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Abstract
We describe a method for proving non-termination of term rewriting systems that do not admit
looping reductions. As certificates of non-termination, we employ regular (tree) automata.
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1 Introduction

We describe a method for proving non-termination of term rewriting systems that do not
admit looping reductions, that is, reductions from a term t to a term C[tσ] containing a
substitution instance of t. For this purpose, we employ tree automata as certificates of
non-termination. For proving non-termination of a term rewriting system R, we search a
tree automaton A whose language L(A) is not empty, weakly closed under rewriting and
every term of the language contains a redex occurrence. We have fully automated the search
for these certificates employing SAT-solvers.

All automata that we use as example in this paper have been found automatically; this
concerns in particular fully automated proofs of non-termination for the following two rewrite
systems.

I Example 1. We consider the following string rewriting system:

zL→ Lz Rz → zR bL→ bR Rb→ Lzb

This rewrite system admits no reductions of the form s→∗ `sr.

I Example 2. We consider the S-rule from combinatory logic:

ap(ap(ap(S , x), y), z)→ ap(ap(x, z), ap(y, z))

For the S-rule it is known that there are no reductions t→∗ C[t] for ground terms t, see [15].
For open terms t the existence of reductions t→∗ C[tσ] is open.

It turns out that the method can be fruitfully applied to obtain non-termination proofs
of several string rewriting systems that have remained unsolved in the last full run of the
termination competition.
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2 Non-termination using Regular Languages

Related Work

The paper [11] investigates necessary conditions for the existence of loops. The work [17]
employs SAT solvers to find loops, [18] uses forward closures to find loops efficiently, and the
wook [16] introduces ‘compressed loops’ to find certain forms of (possibly very long) loops.

Non-termination beyond loops has been investigated in [14] and [2]; we note that Example 2
cannot be handled by these techniques.

Here we prove non-looping non-termination on regular languages. The converse, local
termination on regular languages, has been investigated in [3]. Regular (tree) automata have
been fruitfully applied to a wide rage of properties of term rewriting systems: for proving
termination [10, 8, 12], for infinitary normalization [4], for proving liveness [13], and for
analysing reachability and deciding the existance of common reducts [9, 5].

2 Non-termination and Weakly Closed Languages

I Definition 3. Let L ⊆ T (Σ,∅) a language and R a TRS over Σ. Then L is called:
closed under rewriting if for every t ∈ L and s such that t→ s, one has s ∈ L, and
weakly closed under rewriting if for every t ∈ L that is not in normal form, there exists
s ∈ L such that t→R s.

The following theorem describes the basic idea that we employ for proving non-termination.

I Theorem 4. A term rewriting system R over Σ is non-terminating if and only if there
exists a non-empty language L ⊆ T (Σ,X ) such that

(i) every t ∈ L contains a redex (that is, t→ s for some term s), and
(ii) L is weakly closed under rewriting. J
A language fulfilling the properties of Theorem 4 is also called a recurrence set, see [1].

To automate this method, we need to restrict to a certain family of languages. In this
paper, we consider regular tree languages. To guarantee that the language of a tree automaton
is weakly closed under rewriting, we check that the language is not empty and that the
automaton is a quasi-model (see Definition 13) for the rewrite system. The latter condition
is actually too strict; it implies that the languages is not only weakly closed, but also closed
under rewriting. In future, we plan to relieve this restriction.

3 Tree Automata

I Definition 5. A (nondeterministic finite) tree automaton A over a signature Σ is a tuple
A = 〈Q,Σ, F, δ 〉 where

(i) Q is a finite set of states,
(ii) F ⊆ Q is a set of accepting states, and
(iii) {δf}f∈Σ is a family of transition relations such that for every f ∈ Σ:

δf ⊆ Qn ×Q

where n is the arity of f .

In examples, we often write the transition relation δf as →f .
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I Example 6. The following is a tree automaton for the signature in Example 1. We consider
string rewriting systems as term rewriting systems by interpreting all symbols as unary and
adding a special constant ε to denote the end of the word. Let ALR = 〈Q,Σ, F,→〉 where
Q = {0, 1, 2, 3}, Σ = {b, L,R, 0, ε}, F = {3} and

→ε 0 1→z 1 0→b 1 1→R 2 1→L 2
2→z 2 2→b 3

The transition relation for ε can be thought of as defining the initial states (here 0) of a word
automaton.

I Example 7. The following is a tree automaton for Example 2. Let AS = 〈Q,Σ, F,→〉
where Q = {0, 1, 2, 3, 4}, Σ = {ap,S}, F = {4} and

→S 0 (0, 0)→ap 1 (1, 0)→ap 2 (2, 2)→ap 3 (3, 3)→ap 3
(0, 2)→ap 2 (2, 3)→ap 3 (3, 3)→ap 4
(0, 3)→ap 2

In Example 12 we show that this automaton accepts the term SSS(SSS)(SSS(SSS)).

I Definition 8. Let A = 〈Q,Σ, F, δ 〉 be a tree automaton over Σ. For terms t ∈ T (Σ,X )
and assignments α : X → P(Q) we define the interpretation [t, α]A by:

[x, α]A = α(x)
[f(t1, . . . , tn), α]A = {q | (q1, . . . , qn) ∈ [t1, α]A × . . .× [tn, α]A, 〈 (q1, . . . , qn), q 〉 ∈ δf}

Whenever A is clear from the context, we write [t, α] as shorthand for [t, α]A. For ground
terms t, the interpretation is independent of α, allowing is to write [t]A or [t] for short.

I Example 9. We use the automaton AS from Example 7. Let α(x) = {2}, then we have:

[S , α] = {0} [ap(S ,S), α] = {1} [ap(ap(S ,S),S), α] = {2}
[ap(x, x), α] = {3} [ap(ap(x, x), ap(x, x)), α] = {3, 4}

I Definition 10. Let A = 〈Q,Σ, F, δ 〉 be a tree automaton over Σ. The language L(A)
accepted by A is the set L(A) = {t | t ∈ T (Σ,∅), [t]A ∩ F 6= ∅} of ground terms.

I Example 11. The automaton in Example 6 accepts all words of the form b z∗ (L|R) z∗ b,
that is, all words that start with b, end with b, contain one L or R and otherwise only z.

I Example 12. We continue Example 9:

[ap(ap(S ,S),S)] = {2} [ap( ap(ap(S ,S),S) , ap(ap(S ,S),S) )] = {3}
[ap( ap(ap(ap(S ,S),S), ap(ap(S ,S),S)) , ap(ap(ap(S ,S),S), ap(ap(S ,S),S)) )] = {3, 4}

Thus F ∩[SSS(SSS)(SSS(SSS))] = {4} 6= ∅ and hence the term is accepted by the automaton.

4 Closure under Rewriting

I Definition 13. A tree automaton A = 〈Q,Σ, F, δ 〉 is a quasi-model for a term rewriting
system R over Σ if [`, α]A ⊆ [r, α]A for every `→ r ∈ R and α : X → P(Q).
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Actually, it suffices to check the property [`, α]A ⊆ [r, α]A for assignments α : X → P(Q)
that map variables to singleton sets.

I Lemma 14. A tree automaton A = 〈Q,Σ, F, δ 〉 is a quasi-model for a term rewriting
system R over Σ iff [`, α]A ⊆ [r, α]A for every `→ r ∈ R and α : X → {{q} | q ∈ Q}.

I Example 15. It is not difficult to check that the automaton ALR from Example 6 is a
quasi-model for rewrite system in Example 1.

I Example 16. We consider the automaton AS from Example 7. We write (a, b, c)→ d if
d ∈ [`, α] when α(x) = {a}, α(y) = {b}, α(z) = {c}. Then for [`, α] we have:

(0, 0, 2)→ 1 (2, 2, 3)→ 3 (2, 3, 3)→ 3 (3, 2, 3)→ 3 (3, 3, 3)→ 3
(0, 0, 3)→ 1 (2, 2, 3)→ 4 (2, 3, 3)→ 4 (3, 2, 3)→ 4 (3, 3, 3)→ 4

The interpretation [r, α] has all the above and additionally:

(0, 2, 2)→ 3 (1, 1, 0)→ 3 (2, 2, 2)→ 3
(0, 2, 3)→ 3 (2, 2, 2)→ 4
(0, 3, 3)→ 3

As a consequence AS is a quasi-model for the S-rule.

The following theorem is immediate:

I Theorem 17. Let A = 〈Q,Σ, F, δ 〉 be a tree automaton and R a term rewriting system
over Σ. If A is a quasi-model for R then the language of A is closed under rewriting. J

5 Ensuring Redex Occurrences

Next, we want to guarantee that every term in the language L(A) of an automaton A contains
a redex with respect to the term rewriting system R. For left-linear systems R, this problem
can be reduced to deciding the inclusion of regular languages.

Let R be a left-linear term rewriting system. Then the set of ground terms containing
a redex is a regular tree language. A deterministic automaton B for this language can be
constructed using the overlap-closure of subterms of left-hand sides, see further [6, 7].

I Example 18. The following tree automaton C = 〈Q,Σ, F,→〉 accepts the language of
ground terms that contain a redex occurrence with respect to the S-rule. Here Q = {0, 1, 2, 3},
Σ = {ap,S}, F = {3} and

→S 0 (0, q)→ap 1 (1, q)→ap 2 (2, q)→ap 3 (3, q)→ap 3 (q, 3)→ap 3

for all q ∈ {0, 1, 2}.

As a consequence the problem of checking whether every term in L(A) contains a redex
boils down to checking that L(A) ⊆ L(B). For non-deterministic A and deterministic B,
this property can be decided by constructing the product automaton and considering the
reachable states.

I Definition 19. The product A·B of tree automata A = 〈Q,Σ, F, δ 〉 and B = 〈Q′,Σ, F ′, δ′ 〉
is the automaton C = 〈Q × Q′,Σ,∅, γ 〉 where for every f ∈ Σ of arity n, we define the
transition relation γf ⊆ (Q×Q′)n × (Q×Q′) by

〈 (q1, p1), . . . , (qn, pn) 〉 γ (q′, p′) ⇐⇒ 〈 q1, . . . , qn 〉 δf q
′ ∧ 〈 p1, . . . , pn 〉 δ′f p′



J. Endrullis and H. Zantema 5

I Definition 20. The set of reachable states of a tree automaton A = 〈Q,Σ, F, δ 〉 is the
smallest set S ⊆ Q such that q ∈ S whenever 〈 q1, . . . , qn 〉 δf q for some q1, . . . , qn ∈ S and
f ∈ Σ with arity n.

The following theorem gives a method for checking L(A) ⊆ L(B) without the need for
determinising A (only B needs to be deterministic).

I Theorem 21. Let A = 〈Q,Σ, F, δ 〉 and B = 〈Q′,Σ, F ′, δ′ 〉 be tree automata such that B
is deterministic. Let S be the set of reachable states of the product automaton A ·B. Then
L(A) ⊆ L(B) if and only if for all (q, p) ∈ S it holds that q ∈ F =⇒ p ∈ F ′.

I Example 22. The reachable states of product automaton AS ·C of the automata AS from
Example 7 and C from Example 18 are (0, 0), (1, 1), (2, 2), (2, 1), (3, 3), (3, 2), (2, 3), (4, 3). The
only state (q, q′) such that q is accepting in AS is (4, 3) and 3 is an accepting state of C.
Thus the conditions of Theorem 21 are fulfilled and hence L(AS) ⊆ L(C). Thus every term
accepted by AS contains a redex.

6 Future Work

We plan to investigate whether the method described in this paper can be fruitfully extended
from regular automata to pushdown automata, that is, context-free languages. For this
purpose, it is important that it is decidable whether a context-free language is a subset of a
regular language (the language of terms containing left-linear redex occurrences). However,
it remains to be investigated whether context-free certificates can be found efficiently.
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