On the most likely Voronoi diagram and nearest neighbor searching

Citation for published version (APA):

Suri, S., \& Verbeek, K. A. B. (2014). On the most likely Voronoi diagram and nearest neighbor searching. In H. K. Ahn, \& C. S. Shin (Eds.), Algorithms and Computation : 25th International Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014 : Proceedings (pp. 338-350). (Lecture Notes in Computer Science; Vol. 8889). Springer. https://doi.org/10.1007/978-3-319-13075-0_27

Document license:

Unspecified

DOI:

10.1007/978-3-319-13075-0_27

Document status and date:

Published: 01/01/2014

Document Version:

Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

On the Most Likely Voronoi Diagram and Nearest Neighbor Searching ${ }^{\star}$

Subhash Suri and Kevin Verbeek
Department of Computer Science, University of California, Santa Barbara, USA.

Abstract

We consider the problem of nearest-neighbor searching among a set of stochastic sites, where a stochastic site is a tuple $\left(s_{i}, \pi_{i}\right)$ consisting of a point s_{i} in a d-dimensional space and a probability π_{i} determining its existence. The problem is interesting and non-trivial even in 1-dimension, where the Most Likely Voronoi Diagram (LVD) is shown to have worst-case complexity $\Omega\left(n^{2}\right)$. We then show that under more natural and less adversarial conditions, the size of the 1-dimensional LVD is significantly smaller: (1) $\Theta(k n)$ if the input has only k distinct probability values, (2) $O(n \log n)$ on average, and (3) $O(n \sqrt{n})$ under smoothed analysis. We also present an alternative approach to the most likely nearest neighbor (LNN) search using Pareto sets, which gives a linear-space data structure and sub-linear query time in 1D for average and smoothed analysis models, as well as worst-case with a bounded number of distinct probabilities. Using the Pareto-set approach, we can also reduce the multi-dimensional LNN search to a sequence of nearest neighbor and spherical range queries.

1 Introduction

There is a growing interest in algorithms and data structures that deal with data uncertainty, driven in part by the rapid growth of unstructured databases where many attributes are missing or difficult to quantify $[5,6,10]$. Furthermore, an increasing amount of analytics today happens on data generated by machine learning systems, which is inherently probabilistic unlike the data produced by traditional methods. In computational geometry, the data uncertainty has typically been thought of as imprecision in the positions of objects-this viewpoint is quite useful for data produced by noisy sensors (e.g. LiDAR or MRI scanners) or associated with mobile entities, and many classical geometric problems including nearest-neighbors, convex hull, range searching and geometric optimization have been investigated in recent years [2-4, 14, 16-18].

Our focus, in this paper, is on a different form of uncertainty: each object's location is known precisely but its presence, or activation, is subject to uncertainty. For instance, a company planning to open stores may know all the residents' locations but has only a probabilistic knowledge about their interest in its products. Similarly, many phenomena where influence is transmitted through physical proximity involve entities whose positions are known but their ability to influence others is best modeled probabilistically: opinions, diseases, political views, etc. With this underlying motivation, we investigate one of the most basic proximity search problems for stochastic input.

[^0]Let a stochastic site be a tuple $\left(s_{i}, \pi_{i}\right)$, where s_{i} is a point in d-dimensional Euclidean space and π_{i} is the probability of its existence (namely, activation). Let $\mathcal{S}=\left\{\left(s_{1}, \pi_{1}\right),\left(s_{2}, \pi_{2}\right), \ldots,\left(s_{n}, \pi_{n}\right)\right\}$ be a set of stochastic sites, where we assume that the points s_{i} 's are distinct, and that the individual probabilities π_{i} are independent. Whenever convenient, we will simply use s_{i} to refer to the site $\left(s_{i}, \pi_{i}\right)$. We want to preprocess \mathcal{S} for answering most likely nearest neighbor (LNN) queries: a site s_{i} is the LNN of a query point q if s_{i} is present and all other sites closer than s_{i} to q are not present. More formally, let $\overline{\pi_{i}}=1-\pi_{i}$, and let $B\left(q, s_{i}\right)$ be the set of sites s_{j} for which $\left\|q-s_{j}\right\|<\left\|q-s_{i}\right\|$. Then the probability that s_{i} is the LNN of q is $\pi_{i} \times \prod_{s_{j} \in B\left(q, s_{i}\right)} \overline{\pi_{j}}$. For ease of reference, we call this probability the likeliness of s_{i} with respect to q, and denote it as

$$
\begin{equation*}
\ell\left(s_{i}, q\right)=\pi_{i} \times \prod_{s_{j} \in B\left(q, s_{i}\right)} \overline{\pi_{j}} \tag{1}
\end{equation*}
$$

The LNN of a query point q is the site s for which $\ell(s, q)$ is maximized.
An important concept related to nearest neighbors is the Voronoi Diagram: it partitions the space into regions with the same nearest neighbor. In our stochastic setting, we seek the most likely Voronoi Diagram (LVD) of S : a partition of the space into regions so that all query points in a region have the same LNN. In addition to serving the role of a convenient data structure for LNN of query points, the structure of LVD also provides a compact representation of each stochastic site's region of likely influence.

Related Work. The topic of uncertain data has received a great deal of attention in recent years in the research communities of databases, machine learning, AI, algorithms and computational geometry. Due to limited space, we mention just a small number of papers that are directly relevant to our work. A number of researchers have explored nearestneighbors and Voronoi diagrams for uncertain data [2, 4, 14], however, these papers focus on the locational uncertainty, with the goal of finding a neighbor minimizing the expected distance. In [19], Kamousi-Chan-Suri consider the stochastic (existence uncertainty) model but they also focus on the expected distance. Unfortunately, nearest neighbors under the expected measure can give non-sensical answers-a very low probability neighbor gets a large weight simply by being near the query point. Instead, the most likely nearest neighbor gives a more intuitive answer.

Over the past decade, smoothed analysis has emerged as a useful approach for analyzing problems in which the complexity of typical cases deviates significantly from the worst-case. A classical example is the Simplex algorithm whose worst-case complexity is exponential and yet it runs remarkably well on most practical instances of linear programming. The smoothed analysis framework proposed [22] offers a more insightful analysis than simple average case. Smoothed analysis is also quite appropriate for many geometric problems [7, $8,11,12]$, because data is often the result of physical measurements that are inherently noisy.

Our Results. We first show that the most likely Voronoi diagram (LVD) has worst-case complexity $\Omega\left(n^{2}\right)$ even in 1D, which is easily seen to be tight. We then show that under more natural, and less pathological, conditions the LVD has significantly better behavior. Specifically, (1) if the input has only k distinct probability values, then the LVD has size $\Theta(n k)$; (2) if the probability values are randomly chosen (average-case analysis),
then the LVD has expected size $O(n \log n)$; (3) if the probability values (or the site positions) are worst-case but can be perturbed by some small value (smoothed analysis), then the LVD has size $O(n \sqrt{n})$. Of course, the LVD immediately gives an $O(\log n)$ time data structure for LNN queries. Next, we propose an alternative data structure for LNN queries using Pareto sets. In 1-dimension, this data structure has linear size and answers LNN queries in worst-case $O(k \log n)$ time when the input has only k distinct probability values, and in $O\left(\log ^{2} n\right)$ and $O(\sqrt{n} \log n)$ time under the average case and smoothed analysis models, respectively. Finally, the Pareto-set approach can be generalized to higher dimensions by reducing the problem to a sequence of nearest neighbor and spherical range queries. We give a concrete example of this generalization to finding the LNN in two dimensions.

2 The LVD can have Quadratic Complexity in 1D

The most likely nearest neighbor problem has non-trivial complexity even in the simplest of all settings: points on a line. Indeed, the LNN even violates a basic property often used in data structure design: decomposability. With deterministic data, one can split the input into a number of subsets, compute the nearest neighbor in each subset, and then choose the closest of those neighbors. As the following simple example shows, this basic property does not hold for the LNN.

Let the input have 3 sites $\left\{\left(-2, \frac{1}{4}\right),\left(1, \frac{1}{3}\right),\left(3, \frac{3}{5}\right)\right\}$, and consider the query point $q=0$ (see Figure 1). Suppose we decompose the input into two subsets, sites to the left, and sites to the right of the query point. Then, it is easy to check that s_{1} is the LNN on the left, and

Fig. 1. The LNN of q is s_{2}. s_{3} is the LNN for the right subset. However, the overall LNN of q turns out to be s_{2}, as is easily verified by the likeliness probabilities: $\ell\left(s_{1}, q\right)=\frac{2}{3} \cdot \frac{1}{4}=\frac{1}{6}, \ell\left(s_{2}, q\right)=\frac{1}{3}$, and $\ell\left(s_{3}, q\right)=\frac{2}{3} \cdot \frac{3}{4} \cdot \frac{3}{5}=\frac{3}{10}$.

The likeliness region for a site is also not necessarily connected: in fact, the following theorem shows that the LVD on a line can have quadratic complexity.

Theorem 1. The most likely Voronoi diagram (LVD) of n stochastic sites on a line can have complexity $\Omega\left(n^{2}\right)$.

Proof. Due to limited space, we sketch the main idea, deferring some of the technical details to the full version of the paper. The input for the lower bound consists of two groups of n sites each, for a total of $2 n$. In the first group, called S, the i th site has position $s_{i}=i / n$, and probability $\pi_{i}=1 / i$, for $i=1,2, \ldots, n$. In the second group, called T, the i th site has position $t_{i}=i+1$, and probability ϵ, for a choice of ϵ specified later (see Figure 2). We will focus on the n^{2} midpoints $m_{i j}$, namely the bisectors, of pairs of sites $s_{i} \in S$ and $t_{j} \in T$, and argue that the LNN changes in the neighborhood of each of these midpoints, proving the lower bound.

By construction, the midpoints $m_{i j}$ are ordered lexicographically on the line, first by j and then by i. We will show that the LNN in the interval immediately to the left of the midpoint $m_{i j}$ is s_{i}, which implies that the LVD has size $\Omega\left(n^{2}\right)$. In this proof sketch we assume that if two sites have the same likeliness then the site with the lower index

Fig. 2. The lower bound example of Theorem 1 with $\Omega\left(n^{2}\right)$ complexity.
is chosen as the LNN. Without this assumption the same bound can be obtained with a slightly altered construction, but the analysis becomes more complicated.

Let us consider a query point q that lies immediately to the left of the first midpoint m_{11}. It is easy to verify that $\ell\left(s_{i}, q\right)=\frac{1}{n}$, for all $1 \leq i \leq n$, and therefore s_{1} is q 's LNN. As the query point moves past m_{11}, only the likeliness of s_{1} changes to $\frac{1-\epsilon}{n}$, making s_{2} the LNN. The same argument holds as q moves past other midpoints towards the right, with the likeliness of corresponding sites changing to $\frac{1-\epsilon}{n}$ in order, resulting in s_{i} becoming the new LNN when q lies just to the left of $m_{i 1}$. After q passes $m_{n 1}$, all sites of S have the same likeliness again, and the pattern is repeated for the remaining midpoints. To ensure that no site in T can ever be the LNN, we require that $\frac{(1-\epsilon)^{n}}{n}>\epsilon$, which holds for $\epsilon=n^{-2}$.

3 Upper Bounds for the LVD in 1D

A matching upper bound of $O\left(n^{2}\right)$ for the 1-dimensional LVD is easy: only the midpoints of pairs of sites can determine the boundary points of the LVD. In this section, we prove a number of stronger upper bounds, which may be more reflective of practical data sets. In particular, we show that if the number of distinct probability values among the stochastic sites is k, then the LVD has size $\Theta(k n)$, where clearly $k \leq n$. Thus, the LVD has size only $O(n)$ if the input probabilities come from a fixed, constant size universe, not an unrealistic assumption in practice. Second, the lower bound construction of Theorem 1 requires a highly pathological arrangement of sites and their probabilities, unlikely to arise in practice. We therefore analyze the LVD complexity using average-case and smoothed analysis, and prove upper bounds of $O(n \log n)$ and $O(n \sqrt{n})$, respectively.

3.1 Structure of the LVD

We first establish some structural properties of the LVD; in particular, which midpoints (bisectors) form the boundaries between adjacent cells of the LVD. For ease of reference, let us call these midpoints critical. Given a query point q, let $\mathcal{L}(q)$ denote the sorted list of sites in \mathcal{S} by their (increasing) distance to q. Clearly, as long as the list $\mathcal{L}(q)$ does not change by moving q along the line, its LNN remains unchanged. The order only changes at a midpoint $m_{i j}$, in which case s_{i} and s_{j} swap their positions in the list. The following lemmas provide a simple rule for determining critical midpoints.

Lemma 1. Suppose that the midpoint $m_{i j}$ of two sites s_{i} and $s_{j}\left(s_{i}<s_{j}\right)$ is critical, and consider the points q^{\prime} immediately to the left of $m_{i j}$, and $q^{\prime \prime}$ immediately to the right of $m_{i j}$. Then, either s_{i} is the $L N N$ of q^{\prime}, or s_{j} is the $L N N$ of $q^{\prime \prime}$.

Proof. Suppose, for the sake of contradiction, that the LNN of q^{\prime} is not s_{i}, but instead some other site s_{z}. Consider the list $\mathcal{L}\left(q^{\prime}\right)$ of sites ordered by their distance to the query, and consider the change to this list as the query point shifts from q^{\prime} to $q^{\prime \prime}$. The only change is swapping of s_{i} and s_{j}. Then the likeliness of s_{i} and s_{j} satisfy $\ell\left(s_{i}, q^{\prime \prime}\right)<\ell\left(s_{i}, q^{\prime}\right)$ and $\ell\left(s_{j}, q^{\prime \prime}\right)>\ell\left(s_{j}, q^{\prime}\right)$, while for all other sites s, we have $\ell\left(s, q^{\prime}\right)=\ell\left(s, q^{\prime \prime}\right)$. Therefore, the LNN of $q^{\prime \prime}$ is either s_{j} or s_{z}. If s_{z} is the LNN of $q^{\prime \prime}$, then $m_{i j}$ is not critical (a contradiction). So s_{j} must be the LNN of $q^{\prime \prime}$ satisfying the condition of the lemma.

Lemma 2. If the midpoint $m_{i j}$ of sites s_{i} and s_{j}, for $s_{i}<s_{j}$, is critical, then there cannot be a site s_{z} with $s_{z} \in\left[s_{i}, s_{j}\right]$ and $\pi_{z} \geq \max \left(\pi_{i}, \pi_{j}\right)$.

Proof. Suppose, for the sake of contradiction, that such a site s_{z} exists. By the position of s_{z}, we must have $\left\|s_{z}-m_{i j}\right\|<\min \left\{\left\|s_{i}-m_{i j}\right\|,\left\|s_{j}-m_{i j}\right\|\right\}$, and the same also holds for any query point q arbitrary close to $m_{i j}$. Because $\pi_{z} \geq \max \left(\pi_{i}, \pi_{j}\right)$, we have $\ell\left(s_{z}, q\right)>\ell\left(s_{i}, q\right)$ and $\ell\left(s_{z}, q\right)>\ell\left(s_{j}, q\right)$, implying that s_{z} is more likely than both s_{i} and s_{j} to be the nearest neighbor of any q arbitrary close to $m_{i j}$. By Lemma 1, however, if $m_{i j}$ is critical, then there exists a q close to $m_{i j}$ for which the LNN is either s_{i} or s_{j}. Hence s_{z} cannot exist.

3.2 Refined Upper Bounds

Our first result shows that if the stochastic input has only k distinct probabilities, then the LVD has size $O(k n)$. Let $\left\{S_{1}, \ldots, S_{k}\right\}$ be the partition of the input so that each group has sites of the same probability, ordered by increasing probability; that is, any site in S_{j} has higher probability than a site in S_{i}, for $j>i$. We write $n_{i}=\left|S_{i}\right|$, where $\sum_{i=1}^{k} n_{i}=n$.

Lemma 3. The LVD of n stochastic sites on a line, with at most k distinct probabilities, has complexity $\Theta(k n)$.

Proof. The lower bound on the size follows from an easy modification of the construction in Theorem 1: we use only $k-1$ points for the left side of the construction. We now analyze the upper bound. Suppose the midpoint $m_{i j}$ defined by two sites $s_{i} \in S_{a}$ and $s_{j} \in S_{b}$ is critical, where $1 \leq a<b \leq k$, and without loss of generality, assume that s_{i} lies to the left of s_{j}. The sites in S_{b} have higher probability than those in S_{a}, because of our assumption that $a<b$. Hence, by Lemma 2, there cannot be a site $s \in S_{b}$ such that $s \in\left[s_{i}, s_{j}\right]$. By the same reasoning, the midpoint of s_{i} and a site $s \in S_{b}$ with $s>s_{j}$ also cannot be critical. Therefore, s_{i} can form critical midpoints with at most two sites in S_{b} : one on each side. Altogether, s_{i} can form critical midpoints with at most $2 k$ other sites s_{j} with $\pi_{j} \geq \pi_{i}$. Thus, $|L V D| \leq 2 k \sum_{i=1}^{k} n_{i}=2 k n$.

3.3 Average-case and Smoothed Analysis of the LVD

We now show that even with n distinct probability values among the stochastic sites, the LVD has significantly smaller complexity as long as those probabilities are either assigned randomly to the points, or they can be perturbed slightly to get rid of the highly
unstable pathological cases. More formally, for the average-case analysis we assume that we have a fixed set of n probabilities, and we randomly assign these probabilities to the sites. That is, we consider the average over all possible assignments of probabilities to sites. The smoothed analysis fixes a noise parameter $a>0$, and draws a noise value $\delta_{i} \in[-a, a]$ uniformly at random for each site $\left(s_{i}, \pi_{i}\right)$. This noise is used to perturb the input, either the location of a site or its probability. The location perturbation changes each site's position to $s_{i}^{\prime}=s_{i}+\delta_{i}$, resulting in the randomly perturbed input $\mathcal{S}^{\prime}=\left\{\left(s_{1}^{\prime}, \pi_{1}\right), \ldots,\left(s_{n}^{\prime}, \pi_{n}\right)\right\}$, which is a random variable. The smoothed complexity of the LVD is the expected complexity of the LVD of \mathcal{S}^{\prime}, where we take the worst case over all inputs \mathcal{S}. The smoothed complexity naturally depends on the noise parameter a, which for the sake of simplicity we assume to be a constant-more detailed bounds involving a can easily be obtained. Of course, for this model we need to restrict the positions of sites to $[0,1]$. The smoothed model perturbing the probabilities instead of the positions is defined analogously.

Our analysis uses a partition tree \mathcal{T} defined on the sites as follows. The tree is rooted at the site s_{i} with the highest probability. The remaining sites are split into a set S_{1}, containing the sites on the left of s_{i}, and a set S_{2} containing the rest (excluding s_{i}, see Figure 3 right). We then recursively construct the partition trees for S_{1} and S_{2}, whose roots become the children of s_{i}. (In case of ties, choose s_{i} to make the partition as balanced as possible.) The partition tree has the following useful property.

Lemma 4. Let s_{i} and s_{j} be two sites with $\pi_{i} \leq \pi_{j}$. If the midpoint $m_{i j}$ is critical, then s_{j} is an ancestor of s_{i} in \mathcal{T}.
Proof. Let s_{z} be the lowest common ancestor of s_{i} and s_{j} in \mathcal{T}, assuming $s_{z} \neq s_{j}$. By construction, $s_{z} \in\left[s_{i}, s_{j}\right]$ and $\pi_{z} \geq \pi_{j}$. Hence, by Lemma 2, $m_{i j}$ cannot be critical.

Corollary 1. If the depth of \mathcal{T} is d, then the size of the $L V D$ is $O(d n)$.
Thus, we can bound the average and smoothed complexity of the LVD by analyzing the average and smoothed depth of the partition tree \mathcal{T}. In the average case, \mathcal{T} is essentially a random binary search tree. It is well known that the depth of such a tree is $O(\log n)$ (see e.g. [21]). In the smoothed model, if the perturbation is on the position of the sites, then a result by Manthey and Tantau [20, Lemma 10] shows that the smoothed depth of \mathcal{T} is $O(\sqrt{n}) .{ }^{1}$ We can easily extend that analysis to the perturbation on the probability values, instead of the positions of the sites. In a nutshell, the proof by Manthey and Tantau relies on the fact that the input elements can be partitioned into $O(\sqrt{n} / \log n)$ groups such that the binary search tree of a single group is essentially random, and in this random tree, we can simply swap the roles of probabilities and positions. Thus, the smoothed depth of \mathcal{T} is also $O(\sqrt{n})$ if the probabilities are perturbed. (If a perturbed probability falls outside $[0,1]$, it is truncated, but the analysis holds due to our tiebreaking rule.)

Theorem 2. Given a set of n stochastic sites on the line, its most likely Voronoi Diagram (LVD) has average-case complexity $O(n \log n)$, and smoothed complexity $O(n \sqrt{n})$.

[^1]
4 Algorithms for Constructing the LVD

Our main tool for constructing the LVD is the likeliness curve $\ell\left(s_{i}\right): \mathbb{R} \rightarrow \mathbb{R}$ of a site s_{i}, which is simply the function $\ell\left(s_{i}, q\right)$ with q ranging over the entire real line \mathbb{R}. A likeliness curve $\ell\left(s_{i}\right)$ has $O(n)$ complexity and it is a bimodal step function, achieving its maximum value at $q=s_{i}$ (see Figure 4). By presorting all the sites in the left-to-right order, we can easily compute each $\ell\left(s_{i}\right)$ in $O(n)$ time, as follows. Start at $q=s_{i}$ and walk to the left updating the value $\ell\left(s_{i}, q\right)$ at every midpoint of the form $m_{i j}$ with $1 \leq j<i$. We do the same for the right portion of $\ell\left(s_{i}\right)$, walking to the right instead (and $i<j \leq n$). In the same way we can compute a restriction of $\ell\left(s_{i}\right)$ to some interval I : assuming $s_{i} \in I$, it is easy to see that this restriction can be computed in time proportional to its complexity.

We can now compute the LVD by constructing the upper envelope \mathcal{U} of all $\ell\left(s_{i}\right)$, for $i=1, \ldots, n$. A naive construction, however, still takes $O\left(n^{2}\right)$ time since the total complexity of all likeliness curves is quadratic. Instead, we restrict the likeliness curve of every site to a critical subpart such that the upper envelope of these partial curves gives the correct \mathcal{U}. In particular, for each site s_{i}, define the influence interval I_{i} as follows. Let s_{j} be the first site encountered on the left of s_{i} for which $\pi_{j} \geq \pi_{i}$, and let s_{z} be such a site on the right side of s_{i}. Then we define $I_{i}=\left[m_{j i}, m_{i z}\right]$. (If s_{j} and/or s_{z} does not exist, we replace $m_{j i}$ with $-\infty$ and/or $m_{i z}$ with ∞, respectively.) Observe that, for any $q \notin I_{i}$, either $\ell\left(s_{i}, q\right)<\ell\left(s_{j}, q\right)$ or $\ell\left(s_{i}, q\right)<\ell\left(s_{z}, q\right)$, since either s_{j} or s_{z} is closer to q and $\pi_{j}, \pi_{z} \geq \pi_{i}$. We define $\ell^{\prime}\left(s_{i}\right)$ as the restriction of $\ell\left(s_{i}\right)$ to the interval I_{i} (see Figure 4). Clearly, \mathcal{U} can be constructed by computing the upper envelope of just these restrictions $\ell^{\prime}\left(s_{i}\right)$, and the complexity of each $\ell^{\prime}\left(s_{i}\right)$ is exactly the number of midpoints involving s_{i} that lie in I_{i}. Thus, given the defining sites s_{j} and s_{z} of I_{i}, the complexity of $\ell^{\prime}\left(s_{i}\right)$ is the number of sites in the interval $\left[s_{j}, s_{z}\right]$ minus one (excluding s_{i}).

Lemma 5. The complexity of the union of all $\ell^{\prime}\left(s_{i}\right)$, for $i=1,2, \ldots, n$, is $O(n d)$, where d is the depth of the partition tree \mathcal{T} of the input sites. Furthermore, the union of $\ell^{\prime}\left(s_{i}\right)$ can be represented by d curves of $O(n)$ complexity each.

Proof. Let $\sigma_{1}, \ldots, \sigma_{r}$ be the set of sites at a fixed depth in the partition tree \mathcal{T} in order, and let τ_{i}, for $1 \leq i<r$, be the lowest common ancestor of σ_{i} and σ_{i+1} in the tree. It is easy to see that the influence interval of a site σ_{i} is defined by a site in $\left[\tau_{i-1}, \sigma_{i}\right]$ (possibly τ_{i-1}) and a site in $\left[\sigma_{i}, \tau_{i}\right]$ (possibly τ_{i}), assuming $1<i<r$ (otherwise the influence interval may extend to $-\infty$ or $+\infty$, see Figure 3). Hence the complexity

Fig. 3. The influence intervals (left) and the partition tree (right).

Fig. 4. The likeliness curve $\ell\left(s_{i}\right)$ of s_{i} and its restriction $\ell^{\prime}\left(s_{i}\right)$ to I_{i}.
of $\ell^{\prime}\left(\sigma_{i}\right)$ is bounded by the number of sites in the interval $\left[\tau_{i-1}, \tau_{i}\right]$. Furthermore, all influence intervals of the sites $\sigma_{1}, \ldots, \sigma_{r}$ are disjoint, and so we can combine all $\ell^{\prime}\left(\sigma_{i}\right)$ into a single curve with $O(n)$ complexity. The result follows by constructing such a curve for each level of the partition tree.

We can use Lemma 5 to efficiently compute the upper envelope \mathcal{U}. First, we compute the d curves f_{1}, \ldots, f_{d} mentioned in Lemma 5, one for each level of \mathcal{T}. As we construct \mathcal{T}, we simultaneously compute $\ell^{\prime}\left(s_{i}\right)$ for each site s_{i}, in time $O\left(\left|\ell^{\prime}\left(s_{i}\right)\right|\right)$ time. This takes $O(n)$ time per level of \mathcal{T}. We can then easily combine the individual parts $\ell^{\prime}\left(s_{i}\right)$ to obtain the curves f_{1}, \ldots, f_{d}. The total running time of computing the curves f_{1}, \ldots, f_{d} is $O(n \log n+d n)$.

Finally we can construct \mathcal{U} by computing the upper envelope of the curves f_{1}, \ldots, f_{d}. We scan through the curves from left to right, maintaining two priority queues: (1) a priority queue for the events at which the curves change, and (2) a priority queue for maintaining the curve with the highest likeliness. Both priority queues have size d, which means that each event can be handled in $O(\log d)$ time.

Lemma 6. If d is the depth of \mathcal{T}, then the LVD can be constructed in $O(n \log n+$ $d n \log d)$ time.

The algorithm is easily adapted for the case of k distinct probabilities. Consider the sites $\sigma_{1}, \ldots, \sigma_{r}$ (in order) for a single probability value. Since they all have the same probability, they bound each other's influence intervals, and hence all influence intervals are interior disjoint. Now assume that a site s_{j} is contained in the interval $\left[\sigma_{i}, \sigma_{i+1}\right]$. Then s_{j} can add to the complexity of only $\ell^{\prime}\left(\sigma_{i}\right)$ and $\ell^{\prime}\left(\sigma_{i+1}\right)$, and no other $\ell^{\prime}\left(\sigma_{z}\right)$ with $z \neq i, i+1$. Thus, we can combine the partial likeliness curves $\ell^{\prime}\left(\sigma_{i}\right)$ into a single curve of $O(n)$ complexity. In total we obtain k curves of $O(n)$ complexity each, from which we can construct the LVD.

Theorem 3. The LVD of n stochastic sites in $1 D$ can be computed in worst-case time $O(n \log n+n k \log k)$ if the sites involve k distinct probabilities. Without the assumption on distinct probabilities, the construction takes $O(n \log n \log \log n)$ time in the average case, ${ }^{2}$ and $O(n \sqrt{n} \log n)$ time in the smoothed analysis model.

[^2]
5 Time-Space Tradeoffs for LNN Searching

The worst-case complexity of the LVD is $\Omega\left(n^{2}\right)$ even in 1 dimension and the Voronoi region of a single site can have $\Omega(n)$ disjoint intervals. This raises a natural question: can the 1-dimensional LNN search be solved by a data structure of subquadratic size and sub-linear query time? While we cannot answer that question definitively, we offer an argument suggesting its hardness below.

5.1 A 3SUM Hard Problem

Consider the following problem, which we call the Next Midpoint Problem: given a set of n sites on a line, preprocess them so that for a query q we can efficiently compute the midpoint (for some pair of sites) that is immediately to the right of q. The problem is inspired by the fact that an LNN query essentially needs to decide the location of the query point among the (potentially $\Omega\left(n^{2}\right)$ critical) midpoints of the input. The following lemma proves 3SUM-hardness of this problem. (Recall that the 3SUM problem asks, given a set of numbers a_{1}, \ldots, a_{n}, does there exist a triple $\left(a_{i}, a_{j}, a_{z}\right)$ satisfying $a_{i}+a_{j}+a_{z}=0$.)

Lemma 7. Building the data structure plus answering $2 n$ queries of the NEXT MIDPoint Problem is 3SUM-hard.

Proof. Consider an instance of the 3 SUM problem consisting of numbers a_{1}, \ldots, a_{n}. We use these numbers directly as sites for the Next Midpoint Problem. If there exists a triple for which $a_{i}+a_{j}+a_{z}=0$, then the midpoint $m_{i j}$ is at $-a_{z} / 2$. Thus, for every input number a_{z}, we query the NExt Midpoint data structure just to the left and just to the right of $-a_{z} / 2$ (all numbers are integers, so this is easy). If the next midpoint is different for the two queries, then there exists a triple for which $a_{i}+a_{j}+a_{z}=0$. Otherwise, such a triple does not exist.

Remark. Thus, unless 3SUM can be solved in significantly faster than $O\left(n^{2}\right)$ time, either the preprocessing time for the Next Midpoint problem is $\Omega\left(n^{2}\right)$, or that the query time is $\Omega(n)$.However, our reduction does not imply a hardness for the LNN problem in general: the order of the midpoints in the example of Theorem 1 follows a very simple pattern, which can be encoded efficiently.

5.2 LNN Search Using Pareto Sets

We now propose an alternative approach to LNN search using Pareto sets, which trades query time for space. Consider a query point q, and suppose that its LNN is the site s_{i}. Then, s_{i} must be Pareto optimal with respect to q, that is, there cannot be a site s_{j} closer to q with $\pi_{j} \geq \pi_{i}$. In fact, recalling the influence intervals I_{i} from the previous section, it is easy to check that s_{i} is Pareto optimal for q if and only if $q \in I_{i}$. This observation suggests the following algorithm for LNN: (1) compute the set S of sites s_{i} with $q \in I_{i}$, (2) compute $\ell(s, q)$ for each $s \in S$, and (3) return $s \in S$ with the maximum likeliness.

Step (1) requires computing the influence intervals for all sites, which is easily done as follows. Sort the sites in descending order of probability, and suppose they
are numbered in this order. We incrementally add the sites to a balanced binary search tree, using the position of a site as its key. When we add a site s_{i} to the tree, all the sites with a higher probability are already in the tree. The interval I_{i} is defined by the two consecutive sites s_{j} and s_{z} in the tree such that $s_{i} \in\left[s_{j}, s_{z}\right]$. Thus, we can find s_{j} and s_{z} in $O(\log n)$ time when adding s_{i} to the tree, and compute all the influence intervals in $O(n \log n)$ total time. ${ }^{3}$ To find the intervals containing the query point, we organize the influence intervals in an interval tree, which takes $O(n \log n)$ time and $O(n)$ space, and solves the query in $O(\log n+r)$ time, where r is the output size. By the results in previous sections, we have $r \leq \min \{k, d\}$, where k is the number of distinct probabilities and d is the depth of \mathcal{T}.

Step (2) requires computing the likeliness of each site efficiently, and we do this by rewriting the likeliness function as follows:

$$
\begin{equation*}
\ell\left(s_{i}, q\right)=\pi_{i} \times \prod_{s_{j} \in(q-a, q+a)} \overline{\pi_{j}} \quad \text { where } a=\left|q-s_{i}\right| \tag{2}
\end{equation*}
$$

With Equation (2), we can compute the likeliness of a site by a single range search query: an augmented balanced binary search tree, requiring $O(n)$ space and $O(n \log n)$ construction time, solves this query in $O(\log n)$ time.

Theorem 4. There is a data structure for $1 D L N N$ search that needs $O(n)$ space and $O(n \log n)$ construction time and answers queries in (1) worst-case $O(k \log n)$ time if the sites involve k distinct probabilities, (2) expected time $O\left(\log ^{2} n\right)$ in the average case, and (3) expected time $O(\sqrt{n} \log n)$ in the smoothed analysis model.

Remark. The query bounds of Theorem 4 for the average and smoothed analysis model are strong in the sense that they hold for all query points simultaneously, and not just for a fixed query point. That is, the bounds are for the expected worst case query time, rather than the expected query time.

6 The Pareto-Set Approach in Higher Dimensions

Our Pareto-set approach essentially requires the following two operations: (1) find the Pareto set for a query point q, and (2) compute the likeliness of a site w.r.t. q. In higher dimensions, the second operation can be performed with a spherical range query data structure, for which nearly optimal data structures exist [1]. The first operation can be reduced to a sequence of nearest neighbor queries, as follows: (1) find the nearest neighbor of q, say s_{i}, among all sites and add s_{i} to the Pareto set, (2) remove all sites with probability at most π_{i}, and (3) repeat steps (1) and (2) until no sites are left. We, therefore, need a data structure supporting the following query: given a query point q and a probability π, find the closest site to q with probability higher than π. A dynamic nearest neighbor data structure can be adapted to answer this query as follows: incrementally add sites in decreasing order of probability, and make the data structure

[^3]partially persistent. In this way, the data structure can answer the query we need, and partially persistent data structures often require only little extra space.

The required number of nearest neighbor and spherical range queries is precisely the number of elements in the Pareto set. For a query point q, consider the sequence of the sites' probabilities ordered by their increasing distance to q. Observe that the size of the Pareto set is precisely the number of left-to-right maxima in this sequence (see [20]). Therefore, the size of the Pareto set is (1) at most k when the input has at most k distinct probabilities, (2) $O(\log n)$ in the average case model, and (3) $O(\sqrt{n})$ in the smoothed analysis model. (Unlike the bound of Section 5.2, however, this result holds for any arbitrary query but not for all queries simultaneously.) A concrete realization of this abstract approach is discussed below for LNN search in 2D.

2D Euclidean LNN Search. For the sake of illustration, we consider only the average case of LNN queries. In this case, an incremental construction ordered by decreasing probabilities is simply a randomized incremental construction. We can then use the algorithm by Guibas et al. [15, Section 5] to incrementally construct the Voronoi diagram including a planar point location data structure, which uses $O(n)$ space on average. Although not explicitly mentioned in [15], this data structure is partially persistent. Using this data structure we can answer a nearest neighbor query in $O\left(\log ^{2} n\right)$ time. For the circular range queries, we use the data structure by Chazelle and Welzl [9, Theorem 6.1], which uses $O(n \log n)$ space and can answer queries in $O\left(\sqrt{n} \log ^{2} n\right)$ time. The final result is a data structure that uses, on average, $O(n \log n)$ space and can answer LNN queries in $O\left(\log ^{2} n \cdot \log n+\sqrt{n} \log ^{2} n \cdot \log n\right)=O\left(\sqrt{n} \log ^{3} n\right)$ time.

7 Concluding Remarks

The introduction of uncertainty seems to make even simple geometric problems quite hard, at least in the worst case. At the same time, uncertain data problems and algorithms may be particularly well-suited for average-case and smoothed analyses: after all, probabilities associated with uncertain data are inherently fuzzy measures, and problem instances whose answer changes dramatically with minor perturbations of input may suggest fragility of those probabilistic assumptions.

Our research suggests a number of open problems and research questions. In the 1-dimensional setting, we are able to settle the complexity of the LVD under all three analyses (average, smoothed, and worst-case), and it will be interesting to extend the results to higher dimensions. In particular, we believe the worst-case complexity of the d-dimensional LVD is $\Omega\left(n^{2 d}\right)$, but that is work in progress. Settling that complexity in the average or smoothed analysis case, as well as in the case of k distinct probabilities, is entirely open.

References

1. P. Agarwal. Range Searching. In CRC Handbook of Discrete and Computational Geometry (J. Goodman and J. O’Rourke, eds.), CRC Press, New York, 2004.
2. P. Agarwal, B. Aronov, S. Har-Peled, J. Phillips, K. Yi, and W. Zhang. Nearest neighbor searching under uncertainty II. In Proc. 32nd PODS, pp. 115-126, 2013.
3. P. Agarwal, S. Cheng, and K. Yi. Range searching on uncertain data. ACM Trans. on Alg., 8(4):43, 2012.
4. P. Agarwal, A. Efrat, S. Sankararaman, and W. Zhang. Nearest-neighbor searching under uncertainty. In Proc. 31st PODS, pp. 225-236, 2012.
5. C. Aggarwal. Managing and Mining Uncertain Data. Advances in Database Systems Vol. 35, Springer, 1st edition, 2009.
6. C. Aggarwal, and P. Yu. A survey of uncertain data algorithms and applications. IEEE Trans. Knowl. Data Eng., 21(5):609-623, 2009.
7. M. de Berg, H. Haverkort, and C. Tsirogiannis. Visibility maps of realistic terrains have linear smoothed complexity. J. of Comp. Geom., 1(1):57-71, 2010.
8. S. Chaudhuri, V. Koltun. Smoothed analysis of probabilistic roadmaps. Comp. Geom. Theor. Appl., 42(8):731-747, 2009.
9. B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension. Discrete Comput. Geom., 4:467-489, 1989.
10. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt. Communications of the ACM, 52(7):86-94, 2009.
11. V. Damerow, F. Meyer auf der Heide, H. Räcke, C. Scheideler, and C. Sohler. Smoothed motion complexity. In Proc. 11th ESA, pp. 161-171, 2003.
12. V. Damerow and C. Sohler. Extreme points under random noise. In Proc. 12th ESA, pp. 264-274, 2004.
13. L. Devroye. A note on the height of binary search trees. J. ACM, 33(3):489-498, 1986.
14. W. Evans and J. Sember. Guaranteed Voronoi diagrams of uncertain sites. In Proc. 20th CCCG, pp. 207-210, 2008.
15. L. Guibas, D. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica, 7, 381-413, 1992.
16. A. Jørgensen, M. Löffler, and J. Phillips. Geometric computations on indecisive and uncertain points. CoRR, abs/1205.0273, 2012.
17. M. Löffler. Data imprecision in computational geometry. PhD Thesis, Utrecht University, 2009.
18. M. Löffler and M. van Kreveld. Largest and smallest convex hulls for imprecise points. Algorithmica, 56:235-269, 2010.
19. P. Kamousi, T. Chan, and S. Suri. Closest pair and the post office problem for stochastic points. Comp. Geom. Theor. Appl., 47(2):214-223, 2014.
20. B. Manthey and T. Tantau. Smoothed analysis of binary search trees and Quicksort under additive noise. In Proc. 33rd Int. Symp. Math. Found. Comp. Sci., pp. 467-478, 2008.
21. B. Reed. The height of a random binary search tree. J. ACM, 50(3):306-332, 2003.
22. D. Spielman and S. Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. J. ACM, 51:385-463, 2004.
23. S. Suri, K. Verbeek, and H. Yıldız. On the most likely convex hull of uncertain points. In Proc. 21st ESA, pp. 791-802, 2013.

[^0]: * The authors gratefully acknowledge support from the National Science Foundation, under the grants CNS-1035917 and CCF-11611495, and DARPA.

[^1]: ${ }^{1}$ In [20] a binary search tree is constructed from a sequence of real numbers. We obtain this sequence from our input by ordering the stochastic sites by decreasing probabilities. The construction of binary search trees in [20] then matches our construction of \mathcal{T}.

[^2]: ${ }^{2}$ In general, $E[d \log d] \neq E[d] \log E[d]$, but using the results of [13], we can easily show that $E[d \log d]=O(\log n \log \log n)$ in our setting.

[^3]: ${ }^{3}$ If there are sites with the same probability, we must first determine their influence intervals among sites with the same probability, before adding them to the tree. This can easily be achieved by first sorting the sites on position.

