0 and
we can identify H2 with C4 in such a way that the action of σ7 is given by eitz, z ∈ C4.
Let ρσ7 be the orbit map for the flow of σ7. Then ρσ7(H

−1
2 (h)) ∼= CP3. More details

on the action of σ7 can be found in [9]. Consequently the orbit map for the symplectic
σ7-action, when restricted to H2(q, Q) = h, coincides with the map HopfC in the diagram
given in figure (3) and with PH,r ◦ PH,∼ in figure(2). Now the σ7-action is a subgroup of
the SO(3)-action giving SO(3)/SO(2) ∼= S2 ∼= S3/S1 ∼= CP1 as the fiber of the twistor
fibration, where S3/S1 is the Hopf fibration. It is now clear that the map ΠH in figure(2)
cannot be an orbit map for a symplectic group action, i.e. SO(3) reduction cannot be
performed by symplectic reduction in stages.
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