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Abstract—Domain-specific languages (DSLs) allow users to
model systems using concepts from a specific domain. Evolution
of DSLs triggers co-evolution of models developed in these
languages. When the number of models that needs to co-evolve
increases, so does the required effort to do so. This is called the
co-evolution problem.

We have investigated the extent of the co-evolution prob-
lem at ASML [1], provider of lithography equipment for the
semiconductor industry. Here we have described the structure
and evolution of a large-scale ecosystem of DSLs. We have
observed that due to the large number of artifacts that require co-
evolutionary activity, manual solutions have become unfeasible,
and an automated approach is required. A popular approach
for automating co-evolution is the operator-based approach. In
this paper we have evaluated the operator-based approach on
a large-scale industrial case-study of twenty-two DSLs and 95
model-to-model transformations with a revision history of over
three years, and have revealed deficiencies in existing operator
libraries. To address these deficiencies we have presented a top-
down methodology to derive a complete set of operators.

I. INTRODUCTION

Domain-specific languages (DSLs) offer an efficient way to
model complex systems in terms of familiar domain concepts.
The relative ease with which model driven engineering (MDE)
allows new DSLs to be created is allowing DSLs to be adopted
more quickly in industry [2]. The amount of industrial case-
studies in literature suggests that MDE is being adopted in
industry [3], [4]. For example at ASML, where DSLs are
being used for specification of servo-control applications and
execution platforms for the TWINSCAN lithography machine
[5].

DSLs are created by specifying their abstract syntax using
meta-models1 [6] that dictate the concepts and structure of
a language. Due to this centralized specification of language
concepts and structure, meta-models have become, by design,
a hotspot in the development process: artifacts such as models,
model-transformations, editors, and even Java code (e.g., the
EMF-API when using Eclipse EMF as an implementation
technology) depend on the meta-models. This also means that
when meta-models evolve, related artifacts such as models
[7]–[10], model-transformations [11], [12], text editors, and

1In our use-case, there is a one-to-one correspondence between DSLs and
meta-models, hence these terms will by used as synonyms throughout this
paper.

graphical editors [13] must reflect changes made to the meta-
models. This is known as the co-evolution problem [14].

Manual updating of models triggered by evolution of meta-
models is not only difficult but also costly. One can imagine
that, in some cases, the induced co-evolutionary effort that
would be inferred by a meta-model change is so significant
that the meta-model change would be postponed or even not
executed at all. This causes developers to encode new domain
concepts into existing ones, jeopardizing the primary strength
of DSLs: modeling in a specific domain.

The contributions of this paper are threefold. First, we
provide insights into how scale affects (co-)evolution in an
ecosystem of DSLs used for systems engineering. We study
how evolution and co-evolution are dealt with in a large-
scale industrial model-driven system engineering (MDSE)
ecosystem of twenty-two DSLs. Second, we investigate if an
operator-based approach is suitable for dealing with evolu-
tion and co-evolution at this large scale. We investigate to
what extent current operator libraries are able to specify (co-
)evolution in our industrial case-study. Lastly, we investigate
what extensions to operator libraries are necessary in order to
completely specify (co-)evolution in practical use-cases. Rather
than extending one of the existing operator libraries in an ad
hoc way to fully cover co-evolution, we present a top-down
methodology to derive a complete set of atomic operators. In
this way, every meta-model evolution can be specified.

The remainder of this paper is structured as follows: In
Section II we elaborate on MDE ecosystems and the added
challenges they pose with respect to (co-)evolution. In Sec-
tion III we explain the industrial context of our research, and
in Section IV we look at the MDSE ecosystem case study in
this industrial context. In Section V we analyze the application
of the operator-based approach to our industrial case study,
and identify shortcomings. We discuss how to mitigate these
shortcomings in Section VI. In Section VII we discuss related
work in our field. Finally, we conclude this paper by sketching
directions for future work, and summarizing our conclusions
in Section VIII.

II. (CO-)EVOLUTION IN MDSE ECOSYSTEMS

A. MDSE Ecosystems

In an MDSE ecosystem, meta-models are the central arti-
fact, defining language concepts and structure. Many artifacts



depend on the meta-model for this structure. In Figure 1 an ab-
stract representation of such an ecosystem has been illustrated.
Here, two DSLs are illustrated (DSLA and DSLB), where a
model-to-model transformation (A2B.mtl) maps models con-
forming to DSLA (i.e., alpha.DSLA) to models conforming
to DSLB (i.e., beta.DSLB). Furthermore, domain concepts
may be included between languages (e.g., DSLB including
domain concepts from DSLA). The meta-models specifying
these DSLs are subject to change, for example: because of
new insights into a domain, or technological advancement
[15]. When these DSLs evolve (e.g., DSLA to DSLA’) models
conforming to these DSLs must co-evolve (i.e., alpha.DSLA
to alpha’.DSLA’). The process of determining how models
must co-change, and actually co-changing them with respect
to changing DSLs is referred to as the co-evolution problem.

B. Co-Evolution

With respect to model conformance [16], changes that make
up the evolution of a meta-model may be classified into three
different categories [7]:

1) Non-breaking changes (NBC), which do not break
model conformance;

2) Breaking-Resolvable Changes (BRC), which break
model conformance, but can be co-evolved in a fully
automated fashion.

3) Breaking-Unresolvable Changes (BUC), which break
model conformance, and require additional information
for successful co-evolution of models to take place.

The main challenges in model co-evolution arise with
respect to BUCs, as they introduce ambiguities. For instance,
in Figure 2 it is unclear whether X.name is renamed to
X’.id or Y’.name, or if no rename (but adds and deletes)
was performed. Due to the size of industrial use-cases (i.e.
hundreds to thousands of model instances) manual resolution
of these ambiguities is no longer feasible, and automation is
required

A number of approaches have been proposed to address
the co-evolution problem [17]. An approach that has been
extensively studied is the operator-based approach [10], where
a library of co-evolutionary operators is supplied to represent
the modelers intent with respect to model evolution [18]. This
approach is not only applicable to MDE, but has also been
used in the context of databases [19]. Each operator specifies
a meta-model evolution, along with a corresponding model
co-evolution. For instance, the modification in Figure 2 could
be described using the operators Rename(X.name, “id”)
and CreateAttribute(Y, “name”, EString) [18].
The practical applicability of such an approach relies heavily
on the set of available operators, such as those proposed by
Herrmannsdörfer et al. [3], [4], [18].

When dealing with an MDSE ecosystem as mentioned
in Section II, the magnitude of the co-evolution problem
increases further. Evolution of a DSL may affect more artifacts
than just the conforming models. This has been illustrated
in the upper segment of Figure 1. When a DSL evolves
(∂(DSLA)), its conforming models must co-evolve (∂(alpha)).

alpha’.DSLA’ A’2B’.mtl beta’.DSLB’

DSL A’ DSL B’

alpha.DSLA beta.DSLBA2B.mtl

DSL A DSL B

evolved
original

∂(A2B)∂(alpha) ∂(beta)∂(DSLA) ∂(DSLB)

based on
conforms toinput/output evolution
includes

Fig. 1: Abstract representation of evolution in an MDSE
ecosystem.

name : String
X

id : String
X’

 
Y

name : String
Y’

DSL
DSL’

Fig. 2: Fragment of a meta-model: before (a) and after (b) the
modification.

Additionally, model-to-model transformations might need
adaptation (∂(A2B)) in order to deal with newly added con-
cepts in the new models instances (alpha’.DSLA’). Lastly,
DSLB might include domain concepts from DSLA. Just as
models from DSLA need to co-evolve to capture the evolution
in DSLA, models of DSLB including concepts from DSLA
might also need to co-evolve (∂(beta)).

III. INDUSTRIAL CONTEXT

Our research takes place at ASML [1], provider of lithog-
raphy systems for the semiconductor industry. Over the last
years, ASML uses model-driven engineering (MDE) in several
parts of its development process.

ASMLs lithography systems consist of numerous servo
control systems that are developed using MDE according to the
Control Architecture Reference Model (CARM) [5]. CARM
consists of multiple layers to describe the control logic and
their execution platforms of the TWINSCAN lithoscanner at
several levels of abstraction. CARM is multidisciplinary in
nature, requiring expertise of mechatronic engineers, electrical
engineers and embedded software engineers. Multiple abstrac-
tion layers as well as the multidisciplinary character of CARM
necessitated development of a set of DSLs each targeting a
different domain (cf. Figure 3). Dependencies between the
DSLs, as well as the shared environment where they are
developed and evolve, make the set of DSLs into a software
ecosystem [20], [21].
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Fig. 3: A simplified illustration of ASMLs CARM MDSE ecosystem, where only the most important DSLs and model-
transformations are shown.

The CARM ecosystem is divided into three main compo-
nents: the modeling stack, the analysis stack and the deploy-
ment stack [5].

The modeling stack (Figure 3, left) allows for the specifi-
cation of control applications for the litho-scanner at various
levels of abstraction, and is modeled according to the Y-chart
paradigm [22], which is a guideline for system decomposition.
The platform layer (slate blue) has languages for modeling
logical and physical properties of the platform. Finally, the
mapping (orange) dictates how the application (green) is
mapped to its execution platform.

The analysis stack (Figure 3, top right) allows for early pre-
dictability in the designs from the modeling stack, and plays a
key role in scheduling the application onto the multi-processor
platforms. Therefore, the analysis stack includes DSLs that can
be analyzed by external verification and simulation tools such
as POOSL [23], SDF [24], and ESITrace [25].

Finally, the deployment stack (Figure 3, bottom right) was
designed to facilitate the disclosure of all relevant information
to the clients on each TWINSCAN machine to initialize and
execute the process controllers as well as configuring their
execution platforms.

All DSLs in the CARM ecosystem are defined in terms of
EMF Ecore class diagrams [26], [27] and OCL constraints
[28]. The languages consist, on average, of 60 to 80 con-
cepts with outliers on both the high end (400 concepts) and
the low end (10 concepts). Some languages share common
functionality, or contain strongly related concepts. In these
cases, DSL specifications include domain concepts from other

DSL specifications. To bridge the gap between the different
domains, model-to-model transformations are used.

The models in CARM that are subject to co-evolution are
mostly input and output models of model-to-model trans-
formation unit tests. Whereas the models used during the
development process, and on the lithography machine itself,
are “reconstructed” from several artifacts in the software
archive. The number of unit-test models are in an order of
magnitude of hundreds, whereas the development models are
in an order of magnitude of thousands. In the future, when the
development models are no longer reconstructed, but become
the primary source of specification, the co-evolution problem
will increase in size.

IV. EVOLUTION OF INDUSTRIAL MDSE ECOSYSTEMS

The DSLs in CARM evolve and become larger over time,
as can be seen in Figure 4, in which the number of distinct
modeling elements per language has been plotted over time.
This evolution, gives rise to a large amount of co-evolutionary
work with respect to the hundreds of model instances.

Furthermore, as a result of the language dependencies men-
tioned in Section III, co-evolution in the CARM ecosystem
becomes more challenging than co-evolution in a collection of
models in one DSL: changes made to a particular DSL might
propagate to artifacts conforming to other DSLs. For example,
the Basics DSL offers functionality for the declaration of
connectable components using a variety of different commu-
nication ports and connections between them. These concepts
are common throughout the application layer. Say we would
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Fig. 4: Structures of ASML DSLs plotted over time; Different colors represent different types of meta-model elements.

remove a particular type of port (e.g., a dataPort) from
the language definition, then models from all languages in the
application layer might be affected and require co-evolution.
Additionally, transformations that transform the dataPort
concept might need to be updated, as they contain redun-
dant information (i.e., how to transform a dataPort). This
rippling effect of co-evolution as a consequence of language
dependence can be observed in Figures 4a and 5. In Figure 4a,
plotting the DSL structure of the Basics DSL over time,
there is a large evolution around revision 4098. In Figure 5
the number of changed models of the ControlBlocks DSL
has been plotted per revision. Here we see a large number of
modifications around revision 4100 (visualized as light blue
hexagons), relating to the evolution of Basics.

The need to co-evolve more models than those conforming
to the meta-model being evolved makes meta-model evolution
extra costly. Indeed, in some cases the induced co-evolution
effort leads to meta-model evolution being postponed or to
new domain concepts being encoded into legacy concepts.
The latter practice jeopardizes the primary strength of DSLs:
modeling in a specific domain. Advantages and promises of
MDSE are, hence, being put at risk by the co-evolution costs.

This conclusion is further supported by the continuous
change of the DSLs illustrated by Figure 4 akin to Lehman’s
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Fig. 5: Number of ControlBlocks models changed per
revision.

law of continuing change [29].
To reduce the effort induced by meta-model evolution, a

way-of-working similar to the butterfly method for database
schema evolution [30] can be adopted. In that approach, a
situation is created where both old and new concepts are
supported, but modeling using legacy concepts is ceased.
This way of working is illustrated in Figure 6. Using this
approach, the immediate co-evolution pressure is decreased, as
all models still conform to their meta-models. However, this



M
version

2

M
version

1

MM
src

version

MM
dst

version

MM
intermediate

version

(1)

(2)

(3)

Legend: DSL Model conformance evolution co-evolution

Fig. 6: To reduce the impact of DSL evolution, an intermediate
version is created that supports both new and legacy concepts.

does not decrease the total amount of work that has to be done,
and adds additional work for the creation of an intermediate
DSL version (which is often tedious). Thus, the need arose
for an approach with an increased level of automation.

V. EVALUATION OF THE OPERATOR-BASED APPROACH

Next we evaluate the operator-based approaches for applica-
tion in industry. As far as we know, operator-based approaches
have been evaluated in industry on at most four meta-models
[4]. We investigate to what extent the operator based approach
is usable for the evolution of large-scale industrial MDSE
ecosystems (i.e., twenty-two meta-models).

A. Operator Based Approach
In an operator-based approach [10] the user specifies the

evolution of the meta-model using a set of pre-defined oper-
ators. Each of these operators can have a coupled operator if
the meta-model evolution breaks conformance to the models.
Such a coupled operator can be performed on model instances
in order to mitigate the conformance-breaking effects of the
evolution operator. For example, changing the type of an
attribute in the meta-model from EInt to EDouble requires
all values of this attribute in models to be changed to doubles.
Edapt [31] (previously COPE [32]) is a tool that implements
an operator-based approach.

Because evolution is primarily specified using a pre-defined
set of operators, the practical applicability of an operator-based
approach depends heavily on the available library of operators.
The set of operators available (both in literature and in tooling)
has been constructed in a demand-driven fashion: as the need
for more operators arose through use cases [3], [4], they were
constructed. Herrmannsdörfer et al. provide a library of 61
coupled operators [18], summarizing a number of these case
studies. To the best of our knowledge, this is the most complete
library available in literature.

To the extent of our knowledge, the operator-based approach
has never been evaluated on an industrial case study of the
size and complexity of CARM. An earlier study has shown
that an operator-based approach is suitable for the evolution
of up to four DSLs [3], [4]. We wish to investigate whether
an operator-based approach is still feasible for specification of
evolution on a large scale as indicated in Section III.

B. Experimental setup

To evaluate the usability of the operator-based approach in
industry, we investigate which operators are required for the
specification of the CARM use case and evaluate whether these
operators are offered by the catalog of Herrmannsdörfer et
al. [18], and the library of Edapt [31]. Although both these
sources originate from the same research group, the catalog
represents the academic view, whereas the library of Edapt is
more practice oriented.

For now, we limit ourselves to atomic operators (also
knows as primitives) [32], i.e., operators with effects
that cannot be decomposed into smaller operators on
the meta-model. For example, the compound operator
CreateOppositeReference [18] can be decomposed
into an application of CreateReference and an appli-
cation of SetOppositeReference, where the two latter
operators cannot be decomposed further.

We restrict ourselves to atomic operators for two reasons.
Firstly, an atomic operator encodes an atomic change on
the meta-model. To be able to support every change on the
meta-model, a complete set of atomic operators is required.
Secondly, every compound operator can be expressed in terms
of atomic operators. We aim to first make a complete library
of atomic operators, and use this library to define compound
operators later on.

To perform our evaluation, two distinct sets of data are
required: the set of operators required for the the CARM use
case, and the set of operators offered by the available libraries.

We first investigate which operators are required to specify
the evolution of CARM. The tool EMFCompare [33] was used
to compare subsequent pairs of revisions of the twenty-two
DSLs stored in the ASML MDE repository. We have chosen
to use EMFCompare for its ability to fine-tune comparisons
in order to gain accuracy improvements [34]. Comparing all
the subsequent revisions of all twenty-two DSLs yields a
total of 3551 atomic changes represented in the EMFCompare
difference model. In the remainder of the paper we refer to
this set of changes as the change history.

Next, we wish to understand to what extent the available
operator libraries cover the change history. We do so by
automatically mapping every atomic operator offered by the
libraries to a change in the EMFCompare difference model.
This yields a set of changes in CARM that are covered by
operators in literature, and a set of changes that are not.

C. Results

Of the twenty-two DSLs in CARM, only 19 in Table I have
a history of changes. Languages in the Analysis, Application,
Deployment, Mapping and Platform clusters are presented in
Figure 3; for remaining languages in CARM having a history
of changes we have made a Misc group.

1) Holistic analysis: From the analysis of our results, we
observe that CARM requires support for 75 distinct atomic
operations on meta-models in order to specify its evolution
history. The catalog by Herrmannsdörfer et al. [18] supports 40
atomic operators, 32 of which are a subset of the 75 required



by CARM. These 32 operators together cover 85% of the
change history. Edapt implements a slightly smaller subset
of these operators, namely 28 operators, covering 81% of the
change history.

An example of an atomic operator required for the spec-
ification of the change history, that is not supported by
Herrmannsdörfer et al. and Edapt is the addition of an
EEnumLiteralto an EEnum. Where operations for adding
empty enumerations, moving enumeration literals between
enumerations, and merging enumeration literals are supported,
no operator exists for simply adding an enumeration literal.
A more complex example is related to the eKeys of an
EReference. An EReference may require all concepts
referenced to be unique with respect to one or more attributes
of those concepts, the so-called eKeys of a reference. The
eKeys works similar to keys in the context of databases [35].
We see that eKeys are used throughout CARM DSLs (e.g., to
enforce each component in a machine to have a unique name).
However, an operator for this is neither present in literature
[18], nor in Edapt [31].

2) Differences between groups of DSLs: Having observed
that at most 85% of our change history is supported by
existing operator libraries, we also observe large differ-
ence between the coverage for different languages: for in-
stance, the best covered language by the operators of Her-
rmannsdörfer et al. such as PlatformMap, AppMap, and
Deployment-Application all exceed 95% of changes
being covered, while for the worst covered languages L3 and
Deployment-Mapping the coverage values are 42% and
28%.

To obtain further insights in differences in coverage by
the operator libraries we investigate whether any differences
can be observed between different groups of DSLs. Indeed,
DSLs have been grouped according to stacks and layers of the
CARM ecosystem and can be seen therefore as representing

TABLE I: Coverage of languages in the CARM ecosystem

Group DSL #Changes Covered by
[18] [31]

Analysis
DAG 129 108 92
Resource 39 34 34
Schedule 226 206 203

Application

Application 183 158 154
Basics 112 105 95
ControlBlocks 1115 925 871
ServoGroups 129 69 69
TransducerGroups 88 77 77

Deployment
Deployment-Application 74 71 62
Deployment-Mapping 25 7 7
Deployment-Platform 107 105 99

Mapping AppMap 178 170 141

Platform
LogicalPlatform 118 109 107
PlatformMap 266 261 261
PhysicalPlatform 507 482 462

Misc

L1 2 1 1
L2 37 32 32
L3 182 76 76
L4 35 35 34

TABLE II: Contingency table for the operator coverage of
DSL clusters by [18]. The numbers shown are the absolute
amount of the change history covered

Supported by [18] Not supported by [18]
Analysis 348 45
Application 1334 293
Deployment 183 23
Mapping 170 8
Platform 852 39
Misc 144 112

the domain of the DSL. To this end we derive two contingency
tables from Table I: the first contingency table (Table II) has
language groups as rows, and changes covered (or not) by Her-
rmannsdörfer et al. [18] as columns. The second contingency
table for changes covered (or not) by Edapt can be constructed
in a similar way.

Next we apply the χ2-test of independence to each one of
the contingency tables.2 We use R, a free software environment
for statistical computing, to perform statistical calculations
[36].

The null hypotheses are therefore, HH
0 , the coverage of the

operators by Herrmannsdörfer et al. [18] is independent of the
DSL group; and HE

0 the coverage of the operators by Edapt
is independent of the DSL group.

Both HH
0 and HE

0 can be rejected (the p-value was too
small to be computed exactly). Hence, operator coverage,
both for the library of Herrmannsdörfer et al. and of Edapt,
is not independent of the DSL group. Closer inspection of
the residuals reveals that for both operator libraries, cover-
age of the Application and Misc groups is lower than
expected and Platform is higher than expected, whereas
the Platform layer has a more traditional architecture, and
is less complex. We conjecture that the lower coverage in
the Application is related to the use of the ontological
instantation pattern [37].

3) Operator libraries: We observed that overall 85% of the
change history is covered by existing operator libraries, and
important parts of the CARM ecosystem, such as the appli-
cation layer, are being covered worse than expected. Hence,
we conclude that the libraries of atomic operators currently
available are insufficiently rich to specify the evolution of
DSLs in a large-scale industrial MDE ecosystem. To mitigate
the shortcomings in existing libraries, we propose to compute
a complete set of atomic operators, rather than extend the
available libraries in a demand-driven way.

VI. COMPLETING THE OPERATOR-BASED APPROACH

As stated before, we aim to derive a complete set of pos-
sible atomic operators for the evolution of Ecore-based meta-
models. We do so by computing possible differences from the
meta-meta-model and mapping these to atomic operators.

2Our choice for the χ2 test is also the reason why we focus on groups of
DSLs rather than on the individual DSLs. The χ2 test requires each cell in the
contingency table to exceed 5, and this would, for instance, not be the case
for Interface/App that has merely three changes not covered by the operators
of Herrmannsdörfer et al. [18].



A. Computation of Operators

First we determine all possible changes that can be made to
a meta-model. For this, we use the fact that a meta-model
is an instance of a meta-meta-model [16]. The number of
features (i.e. attributes and references) in a meta-meta-model
that can be instantiated to create an actual meta-model is
limited. We call the features of the meta-meta-model that
can be instantiated to create meta-models instantiation points.
For example, the name attribute of an EAttribute, or the
isAbstract attribute of an EClass.

Subsequently, we again use the EMFCompare difference
model to encode possible changes on instantiation points of
the meta-meta-model. This yields every possible way in which
the instatiation of a meta-meta-model can be modified (i.e.,
every way in which a meta-model can be altered). This set
of changes to meta-meta-model instantiation points then has
a one-to-one correspondence to the complete set of atomic
operators. For example, an ADD EClass change on the in-
stantiation point EPackage.eClassifiers corresponds
to the “Add class to package” operator.

The algorithm for calculating the complete set of atomic op-
erations is presented in Algorithm 1. The workings of this al-
gorithm rely on the fact that Ecore meta-meta-model conforms
to itself, and the core data structure of Ecore being a contain-
ment tree with cross references [26]. This allow us to use a
method offered by the EObject: eAllContents(). The
method eAllContents() returns the set of all EObjects
recursively contained in a particular EObject. By calling
eAllContents() on the Ecore root package, we can obtain
all model elements that make up the Ecore meta-meta-model.

We then iterate over all structural features (i.e., attributes
and references), including inherited ones, of non-abstract
classes in the Ecore meta-meta-model to find all possible
instantiation points. More specifically, we wish to avoid struc-
tural features of abstract classes, as these do not occur in
practice. We can easily iterate over all structural features of a
class by using the eAllStructuralFeatures reference
on every non-abstract class of the meta-meta-model.

When we have computed all instantiation points, we dis-
tinguish between a number of different operations that can
be performed on the instantiation points, as prescribed by the
EMFCompare difference model [33]:

1) If the feature consists of multiple elements (isMany),
and the ordering of these elements is important
(isOrdered), we support internal re-ordering of these
elements via a MOVE operation.

2) If the feature is a containment reference, additive op-
erations on these references actually introduce new ele-
ments into the model (as opposed to cross-references).
We thus allow ADD and DELETE operations.

3) If the feature is a reference with an upper-bound of more
than one, we are dealing with a collection. Values from
collections can be added and deleted. We thus allow ADD
and DELETE operations.

Data: ecore : The root package of the Ecore
meta-meta-model

Result: R : A set of atomic changes that can be
performed on Ecore-based meta-models

1 R = ∅
2 foreach o ∈ecore.eAllContents() do
3 if o instanceof EClass ∧ ¬o.isAbstract() then
4 foreach f ∈ o.eAllStructuralFeatures() do
5 if f.isChangeable() then
6 t← f.eType()
7 if f.isMany() ∧ f.isOrdered() then
8 R ← R∪ 〈f, o, t, MOVE〉
9 end

10 if f instanceof EReference then
11 if f.isContainment() ∨ f.upperBound =

-1 ∨ f.upperBound > 1 then
12 R ← R∪ 〈f, o, t, ADD〉

R ← R∪ 〈f, o, t, DELETE〉
13 else
14 R ← R∪ 〈f, o, t, CHANGE〉
15 end
16 else if f instanceof EAttribute then
17 R ← R∪ 〈f, o, t, CHANGE〉
18 end
19 end
20 end
21 end
22 end

Algorithm 1: Algorithm for computing possible changes in
a meta-model

4) If the feature is a reference, and the upper-bound is one,
we only allow the CHANGE operation, using the same
reasoning that is applicable to attributes.

5) If the feature is an attribute, its value can be changed
(CHANGE). In the Ecore meta-meta-model, there are
no occurrences of attributes with multiple values, (i.e.,
isMany is always false), hence we need not support
ADD and DELETE. Note that this might be the case for
other meta-meta-models.

The algorithm generates a four-tuple for every atomic
operator that can be performed on an Ecore-based meta-model.
For example: a “rename class” change would be encoded as
〈EAttribute(name),EClass,EString, CHANGE〉,
and an “add attribute” change would be encoded
as: 〈EReference(eStructuralFeatures),EClass,
EAttribute, ADD〉.

One thing to note is that the implementation of Ecore in
Eclipse imposes additional constraints that are not captured
in the meta-meta-model. For example, the eType of an
attribute can theoretically have any EClassifier. In the
graphical editor of Eclipse, it can only have an EDataType as
its eType. However, the EMF API does allow for all the
changes specified by our four-tuples to be performed, hence
we consider R to be the set of all atomic operations that can



be performed on an Ecore-based meta-model.
Running the presented algorithm on the Ecore meta-meta-

model yields a set of 213 atomic operators. The calculation
of these operators is a one-time effort, only taking several
seconds. In Section VI-B, we will compare this set of operators
to the operators offered in literature [18] and by Edapt [31].

B. Discussion

Using our methodology, we have generated 213 atomic
operators, 75 of which are applicable to the CARM use case. A
total of 3551 applications of these 75 operators are required
for the complete specification of the evolution history. The
comparison resulting from our study has been illustrated in
Figure 7.

Of the 40 atomic operators supported by the catalog of
Herrmannsdörfer et al. [18], 32 are applicable to the CARM
use case. Together, they are able to specify 85% of the change
history. Edapt [31] covers slightly less of the CARM use case.
Edapt implements 32 of the operators by Herrmannsdörfer
et al. that are useful for CARM, resulting in a specification
coverage of 81% of the change history.

Additionally, we have identified 43 operators, that are
neither available in the catalog of Herrmannsdörfer et al., nor
in the library offered by Edapt. Together these 43 operators
cover 15% of the CARM change history. Among these 43 is
the eKeys example mentioned in Section V-C.

Lastly, 138 operators are not used in specification of the
CARM evolution. Of these 138, 127 are not available the
library offered by Herrmannsdörfer et al. or in Edapt. We ob-
serve that among these 138 operators, 94 relate to annotations
and operations in the meta-model. These modeling concepts
are very scarce in the CARM use case, and the use cases in
literature [3], [4].

Summarizing our results: Of the 213 operators theoretically
possible, 75 are required for the specification of our change
history, and only 32 are available. This leaves 43 opera-
tors left to be implemented before current operator libraries
are sufficiently rich for specification of large-scale evolution
specification. The remaining 138 operators, mainly concern
EOperations and EAnnotations. We conjecture that
these concepts are relevant for specification DSLs, and are
thus of less importance for specification of evolution in large-
scale MDSE ecosystems.

[18]

CARM

[31]

2(0%)

6(0%)

0(0%)

28(81%)

VII. RELATED WORK

In literature, a number of approaches have been proposed
towards solving the co-evolution problem. These approaches

CARM
43 (15%)

[18]
2 (0%) [34]

2 (0%)6 (0%)

28 (81%)
4 (4%) 0 (0%)

RR
127

Fig. 7: Comparison of atomic operator support of our cal-
culated set R, a catalog of operators from literature [18],
and Edapt [31]. Per subset we have presented the amount
of operators present in this subset, and the percentage of the
change history covered by these operators. Note that blue area
corresponds to the change history.

TABLE III: Precise values per subset

(Sub)set Num. %
R 213 100%
R \ CARM \ [18] \ [31] 127 0%
CARM 75 100%
[31] 36 81%
[18] 40 85%
CARM ∩ [18] 32 85%
CARM ∩ [31] 28 81%
CARM ∩ [18]∩ [31] 28 81%
CARM \ [18] \ [31] 43 15%
[18] \ [31] \CARM 2 0%
[31] \CARM \ [18] 2 0%
[18]∩ [31] 34 81%
[18]∩ [31] \CARM 6 0%

can be divided into a number of different categories:
Co-evolution oriented (cf. manual specification [17]) ap-

proaches consider the co-evolution specification to be the
primary source of specification, and do not concern themselves
with the evolution of meta-models. An example of such an
approach is Epsilon Flock [38], which offers a DSL tailored
towards co-evolution of models. Developers can use this DSL
to specify co-evolution strategies for their models.

Evolution-oriented approaches aim to capture the essence
of an evolution, and automatically derive a co-evolution speci-
fication from it. A number of different approaches to this have
been described in literature:

1) State-based approaches [17] attempt to calculate the
evolution between two versions of a meta-model sup-
plied by the user (e.g., MMA and MMA’ in Figure 1). An
example of such an approach is the EMFMigrate tool
[39] developed at the university of L’Aquila.

2) Operator-based approaches [17] allow the user to
specify the evolution of a meta-model using pre-defined
operators. Each of these operators specifies part of a



TABLE IV: Fragment of comparison results

Operation Value type occurences
in CARM

[18] [31]

CHANGE refer-
ence type

EClass 571 (16%) Yes Yes

CHANGE
attribute type

EDataType 367 (10%) Yes Yes

ADD reference
to class

EReference 312 (9%) Yes Yes

ADD attribute to
class

EAttribute 245 (7%) Yes Yes

ADD supertype EClass 239 (7%) Yes Partial
ADD class to
package

EClass 215 (6%) Yes Yes

DELETE refer-
ence from class

EReference 201 (6%) Yes Yes

DELETE
attribute from
class

EAttribute 141 (4%) Yes Yes

DELETE super-
type

EClass 132 (4%) Yes Yes

DELETE class
from package

EClass 119 (3%) Yes Yes

ADD a literal to
an enumeration

EEnumLiteral 107 (3%) Yes No

ADD attribute to
eKeys

EAttribute 32 (1%) No No

CHANGE
namespace of a
language

EString 18 (0.5%) No No

76.5%

meta-model evolution. Additionally, each of these oper-
ators can have a coupled operator that aims to mitigate
conformance breaking effects the operator on the meta-
model may have had. [7], [10]

3) By-example approaches have the user input a number
of evolution examples. That is, for a number of mod-
els (i.e., alpha.MMA in Figure 1) users present their
evolved counterpart (i.e., alpha’.MMA’ in Figure 1).
Subsequently they attempt to re-construct an evolution
and co-evolution specification that meets the constraints
imposed by the examples presented. [40]

4) Generation approaches aim at completely regenerating
artifacts, rather than evolving them. An approach to this
is using semantics from ontologies to migrate artifacts
with respect to altered DSLs [41].

Among these approaches, a number of tools implement a
variety of them. A feasibility study was preformed at ASML to
evaluate applicability on the CARM use case. The tools under
review are those reviewed by Herrmannsdörfer et al. [42].
Like Herrmannsdörfer et al., we selected two tools as top
candidates: Edapt (previously COPE) [31], [32], and Epsilon
Flock [38]. These tools were selected based on maturity,
stability, and application to the ASML use-case.

VIII. CONCLUSIONS & FUTURE WORK

In this paper, we have described a large industrial MDSE
ecosystem, and identified (co-)evolutionary challenges arising
from its size and complexity. We have found that co-evolution
effort incurred by the evol utionary changes can put at risk

the advantages and promises of the application of MDSE in
industry.

To address this challenge, we have investigated to what
extent an operator-based approach is feasible for solving the
co-evolution problem. We have observed that the existing
approaches [18], [31] cover up to 85% of the changes in
the ecosystem history, and that 43 additional atomic operators
need to be implemented to achieve 100% coverage.

Rather than extending an operator library in an ad hoc way,
we have designed a top-down approach generating all possible
atomic operators. On top of the existing operators and 43
operators that need to be implemented, the top-down approach
revealed 127 additional operators. We conjecture that these
operators express modification of meta-model elements that
are less relevant for DSL specification. For example, in our
ecosystem EOperations and EAnnotations elements
have been used to improve performance of the source code
generated from the models.

As future work, we aim to investigate more case-studies
to establish to what extent this research generalizes. Further-
more, we will consider compound operators and extend the
set of compound operators found in the literature [18] to
support more co-evolution scenarios. Furthermore, we wish
to extend the operator-based approach to support co-evolution
of further artifact types, e.g., model-to-model transformations.
With respect to models, our goal is to support meta-model
refactoring [12]. That is, when we only refactor the meta-
model, i.e., no expressivity is added or deleted, model co-
evolution should be fully automatic.
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