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We study the problem of controlled network synchronization of coupled semipassive systems in the

case when the outputs (the coupling variables) and the inputs are subject to constant time-delay (as

it is often the case in a networked context). Predictor-based dynamic output feedback controllers
are proposed to interconnect the systems on a given network. Using Lyapunov-Krasovskii func-

tional and the notion of semipassivity, we prove that under some mild assumptions, the solutions of

the interconnected systems are globally ultimately bounded. Sufficient conditions on the systems to

be interconnected, on the network topology, on the coupling dynamics, and on the time-delays that

guarantee global state synchronization are derived. A local analysis is provided in which we com-

pare the performance of our predictor-based control scheme against the existing static diffusive
couplings available in the literature. We show (locally) that the time-delay that can be induced to

the network may be increased by including the predictors in the loop. The results are illustrated by

computer simulations of coupled Hindmarsh-Rose neurons. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4906820]

This manuscript focuses on controlled synchronization of

identical nonlinear systems interacting on networks with

general topologies and interconnected through predictor-
based diffusive dynamic couplings. The systems are said to

be diffusively coupled, if they interact through weighted

differences of the form c(yj� yi) with some positive con-

stant c called the coupling strength and yi, yj denoting the

outputs of the ith and jth systems. An important element

of our control scheme is the use of a communication net-

work. Network communication is necessary in the study

of synchronization to transmit and receive measurement

and control data among the systems. Because of the time

needed to transmit data over the network, the use of net-

worked communication to exchange information results

in unavoidable time-delays. This networked-induced

delays are undesirable because they may lead to the loss

of synchrony. Hence, when studying synchronization

among dynamical systems with networked communica-

tion, it is important to design control algorithms which

are robust with respect to time-delays. The results

presented here follow the same research line as Refs. 1

and 2, where sufficient conditions for synchronization of

diffusively interconnected nonlinear systems with and

without time-delays are derived. In order to derive their

results, the authors assume that the individual systems

are semipassive3 with respect to the coupling variable yi,

and their corresponding internal dynamics have some

desired stability properties (convergent internal dynam-

ics4). In particular, in Ref. 2, the authors study the

problem of network synchronization of diffusively time-

delayed coupled semipassive systems. They prove that

under some mild assumptions, there always exists a

region S in the parameter space (coupling strength c ver-

sus time-delay s), such that if ðc; sÞ 2 S, the systems syn-

chronize. Nevertheless, it is important to note that for this

class of systems, once the network topology is specified, the

region S is fixed. In other words, the time-delay that may

be induced to the network without compromising the syn-

chronous behavior is limited by the network topology.5

Here, we show that by including predictors in the cou-

plings, we may increase the time-delay that can be

induced. We propose predictor-based diffusive dynamic
couplings based on the concept of anticipating synchroniza-
tion6

that on the one hand estimate future values yiðt þ sÞ
of the outputs yi(t), and on the other hand interconnect the

systems through these time-ahead estimated signals. By

including the predictors in the loop, a new parameter j

comes into play. This j plays the role of the predictor
gain, i.e., it is a parameter of the predictors that can

be tuned to make the prediction error dynamics con-

verge to the origin. We derive sufficient conditions for

global state synchronization of the interconnected sys-

tems. In particular, it is proved that under some

assumptions, there always exists a region in the

extended parameter space (coupling strength c, time-

delay s, and predictor gain j), such that if c, s, and the

new parameter j belong to this region, the systems

synchronize. Finally, we provide a local analysis in

which the performance of our predictor-based control

scheme is compared against the existing static diffusive
couplings available in the literature. It is shown

(locally) that the amount of time-delay that can be

induced to the network may be increased by including

the predictors in the loop.
a)Electronic mail: c.g.murguia@tue.nl
b)Electronic mail: r.h.b.fey@tue.nl
c)Electronic mail: h.nijmeijer@tue.nl
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I. INTRODUCTION

Network synchronization of dynamical systems has

attracted attention of many researchers over the last decades.

This is because synchronization is a quite common phenom-

enon in nature, science, and engineering. For instance, in biol-

ogy, it is well known that thousands of fireflies light up

simultaneously7 and that groups of Japanese tree frogs (Hyla
japonica) may show synchronous behavior in their calls.8 In

medicine and neuroscience, clusters of synchronized

pacemaker neurons regulating our heartbeat,9 synchronized

neurons in the olfactory bulb that allow us to detect and distin-

guish between odors,10 and our circadian rhythm, which is

synchronized to the 24-h day-night cycle11,12 are clear

examples. In engineering, one of the most commonly cited

examples of network synchronization is the problem of

coordinated motion of individual mobile agents.13–17

Particularly, in Refs. 14, 16, and 17, the authors address the

platooning problem, i.e., the problem of designing intelligent

vehicle/highway systems that can significantly increase safety

and highway capacity. The general objective of the platooning

problem is to pack the driving vehicles together as tightly as

possible in order to increase traffic flow while preventing

amplification of disturbances throughout the string. There are

also several research groups studying synchronization in

robotics, where multiple robots carry out tasks that cannot be

achieved by a single one. For instance, in Ref. 18, the author

proposes a dynamic output controller that solves the synchroni-

zation problem of two (or more) robot manipulators, under a

master-slave scheme. In Ref. 19, the formation control problem

for unicycle mobile robots interacting on symmetric graphs is

studied. The range of engineering examples of network syn-

chronization reaches way beyond coordinated motion. For

instance, synchronization in power networks,20 control of the

directional sensitivity of smart antennas,21 and synchronization

of microelectromechanical systems (MEMS), which has prom-

ising applications such as neurocomputing22 and improvements

of signal-to-noise ratios.23 Several more examples of synchro-

nous behavior in physics, biology, and engineering can be

found in, for instance, Refs. 7, 12, 24, and 25.

Some of the first technical results regarding synchroni-

zation of chaotic nonlinear systems are presented in Refs. 26

and 27. In these papers, it is shown that coupled chaotic sys-

tems may synchronize in spite of their high sensitivity to ini-

tial conditions. After these results, considerable interest in

the notion of synchronization of general nonlinear systems

has arisen. In this manuscript, we study the problem of con-

trolled network synchronization of nonlinear systems inter-

connected through diffusive time-delayed couplings. This

type of couplings arises naturally for interconnected systems

since the transmission of signals can be expected to take

some time. There already exist some results in this direction.

For instance, the authors in Ref. 28 give sufficient conditions

for network synchronization in terms of Linear Matrix

Inequalities (LMIs) for a class of nonlinear systems intercon-

nected through Pyragas-type29 time-delayed couplings.

Adaptive control methods have been often used to address

the network synchronization problem in the presence of

time-delays. In Refs. 30 and 31, the authors propose diffusive

adaptive couplings to solve the synchronization problem for

nonidentical dynamical systems described by Euler-

Lagrange equations and subject to transmission time-delays.

The authors in Ref. 32 consider networks of diffusively

time-delayed coupled systems. They apply the speed-gradi-
ent method to derive adaptive algorithms for the automatic

adjustment of coupling strengths and time-delays such that

the coupled systems synchronize. In the same spirit, in

Ref. 33, the authors use the speed-gradient method to solve

the synchronization problem in networks of time-delayed

coupled Stuart-Landau oscillators. However, in all these

papers, the authors impose strong conditions on the systems,

i.e., they have to be fully actuated and/or the complete state
must be available for feedback. In Refs. 1, 34, and 35, the

authors study synchronous behavior in delay-free diffusively
coupled networks as a consequence of the inherent dissipation
in the subsystems and the couplings. Moreover, they do not

necessarily assume complete state feedback and fully actuated
dynamics, but they also allow for output feedback controllers

and underactuated systems. In Ref. 2, the authors consider the

problem of network synchronization of diffusively time-

delayed coupled semipassive systems. They prove that under

some conditions, there exists a region S in the (c, s)-parameter

space such that if ðc; sÞ 2 S, the systems synchronize.

However, as mentioned before, for this class of systems, once

the network topology is specified, the region S is fixed.5

Here, we show that by using predictor-based output feed-
back controllers based on the concept of anticipating synchro-
nization,6 the amount of time-delay that can be induced to the

network without compromising the synchronous behavior may

be increased. In Ref. 36, we have started studying these ideas

for a class of passive LTI systems. Note that for LTI systems

the separation principle holds, i.e., the predictor dynamics and

the coupling structure can be designed independently.

However, the analysis becomes more involved for nonlinear

systems, since in general, the separation principle does not

hold; in this case, there is a strong nonlinear relation between

the predictor dynamics and the coupling structure.

The remainder of the paper is organized as follows. In Sec.

II, the notions of semipassivity, convergent systems, and some

basic terminology of graph theory are introduced. The system

description and the problem statement are introduced in Sec.

III. The predictor structure is given in Sec. IV before introduc-

ing the proposed predictor-based diffusive dynamic coupling in

Sec. V. In Secs. VI and VII, we present the main results on

global boundedness and network synchronization. Moreover, a

local analysis in which we explain the “mechanism of action”

behind our predictor-based couplings is also presented. In Sec.

VIII, simulation results of coupled Hindmarsh-Rose neurons

are presented. Finally, conclusions are stated in Sec. IX.

II. PRELIMINARIES

Throughout this paper, the following notation is used:

the symbol R>0ðR�0Þ denotes the set of positive (non-nega-

tive) real numbers. The Euclidian norm in Rn is denoted

simply as j�j, jxj2¼ xTx, where T defines transposition. The

notation col(x1,…, xn) stands for the column vector com-

posed of the elements x1,…, xn. This notation will be also

023108-2 Murguia, Fey, and Nijmeijer Chaos 25, 023108 (2015)
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used in case the components xi are vectors. The induced

norm of a matrix A 2 Rn�n, denoted by kAk, is defined as

kAk ¼ maxx2Rn;jxj¼1jAxj. The n� n identity matrix is

denoted by In or simply I, if no confusion can arise.

Likewise, the n � m matrices composed of only ones and

only zeros are denoted as 1n�m and 0n�m, respectively. A

function V : X ! R>0 defined on a neighborhood X of Rn

with 0 2 X is positive definite (negative definite) if V(x)> 0

(V(x)< 0) for all 0 2 Xnf0g and V(0)¼ 0. It is radially

unbounded if X ¼ Rn. If V(x)!1 as jxj ! 1, then V(�) is

called proper. If a quadratic form xTPx with a symmetric

matrix P¼PT is positive definite, then P is called positive

definite. For positive definite matrices, we use the notation

P> 0. The spectrum of a matrix A is denoted by spec(A). For

any two matrices A and B, the notation A�B (the Kronecker

product37) stands for the matrix composed of submatrices

AijB, where Aij, i, j¼ 1,…, n, stands for the ijth entry of the

n� n matrix A. Let X � Rn and Y � Rm. The space of con-

tinuous functions from X to Y is denoted by CðX ;YÞ. If the

functions are (at least) r � 0 times continuously differentia-

ble, then it is denoted by CrðX ;YÞ. If the derivatives of a

function of all orders (r¼1) exist, the function is called

smooth and if the derivatives up to a sufficiently high order

exist the function is named sufficiently smooth. Time-

delayed signals are denoted as xðtÞs ¼ xðt� sÞ with time-

delay s 2 R>0. For simplicity of notation, we often suppress

the explicit dependence of time t.

A. Communication graphs

Given a set of interconnected systems, the communica-

tion topology is encoded through a communication graph.

The convention is that system i receives information from

system j if and only if there is a directed link from node j
to node i in the communication graph. Let G ¼ ðV; E;AÞ
denote a weighted digraph (directed graph), where V ¼
fv1; v2;…; vkg is the set of nodes, E � V � V is the set of

edges, and A is the weighted adjacency matrix with nonnega-

tive elements aij. The neighbors of vi is the set of directed

edges to a node vi and it is denoted as Ei. If the graph does

not contain self-loops, it is called simple. Throughout this

manuscript, it is assumed that the communication graph is

strongly connected, i.e., for every two nodes ði; jÞ 2 V, there

is at least one path connecting i and j. If two nodes have a

directed edge in common, they are called adjacent. Assume

that the network consists of k nodes, then the adjacency
matrix A 2 Rk�k :¼ aij with aij > 0, if fi; jg 2 E and aij ¼ 0

otherwise. Finally, we introduce the degree matrix D 2
Rk�k :¼ diagfd1;…; dkg with di ¼

P
j2Ei

aij and L:¼D�A,

which is called the Laplacian matrix of the graph G, see

Ref. 37 for further details.

B. Semipassive systems

Consider the system

_x ¼ f ðx; uÞ; (1a)

y ¼ hðxÞ; (1b)

with state x 2 Rn, input u 2 Rm, output y 2 Rm, sufficiently

smooth functions f : Rn �Rm !Rn, and h : Rn !Rm.

Definition 1 (Ref. 3). The dynamical system (1) is called
Cr-semipassive if there exists a nonnegative function
V 2 CrðRn;R�0Þ, x 7!VðxÞ, called the storage function,

such that _Vðx; uÞ 	 yTu� HðxÞ, where the function H 2
CðRn;RÞ is nonnegative outside some ball, i.e., 9u > 0 s.t.
jxj � u! HðxÞ � .ðjxjÞ, for some continuous nonnegative
function .ð�Þ defined for jxj � u. If the function Hð�Þ is posi-
tive outside some ball, then the system (1) is said to be
strictly Cr-semipassive.

Remark 1 System (1) is Cr-passive (strictly Cr-passive)

if it is Cr-semipassive (strictly Cr-semipassive) with H(�)
being positive semidefinite (positive definite).

In light of Remark 1, a (strictly) Cr-semipassive sys-

tem behaves like a (strictly) passive system for large

jxðtÞj. From a physical point of view, one may think of a

semipassive system as a passive system with a limited

amount of free energy. The class of strictly semipassive

systems includes, e.g., the chaotic Lorenz system,1 and

many models that describe the action potential dynamics

of individual neurons.38

C. Convergent systems

Consider the system (1a) and suppose f ð�Þ is Lipschitz

in x, uð�Þ is piecewise continuous in t and takes values in

some set u 2 U � Rm.

Definition 2 (Ref. 39). System (1a) is said to be conver-
gent if and only if for any bounded signal u(t) defined on the
whole interval (�1, þ1) there is a unique bounded glob-
ally asymptotically stable solution �xuðtÞ defined in the same
interval for which it holds that, limt!1jxðtÞ � �xuðtÞj ¼ 0 for
all initial conditions.

For a convergent system, the limit solution is solely

determined by the external excitation u(t) and not by the ini-

tial condition. A sufficient condition for convergence

obtained in Ref. 39 and later extended in Ref. 4 is presented

in the following proposition.

Proposition 1 (Refs. 4 and 39). If there exists a positive
definite symmetric matrix P 2 Rn�n such that all the eigen-
values ki(Q) of the symmetric matrix

Q x; uð Þ ¼
1

2
P

@f

@x
x; uð Þ

� �
þ @f

@x
x; uð Þ

� �T

P

 !
(2)

are negative and separated from zero, i.e., there exists a con-
stant c 2 R>0 such that ki(Q)	�c< 0, for all i 2 {1, …, n},

u 2 U, and x 2Rn, then system (1a) is globally exponentially
convergent. Moreover, for any pair of solutions x1(t), x2(t) 2
Rn of (1a), the following is satisfied

d

dt
ððx1 � x2ÞTPðx1 � x2ÞÞ 	 �ajx1 � x2j2;

with constant a :¼ c
kmax Pð Þ and kmax(P) being the largest

eigenvalue of the symmetric matrix P.
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III. SYSTEM DESCRIPTION

Consider k identical nonlinear systems of the form

_fi ¼ qðfi; yiÞ; (3)

_yi ¼ aðfi; yiÞ þ Bui; (4)

with i 2 I :¼ f1;…; kg, state xi :¼ colðfi; yiÞ 2 Rn, internal

state fi 2 Rn�m, output yi 2 Rm, input ui 2 Rm sufficiently

smooth functions q : Rn�m �Rm ! Rn�m; a : Rn�m �Rm

! Rm, and matrix B 2 Rm�m being similar to a positive def-

inite matrix. For the sake of simplicity it is assumed that

B¼ Im (results for the general case with B being similar to a

positive definite matrix can be easily derived). The systems

(3),(4) are assumed to be strictly C1-semipassive and the in-

ternal dynamics (3) are supposed to be convergent. In Ref. 2,

the authors derive sufficient conditions for network synchro-

nization of diffusively time-delayed coupled semipassive sys-

tems, i.e., the systems (3),(4) interconnected through

weighted differences of the form

uiðtÞ ¼ c
X
j2Ei

aijðyjðt� sÞ � yiðt� sÞÞ; (5)

where s 2 R>0 denotes the time-delay, yjðt� sÞ and yiðt� sÞ
are the time-delayed outputs of the jth and ith systems, c 2
R>0 denotes the coupling strength, aij	 0 are the weights of

the interconnections, and Ei is the set of neighbors of vi.

Moreover, since the coupling strength is encompassed in the

constant c, then it is assumed without loss of generality that

maxi2I
P

j2Ei
aij ¼ 1. The authors in Ref. 2 prove that the sys-

tems (3)–(5) asymptotically synchronize provided that c is

sufficiently large and the product of the coupling strength

and the time-delay cs is sufficiently small. Then, there exists

a region S in the parameter space, such that if ðc; sÞ 2 S, the

systems synchronize. Nevertheless, it is important to notice

that in the closed loop system (3)–(5), once the interconnec-

tions aij are specified, the region S is fixed. Hence, the

amount of time-delay that may be induced to the network is

limited by the network topology.5 In this manuscript, we pro-

pose predictor-based diffusive dynamic couplings in order to

enhance robustness against time-delays in the network, i.e.,

by including some dynamics in the coupling, we may expand

the synchronization region S. The time-delay s that is being

induced in coupling (5) could be realized as the sum of mea-

surement and transmission time-delays. In this paper, it is

necessary to make a clear distinction among these delays.

The measurement time-delay s1 2 R>0 affects the outputs of

the systems yiðtÞ, resulting in time-delayed outputs yiðt� s1Þ
being available for control purposes. The transmission time-

delays are encompassed in s2 2 R>0. It affects the control

inputs uiðtÞ, resulting in the time-delayed control signals

uiðt� s2Þ being applied to the systems, see Figure 1. Notice

that the total time-delay s in (5) is simply given by the sum

of the individual delays, i.e., s :¼ s1þ s2. Therefore, the

interconnected systems (3)–(5) could be realized as individ-

ual systems with input time-delay s2 as follows:

_fi ¼ qðfi; yiÞ; (6)

_yi ¼ aðfi; yiÞ þ uiðt� s2Þ; (7)

xi ¼ /ðtÞ; t 2 ½�s2; 0
; (8)

with time-delayed input us2

i 2 Rm and continuous function

/ : ½�s2; 0
 ! Rn specifying the initial history, in closed-

loop with the following diffusive time-delayed coupling:

uiðtÞ ¼ c
X
j2Ei

aijðyjðt� s1Þ � yiðt� s1ÞÞ: (9)

However, if the future value yiðtþ s2Þ of yiðtÞ could be

obtained, then by applying the controller

uiðtÞ ¼ c
X
j2Ei

aijðyjðtþ s2Þ � yiðtþ s2ÞÞ; (10)

the interconnected systems (6)–(8), (10) would be given by

_fi ¼ qðfi; yiÞ; (11)

_yi ¼ aðfi; yiÞ þ c
X
j2Ei

aijðyjðtÞ � yiðtÞÞ; (12)

which is the delayed-free closed-loop system. From this

point of view, we propose a control scheme, in which a

predictor is used to estimate the future values yiðtþ s2Þ
from measurements of the available time-delayed output

yiðtþ s1Þ. Then, the output of the predictor is used to inter-

connect the systems, see Figure 3.

IV. SYNCHRONIZATION-BASED PREDICTOR

In this section, we introduce the state predictor based on

synchronization that is used to estimate yiðtþ s2Þ from

measurements of yiðt� s1Þ. In the first contribution concern-

ing synchronization-based predictors,40 the author studies

the following coupled Ikeda equations:

_q ¼ �aq� b sinðqsÞ; (13)

_z ¼ �az� b sinðqÞ; (14)

with states q, z 2 R, qsðtÞ ¼ qðt� sÞ, and constants a; b;
s 2 R>0. Notice that the dynamics of the prediction error

eðtÞ :¼ zðt� sÞ � qðtÞ is simply given by _eðtÞ ¼ �aeðtÞ;
therefore, a necessary and sufficient condition for e(t) to con-

verge to the origin is that a> 0. Thus, the solution of (14)

asymptotically synchronizes with the future solution of (13)

at time instant tþ s; hence, (14) anticipates the dynamics

of (13). This idea has been generalized into general

multidimensional systems, in for instance, Refs. 6 and 41.

Following these ideas, we propose a predictor based on syn-

chronization for the class of systems under study. Consider k
identical systems of the form

FIG. 1. Configuration of the prediction scheme.
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_g1i ¼ qðg1i; g2iÞ; (15)

_g2i ¼ aðg1i; g2iÞ þ ui þ jðyiðt� s1Þ � g2iðt� sÞÞ; (16)

gi ¼ g0i 2 Rn; t 2 ½�s; 0
; (17)

with measurement time-delay s1 2 R�0, total time-delay

s ¼ s1 þ s2 2 R�0, transmission time-delay s2 2 R�0;
i 2 I ¼ f1; :::; kg, state gi :¼ colðg1i; g2iÞ 2 Rn, internal

state g1i 2 Rn�m, actuated state g2i 2 Rm, input ui 2 Rm,

smooth vectorfields qð�Þ and að�Þ as in (3),(4), initial history

g0i, and gain j 2 R>0. The system (15)–(17) is called a pre-

dictor for system (6)–(8) if and only if

lim
t!1
ðxiðt� s1Þ � giðt� sÞÞ

� lim
t!1
ðxiðtþ s2Þ � giðtÞÞ ¼ 0:

Notice that if j ¼ uiðtÞ ¼ 0, the predictor dynamics

(15),(16) is the same as the individual subsystems dynamics

(6),(7) with us2¼ 0. We construct the predictor in this way in

order to take advantage of the stability properties of (6),(7),

namely, semipassivity and convergence. Moreover, each sys-

tem (6)–(8) together with the predictor (15)–(17) could be

interpreted as an extended new system with input ui, new

output g2i, and internal delays s1 and s2, see Figure 1. Define

the prediction error �i ¼ colð�1i; �2iÞ :¼ xi � gs2

i . Then, the

prediction error dynamics is given by

_�1i ¼ qðfi; yiÞ � qðfi � �1i; yi � �2iÞ; (18)

_�2i ¼ aðfi; yiÞ � aðfi � �1i; yi � �2iÞ � j�s2i: (19)

It follows that the system (15)–(17) is a predictor for system

(6)–(8) if the zero solution of (18),(19) is asymptotically sta-

ble. In the following lemma, we give sufficient conditions

for asymptotic stability of the origin of (18),(19). In particu-

lar, we prove that under some mild assumptions, there

always exists a region S1 in the parameter space (predictor

gain j and total time-delay s), such that if ðj; sÞ 2 S1, then

the system (15)–(17) anticipates the dynamics (6)–(8).

Moreover, it is also proved that the region S1 is bounded by

a unimodal function uðjÞ defined on some set J � R.

Definition 3 The function u : J ! R�0, j 7!uðjÞ is
called unimodal if for some value j� 2 J , it is monotoni-
cally increasing for j 	 j� and monotonically decreasing
for j � j�. Hence, the maximum value of uðjÞ is given by
uðj�Þ and there are no other maxima.

Lemma 1 Consider the k nonlinear systems (6)–(8),

(15)–(17) and suppose that for every input signal ui, and any
finite time-delay s and predictor gain j, the solutions of the
systems are ultimately bounded (in Sec. VI, Lemma 2, we
give sufficient conditions for ultimate boundedness of the
closed-loop system for the class of inputs under study). In
addition assume that

(H4.1) The internal dynamics (6) is convergent, i.e.,

there is a positive definite matrix P ¼ PT 2 Rðn�mÞ�ðn�mÞ

such that the eigenvalues of the symmetric matrix

1

2
P

@q

@fi
fi; yið Þ

� �
þ @q

@fi
fi; yið Þ

� �T

P

 !
; (20)

are uniformly negative and bounded away from zero for all
fi 2 Rn�m and yi 2 Rm.

Then, there exist a positive constant j0 2 R>0 and a
unimodal function u : J :¼ ½j0;1Þ ! R�0, j 7!uðjÞ with
uðj0Þ ¼ limj!1uðjÞ ¼ 0, such that if ðj; sÞ 2 S1 with
S1 :¼ fj; s 2 R�0jj > j0; s < uðjÞg, then the systems
(15)–(17) are global predictors for systems (6)–(8); and
therefore, limt!1xiðtþ s2Þ � giðtÞ ¼ 0.

The proof of Lemma 1 can be found in the Appendix.

The result stated in Lemma 1 amounts to the following. If

the solutions of (6)–(8),(15)–(17) exist and are ultimately

bounded, the zero solution of the prediction error dynamics

(18),(19) is asymptotically stable provided that the predictor

gain j is sufficiently large and the total time delay s is

smaller than some unimodal function uðjÞ, see Figure 2.

Hence, there exists a region S1 (gray area in Figure 2) such

that if ðj; sÞ 2 S1 the system (15)–(17) asymptotically

anticipates the dynamics (6)–(8).

V. PREDICTOR-BASED DIFFUSIVE COUPLING

Let the k systems (6)–(8) be interconnected through a

Diffusive Dynamic Coupling (DDC) of the form

_g1i ¼ qðg1i; g2iÞ; (21)

_g2i ¼ aðg1i; g2iÞ þ ui þ jðyiðt� s1Þ � g2iðt� sÞÞ; (22)

ui ¼ c
X
j2Ei

aijðg2j � g2iÞ; (23)

gi ¼ g0i 2 Rn; t 2 ½�s; 0
; (24)

with coupling strength c 2 R�0, predictor gain j 2 R�0,

and interconnection weights aij ¼ aji � 0. Since the coupling

strength is encompassed in the constant c, then it can be

assumed without loss of generality that maxi2I
P

j2Ei
aij ¼ 1.

The dynamic coupling (21)–(24) is the combination of the

nonlinear predictor (15)–(17) and an estimated version of the

time-ahead output feedback controller (10), see Figure 3.

Then, the closed-loop system is given by

FIG. 2. Prediction region S1.
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_fi ¼ qðfi; yiÞ;
_yi ¼ aðfi; yiÞ þ c

X
j2Ei

aijðgs2

2j � gs2

2iÞ;

_g1i ¼ qðg1i; g2iÞ;
_g2i ¼ aðg1i; g2iÞ þ c

X
j2Ei

aðg2j � g2iÞ þ jðys1

i � gs
2iÞ;

with initial history (8),(24). Alternatively, since �i ¼ xi

� gs2

i , the closed-loop system can be written in terms of the

prediction errors as follows:

_fi ¼ qðfi; yiÞ; (25)

_yi ¼ aðfi; yiÞ þ c
X
j2Ei

aijðyj � yi þ �2i � �2jÞ; (26)

_�1i ¼ qðfi; yiÞ � qðfi � �1i; yi � �2iÞ; (27)

_�2i ¼ aðfi; yiÞ � aðfi � �1i; yi � �2iÞ � j�s2i; (28)

which is the delay-free closed-loop system (11),(12) per-

turbed by the prediction errors �2i. Then, given the result in

Ref. 1, it is intuitive to think that the systems may synchro-

nize provided that c is sufficiently large and the prediction

errors converge sufficiently fast to the origin. However,

before we start thinking about network synchronization, it is

necessary to ensure that the solutions of the closed-loop sys-

tems (6)–(8),(21)–(24) are well defined, i.e., the solutions

exist and are bounded.

Remark 2 In the following sections, we present results
about boundedness and synchronization of the solutions of
the interconnected systems (6)–(8),(21)–(24). These results
are given in terms of the coupling strength c, the predictor gain
j, and the total time-delay s. By definition, the total time delay
is given by the sum of the measurement time-delay s1 and trans-
mission time-delay s2, i.e., s :¼ s1 þ s2. It follows that if
boundedness and synchronization of the solutions is guaranteed
for s 	 �s 2 R>0; then boundedness and synchronization is
guaranteed for all s1, s2 2 R�0 such that s1 þ s2 	 �s.

VI. BOUNDEDNESS OF THE COUPLED SYSTEMS

In this section, we give sufficient conditions for ultimate

boundedness of the solutions of closed-loop system

(6)–(8),(21)–(24) interacting on simple strongly connected
graphs.

Lemma 2 Consider k identical systems (6)–(8) intercon-
nected through the predictor-based DDC (21)–(24) with cou-
pling strength c 2 R�0, predictor gain j 2 R�0, and total
time-delay s 2 R�0 on a simple strongly connected graph.

Assume that

(H6.1) Each system (6),(7) is strictly C1-semipassive
with input us2

i , output yi, radially unbounded storage function
V(xi), and the functions H(xi) are such that there exist
constants R; d 2 R>0 such that jxij > R implies that
H(xi) � djyij2 > 0.

Let �d be the largest d that satisfies (H6.1), then the solu-
tions of the coupled systems (6)–(8),(21)–(24) are ultimately
bounded for any finite s 2 R�0 and ðc; jÞ 2 N with
N :¼ fc; j 2 R�0j 3j

2
þ c 	 �dg.

The proof of Lemma 2 can be found in the Appendix.

Remark 3 The result stated in Lemma 2 is independent
of the time-delay. Therefore, if the conditions stated in
Lemma 2 are satisfied, the solutions of the closed-loop sys-
tem (6)–(8),(21)–(24) are ultimately bounded for arbitrary
large time-delays.

VII. NETWORK SYNCHRONIZATION

In this section, we give sufficient conditions for

network synchronization of the interconnected systems.

Define x :¼ colðx1;…; xkÞ and the synchronization manifold-
M :¼ fx 2 Rknjxi ¼ xj; 8i; j 2 Ig. The systems (6)–(8),

(21)–(24) are said to fully synchronize, or simply synchro-

nize, if the synchronization manifoldM contains an asymp-

totically stable subset.

A. Global result

In the following theorem, we give sufficient conditions

for the existence of an asymptotically stable subset of the

synchronization manifold. In particular, we prove that under

some mild assumptions, there always exists a region in

the parameter space (coupling strength c, predictor gain j,

and total time-delay s), such that if c, j, and s belong to

this region, the systems synchronize. Moreover, it is also

proved that this region is bounded by a concave function

�u : K � R2 ! R�0, ðj; cÞ 7! �uðj; cÞ. The function �uðj; cÞ
has a unique maximum on K and it has no other extrema.

FIG. 3. Configuration of the proposed control scheme.
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Theorem 1 Consider k identical systems (6)–(8) coupled
through the predictor-based DDC (21)–(24) with coupling
strength c 2 R�0, predictor gain j 2 R�0, and total time-
delay s 2 R�0 on a simple strongly connected graph.

Assume that the conditions of Lemma 1 and Lemma 2 are
satisfied. Then, there exist constants c0; r0; j0 2 R>0, a func-
tion �j cð Þ :¼ j0 þ r0c2

c�c0, and a concave function �u : K!R�0,

ðj; cÞ 7! �uðj; cÞ, with �uð�jðcÞ; cÞ ¼ limj!1�uðj; cÞ ¼ 0,

such that if ðc; j; sÞ 2 S1 \ S2 \ N with S2 :¼ fc; j; s
2 R�0jc > c0; j > �jðcÞ; s < uðj; cÞg, S1 the prediction set
defined in Lemma 1, and N the set where solutions are
ensured to be bounded defined in Lemma 2, then the solutions
of the closed-loop system (6)–(8),(21)–(24) are ultimately
bounded and there exists a globally asymptotically stable sub-
set of the synchronization manifoldM.

The proof of Theorem 1 is presented in the Appendix.

The result stated in Theorem 1 amounts to the following.

The interconnected systems asymptotically synchronize pro-

vided that the following inequalities are simultaneously

satisfied:

3j
2
þ c 	 �d; (I1)

c > c0 ¼ j0

k2

; (I2)

j > �j cð Þ ¼ j0 þ r0c2

c� c0
; (I3)

s < �uðj; cÞ < uðjÞ; (I4)

with �d the largest d that satisfies (H6.1). The constants

c0; r0; j0, and the unimodal functions uðjÞ and �uðj; cÞ are

derived in the proofs of Lemma 1 and Theorem 1, see (A8),

(A11), (A36), (A38), and (A39). Geometrically, the intersec-

tion of the inequalities (I1)–(I4) could be realized as a three-

dimensional region in the parameter space. Hereafter, we

refer to this region as the synchronization region and it is

denoted as S1 \ S2 \ N as stated in Theorem 1. Indeed, it is

not easy to visualize how the synchronization region looks

like in the parameter space. Using inequalities (I1)–(I4), in

Figure 4, we present sketches of the projections of S1 \ S2

\N on the three planes and a three-dimensional sketch of

the synchronization region.

B. Discussion

So far, we have proved that the k systems (6)–(8) inter-

connected through the predictor–based dynamic diffusive
coupling (21)–(24) asymptotically synchronize provided that

the conditions stated in Theorem 1 are satisfied. However,

we have not shown in what sense the synchronization region
S1 \ S2 \ N may be greater than the synchronization region
S that would be obtained when the systems are coupled

through the static diffusive coupling (9). The results pre-

sented in Theorem 1 are meant to prove existence of the syn-
chronization region; therefore, the estimate of S1 \ S2 \ N
given by the intersection of (I1)–(I4) may be conservative.

This is because the approach taken in this manuscript is

Lyapunov-based, i.e., we use Lyapunov-Razumikhin func-

tions and Lyapunov-Krasovskii functionals to derive the

results. It follows that the conditions stated in Lemma 1,

Lemma 2, and Theorem 1 are sufficient but certainly not nec-

essary. Hence, if both regions S1 \ S2 \ N and S are obtained

using these Lyapunov methods, it may be hard to extract quan-

titative insights out of them. Thus, a direct comparison

between these conservative regions to evaluate the perform-

ance of the couplings would be meaningless. In the following

FIG. 4. Projections and a three dimensional sketch of the synchronization region S1 \ S2 \ N .
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section, we provide a local analysis to illustrate the

“mechanism of action” behind our predictor-based couplings.

We compare (locally) the synchronization regions obtained

with both controllers without using the mentioned Lyapunov

methods. In particular, the provided analysis is related to the

Master Stability Function (MSF) approach,27 in the sense that

the conditions for local synchronization follow from the stabil-

ity properties of linear variational systems.

C. Local analysis

The k systems (6)–(8) can be written in the following

compact form:

_xi ¼ f ðxiÞ þ Buiðt� s2Þ; (29)

yi ¼ Cxi; (30)

xi ¼ /ðtÞ; t 2 ½�s2; 0
; (31)

with i 2 I ¼ f1;…; kg, and

xi ¼ colðfi; yiÞ; f ðxiÞ :¼ colðqðfi; yiÞ; aðfi; yiÞÞ;
C :¼ ð0m�ðn�mÞ ImÞ; B :¼ CT :

Then, the closed-loop stacked system (6)–(9) can be written

as

_x ¼ FðxÞ � cðL� BCÞxðt� sÞ; (32)

with x :¼ colðx1;…; xkÞ, Laplacian matrix L 2 Rk�k, and

FðxÞ :¼ colðf ðx1Þ;…; f ðxkÞÞ. Assume that:

(H7.1) The solutions of the coupled systems (6)–(9) are

ultimately bounded, i.e., there exists a constant M 2 R>0

such that jxiðtÞj < M for all t 2 ½�s;1Þ and i 2 I . We refer

the reader to Ref. 42, section 2, where sufficient conditions

for boundedness of the solutions of the interconnected sys-

tems (6)–(9) are derived. The communication graph is

strongly connected and aij¼ aji by assumption. Then, the

Laplacian matrix is symmetric and its eigenvalues are real.

Moreover, the matrix L has an algebraically simple eigen-

value k1¼ 0 and 1¼ col(1,…, 1) 2 Rk is the corresponding

eigenvector.37 Applying Gerschgorin’s disc theorem,43 it can

be concluded that the eigenvalues of L are nonnegative, i.e.,

the matrix L is positive semi definite. It follows that L has

eigenvalues k1,…, kk2R�0 ordered by increasing parts:

0¼ k1 	 k2 	 � � � 	 kk. Since L is symmetric, then there

exists a nonsingular matrix T 2 Rk�k so that K :¼ T�1LT,

where K denotes an upper block-triangular matrix with the

eigenvalues of L on its diagonal. It can be proved that the

matrix T can be chosen to satisfy

T

1

0

..

.

0

0
BBB@

1
CCCA ¼ 1k�1; ðT�1ÞT

1

0

..

.

0

0
BBB@

1
CCCA ¼ �; (33)

for some vector � 2Rk�1 satisfying �T1k�1 ¼ 1 and

�TL ¼ 0. It follows that the first column of T is 1k�1 and the

first row of T�1 equals �T. Introduce the change of

coordinates x :¼ ðT � InÞ�x, then the closed-loop system in

the new coordinates is given by

_�x ¼ ðT�1 � InÞFððT � InÞ�xÞ � cðK� BCÞ�xðt� sÞ: (34)
Notice that �x1 ¼

Pk
i¼1 �ixi ¼: n with �T1k�1 ¼ 1. Moreover,

�xj ¼ 0n�1; j ¼ 2;…; k implies that xi ¼ �x1 ¼ n for all i 2 I ,

i.e., the coupled systems are synchronized. Linearizing (34)

around �x ¼ colðn; 0n�1;…; 0n�1Þ yields

_�x ¼ ðIk � Jf ðnÞÞ�x � cðK� BCÞ�xðt� sÞ; (35)

with Jf ðnÞ denoting the Jacobian matrix of the function f :
Rn ! Rn evaluated along n ¼

Pk
i¼1 �ixi 2 Rn. Smoothness

of the vectorfield f(�) and boundedness of the solutions imply

that the Jacobian matrix Jf(n) is well defined and uniformly

bounded. Moreover, since the system (35) is linear, then as-

ymptotic stability of its zero solution �xj ¼ 0n�1; j ¼ 2;…; k
amounts to asymptotic stability of the following equations:

_zi ¼ Jf ðnÞzi � ckiBCziðt� sÞ; i ¼ 2; 3;…; k: (36)

Therefore, the k diffusively time-delayed coupled systems

(6)–(9) locally synchronize provided that the coupling

strength c and the total time-delay s are such that the

zero solution of the (k� 1) linear equations (36) are

asymptotically stable uniformly in n(t). Next, consider the

closed-loop system (6)–(8),(21)–(24). Using the same

compact form (32), the interconnected systems can be

written as follows:

_x ¼ FðxÞ � cðL� BCÞðx� �Þ; (37)

_� ¼ FðxÞ � Fðx� �Þ � jðIk � BCÞ�ðt� sÞ; (38)

with prediction error �i :¼ colð�1i; �2iÞ and stacked error

� :¼ colð�1;…; �kÞ. Assume that:

(H7.2) The conditions stated in Lemma 2 are satisfied.

Therefore, the solutions of the interconnected systems

(6)–(8),(21)–(24) are uniformly ultimately bounded for all

t 2 ½�s;1Þ. Inducing again the change of coordinates x ¼
ðT � InÞ�x and � :¼ ðT � InÞ�� with T as in (33), the closed-

loop system is written as

_�x ¼ ðT�1 � InÞFððT � InÞ�xÞ � cðK� BCÞ�x
þ cðK� BCÞ��; (39)

_�� ¼ ðT�1 � InÞFððT � InÞ�xÞ � jðIk � BCÞ��s

�ðT�1 � InÞFððT � InÞð�x � ��ÞÞ: (40)

Linearizing (39),(40) around �x¼ col(n, 0n�1,…, 0n�1) and

��¼ col(0n�1,…, 0n�1) yields

_�x ¼ ðIk � Jf ðnÞÞ�x � cðK� BCÞ�x þ cðK� BCÞ��; (41)

_�� ¼ ðIk � Jf ðnÞÞ�� � jðIk � BCÞ��ðt� sÞ; (42)

with Jf(n) the Jacobian matrix of f: Rn!Rn evaluated along

n ¼
Pk

i¼1 �ixi. The system (41),(42) is linear, then asymptotic

stability of its zero solution �xj ¼ 0n�1; j ¼ 2;…; k; and

��i ¼ 0n�1; i ¼ 1;…; k implies asymptotic stability of the

following equations:
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_zj ¼ ðJf ðnÞ � ckjBCÞzj; j ¼ 2; 3;…; k; (43)

_�� i ¼ Jf ðnÞ��i � jBC��iðt� sÞ; i ¼ 1; 2;…; k: (44)

Hence, the k systems (6)–(8) interconnected through the

predictor-based coupling (21)–(24) locally synchronize pro-

vided that the coupling strength c, the predictor gain j, and

the total time-delay s are such that the zero solution of the

(2k� 1) linear equations (43),(44) are asymptotically stable

uniformly in n(t). Summarizing, local synchronization of the

coupled systems (6)–(9) and (6)–(8),(21)–(24) amounts to as-

ymptotic stability of the origin of the systems (36) and

(43),(44), respectively. Assume that:

(H7.3) The conditions stated in Lemma 1 are satisfied.

The k systems (44) are the linearization of the prediction

error dynamics (18),(19) in the coordinates �� ¼ ðT � InÞ �.
Therefore, from Lemma 1, it follows that there exist a

positive constant j0 and a unimodal function u : ½j0;1Þ !
R�0 with uðj0Þ ¼ limj!1uðjÞ ¼ 0, such that if ðj; sÞ
2 R :¼ fj; s 2 R�0jj > j0; s < uðjÞg, the zero solution of

system (44) is asymptotically stable, see Figure 5. Notice

that the dynamics (36), (43), and (44) share a similar struc-

ture. System (44) has the same dynamics as system (43) if

j¼ ckj, j¼ 2,…, k, and s¼ 0. Similarly, system (36) has

the same dynamics as system (44) if ckj¼j, j¼ 2,…, k.

Therefore, the existence of the regionR implies that:

(P7.1) The zero solutions of the (k� 1) systems (43) are

asymptotically stable if c > j0
k2

.

(P7.2) The zero solutions of the (k� 1) systems (36) are

asymptotically stable if

ðc; sÞ 2 �R :¼
\k
j¼2

Rj; (45)

with Rj :¼ fðc; sÞjðj ¼ ckj; sÞ 2 Rg. Moreover, it can be

proved that given unimodality of the function uð�Þ, the

region �R is simply given by �R ¼ R2 \Rk, see section 5.3

in Ref. 44 for further details. In Figure 5, we provide a

graphical interpretation of the statements given in

Propositions (P7.1) and (P7.2). From (P7.1) and (P7.2), it

follows that the coupled systems (6)–(9) locally synchronize

if ðc; sÞ 2 �R and the coupled systems (6)–(8),(21)–(24)

locally synchronize if ðj; sÞ 2 R and c > j0
k2

. Notice that by

introducing the predictor-based coupling, we have shifted

the effect of the time-delay from the synchronization error

dynamics to the prediction error dynamics. That is, if the k

systems are coupled through the static diffusive coupling (9),

the time-delay appears explicitly in the synchronization error

dynamics (36) and it is directly linked to the network topol-

ogy through the nonzero eigenvalues of the Laplacian ma-

trix. On the other hand, if they interact through the

predictor-based coupling, the time-delay appears in the pre-

diction error dynamics (44), but not in the synchronization

error dynamics (43); and therefore, in this case, the effect of

the time-delay is not influenced by the network topology.

Finally, from (P7.1) and (P7.2), we can immediately con-

clude the following:

(a) If k2< kk, then area(R)> area ( �R).

(b) If k2¼ kk> 1, then area(R)> area ( �R).

(c) If k2¼ kk¼ 1, then area(R)¼ area ( �R).

(d) If k2¼ kk< 1, then area(R)< area ( �R),

with k2 and kk being the smallest nonzero and the largest

eigenvalues of the Laplacian matrix, and area(R) and

area( �R) denoting the area of the regions R and �R, respec-

tively. Therefore, locally, the predictor-based coupling

would lead to greater or equal synchronization regions in

cases (a)–(c). It is worth noting that for a given strongly

connected graph, k2¼ kk, if the network topology is all-to-all,
i.e., each system in the network receives information from

all the remaining systems. �

D. On robustness of the control-scheme

The results presented in the previous sections are

derived for networks of coupled identical systems. However,

in practical situations, the dynamics of the systems cannot be

expected to be perfectly identical. Moreover, the vectorfields

q(�) and a(�) of the dynamics (6)–(8) must be exactly known
to be able to construct the predictor-based coupling

(21)–(24). This is unrealistic in practical situations, where

there may be parametric uncertainties and/or unmodeled dy-

namics in the available models. In this situation, the best that

can be done is to construct the couplings with the known part

of the dynamics, which, hereafter, is referred to as the nomi-
nal dynamics. Hence, because of all these practical issues,

we can not expect that the systems perfectly synchronize

under the proposed control scheme. In the best case, if the

uncertainties are sufficiently small (in some appropriate

sense) it can be expected that the synchronization errors are

bounded by a small constant l 2 R>0, which, of course,

needs to be small enough in order to consider that the sys-

tems are “practically synchronized.” Let the k systems

(6)–(8) be the nominal dynamics of the following perturbed
systems:

_fi ¼ qðfi; yiÞ þ Dqiðfi; yiÞ; (46)

_yi ¼ aðfi; yiÞ þ uiðt� s2Þ þ Daiðfi; yiÞ; (47)

xi ¼ /ðtÞ; t 2 ½�s2; 0
; (48)

with i¼ 1,…, k, state xi :¼ colðfi; yiÞ 2 Rn, internal state

fi 2 Rn�m, output yi 2 Rm, input ui 2 Rm, sufficiently

smooth known functions q : Rn�m �Rm ! Rn�m and

a : Rn�m �Rm ! Rm, and sufficiently smooth unknown

FIG. 5. Synchronization regionsR,R2, Rk , and �R.
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functions Dqi : Rn�m �Rm ! Rn�m and Dai : Rn�m �Rm

! Rm. The vector-fields q(�) and a(�) are the known part of

the dynamics, while the terms Dqiðfi; yiÞ and Daiðfi; yiÞ rep-

resent parametric uncertainties and/or unmodeled dynamics.

In this setting, the predictor based coupling (21)–(24) is con-

structed using the known vectorfields q(�) and a(�) of the

nominal dynamics. Then, at this point, one may wonder

under what conditions the solutions of the coupled perturbed

systems (46)–(48),(21)–(24) are ultimately bounded and

practically synchronize. First, we address the boundedness

part in the following lemma, which is a slight modification

of Lemma 2.

Lemma 3 Consider k perturbed systems (46)–(48) inter-
connected through the predictor-based coupling (21)–(24)

with coupling strength c 2 R�0, predictor gain j 2 R�0,

and total time-delay s 2 R�0 on a simple strongly connected
graph. Assume that

(H7.4) Each system (46),(47) is strictly C1-semipassive
with input us2

i , output yi, radially unbounded storage function
Vi(xi), and the functions Hi(xi) are such that there exist
constants Ri, di 2 R>0 such that jxij > Ri implies that
Hi(xi) � dijyij2 > 0.

Let �di be the largest di that satisfies (H7.4) and define
�dmin :¼ minð�d1;…; �dkÞ, then the solutions of the coupled
systems (46)–(48),(21)–(24) exist and are ultimately bounded
for any finite s 2 R�0 and ðc; jÞ 2 ~N with
~N :¼ fc; j 2 R�0j 3j

2
þ c 	 �dming.

The proof of Lemma 3 follows the same lines as the

proof of Lemma 2 and it is omitted here. The result stated in

Lemma 3 implies that ultimate boundedness of the solutions

of the coupled perturbed systems can still be guaranteed as

long as each perturbed system (46),(47) is strictly C1-semi-

passive in the presence of the perturbation terms Dqi(fi,yi)

and Dai(fi,yi). This is not hard to satisfy when the perturba-

tions are due to parametric uncertainties; then, semipassivity

of the nominal system may imply semipassivity of the per-

turbed one if the uncertainties are sufficiently small. The

next step would be to show that under some conditions the

coupled perturbed systems “practically synchronize.”

Practical synchronization means that the differences between

the states of the systems converge to some compact invariant

set in finite time, and this set is bounded by a constant l 2
R>0 which has to be small enough to consider that the systems

are still synchronized. However, the formal study of practical

synchronization goes beyond the scope of this paper. The gen-

eral purpose of this manuscript is to gain insights of the syn-

chronization mechanisms for the class of systems and couplings

under study. Particularly, we focus on the stability analysis of

the synchronization manifold M with respect to the coupled
unperturbed systems. The practical implications of the control-

scheme are not considered here and are left for future research.

VIII. SIMULATION EXAMPLE

A. Network topology, convergence, and semipassivity

Consider a network of k systems coupled according to

the graphs depicted in Figure 6. The networks are strongly

connected and undirected. Each system in the network is

assumed to be a Hindmarsh-Rose neuron45 of the form

_z1i ¼ 1� 5y2
i � z1i;

_z2i ¼ 0:005ð4yi þ 6:472� z2iÞ;
_yi ¼ �y3

i þ 3y2
i þ z1i � z2i þ 3:25þ us2

i ;

8>><
>>: (49)

with output yi2R, internal states zi1, zi22R, state

xi ¼ colðzi1; zi2; yiÞ 2 R3, delayed input us2

i 2 R, trans-

mission time-delay s2 2 R	0, and i 2 I ¼ {1,…, k}. It is well

known that the Hindmarsh-Rose neuron (49) has a chaotic

attractor45 for ui¼ 0. Furthermore, in Ref. 38, it is proved

that the Hindmarsh-Rose neuron is strictly C1-semipassive

with quadratic storage function V z1i; z2i; yið Þ :¼ 1
2

y2
i þ rz2

1i

þ25z2
2i, constants 11; 12 2 0; 1ð Þ; 0 < r < 411 1�12ð Þ

25
, and

H z1i; z2i; yið Þ ¼ 11y4
i � 3y3

i �
1

4r 1� 12ð Þ y
2
i

þ r12 �
25r2

4 1� 11ð Þ

 !
z2

1i þ
1

4
z2

2i � 1:618z2i

þr 1� 12ð Þ z1i �
1

2r 1� 12ð Þ yi

� �2

� rz1i

þ 1� 11ð Þ y2
i þ

5r
2 1� 11ð Þ z1i

� �2

� 3:25yi:

(50)

Moreover, the (z1i, z2i)-dynamics (the internal dynamics) is

convergent (in the sense of Definition 2), i.e., it satisfies the

FIG. 6. Network Topologies.
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Demidovich condition (20) with P¼ I2 hence, assumption

(H4.1) is satisfied.

B. Predictor-based diffusive dynamic coupling

Associated with systems (49), the dynamic couplings

(21)–(24) take the following form:

_g1i ¼ 1� 5g2
3i � g1i;

_g2i ¼ 0:005ð4g3i þ 6:472� g2iÞ;
_g3i ¼ �g3

3i þ 3g2
3i þ g1i � g2i

þ3:25þ ui þ jðys1

i � gs
3iÞ;

ui ¼ c
P

j2Ei
aijðg3j � g3iÞ;

8>>>>>>><
>>>>>>>:

(51)

with predictor state gi ¼ colðg1i; g2i; g3iÞ 2 R3, measurement

time-delay s1 2 R�0, total time-delay s 2 R�0, coupling

strength c 2 R�0, and predictor gain j 2 R�0. As previ-

ously mentioned, each system (49) is strictly C1-semipassive

with H(xi) as in (50). It can be shown that the function H(xi)

satisfies the bound-edness assumption (H6.1) stated in

Lemma 2 for arbitrary large coupling strength c and predic-

tor gain j, i.e., N ¼ R�0 �R�0. Therefore, by Lemma 2,

the solutions of the closed-loop system (49),(51) always exist

and are ultimately bounded. Moreover, since the internal dy-

namics is convergent, (H4.1) is satisfied; hence, by Lemma

1, there exists a region S1 � R�0 �R�0 (as depicted in

Figure 2), such that if ðj; sÞ 2 S1, the predictor state gi

asymptotically anticipates the dynamics (49), i.e.,

limt!1xiðtþ s2Þ � giðtÞ ¼ 0. Finally, by Theorem 1, there

exists a nonempty set S2 � R�0 �R�0 �R�0 (as depicted

in Figure 4), such that if ðc; j; sÞ 2 S1 \ S2 \ N , the systems

synchronize.

C. Simulation results

In Figures 7–10, we show the results obtained through

extensive computer simulations for s1 ¼ s2 ¼ s
2
. Figure 7

depicts the prediction region S1 introduced in Lemma 1.

This region is clearly bounded by a unimodal function; and

therefore, there is an optimal predictor gain j ¼j� :¼ 2:05

which leads to the maximum time-delay s¼ s*¼ 3.82 that

can be induced to the predictor. This maximum time-delay

depends directly on the dynamics of the systems, but not on

the network topology (see the proof of Lemma 1). In Figure

8, for G0, we show the synchronization region S obtained

when the two neurons are coupled via the static diffusive
coupling (9) and a projection of the synchronization region
S1 \ S2 \ N on the (c,s)-plane obtained through the

predictor-based coupling (51) for j ¼ j�. For this particular

topology and j, both couplings lead to approximately the

same maximum time-delay s�. This can be explained

(locally) by the statement (b) of the local analysis since

k2(G0)¼ kk(G0)¼ 2. However, the asymptotic behavior is

FIG. 7. Prediction region S1.

FIG. 8. Synchronization regions S and S1 \ S2 \ N for j¼j* and G0, i.e.,

two coupled systems.

FIG. 9. Synchronization region S1 \ S2 \ N for different topologies

Gj; j ¼ 1; 2; 3; 4, and j¼j*.

FIG. 10. Synchronization region S for different topologies Gj; j ¼ 1; 2; 3; 4.
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quite different. The upper bound of S decreases asymptoti-

cally to zero as the coupling strength increases. On the other

hand, the projection of the synchronization region S1 \ S2 \
N has an upper bound that converges to s� asymptotically as

c is increased. Hence, in the latter case (for large c), the max-

imum time-delay is determined by the predictor gain j, see

Figure 7. Finally, in Figures 9 and 10, we show the regions S
and the projections of S1 \ S2 \ N for all the topologies

depicted in Figure 6. It is clear that the regions S in Figure

10 are strongly influenced by the network topology.42

Conversely, the regions S1 \ S2 \ N in Figure 9 are influ-

enced by the network topology only for small coupling

strength. The upper bounds of the synchronization regions

converge asymptotically to s� independently of the network

topology as c is increased.

IX. CONCLUSIONS

We have presented a result on network synchronization

in the case when the measurements of the available outputs

and the transmission of the controllers are subject to different

constant time-delays. We have shown that the time-delay

that can be induced to the network may be increased by the

proposed predictor-based dynamic diffusive couplings.

Using the notion of semipassivity, we have provided suffi-

cient conditions which guarantee existence and ultimate

boundedness of the solutions of the closed-loop system.

Sufficient conditions that guarantee (global) state synchroni-

zation have also been derived. We have provided a local

analysis to illustrate the “mechanism of action” behind our

predictor-based couplings. Finally, we have presented an il-

lustrative example that shows that indeed it is possible to

extend the synchronization regions with the proposed control

scheme. While the regions S obtained through the static dif-
fusive coupling (9) are strongly influenced by the network to-

pology, the regions S1 \ S2 \ N obtained with the

predictor-based coupling are influenced by the network to-

pology only for small coupling strength. As c is increased,

the upper bounds of S1 \ S2 \ N are determined by the pre-

diction set S1, i.e., for a fixed j and its corresponding maxi-

mum time-delay s�, see Figure 7, the upper bounds of

S1 \ S2 \ N converge asymptotically to s� independently of

the network topology.

APPENDIX: PROOFS

1. Proof of Lemma 1

The boundedness assumption in Lemma 1 and smooth-

ness of the right-hand side of the closed loop system imply

that the solutions of (6)–(8),(15)–(17) exist and are unique.

The prediction error is defined as �i¼ xi� gi
s2 and the predic-

tion error dynamics is given by (18),(19). Assumption

(H4.1), Proposition 1, smoothness of the vectorfields, and

boundedness of the solutions imply the existence of a posi-

tive definite function V0 : Rn�m ! R�0 such that

_V0ð�1i; �2iÞ 	 �aj�1ij2 þ c0j�1ijj�2ij; (A1)

for some constants a; c02R>0, see section 5 in Ref. 1 for fur-

ther details. Using Leibniz’s rule �s2i can be written as

�s2i ¼ �2i �
ð0

�s
_�2i tþ sð Þds; (A2)

it follows that the prediction error dynamics (19) can be writ-

ten as
_�2i ¼ a fi; yið Þ � a fi � �1i; yi � �2ið Þ

�j�2i þ j
ð0

�s
_�2i tþ sð Þds; (A3)

substitution of (19) in (A3) yields

_�2i ¼ a fi; yið Þ � a fi � �1i; yi � �2ið Þ

�j�2i � j2

ð0

�s
�2i tþ s� sð Þds

þj
ð0

�s
a fi; yið Þ tþ sð Þ � a fi � �1i; yi � �2ið Þ tþ sð Þ
� �

ds:

(A4)

Consider the function V1 �2ið Þ ¼ 1
2
�T

2i; �2i. Then

_V1 	 �T
2i a fi; yið Þ � a fi � �1i; yi � �2ið Þð Þ

�jj�2ij2 � j2�T
2i

ð0

�s
�2i tþ s� sð Þds

þj�T
2i

ð0

�s
ða fi; yið Þ tþ sð Þ

� a fi � �1i; yi � �2ið Þ tþ sð ÞÞds: (A5)

Ultimate boundedness of the solutions and smoothness of the

function a(�) imply that

�T
2i a fi; yið Þ � a fi � �1i; yi � �2ið Þð Þ 	 c1j�2ij2 þ c2j�2ijj�1ij;

for some constants c1; c2 2R>0. Let the function V1 �1i; �2ið Þ
:¼ V0 �1ið Þ þ V1 �2ið Þ be a Lyapunov-Razumikhin function

such that if V1 �i tð Þð Þ > K2V1 �i tþ hð Þð Þ for h 2 [�2s, 0] and

some constant K> 1, then

_V 1 	� aj�1ij2 � j� c1 � Kj2s� Kjsc1

� �
j�2ij2

þ c0 þ c2 þ Kjsc2ð Þj�1ijj�2ij: (A6)

The constant K can be arbitrarily close to one as long as it is

greater than one. Then, for the sake of simplicity, we take K
on the boundary K¼ 1 for the rest of the analysis. Some sim-

ple algebra shows that (A6) is negative definite if

j� j0ð Þ � jþ �c1

�c2

� �
js� 1

2�c2

jsð Þ2 > 0; (A7)

with

j0 :¼ c0 þ c2ð Þ2

4a
þ c1; (A8)

�c1 :¼ 2ac1 þ c0c2 þ c2
2

c2
2

; �c2 :¼ 2a
c2

2

: (A9)

All the constants in (A7) are positive by construction and j
and s are nonnegative by definition. Then, a necessary condi-

tion for (A7) to be satisfied is that j>j0. After some straight-

forward computations (A7) can be rewritten as follows:
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s < � �c2 þ
�c1

j

� �
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ

�c1

j

� �2

þ 2�c2

j� j0ð Þ
j2

s
: (A10)

The total time-delay s is nonnegative by definition. Hence,

in order to satisfy (A10), it is sufficient to consider the possi-

ble positive values of the right-hand side of (A10), i.e., the

positive square root. Then, inequality (A10) boils down to

s < u jð Þ :¼ � �c2 þ
�c1

j

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ

�c1

j

� �2

þ 2�c2

j� j0ð Þ
j2

s
:

(A11)

We are only interested in possible values of j; s2R�0 such

that (A11) is satisfied. Then, we restrict the function u jð Þ
to the set J :¼ ½j0;1Þ. Next, we prove that the function u :
J ! R�0 is unimodal. The function u �ð Þ is continuous and

real-valued on J . Moreover, it is strictly positive on the inte-

rior of J , it has a root at j¼ j0, i.e., u j0ð Þ ¼ 0, and

lim
j!1

u jð Þ

¼ lim
j!1

2�c2

1

j
� j0

j2

� �

�c2 þ
�c1

j

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ

�c1

j

� �2

þ 2�c2

1

j
� j0

j2

� �s

¼ 2�c2 0ð Þ

�c2 þ 0ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ 0ð Þ2 þ 2�c2 0ð Þ

q ¼ 0

2�c2

¼ 0:

The function u �ð Þ is differentiable on J , then we can com-

pute its local extrema by computing its critical points. It is

easy to verify that
@uðjÞ
@j only for j ¼ j�1 and j ¼ j�2 with

j�1¼ 1þ 1

1þ2�c1

� �
j0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�c2

1�c2j0 1þ2�c1þ2�c2j0ð Þ
p

�c2 1þ2�c1ð Þ ; (A12)

j�2¼ 1þ 1

1þ2�c1

� �
j0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�c2

1�c2j0 1þ2�c1þ2�c2j0ð Þ
p

�c2 1þ2�c1ð Þ : (A13)

Then, j ¼ j�1 and j ¼ j�2 are the critical points of u jð Þ and

u j�1ð Þ and u j�2ð Þ are the corresponding global extrema.

Notice that j�1 > j0; therefore, j�1 belongs to the interior of

J . It is difficult to visualize from (A13) whether j�2 is con-

tained in J . Then, we rewrite (A13) in a more suitable man-

ner. After some algebra (A13) can be written as follows:

j�2 ¼
2�c2j0 � �c2

1

�c2 1þ �c1 þ �c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ 2�c1

�c2j0

r ! : (A14)

Notice that the denominator of (A14) is strictly positive, then

the sign of j�2 is solely determined by the numerator.

Substitution of (A8) and (A9) in the numerator of (A14) yields

2�c2j
0 � �c2

1 ¼ �
4ac1 c0c2 þ ac1ð Þ

c2
2

; (A15)

which is strictly negative. It follows that j�2 strictly negative as

well; in consequence, j�2 is not contained on J , i.e., j�2 62 J
Then, the function u �ð Þ has a unique extremum on J and it is

given by u j�1ð Þ. Finally, given that u j0ð Þ ¼ 0; limj!1u jð Þ
¼ 0; / jð Þ is strictly positive on the interior of J , and u j�1ð Þ is

the unique extremum on J , it follows that u j�1ð Þ is a unique

local maximum on J ; therefore, it can be concluded that the

function u �ð Þ is a unimodal function in the sense of Definition

3. Hence, (A6) is negative definite if j>j0 and s<u(j).

Then, ultimate boundedness of the solutions and the

Lyapunov-Razumikhin theorem imply that the set f�i ¼ 0g is

a global attractor for j>j0 and s< u(j). �

2. Proof of Lemma 2

By assumption each system (6),(8) is strictly C1-semipas-

sive with input us2

i , output yi, and radially unbounded

function V(xi). Define the function W1 xð Þ :¼
Pk

i¼1 �iV xið Þ,
where x¼ col(x1,…, xk) and the constants �i denote the

entries of the left eigenvector corresponding to the zero eigen-

value of the Laplacian matrix L, i.e., �¼ (�1,…, �k)
T and

�TL¼ �T (D�A)¼ 0. Note that L is singular by construction.

Moreover, since it is assumed that the graph is strongly connected,

then the zero eigenvalue is simple. Using the Perron-Frobenius

theorem,37 it can be shown that the vector � has strictly positive

real entries, i.e., �i> 0 for all i. Then, by assumption

_W1 xð Þ 	
Xk

i¼1

�i yT
i us2

i � H xið Þ
� �

: (A16)

Consider the term

Xk

i¼1

�iy
T
i us2

i ¼ c
Xk

i¼1

X
j2Ei

�iaijy
T
i gs2

2j � gs2

2i

� �
; (A17)

using Young’s inequality it follows that

Xk

i¼1

�iy
T
i us2

i �
c
2

Xk

i¼1

X
j2E4

�iaij 2jyij2 þ jgs2

2j j
2 þ jgs2

2i j
2

� �
:

Notice that if j¼ ui¼ 0, the predictor dynamics (21),(22) is

the same as (6),(7) with us2 ¼ 0. Therefore, strict C1-semipas-

sivity of (6),(7) implies strict C1-semipassivity of (21),(22)

with radially unbounded function V(gi), output g2i, and input

wi ¼ ui þ jys1

i � jgs
2i. Define the functional

W2 gt hð Þ
� �

¼
Xk

i¼1

�i V gið Þ þ c
X
j2Ei

aij

ð0
�s2

jg2i tþ sð Þj2ds

0
B@

þj
2

ð0
�s1

jyi tþ sð Þj2dsþ k

2

ð0
�s

jg2i tþ sð Þj2ds

1
A;

with g ¼ col g1;…; gkð Þ; gt hð Þ ¼ g tþ hð Þ 2 C; h2 ½�s;0
, and

C¼ [�s, 0]!Rkn the Banach space of continuous functions

mapping the interval [�s, 0] into Rkn. Then, by assumption

_W2¼
Xk

i¼1

�i gT
2iwi�H gið Þþc

X
j2Ei

aij jg2ij2�jgs2

2i j
2

� � 

þj
2
ðjyij2�jys1

i j
2þjg2ij2�jgs

2ij
2Þ
�
: (A18)

Consider the term
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Xk

i¼1

�ig
T
2iwi¼

Xk

i¼1

�i c
X
j2Ei

aijg
T
2i g2j�g2ið ÞþjgT

2iy
s1

i �jgT
2ig

s
2i

� �
;

using Young’s inequality it follows that

Xk

i¼1

�ig
T
2iwi 	

Xk

i¼1

�i
c
2

X
j2Ei

aij jg2jj2 � jg2ij2
� � 

þjjg2ij2 þ
j
2
jys1

i j
2 þ j

2
jgs

2ij
2
�
:

Finally, define the functional W xt hð Þ; gt hð Þ
� �

:¼ W1 þW2,

with xt hð Þ ¼ x tþ hð Þ2C and h2½�s; 0
. Then, combining the

previous results

_W 	
Xk

i¼1

�i �H xið Þ � H gið Þ þ
j
2
jyij2 þ c

X
j2Ei

aijjyij2
 

þ 3j
2
jg2ij2 þ

c
2

X
j2Ei

aij 2jg2ij2 þ jg2jj2 � jg2ij2
� �

þ c
2

X
j2Ei

aij jgs2

2j j
2 � jgs2

2i j
2

� �!
;

(A19)

using �T D� Að Þ ¼ 0 and maxi2I
P

j2Ei
aij ¼ 1, it follows

that

_W 	
Xk

i¼1

�H xið Þ þ cþ 3j
2

� �
jyij2

� �

þ
Xk

i¼1

�i �H gið Þ þ cþ 3j
2

� �
jg2ij2

� �
: (A20)

The function H(�) is strictly positive if its argument is suffi-

ciently large. Moreover, by assumption (H6.1), there exists a

positive constant R2R>0 such that jxij > R implies that

H xið Þ � djyij2 > 0 for some d2R>0. Let �d be the largest d
that satisfies (H6.1), then for c; jð Þ satisfying cþ 3j

2
	 �d and

for sufficiently large j1j with 1:¼ col x; gð Þ, it follows that
_W < 0. The functional W is radially unbounded and positive

definite by construction. Hence, there exists a constant

r2R>0 such that _W 1ð Þ < 0 for r and 1 satisfying W 1ð Þ 	 r.

Then, solutions starting in the set fW 1ð Þ 	 r�g will remain

there for future time since W is negative on the boundary

W 1ð Þ ¼ r. Moreover, for any 1 in the set fW 1ð Þ � r�g with

r� > r, the function _W 1ð Þ is strictly negative, which implies

that, in this set, W(1) will decrease monotonically until the

solutions enter the set fW 1ð Þ 	 rg again. Therefore, it can

be concluded that the solutions of the closed loop system

(6),(7),(21)–(24) exist and are ultimately bounded for any fi-

nite s � 0 and c; jð Þ satisfying cþ 3j
2
	 �d. �

3. Proof of Theorem 1

The existence and uniqueness of the solutions follows

from smoothness of the right-hand side of the closed-loop

system. By Lemma 2, the solutions exist for all t2½�2s;þ1

and are ultimately bounded. Let f¼ colðf1;…;fkÞ2Rk n�mð Þ,
y¼ colðy1;…;ykÞ2Rkm, �1 ¼ colð�11;…; �1kÞ2Rk n�mð Þ, and

�2 ¼ colð�21;…; �2kÞ2Rkm. Define M2R k�1ð Þ�k as

M :¼ 1 k�1ð Þ�1 � Ik�1

� �
: (A21)

Introduce the set of coordinates ~f ¼ M � In�mð Þf,

~y ¼ M � Imð Þy, ~�1 ¼ M � In�mð Þ�1, and ~�2 ¼ M � Imð Þ�2.

Note that, ~y1 ¼ y1 � y2;…; ~yk�1 ¼ y1 � yk, ~f1 ¼ f1

�f2;…;~fk�1 ¼ f1 � fk, ~�11 ¼ �11 � �12;…;��1 k�1ð Þ ¼ �11

��1k, and ~�21 ¼ �21 � �22;…;��2 k�1ð Þ ¼ �12 � �2k. Then, it

follows that ~y ¼ ~f ¼ 0 implies that the systems are

synchronized. Assumption (H4.1), Proposition 1,

smoothness of the vectorfields, and boundedness of the

solutions imply the existence of a positive definite function

V2 : R k�1ð Þ n�mð Þ ! R�0;~f 7!V2
~f
� �

such that

_V2
~f; ~y
� �

	 �aj~fj2 þ c0j~fjj~yj; (A22)

for some constants a, c02R>0, see section 5 in Ref. 1 for fur-

ther details. Notice that

~M ¼ 1 0

1 �Ik�1

� �
! ~ML ~M

�1 ¼ 0 �
0 ~L

� �
; (A23)

where 1 and 0 are all ones and all zeros vectors of appropri-

ate dimensions, L denotes the Laplacian matrix. By assump-

tion, the communication graph is strongly connected and the

interconnections are mutual, i.e., aij ¼ aji. Then, the

Laplacian matrix is symmetric and its eigenvalues are real.

Moreover, the matrix L has an algebraically simple eigen-

value k1 ¼ 0 and 1 ¼ colð1;…; 1Þ2Rk is the corresponding

eigenvector.37 Applying Gerschgorin’s theorem43 about

localization of eigenvalues, it can be concluded that the

eigenvalues of L are non-negative, i.e., L is positive semide-

finite. Since spec ~Lð Þ ¼ spec Lð Þnf0g, it follows that the ma-

trix ~L2R k�1ð Þ� k�1ð Þ
has eigenvalues k2;…; kk2R>0, with

0 < k2 	 � � � 	 kk. The stacked prediction errors are given

by �1 ¼ f� gs2

1 and �2 ¼ y� gs2

2 with g1 ¼ colðg11;…; g1kÞ
2Rk n�mð Þ and g2 ¼ colðg21;…; g2kÞ2Rkm. Then, the control-

ler (23) can be written in matrix form as follows:

u tð Þ ¼ �c L� Imð Þg2 tð Þ
¼ �c L� Imð Þy tþ s2ð Þ þ c L� Lmð Þ�2 tþ s2ð Þ; (A24)

where u ¼ colðu1;…; ukÞ2Rkm. Moreover, denote

~u :¼ colððu1 � u2Þ;…; ðu1 � ukÞÞ, it follows that

~u tð Þ ¼ �c ~L � Im

� �
~y tþ s2ð Þ þ c ~L � Lm

� �
~�2 tþ s2ð Þ; (A25)

with ~L as in (A23). Then, in the new coordinates, the closed

loop system is given by

_~f¼~q ~y;~f;y1;f1

� �
; (A26)

_~y¼ ~a ~y;~f;y1;f1

� �
� c ~L�Lm

� �
~y tð Þþ c ~L� Im

� �
~�2 tð Þ; (A27)

where

~a ~y;~f; y1; f1

� �
¼

a y1; f1ð Þ � a y1 � ~y1; f1 � ~f1

� �
..
.

a y1; f1ð Þ � a y1 � ~yk�1; f1 � ~fk�1

� �
0
BBB@

1
CCCA;

(A28)
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and

~q ~y;~f; y1; f1

� �
¼

q y1; f1ð Þ � q y1 � ~y1; f1 � ~f1

� �
..
.

q y1; f1ð Þ � q y1 � ~yk�1; f1 � ~fk�1

� �
0
BBB@

1
CCCA:

(A29)

Since L is symmetric, then there exists a nonsingular matrix

U2R k�1ð Þ� k�1ð Þ
such that kUk ¼ 1 and U ~LU�1 ¼ K, where

K denotes a diagonal matrix with the nonzero eigenvalues of

L as entries. Introduce new coordinates �y ¼ U � Imð Þ~y and

for consistency of notation �f ¼ ~f. In the new coordinates,

the closed loop system can be written as

~_f ¼ �q �y;�f; y1; f1

� �
; (A30)

_�y ¼ �a �y;�f; y1; f1

� �
� c K� Imð Þ�y tð Þ þ c K� Imð Þ��2 tð Þ; (A31)

where �q �y;�f; y1; f1

� �
:¼ ~q U�1 � Imð Þ�y;�f; y1; f1

� �
, �a �y;�f; y1;
�

f1Þ :¼ U � Imð Þ~a U�1 � Imð Þ�y;�f; y1; f1

� �
, and ��2 ¼ U � Imð Þ

~�2. Notice that �y ¼ �f ¼ 0 implies that the systems are

synchronized because U is nonsingular. Since stability is

invariant under a change of coordinates and kUk ¼ 1,

then from (A22), it follows that there exists a positive

definite function �V2 : R k�1ð Þ n�mð Þ ! R�0, �f 7! �V 2
�f
� �

such

that

_�V 2
�f; �y
� �

	 �aj�fj2 þ c0j�fjj�yj; (A32)

for some constants a, c02R>0. Consider the function V3 �yð Þ
¼ 1

2
�yT �y. Then

_V3 	 �ck2j�yj2 þ �yT �a �y;�f; y1; f1

� �
þ c K� Imð Þ��2

� �
: (A33)

Ultimate boundedness of the solutions and smoothness of the

function a �ð Þ imply that

�yT �a �y;�f; y1; f1

� �
	 c1j�yj2 þ c2j�yjj�fj;

c�yT K� Imð Þ��2 	 ckkj�yjj��2j;

for some positive constants c1, c22R>0. Consider the func-

tion V2
�f; �y
� �

¼ �V2
�f
� �
þ V3 �yð Þ, then

_V 2 	 � ck2 � c1ð Þj�yj2 þ c2 þ c0ð Þj�yjj�fj � aj�fj2 þ ckkj�yjj��2j:

Next, from the proof of Lemma 1, consider the function

V3 �1; �2ð Þ ¼
Xk

i¼1

V1 �1i; �2ið Þ ¼
Xk

i¼1

V0 �1ið Þ þ V1 �2ið Þ; (A34)

with V0(�) and V1(�) from (A1) and (A5), respectively. Let

the function V3 �1; �2ð Þ be a Lyapunov-Razumikhin function

such that if V3 �1 tð Þ; �2 tð Þð Þ > K2V �1 tþ hð Þ; �2 tþ hð Þ
� �

for

h2½�2s; 0
 and some constant K > 1, then from the proof of

Lemma 1, it follows that

_V 3 	� aj�1j2 � j� c1 � Kj2s� Kjsc1

� �
j�2j2

þ c0 þ c2 þ Kjsc2ð Þj�1jj�2j:

Finally, consider the function V �x; �ð Þ ¼ V2ð�f; �yÞ þ V3 �1; �2ð Þ
with �x ¼ colð�f; �yÞ and � ¼ colð�1; �2Þ. Then, using the fact

that j��2j 	 kMkj�2j ¼
ffiffiffi
k
p
j�2j, taking K on the boundary

K ¼ 1, and combining the previous results, it follows that

_V 	 � aj�fj2 � ck2 � c1ð Þj�yj2 þ c0 þ c2ð Þj�yjj�fj
�aj�1j2 � k � c1 � j2s� jsc1

� �
j�2j2

þ c0 þ c2 þ jsc2ð Þj�1jj�2j þ c
ffiffiffi
k
p

kkj�yjjj�2j: (A35)

Some straightforward algebra shows that (A35) is negative

definite if the following inequalities are satisfied:

c > c0 :¼ 1

k2

c1 þ
c0 þ c2ð Þ2

4a

� �
¼ j0

k2

; (A36)

j� �j cð Þð Þ � jþ �c1

�c2

� �
js� 1

�c2

jsð Þ2 > 0; (A37)

with constants j0, �c1, �c22R>0 from the proof of Lemma 1,

defined in (A8) and (A9), and

�j cð Þ :¼ j0 þ r0c2

c� c0
;

r0 :¼ kk2
k

4k2

:

8>>><
>>>:

(A38)

Since the constants in (A36) and (A37) are positive by

construction and j; s, and c are nonnegative by defini-

tion, then a necessary condition for (A37) to be satisfied

is that j > �j cð Þ. We are only interested in possible val-

ues of j; s; c2R�0 such that (A36) and (A37) are satis-

fied. Then, we restrict the function �j cð Þ to the set C :¼
(c0,1). It is easy to verify that the function �j : C!
½�j 2c0ð Þ;1Þ is strictly positive, continuous, and real-

valued on C. Notice that the inequality (A37) has the

same structure as (A7), which is the inequality that has

to be satisfied to render the origin of the prediction error

dynamics (18),(19) asymptotically stable. The only differ-

ence between them is that the delay-free term in (A7)

depends solely on j while in (A37) depends on both j
and c. Then, as in the proof of Lemma 1, the inequality

(A37) can be rewritten as

s < �u j; cð Þ :¼ � �c2 þ
�c1

j

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ

�c1

j

� �2

þ 2�c2

ðj� �j cð ÞÞ
j2

s
: (A39)
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Again, we are only interested in possible values of

j; s; c2R�0 such that (A36) and (A37) are satisfied. Then,

we restrict the function �u j; cð Þ to the set where j > �k cð Þ
and c > c0, i.e., restricted to K :¼ fj; c2½�j 2c0ð Þ;
1Þ � Cjk > �k cð Þg. The function �u : K ! R�0 is continu-

ous and real-valued on K. Moreover, it is strictly positive on

the interior of K, it is zero on the curve j ¼ �j cð Þ, i.e.,

�u  �jð Þ cð Þ ¼ 0, and limk!1�u j; cð Þ ¼ 0 for all c2C.

The function u �ð Þ is differentiable on K, then we can com-

pute its local extrema by computing its critical points. It is

easy to verify that
@�u j;cð Þ
@j ¼ 0 only for j ¼ �j�3 cð Þ and j ¼

�j�4 cð Þ with

�j�3 ¼ 1þ 1

1þ 2�c1

� �
�j cð Þ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�c2

1�c2�j cð Þ 1þ 2�c1 þ 2�c2�j cð Þ
� �q

�c2 1þ 2�c1ð Þ ; (A40)

�j�4 ¼ 1þ 1

1þ 2�c1

� �
�j cð Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�c2

1�c2�j cð Þ 1þ 2�c1 þ 2�c2�j cð Þ
� �q

�c2 1þ 2�c1ð Þ : (A41)

Likewise,
@�u j;cð Þ
@c ¼ 0 only for c ¼ 0 and c ¼ 2c0 ¼ 2j0

k2
.

Notice that �j�3 cð Þ > �j cð Þ for all c2C; therefore, �j�3 cð Þ
belongs to the interior of K. It is difficult to visualize from

(A41) whether �j�4 cð Þ is contained in K. Then, we rewrite

(A41) in a more suitable manner. After some algebra (A41)

can be written as �j�4 �jð Þ ¼ A �jð Þ�j cð Þ with

A �jð Þ :¼ 1þ 1

1þ2�c1

� �
�

�c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2

�c2�j cð Þ
þ 4�c1

�c2�j cð Þ

s

1þ2�c1

: (A42)

Hence, if A �jð Þ < 1 for all is �j2½�j 2c0ð Þ;1Þ, it follows that

�j�4 �jð Þ ¼ A �jð Þ�j cð Þ < �j cð Þ for all c2C and therefore �j�4 �jð Þ 62
K It is easy to check that the function A(�j) does not have

any critical points, lim�j!0þA �jð Þ ¼ �1, and limj!1þA �jð Þ
¼ 2

1þ2�c1
. Then, the function A �jð Þ does not have any local

maxima on the interval (0, 1) and its greatest value occurs

at infinity. It follows that A �jð Þ < 0 for all �j2½�j 2c0ð Þ;1Þ if
2

1þ2�c1
< 1, which is trivially true from the definition of �c1 in

(A9). Hence, it can be concluded that the function �u j; cð Þ
has a unique extremum on K and it is given by

�u �j�3 2c0ð Þ; 2c0
� �

. Finally, given that �u �j cð Þ; cð Þ ¼ 0,

limj!1�u �j; cð Þ ¼ 0 for all c2C, �u j; cð Þ is strictly positive

on the interior of K, and �u j�3 2c0ð Þ; 2c0
� �

is the unique

extremum on K. It follows that �u j�3 2c0ð Þ; 2c0
� �

is the unique

maximum on K and the function �u j; cð Þ is concave. Then,

ultimate boundedness of the solutions and the Lyapunov-

Razumikhin theorem imply that the set fcol �;~f; ~z
� �

¼ 0g
(and therefore fcol �;~f; ~z

� �
¼ 0g as well) is a global attractor

if s < u jð Þ, c > c0, j > �j cð Þ, s < �u j; cð Þ, and c; jð Þ2N
with N the boundedness set defined in Lemma 2. �
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